WO2007043711A1 - エンジンの油圧制御装置 - Google Patents
エンジンの油圧制御装置 Download PDFInfo
- Publication number
- WO2007043711A1 WO2007043711A1 PCT/JP2006/320893 JP2006320893W WO2007043711A1 WO 2007043711 A1 WO2007043711 A1 WO 2007043711A1 JP 2006320893 W JP2006320893 W JP 2006320893W WO 2007043711 A1 WO2007043711 A1 WO 2007043711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- engine
- pressure
- valve
- hydraulic control
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/16—Controlling lubricant pressure or quantity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/08—Lubricating systems characterised by the provision therein of lubricant jetting means
Definitions
- the present invention relates to an engine hydraulic control apparatus capable of appropriately controlling engine hydraulic pressure.
- oil passages are formed in which oil as a lubricant stored in the oil pan is sucked by an oil pump and supplied to each part of the lubrication.
- an oil relief passage equipped with an oil relief valve that opens when the pressure (hydraulic pressure) in the oil passage accompanying oil feeding from the oil pump exceeds the set pressure. The excess oil is returned to the oil pan to regulate the maximum hydraulic pressure in the oil passage.
- oil relief can be used at low temperatures when the oil viscosity increases. Since the oil passage opening / closing valve is opened and part of the oil is returned to the oil pan through the second oil relief passage, the oil pressure downstream of the oil pump is reduced, reducing the burden on the oil pump.
- Patent Document 2 discloses an engine oil passage structure that improves the startability by reducing the load on the oil pump while ensuring the minimum hydraulic pressure necessary for constant start-up even when oil viscosity changes due to temperature changes. Yes. Specifically, a first oil relief passage that connects the oil passage downstream of the oil pump and the oil pan is provided, and a second oil relief passage is provided in parallel with the oil passage, and the first oil relief passage is provided in the oil passage. An oil passage structure for an engine having an oil relief valve that opens when the hydraulic pressure of the engine exceeds a set hydraulic pressure, and an oil relief passage opening / closing valve that opens in response to a start signal in the second oil relief passage.
- the second oil relief passage is provided with a second oil relief valve in series with the oil relief passage opening / closing valve, and the opening pressure of the second oil relief valve is the oil provided in the first oil relief passage.
- the valve is set to open at a hydraulic pressure that is lower than the relief valve opening pressure and higher than the minimum required for starting.
- the oil relief passage opening / closing valve provided in the second oil relief passage is opened, and the oil pressure downstream of the oil pump is reduced at low temperature start to reduce the burden on the oil pump. Since the second relief valve is opened at a hydraulic pressure that is higher than the minimum hydraulic pressure required at startup, the oil can be started without excessive return to the oil pan even if there is a change in the viscosity of the oil. Sometimes the required amount of oil is secured.
- the engine incorporates various mechanisms to properly cool each part of the engine after completion of warm-up, and one of them is a piston jet. This is to inject oil toward the piston in operation and try to cool the area around the piston.
- this biston jet when the oil pressure in the oil flow passage exceeds a predetermined value, the nozzle directed to the biston is opened to inject oil.
- Patent Document 1 Japanese Patent Application Laid-Open No. 5-5-1 3 5 1 1 2
- Patent Document 2 Fairness 2-3 4 4 0 4
- the oil relief valve is opened when the hydraulic pressure exceeds a predetermined value.
- the oil pressure in the engine is regulated so as not to exceed the maximum oil pressure.
- Patent Document 1 and Patent Document 2 do not mention the piston jet at all, but considering that the oil relief valve in Patent Document 1 and Patent Document 2 regulates the maximum oil pressure of the oil passage, The hydraulic pressure at which the Bistone Jet operates is lower than the opening pressure of the oil relief valve.
- the biston jet can be used to cool the biston, and during cold start, the increase in hydraulic pressure is avoided to reduce the burden on the oil pump and the jetting of the biston jet is stopped. It is an object of the present invention to provide a hydraulic control device for an engine that can be used.
- An engine hydraulic control apparatus for solving a problem is an apparatus for controlling an oil pressure of an engine, an oil pump for sucking oil from an oil tank, and an oil pressure of the oil sucked by the oil pump.
- the valve When the valve reaches the valve opening pressure Q a, the valve is opened and is arranged in the oil return path that is different from the oil injection path, and is sucked by the oil pump.
- a relief valve that opens when the oil pressure of the raised oil reaches the valve opening pressure Qb, and a switching valve arranged in the oil return path, and the valve opening pressure Qb is required for engine lubrication. It is characterized in that the valve opening pressure is lower than the valve opening pressure Qa within the required oil pressure range in which the required amount of oil can be secured.
- the oil tank may be an oil pan attached to the lower portion of the cylinder block or may be a separate tank.
- the switching valve may be a thermostat that is opened at a low temperature so that the oil in the oil return path can flow. If the thermostat is used, the valve can be opened at low temperatures when the viscosity of the oil is high, and when the oil temperature rises as the warm-up proceeds, the valve can be closed to increase the hydraulic pressure. When the oil pressure rises and reaches the valve opening pressure Q a, oil is injected from the piston jet and the viston can be cooled.
- the switching valve can be opened and closed according to the oil temperature.
- the switching valve can be configured to open and close according to the engine speed and the engine load.
- a solenoid valve or the like controlled by an electronic control unit (ECU) may be used to perform an opening / closing operation based on an opening / closing command corresponding to the engine speed and the engine load.
- ECU electronice control unit
- Such a switching valve can refer to various values such as engine speed and engine load in order to open and close at an appropriate time. These values can be referred to alone or in appropriate combination to determine the opening and closing timing. These values are acquired from various sensors conventionally provided in engines and vehicles.
- the engine load can be determined by the fuel injection amount or the accelerator opening.
- such a switching valve is configured to close the switching valve when it is determined that the engine is in an operation state that requires an oil amount with reference to the engine speed and the engine load. For example, even if the engine speed is low, the switching valve closes so that oil is supplied to each part of the lubrication when the engine is heavily loaded. In addition, even in the case of low rotation and low load, when the oil temperature is high, the switching valve can be closed to inject oil from the oil jet.
- the switching valve can be configured to perform an opening / closing operation with reference to the estimated oil amount estimated by the circulating oil amount estimating means.
- the circulating oil amount estimating means is, for example, an ECU,
- the estimated oil amount can be calculated from the oil pressure value acquired by the oil pressure measuring means, the oil temperature value acquired by the oil temperature measuring means such as an oil temperature gauge, and the pump rotation speed. With such a configuration, it is possible to keep the oil pressure of the oil pump as low as possible while avoiding the oil shortage in each lubrication part, and to reduce the oil pump friction and the burden. Can do.
- the switching valve stops the valve opening operation when the hydraulic pressure value does not reach the hydraulic pressure value estimated from the oil temperature value and the pump rotational speed. It can be set as the structure to do. If the measured hydraulic pressure value does not reach the estimated hydraulic pressure value, it is assumed that the switching valve is not functioning properly and some failure has occurred, or the oil is poor or diluted. The switching valve is closed so that the required amount of oil supply to each part of the lubrication is not delayed, so that the oil sucked up by the oil pump is not returned through the oil return path. . At this time, a warning such as turning on a check lamp may be given so as to notify the driver of the abnormality. At the same time, it is also possible to control the engine speed to protect the engine.
