EP1722816A2 - Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen - Google Patents

Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen

Info

Publication number
EP1722816A2
EP1722816A2 EP05715659A EP05715659A EP1722816A2 EP 1722816 A2 EP1722816 A2 EP 1722816A2 EP 05715659 A EP05715659 A EP 05715659A EP 05715659 A EP05715659 A EP 05715659A EP 1722816 A2 EP1722816 A2 EP 1722816A2
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
antibody
carrier system
cell
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05715659A
Other languages
English (en)
French (fr)
Inventor
Sabine Balthasar
Hagen Von Briesen
Norbert Dinauer
Jörg KREUTER
Klaus Langer
Heidrun Wartlick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LTS Lohmann Therapie Systeme AG
Original Assignee
LTS Lohmann Therapie Systeme AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LTS Lohmann Therapie Systeme AG filed Critical LTS Lohmann Therapie Systeme AG
Publication of EP1722816A2 publication Critical patent/EP1722816A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • Carrier system in the form of protein-based nanoparticles for cell-specific enrichment of pharmaceutically active substances. drugs
  • the invention relates to a carrier system for pharmaceutically active substances which is suitable for cell-specific enrichment of the pharmaceutically active substances and in the form of avidin-modified nanoparticles based on: protein, preferably based on gelatin and / or ode-t serum albumin, in particular human serum albumin (HSA ), to which biotinylated antibodies are bound by the formation of a stable avidin-biotin complex and in which an additional binding of pharmaceutically active substances can take place either covalently or in a complexing manner via the avidin-biotin system as well as incorporated or adsorptively.
  • protein preferably based on gelatin and / or ode-t serum albumin, in particular human serum albumin (HSA )
  • HSA human serum albumin
  • Nanoparticles are particles between 10 and 1000 nm in size made from artificial or natural macromolecular substances to which drugs or other biologically active material are covalently, ionically or adsorptively bound or in which this material can be incorporated.
  • EP 1 392 255 discloses nanoparticles based on human serum albumin, to which apolipoprotein E is coupled covalently or via an avidin / biotin system in order to overcome the blood-brain barrier.
  • a particular goal of pharmacotherapy is not only the specific enrichment of a pharmacologically active ingredient or therapeutically active drug to be achieved in a specific tissue or organ, as disclosed in EP 1 392 255, but moreover even in specific cells.
  • Unmodified nanoparticles enable passive "drug targeting", which is characterized in that the particles are taken up by cells of the mononuclear phagocyte system (MPS) after intravascular application. An accumulation of such nanoparticles has been found in macrophages of the liver, spleen, and bone marrow as well as in circulating monocytes. Active "drug targeting” is distinguished from passive “drug targeting", in which the active ingredient is to be specifically enriched with the aid of modified nanoparticles, even in primarily inaccessible body compartments or cell systems. This is necessary for this To use nanoparticles with hydrophilic surface structures that minimize non-specific interactions with non-target cells and to equip them with ligands that enable cell-specific enrichment of the nanoparticles.
  • MPS mononuclear phagocyte system
  • Such ligands are also referred to as “drug targeting ligands”.
  • drug targeting ligands The use of cell-specific nanoparticles as a carrier for medicinal products enables a pharmacologically active ingredient to be accumulated in target cells under controlled conditions or to be brought to its target location in the body. Most drugs do not achieve this goal without a suitable dosage form and show cellular enrichment or body distribution, which is due to the physico-chemical properties of the active ingredient itself. Only a part of the applied drug reaches the desired destination, whereas the remaining part is responsible for undesirable side effects or toxic effects. Cell-specific nanoparticles therefore help to reduce unwanted side effects and toxic properties of active ingredients.
  • hydrophilic latex particles were used which were produced by the copolymerization of hydroxyethyl methacrylate, methacrylic acid and methyl ethacrylate. An antibody against rabbit ⁇ -globulin was bound to these particles. In comparison to unmodified particles, binding of the antibody-modified preparation to lymphocytes was observed, which were pre-incubated with an antiserum obtained from the rabbit against these lymphocytes.
  • Corresponding particle systems based on polyacrylates with additionally integrated iron oxide were subsequently used to carry out a magnetic separation of lymphocytes and erythrocytes.
  • adsorptive binding of ligands is not suitable for cell-specific drug targeting in biological systems.
  • Nanoparticle systems can be seen in the fact that they are based on non-biodegradable polymer materials such as latex and polyacrylates.
  • nanoparticles which do not have the disadvantages of the nanoparticle systems described, but instead have a high cell specificity when used in biological systems in order to be able to specifically enrich pharmacologically active substances in selected target cells, and that are based on a biodegradable material.
  • the task is surprisingly achieved by a carrier system in the form of avidin-modified protein-based nanoparticles to which biotinylated antibodies are attached Formation of a stable avidin-biotin complex are bound.
  • Gelatin and / or serum albumin, particularly preferably human serum albumin are preferably used as proteins.
  • pharmacologically active substances can be additionally bound to the nanoparticles both covalently, complexing via the avidin-biotin system and also incorporated or adsorptively.
  • FIG. 1 shows the structure of an avidin-modified nanoparticle based on gelatin or HSA, with an antibody bound via an avidin-biotin complex.
  • Figure 2 is a bar graph showing the cellular uptake of antibody (trastuzumab) -modified gelatin A manoparticles in various breast cancer cell lines as determined by FACS analysis.
  • the antibody-modified nanoparticles were compared with the unmodified nanoparticles under the same incubation conditions. Untreated cells served as controls.
  • an aqueous gelatin solution was converted into nanoparticles by a double desolvation process and these were subsequently stabilized by crosslinking.
  • the functional groups (amino groups, carboxyl groups, hydroxyl groups) on the surface of these nanoparticles can be converted into reactive thiol groups by suitable reagents.
  • Functional proteins can have bifunctional spacer molecules that are both reactive towards amino groups as well as free thiol groups, to which thiol group-modified nanoparticles are bound. These functional proteins include, in particular, avidine derivatives or cell-specific antibodies.
  • the antibodies were either acquired biotinylated or biotinylated by reaction with NHS-biotin (N-hydroxysuccinimidobiotin) and the avidin-modified nanoparticles were added.
  • NHS-biotin N-hydroxysuccinimidobiotin
  • the avidin-modified nanoparticles were added.
  • As a result of the avidin-biotin complex formation described antibody-modified nanoparticles based on gelatin were obtained (FIG. 1).
  • Corresponding antibody-modified nanoparticles can also be based on Serum albumin, preferably human serum albumin.
  • the present invention thus comprises a carrier system for cell-specific, intracellular enrichment of at least one pharmacologically active substance, which is in the form of protein-based nanoparticles and has structures coupled via reactive groups which enable cell-specific attachment and cellular uptake of the nanoparticles.
  • Gelatin and / or serum albumin, particularly preferably human serum albumin, are preferably used as the protein base.