- the valve opening pressure Qb of the relief valve is set to a lower valve opening pressure Qa than the valve opening pressure Qa of the biston jet within the required oil pressure range that can secure the necessary oil amount necessary for engine lubrication.
- the relief valve opens before the oil is injected by Biston Jets ⁇ , reducing the oil pressure and reducing the friction of the oil pump, In addition to reducing the burden, oil injection can be avoided even at low temperatures.
- FIG. 1 is a schematic diagram showing a schematic configuration of an engine in which a hydraulic control device of Embodiment 1 is incorporated.
- FIG. 2 A schematic diagram of an embodiment in which the downstream end of the oil return path is connected to an oil pan. is there.
- FIG. 3 is an explanatory diagram of a thermostat that is a switching valve.
- FIG. 4 is a schematic diagram showing a schematic configuration of an engine in which the hydraulic control device of Embodiment 2 is incorporated.
- FIG. 5 is a flowchart showing an example of switching valve opening / closing control in the hydraulic control apparatus of Embodiment 2.
- FIG. 6 is a flowchart showing an example of another switching valve opening / closing control.
- FIG. 1 is a schematic diagram showing a schematic configuration of an engine 2 incorporating the hydraulic control device 1 of the present invention.
- the hydraulic control device 1 opens the oil pump 4 when the oil pressure of the oil sucked up by the oil pump 4 and the oil pump 4 sucking up the oil from the oil pan 3 by the rotation of the crankshaft reaches the valve opening pressure Qa, and the oil injection
- the oil pressure of the oil sucked up by the oil pump 4 is opened in the piston return 6 that is different from the oil injection path 5 and the piston jet 6 that injects oil toward the piston (not shown) through the path 5
- It has a relief valve 8 that opens when Q b is reached, and a switching valve 9 that is arranged in the oil return path 7.
- the oil pan 3 corresponds to the oil tank in the present invention.
- a strainer 10 is disposed at the upstream end of the oil pump 4. Further, the downstream end of the oil return path 7 is connected between the oil pump 4 and the strainer 10 so that the returned oil circulates. Rather than pouring the returned oil directly into the oil pan 3, the oil in the oil pan 3 is not bubbled by returning it to the middle of the oil path. In order to prevent the oil in the oil pan 3 from foaming, it is possible to connect the downstream end of the oil return path 7 to a position below the oil surface of the oil pan 3 as shown in FIG. .
- an oil filter 11 is installed downstream of the oil pump 4.
- the oil injection path 5 and the oil return path 7 are branched downstream of the oil filter 1 1. With this configuration, foreign matter flows into the switching valve 9. This prevents malfunctions caused by foreign object penetration.
- the oil injection path 5 and the oil return path 7 are branched upstream of the oil filter 1 1 and released to the oil return path 7 before the pressure loss increases, thereby reducing the friction of the oil pump 4 and improving the fuel efficiency. It can also be set as the structure which aims.
- the relief valve 8 of the hydraulic control apparatus 1 having such a configuration opens when the hydraulic pressure in the path reaches a predetermined valve opening pressure Qb.
- This valve opening pressure Qb is set to a valve opening pressure lower than the valve opening pressure Qa of the biston jet 6 within the range of the required oil pressure that can secure the necessary oil amount necessary for the lubrication of the engine 2.
- the switching valve 9 is a thermostat, detects the oil temperature at the temperature sensing part, opens at low temperatures, and flows the oil sucked up by the oil pump 4 to the oil return path 7 side.
- the switching valve 9 opens or closes the valve body 9b by pressing the valve body 9b against the hole 9a1 provided in the plate body 9a or separating the valve body 9b.
- the switching valve 9 is provided with a spring 9c that urges one of the valve bodies 9b to open the hole 9a1 and a biston 9d that incorporates thermo wax on the other side of the valve body 9b. It is structured.
- the biston 9c pushes down the valve body 9b in the direction of arrow 30 to close the hole 9a1.
- valve body 9b biased by the spring 9c opens the hole 9a1 until the temperature at which the thermowax expands, and the temperature rises and the thermostat expands.
- the valve body 9b closes the hole 9a1.
- the oil pump 4 starts operating and sucks up the oil in the oil pan 3.
- the oil has a high viscosity due to the low oil temperature.
- the switching valve 9 which is a thermostat is open. If the hydraulic pressure is not so high immediately after starting the engine, the relief valve 8 is closed. For this reason, the oil is blocked by the relief valve 8.
- the hydraulic control device 20 shown in FIG. 4 is different from the hydraulic control device 1 of the first embodiment in that, in the hydraulic control device 1 of the first embodiment, the switching valve 9 detects the oil temperature and opens and closes the thermostat.
- the switching valve 21 uses an electromagnetic solenoid controlled by the ECU 22 that issues an opening / closing command based on data acquired from the sensor group 23. It is a point. Since the other configuration is not different from the hydraulic control device 1 of the first embodiment, common elements are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
- the switching valve 21 of such a hydraulic control device 20 opens and closes according to the engine load based on the engine speed NE, the fuel injection amount Qv, and the accelerator opening ACCP.
- the ECU 22 prepares a plurality of maps to be selected depending on the operating state, selects an appropriate map by analyzing the acquired data, and performs opening / closing control of the switching valve 21.
- the basic policy of the control of the switching valve 21 is that the switching valve 21 is closed when it is determined that the engine is in an operation state that requires oil quantity with reference to the engine speed and engine load. The oil is supplied to each part of the lubrication.
- An example of switching valve opening / closing control during cold start and after warm-up is shown below.
- FIG. 5 is a flowchart showing the switching valve opening / closing control at the time of cold start.
- the ECU 22 obtains the oil temperature OT and the water temperature WT from the oil temperature gauge and the water temperature gauge included in the sensor group 23, and determines whether or not the engine 2 is warming up (step S11). . If it is determined YES in step S11, that is, if it is determined that the engine 2 is not warmed up, the process proceeds to step S12. In step S12, the ECU 22 determines whether or not the engine speed NE has reached the value X1 recorded on the map.
- step S12 determines whether or not the engine load obtained from the fuel injection amount Qv and the accelerator opening AC CP has reached the value Y 1 recorded on the map. If YES is determined in step S13, that is, if the engine load has not reached the value Y1, the process proceeds to step S14. In step S14, the ECU 22 opens the switching valve 21. As a result, an increase in hydraulic pressure in the path is suppressed, and the friction and load on the oil pump 4 can be reduced, and as a result, fuel cost can be improved.
- step S15 the switching valve 21 is closed in any case (step S15).
- the lubrication parts are in an operating state where it is determined that an oil amount is necessary.Therefore, the switching valve 21 is closed and the lubrication parts are filled with oil. Is to supply. Note that the switching valve 21 is closed when no control is performed, that is, when the electromagnetic solenoid is not energized. This is a measure to ensure that oil is supplied to each part of the lubrication even when the control system or the like has some trouble and the switching valve 21 does not operate.
- step S21 determines in step S21 whether the engine speed NE has reached the value X2 recorded on the map. If YES is determined in step S21, that is, if it is determined that the engine speed NE has not reached the value X2, the process proceeds to step S22. Step S 22 Then, it is determined whether or not the engine load obtained from the fuel injection amount Q v and the accelerator opening ACCP has reached the value Y 2 recorded on the map.
- step S 2 3 If YES is determined in step S 2 2, that is, if the engine load has not reached the value Y 2, the process proceeds to step S 2 3.
- step S 2 3 the ECU 2 2 opens the switching valve 21.
- step S 24 when NO is determined in each of step S 21 and step S 22, in both cases, switching valve 21 is closed (step S 24).
- step S24 When the measures in step S24 are taken, it is determined that the lubrication parts need to be filled with oil in any case. It is designed to supply oil.
- the oil sucked up by the oil pump when it is cold can be released by the relief valve to reduce the friction of the oil pump, and the sliding friction can be reduced by increasing the temperature of the biston and bore by stopping the jetton jet injection.
- fuel efficiency can be improved.
- oil injection by the piston jet can be performed appropriately, so that it is possible to stabilize combustion due to an increase in the temperature of the biston and the bore, suppress misfire at low temperatures, and reduce emissions (HC).
- HC reduce emissions
- it can be expected that the engine startability will be improved at extremely low temperatures by reducing the oil pump friction.
- since the amount of engine lubricating oil can be reduced it is possible to increase the margin of reliability against the lack of lubricating oil at extremely low temperatures.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
油圧制御装置(1)は、クランクシャフトの回転によりオイルパン(3)からオイルを吸い上げるオイルポンプ(4)、このオイルポンプ(4)により吸い上げられたオイルの油圧が開弁圧Qaに達すると開弁し、オイル噴射経路(5)を通じてピストンへ向かってオイルを噴射するピストンジェット(6)、さらに、オイルリターン経路(7)に配置され、オイルポンプ(4)により吸い上げられたオイルの油圧が開弁圧Qbに達すると開弁するリリーフ弁(8)、オイルリターン経路7に配置される切替弁(9)を備えている。開弁圧Qbは開弁圧Qaよりも低圧に設定されている。
Description
明細書 エンジンの油圧制御装置
技術分野
[ 0 0 0 1 ]
本発明は、 エンジンの油圧を適切に制御することができるエンジンの油圧制御装置 に関する。
背景技術
[ 0 0 0 2 ]
エンジンの内部には、 オイルパン内に貯留された潤滑剤としてのオイルをオイルポ ンプによって吸入圧送し、 潤滑各部に供給するためのオイル通路が形成されている。 また、 オイルポンプの下流のオイル通路には、 オイルポンプの送油に伴うオイル通路 内の圧力 (油圧) が設定圧力以上となった時に開弁するオイルリリーフ弁を備えたォ ィルリリーフ通路が接続され、 余剰のオイルをオイルパンに戻してオイル通路内の最 大油圧を規制している。
ここで、 オイルポンプはオイルの粘度が高くなる低温始動時に、 オイル通路からの オイルリリーフ量を増大させてオイルポンプにかかる負担を軽減して始動性の向上を 図る提案がされている (特許文献 1 )。
具体的には、 エンジンを始動する際にはスタータモータによってフライホイールを 回転させ、 エンジンを始動可能な最小回転数まで到達させる必要があるが、 低温時に はオイルの粘度が高くなることにより、 オイル通路内を流動するオイルの流動抵抗が 増してオイルポンプにかかる負担が増大し、 これがスタータモータ駆動力の反力とし て作用するために、 エンジンを始動可能な最小回転数に到達させることができなくな り、 始動性の悪化をきたす。
そこで、 特許文献 1で提案されたオイル通路構造によれば、 オイルポンプ下流のォ ィル通路とオイルパンとを連通する第 1のオイルリリーフ通路と、 これに並列に第 2 のオイルリリーフ通路とを設け、 第 1のオイルリリーフ通路にはオイル通路内の油圧 が設定値以上となったときに開弁するオイルリリーフ弁を、 第 2のオイルリリーフ通 路には温度及び始動信号によって開弁するオイルリリーフ通路開閉弁が設けられてい る。
このような構成とすることにより、 オイルの粘度が高くなる低温時にはオイルリリ
ーフ通路開閉弁が開弁し、 第 2のオイルリリーフ通路を介して一部のオイルがオイル パンに戻されるため、 オイルポンプ下流の油圧が小さくなってオイルポンプにかかる 負担が軽減される。
[ 0 0 0 3 ]
さらに、 このような特許文献 1による提案を改良するものとして特許文献 2の提案 もある。 特許文献 2には温度変化に伴うオイル粘度変化があっても常時始動に必要な 最低油圧を確保しつつ、 オイルポンプの負荷を軽減して始動性を向上させるエンジン のオイル通路構造が開示されている。 具体的には、 オイルポンプ下流のオイル通路と オイルパンとを連通する第 1のオイルリリーフ通路と、 これと並列に第 2のオイルリ リーフ通路を設け、 第 1のオイルリリーフ通路にはオイル通路内の油圧が設定油圧以 上となったときに開弁するオイルリ リーフ弁を、 第 2のオイルリリーフ通路には始動 信号によって開弁するオイルリリーフ通路開閉弁を備えたエンジンのオイル通路構造 において、 上記第 2のオイルリリーフ通路には、 オイルリリーフ通路開閉弁と直列に 第 2のオイルリリーフ弁が設けられ、 この第 2のオイルリリーフ弁の開弁圧は第 1の オイルリリーフ通路に設けられたオイルリリーフ弁の開弁圧よりも低く、 かつ、 始動 時に必要な最低油圧以上の油圧で開弁するように設定されている。
このような構成とすることにより、 第 2のオイルリリーフ通路に設けたオイルリリ ーフ通路開閉弁を開弁させ、 低温始動時にオイルポンプ下流の油圧を低下させてオイ ルポンプにかかる負担を軽減することができるとともに、 第 2のリリーフ弁の開弁が 始動時に必要な最低油圧以上の油圧で行われるので、 オイルの粘度変化があってもォ ィルが過剰にオイルパンに戻されることがなく始動時に必要な油量が確保される。
[ 0 0 0 4 ]
ところで、 エンジンには暖機完了後のエンジン各部を適切に冷却する種々の仕組み が組み込まれているが、 その中の一つにピストンジェットがある。 これは稼働してい るピストンに向かってオイルを噴射し、 ピストン周辺の冷却を図ろうとするものであ る。 このビストンジエツトは、 オイル流路内の油圧が所定値以上になるとビストンに 向けられたノズルが開弁してオイルが噴射されるようになっている。
[ 0 0 0 5 ]
特許文献 1 特開昭 5 5— 1 3 5 1 1 2号公報
特許文献 2 実公平 2— 3 4 4 0 4号公報
発明の開示
発明が解決しようとする課題
[ 0 0 0 6 ]
以上説明したように特許文献 1で提案されたエンジンの潤滑装置や、 特許文献 2で 提案されたエンジンのオイル通路構造では、 油圧が所定値以上となったときにオイル リリーフ弁を開弁してエンジン内の油圧が最大油圧を超過しないように規制している。 ここで、 特許文献 1や特許文献 2では、 ピストンジェットについて何ら言及していな いが、 特許文献 1や特許文献 2におけるオイルリリーフ弁がオイル通路の最大油圧を 規制していることに鑑みれば、 ビストンジエツトが作動する油圧はオイルリリーフ弁 の開弁圧よりも低い。
このため、 冷間始動時にオイルの粘度が高いことに起因して油圧 (吐出圧) が上昇 すると、 オイルポンプの仕事量が増大する。 オイルポンプの仕事量が増大すれば燃費 の悪化等を招くこととなる。
また、 油圧が上昇し、 ピストンジェットの開弁圧に達すればオイルがピストンに向 かって噴射されることになるが、 暖機完了前であるにもかかわらずオイルが噴射され ることは、 ピストンの過冷却を招くこととなり、 早期暖機完了の妨げになる。
[ 0 0 0 7 ]