  • the reactive group is preferably an amino thiol, carboxyl group or an avidin derivative and the coupled structure is an antibody, particularly preferably an onoclonal antibody.
  • the invention also comprises a corresponding carrier system which additionally contains at least one pharmaceutically active substance which is bound to the carrier system or the nanoparticles by adsorption, incorporation or covalent or complexing bond via the reactive groups.
  • the invention also includes the use of a carrier system according to the invention for the production of a medicament for the enrichment of a pharmaceutically active substance on or in specific cells.
  • the invention further comprises a method for producing a carrier system in the form of protein-based nanoparticles for cell-specific enrichment, at least a pharmacologically active substance which comprises the following steps: desolvation of an aqueous protein solution, stabilization of the nanoparticles formed by desolvation by crosslinking, conversion of some of the functional groups on the surface of the stabilized nanoparticles to reactive thiol groups, covalent attachment of functional proteins, preferably of avidin, by means of bifunctional spacer molecules, optionally biotinylation of the antibody, loading of the avidin-modified nanoparticles with biotixiylated antibody, - loading of the avidin-modified nanoparticles with biotinylated and pharmaceutically or biologically active substance.
  • gelatin and / or serum albumin, in particular serum albumin, of human origin is preferred.
  • Desolvation is preferably carried out by stirring and adding a water-miscible non-solvent for proteins or by salting out.
  • the water-miscible non-solvent for proteins is preferably selected from the group comprising ethanol, methanol, isopropanol, and acetone.
  • Thermal processes or bifunctional aldehydes in particular glutaraldehyde, or formaldehyde are preferably used to stabilize the nanoparticles.
  • a bifunctional spacer molecule is preferably one
  • Protein nanoparticles were dissolved 500 mg of gelatin A in 10.0 ml of purified water with heating and precipitated into a sediment by adding 10.0 ml of acetone. The precipitated gelatin was separated off, redissolved in 10.0 ml of water while heating, and the pH of the solution was adjusted to pH 2.5. Nanoparticles were obtained from this solution by dropwise addition of 30 ml acetone (desolvation process). The nanoparticles were stabilized by adding 625 ⁇ l of 8% glutaraldehyde and stirring overnight. The nanoparticles were purified in 2.0 ml aliquots by 5 cycles of centrifugation and redispersion using ultrasound treatment.
  • a further purification of the now covalently FITC-NeutrAvidin TM -modified nanoparticles was carried out as described above.
  • the supernatants obtained from the particle purification were examined photometrically for unbound NeutrAvidin TM and the proportion of covalently bound NeutrAvidin TM was calculated therefrom.
  • the NeutrAvidin TM -modified nanoparticles (20 mg / ml) were mixed with 500 ⁇ l of the biotinylated antibody (25 ⁇ g / ml) and incubated at 10 ° C. for 90 min. After the incubation, the particles were cleaned again by centrifugation and redispersion. The particle supernatants obtained were examined by Western blot analysis for unbound antibody. It was shown that more than 80% of the antibody used was connected to the particle system.
  • cell-specific particle accumulations in target cells were found in various cell culture experiments which carry the surface antigen recognized by the antibody.
  • the following cell culture models were used:
  • Nanoparticles were loaded with the approved antibody Trastuzu ab (Herceptin ® ), which had previously been biotinylated. The cultured cells were incubated with the nanoparticle system in concentrations between 100 and 1000 ⁇ g / l and after 4 h of incubation, unbound nanoparticles were separated by washing the cells. The cells were examined using flow cytometry (FACS) and confocal microscopy (CLSM) with regard to nanoparticle uptake.
  • FACS flow cytometry
  • CLSM confocal microscopy
  • Jurkat T cells were seeded at a density of 1 ⁇ 10 6 cells per well on a 24-well microtiter plate and RPMI medium cultured. The medium was supplemented with 10% (v / v) fetal calf serum (FCS), 2 ⁇ L-glutamine and 1% penicillin / streptoycin.
  • FCS fetal calf serum
  • the nanoparticles modified with the antibody were mixed with the cells in a concentration of 1000 ⁇ g / ml
  • HER2 overexpressing cells (BT474 and SK-Br-3) were used in a density of 2 X 10 5 and 1 X 10 5 cells per Well on a 24 well Microtiter plate sown and cultivated in RPMI medium or M ⁇ Coy's 5 A.
  • the medium of the BT474 was supplemented with 20% (v / v) fetal calf serum (FCS), 2% L-glutamine, 1 penicillin / streptomycin and 100 U insulin.
  • the medium of SK-Br-3 was supplemented with 10% (v / v) fetal calf serum (FCS), 2% L-glutamine and 1% penicillin / streptomycin.
  • FCS fetal calf serum
  • the nanoparticles modified with the antibody were incubated with the cells at a concentration of 100 ⁇ g / ml over a period of 3 h.
  • various comparative studies were carried out. On the one hand, nanoparticles were used that were not loaded with a specific antibody.
  • the investigations were carried out with MCF-7 cells (normal HER2 expression).
  • Antibody also did not result in uptake in the target cells. Control experiments were also carried out with breast cancer cells (MCF-7 cells) that do not have the CD3 surface antigen. In these control experiments, all were chosen
  • the cells used showed an expression of the HER2 surface antigen to varying degrees, which was used as a target for cellular uptake of the antibody-modified nanoparticles.
  • the expression of the cells was determined by Western blot analysis before incubation with the nanoparticles (Table 1).
  • Table 1 Expression of the HER2 surface antigen on the surface of various tumor cells determined by Western blot analysis. Expression was calculated relative to the values of the "normally expressing" MCF-7 cells. Both FACS and CLSM were able to show that nanoparticles were taken up in cells, which were used modified with the cell-specific antibody trastuzumab (FIG. 2). The cellular uptake of the specific nanoparticles could be prevented if the cells were treated with the free specific antibody before the particle addition. Nanoparticles of the same production approach, which were not used modified with the biotinylated antibody, showed only a low cellular enrichment under the chosen conditions. The extent of the cellular uptake of the antibody-modified nanoparticles could be correlated with the extent of the expression of the HER2 surface antigen.
  • Enable target cells Under comparable conditions, the particle systems are only taken up in the corresponding target cells but not by control cells. The pre-incubations with free specific antibody clearly demonstrate that particle uptake occurs through a process of receptor-mediated endocytosis.
  • the developed nanoparticulate drug carrier system thus offers the possibility of transporting drugs specifically to diseased cells, provided that these target cells differ from healthy cells in their surface properties.
  • a well-characterized, particulate carrier system is provided which, with a functional drug targeting ligand which carries it on its surface, enables cell-specific uptake and enrichment, possibly also by the carrier system Adsorption, incorporation or pharmaceutically active substances bound by covalent or complexing bond enables.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oncology (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Trägersystem in Form von Nanopartikeln auf Proteinbasis zur zeltspezifischen, intrazellulären Anreicherung zumindest eines pharmakologisch aktiven Wirkstoffs, das über reaktive Gruppen gekoppelte Strukturen aufweist, die eine zeltspezifische Anlagerung und zelluläre Aufnahme der Nanopartikel ermöglichen sowie Verfahren zu seiner Herstellung.