そこで、 本発明は、 暖機完了後はビストンジエツトによりビストンの冷却を行うこ とができ、 冷間始動時は油圧の上昇を回避してオイルポンプの負担を軽減すると共に ビストンジエツトの噴射を停止することのできるエンジンの油圧制御装置を提供する ことを課題とする。
課題を解決するための手段
[ 0 0 0 8 ]
力かる課題を解決するための、 本発明のエンジンの油圧制御装置は、 エンジンの油 圧を制御する装置であって、 オイルタンクからオイルを吸い上げるオイルポンプと、 オイルポンプにより吸い上げられたオイルの油圧が開弁圧 Q aに達すると開弁し、 ォ ィル噴射経路を通じてビストンへ向かってオイルを噴射するビストンジエツトと、 前 記オイル噴射経路とは異なるオイルリターン経路に配置され、 オイルポンプにより吸 い上げられたオイルの油圧が開弁圧 Q bに達すると開弁するリリーフ弁と、 前記オイ ルリターン経路に配置される切替弁と、 を備え、 前記開弁圧 Q bをエンジンの潤滑に 必要となる必要油量を確保できる必要油圧の範囲內で前記開弁圧 Q aよりも低い開弁 圧としたことを特徴とする。 このような構成とすれば冷間始動時にオイル粘度が高く
油圧が上昇した場合であっても、 所定の油圧 Q bに達するとリリーフ弁が開弁してォ ィルが開放されてオイルポンプのフリクションの低減、 負担の軽減が図られる。 また 、 ビストンジエツトからビストンに向かってオイルが噴射されることもなく早期暖機 完了の妨げとなることもない。 また、 開弁圧 Q bを所定の必要油圧以上の範囲内とし ておくことで潤滑各部に供給される油量が不足することは回避される。 なお、 前記ォ ィルタンクは、 シリンダブ口ック下部に取り付けられるオイルパンであってもよいし 、 別体のタンクでもよい。
[ 0 0 0 9 ]
ここで、 前記切替弁は、 低温時には開放されて前記オイルリターン経路のオイルを 流通可能とするサーモスタッ トとすることができる。 サーモスタットを用いれば、 ォ ィルの粘度が高くなつている低温時には開弁し、 暖機が進んで油温が上昇してきたら 閉弁して油圧を上昇させることができる。 油圧が上昇し開弁圧 Q aに達すればビスト ンジエツトからのオイルの噴射が行われ、 ビストンを冷却することができる。
[ 0 0 1 0 ]
このようにサーモスタツトを用いれば油温に応じて切替弁を開閉させることができ るが、 前記切替弁は、 エンジン回転数及びエンジン負荷に応じて開閉動作をする構成 とすることができる。例えば E C U (Electronic control unit) で制御されるソレ ノィド弁等を用い、 エンジン回転数及びエンジン負荷に応じた開閉指令に基づいて開 閉動作を行う構成とすることができる。 なお、 このような切替弁は、 適正な時期に開 閉を行うためにエンジン回転数、 エンジン負荷等の種々の値を参照することができる 。 これらの値は単独で又は適宜組み合わせて参照し、 開閉時期を決めることができる 。 これらの値の取得は、 従来、 エンジン、 車両が備えている各種センサから取得する 。 例えば、 エンジン負荷は燃料噴射量又はアクセル開度で判断することができる。
[ 0 0 1 1 ]
さらに、 このような切替弁はエンジン回転数及びエンジン負荷を参照してエンジン が油量を必要とする運転状態であると判断されるときは前記切替弁を閉弁する構成と する。 例えばエンジン回転数は低回転であっても、 エンジン高負荷のような場合は潤 滑各部にオイルが供給されるように切替弁は閉弁する。 また、 低回転、 低負荷の場合 であっても油温等が高温の状態となっているときには切替弁を閉弁し、 オイルジェッ トからオイルを噴射するようにできる。
「0 0 1 2 ]
さらに、 前記切替弁は循環油量推定手段により推定される推定油量を参照して開閉 動作を行う構成とすることができ、 この循環油量推定手段は例えば E C U等であり、 油圧計等の油圧測定手段が取得した油圧値と、 油温計等の油温測定手段が取得した油 温値と、 ポンプ回転数から推定油量を算出する構成とすることができる。 このような 構成とすれば、 潤滑各部がオイル不足の状態となることを回避しつつ、 できるだけォ ィルポンプに負担のかからない油圧に保つことができ、 オイルポンプのフリクション の低減、 負担の軽減を図ることができる。
[ 0 0 1 3 ]
また、 このような構成のエンジンの油圧制御装置では、 前記切替弁は、 油圧値が前 記油温値とポンプ回転数から推定される油圧値に達していないときは、 開弁動作を停 止する構成とすることができる。 実測した油圧値が推定した油圧値に達していないと きは、 切替弁が正常に機能しておらず何らかの故障が生じていることや、 オイルの劣 ィ匕、 希釈化等が想定されるため、 潤滑各部への必要量のオイル供給が滞ることがない ように切替弁を閉弁状態とし、 オイルポンプによって吸い上げられたオイルがオイル リターン経路を通じて戻されてしまうことがないようにしたものである。 このとき、 運転者に異常を知らせるようにチェックランプを点灯させる等の警告を行うようにし てもよい。 また、 これと同時にエンジンを保護すべくエンジン回転数を抑制する制御 を行うこともできる。
発明の効果
[ 0 0 1 4 ]
本発明によれば、 リリーフ弁の開弁圧 Q bをエンジンの潤滑に必要となる必要油量 を確保できる必要油圧の範囲内でビストンジエツトの開弁圧 Q aよりも低い開弁圧と したので、 エンジンの冷間始動時にオイルの粘度が高いことに伴って油圧が上昇した 際にビストンジエツ卜によってオイルが噴射される前にリリーフ弁が開弁し、 油圧を 低下させてオイルポンプのフリクション低減、 負担の軽減を図ると共に低温であるに もかかわらずオイルの噴射が行われることを回避することができる。
図面の簡単な説明
[ 0 0 1 5 ]
[図 1 ] 実施例 1の油圧制御装置を組み込んだエンジンの概略構成を示した模式 図である。
[図 2 ] オイルリターン経路の下流端をオイルパンに接続した実施例の模式図で
ある。
[図 3 ] 切替弁であるサーモスタッ トの説明図である。
[図 4 ] 実施例 2の油圧制御装置を組み込んだエンジンの概略構成を示した模式 図である。
[図 5 ] 実施例 2の油圧制御装置における切替弁開閉制御の一例を示すフローチ ャ一トである。
[図 6 ] 他の切替弁開閉制御の一例を示すフローチヤ一トである。
発明を実施するための最良の形態
[ 0 0 1 6 ]
以下、 本発明を実施するための最良の形態を図面と共に詳細に説明する。
実施例 1
[ 0 0 1 7 ]
図 1は、 本発明の油圧制御装置 1を組み込んだエンジン 2の概略構成を示した模式 図である。 油圧制御装置 1は、 クランクシャフトの回転によりオイルパン 3からオイ ルを吸い上げるオイルポンプ 4と、 このオイルポンプ 4により吸い上げられたオイル の油圧が開弁圧 Q aに達すると開弁し、 オイル噴射経路 5を通じてピストン (図示せ ず) へ向かってオイルを噴射するビストンジエツト 6と、 オイル噴射経路 5とは異な るオイルリターン経路 7に配置され、 オイルポンプ 4により吸い上げられたオイルの 油圧が開弁圧 Q bに達すると開弁するリリーフ弁 8と、 オイルリターン経路 7に配置 される切替弁 9を備えている。 オイルパン 3は本発明におけるオイルタンクに相当す る。 オイルポンプ 4の上流端部にはストレーナ 1 0が配置されている。 また、 オイル リターン経路 7の下流端はオイルポンプ 4とストレーナ 1 0との間に接続され、 戻さ れたオイルが循環するようになっている。 戻されたオイルを直接オイルパン 3内に注 ぐのではなくオイルの経路の途中に戻すことにより、 オイルパン 3内のオイルを泡立 たせてしまうことがない。 なお、 オイルパン 3内のオイルを泡立たせないために図 2 に示したようにオイルリターン経路 7の下流端をオイルパン 3のオイル面よりも下と なる位置に接続する構成とすることもできる。
[ 0 0 1 8 ]
また、 図に示すように、 オイルポンプ 4の下流にはオイルフィルタ 1 1が装着され ている。 オイル噴射経路 5とオイルリターン経路 7とは、 このオイルフィルタ 1 1の 下流で分岐している。 このような構成とすることにより、 切替弁 9に異物が流入する
ことを防止し、 異物嚙み込みによる作動不良を防止している。 なお、 オイルフィルタ 1 1の上流でオイル噴射経路 5とオイルリターン経路 7とを分岐させ、 圧損が増大す る前にオイルリターン経路 7にリリースすることでオイルポンプ 4のフリクションの 低下、 燃費向上を図る構成とすることもできる。
[ 0 0 1 9 ]
このような構成の油圧制御装置 1のリリーフ弁 8は経路中の油圧が所定の開弁圧 Q bに達すると開弁する。 この開弁圧 Q bは、 エンジン 2の潤滑に必要となる必要油量 を確保できる必要油圧の範囲内でビストンジェット 6の開弁圧 Q aよりも低い開弁圧 に設定されている。
[ 0 0 2 0 ]
また、 切替弁 9は、 サーモスタットであり、 感温部で油温を検知して、 低温時には 開弁してオイルポンプ 4によって吸い上げられたオイルをオイルリターン経路 7側に 流すようになっている。
この切替弁 9の具体的な構造を図 3に示す。 切替弁 9は、 板体 9 aに設けた穴 9 a 1へ弁体 9 bを押し付け、 又は、 離間して開放、 閉塞を行うものである。 切替弁 9は 、 弁体 9 bの一方に穴 9 a 1を開放する向きに付勢するスプリング 9 cを備え、 また 、 弁体 9 bの他方にサーモワックスを内蔵したビストン 9 dを備えた構成となってい る。 このような構成の切替弁 9では、 このサーモワックスが周囲の温度上昇に伴って 膨張するとビストン 9 cが弁体 9 bを矢示 3 0の方向に押し下げて穴 9 a 1を閉塞す る。 すなわち、 切替弁 7では、 サーモワックスが膨張する温度に達するまではスプリ ング 9 cに付勢された弁体 9 bは穴 9 a 1を開放しており、 温度が上昇しサーモヮッ タスが膨張してビストン 9 cを押し下げると弁体 9 bは穴 9 a 1を閉塞する。
[ 0 0 2 1 ] "
次に、 以上のように構成される油圧制御装置 1の動作について説明する。 冷間時に エンジン 2が始動し、 クランクシャフトが回転を始めるとオイルポンプ 4が動作を開 始しオイルパン 3内のオイルを吸い上げる。 このとき、 オイルは油温が低いことに起 因して粘度が高くなつている。 このように、 油温が低いときはサーモスタットである 切替弁 9は開放している。 また、 エンジン始動直後で油圧がそれ程高くなつていない ときは、 リリーフ弁 8は閉弁状態となっている。 このため、 オイルはリリーフ弁 8で 遮断されている。
[ 0 0 2 2 ]
オイルポンプ 4が継続して稼働していると徐々に油圧が上昇し、 リリーフ弁 8の開 弁圧である開弁圧 Q bに達するとリリーフ弁 8が開弁状態となる。 これにより経路内 の油圧が低下し、 オイルポンプ 4のフリクションも低下し、 負担が軽減される。 また 、 開弁圧 Q bに達した時点でリリーフ弁 8が開弁するため、 それ以上油圧が上昇する ことはなく、 ピストンジェット 6の開弁圧 Q aに達することもない。 このため、 冷間 状態であるにもかかわらずビストンに向かってオイルが噴射されることもなく、 ェン ジン 2の早期暖機の妨げとなることもない。
[ 0 0 2 3 ]
一方、 暖機が完了し油温が上昇すると、 切替弁 9が閉弁状態となりオイルリターン 経路 7内のオイルの流通を遮断する。 これにより経路内の油圧はリリーフ弁 8の開弁 圧 Q bを越えて上昇することがある。 上昇した油圧がピストンジエツトの開弁圧 Q a に達するとビストンジエツト 6からビストンに向かってオイルが噴射されて、 ビスト ン周辺の冷却が行われる。
実施例 2
[ 0 0 2 4 ]
次に、 本発明の実施例 2について図 4を参照しつつ説明する。 図 4に示した油圧制 御装置 2 0が実施例 1の油圧制御装置 1と異なる点は、 実施例 1の油圧制御装置 1で は、 切替弁 9が油温を検知して開閉を行うサーモスタッ トであるのに対し、 実施例 2 の油圧制御装置 2 0では、 切替弁 2 1は、 センサ群 2 3から取得したデータに基づい て開閉指令を行う E C U 2 2によって制御される電磁ソレノィドを用いている点であ る。 他の構成は、 実施例 1の油圧制御装置 1と異なる所がないので、 共通する要素に ついては図面中、 同一の参照番号を付してその詳細な説明は省略する。
[ 0 0 2 5 ]
このような油圧制御装置 2 0の切替弁 2 1は、 エンジン回転数 N Eや、 燃料噴射量 Q v、 アクセル開度 A C C Pに基づくエンジン負荷に応じて開閉動作を行う。 E C U 2 2は、 運転状態によって選択される複数のマップを用意しており、 取得したデータ を解析することにより適切なマップを選択し、 切替弁 2 1の開閉制御を行う。 切替弁 2 1の制御の基本的な方針は、 エンジン回転数及びエンジン負荷を参照してエンジン が油量を必要とする運転状態であると判断されるときは切替弁 2 1を閉弁状態として 、 潤滑各部にオイルを供給するというものである。 以下、 冷間始動時と、 暖機完了後 の切替弁開閉制御の一例を示す。
[0026]
図 5は、 冷間始動時の切替弁開閉制御を示すフローチャートである。 ECU22は 、 エンジン 2が始動すると、 センサ群 23に含まれる油温計、 水温計から油温 OT、 水温 WTを取得してエンジン 2の暖機前力否かの判断を行う (ステップ S 11)。ステ ップ S 11で YESと判断されたとき、 すなわち、 エンジン 2が暖機前であると判断 されたときは、 ステップ S 12へ進む。 ステップ S 12では、 ECU22は、 ェンジ ン回転数 NEがマップ上に記録された値 X 1に達している力、否かの判断をする。 ステ ップ S 12で YE Sと判断されたとき、 すなわち、 エンジン回転数 NEが値 X 1に達 していないと判断されたときはステップ S 13へ進む。 ステップ S 13では、 燃料噴 射量 Qv、 アクセル開度 AC CPから求められるエンジン負荷がマップ上に記録され た値 Y 1に達しているか否かの判断をする。 ステップ S 13で YESと判断された場 合、 すなわち、 エンジン負荷が値 Y 1に達していないときはステップ S 14に進む。 ステップ S 14では、 ECU 22は、 切替弁 21を開弁状態とする。 これにより経路 中の油圧の上昇が抑制されオイルポンプ 4のフリクション、 負担の軽減、 ひいては燃 費の向上を図ることができる。
[0027]
一方、 ステップ S 1 1、 ステップ S 12、 ステップ S 13のそれぞれのステップで NOと判断されたときは、 いずれの場合も切替弁 21を閉弁状態とする (ステップ S 15)。ステップ S 15における措置が採られる場合はいずれの場合も潤滑各部に油量 が必要であると判断されるような運転状態であることから、 切替弁 21を閉弁状態と して潤滑各部にオイルを供給するようにしたものである。 なお、 切替弁 21は、 何ら の制御を行われていない状態、 すなわち、 電磁ソレノイドに通電されていない状態で は閉弁状態となっている。 これは、 制御系統等に何らかの異常が発生して、 切替弁 2 1が作動しない場合であっても潤滑各部にオイルが供給されるようにするための措置 である。
[0028]
次に、 暖機完了後の切替弁開閉制御を図 6に示したフローチャートに基づいて説明 する。 暖機が完了し、 暖機完了後のマップが選択されると、 ECU22はステップ S 21でエンジン回転数 NEがマップ上に記録された値 X 2に達しているか否かの判断 をする。 ステップ S 21で YESと判断されたとき、 すなわち、 エンジン回転数 NE が値 X 2に達していないと判断されたときはステップ S 22へ進む。 ステップ S 22
では、 燃料噴射量 Q v、 アクセル開度 A C C Pから求められるエンジン負荷が、 マツ プ上に記録された値 Y 2に達しているか否かの判断をする。 ステップ S 2 2で Y E S と判断された場合、 すなわち、 エンジン負荷が値 Y 2に達していないときはステップ S 2 3に進む。 ステップ S 2 3では、 E C U 2 2は、 切替弁 2 1を開弁状態とする。 これにより経路中の油圧の上昇が抑制されオイルポンプ 4のフリクション、 負担の軽 減、 ひいては燃費の向上を図ることができる。
[ 0 0 2 9 ]
一方、 ステップ S 2 1、 ステップ S 2 2のそれぞれのステップで N Oと判断された ときは、 いずれの場合も切替弁 2 1を閉弁状態とする (ステップ S 2 4 )。 ステップ S 2 4における措置が採られる場合はいずれの場合も潤滑各部に油量が必要であると判 断されるような運転状態であることから、 切替弁 2 1を閉弁状態として潤滑各部にォ ィルを供給するようにしたものである。
[ 0 0 3 0 ]
上記実施例は本発明を実施するための例にすぎず、 本発明はこれらに限定されるも のではなく、 これらの実施例を種々変形することは本発明の範囲内であり、 更に本発 明の範囲内において、 他の様々な実施例が可能であることは上記記載から自明である
[ 0 0 3 1 ]
なお、 本発明の油圧制御装置による効果をまとめると、 以下の如くである。 まず、 冷間時にオイルポンプにより吸い上げられたオイルをリリーフ弁により開放すること によりオイルポンプのフリクションの低下を図ることができ、 ビストンジヱットの噴 射停止によるビストン、 ボア温度上昇による摺動フリクションの低減を促進すること により燃費の向上を図ることができる。 また、 ピストンジェットによるオイル噴射を 適切に行うことができるようになることからビストン、 ボア温度上昇による燃焼の安 定、 低温時の失火抑制、 ェミッション (H C) の排出を抑制することができる。 さら に、 オイルポンプのフリクションが低下することで極低温時のエンジン始動性の向上 も期待できる。 また、 エンジン潤滑油量を少なくすることができるため、 極低温時に おける潤滑油量不足に対する信頼性の余裕度を増すことができる。