Description

Trägersystem in Form von Nanopartikeln auf Proteinbasis zur zellspezifischen Anreicherung von pharmazeutisch aktiven. Wirkstoffen
Gegenstand der Erfindung ist ein Trägersystem für pharmazeutisch aktive Wirkstoffe, das zur zellspezifischen Anreicherung der pharmazeutisch aktiven Wirkstoffe geeignet ist und in Form von Avidin-modifizierten Nanopartikeln auf: Proteinbasis, vorzugsweise auf Basis von Gelatine und/ode-t Serumalbumin, insbesondere humanem Serumalbumin (HSA) , vorliegt, an die biotinylierte Antikörper durch Ausbildung- eines stabilen Avidin-Biotin-Komplexes gebunden sind und bei denen eine zusätzliche Bindung von pharmazeutisch aktiven Wirkstoffen sowohl kovalent oder komplexierend über das Avidin-Biotin-System als auch inkorporativ oder adsorptiv erfolgen kann.
Nanopartikel sind Partikel einer Größe zwischen 10 und 1000 nm aus künstlichen oder natürlichen makromolekularen Substanzen, an die Arzneistoffe oder anderes biologisch aktives Material kovalent, ionisch oder adsorptiv gebunden oder in die dieses Material inkorporiert sein kann. In EP 1 392 255 werden Nanopartikel auf Basis von humanem Serumalbumin offenbart, an die zur Überwindung der Blut- Hirn-Schranke kovalent oder über ein Avidin/Biotin-System Apolipoprotein E gekoppelt ist.
Ein besonderes Ziel einer Pharmakotherapie ist jedoch nicht nur die spezifische Anreicherung eines pharmakologisch aktiven Wirkstoffs bzw. therapeutisch wirksamen Arzneistoffs in einem bestimmten Gewebe oder Organ zu erreichen, wie in EP 1 392 255 offenbart, sondern darüber hinaus sogar in spezifischen Zellen.
ünmodifizierte Nanopartikel ermöglichen ein passives „Drug Targeting", das dadurch gekennzeichnet ist, dass die Partikel nach intravasaler Applikation durch Zellen des mono- nukleären Phagozytensyste s (MPS) aufgenommen werden. Eine Anreicherung derartiger Nanopartikel wurde in Makrophagen der Leber, der Milz, des Knochenmarks sowie in zirkulierenden Monozyten beobachtet. Von dem passiven „Drug Targeting" wird das aktive „Drug Targeting" unterschieden, bei dem der Wirkstoff gezielt mit Hilfe von modifizierten Nanopartikeln auch in primär nicht zugänglichen Körper- kompartimenten oder Zellsystemen angereichert werden soll. Hierzu ist es erforderlich, Nanopartikel mit hydrophilen Oberflächenstrukturen zu verwenden, die unspezifische Wechselwirkungen mit Nicht-Zielzellen minimieren, und diese mit Liganden auszustatten, die eine zellspezifische Anreicherung der Nanopartikel ermöglichen. Solche Liganden werden auch als „Drug Targeting-Liganden" bezeichnet. Der Einsatz zellspezifischer Nanopartikel als Träger für Arzneistoffe ermöglicht es, einen pharmakologisch aktiven Wirkstoff unter kontrollierten Bedingungen in Zielzellen anzureichern oder gezielt an seinen Wirkort im Körper zu bringen. Die meisten Arzneistoffe erfüllen ohne geeignete Arzneiform dieses Ziel nicht und zeigen allenfalls eine zelluläre Anreicherung oder Körperverteilung, die durch die physiko-chemischen Eigenschaften des Wirkstoffs selbst bedingt ist. Nur ein Teil des applizierten Arzneistoffs erreicht den gewünschten Zielort, wohingegen der verbleibende Teil für unerwünschte Nebenwirkungen oder toxische Effekte verantwortlich ist. Zellspezifische Nanopartikel tragen somit dazu bei, dass unerwünschte Nebenwirkungen und toxische Eigenschaften von Wirkstoffen reduziert werden können.
In ersten Untersuchungen wurden hydrophile Latexpartikel verwendet, die durch Copolymerisation von Hydroxyethyl- methacrylat, Methacrylsäure und Methyl ethacrylat hergestellt wurden. An diese Partikel wurde ein Antikörper gegen γ-Globulin des Kaninchens gebunden. Im Vergleich zu ünmodifizierten Partikeln konnte eine Bindung der Antikörper- odifizierten Zubereitung an Lymphozyten beobachtet werden, die mit einem aus dem Kaninchen gewonnenen Antiserum gegen diese Lymphozyten vorinkubiert wurden.
Nachfolgend wurden entsprechende Partikelsysteme auf Basis von Polyacrylaten mit zusätzlich eingebundenem Eisenoxid verwendet, um eine magnetische Separation von Lymphozyten und Erythrozyten durchzuführen.
Basierend auf diesen grundlegenden Arbeiten wurden dann onoklonale anti-CD3 Antikörper über eine C7-Spacerstruktur an Polyacrylat-Nanopartikel gebunden und diese unter Zellkulturbedingungen untersucht. Problematisch bei diesen Arbeiten war allerdings die Tatsache, dass die Zuordnung der Zellen zu den Subpopulationen und damit die beobachtete Partikelassoziation mit der entsprechenden Subpopulation rein visuell im Mikroskop vorgenommen wurde und somit nicht zweifelsfrei erfolgen konnte.
Auch die adsorptive Bindung von monoklonalen Antikörpern an die Oberfläche von Polyhexylcyanoacrylat-Nanopartikel wurde untersucht. Einerseits konnte dabei eine effektive Adsorption der Antikörper an die Partikeloberfläche beobachtet werden, andererseits führte die Zugabe von weiteren Serumbestandteilen zu einer kompetitiven Verdrängung der Antikörper von der Partikelober läche.
Insofern ist eine adsorptive Bindung von Liganden für ein zellspezifisches „Drug Targeting" in biologischen Systemen nicht geeigne .
Ein weiterer Nachteil der beschriebenen zellspezifischen
Nanopartikel-Systeme ist darin zu sehen, dass sie auf nicht biologisch abbaubaren Polymermaterialien wie Latex und Polyacrylaten basieren.
Erste Untersuchungen zur proteinchemischen Bindung von Antikörpern an die Oberfläche von Nanopartikeln auf der Basis von Serumalbumin wurden gemacht. Dabei wurde eine Konjugation der Antikörper über die primären Aminogruppen des Albumins und der Antikörper unter Anwendung der Glutaraldehyd-Reaktion vorgenommen. Als Liganden wurden monoklonale Antikörper gegen das Lewis-Lungenkarzinom sowie vergleichend unspezifische IgG-Antikörper eingesetzt. Obwohl der freie spezifische Antikörper sowohl unter Zellkulturbedingungen als auch nach intravenöser Appli- kation am Versuchstier eine deutliche Anreicherung in den Zielzellen gezeigt hat, wurde nach Konjugation mit den Nanopartikeln unter in vivo-Bedingungen lediglich eine sehr geringe Anreicherung der Partikel im Tumor detektiert. Der Hauptanteil der applizierten Nanopartikel wurde in der Leber und den Nieren gefunden. Nanopartikel, die mit dem unspezifischen IgG-Antikörper konjugiert waren, zeigten keinerlei Anreicherung im Tumorgewebe. Unter den gewählten Versuchsbedingungen konnte somit nur eine geringe Spezifität der konjugierten Nanopartikel auf Basis von humanem Serumalbumin erzielt werden. Der Hauptteil dieses Partikelsystems zeigte die für ein passives „Drug