Claims
[ 1 ] エンジンの油圧を制御する装置であって、
オイルタンクからオイルを吸い上げるオイルポンプと、
オイルポンプにより吸い上げられたオイルの油圧が開弁圧 Q aに達すると開弁し、 オイル噴射経路を通じてビストンへ向かってオイルを噴射するビストンジエツトと、 前記オイル噴射経路とは異なるオイルリターン経路に配置され、 オイルポンプによ り吸い上げられたオイルの油圧が開弁圧 Q bに達すると開弁するリリーフ弁と、 前記オイルリターン経路に配置される切替弁と、
を備え、
前記開弁圧 Q bをエンジンの潤滑に必要となる必要油量を確保できる必要油圧の範 囲内で前記開弁圧 Q aよりも低い開弁圧としたことを特徴とするエンジンの油圧制御 装置。
[ 2 ] 請求項 1記載のエンジンの油圧制御装置において、
前記切替弁は、 低温時には開放されて前記オイルリターン経路のオイルを流通可能 とするサーモスタツトであることを特徴としたエンジンの油圧制御装置。
[ 3 ] 請求項 1記載のエンジンの油圧制御装置において、
前記切替弁は、 エンジン回転数及びエンジン負荷に応じて開閉動作をすることを特 徴とするエンジンの油圧制御装置。
[ 4 ] 請求項 1記載のエンジンの油圧制御装置において、
前記切替弁は、 エンジン回転数及びエンジン負荷に応じて開閉動作をし、 エンジン が油量を必要とする運転状態であると判断されるときは閉弁することを特徴とするェ ンジンの油圧制御装置。
[ 5 ] 請求項 1記載のエンジンの油圧制御装置において、
前記切替弁は、 循環油量推定手段により推定される推定油量を参照して開閉動作を 行うことを特徴とするエンジンの油圧制御装置。
[ 6 ] 請求項 1記載のエンジンの油圧制御装置において、
前記切替弁は、 循環油量推定手段により推定される推定油量を参照して開閉動作を 行い、 当該循環油量推定手段は、 油圧測定手段が取得した油圧値と、 油温測定手段が 取得した油温値と、 ポンプ回転数から前記推定油量を算出することを特徴とするェン ジンの油圧制御装置。
[ 7 ] 請求項 6記載のエンジンの油圧制御装置において、
前記切替弁は、 油圧値が前記油温値とポンプ回転数から推定される油圧値に達して いないときは、 開弁動作を停止することを特徴としたエンジンの油圧制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800381100A CN101287895B (zh) | 2005-10-14 | 2006-10-13 | 发动机液压控制装置 |
US12/090,188 US7819093B2 (en) | 2005-10-14 | 2006-10-13 | Engine hydraulic control apparatus |
EP06821970A EP1936135B1 (en) | 2005-10-14 | 2006-10-13 | Hydraulic control device for engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005300644A JP4407613B2 (ja) | 2005-10-14 | 2005-10-14 | エンジンの油圧制御装置 |
JP2005-300644 | 2005-10-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007043711A1 true WO2007043711A1 (ja) | 2007-04-19 |
WO2007043711A9 WO2007043711A9 (ja) | 2007-06-28 |
Family
ID=37942922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/320893 WO2007043711A1 (ja) | 2005-10-14 | 2006-10-13 | エンジンの油圧制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7819093B2 (ja) |
EP (1) | EP1936135B1 (ja) |
JP (1) | JP4407613B2 (ja) |
CN (1) | CN101287895B (ja) |
WO (1) | WO2007043711A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110040463A1 (en) * | 2009-08-11 | 2011-02-17 | Gm Global Technology Operations, Inc. | Method and system for calibrating a pressure sensor for an automatic transmission |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4952500B2 (ja) * | 2007-10-15 | 2012-06-13 | トヨタ自動車株式会社 | エンジンの油圧制御装置 |
JP4941269B2 (ja) * | 2007-10-15 | 2012-05-30 | トヨタ自動車株式会社 | エンジンの油圧制御装置 |
JP4911020B2 (ja) * | 2007-12-27 | 2012-04-04 | トヨタ自動車株式会社 | 内燃機関の潤滑装置 |
JP2009216039A (ja) * | 2008-03-12 | 2009-09-24 | Nippon Soken Inc | 内燃機関の制御装置 |
JP2010071194A (ja) * | 2008-09-18 | 2010-04-02 | Toyota Motor Corp | オイル供給制御装置 |
JP4735707B2 (ja) * | 2008-11-14 | 2011-07-27 | トヨタ自動車株式会社 | 内燃機関の油圧制御装置 |
JP5338292B2 (ja) * | 2008-12-12 | 2013-11-13 | トヨタ自動車株式会社 | 内燃機関油圧制御装置 |
US8186327B2 (en) * | 2009-02-02 | 2012-05-29 | Ford Global Technologies | Oil supply system for internal combustion engine with dual mode pressure limiting valve |
JP5321149B2 (ja) * | 2009-03-04 | 2013-10-23 | トヨタ自動車株式会社 | 内燃機関 |
EP2412978B8 (en) * | 2009-03-26 | 2021-05-05 | Toyota Jidosha Kabushiki Kaisha | Lubrication system of an internal combustion engine |
JP5293343B2 (ja) * | 2009-03-30 | 2013-09-18 | トヨタ自動車株式会社 | 内燃機関の潤滑装置 |
EP2415980B1 (en) | 2009-03-31 | 2019-05-22 | Toyota Jidosha Kabushiki Kaisha | Oil pressure control apparatus of internal combustion engine |
JP5245992B2 (ja) * | 2009-03-31 | 2013-07-24 | トヨタ自動車株式会社 | 内燃機関の潤滑油供給装置 |
JP5245994B2 (ja) * | 2009-04-01 | 2013-07-24 | トヨタ自動車株式会社 | 内燃機関の油圧制御装置 |
JP5246333B2 (ja) * | 2009-06-08 | 2013-07-24 | トヨタ自動車株式会社 | エンジンの油圧制御装置 |
JP5270525B2 (ja) * | 2009-12-22 | 2013-08-21 | 日立オートモティブシステムズ株式会社 | 制御弁装置 |
GB2480474B (en) * | 2010-05-20 | 2016-10-05 | Ford Global Tech Llc | An oil supply system for an engine |
JP5614142B2 (ja) * | 2010-05-26 | 2014-10-29 | トヨタ自動車株式会社 | 車載潤滑油供給装置 |
JP2012002216A (ja) * | 2010-06-21 | 2012-01-05 | Mazda Motor Corp | エンジンの給油装置 |
GB2484748A (en) * | 2010-10-18 | 2012-04-25 | Gm Global Tech Operations Inc | Oil Supply Control for Internal Combustion Engine Pistons |
JP2012145021A (ja) * | 2011-01-11 | 2012-08-02 | Mitsubishi Heavy Ind Ltd | エンジンの冷却装置 |
US8899031B2 (en) * | 2011-02-16 | 2014-12-02 | Deere & Company | Cold start valve |
US8707927B2 (en) * | 2011-07-20 | 2014-04-29 | GM Global Technology Operations LLC | Oil squirter |
US9334766B2 (en) * | 2011-09-27 | 2016-05-10 | GM Global Technology Operations LLC | Method and apparatus for controlling oil flow in an internal combustion engine |
JP5850061B2 (ja) * | 2011-10-12 | 2016-02-03 | トヨタ自動車株式会社 | 内燃機関制御装置 |
DE102011084632B4 (de) * | 2011-10-17 | 2015-03-05 | Ford Global Technologies, Llc | Verfahren zum Erwärmen einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens |
US8387571B2 (en) | 2011-11-04 | 2013-03-05 | Ford Global Technologies, Llc | Oil delivery system |
DE102012200279A1 (de) * | 2012-01-11 | 2013-07-11 | Ford Global Technologies, Llc | Verfahren und Vorrichtung zum Betreiben eines Schmiersystems einesVerbrennungsmotors |
US8739746B2 (en) | 2012-01-31 | 2014-06-03 | Ford Global Technologies, Llc | Variable oil pump diagnostic |
ES2545753T3 (es) * | 2012-04-17 | 2015-09-15 | Fpt Industrial S.P.A. | Método para controlar un circuito de refrigeración de pistones de un motor de combustión interna de un vehículo industrial |
CN102828795A (zh) * | 2012-06-12 | 2012-12-19 | 东风朝阳朝柴动力有限公司 | 闭式循环柴油机润滑系统 |
WO2014003725A1 (en) * | 2012-06-26 | 2014-01-03 | International Engine Intellectual Property Company, Llc | Selective internal distribution of engine motor oil |
US9169801B2 (en) * | 2012-07-31 | 2015-10-27 | Ford Global Technologies, Llc | Internal combustion engine with oil-cooled cylinder block and method for operating an internal combustion engine of said type |
JP5821865B2 (ja) * | 2013-02-05 | 2015-11-24 | トヨタ自動車株式会社 | 内燃機関のオイルジェット異常判定装置および内燃機関の制御装置 |
JP6091914B2 (ja) * | 2013-02-05 | 2017-03-08 | 大豊工業株式会社 | 油量調整装置 |
CN103382864A (zh) * | 2013-07-12 | 2013-11-06 | 中国北方发动机研究所(天津) | 一种带进口引射管的机油泵 |
JP6294653B2 (ja) * | 2013-12-18 | 2018-03-14 | 株式会社山田製作所 | オイルポンプのリリーフ装置 |
JP6287361B2 (ja) * | 2014-03-06 | 2018-03-07 | アイシン精機株式会社 | 内燃機関および内燃機関用油圧制御装置 |
JP2016027254A (ja) * | 2014-06-30 | 2016-02-18 | 株式会社山田製作所 | エンジンのオイル回路のリリーフ装置 |
JP6706028B2 (ja) * | 2014-06-30 | 2020-06-03 | 株式会社山田製作所 | エンジンのオイル回路のリリーフ装置 |
JP2016027253A (ja) * | 2014-06-30 | 2016-02-18 | 株式会社山田製作所 | エンジンのオイル回路のリリーフ装置 |
US9874124B2 (en) | 2015-01-16 | 2018-01-23 | Ford Global Technologies, Llc | Filter diagnostics and prognostics |
DE102016214402A1 (de) * | 2016-08-04 | 2018-02-08 | Bayerische Motoren Werke Aktiengesellschaft | Motorblock und Motor mit einem Motorblock |
CN107806352A (zh) * | 2016-09-09 | 2018-03-16 | 日立汽车系统(苏州)有限公司 | 维持机油压力持续稳定的系统和方法 |
CN109707499B (zh) * | 2018-12-06 | 2020-12-04 | 连云港天明装备有限公司 | 一种矿用车辆发动机水位保护装置 |
JP7287094B2 (ja) * | 2019-05-08 | 2023-06-06 | マツダ株式会社 | エンジンの潤滑装置 |
CN111042891B (zh) * | 2019-12-31 | 2021-08-03 | 宁波吉利罗佑发动机零部件有限公司 | 增程式润滑管理系统、润滑管理方法及车辆 |
CN111691947A (zh) * | 2020-06-30 | 2020-09-22 | 潍柴动力股份有限公司 | 机油泵的控制方法、装置及系统 |
DE102020208867A1 (de) * | 2020-07-16 | 2022-01-20 | Volkswagen Aktiengesellschaft | Diagnoseverfahren für ein Kolbenkühldüsenventil, Diagnosevorrichtung, Steuergerät, Kraftfahrzeug |
CN112282889A (zh) * | 2020-09-27 | 2021-01-29 | 潍柴动力股份有限公司 | 减少冷起动阻力的控制系统及控制方法 |
EP4334576A1 (en) * | 2021-05-04 | 2024-03-13 | Cummins, Inc. | Engine lubrication systems, lubrication fluid circulation systems, and methods for regulating fluid pressure |
AT524855B1 (de) * | 2021-06-18 | 2022-10-15 | Weber Hydraulik Gmbh | Hydraulikaggregat zur Versorgung hydraulisch antreibbarer Rettungsgeräte |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789180U (ja) * | 1980-11-20 | 1982-06-01 | ||
JPH0234404Y2 (ja) * | 1985-01-08 | 1990-09-17 | ||
JPH0988533A (ja) * | 1995-09-26 | 1997-03-31 | Tokyo Buhin Kogyo Kk | エンジン潤滑油供給装置 |