Targeting" typische, unspezifische Körperverteilung. Da die verwendeten konjugierten Nanopartikel im Hinblick auf die Bindung der Antikörper jedoch nur unzureichend charakterisiert waren, bleibt unklar, ob die mangelnde Spezifität durch eine unzureichende Antikörper-Bindung bedingt war. Jedenfalls wurde ein Nachweis von spezifischer und rezeptorvermittelter Aufnahme von Nanopartikeln in Zielzellen bei gleichzeitiger Umgehung von Nichtzielzellen bisher jedoch nicht erbracht.
Aufgabe der vorliegenden Erfindung war es daher, Nanopartikel bereitzustellen, die die Nachteile der beschriebenen Nanopartikel -Systeme nicht aufweisen, sondern eine hohe Zellspezif ität auch bei Verwendung in biologischen Systemen aufweisen, um pharmakologisch aktive Wirkstoffe spezifisch in ausgewählten Zielzellen anzureichern zu können, und die auf einem biologisch abbaubaren Material basieren. Die Aufgabe wird überraschenderweise durch ein Trägersystem ±n Form von Avidin-modif izierten Nanopartikeln auf Proteinbasis gelöst, an die biotinylierte Antikörper durch Ausbildung eines stabilen Avidin-Biotin-Komplexes gebunden sind. Als Proteine werden vorzugsweise Gelatine und/oder Serumalbumin, besonders bevorzugt humanes Serumalbumin verwendet . Bei diesen modifizierten Nanopartikeln kann eine zusätzliche Bindung von pharmakologisch aktiven Wirkstoffen an die Nanopartikel sowohl kovalent, komplexierend über das Avidin-Biotin-System als auch inkorporativ oder adsorptiv erfolgen.
Figur 1 zeigt die Struktur eines Avidin-modif izierten Nanopartikels auf Basis von Gelatine oder HSA, mit über Avidin-Biotin-Komplex gebundenem Antikörper .
Figur 2 ist ein Säulendiagramm, das die zelluläre Aufnahme von Antikörper (Trastuzumab) -modifizierten Gelatine A- Manopartikeln in verschiedenen Brustkrebs-Zelllinien, ermittelt durch FACS-Analyse, zeigt . Die Antikörper- modif izierten Nanopartikel wurden jeweils mit den nicht modifizierten Nanopartikeln unter gleichen Inkubations- Bedingungen verglichen. Unbehandelte Zellen dienten als Kontrolle .
Zur Präparation von Nanopartikeln gemäß der Erfindung wurde eine wässrige Gelatine -Lösung durch einen doppelten Desolvatationsprozess zu Nanopartikeln umgesetzt und diese anschließend durch Quervernetzung stabilisiert . Die auf der Oberfläche dieser Nanopartikel befindlichen funktioneilen Gruppen (Aminogruppen, Carboxylgruppen, Hydroxylgruppen) können durch geeignete Reagenzien zu reaktiven Thiolgruppen umgesetzt werden. Funktionelle Proteine können über bifunktionale Spacermoleküle, die eine Reaktivität sowohl gegenüber Aminogruppen als auch freien Thiolgruppen aufweisen, an diese Thiolgruppen-modifizierten Nanopartikel gebunden werden. Zu diesen funktionellen Proteinen zählen insbesondere Avidinderivate oder zellspezifische Antikörper.
Bei der Präparation der Nanopartikel für die nachfolgend beschriebenen Zellkulturversuche wurde eine Reaktion der primären Aminogruppen auf der Partikeloberfläche mit 2- Iminothiolan durchgeführt, die zu einer Einführung von freien Thiolgruppen auf der Partikeloberfläche führte. Die Aminogruppen des Avidin-Derivates NeutrAvidin™ wurden mit dem bifunktionalen Spacer Sulfo-MBS (m-Maleimidobenzoyl-N- hydjroxysulfosuccinimidester) aktiviert und nach säulen- chromatographischer Aufreinigung dieser Aktivierungszwischenstufe mit den thiolierten Gelatine-Nanopartikeln versetzt . Dieses Zwischenprodukt der Avidin-modifizierten Nanopartikel stellt ein universelles Trägersystem für eine Vielzahl biotinylierter Substanzen dar, die über die Aviclin-Biotin-Komplexbildung gebunden werden können.
Zur Bindung der Antikörper, vorzugsweise monoklonaler Antikörper, wurden die Antikörper entweder biotinyliert erworben oder durch Umsetzung mit NHS-Biotin (N-Hydroxy- succinimidobiotin) biotinyliert und mit den Avidin- modifizierten Nanopartikeln versetzt. Durch die beschriebene Avidin-Biotin-Komplexbildung wurden dadurch Antikörper-modifizierte Nanopartikel auf der Basis von Gelatine erhalten (Figur 1) . Entsprechende Antikörper- modifizierte Nanopartikel können aber auch auf Basis von Serumalbumin, vorzugsweise humanem Serumalbumin, hergestellt werden.
Die vorliegende Erfindung umfasst somit ein Trägersyste zur zellspezifischen, intrazellulären Anreicherung zumindest eines pharmakologisch aktiven Wirkstoffs, das in Form von Nanopartikeln auf Proteinbasis vorliegt und über reaktive Gruppen gekoppelte Strukturen aufweist, die eine zellspezifische Anlagerung und zelluläre Aufnahme der Nanopartikel ermöglichen. Als Proteinbasis kommen vorzugsweise Gelatine und/oder Serumalbumin, besonders bevorzugt humanes Serumalbumin, in Betracht. Die reaktive Gruppe ist vorzugsweise eine Amino- Thiol-, Carboxylgruppe oder ein Avidin-Derivat und die gekoppelte Struktur ein Antikörper, besonders bevorzugt ein onoklonaler Antikörper.
Die Erfindung umfasst auch ein entsprechendes Trägersystem, das zusätzlich zumindest einen pharmazeutisch aktiven Wirkstoff enthält, der durch Adsorption, Inkorporation oder kovalente oσer komplexierende Bindung über die reaktiven Gruppen an cias Trägersystem bzw. die Nanopartikel gebunden ist. Die Erfindung umfasst auch die Verwendung eines erfindungsgemäßen Trägersystems zur Herstellung eines Arzneimittels für die Anreicherung eines pharmazeutisch aktiven Wirkstoffs an oder in spezifischen Zellen. Die Erfindung umfasst ferner ein Verfahren zur Herstellung eines Trägersystems in Form von Nanopartikeln auf Proteinbasis zur zellspezifischen Anreicherung zumindest eines pharmakologisch aktiven Wirkstoffs, das die folgenden Schritte umfasst: Desolvatieren einer wässrigen Protein-Lösung, Stabilisieren der durch Desolvatation entstandenen Nanopartikel durch Quervernetzung, Umsetzen eines Teils der funktionellen Gruppen auf der Oberfläche der stabilisierten Nanopartikel zu reaktiven Thiol-Gruppen, kovalentes Anheften funktioneller Proteine, vorzugsweise von Avidin, mittels bifunktionaler Spacermoleküle, gegebenenfalls Biotinylierung des Antikörpers, Beladen der Avidin-modifizierten Nanopartikel mit biotixiyliertem Antikörper, - Beladen der Avidin-modifizierten Nanopartikel mit biotinyliertem und pharmazeutisch oder biologisch aktiven Wirkstoff.
Bei dem erfindungsgemäßen Verfahren wird besonders die
Verwendung von Gelatine und/oder Serumalbumin, insbesondere Serumalbumin, humanen Ursprungs bevorzugt.
Vorzugsweise erfolgt das Desolvatieren durch Rühren und Zugabe eines wassermischbaren Nichtlösungsmittels für Proteine oder durch Aussalzen. Das wassermischbare Nichtlösungmittel für Proteine wird vorzugsweise aus der Gruppe ausgewählt, die Ethanol, Methanol, Isopropanol, und Aceton umfasst.
Zum Stabilisieren der Nanopartikel werden vorzugsweise thermische Prozesse oder bifunktionale Aldehyde, insbesondere Glutaraldehyd, oder Formaldehyd verwendet. Bevorzugt wird als Thiolgruppen-modifizierendes Agens eine Substanz verwendet, die aus der Gruppe ausgewählt ist, die 2-Iminothiolan, eine Kombination aus l-Ethyl-3- (3-dimethyl- aminopropyl) carbodiimid und Cystein oder eine Kombination aus l-Ethyl-3- (3-diiϊiethylaminopropyl)carbodiimid und CystaminiumdichloricL sowie Dithiotreitol umfasst.
Als bifunktionales Spacermolekül wird vorzugsweise eine
Substanz verwendet, die aus der Gruppe ausgewählt ist, die m-Maleimidobenzoyl-N-hydroxysulfo-succinimidester,
Sulfosuccinimidyl-4 - [N-maleimido-methyl] cyclohexan-1- carboxylat, Sulfosuccinimidyl-2- [m-azido-o-nitrobenzamido] - ethyl-1,3 'dithiopropionat, Dimethyl-3,3 '-dithiobis- propionimidat-dihydx-ochlorid und 3, 3 '-Dithiobis [sulfo- succinimidylpropionat] umfasst.
Beispiel:
Zur Herstellung von. Protein-Nanopartikeln wurden 500 mg Gelatine A in 10,0 ml gereinigtem Wasser unter Erwärmen gelöst und durch Zugabe von 10,0 ml Aceton zu einem Sediment ausgefällt . Die ausgefällte Gelatine wurde abgetrennt, erneut unter Erwärmen in 10,0 ml Wasser gelöst und der pH-Wert der Lösung auf pH 2,5 eingestellt. Nanopartikel wurden, aus dieser Lösung durch tropfenweise Zugabe von 30 ml Aceton erhalten (Desolvatations-Prozeß) . Die Nanopartikel wurden durch Zugabe von 625 μl Glutaraldehyd 8 % und Rühren über Nacht stabilisiert. Die Nanopartikel wurden, in Aliquoten zu 2,0 ml durch 5 Zyklen Zentrifugation und Redispergieren mittels Ultraschallbehandlung aufgereinigt . Zur Thiolierung der Partikeloberfläche wurden 1,0 ml Nanopartikel-Suspension (20 mg/ml) mit 2,5 ml einer Lösung- von 30 mg 2-Iminothiolan (Traut's Reagenz) in Tris-Puffer pH 8,5 versetzt und über 24 h gerührt. Die Aufreinigung nach Thiolierung wurde wie oben beschrieben erneut ausgeführt . Das Avidin-Derivat FITC-NeutrAvidin™ wurde über den bifunktionalen Spacer Sulfo-MBS (m-Maleimidobenzoyl-N- hydroxysulfosuccinimidester) mit den thiolierten Nanopartikeln verbunden. Zur Aktivierung des Avidin- Derivates wurde eine Lösung von 2,5 mg FITC-NeutrAvidin™ in 500 μl PBS-Puffer pH 7,0 mit 0,75 mg Sulfo-MBS versetzt und über 1 h bei Raumtemperatur gerührt. Die Abtrennung von nicht abreagiertem Sulfo-MBS von dem aktivierten NeutrAvidin™ wurde über eine Größenausschlußchromato- graphie durchgeführt. Die Fraktionen, in denen bei einer spektrophotometrischen Detektion bei 280 nm NeutrAvidin™ nachgewiesen werden konnte, wurden vereinigt, mit der Suspension der thiolierten Nanopartikel versetzt und über 12 h bei Raumtemperatur gerührt. Eine weitere Aufreinigung der nunmehr kovalent FITC-NeutrAvidin™-modifizierten Nanopartikel wurde wie oben beschrieben ausgeführt. Die erhaltenen Überstände der Partikelaufreinigung wurden photometrisch im Hinblick auf ungebundenes NeutrAvidin™ untersucht und der Anteil an kovalent gebundenem NeutrAvidin™ daraus berechnet. Die Funktionalität des gebundenen NeutrAvidin™, ausgedrückt als Anzahl der Biotin-Bindungsstellen pro Avidin-Molekül, wurde durch ein Titrationsexperiment mit Biotin-4-Fluoresσein ermittelt. Es konnte gezeigt -werden, dass 2,4 der 4 im Avidin-Molekül theoretisch vorhandenen Biotin-Bindungsstellen auch nach der Konjugation mit den Nanopartikeln funktional zur Verfügung stehen. Für die Beladung mit den Antikörpern wurden 150 μl der NeutrAvidin™-modifizierten Nanopartikel (20 mg/ml) mit 500 μl des biotinylierten Antikörpers (25 μg/ml) versetzt und über 90 min bei 10°C inkubiert. Nach der Inkubation wurden erneut die Partikel durch Zentrifugation und Redispergieren aufgereinigt . Die erhaltenen Partikelüberstände wurden mittels Western-Blot- Analyse auf ungebundenen Antikörper untersucht. Es wurde konnte gezeigt werden, dass mehr als 80 % des eingesetzten Antikörpers mit dem Partikelsystem verbunden vorlagen.
Mit Hilfe des beschriebenen Partikelsystems wurden in verschiedenen Zellkulturversuchen zellspezifische Partikelanreicherungen in Zielzellen gefunden, die das vom Antikörper erkannte Oberflächenantigen tragen. Die nachfolgenden Zellkulturmodelle wurden eingesetzt:
1. Lymphozytäre Zielzellen (Jurkat T-Zellen) mit dem Oberflächenantigen CD3. Nanopartikel wurden mit einem biotinylierten anti-CD3- Antikörper beladen.
2. Humane Brustkrebs-Zelllinien (SK-Br-3-, MCF-7-, BT474- Zellen) mit einer Expression des HER2-Oberflächen- antigens . Nanopartikel wurden mit dem zugelassenen Antikörper Trastuzu ab (Herceptin®) beladen, der zuvor biotinyliert wurde. Die kultivierten Zellen wurden mit dem Nanopartikel-System in Konzentrationen zwischen 100 und 1000 μg/ l inkubiert und nach 4 h Inkuba ionszeit ungebundene Nanopartikel durch Waschen der Zellen abgetrennt. Die Zellen wurden mittels Durchflusszytometrie (FACS) als auch konfokaler Mikroskopie (CLSM) im Hinblick auf Nanopartikel-Aufnahme untersucht. Für die Untersuchungen zur zellspezifischen Aufnahme der mit dem biotinylierten anti-CD3-Antikörper modifizierten Nanopartikeln in ly phozytären Zellen wurden Jurkat-T- Zellen in einer Dichte von 1 X 106 Zellen pro Well auf einer 24-Well-Mikrotiterplatte ausgesät und RPMI-Medium kultiviert. Das Medium wurde mit 10 % (v/v) fötalem Kälberserum (FCS) , 2 ^ L-Glutamin und 1 % Penicillin / Strepto ycin supplementiert . Die mit dem Antikörper modif zierten Nanopartikel wurden in einer Konzentration von 1000 μg/ml mit den Zellen über einen
Zeitraum von 4 h inkuhiert. Um eine spezifische zelluläre Aufnahme über den T-Zell-Rezeptor zu belegen, wurden unterschiedliche Kontrollexperimente durchgeführt. Einerseits wurden Nanopartikel eingesetzt, die mit unspezifischem IgG-Antikörper anstelle des spezifischen anti-CD3-Antikörpers .beladen waren. Weiterhin wurden die Untersuchungen mit Jurkat-T-Zellen durchgeführt, die mit 2,5 μg freiem IgG- oder anti-CD3-Antikörper pro 1 X 106 Zellen über 30 min vorinkubiert wurden. Nach diesem Zeitraum wurden die mit dem anti-CD3-Antikörper beladenen Nanopartikel zugegeben. Andererseits wurden Vergleichsuntersuchungen mit MC-F-7-Zellen durchgeführt, die das CD3- Oberflächenantigen nicht aufweisen. Die zelluläre Aufnahme wurde qualitativ mittels konfokaler Mikroskopie sowie quantitativ mittels Durchflusszytometrie bewertet.
Für die Untersuchungen zur zellspezifischen Aufnahme der mit dem biotinylierten anti-HER2-Antikörper modifizierten Nanopartikeln in Brustkrebszellen wurden HER2 über- expremierende Zellen (BT474 und SK-Br-3) in einer Dichte von 2 X 105 bzw. 1 X 105 Zellen pro Well auf einer 24-Well- Mikrotiterplatte ausgesät und in RPMI-Medium bzw. MσCoy's 5 A kultiviert. Das Medium der BT474 wurde mit 20 % (v/v) fötalem Kälberserum (FCS) , 2 % L-Glutamin, 1 Penicillin / Streptomycin und 100 U Insulin supplementiert . Das Medium der SK-Br-3 wurde mit 10 % (v/v) fötalem Kälberserum (FCS), 2 % L-Glutamin und 1 % Penicillin / Streptomycin supplementiert. Die mit dem Antikörper modifizierten Nanopartikel wurden in einer Konzentration von 100 μg/ml mit den Zellen über einen Zeitraum von 3 h inkubiert. Um eine spezifische zelluläre Aufnahme über den HER2-Rezeptor zu belegen, wurden unterschiedliche Vergleichsuntersuchungen durchgeführt . Einerseits wurden Nanopartikel eingesetzt, die mit keinem spezifischem Antikörper beladen waren. Andererseits wurden die Untersuchungen mit MCF-7-Zellen (normale HER2 Expression) durchgeführt. Weiterhin wurden Kontrollexperimente mit SK-Br-3-Zellen durchgeführt, die mit 2,5 μg/ml freiem anti-HER2-Antikörper (Trastuzumab) pro 2 X 105 Zellen über 30 min vorinkubiert wurden. Nach diesem Zeitraum wurden die mit dem anti-HER2-Antikörper beladenen Nanopartikel zugegeben. Die zelluläre Aufnahme wurde qualitativ mittels konfokaler Mikroskopie sowie quantitativ mittels Durchflusszytometrie bewertet. Ergebnisse Lymphozytäre Zielzellen (Jurkat T-Zellen) Sowohl durch FACS als auch CLSM konnte gezeigt werden, dass Nanopartikel zellulär aufgenommen werden, die mit dem zellspezifischen anti-CD3-Antikörper modifiziert eingesetzt wurden. Die zelluläre Aufnahme konnte verhindert werden, wenn die Zellen vor der Partikelzugabe mit dem freien spezifischen Antikörper behandelt wurden. Eine Vorbehandlung mit freiem unspezifischem IgG-Antikörper hingegen zeigte keinen Einfluss auf die Partikelaufnahme. Eine Modifikation der Nanopartikel mit einem unspezifischen IgG-Antikörper anstelle des spezifischen anti-CD3-
Antikörpers führte gleichfalls zu keiner Aufnahme in den Zielzellen. Kontrollexperimente wurden weiterhin mit Brustkrebszellen (MCF-7-Zellen) durchgeführt, die das CD3- Oberflächenantigen nicht aufweisen. Bei diesen Kontrollexperimenten wurde unter allen gewählten
Bedingungen keine Aufnahme der Nanopartikel-Zubereitungen beobachtet .
Humane Brustkrebs-Zelllinien (SK-Br-3-, MCF-7-, BT474- Zellen)
Die eingesetzten Zellen zeigten in unterschiedlichem Maße eine Expression cles HER2-Oberflächenantigens, das als Angriffspunkt für eine zelluläre Aufnahme der Antikörpermodifizierten Nanopartikel eingesetzt wurde. Die Expression der Zellen wurde vor der Inkubation mit den Nanopartikeln durch Western-Blot-Analyse bestimmt (Tabelle 1) .
Zelllinie Expression HER2 [Ss] BT474 311 MCF-7 100 SK-Br-3 366
Tabelle 1: Expression des HER2-Oberflächenantigens auf der Oberfläche verschiedener Tumorzellen ermittelt durch Western-Blot-Analyse. Die Expression wurde relativ zu den Werten der „normal exprimierenden" MCF-7-Zellen berechne . Sowohl durch FACS als auch CLSM konnte gezeigt werden, dass Nanopartikel zellulär aufgenommen wurden, die mit dem zellspezi ischen Antikörper Trastuzumab modifiziert eingesetzt wurden (Figur 2). Die zelluläre Aufnahme der spezifischen Nanopartikel konnte verhindert werden, wenn die Zellen vor der Partikelzugäbe mit dem freien spezifischen Antikörper behandelt wurden. Nanopartikel des gleichen Herstellungsansatzes, die nicht mit dem biotinyliertem Antikörper modifiziert eingesetzt wurden, zeigten unter den gewählten Bedingungen eine nur geringe zelluläre Anreicherung. Das Ausmaß der zellulären Aufnahme der Antikörper-modifizierten Nanopartikel konnte mit dem Ausmaß der Expression des HER2-Oberflächenantigens korreliert werden.
Die Ergebnisse der vorgenannten Zellkulturuntersuchungen zeigen deutlich, dass Antikörper-modifizierte Nanopartikel auf Basis von Gelatine eine spezifische Aufnahme in
Zielzellen ermöglichen. Unter vergleichbaren Bedingungen werden die Partikelsysteme nur in die entsprechenden Zielzellen aber nicht von Kontrollzellen aufgenommen. Die VorInkubationen mit freiem spezifischen Antikörper belegen deutlich, dass die Partikelaufnahme durch einen Prozess der Rezeptor-vermittelten Endozytose erfolgt. Somit besteht durch das entwickelte nanopartikuläre Arzneistoffträgersystem die Möglichkeit, Arzneistoffe spezifisch zu erkrankten Zellen zu transportieren, sofern sich diese Zielzellen in ihren Oberflächeneigenschaften von gesunden Zellen unterscheiden. Mit den erfindungsgemäßen Antikörper-modifizierten Nanopartikeln auf Basis von Gelatine wird ein gut charakterisiertes, partikuläres Trägersystem bereit gestellt, das mit einem funktionale Drug Targeting- Liganden, welches es auf seiner Oberfläche trägt, eine zellspezifische Aufnahme und Anreicherung, auch von gegebenenfalls an das Trägersystem durch Adsorption, Inkorporation oder durch kovalente oder komplexierende Bindung gebundene pharmazeutisch aktive Wirkstoffe ermöglicht.

Claims

Ansprüche
1. Trägersystem zur zellspezifischen, intrazellulären Anreicherung zumindest eines pharmakologisch aktiven Wirkstoffs, dadurch gekennzeichnet, dass das Trägersystem in Form von Nanopartikeln auf Proteinbasis, bevorzugt auf Basis von Gelatine und/oder Serumalbumin, besonders bevorzugt auf Basis von humanem Serumalbumin, vorliegt und über reaktive Gruppen gekoppelte Strukturen aufweist, die eine zellspezi ische Anlagerung und zelluläre Aufnahme der Nanopartikel ermöglichen.
2. Trägersystem nach Anspruch 1, dadurch gekennzeichnet, dass die reaktive Gruppe eine A ino-, Thiol-, Carboxvylgruppe oder ein Avidin-Derivat ist.
3. Trägersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die gekoppelte Struktur ein Antikörper ist.
4. Trägersystem nach Anspruch 3, dadurch gekennzeichnet, dass der Antikörper ein monoklonaler Antikörper ist.
5. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es zusätzlich einen pharma.zeutisch aktiven Wirkstoff umfasst, der durch Adsorption, Inkorporation oder kovalente oder komplexierende Bindung über die reaktiven Gruppen an das Trägersystem gebunden ist.
6. Verwendung eines Trägersystems nach einem der vorangehenden Ansprüche zur Herstellung eines Arzneimittels zur Anreicherung eines pharmazeutisch aktiven Wirkstoffs an/in spezifischen Zellen.
7. Verfahren zur Herstellung eines Trägersystems in Form von Nanopartikeln auf Proteinbasis zur zellspezifischen Anreicherung zumindest eines pharmakologisch aktiven Wirkstoffs, dadurch gekennzeichnet, dass es die folgenden Schritte umfasst: - Desolvatieren einer wässrigen Protein-Lösung, - Stabilisieren der durch Desolvatation entstandenen Nanopartikel durch Quervernetzung, - Umsetzen eines Teils der funktioneilen Gruppen auf der Oberfläche der stabilisierten Nanopartikel zu reaktiven Thiol-Gruppen, - kovalentes Anheften funktioneller Proteine, vorzugsweise von Avidin, mittels bifunktionaler Spacermoleküle, -gegebenenfalls Biotinylierung des Antikörpers, - Beladen der Avidin-modifizierten Nanopartikel mit biotinyliertem Antikörper, - Beladen der Avidin-modifizierten Nanopartikel mit biotinyliertem und pharmazeutisch oder biologisch aktiven Wirkstoff.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Proteinbasis Gelatine und/oder Serumalbumin, vorzugsweise humanes Serumalbumin ist.
9 . Verfahren nach Anspruch 7 oder 8 , dadurch gekennzeichnet . dass das Desolvatieren durch Rühren und Zugabe eines wassermischbaren Nicht lösungsmitt eis für Proteine oder durch Aussalzen erfolgt .
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das wassermischbare Nichtlösungmittel für Proteine aus der Gruppe ausgewählt wird, die Ethanol, Methanol, Isopropanol, und Aceton umfasst.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch crekennzeichnet, dass zum Stabilisieren der Nanopartikel thermische Prozesse oder bifunktionale Aldehyde oder Formaldehyd verwendet wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass als bifuktionales Aldehyd Glutaraldehyd verwendet wird.
13 . Verfahren nach einem der Ansprüche 7 bis 12, dadurch crekennzeichnet , dass als Thiolgruppen-modif izierendes Agens eine Substanz verwendet wird, die aus der Gruppe ausgewählt ist, die 2-Iminothiolan, eine Kombination aus l-Ethyl-3- (3- dimethylaminopropyl) carbodiimid und Cystein, oder eine Kombination aus l-Ethyl-3- (3-dimethylaminopropyl) - σarbodiimid und Cystaminiumdichlorid sowie Dithiotreitol umfasst .
14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch crekennzeichnet , dass als bifunktionales Spacermolekül eine Substanz verwendet wird, die aus der Gruppe ausgewählt ist, die m-Maleimidobenzoyl-N-hydroxysulfo-sucσinimidester, Sulf osuccinimidyl-4- [N-maleimido-methyl] cyclohexan-1- σarboxylat, Sulf osucσinimidyl-2- [m-azido-o-nitrobenzamido] - ethyl-1, 3 'dithiopropionat, Dimethyl-3, 3 '-dithiobis- oropionimidat-dihydrochlorid und 3, 3 ' -Dithiobis [sulf o- succini idylpropionat] umfasst . 1/2
Nanopartikel Matrix aus Gelatine oder HSA
FIG . 1
BT474 MCF7 SK-Br-3
FIG. 2
EP05715659A 2004-03-09 2005-03-02 Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen Withdrawn EP1722816A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011776A DE102004011776A1 (de) 2004-03-09 2004-03-09 Trägersystem in Form von Nanopartikeln auf Proteinbasis zur zellspezifischen Anreicherung von pharmazeutisch aktiven Wirkstoffen
PCT/EP2005/002185 WO2005089797A2 (de) 2004-03-09 2005-03-02 Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen

Publications (1)

Publication Number Publication Date
EP1722816A2 true EP1722816A2 (de) 2006-11-22

Family

ID=34994419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715659A Withdrawn EP1722816A2 (de) 2004-03-09 2005-03-02 Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen

Country Status (13)

Country Link
US (1) US20080095857A1 (de)
EP (1) EP1722816A2 (de)
JP (1) JP2007527881A (de)
KR (1) KR20070006828A (de)
CN (1) CN1993145A (de)
AU (1) AU2005223986B2 (de)
BR (1) BRPI0508134A (de)
CA (1) CA2558730A1 (de)
DE (1) DE102004011776A1 (de)
IL (1) IL177879A0 (de)
NZ (1) NZ549355A (de)
RU (1) RU2388463C2 (de)
WO (1) WO2005089797A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062440B4 (de) * 2005-12-27 2011-02-24 Lts Lohmann Therapie-Systeme Ag Proteinbasiertes Trägersystem zur Resistenzüberwindung von Tumorzellen
DE102006011507A1 (de) 2006-03-14 2007-09-20 Lts Lohmann Therapie-Systeme Ag Wirkstoffbeladene Nanopartikel auf Basis hydrophiler Proteine
JP2008162981A (ja) * 2006-12-28 2008-07-17 Japan Science & Technology Agency ビオチン化ないしホーミングペプチド提示型バイオナノカプセル
GB0724360D0 (en) * 2007-12-14 2008-01-23 Glaxosmithkline Biolog Sa Method for preparing protein conjugates
US9125949B2 (en) * 2008-12-30 2015-09-08 University Of North Texas Direct utilization of plasma proteins for the in vivo assembly of protein-drug/imaging agent conjugates, nanocarriers and coatings for biomaterials
US9211283B2 (en) * 2009-12-11 2015-12-15 Biolitec Pharma Marketing Ltd Nanoparticle carrier systems based on human serum albumin for photodynamic therapy
RU2542417C2 (ru) * 2013-05-17 2015-02-20 Александр Александрович Кролевец Способ биоинкапсуляции лекарственных препаратов группы цефалоспоринов
RU2576239C2 (ru) * 2014-03-26 2016-02-27 Александр Александрович Кролевец Способ получения нанокапсул антисептика-стимулятора дорогова (асд) 2 фракция
WO2015175973A1 (en) * 2014-05-16 2015-11-19 Dana-Farber Cancer Institute, Inc. Protein-based particles for drug delivery
CN104434808A (zh) * 2014-07-03 2015-03-25 石药集团中奇制药技术(石家庄)有限公司 一种治疗性纳米粒子及其制备方法
MA46474A (fr) * 2016-10-10 2019-08-14 Abraxis Bioscience Llc Formulations nanoparticulaires et leurs procédés de production et d'utilisation
WO2020241562A1 (ja) * 2019-05-24 2020-12-03 ユーハ味覚糖株式会社 ナノ粒子及びその製造方法
EP4041291A1 (de) * 2019-10-04 2022-08-17 Association for the Advancement of Tissue Engineering and Cell Based Technologies & Therapies A4Tec- Associação Hydrogelartige teilchen, verfahren und ihre verwendungen
CN112451679A (zh) * 2020-11-25 2021-03-09 天津医科大学第二医院 结合了纳米药物载体的卡介苗复合体及其制备方法
CN113588523B (zh) * 2021-07-26 2022-03-29 浙江大学 一种用于质谱流式细胞技术的基于框架结构的纳米颗粒及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506436A (ja) * 1997-06-13 2002-02-26 ザ ジョンズ ホプキンス ユニバーシティー 治療用ナノスフェア
US6689338B2 (en) * 2000-06-01 2004-02-10 The Board Of Regents For Oklahoma State University Bioconjugates of nanoparticles as radiopharmaceuticals
DE10121982B4 (de) * 2001-05-05 2008-01-24 Lts Lohmann Therapie-Systeme Ag Nanopartikel aus Protein mit gekoppeltem Apolipoprotein E zur Überwindung der Blut-Hirn-Schranke und Verfahren zu ihrer Herstellung
JP2004198915A (ja) * 2002-12-20 2004-07-15 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
WO2004076658A1 (ja) * 2003-02-28 2004-09-10 Mitsubishi Pharma Corporation モノクローナル抗体およびそれをコードする遺伝子、ハイブリドーマ、医薬組成物ならびに診断試薬

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005089797A2 *

Also Published As

Publication number Publication date
WO2005089797A2 (de) 2005-09-29
CA2558730A1 (en) 2005-09-29
NZ549355A (en) 2009-09-25
US20080095857A1 (en) 2008-04-24
WO2005089797A3 (de) 2006-11-23
BRPI0508134A (pt) 2007-07-17
RU2388463C2 (ru) 2010-05-10
JP2007527881A (ja) 2007-10-04
CN1993145A (zh) 2007-07-04
AU2005223986B2 (en) 2010-12-23
AU2005223986A1 (en) 2005-09-29
IL177879A0 (en) 2006-12-31
DE102004011776A1 (de) 2005-11-03
KR20070006828A (ko) 2007-01-11
RU2006130260A (ru) 2008-02-27

Similar Documents

Publication Publication Date Title
WO2005089797A2 (de) Trägersystem in form von nanopartikeln auf proteinbasis zur zellspezifischen anreicherung von pharmazeutisch aktiven wirtstoffen
DE10121982B4 (de) Nanopartikel aus Protein mit gekoppeltem Apolipoprotein E zur Überwindung der Blut-Hirn-Schranke und Verfahren zu ihrer Herstellung
DE69434725T2 (de) Zell- und Serumproteinanker und Konjugate
DE69226739T2 (de) Arzneimittel enthaltend Protein-gebundende Liposome
DE69421631T2 (de) Phospholipid-Derivat und sie enthaltende Liposome
US9056129B2 (en) Precision-guided nanoparticle systems for drug delivery
DE102006011507A1 (de) Wirkstoffbeladene Nanopartikel auf Basis hydrophiler Proteine
EP1372735B1 (de) Hydroxyalkylstärke-wirkstoff-konjugate
DE102005062440A1 (de) Proteinbasiertes Trägersystem zur Resistenzüberwindung von Tumorzellen
DE3280408T2 (de) Krebshemmende heilmittel fuer die behandlung von t-leukaemien, bestehend aus der a-kette des rizinus und einem spezifischen monoklonalen antikoerper.
DE60011880T2 (de) Behandlung einer intrazelluläre infektion
Muvaffak et al. Preparation and characterization of a biodegradable drug targeting system for anticancer drug delivery: Microsphere-antibody conjugate
EP0403961B1 (de) Magnetische Protein-Konjugate, Verfahren zu ihrer Herstellung und ihre Verwendung
DE69219913T2 (de) Ergänzung von Oberflächenrezeptoren
WO2008026224A2 (en) Novel nanoparticles of apotransferrin / transferrin, pharmaceutical composition containing them and processes for their preparation
EP1045863B1 (de) Entgiftung von pharmazeutischen wirkstoffen durch cyclodextrin-oligomere
DE3919923A1 (de) Magnetische protein-konjugate, verfahren zu ihrer herstellung und ihre verwendung
MXPA06010134A (en) Support system in the form of protein-based nanoparticles for the cell-specific enrichment of pharmaceutically active substances
EP1089762A1 (de) Konjugat, bestehend aus einem lektin und einem blutgerinnungsfaktor
Gasparini et al. In vitro targeting of doxorubicin loaded canine erythrocytes to cytotoxic T-lymphocytes (CTLL)
DE102009013456A1 (de) Nanopartikel für die Erkennung von Zellen, durch Bindung an G-Protein gekoppelte Rezeptoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060810

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 47/48 20060101AFI20070104BHEP

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1094165

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WARTLICK, HEIDRUN

Inventor name: LANGER, KLAUS

Inventor name: KREUTER, JOERG

Inventor name: DINAUER, NORBERT

Inventor name: VON BRIESEN, HAGEN

Inventor name: BALTHASAR, SABINE

17Q First examination report despatched

Effective date: 20110823

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1094165

Country of ref document: HK