JP2002221016A (ja) * | 2000-12-30 | 2002-08-09 | Hyundai Motor Co Ltd | エンジンオイル循環制御システムおよび方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1567240A (en) * | 1977-04-28 | 1980-05-14 | Brown Tractors Ltd | Internal combustion engines |
JPS5938962B2 (ja) | 1979-04-09 | 1984-09-20 | 株式会社日本触媒 | アクリル酸塩重合体の製法 |
JPS5789810A (en) | 1980-11-22 | 1982-06-04 | Shirou Yoshida | Electromotive tooth brush and electromotive tooth brush with fluorine ionizing apparatus |
US5339776A (en) * | 1993-08-30 | 1994-08-23 | Chrysler Corporation | Lubrication system with an oil bypass valve |
JP3206283B2 (ja) | 1994-03-23 | 2001-09-10 | スズキ株式会社 | エンジンの潤滑装置 |
JPH0893430A (ja) | 1994-09-27 | 1996-04-09 | Nissan Motor Co Ltd | 内燃機関の潤滑システム |
DE19933363A1 (de) * | 1999-07-20 | 2001-02-01 | Daimler Chrysler Ag | Vorrichtung zur Kühlung und/oder Schmierung einer Hubkolbenbrennkraftmaschine |
-
2005
- 2005-10-14 JP JP2005300644A patent/JP4407613B2/ja not_active Expired - Fee Related
-
2006
- 2006-10-13 EP EP06821970A patent/EP1936135B1/en not_active Ceased
- 2006-10-13 CN CN2006800381100A patent/CN101287895B/zh not_active Expired - Fee Related
- 2006-10-13 US US12/090,188 patent/US7819093B2/en not_active Expired - Fee Related
- 2006-10-13 WO PCT/JP2006/320893 patent/WO2007043711A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5789180U (ja) * | 1980-11-20 | 1982-06-01 | ||
JPH0234404Y2 (ja) * | 1985-01-08 | 1990-09-17 | ||
JPH0988533A (ja) * | 1995-09-26 | 1997-03-31 | Tokyo Buhin Kogyo Kk | エンジン潤滑油供給装置 |
JP2002221016A (ja) * | 2000-12-30 | 2002-08-09 | Hyundai Motor Co Ltd | エンジンオイル循環制御システムおよび方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110040463A1 (en) * | 2009-08-11 | 2011-02-17 | Gm Global Technology Operations, Inc. | Method and system for calibrating a pressure sensor for an automatic transmission |
US8285463B2 (en) * | 2009-08-11 | 2012-10-09 | GM Global Technology Operations LLC | Method and system for calibrating a pressure sensor for an automatic transmission |
Also Published As
Publication number | Publication date |
---|---|
JP4407613B2 (ja) | 2010-02-03 |
EP1936135B1 (en) | 2012-12-26 |
EP1936135A1 (en) | 2008-06-25 |
JP2007107485A (ja) | 2007-04-26 |
CN101287895A (zh) | 2008-10-15 |
CN101287895B (zh) | 2010-05-26 |
EP1936135A4 (en) | 2010-11-24 |
WO2007043711A9 (ja) | 2007-06-28 |
US7819093B2 (en) | 2010-10-26 |
US20090229561A1 (en) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007043711A1 (ja) | エンジンの油圧制御装置 | |
JP4962657B2 (ja) | 内燃機関の制御装置 | |
EP2075446B1 (en) | Control device for internal combustion engine | |
US9051893B2 (en) | Method for detecting a malfunction in an electronically regulated fuel injection system of an internal combustion engine | |
US20120132172A1 (en) | Hydraulic control device for engine | |
US20150300218A1 (en) | Oil supply device for internal combustion engine | |
JP2007285235A (ja) | ディーゼルエンジンの燃料供給装置 | |
JP2005337031A (ja) | 筒内燃料噴射式内燃機関の高圧燃料系異常診断装置 | |
US9726129B2 (en) | Method for determining a fuel fraction in oil | |
JP2011012628A (ja) | 内燃機関の制御装置 | |
KR102322290B1 (ko) | 피스톤 쿨링 장치 고장 진단 방법 및 진단 시스템 | |
US20130206083A1 (en) | Engine with electronically controlled piston cooling jets and method for controlling the same | |
JP2009041445A (ja) | 内燃機関の油圧制御装置 | |
JP5523082B2 (ja) | 内燃機関の早期暖機制御方法 | |
JP4572950B2 (ja) | コモンレール圧制御装置およびそれを用いた燃料噴射システム | |
EP2336531A1 (en) | Accumulator fuel injection system controller and control method and accumulator fuel injection system | |
AU2012358130A1 (en) | Method and device for controlling the fuel supply of an internal combustion engine operated with liquefied gas | |
JP2008196380A (ja) | エンジンの油圧制御装置 | |
JP2010048159A (ja) | オイル供給制御装置 | |
JP2015209796A (ja) | 内燃機関の潤滑装置 | |
JP4075752B2 (ja) | 蓄圧式燃料噴射装置 | |
JP7556317B2 (ja) | 内燃機関の制御装置 | |
JP6750476B2 (ja) | 油圧制御装置 | |
JP6500516B2 (ja) | エンジン制御装置 | |
JPH10212916A (ja) | エンジンのピストン冷却装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680038110.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 12090188 Country of ref document: US Ref document number: 2006821970 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |