WO2007032165A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2007032165A1
WO2007032165A1 PCT/JP2006/315837 JP2006315837W WO2007032165A1 WO 2007032165 A1 WO2007032165 A1 WO 2007032165A1 JP 2006315837 W JP2006315837 W JP 2006315837W WO 2007032165 A1 WO2007032165 A1 WO 2007032165A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
semiconductor substrate
concentration
element isolation
Prior art date
Application number
PCT/JP2006/315837
Other languages
English (en)
French (fr)
Inventor
Chihiro Arai
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP06782631A priority Critical patent/EP1933390A4/en
Priority to KR1020087005372A priority patent/KR101248084B1/ko
Priority to CN2006800412984A priority patent/CN101300685B/zh
Publication of WO2007032165A1 publication Critical patent/WO2007032165A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02024Position sensitive and lateral effect photodetectors; Quadrant photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, wherein a photodiode as a photodetector element and a semiconductor integrated circuit such as a nopolar integrated circuit or a MOS integrated circuit are formed on the same semiconductor substrate.
  • the present invention relates to a semiconductor device having a so-called photodetector integrated circuit and a manufacturing method thereof.
  • a semiconductor device having a photodetector integrated circuit is a semiconductor device in which a photodiode as a photodetector element converts light into current, and performs signal processing such as IV (current-to-voltage) conversion, matrix circuit, etc. It is.
  • the photodiodes 201 to 204 include a P-type silicon substrate 210 and a P-type buried layer 211, and a low-concentration p formed on the P-type silicon substrate 210 and the P-type buried layer 211.
  • An anode is formed by the type epitaxial layer 212, and a plurality of force swords (two in FIG. 24) are formed by the N-type force sword region 214 (for example, “JP-A-11-266033” or “Special (See Kaiho 2001-60713);).
  • the anode is taken out using a P-type anode taking-out region 213. Further, outside the anode extraction region 213, elements (not shown) constituting a semiconductor integrated circuit that performs signal processing are provided.
  • the circuit function of the conventional photodiode integrated circuit is obtained by converting the output from each of the photodiodes 201 to 204 into current / voltage (IV), and then calculating the optical disc. Focus on 'tracking signal and power! ] The output added by the operational amplifier Aadd is taken out as an RF (WRF, RRF) signal that is an optical disk data signal.
  • the problem to be solved is that the circuit function of a conventional photodiode integrated circuit converts the output of each photodiode power into a current-voltage (IV) conversion and then performs an operation. Optical disc focus' Tracking signal is extracted, and the added output is taken out as an RF signal that is the optical disc data signal. Therefore, the RF signal is added after the current / voltage conversion of the output from each photodiode. In addition, the act of adding and converting the current to voltage increases noise, and the SZN ratio becomes severe. In addition, the P-type substrate is a common anode of individual photodiodes.
  • the P-type substrate processes the bipolar device or C MOS device that performs signal processing. Because it functions as the GND of this, it is difficult to extract the common anode output of the photodiode alone.
  • the photodiode having the conventional structure shown in FIG. 24 since the photodiodes 201 and 202 and the anodes of the photodiodes 203 and 204 are common, the photodiodes 201 and 202 and the photodiodes 203 and 204 have a common anode. This is the point where crosstalk occurs. As shown in FIG. 26, in the case of the photodiode pattern that is the light spot force S3, there is a problem that crosstalk occurs between the photodiodes 301, 302, and 303 divided into four.
  • the force swords and anodes of a plurality of photodiodes are formed electrically independently from a semiconductor substrate, and the plurality of photodiodes have a common anode (force sword) and are separated from each other.
  • a power sword anode
  • the RF signal is output from each photodiode. The challenge is to make it possible to extract without adding. Another object is to reduce crosstalk.
  • the semiconductor device of the present invention is a semiconductor device having a plurality of photodiodes on a semiconductor substrate, wherein a force sword and an anode of the plurality of photodiodes are formed electrically independent of the semiconductor substrate. And the plurality of photodiodes have a common anode and a plurality of separated force swords, and the output from the common anode is treated equivalently to the summed output of the plurality of divided photodiodes, or The plurality of photodiodes have a common force sword and a plurality of separated anodes, and the output from the common force sword is treated as equivalent to the added output of the divided photodiodes. It is characterized by.
  • the force sword and the anode of a plurality of photodiodes are formed on a semiconductor substrate.
  • the RF signal can be extracted from a common anode (or power sword) because it is formed electrically independent of the plate.
  • the RF signal can be extracted without adding the outputs of individual photodiodes.
  • a first manufacturing method of a semiconductor device of the present invention includes a step of forming a p-type buried layer on an insulating layer formed on a semiconductor substrate, and a lower concentration than the buried layer on the buried layer. Forming a P-type low-concentration layer; separating the low-concentration layer and the buried layer to define independent common anode regions; and forming an element isolation region reaching the insulating layer; Forming an N-type region serving as a power sword of a photodiode in the low-concentration layer.
  • a second manufacturing method of a semiconductor device of the present invention includes a step of forming an N-type buried layer on an insulating layer formed on a semiconductor substrate, and a lower concentration than the buried layer on the buried layer.
  • a buried layer and a low-concentration layer serving as a common anode or a common force sword are formed on an insulating layer formed on a semiconductor substrate, thereby isolating the semiconductor device. Since the element isolation region is formed so as to reach the layer, the insulating layer and the element isolation region form a buried layer and a low concentration layer that are electrically independent from the semiconductor substrate, and the buried layer and the low concentration layer A common anode or common force sword is formed
  • a third manufacturing method of a semiconductor device includes a step of forming a P-type buried layer in an N-type semiconductor substrate, and an N-type semiconductor device that forms a PN junction type element isolation region in the semiconductor substrate.
  • An upper layer of an N-type element isolation layer reaching the lower layer of the element isolation layer is formed in the low concentration layer, and the lower layer and the upper layer of the element isolation layer and the semiconductor substrate are formed. Therefore, the method includes a step of partitioning independent common anode regions, and a step of forming an N-type region serving as a cathode of a photodiode in the low concentration layer.
  • a fourth manufacturing method of a semiconductor device includes a step of forming an N-type buried layer on a P-type semiconductor substrate, and a P-type junction isolation region on the semiconductor substrate. Forming a lower layer of the element isolation layer; forming an N-type low concentration layer having a lower concentration than the buried layer on the semiconductor substrate including the buried layer and the lower layer of the element isolation region; Forming an upper layer of a P-type element isolation layer reaching the lower layer of the element isolation layer in the low-concentration layer and partitioning an independent common force sword by the lower and upper layers of the element isolation layer and the semiconductor substrate; And a step of forming a P-type region to be an anode of a photodiode in the low concentration layer.
  • a buried layer having a conductivity type opposite to that of the semiconductor substrate is formed on the semiconductor substrate, and a lower layer of an element isolation region having the same conductivity type as that of the semiconductor substrate is formed.
  • a low concentration layer having a conductivity type opposite to that of the semiconductor substrate is formed on the semiconductor substrate, and the upper layer of the element isolation region having the same conductivity type as that of the semiconductor substrate is formed so that the low concentration layer reaches the lower layer of the element isolation region Therefore, a buried layer and a low concentration layer electrically isolated from the semiconductor substrate are formed by element isolation using a PN junction, and a common anode or a common force sword is formed in the buried layer and the low concentration layer. Is formed.
  • FIG. 1 is a schematic sectional view showing a first example of an embodiment of a semiconductor device of the present invention.
  • FIG. 2 is an equivalent circuit diagram showing a first example of an embodiment of a semiconductor device of the present invention.
  • FIG. 3 is a schematic configuration sectional view showing a first example of an embodiment of a semiconductor device of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a first example of an embodiment of the semiconductor device of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a first example of an embodiment of the semiconductor device of the present invention.
  • FIG. 6 is a manufacturing step sectional view showing an example of one embodiment of the first method for manufacturing a semiconductor device of the present invention.
  • FIG. 7 is a manufacturing step sectional view showing an example of an embodiment according to a first method for manufacturing a semiconductor device of the present invention.
  • FIG. 8 is a manufacturing step sectional view showing an example of an embodiment according to a first method for manufacturing a semiconductor device of the present invention.
  • FIG. 9 is a manufacturing step sectional view showing an example of one embodiment of the first method for manufacturing a semiconductor device of the present invention.
  • FIG. 10 is a manufacturing step sectional view showing an example of one embodiment of the first method for manufacturing a semiconductor device of the present invention.
  • FIG. 11 is a manufacturing step sectional view showing an example of an embodiment according to a second method for manufacturing a semiconductor device of the present invention.
  • FIG. 12 is a manufacturing step sectional view showing an example of one embodiment according to a second method for manufacturing a semiconductor device of the present invention.
  • FIG. 13 is a manufacturing step sectional view showing an example of one embodiment of the second method for manufacturing a semiconductor device of the present invention.
  • FIG. 14 is a manufacturing step sectional view showing an example of one embodiment according to a second method for manufacturing a semiconductor device of the present invention.
  • FIG. 15 is a manufacturing step sectional view showing an example of one embodiment according to a second method for manufacturing a semiconductor device of the present invention.
  • FIG. 16 is a manufacturing process sectional view showing an example of an embodiment according to a third method for manufacturing a semiconductor device of the present invention.
  • FIG. 17 is a manufacturing step sectional view showing an example of one embodiment of the third method for manufacturing a semiconductor device of the present invention.
  • FIG. 18 is a manufacturing step sectional view showing an example of one embodiment according to a third method for manufacturing a semiconductor device of the present invention.
  • FIG. 19 is a manufacturing step sectional view showing an example of one embodiment of the third method for manufacturing a semiconductor device of the present invention.
  • FIG. 20 is a manufacturing step sectional view showing an example of an embodiment according to a fourth method for manufacturing a semiconductor device of the present invention.
  • FIG. 21 is a manufacturing process sectional view showing an example of one embodiment according to a fourth method for manufacturing a semiconductor device of the present invention.
  • FIG. 22 is a manufacturing step sectional view showing an example of one embodiment according to a fourth method for manufacturing a semiconductor device of the present invention.
  • FIG. 23 is a manufacturing step sectional view showing an example of one embodiment of the fourth method for manufacturing a semiconductor device of the present invention.
  • FIG. 24 is a schematic cross-sectional view showing an example of a conventional photodetector IC semiconductor device.
  • FIG. 25 is a circuit diagram showing an example of a conventional photodiode integrated circuit.
  • FIG. 26 is a layout diagram of a photodiode for explaining crosstalk. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. Fig. 1 shows an example of a semiconductor device having a plurality of photodiodes, which is electrically isolated from a semiconductor substrate using an SOI (Silicon on insulator) substrate.
  • SOI Silicon on insulator
  • an SOI (Silicon on insulator) substrate in which an insulating layer 12 is formed on a semiconductor substrate 11 and a silicon layer is formed on the insulating layer 12 is used.
  • the insulating layer 12 is made of an oxide silicon film.
  • the silicon layer is doped with P + type impurities. This silicon layer is referred to as a P + type buried layer 13.
  • the buried layer 13 has an impurity concentration set to, for example, 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • a P-type low concentration layer 14 having a lower concentration than the buried layer 13 is formed on the buried layer 13.
  • the low concentration layer 14 is formed of, for example, a P-silicon layer formed by epitaxial growth, and its impurity concentration is set to 1 ⁇ 10 u / cm 3 or more and 1 ⁇ 10 16 Zcm 3 or less.
  • the thickness of the semiconductor region composed of the buried layer 13 and the low concentration layer 14 is preferably longer than the light absorption length. As a result, a high-light-receiving structure of a photodiode, which will be described later, can be realized.
  • the impurity concentration of the buried layer 13 which is a high concentration region
  • the electrical resistance of the buried layer 13 can be lowered, the frequency characteristics can be improved, and the impurity concentration of the low concentration layer 14 can be increased.
  • the impurity concentration can be lowered, the depletion layer can be easily spread, the frequency characteristics can be improved, and the light receiving sensitivity can be improved by reducing the capacitance.
  • an anode extraction region 15 reaching the buried layer 13 is formed.
  • the anode extraction region 15 is formed of, for example, a P + impurity layer having a higher concentration than the low concentration layer 13.
  • the concentration of the P + impurity layer can be set to be equal to that of the buried layer 13, for example.
  • the buried layer 13, the low concentration layer 14, and the anode extraction region 15 constitute a common anode 21.
  • the common anode 21 is element-isolated by an element isolation region 16 that reaches the insulating layer 12 in the low-concentration layer 14 and the buried layer 13.
  • the element isolation region 16 is formed by, for example, a deep trench isolation layer. Accordingly, the single common anode 21 is electrically separated from the adjacent common anode 21 and the semiconductor substrate 11 by the element isolation region 16 and the insulating layer 12.
  • a plurality of force swords 22 are formed on the low concentration layer 14 of the common anode 21.
  • This force sword 22 is formed of, for example, an N-type layer. Therefore, two photodiodes 20 (20a) and 20 (20b) force are formed. In the drawing, three or four or more force swords 22 (not shown) in which two force swords 22a and 22b are formed on one common anode 21 can be formed.
  • the photodiode 20 is separated from the semiconductor substrate 11 by element isolation in the element isolation region 16 having the De mark Trench Isolation structure that reaches the insulating layer 12 made of the silicon oxide film. Therefore, the output from the common anode 21 of the photodiode 20 can be taken out as an addition signal of each photodiode obtained by dividing the force sword 22.
  • the photodiode 20 receives reflected light (not shown) from an optical disk (not shown), and the output from the common anode 21 can be directly handled as an RF signal without going through an addition amplifier. it can.
  • the output from the force sword 22 divided into a plurality of signals can be subjected to signal processing such as focus tracking.
  • the force swords 22 of the plurality of photodiodes 20 and the common anode 21 are formed electrically independent of the semiconductor substrate, for example, the equivalent circuit of FIG. As shown in FIG. 5, the output from the common anode 21 can be directly handled as an RF signal without going through the adding amplifier.
  • the RF signal can be extracted without adding the outputs from the individual photodiodes 20.
  • the output from the plurality of force swords 22 can be used as a signal for performing operations such as focus tracking. This has the advantage of reducing noise and improving the S / N ratio and frequency band.
  • the apparatus configuration can be simplified.
  • the photodiode 20 can be configured to be independent from the semiconductor substrate 11, a structure without crosstalk between the photodiodes 20 can be provided.
  • FIG. 3 shows an example of a modification of the semiconductor device described with reference to FIG.
  • an SOI (Silicon on insulator) substrate in which an insulating layer 32 is formed on a semiconductor substrate 31 and a silicon layer is formed on the insulating layer 32 is used.
  • the insulating layer 32 is made of an oxide silicon film.
  • the silicon layer is doped with N + type impurities. This silicon layer is used as an N + type buried layer 33.
  • the buried layer 33, the impurity concentration is set to, for example, less than 1 X 10 1 6 / cm 3 or more 1 X 10 22 / cm 3.
  • An N-type low concentration layer 34 having a lower concentration than the buried layer 33 is formed on the buried layer 33.
  • the low concentration layer 34 is formed of, for example, an N-silicon layer formed by epitaxy, and the impurity concentration is set to 1 ⁇ 10 u / cm 3 or more and 1 ⁇ 10 16 / cm 3 or less.
  • the thickness of the semiconductor region composed of the buried layer 33 and the low concentration layer 34 is preferably longer than the light absorption length.
  • the impurity concentration of the buried layer 33 which is a high concentration region
  • the electrical resistance of the buried layer 33 can be lowered, the frequency characteristics can be extended, and the low concentration
  • the impurity concentration of the layer 34 By setting the impurity concentration of the layer 34, the impurity concentration can be lowered, the depletion layer can be easily expanded, the frequency characteristics can be improved by the capacitance reduction, and the light receiving sensitivity can be improved.
  • an anode extraction region 35 reaching the buried layer 33 is formed.
  • the anode extraction region 35 is formed of an N + impurity layer having a higher concentration than that of the low concentration layer 33, for example.
  • the concentration of the N + impurity layer can be set to be equal to that of the buried layer 33, for example.
  • a common force sword 41 is constituted by the buried layer 33, the low concentration layer 34, and the force sword removal region 35.
  • the common force sword 41 is element-isolated by an element isolation region 36 that reaches the insulating layer 32 in the low-concentration layer 34 and the buried layer 33.
  • the element isolation region 36 is formed by, for example, a deep trench insulating layer (Deep Trench Isolation). Therefore, the common force sword 41 is electrically separated from the adjacent common force sword 41 and the semiconductor substrate 31 by the element isolation region 36 and the insulating layer 32.
  • a plurality of anodes 42 are formed on the low concentration layer 34 of the common force sword 41.
  • the anode 42 is formed of, for example, a P-type layer. Therefore, two photodiodes 40 (40a) and 40 (40b) force are formed. In the drawing, three or four or more anodes 42 (not shown) in which two anodes 42a and 42b are formed on one common force sword 41 may be formed.
  • the photodiode 40 is formed on the semiconductor substrate 31 by element isolation in the element isolation region 36 having a De-sign Trench Isolation structure that reaches the insulating layer 32 made of an oxide silicon film.
  • the output from the common force sword 41 of the photodiode 40 can be taken out as an addition signal of the individual photodiodes 40 in which the anodes 42 are divided.
  • the photodiode 40 receives reflected light (not shown) from an optical disk (not shown), and the output from the common force sword 41 is directly handled as an RF signal without going through an addition amplifier. Can do.
  • the output from the anode 42 divided into a plurality of signals can be subjected to signal processing such as focusing and tracking.
  • the anode 42 and the common cathode 41 of the plurality of photodiodes 40 are formed electrically independently from the semiconductor substrate. These outputs can be handled directly as RF signals without going through a summing amplifier. In other words, by treating the output from the common force sword 41 as equivalent to the added output of the divided photodiodes 40, the RF signal can be extracted without adding the outputs from the individual photodiodes 40. Yes.
  • the outputs from the plurality of divided anodes 42 can be used as signals for performing operations such as focus tracking. This has the advantage of reducing noise and improving the SZN ratio and frequency band.
  • the device configuration can be simplified. Furthermore, since the photodiode 40 can be configured independently of the semiconductor substrate 31, a structure without crosstalk between the photodiodes 40 can be provided.
  • FIG. 4 shows an example of a semiconductor device having a plurality of photodiodes in which an anode (force sword) region composed of a buried layer and a low concentration layer is separated from a semiconductor substrate by an element isolation region using a PN junction.
  • anode force sword
  • a lower layer 52 of an N + type element isolation region is formed on an N ⁇ type semiconductor substrate 51 and a P + type buried region 53 is formed.
  • the semiconductor substrate 51 for example, an N-type silicon substrate is used.
  • the lower layer 52 of the element isolation region is formed of an N + type impurity layer.
  • the buried region 53 is formed of an N + type impurity layer, and the impurity concentration is set to 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • a P-type low-concentration layer 54 having a lower concentration than the buried region 53 is formed on the semiconductor substrate 51, and the impurity concentration thereof is 1 X 10 u Zcm 3 or more and 1 X 1 0 16 Zcm 3 or less.
  • the buried region 53 is preferably formed to be longer than the light absorption length. As a result, a structure with high light receiving sensitivity of a photodiode, which will be described later, can be realized.
  • the thickness of the buried region 53 is shorter than the light absorption length, a parasitic photodiode is generated between the buried region 53 and the semiconductor substrate 51, and the output is detected. It is also possible to actively utilize the output of this parasitic photodiode.
  • the impurity concentration of the buried region 53 which is a high-concentration region
  • the electrical resistance of the buried region 53 can be lowered, and the frequency characteristics can be improved.
  • the impurity concentration of the concentration layer 54 By setting the impurity concentration of the concentration layer 54, the impurity concentration can be lowered, the depletion layer can be easily expanded, the frequency characteristics can be improved, and the light receiving sensitivity can be improved by reducing the capacitance.
  • An anode extraction region 55 reaching the buried region 53 is formed in the low concentration layer 54.
  • the anode extraction region 55 is formed of a P + impurity layer having a higher concentration than that of the low concentration layer 54, for example.
  • the concentration of the P + impurity layer can be set to be equal to that of the buried region 53, for example.
  • the buried region 53, the low concentration layer 54, and the anode extraction region 55 constitute a common anode 61.
  • an upper layer 56 of an element isolation region reaching the lower layer 52 of the element isolation region is formed.
  • the upper layer 56 of the element isolation region is formed of, for example, a high-concentration N + type impurity layer equivalent to the lower layer 52 of the element isolation region.
  • the lower layer 52 and the upper layer 56 of the element isolation region are collectively referred to as an element isolation region 57.
  • the common anode 61 is element-isolated by the semiconductor substrate 51 and the element isolation region 57. In other words, element isolation is performed using a PN junction.
  • a plurality of force swords 62 are formed on the low concentration layer 54 of the common anode 61.
  • the force sword 62 is formed of, for example, an N-type layer. Therefore, two photodiodes 60 (60a) and 60 (60b) force are formed. In the drawing, three or four or more force swords 62 (not shown) in which two force swords 62a and 62b are formed on one common anode 61 can be formed.
  • the photodiode 60 can be completely electrically isolated from the semiconductor substrate 51.
  • the output from the common anode 61 can be taken out as an addition signal of each photodiode in which the force sword 62 is divided.
  • the photodiode 60 receives reflected light (not shown) from an optical disk (not shown), and the output from the common anode 61 can be directly handled as an RF signal without going through an addition amplifier. it can.
  • the output from the force sword 62 divided into a plurality of signals can be subjected to signal processing such as focusing and tracking.
  • the force sword 62 of the plurality of photodiodes 60 and the common anode 61 are formed electrically independently from the semiconductor substrate. These outputs can be handled directly as RF signals without going through a summing amplifier. In other words, the RF signal can be extracted without adding the outputs from the individual photodiodes 60 by treating the output from the common anode 61 equivalent to the added output of the divided photodiodes 60. . Further, the outputs from the plurality of force swords 62 can be used as signals for performing operations such as focusing and tracking. This has the advantage of reducing noise and improving the SZN ratio. Further, since it is not necessary to form a conventional addition amplifier, the apparatus configuration can be simplified. Furthermore, since the photodiode 60 can be configured independently of the semiconductor substrate 51, a structure without crosstalk between the photodiodes 60 can be provided.
  • FIG. 5 shows an example of a modification of the semiconductor device described with reference to FIG.
  • a P + type element isolation region lower layer 72 is formed on a P ⁇ type semiconductor substrate 71 and an N + type buried region 73 is formed.
  • the semiconductor substrate 71 for example, a P-type silicon substrate is used.
  • the lower layer 72 of the element isolation region is formed of a P + type impurity layer.
  • the buried layer 73 is formed of a P + type impurity layer, and the impurity concentration is set to 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • an N-type low concentration layer 74 having a lower concentration than the buried layer 73 is formed on the semiconductor substrate 71, and the impurity concentration is 1 ⁇ 10 u / cm 3 or more and 1 ⁇ 10 16 Zcm 3 or less.
  • the buried region 73 is preferably formed to be longer than the light absorption length. As a result, a structure with high light receiving sensitivity of a photodiode, which will be described later, can be realized.
  • the thickness of the buried region 73 is shorter than the light absorption length, a parasitic photodiode is generated between the buried region 73 and the semiconductor substrate 71, and the output is detected. It is also possible to actively utilize the output of this parasitic photodiode.
  • the impurity concentration of the buried region 73 which is a high concentration region
  • the electrical resistance of the buried region 73 can be lowered
  • the frequency characteristics can be improved
  • the low concentration layer 74 can be improved.
  • an anode extraction region 75 reaching the buried region 73 is formed.
  • the anode extraction region 75 is formed of an N + impurity layer having a concentration higher than that of the low concentration layer 73, for example.
  • the concentration of the N + impurity layer can be set to be equal to that of the buried region 73, for example.
  • the embedded region 73, the low concentration layer 74, and the anode extraction region 75 constitute a common force sword 81.
  • an upper layer 76 of the element isolation region reaching the lower layer 72 of the element isolation region is formed.
  • the upper layer 76 of the element isolation region is formed of, for example, a high concentration P + type impurity layer equivalent to the lower layer 72 of the element isolation region.
  • the lower layer 72 and the upper layer 76 of the element isolation region are collectively referred to as an element isolation region 77.
  • the common force sword 81 is element-isolated by the semiconductor substrate 71 and the element isolation region 77. In other words, element isolation is performed using a PN junction.
  • a plurality of anodes 82 are formed on the low concentration layer 74 of the common force sword 81.
  • the anode 82 is formed of, for example, a P-type layer. Therefore, two photodiodes 80 (80a) and 80 (80b) force are formed. In the figure, three or four or more anodes 82 (not shown) in which two anodes 82a and 82b are formed on one common force sword 81 can be formed.
  • the photodiode 80 can be completely electrically isolated from the semiconductor substrate 71.
  • the output from the common force sword 81 can be taken out as an addition signal of each photodiode in which the anode 82 is divided.
  • the photodiode 80 receives reflected light (not shown) from an optical disc (not shown), and the output from the common force sword 81 is directly handled as an RF signal without going through an addition amplifier. Can do.
  • the output from the anode 82 divided into a plurality of signals can be subjected to signal processing such as focusing and tracking.
  • the anode 82 and the common cathode 81 of the plurality of photodiodes 80 are formed electrically independently from the semiconductor substrate.
  • the output can be handled directly as an RF signal without going through a summing amplifier. Ie common
  • the RF signal can be extracted without adding the outputs from the individual photodiodes 80.
  • the outputs from the plurality of divided anodes 82 can be used as signals for performing operations such as focus tracking. This has the advantage of reducing noise and improving the SZN ratio and frequency band.
  • the device configuration can be simplified. Furthermore, since the photodiode 80 can be configured independently of the semiconductor substrate 71, a structure without crosstalk between the photodiodes 80 can be provided.
  • FIGS. 6 to 10 show an example of a method for manufacturing a semiconductor device having a plurality of photodiodes, which is electrically isolated from a semiconductor substrate using an SOI (Silicon on Insulator) substrate. That is, the method for manufacturing the semiconductor device described with reference to FIG. 1 is shown.
  • SOI Silicon on Insulator
  • an SOI (Silicon on insulator) substrate in which an insulating layer 12 is formed on a semiconductor substrate 11 and a silicon layer is formed on the insulating layer 12 is used.
  • the insulating layer 12 is made of an oxide silicon film.
  • P-type impurities are introduced into the silicon layer.
  • This silicon layer is referred to as a P + type buried layer 13.
  • the buried layer 13 is formed, for example, by introducing a P-type impurity so as to have an impurity concentration of 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • P-type impurities are introduced so as to have a concentration of about l X 10 19 Zcm 3 .
  • a low concentration layer 14 composed of a P-type silicon layer having a lower concentration than the buried layer 13 is formed on the buried layer 13 by an epitaxial growth method.
  • the impurity concentration of the low concentration layer 14 is set to 1 ⁇ 10 u Zcm 3 or more and 1 ⁇ 10 16 Zcm 3 or less.
  • the low-concentration layer 14 is formed by depositing a P-type epitaxial layer to a thickness of 20 ⁇ m so as to be about 700 ⁇ ′cm.
  • the impurity concentration of the low concentration layer 14 can be lowered, the depletion layer can be easily expanded, the frequency characteristics can be improved by the capacitance reduction, and the light receiving sensitivity can be improved. Furthermore, the buried layer 13 The thickness of the semiconductor region composed of the low-concentration layer 14 is preferably longer than the light absorption length. As a result, a structure having a high light receiving sensitivity of a photodiode, which will be described later, can be realized.
  • an anode extraction region 15 reaching the buried layer 13 is formed in the low concentration layer 14.
  • the anode extraction region 15 is formed of, for example, a P impurity layer having a concentration higher than that of the low concentration layer 13.
  • the concentration of the anode extraction region 15 can be set to be equivalent to that of the buried layer 13, for example.
  • the buried layer 13, the low concentration layer 14, and the anode extraction region 15 constitute a common anode 21.
  • an element isolation region 16 that reaches the insulating layer 12 is formed in the low concentration layer 14 and the buried layer 13.
  • the element isolation region 16 is formed by, for example, a deep trench isolation layer (Deep Trench Isolation).
  • a deep trench isolation layer (Deep Trench Isolation)
  • a trench reaching the insulating layer 12 is formed in the low concentration layer 14 and the buried layer 13 by etching using the etching mask.
  • an insulating layer is formed inside the trench, and an excessive insulating layer formed on the low concentration layer 14 is removed by, for example, mechanical mechanical polishing (CMP).
  • CMP mechanical mechanical polishing
  • the insulating layer for example, silicon oxide can be used.
  • the inner wall of the trench is oxidized to form an oxide layer, and then the trench is filled with non-doped polysilicon or oxide silicon.
  • the element isolation region 16 is formed by the insulating layer formed inside the trench. Therefore, the common anode 21 is electrically separated from the adjacent common anode 21 and the semiconductor substrate 11 by the element isolation region 16 and the insulating layer 12.
  • a plurality of force swords 22 are formed on the low concentration layer 14 of the common anode 21.
  • This force sword 22 is formed, for example, by introducing an N-type impurity into the upper layer of the low concentration layer 14 by ion implantation to form an N-type layer.
  • an ion implantation mask having an opening on the region where the force sword 22 is formed is formed on the low concentration layer 14 in advance, and this ion implantation mask is removed after the ion implantation.
  • four or more force swords 22 can be formed.
  • a plurality of photodiodes 20 (20a) and 20 (20b) are provided by forming a plurality of force swords 22 on a common anode 21, and the semiconductor device 1 described with reference to FIG. It is formed.
  • the buried layer 13 and the low concentration layer 14 that become the common anode 21 are formed on the insulating layer 12 formed on the semiconductor substrate 11 to reach the insulating layer 12.
  • the isolation region 16 is formed so that the insulating layer 12 and the isolation region 16 form the buried layer 13 and the low concentration layer 14 that are electrically independent from the semiconductor substrate 11, and the buried layer 13 and A common anode 21 is formed in the low concentration layer 14.
  • the output from the divided force sword 22 is, for example, a focus' It can be used as a signal for performing an operation such as tracking, and the output from the common anode 21 can be directly used as an RF signal without going through a summing amplifier.
  • the semiconductor device 1 having a photodiode that can reduce noise and improve the SZN ratio and the frequency band.
  • the device configuration can be simplified.
  • the photodiode 20 can be manufactured in a structure independent of the semiconductor substrate 11, a structure free from crosstalk between the photodiodes separated by the element isolation region 16 or the like can be provided.
  • FIGS. 11 to 15 show an example of a method for manufacturing a semiconductor device having a plurality of photodiodes, which is electrically isolated from a semiconductor substrate using an SOI (Silicon on Insulator) substrate. That is, the manufacturing method of the semiconductor device described with reference to FIG. 3 is shown.
  • SOI Silicon on Insulator
  • an SOI (Silicon on insulator) substrate in which an insulating layer 32 is formed on a semiconductor substrate 31 and a silicon layer is formed on the insulating layer 32 is used.
  • the insulating layer 32 is made of an oxide silicon film.
  • the silicon layer is doped with N-type impurities.
  • This silicon layer is used as an N + type buried layer 33.
  • This buried layer 33 is, for example, 1 X 10 16
  • an N-type impurity is introduced so as to have an impurity concentration of not less than / cm 3 and not more than 1 ⁇ 10 22 / cm 3 .
  • an N-type impurity is introduced so that the concentration is about 1 ⁇ 10 19 Zcm 3 .
  • a low concentration layer 34 made of an N-type silicon layer having a lower concentration than the buried layer 33 is formed on the buried layer 33 by the epitaxial growth method.
  • the impurity concentration of the low concentration layer 34 is set to 1 ⁇ 10 u / C m 3 or more and 1 ⁇ 10 16 / cm 3 or less.
  • the low-concentration layer 34 is formed by depositing an N-type epitaxial layer to a thickness of 20 ⁇ m so as to be about 700 ⁇ ′cm.
  • the impurity concentration of the low concentration layer 34 can be lowered, the depletion layer can be easily expanded, the frequency characteristics can be improved and the light receiving sensitivity can be improved by reducing the capacitance.
  • the thickness of the semiconductor region composed of the buried layer 33 and the low concentration layer 34 is preferably longer than the light absorption length. As a result, a structure having a high light receiving sensitivity of a photodiode, which will be described later, can be realized.
  • a force sword take-out region 35 reaching the buried layer 33 is formed in the low concentration layer 34.
  • the force sword extraction region 35 is formed of, for example, an N impurity layer having a concentration higher than that of the low concentration layer 33.
  • the concentration of the force sword take-out region 35 can be set to be equivalent to that of the buried layer 33, for example.
  • the embedded layer 33, the low concentration layer 34, and the force sword take-out region 35 constitute a common force sword 41.
  • an element isolation region 36 that reaches the insulating layer 32 is formed in the low concentration layer 34 and the buried layer 33.
  • the element isolation region 36 is formed by, for example, a deep trench isolation layer (Deep Trench Isolation).
  • a deep trench isolation layer (Deep Trench Isolation)
  • a trench reaching the insulating layer 32 is formed in the low concentration layer 34 and the buried layer 33 by etching using the etching mask.
  • an insulating layer is formed inside the trench, and an excessive insulating layer formed on the low concentration layer 34 is removed by, for example, chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the insulating layer for example, silicon oxide can be used.
  • the inner wall of the trench is oxidized to form an oxide layer.
  • the trench may be filled with non-doped polysilicon or oxide silicon.
  • the element isolation region 36 is formed by the insulating layer formed inside the trench. Therefore, the common force sword 41 is electrically separated from the adjacent common force sword 41 and the semiconductor substrate 31 by the element isolation region 36 and the insulating layer 32.
  • a plurality of anodes 42 are formed on the low concentration layer 34 of the common force sword 41.
  • the anode 42 is formed by introducing a P-type impurity into the upper layer of the low concentration layer 34 by, for example, an ion implantation method to form a P-type layer.
  • an ion implantation mask having an opening on the region where the anode 42 is formed is formed on the low concentration layer 34 in advance, and this ion implantation mask is removed after the ion implantation.
  • a plurality of photodiodes 40a and 40b are provided by forming a plurality of anodes 42 on a common force sword 41 in this way, and the semiconductor device 2 described with reference to FIG. 3 is formed. Is done.
  • a buried layer 33 and a low concentration layer 34 to be a common force sword 41 are formed on an insulating layer 32 formed on a semiconductor substrate 31, and Therefore, the insulating layer 32 and the element isolation region 36 form the buried layer 33 and the low-concentration layer 34 that are electrically independent of the semiconductor substrate 31, and the buried layer 33.
  • a common force sword 41 is formed in the low concentration layer 34. Therefore, since the anode 42 of a plurality of photodiodes and the common force sword 41 can be formed electrically independently from the semiconductor substrate 31, the output from the divided anode 42 is, for example, focus' tracking The output from the common cathode 41 can be directly used as an RF signal without going through the addition amplifier.
  • the semiconductor device 2 having a photodiode that can reduce noise and improve the SZN ratio.
  • the apparatus configuration can be simplified.
  • the photodiode 40 can be manufactured in a structure independent of the semiconductor substrate 31, the element isolation region can be obtained. A structure without crosstalk between the photodiodes separated by the region 36 or the like can be provided.
  • FIGS. 16 to 19 show an example of a method for manufacturing a semiconductor device having a plurality of photodiodes, which is electrically isolated from a semiconductor substrate using a PN junction. That is, the method for manufacturing the semiconductor device described with reference to FIG. 4 is shown.
  • a lower layer 52 of an element isolation region having an N + type impurity layer force is formed on an N ⁇ type semiconductor substrate 51.
  • the lower layer 52 of the element isolation region can be formed by, for example, an ion implantation method.
  • a P + type buried region 53 is formed in the upper part of the semiconductor substrate 51 partitioned and separated by the lower layer 52 of the element isolation region.
  • the P + type buried region 53 can be formed by an impurity doping technique such as an impurity diffusion method or an ion implantation method.
  • the impurity concentration of the buried region 53 is set to 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • a P-type low concentration layer 54 having a lower concentration than the buried region 53 is formed on the semiconductor substrate 51.
  • the low-concentration layer 54 is formed by, for example, epitaxy, and the impurity concentration is set to 1 ⁇ 10 u Zcm 3 or more and 1 ⁇ 10 16 / cm 3 or less.
  • the buried region 53 is preferably formed to be longer than the light absorption length.
  • the impurities in the lower layer 52 and the buried region 53 of the previously formed element isolation region diffuse into the low concentration layer 54 and are extended into the low concentration layer 54.
  • an anode extraction region 55 reaching the buried region 53 is formed in the low concentration layer 54.
  • the anode extraction region 55 can be formed by, for example, ion implantation, and is a P-type impurity layer having a higher concentration than the low concentration layer 54. This The concentration of the P-type impurity layer can be set to be equal to that of the buried region 53, for example.
  • a common anode 61 including the buried region 53, the low concentration layer 54, and the anode extraction region 55 is formed.
  • the upper layer 56 of the element isolation region reaching the lower layer 52 of the element isolation region is formed in the low concentration layer 54.
  • the upper layer 56 of the element isolation region can be formed by, for example, ion implantation, and is formed of a high concentration N + type impurity layer similar to the lower layer 52 of the element isolation region. In this way, a PN junction type element isolation region 57 composed of the lower layer 52 and the upper layer 56 of the element isolation region is formed.
  • the common anode 61 is element-isolated by using the PN junction by the semiconductor substrate 51 and the element isolation region 57.
  • a plurality of force swords 62 are formed on the low concentration layer 54 of the common anode 61.
  • the force sword 62 is formed, for example, by introducing an N-type impurity into the upper layer of the low-concentration layer 54 by ion implantation to form an N-type layer.
  • an ion implantation mask having an opening on the region where the force sword 62 is formed is formed on the low concentration layer 54 in advance, and this ion implantation mask is removed after the ion implantation.
  • a plurality of photodiodes 60 (60a) and 60 (60b) are provided by forming a plurality of force swords 62 on a common anode 61.
  • the semiconductor device 3 described with reference to FIG. It is formed.
  • the photodiode 60 can be completely electrically isolated from the semiconductor substrate 51.
  • the output from the common anode 61 can be taken out as an addition signal of each photodiode in which the force sword 62 is divided.
  • the PN junction type element isolation region 57 reaching the semiconductor substrate 51 is formed in the low concentration layer 54 formed on the semiconductor substrate 51, a plurality of photodiodes 60 are formed.
  • the force sword 62 and the common anode 61 are formed independently of the semiconductor substrate. For this reason, the output from the divided force sword 62 is used as a signal for performing an operation such as focus' tracking, and the output from the common anode 61 is added. It can be configured such that it can be used directly as an RF signal without going through an amplifier. As a result, it is possible to manufacture the semiconductor device 3 having the photodiode that can reduce noise and improve the SZN ratio.
  • the apparatus configuration can be simplified. Furthermore, since the photodiode 60 can be manufactured in a structure independent of the semiconductor substrate 51, a structure without crosstalk between the photodiodes separated by the element isolation region 57 and the like can be provided.
  • FIGS. 20 to 23 show an example of a method for manufacturing a semiconductor device having a plurality of photodiodes, which is electrically isolated from a semiconductor substrate using a PN junction. That is, the manufacturing method of the semiconductor device described with reference to FIG.
  • a lower layer 72 of an element isolation region having a P + type impurity layer force is formed on a P ⁇ type semiconductor substrate 71.
  • the lower layer 72 of the element isolation region can be formed by, for example, an ion implantation method.
  • an N + type buried region 73 is formed in the upper part of the semiconductor substrate 71 partitioned and separated by the lower layer 72 of the element isolation region.
  • the N + type buried region 73 can be formed by an impurity doping technique such as an impurity diffusion method or an ion implantation method.
  • the impurity concentration of the buried region 73 is set to 1 ⁇ 10 16 / cm 3 or more and 1 ⁇ 10 22 / cm 3 or less.
  • an N ⁇ type low concentration layer 74 having a lower concentration than the buried region 73 is formed on the semiconductor substrate 71.
  • the low concentration layer 74 is formed by, for example, an epitaxial growth method, and the impurity concentration thereof is set to 1 ⁇ 10 u Zcm 3 or more and 1 ⁇ 10 16 / cm 3 or less.
  • the buried region 73 is preferably formed to be longer than the light absorption length.
  • a cathode extraction region 75 reaching the buried region 73 is formed in the low concentration layer 74.
  • the force sword extraction region 75 can be formed by, for example, an ion implantation method, and is an N-type impurity layer having a concentration higher than that of the low concentration layer 73.
  • the concentration of the N-type impurity layer can be set to be equal to that of the buried region 73, for example.
  • a common force sword 81 including the buried region 73, the low concentration layer 74, and the force sword take-out region 75 is formed.
  • the upper layer 76 of the element isolation region reaching the lower layer 72 of the element isolation region is formed in the low concentration layer 74.
  • the upper layer 76 of the element isolation region can be formed, for example, by ion implantation, and is formed of a high concentration P + type impurity layer equivalent to the lower layer 72 of the element isolation region. In this way, a PN junction type element isolation region 77 composed of the lower layer 72 and the upper layer 76 of the element isolation region is formed.
  • the common force sword 81 is isolated from the semiconductor substrate 71 and the element isolation region 77 by using a PN junction.
  • a plurality of anodes 82 are formed on the low concentration layer 74 of the common force sword 81.
  • the anode 82 is formed by introducing an N-type impurity into the upper layer of the low concentration layer 74 by, for example, an ion implantation method to form a P-type layer.
  • an ion implantation mask having an opening over the region for forming the anode 82 is formed on the low concentration layer 74 in advance, and this ion implantation mask is removed after the ion implantation.
  • the photodiode 80 can be completely electrically isolated from the semiconductor substrate 71, and the photodiode 80 The output from the common force sword 81 can be taken out as an addition signal of each photodiode in which the anode 82 is divided.
  • the PN junction type element isolation region 77 reaching the semiconductor substrate 71 is formed in the low concentration layer 74 formed on the semiconductor substrate 71, a plurality of photodiodes 80 are formed.
  • the anode 82 and the common force sword 81 are formed independently of the semiconductor substrate.
  • the output from the divided anode 82 can be used as a signal for performing operations such as focus and tracking, and the output from the common force sword 81 can be directly used as an RF signal without going through an addition amplifier. It can be set as the structure which can be performed. As a result, it is possible to manufacture the semiconductor device 4 having a photodiode that can reduce noise and improve the SZN ratio. In addition, since it is not necessary to form a conventional summing amplifier, the apparatus configuration can be simplified. Furthermore, since the photodiode 80 can be manufactured in a structure independent of the semiconductor substrate 71, it is possible to provide a structure without crosstalk between the photodiodes separated by the element isolation region 77 or the like.
  • a bipolar element (not shown) or CM OS mixedly mounted on the same semiconductor substrate 11, 31, 51, 71 together with the photodiodes 20, 40, 60, 80
  • An element (not shown) can be formed according to a general manufacturing method. The element formation may be performed after the photodiodes 20, 40, 60, 80 are formed. Also, when the elements are formed, the elements can be shared with the components of the photodiodes 20, 40, 60, 80. Components can also be made during the process of photodiodes 20, 40, 60, 80.
  • the force swords and anodes of a plurality of photodiodes are formed electrically independently from the semiconductor substrate, so that the output from the divided force swords (or anodes) Can be used as a signal to perform operations such as focus and tracking, and the output of a common anode (force sword) force can be used directly as an RF signal without going through an adder amplifier, reducing noise and reducing the SZN ratio.
  • the photodiode can be configured independently of the substrate, a structure without crosstalk between the photodiodes can be provided.
  • the force swords and anodes of a plurality of photodiodes can be formed electrically independently from the semiconductor substrate.
  • Is used as a signal for operations such as focus 'tracking' and the output of the common anode (force sword) force is directly RF without going through the summing amplifier. It can be set as the structure which can be used as a signal.
  • a semiconductor device having a photodiode capable of reducing noise and improving the SZN ratio can be manufactured.
  • the photodiode can be manufactured in a structure electrically independent from the substrate, a structure without crosstalk between the photodiodes can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Element Separation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 半導体基板(11)上に複数のフォトダイオード(20)を有する半導体装置(1)であって、複数のフォトダイオード(20(20a、20b))のカソード(22)と共通のアノード(21)とが半導体基板(11)と電気的に独立して形成されていて、複数のフォトダイオード(20)は共通のアノード(21)と複数の分離されたカソード(22)を有し、共通のアノード(21)からの出力を複数に分割されたフォトダイオード(20)の加算出力と等価に扱う、または複数のフォトダイオードは共通のカソードと複数の分離されたアノードを有し、共通のカソードからの出力を複数に分割されたフォトダイオードの加算出力と等価に扱うものである。フォトダイオードのアノードとカソードとを基板から電気的に完全分離することで、ノイズ特性の低減、クロストークの低減を可能とする。

Description

明 細 書
半導体装置およびその製造方法
技術分野
[0001] 本発明は、半導体装置及びその製造方法に係り、フォトディテクター素子としてのフ オトダイオードと、ノ ィポーラ集積回路または MOS集積回路等の半導体集積回路と が同一半導体基板上に形成された、いわゆるフォトディテクター集積回路を有する半 導体装置およびその製造方法に関する。
背景技術
[0002] フォトディテクター集積回路 (フォトディテクター IC)を有する半導体装置は、フォト ディテクター素子としてのフォトダイオードが光を電流に変え、 IV (電流→電圧)変換 、マトリックス回路等の信号処理を行う半導体装置である。
[0003] 以下、従来のフォトディテクター IC半導体装置を、図 24を用いて説明する。
図 24に示すように、フォトダイオード 201〜204は、 P型シリコン基板 210と P型埋め 込み層 211と、前記 P型シリコン基板 210と P型埋め込み層 211上に形成された低濃 度の p型ェピタキシャル層 212によりアノードを形成し、 N型力ソード領域 214により、 複数の力ソード(図 24では 2個)が形成されている(例えば、「特開平 11— 266033号 公報」又は「特開 2001— 60713号公報」参照。;)。またアノードの取り出しは、 P型ァ ノード取り出し領域 213を用いて行っている。また、アノード取り出し領域 213の外部 は、信号処理を行う半導体集積回路を構成する素子 (図示せず)が設けられている。
[0004] また、図 25に示すように、従来のフォトダイオード集積回路の回路機能は、個々の フォトダイオード 201〜204からの出力を電流 ·電圧(IV)変換したのち、演算すること によって、光ディスクのフォーカス 'トラッキング信号を引き出し、力!]算アンプ Aaddにて 加算した出力を、光ディスクのデータ信号である RF (WRF、 RRF)信号として取り出 している。
発明の開示
[0005] 解決しょうとする問題点は、従来のフォトダイオード集積回路の回路機能が、個々 のフォトダイオード力もの出力を電流 ·電圧 (IV)変換したのち、演算することによって 、光ディスクのフォーカス 'トラッキング信号を引き出し、加算した出力を、光ディスクの データ信号である RF信号として取り出しているため、 RF信号は、個々のフォトダイォ ードからの出力を電流 ·電圧変換してから加算、あるいは加算してカゝら電流 ·電圧変 換するという行為によって、ノイズが増大し、 SZN比が厳しくなるという点である。また 、 P型基板は、個々のフォトダイオードの共通アノードとなっている力 P型基板から R F信号を取り出そうとしても、 P型基板が信号処理を行うバイポーラデバイスまたは C MOSデバイス力 構成される回路の GNDとして機能しているため、フォトダイオード の共通アノード出力を単独で取り出すことが困難な点である。また、前記図 24に示し た従来構造のフォトダイオードでは、フォトダイオード 201, 202と、フォトダイオード 20 3,204のアノードが共通であるためにフォトダイオード 201, 202と、フォトダイオード 2 03, 204の間のクロストークが生じる点である。これは、図 26に示すように、光スポット 力 S3本当たるフォトダイオードパターンの事例では、 4分割されたフォトダイオード 301 , 302, 303の間にクロストークが生じることが問題である。
[0006] 本発明は、複数のフォトダイオードの力ソードとアノードとを半導体基板と電気的に 独立して形成し、複数のフォトダイオードが共通のアノード (力ソード)を有するとともに 複数の分離された力ソード (アノード)を有し、この共通のアノード (力ソード)からの出 力を複数に分割されたフォトダイオードの加算出力と等価に扱うことで、 RF信号を個 々のフォトダイオードからの出力を加算することなく取り出せるようにすることを課題と する。またクロストークを低減することを課題とする。
[0007] 本発明の半導体装置は、半導体基板上に複数のフォトダイオードを有する半導体 装置であって、前記複数のフォトダイオードの力ソードとアノードとが前記半導体基板 と電気的に独立して形成されていて、前記複数のフォトダイオードは共通のアノード を有するとともに複数の分離された力ソードを有し、前記共通のアノードからの出力を 複数に分割されたフォトダイオードの加算出力と等価に扱う、もしくは、前記複数のフ オトダイオードは共通の力ソードを有するとともに複数の分離されたアノードを有し、前 記共通の力ソードからの出力を複数に分割されたフォトダイオードの加算出力と等価 に扱うことを特徴とする。
[0008] 上記各半導体装置では、複数のフォトダイオードの力ソードとアノードとが半導体基 板と電気的に独立して形成されているので、共通のアノード (または力ソード)から RF 信号を取り出せる。また、この共通のアノード (力ソード)からの出力を複数に分割され たフォトダイオードの加算出力と等価に扱うことで、 RF信号を個々のフォトダイオード 力もの出力を加算することなく取り出せるようになって!/、る。
[0009] 本発明の半導体装置の第 1の製造方法は、半導体基板に形成された絶縁層上に p型の埋め込み層を形成する工程と、前記埋め込み層上に前記埋め込み層よりも低 濃度の P型の低濃度層を形成する工程と、前記低濃度層および前記埋め込み層を 分離して独立した共通のアノード領域を区画するもので、前記絶縁層に達する素子 分離領域を形成する工程と、前記低濃度層にフォトダイオードの力ソードとなる N型 領域を形成する工程とを備えたことを特徴とする。
[0010] 本発明の半導体装置の第 2の製造方法は、半導体基板に形成された絶縁層上に N型の埋め込み層を形成する工程と、前記埋め込み層上に前記埋め込み層よりも低 濃度の N型の低濃度層を形成する工程と、前記低濃度層および前記埋め込み層を 分離して独立した共通の力ソード領域を区画するもので、前記絶縁層に達する素子 分離領域を形成する工程と、前記低濃度層にフォトダイオードのアノードとなる P型領 域を形成する工程とを備えたことを特徴とする。
[0011] 上記半導体装置の第 1、第 2の製造方法では、半導体基板上に形成した絶縁層上 に共通のアノードもしくは共通の力ソードとなる埋め込み層と低濃度層とを形成し、絶 縁層に達するように素子分離領域を形成するので、絶縁層および素子分離領域によ つて半導体基板と電気的に独立させた埋め込み層および低濃度層が形成され、そ の埋め込み層および低濃度層で共通のアノードもしくは共通の力ソードが形成される
[0012] 本発明の半導体装置の第 3の製造方法は、 N型の半導体基板に P型の埋め込み 層を形成する工程と、前記半導体基板に PN接合型の素子分離領域となるもので N 型の素子分離層の下層を形成する工程と、前記埋め込み層および前記素子分離領 域の下層を含む前記半導体基板上に前記埋め込み層よりも低濃度の P型の低濃度 層を形成する工程と、前記低濃度層に前記素子分離層の下層に達する N型の素子 分離層の上層を形成して、前記素子分離層の下層および上層および半導体基板に よって独立した共通のアノード領域を区画する工程、前記低濃度層にフォトダイォー ドのカソードとなる N型領域を形成する工程とを備えたことを特徴とする。
[0013] 本発明の半導体装置の第 4の製造方法は、 P型の半導体基板に N型の埋め込み 層を形成する工程と、前記半導体基板に PN接合型の素子分離領域となるもので P 型の素子分離層の下層を形成する工程と、前記埋め込み層および前記素子分離領 域の下層を含む前記半導体基板上に前記埋め込み層よりも低濃度の N型の低濃度 層を形成する工程と、前記低濃度層に前記素子分離層の下層に達する P型の素子 分離層の上層を形成して、前記素子分離層の下層および上層および半導体基板に よって独立した共通の力ソードを区画する工程と、前記低濃度層にフォトダイオード のアノードとなる P型領域を形成する工程とを備えたことを特徴とする。
[0014] 上記半導体装置の第 3、第 4の製造方法では、半導体基板に、半導体基板とは逆 導電型の埋め込み層を形成し、また半導体基板と同一導電型の素子分離領域の下 層を形成し、さらに半導体基板上に半導体基板とは逆導電型の低濃度層を形成し、 その低濃度層に素子分離領域の下層に達するように半導体基板と同一導電型の素 子分離領域の上層を形成することから、 PN接合を利用した素子分離により半導体基 板と電気的に独立させた埋め込み層および低濃度層が形成され、その埋め込み層 および低濃度層で共通のアノードもしくは共通の力ソードが形成される。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の半導体装置に係る一実施の形態の第 1例を示し概略構成断 面図である。
[図 2]図 2は、本発明の半導体装置に係る一実施の形態の第 1例を示し等価回路図 である。
[図 3]図 3は、本発明の半導体装置に係る一実施の形態の第 1例を示し概略構成断 面図である。
[図 4]図 4は、本発明の半導体装置に係る一実施の形態の第 1例を示し概略構成断 面図である。
[図 5]図 5は、本発明の半導体装置に係る一実施の形態の第 1例を示し概略構成断 面図である。 [図 6]図 6は、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例を 示した製造工程断面図である。
[図 7]図 7は、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例を 示した製造工程断面図である。
[図 8]図 8は、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例を 示した製造工程断面図である。
[図 9]図 9は、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例を 示した製造工程断面図である。
[図 10]図 10は、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 11]図 11は、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 12]図 12は、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 13]図 13は、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 14]図 14は、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 15]図 15は、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 16]図 16は、本発明の半導体装置の第 3の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 17]図 17は、本発明の半導体装置の第 3の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 18]図 18は、本発明の半導体装置の第 3の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 19]図 19は、本発明の半導体装置の第 3の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。 [図 20]図 20は、本発明の半導体装置の第 4の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 21]図 21は、本発明の半導体装置の第 4の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 22]図 22は、本発明の半導体装置の第 4の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 23]図 23は、本発明の半導体装置の第 4の製造方法に係る一実施の形態の一例 を示した製造工程断面図である。
[図 24]図 24は、従来のフォトディテクター IC半導体装置の一例を示した概略構成断 面図である。
[図 25]図 25は、従来のフォトダイオード集積回路の一例を示した回路図である。
[図 26]図 26は、クロストークを説明するためのフォトダイオードのレイアウト図である。 発明を実施するための最良の形態
[0016] 本発明の半導体装置に係る一実施の形態の第 1例を、図 1の概略構成断面図によ つて説明する。図 1では、 SOI (Silicon on insulator)基板を用いて半導体基板との電 気的分離を行ったもので、複数のフォトダイオードを有する半導体装置の一例を示す
[0017] 図 1に示すように、半導体基板 11上に絶縁層 12が形成され、その絶縁層 12上に シリコン層が形成された SOI (Silicon on insulator)基板を用いる。上記絶縁層 12には 酸ィ匕シリコン膜が用いられて 、る。上記シリコン層は P+型不純物が導入されて 、る。 このシリコン層を P+型の埋め込み層 13とする。この埋め込み層 13は、例えば 1 X 1016 /cm3以上 1 X 1022/cm3以下に不純物濃度が設定されている。上記埋め込み層 1 3上には埋め込み層 13よりも低濃度の P—型の低濃度層 14が形成されて 、る。この低 濃度層 14は例えばェピタキシャル成長により形成された P—シリコン層で形成されて ヽ て、その不純物濃度は 1 X 10u/cm3以上 1 X 1016Zcm3以下に設定されている。上 記埋め込み層 13および低濃度層 14からなる半導体領域の厚さは、光の吸収長より も長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受光 感度の高 ヽ構造を実現できる。 [0018] このように、高濃度領域である埋め込み層 13の不純物濃度を設定することによって 、埋め込み層 13の電気抵抗を低くし、周波数特性を伸ばすことができ、また低濃度 層 14の不純物濃度を設定することによって、不純物濃度低くし、空乏層を広がりや すくし、容量低減による周波数特性向上と、受光感度の向上を図ることができる。
[0019] 上記低濃度層 14には上記埋め込み層 13に達するアノード取り出し領域 15が形成 されている。このアノード取り出し領域 15は、例えば低濃度層 13よりも高濃度の P+不 純物層で形成されている。この P+不純物層の濃度は、例えば上記埋め込み層 13と 同等に設定することができる。上記埋め込み層 13、低濃度層 14、アノード取り出し領 域 15によって共通のアノード 21が構成されている。この共通のアノード 21は、上記 低濃度層 14、埋め込み層 13に上記絶縁層 12に達する素子分離領域 16によって素 子分離されている。この素子分離領域 16は、例えば深いトレンチ絶縁層(Deep Tren ch Isolation)によって形成されている。したがって、一つに共通のアノード 21は、素子 分離領域 16および絶縁層 12によって隣接する共通のアノード 21および上記半導体 基板 11と電気的に分離されて!ヽる。
[0020] 上記共通のアノード 21の低濃度層 14の上部には複数の力ソード 22が形成されて いる。この力ソード 22は、例えば N型層で形成されている。したがって、二つのフォト ダイオード 20 (20a)、 20 (20b)力形成されている。なお、図面では、一つの共通の アノード 21に二つの力ソード 22a、 22bを形成した力 三つもしくは四つもしくはそれ 以上の力ソード 22 (図示せず)を形成することもできる。
[0021] このように、 SOI基板を用いて、酸ィ匕シリコン膜からなる絶縁層 12に到達する De印 Trench Isolation構造の素子分離領域 16で素子分離することにより、フォトダイオード 20を半導体基板 11から完全に絶縁分離でき、フォトダイオード 20の共通のアノード 21からの出力は、力ソード 22が分割された個々のフォトダイオードの加算信号として 取り出すことが可能となる。
[0022] 例えば、フォトダイオード 20は、光ディスク(図示せず)からの反射光(図示せず)を 受け、共通のアノード 21からの出力は加算アンプを経ずに直接 RF信号として扱うこ とができる。また複数に分割された力ソード 22からの出力は、フォーカス 'トラッキング 等の信号処理を行うことができる。 [0023] 本発明の半導体装置 1は、複数のフォトダイオード 20の力ソード 22と共通のァノー ド 21とが半導体基板と電気的に独立して形成されているため、例えば図 2の等価回 路に示すように、共通のアノード 21からの出力は、加算アンプを経ずに直接 RF信号 として扱うことができる。すなわち共通のアノード 21からの出力を複数に分割されたフ オトダイオード 20の加算出力と等価に扱うことで、個々のフォトダイオード 20からの出 力を加算することなく RF信号を取り出せるようになつている。また、複数の分割された 力ソード 22からの出力はフォーカス ·トラッキング等の演算を行うための信号として用 いることができる。これによつて、ノイズを低減し、 S/N比、および周波数帯域を向上 させることができるという利点がある。また、従来の加算アンプを形成する必要がなく なるので、装置構成が簡単ィ匕できる。さらに、フォトダイオード 20を半導体基板 11と 独立した構造に構成できるので、フォトダイオード 20間のクロストークのな 、構造を提 供できる。
[0024] 次に、本発明の半導体装置に係る一実施の形態の第 2例を、図 3の概略構成断面 図によって説明する。図 3では、前記図 1によって説明した半導体装置の変形例の一 例を示す。
[0025] 図 3に示すように、半導体基板 31上に絶縁層 32が形成され、その絶縁層 32上に シリコン層が形成された SOI (Silicon on insulator)基板を用いる。上記絶縁層 32には 酸ィ匕シリコン膜が用いられて 、る。上記シリコン層は N+型不純物が導入されて 、る。 このシリコン層を N+型の埋め込み層 33とする。この埋め込み層 33は、例えば 1 X 101 6/cm3以上 1 X 1022/cm3以下に不純物濃度が設定されている。上記埋め込み層 3 3上には埋め込み層 33よりも低濃度の N—型の低濃度層 34が形成されている。この低 濃度層 34は例えばェピタキシャル成長により形成された N—シリコン層で形成されて いて、その不純物濃度は 1 X 10u/cm3以上 1 X 1016/cm3以下に設定されている。 上記埋め込み層 33および低濃度層 34からなる半導体領域の厚さは、光の吸収長よ りも長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受光 感度の高 ヽ構造を実現できる。
[0026] このように、高濃度領域である埋め込み層 33の不純物濃度を設定することによって 、埋め込み層 33の電気抵抗を低くし、周波数特性を伸ばすことができ、また低濃度 層 34の不純物濃度を設定することによって、不純物濃度低くし、空乏層を広がりや すくし、容量低減による周波数特性向上と、受光感度の向上を図ることができる。
[0027] 上記低濃度層 34には上記埋め込み層 33に達するアノード取り出し領域 35が形成 されている。このアノード取り出し領域 35は、例えば低濃度層 33よりも高濃度の N+不 純物層で形成されている。この N+不純物層の濃度は、例えば上記埋め込み層 33と 同等に設定することができる。上記埋め込み層 33、低濃度層 34、力ソード取り出し領 域 35によって共通の力ソード 41が構成されている。この共通の力ソード 41は、上記 低濃度層 34、埋め込み層 33に上記絶縁層 32に達する素子分離領域 36によって素 子分離されている。この素子分離領域 36は、例えば深いトレンチ絶縁層(Deep Tren ch Isolation)によって形成されている。したがって、一つに共通の力ソード 41は、素 子分離領域 36および絶縁層 32によって隣接する共通の力ソード 41および上記半導 体基板 31と電気的に分離されて!ヽる。
[0028] 上記共通の力ソード 41の低濃度層 34の上部には複数のアノード 42が形成されて いる。このアノード 42は、例えば P型層で形成されている。したがって、二つのフォト ダイオード 40 (40a)、 40 (40b)力形成されている。なお、図面では、一つの共通の 力ソード 41に二つのアノード 42a、 42bを形成した力 三つもしくは四つもしくはそれ 以上のアノード 42 (図示せず)を形成することもできる。
[0029] このように、 SOI基板を用いて、酸ィ匕シリコン膜からなる絶縁層 32に到達する De印 Trench Isolation構造の素子分離領域 36で素子分離することにより、フォトダイオード 40を半導体基板 31から完全に絶縁分離でき、フォトダイオード 40の共通の力ソード 41からの出力は、アノード 42が分割された個々のフォトダイオード 40の加算信号とし て取り出すことが可能となる。
[0030] 例えば、フォトダイオード 40は、光ディスク(図示せず)からの反射光(図示せず)を 受け、共通の力ソード 41からの出力は加算アンプを経ずに直接 RF信号として扱うこ とができる。また複数に分割されたアノード 42からの出力は、フォーカス 'トラッキング 等の信号処理を行うことができる。
[0031] 本発明の半導体装置 2は、複数のフォトダイオード 40のアノード 42と共通のカソー ド 41とが半導体基板と電気的に独立して形成されているため、共通の力ソード 41か らの出力は、加算アンプを経ずに直接 RF信号として扱うことができる。すなわち共通 の力ソード 41からの出力を複数に分割されたフォトダイオード 40の加算出力と等価 に扱うことで、個々のフォトダイオード 40からの出力を加算することなく RF信号を取り 出せるようになつている。また、複数の分割されたアノード 42からの出力はフォーカス 'トラッキング等の演算を行うための信号として用いることができる。これによつて、ノィ ズを低減し、 SZN比、および周波数帯域を向上させることができるという利点がある 。また、従来の加算アンプを形成する必要がなくなるので、装置構成が簡単化できる 。さらに、フォトダイオード 40を半導体基板 31と独立した構造に構成できるので、フォ トダイオード 40間のクロストークのない構造を提供できる。
[0032] 次に、本発明の半導体装置に係る一実施の形態の第 2例を、図 4の概略構成断面 図によって説明する。図 4では、埋め込み層と低濃度層からなるアノード (力ソード)領 域を半導体基板と PN接合を利用した素子分離領域により分離した複数のフォトダイ オードを有する半導体装置の一例を示す。
[0033] 図 4に示すように、 N—型の半導体基板 51の上部に N+型の素子分離領域の下層 52 が形成されているとともに P+型の埋め込み領域 53が形成されている。上記半導体基 板 51には、例えば N—型のシリコン基板を用いる。また、上記素子分離領域の下層 52 は N+型の不純物層で形成されている。上記埋め込み領域 53は、 N+型の不純物層で 形成されていて、その不純物濃度は 1 X 1016/cm3以上 1 X 1022/cm3以下に設定 されている。さらに、上記半導体基板 51上には上記埋め込み領域 53よりも低濃度の P型の低濃度層 54が形成されていて、その不純物濃度は 1 X 10uZcm3以上 1 X 1 016Zcm3以下に設定されている。また上記埋め込み領域 53の厚さは、光の吸収長よ りも長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受光 感度の高 、構造を実現できる。この埋め込み領域 53の厚さが光の吸収長よりも短 、 と、埋め込み領域 53と半導体基板 51との間に寄生フォトダイオードが生じ、その出力 を検出することになる。この寄生フォトダイオードの出力を積極的に活用することもで きる。
[0034] このように、高濃度領域である埋め込み領域 53の不純物濃度を設定することによつ て、埋め込み領域 53の電気抵抗を低くし、周波数特性を伸ばすことができ、また低 濃度層 54の不純物濃度を設定することによって、不純物濃度低くし、空乏層を広が りやすくし、容量低減による周波数特性向上と、受光感度の向上を図ることができる。
[0035] 上記低濃度層 54には上記埋め込み領域 53に達するアノード取り出し領域 55が形 成されている。このアノード取り出し領域 55は、例えば低濃度層 54よりも高濃度の P+ 不純物層で形成されている。この P+不純物層の濃度は、例えば上記埋め込み領域 5 3と同等に設定することができる。上記埋め込み領域 53、低濃度層 54、アノード取り 出し領域 55によって共通のアノード 61が構成されている。また、上記低濃度層 54に は上記素子分離領域の下層 52に達する素子分離領域の上層 56が形成されている 。この素子分離領域の上層 56は、例えば上記素子分離領域の下層 52と同等な高濃 度の N+型の不純物層で形成されている。以下、素子分離領域の下層 52、上層 56を 合わせて素子分離領域 57とする。
[0036] 上記共通のアノード 61は、上記半導体基板 51、上記素子分離領域 57によって素 子分離されている。すなわち、 PN接合を利用した素子分離となっている。
[0037] 上記共通のアノード 61の低濃度層 54の上部には複数の力ソード 62が形成されて いる。この力ソード 62は、例えば N型層で形成されている。したがって、二つのフォト ダイオード 60 (60a)、 60 (60b)力形成されている。なお、図面では、一つの共通の アノード 61に二つの力ソード 62a、 62bを形成した力 三つもしくは四つもしくはそれ 以上の力ソード 62 (図示せず)を形成することもできる。
[0038] このように、 PN接合を用いた素子分離領域 57によって共通のアノード 61を素子分 離することにより、フォトダイオード 60を半導体基板 51から完全に電気的に絶縁分離 でき、フォトダイオード 60の共通のアノード 61からの出力は、力ソード 62が分割され た個々のフォトダイオードの加算信号として取り出すことが可能となる。
[0039] 例えば、フォトダイオード 60は、光ディスク(図示せず)からの反射光(図示せず)を 受け、共通のアノード 61からの出力は加算アンプを経ずに直接 RF信号として扱うこ とができる。また複数に分割された力ソード 62からの出力は、フォーカス 'トラッキング 等の信号処理を行うことができる。
[0040] 本発明の半導体装置 3は、複数のフォトダイオード 60の力ソード 62と共通のァノー ド 61とが半導体基板と電気的に独立して形成されているため、共通のアノード 61か らの出力は、加算アンプを経ずに直接 RF信号として扱うことができる。すなわち共通 のアノード 61からの出力を複数に分割されたフォトダイオード 60の加算出力と等価 に扱うことで、個々のフォトダイオード 60からの出力を加算することなく RF信号を取り 出せるようになつている。また、複数の分割された力ソード 62からの出力はフォーカス 'トラッキング等の演算を行うための信号として用いることができる。これによつて、ノィ ズを低減し、 SZN比を向上させることができるという利点がある。また、従来の加算ァ ンプを形成する必要がなくなるので、装置構成が簡単ィ匕できる。さらに、フォトダイォ ード 60を半導体基板 51と独立した構造に構成できるので、フォトダイオード 60間の クロストークのな 、構造を提供できる。
[0041] 次に、本発明の半導体装置に係る一実施の形態の第 4例を、図 5の概略構成断面 図によって説明する。図 5では、前記図 4によって説明した半導体装置の変形例の一 例を示す。
[0042] 図 5に示すように、 P—型の半導体基板 71の上部に P+型の素子分離領域の下層 72 が形成されているとともに N+型の埋め込み領域 73が形成されている。上記半導体基 板 71には、例えば P—型のシリコン基板を用いる。また、上記素子分離領域の下層 72 は P+型の不純物層で形成されている。上記埋め込み層 73は、 P+型の不純物層で形 成されていて、その不純物濃度は 1 X 1016/cm3以上 1 X 1022/cm3以下に設定さ れている。さらに、上記半導体基板 71上には上記埋め込み層 73よりも低濃度の N 型の低濃度層 74が形成されていて、その不純物濃度は 1 X 10u/cm3以上 1 X 1016 Zcm3以下に設定されている。また上記埋め込み領域 73の厚さは、光の吸収長より も長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受光 感度の高 、構造を実現できる。この埋め込み領域 73の厚さが光の吸収長よりも短 、 と、埋め込み領域 73と半導体基板 71との間に寄生フォトダイオードが生じ、その出力 を検出することになる。この寄生フォトダイオードの出力を積極的に活用することもで きる。
[0043] このように、高濃度領域である埋め込み領域 73の不純物濃度を設定することによつ て、埋め込み領域 73の電気抵抗を低くし、周波数特性を伸ばすことができ、また低 濃度層 74の不純物濃度を設定することによって、不純物濃度低くし、空乏層を広が りやすくし、容量低減による周波数特性向上と、受光感度の向上を図ることができる。
[0044] 上記低濃度層 74には上記埋め込み領域 73に達するアノード取り出し領域 75が形 成されている。このアノード取り出し領域 75は、例えば低濃度層 73よりも高濃度の N+ 不純物層で形成されている。この N+不純物層の濃度は、例えば上記埋め込み領域 7 3と同等に設定することができる。上記埋め込み領域 73、低濃度層 74、アノード取り 出し領域 75によって共通の力ソード 81が構成されている。また、上記低濃度層 74に は上記素子分離領域の下層 72に達する素子分離領域の上層 76が形成されている 。この素子分離領域の上層 76は、例えば上記素子分離領域の下層 72と同等な高濃 度の P+型の不純物層で形成されている。以下、素子分離領域の下層 72、上層 76を 合わせて素子分離領域 77とする。
[0045] 上記共通の力ソード 81は、上記半導体基板 71、上記素子分離領域 77によって素 子分離されている。すなわち、 PN接合を利用した素子分離となっている。
[0046] 上記共通の力ソード 81の低濃度層 74の上部には複数のアノード 82が形成されて いる。このアノード 82は、例えば P型層で形成されている。したがって、二つのフォト ダイオード 80 (80a)、 80 (80b)力形成されている。なお、図面では、一つの共通の 力ソード 81に二つのアノード 82a、 82bを形成した力 三つもしくは四つもしくはそれ 以上のアノード 82 (図示せず)を形成することもできる。
[0047] このように、 PN接合を用いた素子分離領域 77によって共通の力ソード 81を素子分 離することにより、フォトダイオード 80を半導体基板 71から完全に電気的に絶縁分離 でき、フォトダイオード 80の共通の力ソード 81からの出力は、アノード 82が分割され た個々のフォトダイオードの加算信号として取り出すことが可能となる。
[0048] 例えば、フォトダイオード 80は、光ディスク(図示せず)からの反射光(図示せず)を 受け、共通の力ソード 81からの出力は加算アンプを経ずに直接 RF信号として扱うこ とができる。また複数に分割されたアノード 82からの出力は、フォーカス 'トラッキング 等の信号処理を行うことができる。
[0049] 本発明の半導体装置 4は、複数のフォトダイオード 80のアノード 82と共通のカソー ド 81とが半導体基板と電気的に独立して形成されているため、共通の力ソード 81か らの出力は、加算アンプを経ずに直接 RF信号として扱うことができる。すなわち共通 の力ソード 81からの出力を複数に分割されたフォトダイオード 80の加算出力と等価 に扱うことで、個々のフォトダイオード 80からの出力を加算することなく RF信号を取り 出せるようになつている。また、複数の分割されたアノード 82からの出力はフォーカス 'トラッキング等の演算を行うための信号として用いることができる。これによつて、ノィ ズを低減し、 SZN比、および周波数帯域を向上させることができるという利点がある 。また、従来の加算アンプを形成する必要がなくなるので、装置構成が簡単化できる 。さらに、フォトダイオード 80を半導体基板 71と独立した構造に構成できるので、フォ トダイオード 80間のクロストークのない構造を提供できる。
[0050] 次に、本発明の半導体装置の第 1の製造方法に係る一実施の形態の一例を、図 6 〜図 10の製造工程断面図によって説明する。図 6〜図 10では、 SOI (Silicon on insu lator)基板を用いて半導体基板との電気的分離を行ったもので、複数のフォトダイォ ードを有する半導体装置の製造方法の一例を示す。すなわち、前記図 1によって説 明した半導体装置の製造方法を示す。
[0051] 図 6に示すように、半導体基板 11上に絶縁層 12が形成され、その絶縁層 12上に シリコン層が形成された SOI (Silicon on insulator)基板を用いる。上記絶縁層 12には 酸ィ匕シリコン膜が用いられている。上記シリコン層は P型不純物が導入されている。こ のシリコン層を P+型の埋め込み層 13とする。この埋め込み層 13は、例えば 1 X 1016 /cm3以上 1 X 1022/cm3以下の不純物濃度となるように、例えば P型不純物を導入 して形成されている。例えば、 l X 1019Zcm3程度の濃度となるように、 P型不純物を 導入する。このように、高濃度領域である埋め込み層 13の不純物濃度を設定するこ とによって、埋め込み層 13の電気抵抗を低くし、周波数特性を伸ばすことができる。
[0052] 次に、図 7に示すように、ェピタキシャル成長法によって、上記埋め込み層 13上に 埋め込み層 13よりも低濃度の P—型シリコン層からなる低濃度層 14を形成する。この 低濃度層 14の不純物濃度は 1 X 10uZcm3以上 1 X 1016Zcm3以下に設定される。 例えば、低濃度層 14は、 P型のェピタキシャル層を 20 μ mの厚さに 700 Ω 'cm程度 となるように堆積することで形成される。また低濃度層 14の不純物濃度をこのように設 定することによって、不純物濃度低くし、空乏層を広がりやすくし、容量低減による周 波数特性向上と、受光感度の向上を図ることができる。さらに、上記埋め込み層 13お よび低濃度層 14からなる半導体領域の厚さは、光の吸収長よりも長く形成することが 好ましい。これによつて、後に説明するフォトダイオードの受光感度の高い構造を実 現できる。
[0053] 次に、図 8に示すように、上記低濃度層 14に上記埋め込み層 13に達するアノード 取り出し領域 15を形成する。このアノード取り出し領域 15は、例えば低濃度層 13より も高濃度の P不純物層で形成されている。このアノード取り出し領域 15の濃度は、例 えば上記埋め込み層 13と同等に設定することができる。上記埋め込み層 13、低濃 度層 14、アノード取り出し領域 15によって共通のアノード 21が構成される。
[0054] 次に、図 9に示すように、上記共通のアノード 21を分離するために、上記低濃度層 14、埋め込み層 13に上記絶縁層 12に達する素子分離領域 16を形成する。この素 子分離領域 16は、例えば深いトレンチ絶縁層 (Deep Trench Isolation)によって形成 されている。例えば、リソグラフィー技術によりトレンチを形成するためのエッチングマ スクを形成した後、そのエッチングマスクを用いたエッチングにより上記低濃度層 14、 埋め込み層 13に上記絶縁層 12に達するトレンチを形成する。その後、トレンチ内部 に絶縁層を形成し、低濃度層 14上に形成された余剰な絶縁層は、例えばィ匕学的機 械研磨 (CMP)によって除去する。上記絶縁層には、例えば酸ィ匕シリコンを用いるこ とができる。例えば、酸ィ匕シリコンを用いる場合、トレンチ内壁を酸化して酸化層を形 成し、その後、トレンチ内部をノンドープポリシリコンもしくは酸ィ匕シリコンで埋め込め ばよい。このようにして、トレンチ内部に形成した絶縁層によって素子分離領域 16が 形成される。したがって、一つに共通のアノード 21は、素子分離領域 16および絶縁 層 12によって隣接する共通のアノード 21および上記半導体基板 11と電気的に分離 されること〖こなる。
[0055] 次に、図 10に示すように、上記共通のアノード 21の低濃度層 14の上部に複数の力 ソード 22を形成する。この力ソード 22は、例えばイオン注入法により N型不純物を低 濃度層 14の上層に導入して N型層を形成することにより形成される。なお、イオン注 入の際には、前もって、低濃度層 14上に力ソード 22を形成する領域上を開口したィ オン注入マスクを形成し、このイオン注入マスクはイオン注入後に除去される。また、 図面では、一つの共通のアノード 21に二つの力ソード 22a、 22bを形成した力 三つ もしくは四つもしくはそれ以上の力ソード 22 (図示せず)を形成することもできる。この ようにして、共通のアノード 21に複数の力ソード 22を形成することで複数のフォトダイ オード 20 (20a)、 20 (20b)を備えたもので、前記図 1によって説明した半導体装置 1 が形成される。
[0056] 上記半導体装置の第 1の製造方法では、半導体基板 11上に形成した絶縁層 12上 に共通のアノード 21となる埋め込み層 13と低濃度層 14とを形成し、絶縁層 12に達 するように素子分離領域 16を形成するので、絶縁層 12および素子分離領域 16によ つて半導体基板 11と電気的に独立させた埋め込み層 13および低濃度層 14が形成 され、その埋め込み層 13および低濃度層 14で共通のアノード 21が形成される。した がって、複数のフォトダイオードの力ソード 22と共通のアノード 21とを半導体基板 11 と電気的に独立して形成することができるため、分割された力ソード 22からの出力は 例えばフォーカス 'トラッキング等の演算を行うための信号として用い、共通のアノード 21からの出力は加算アンプを経ずに直接 RF信号として用いることができるような構 成とすることができる。これによつて、ノイズを低減し、 SZN比、および周波数帯域を 向上させることができたフォトダイオードを有する半導体装置 1を製造することができ る。また、従来の加算アンプを形成する必要がなくなるので、装置構成が簡単化でき る。さらに、フォトダイオード 20を半導体基板 11と独立した構造に製造することができ るので、素子分離領域 16等により分離されたフォトダイオード間のクロストークのない 構造を提供できる。
[0057] 次に、本発明の半導体装置の第 2の製造方法に係る一実施の形態の一例を、図 1 1〜図 15の製造工程断面図によって説明する。図 11〜図 15では、 SOI (Silicon on i nsulator)基板を用いて半導体基板との電気的分離を行ったもので、複数のフォトダ ィオードを有する半導体装置の製造方法の一例を示す。すなわち、前記図 3によつ て説明した半導体装置の製造方法を示す。
[0058] 図 11に示すように、半導体基板 31上に絶縁層 32が形成され、その絶縁層 32上に シリコン層が形成された SOI (Silicon on insulator)基板を用いる。上記絶縁層 32には 酸ィ匕シリコン膜が用いられている。上記シリコン層は N型不純物が導入されている。こ のシリコン層を N+型の埋め込み層 33とする。この埋め込み層 33は、例えば 1 X 1016 /cm3以上 1 X 1022/cm3以下の不純物濃度となるように、例えば N型不純物を導入 して形成されている。例えば、 1 X 1019Zcm3程度の濃度となるように、 N型不純物を 導入する。このように、高濃度領域である埋め込み層 33の不純物濃度を設定するこ とによって、埋め込み層 33の電気抵抗を低くし、周波数特性を伸ばすことができる。
[0059] 次に、図 12に示すように、ェピタキシャル成長法によって、上記埋め込み層 33上に 埋め込み層 33よりも低濃度の N—型シリコン層からなる低濃度層 34を形成する。この 低濃度層 34の不純物濃度は 1 X 10u/Cm3以上 1 X 1016/cm3以下に設定される。 例えば、低濃度層 34は、 N型のェピタキシャル層を 20 μ mの厚さに 700 Ω 'cm程度 となるように堆積することで形成される。また低濃度層 34の不純物濃度をこのように設 定することによって、不純物濃度低くし、空乏層を広がりやすくし、容量低減による周 波数特性向上と、受光感度の向上を図ることができる。さらに、上記埋め込み層 33お よび低濃度層 34からなる半導体領域の厚さは、光の吸収長よりも長く形成することが 好ましい。これによつて、後に説明するフォトダイオードの受光感度の高い構造を実 現できる。
[0060] 次に、図 13に示すように、上記低濃度層 34に上記埋め込み層 33に達する力ソード 取り出し領域 35を形成する。この力ソード取り出し領域 35は、例えば低濃度層 33より も高濃度の N不純物層で形成されている。この力ソード取り出し領域 35の濃度は、例 えば上記埋め込み層 33と同等に設定することができる。上記埋め込み層 33、低濃 度層 34、力ソード取り出し領域 35によって共通の力ソード 41が構成される。
[0061] 次に、図 14に示すように、上記共通の力ソード 41を分離するために、上記低濃度 層 34、埋め込み層 33に上記絶縁層 32に達する素子分離領域 36を形成する。この 素子分離領域 36は、例えば深いトレンチ絶縁層 (Deep Trench Isolation)によって形 成されている。例えば、リソグラフィー技術によりトレンチを形成するためのエッチング マスクを形成した後、そのエッチングマスクを用 、たエッチングにより上記低濃度層 3 4、埋め込み層 33に上記絶縁層 32に達するトレンチを形成する。その後、トレンチ内 部に絶縁層を形成し、低濃度層 34上に形成された余剰な絶縁層は、例えば化学的 機械研磨 (CMP)によって除去する。上記絶縁層には、例えば酸ィ匕シリコンを用いる ことができる。例えば、酸ィ匕シリコンを用いる場合、トレンチ内壁を酸化して酸化層を 形成し、その後、トレンチ内部をノンドープポリシリコンもしくは酸ィ匕シリコンで埋め込 めばよい。このようにして、トレンチ内部に形成した絶縁層によって素子分離領域 36 が形成される。したがって、一つに共通の力ソード 41は、素子分離領域 36および絶 縁層 32によって隣接する共通の力ソード 41および上記半導体基板 31と電気的に分 離されること〖こなる。
[0062] 次に、図 15に示すように、上記共通の力ソード 41の低濃度層 34の上部に複数のァ ノード 42を形成する。このアノード 42は、例えばイオン注入法により P型不純物を低 濃度層 34の上層に導入して P型層を形成することにより形成される。なお、イオン注 入の際には、前もって、低濃度層 34上にアノード 42を形成する領域上を開口したィ オン注入マスクを形成し、このイオン注入マスクはイオン注入後に除去される。また、 図面では、一つの共通の力ソード 41に二つのアノード 42 (42a)、 42 (42b)を形成し た力 三つもしくは四つもしくはそれ以上のアノード 42 (図示せず)を形成することも できる。このようにして、このようにして、共通の力ソード 41に複数のアノード 42を形成 することで複数のフォトダイオード 40a、 40bを備えたもので、前記図 3によって説明し た半導体装置 2が形成される。
[0063] 上記半導体装置の第 2の製造方法では、半導体基板 31上に形成した絶縁層 32上 に共通の力ソード 41となる埋め込み層 33と低濃度層 34とを形成し、絶縁層 32に達 するように素子分離領域 36を形成するので、絶縁層 32および素子分離領域 36によ つて半導体基板 31と電気的に独立させた埋め込み層 33および低濃度層 34が形成 され、その埋め込み層 33および低濃度層 34で共通の力ソード 41が形成される。した がって、複数のフォトダイオードのアノード 42と共通の力ソード 41とを半導体基板 31 と電気的に独立して形成することができるため、分割されたアノード 42からの出力は 例えばフォーカス 'トラッキング等の演算を行うための信号として用い、共通のカソー ド 41からの出力は加算アンプを経ずに直接 RF信号として用いることができるような構 成とすることができる。これによつて、ノイズを低減し、 SZN比を向上させることができ たフォトダイオードを有する半導体装置 2を製造することができる。また、従来の加算 アンプを形成する必要がなくなるので、装置構成が簡単ィ匕できる。さらに、フォトダイ オード 40を半導体基板 31と独立した構造に製造することができるので、素子分離領 域 36等により分離されたフォトダイオード間のクロストークのない構造を提供できる。
[0064] 次に、本発明の半導体装置の第 3の製造方法に係る一実施の形態の一例を、図 1 6〜図 19の製造工程断面図によって説明する。図 16〜図 19では、 PN接合を用い て半導体基板との電気的分離を行ったもので、複数のフォトダイオードを有する半導 体装置の製造方法の一例を示す。すなわち、前記図 4によって説明した半導体装置 の製造方法を示す。
[0065] 図 16に示すように、 N—型の半導体基板 51の上部に N+型の不純物層力もなる素子 分離領域の下層 52を形成する。この素子分離領域の下層 52は、例えばイオン注入 法によって形成することができる。また上記素子分離領域の下層 52で区画分離され る半導体基板 51の上部内に P+型の埋め込み領域 53を形成する。この P+型の埋め込 み領域 53は例えば不純物拡散法、イオン注入法等の不純物ドーピング技術により 形成することができる。上記埋め込み領域 53の不純物濃度は 1 X 1016/cm3以上 1 X 1022/cm3以下に設定される。このように、高濃度領域である埋め込み領域 53の 不純物濃度を設定することによって、埋め込み領域 53の電気抵抗を低くし、周波数 特性を伸ばすことができる。
[0066] 次に、図 17に示すように、上記半導体基板 51上には上記埋め込み領域 53よりも 低濃度の P—型の低濃度層 54を形成する。この低濃度層 54は、例えばェピタキシャ ル成長法によって形成され、その不純物濃度は 1 X 10uZcm3以上 1 X 1016/cm3 以下に設定される。このように、低濃度層 54の不純物濃度を設定することによって、 不純物濃度低くし、空乏層を広がりやすくし、容量低減による周波数特性向上と、受 光感度の向上を図ることができる。また上記埋め込み領域 53の厚さは、光の吸収長 よりも長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受 光感度の高い構造を実現できる。また、上記ェピタキシャル成長では、先に形成され ていた素子分離領域の下層 52および埋め込み領域 53の不純物が低濃度層 54中 に拡散して、低濃度層 54中に延長形成される。
[0067] 次に、図 18に示すように、上記低濃度層 54に上記埋め込み領域 53に達するァノ ード取り出し領域 55を形成する。このアノード取り出し領域 55は、例えば、イオン注 入法により形成することができ、低濃度層 54よりも高濃度の P型不純物層とする。この P型不純物層の濃度は、例えば上記埋め込み領域 53と同等に設定することができる 。これによつて、上記埋め込み領域 53、低濃度層 54、アノード取り出し領域 55からな る共通のアノード 61が構成される。また、上記低濃度層 54に上記素子分離領域の下 層 52に達する素子分離領域の上層 56を形成する。この素子分離領域の上層 56は 、例えば、イオン注入法により形成することができ、上記素子分離領域の下層 52と同 等な高濃度の N+型の不純物層で形成される。このようにして、素子分離領域の下層 52および上層 56からなる、 PN接合型の素子分離領域 57が構成される。
[0068] したがって、上記共通のアノード 61は、上記半導体基板 51、上記素子分離領域 5 7によって、 PN接合を利用して素子分離される。
[0069] 次に、図 19に示すように、上記共通のアノード 61の低濃度層 54の上部に複数の力 ソード 62を形成する。この力ソード 62は、例えばイオン注入法により N型不純物を低 濃度層 54の上層に導入して N型層を形成することにより形成される。なお、イオン注 入の際には、前もって、低濃度層 54上に力ソード 62を形成する領域上を開口したィ オン注入マスクを形成し、このイオン注入マスクはイオン注入後に除去される。また、 図面では、一つの共通のアノード 61に二つの力ソード 62a、 62bを形成した力 三つ もしくは四つもしくはそれ以上の力ソード 62 (図示せず)を形成することもできる。この ようにして、共通のアノード 61に複数の力ソード 62を形成することで複数のフォトダイ オード 60 (60a)、 60 (60b)を備えたもので、前記図 4によって説明した半導体装置 3 が形成される。
[0070] このように、 PN接合を用いた素子分離領域 57によって共通のアノード 61を素子分 離することにより、フォトダイオード 60を半導体基板 51から完全に電気的に絶縁分離 でき、フォトダイオード 60の共通のアノード 61からの出力は、力ソード 62が分割され た個々のフォトダイオードの加算信号として取り出すことが可能となる。
[0071] 上記半導体装置の第 3の製造方法では、半導体基板 51上に形成した低濃度層 54 に半導体基板 51に達する PN接合型の素子分離領域 57を形成するので、複数のフ オトダイオード 60の力ソード 62と共通のアノード 61とが半導体基板と電気的に独立し て形成される。このため、分割された力ソード 62からの出力は例えばフォーカス 'トラ ッキング等の演算を行うための信号として用い、共通のアノード 61からの出力は加算 アンプを経ずに直接 RF信号として用いることができるような構成とすることができる。 これによつて、ノイズを低減し、 SZN比を向上させることができたフォトダイオードを 有する半導体装置 3を製造することができる。また、従来の加算アンプを形成する必 要がなくなるので、装置構成が簡単ィ匕できる。さらに、フォトダイオード 60を半導体基 板 51と独立した構造に製造することができるので、素子分離領域 57等により分離さ れたフォトダイオード間のクロストークのない構造を提供できる。
[0072] 次に、本発明の半導体装置の第 4の製造方法に係る一実施の形態の一例を、図 2 0〜図 23の製造工程断面図によって説明する。図 20〜図 23では、 PN接合を用い て半導体基板との電気的分離を行ったもので、複数のフォトダイオードを有する半導 体装置の製造方法の一例を示す。すなわち、前記図 5によって説明した半導体装置 の製造方法を示す。
[0073] 図 20に示すように、 P—型の半導体基板 71の上部に P+型の不純物層力もなる素子 分離領域の下層 72を形成する。この素子分離領域の下層 72は、例えばイオン注入 法によって形成することができる。また上記素子分離領域の下層 72で区画分離され る半導体基板 71の上部内に N+型の埋め込み領域 73を形成する。この N+型の埋め 込み領域 73は例えば不純物拡散法、イオン注入法等の不純物ドーピング技術によ り形成することができる。上記埋め込み領域 73の不純物濃度は 1 X 1016/cm3以上 1 X 1022/cm3以下に設定される。このように、高濃度領域である埋め込み領域 73の 不純物濃度を設定することによって、埋め込み領域 73の電気抵抗を低くし、周波数 特性を伸ばすことができる。
[0074] 次に、図 21に示すように、上記半導体基板 71上には上記埋め込み領域 73よりも 低濃度の N—型の低濃度層 74を形成する。この低濃度層 74は、例えばェピタキシャ ル成長法によって形成され、その不純物濃度は 1 X 10uZcm3以上 1 X 1016/cm3 以下に設定される。このように、低濃度層 74の不純物濃度を設定することによって、 不純物濃度低くし、空乏層を広がりやすくし、容量低減による周波数特性向上と、受 光感度の向上を図ることができる。また上記埋め込み領域 73の厚さは、光の吸収長 よりも長く形成することが好ましい。これによつて、後に説明するフォトダイオードの受 光感度の高い構造を実現できる。また、上記ェピタキシャル成長では、先に形成され ていた素子分離領域の下層 72および埋め込み領域 73の不純物が低濃度層 74中 に拡散して、低濃度層 74中に延長形成される。
[0075] 次に、図 22に示すように、上記低濃度層 74に上記埋め込み領域 73に達するカソ ード取り出し領域 75を形成する。この力ソード取り出し領域 75は、例えば、イオン注 入法により形成することができ、低濃度層 73よりも高濃度の N型不純物層とする。こ の N型不純物層の濃度は、例えば上記埋め込み領域 73と同等に設定することがで きる。これによつて、上記埋め込み領域 73、低濃度層 74、力ソード取り出し領域 75か らなる共通の力ソード 81が構成される。また、上記低濃度層 74に上記素子分離領域 の下層 72に達する素子分離領域の上層 76を形成する。この素子分離領域の上層 7 6は、例えば、イオン注入法により形成することができ、上記素子分離領域の下層 72 と同等な高濃度の P+型の不純物層で形成される。このようにして、素子分離領域の下 層 72および上層 76からなる、 PN接合型の素子分離領域 77が構成される。
[0076] したがって、上記共通の力ソード 81は、上記半導体基板 71、上記素子分離領域 7 7によって、 PN接合を利用して素子分離される。
[0077] 次に、図 23に示すように、上記共通の力ソード 81の低濃度層 74の上部に複数のァ ノード 82を形成する。このアノード 82は、例えばイオン注入法により N型不純物を低 濃度層 74の上層に導入して P型層を形成することにより形成される。なお、イオン注 入の際には、前もって、低濃度層 74上にアノード 82を形成する領域上を開口したィ オン注入マスクを形成し、このイオン注入マスクはイオン注入後に除去される。また、 図面では、一つの共通の力ソード 81に二つのアノード 82a、 82bを形成した力 三つ もしくは四つもしくはそれ以上のアノード 82 (図示せず)を形成することもできる。この ようにして、共通の力ソード 81に複数のアノード 82を形成することで複数のフォトダイ オード 80a、 80bを備えたもので、前記図 5によって説明した半導体装置 4が形成さ れる。
[0078] このように、 PN接合を用いた素子分離領域 77によって共通の力ソード 81を素子分 離することにより、フォトダイオード 80を半導体基板 71から完全に電気的に絶縁分離 でき、フォトダイオード 80の共通の力ソード 81からの出力は、アノード 82が分割され た個々のフォトダイオードの加算信号として取り出すことが可能となる。 [0079] 上記半導体装置の第 4の製造方法では、半導体基板 71上に形成した低濃度層 74 に半導体基板 71に達する PN接合型の素子分離領域 77を形成するので、複数のフ オトダイオード 80のアノード 82と共通の力ソード 81とが半導体基板と電気的に独立し て形成される。このため、分割されたアノード 82からの出力は例えばフォーカス 'トラ ッキング等の演算を行うための信号として用い、共通の力ソード 81からの出力は加算 アンプを経ずに直接 RF信号として用いることができるような構成とすることができる。 これによつて、ノイズを低減し、 SZN比を向上させることができたフォトダイオードを 有する半導体装置 4を製造することができる。また、従来の加算アンプを形成する必 要がなくなるので、装置構成が簡単ィ匕できる。さらに、フォトダイオード 80を半導体基 板 71と独立した構造に製造することができるので、素子分離領域 77等により分離さ れたフォトダイオード間のクロストークのない構造を提供できる。
[0080] 上記各第 1〜第 4の製造方法において、同一の半導体基板 11、 31、 51、 71にフォ トダイオード 20、 40、 60、 80と共に混載するバイポーラ素子(図示せず)または CM OS素子(図示せず)は、一般的な製造方法に従って素子形成を行うことができる。そ の素子形成は、フォトダイオード 20、 40、 60、 80を形成した後に行ってもよぐまた、 素子形成を行う際に、フォトダイオード 20、 40、 60、 80の構成部品と共通化できる構 成部品は、フォトダイオード 20、 40、 60、 80のプロセス時に行うこともできる。
[0081] 本発明の半導体装置は、複数のフォトダイオードの力ソードとアノードとが半導体基 板と電気的に独立して形成されて ヽるため、分割された力ソード (またはアノード)から の出力は例えばフォーカス 'トラッキング等の演算を行うための信号として用い、共通 のアノード (力ソード)力もの出力は加算アンプを経ずに直接 RF信号として用いること ができるので、ノイズを低減し、 SZN比を向上させることができるという利点がある。ま たフォトダイオードを基板と独立した構造に構成できるので、フォトダイオード間のクロ ストークのな!ヽ構造を提供できる。
[0082] 本発明の半導体装置の製造方法は、複数のフォトダイオードの力ソードとアノードと を半導体基板と電気的に独立して形成することができるため、分割された力ソード (ま たはアノード)からの出力は例えばフォーカス 'トラッキング等の演算を行うための信 号として用い、共通のアノード (力ソード)力ゝらの出力は加算アンプを経ずに直接 RF 信号として用いることができるような構成とすることができる。これによつて、ノイズを低 減し、 SZN比を向上させることができたフォトダイオードを有する半導体装置を製造 することができる。またフォトダイオードを基板と電気的に独立した構造に製造するこ とができるので、フォトダイオード間のクロストークのな 、構造を提供できる。

Claims

請求の範囲
[1] 半導体基板上に複数のフォトダイオードを有する半導体装置であって、
前記複数のフォトダイオードの力ソードとアノードとが前記半導体基板と電気的に独 立して形成されていて、
前記複数のフォトダイオードは共通のアノードを有するとともに複数の分離された力 ソードを有し、前記共通のアノードからの出力を複数に分割されたフォトダイオードの 加算出力と等価に扱う、
もしくは、前記複数のフォトダイオードは共通の力ソードを有するとともに複数の分 離されたアノードを有し、前記共通の力ソードからの出力を複数に分割されたフォトダ ィオードの加算出力と等価に扱う
ことを特徴とする半導体装置。
[2] 前記フォトダイオードは、前記半導体基板上に絶縁層を介して形成された半導体 層を有する SOI構造の半導体層に形成されたもので、
前記半導体層は前記絶縁層に達するトレンチ素子分離により複数に分離されて 、 て、
その分離された半導体層に前記共通のアノードと前記複数の力ソードとが設けられ ている、
もしくは、その分離された半導体層に前記共通の力ソードと前記複数のアノードとが 設けられている
ことを特徴とする請求項 1記載の半導体装置。
[3] 前記半導体層の厚さは光の吸収長よりも長い
ことを特徴とする請求項 2記載の半導体装置。
[4] 前記半導体基板に P型または N型の半導体基板が用いられ、
前記半導体基板上に絶縁層を介して形成された P型の埋め込み層と、 前記埋め込み層よりも低濃度の P型の層からなるもので前記埋め込み層上に形成 された P型の低濃度層と、
前記低濃度層の上層に形成された前記複数の力ソードとなる N型層とを備え、 前記低濃度層と前記埋め込み層とで構成されるアノード領域が前記半導体基板に 到達する素子分離領域で区画分離されて!ヽて、
前記素子分離領域により区画分離された前記埋め込み層と前記低濃度層とで前 記共通のアノードが構成されて 、る
ことを特徴とする請求項 1記載の半導体装置。
[5] 前記埋め込み層の厚さは光の吸収長よりも長い
ことを特徴とする請求項 4記載の半導体装置。
[6] 前記フォトダイオードは光ディスクに反射した反射光を受光するものであり、
前記共通のアノードからの出力を RF信号として扱い、
前記複数の分離された力ソードからの出力でフォーカスの信号処理およびトラツキ ングの信号処理を行う
ことを特徴とする請求項 1記載の半導体装置。
[7] 前記半導体基板に N型または P型半導体基板を用いられ、
前記半導体基板上に絶縁層を介して形成された N型の埋め込み層と、 前記埋め込み層よりも低濃度の N型の層からなるもので前記埋め込み層上に形成 された N型の低濃度層と、
前記低濃度層の上層に形成された前記複数のアノードとなる P型層とを備え、 前記低濃度層と前記埋め込み層とで構成される力ソード領域が前記半導体基板に 到達する素子分離領域で区画分離されて!ヽて、
前記素子分離領域により区画分離された前記埋め込み層と前記低濃度層とで前 記共通の力ソードが構成されて 、る
ことを特徴とする請求項 1記載の半導体装置。
[8] 前記埋め込み層の厚さは光の吸収長よりも長い
ことを特徴とする請求項 7記載の半導体装置。
[9] 前記フォトダイオードは、前記半導体基板上に形成された前記半導体基板の導電 型とは逆の導電型の半導体層に形成さたもので、
前記半導体層は、前記絶縁層に達する PN接合分離により複数に分離され、 その分離された半導体層に前記共通のアノードと前記複数の力ソードとが設けられ ている、 もしくは、その分離された半導体層に前記共通の力ソードと前記複数のアノードとが 設けられている
ことを特徴とする請求項 1記載の半導体装置。
[10] 前記半導体層の厚さは光の吸収長よりも長い
ことを特徴とする請求項 9記載の半導体装置。
[11] 前記半導体基板に N型の半導体基板が用いられ、
前記半導体基板上に形成された P型の低濃度層と、
前記低濃度層よりも高い濃度の P型の層からなるもので前記半導体基板と前記低 濃度層との間のアノード領域下部に形成された P型の埋め込み層と、
前記低濃度層の上層に形成された前記複数の力ソードとなる N型層とを備え、 前記アノード領域となる前記低濃度層が前記半導体基板に到達する素子分離領 域で区画分離されていて、
前記素子分離領域により区画分離された前記低濃度層と前記埋め込み層とで前 記共通のアノードが構成されて 、る
ことを特徴とする請求項 1記載の半導体装置。
[12] 前記埋め込み層の厚さは光の吸収長よりも長い
ことを特徴とする請求項 11記載の半導体装置。
[13] 前記半導体基板に P型の半導体基板が用いられ、
前記半導体基板上に形成された N型の低濃度層と、
前記低濃度層よりも高い濃度の N型の層からなるもので前記半導体基板と前記低 濃度層との間の力ソード領域下部に形成された N型の埋め込み層と、
前記低濃度層の上層に形成された前記複数のアノードとなる P型層とを備え、 前記力ソード領域となる前記低濃度層が前記半導体基板に到達する素子分離領 域で区画分離されていて、
前記素子分離領域により区画分離された前記低濃度層と前記埋め込み層とで前 記共通の力ソードが構成されて 、る
ことを特徴とする請求項 1記載の半導体装置。
[14] 前記埋め込み層の厚さは光の吸収長よりも長い ことを特徴とする請求項 13記載の半導体装置。
[15] 前記フォトダイオードは光ディスクに反射した反射光を受光するものであり、
前記共通の力ソードからの出力を RF信号として扱い、
前記複数の分離されたアノードからの出力でフォーカスの信号処理およびトラツキ ングの信号処理を行う、
もしくは、前記共通のアノードからの出力を RF信号として扱 、、
前記複数の分離された力ソードからの出力でフォーカスの信号処理およびトラツキ ングの信号処理を行う
ことを特徴とする請求項 1記載の半導体装置。
[16] 半導体基板に形成された絶縁層上に P型の埋め込み層を形成する工程と、
前記埋め込み層上に前記埋め込み層よりも低濃度の P型の低濃度層を形成するェ 程と、
前記低濃度層および前記埋め込み層を分離して独立した共通のアノード領域を区 画するもので、前記絶縁層に達する素子分離領域を形成する工程と、
前記低濃度層にフォトダイオードの力ソードとなる N型領域を形成する工程と を備えたことを特徴とする半導体装置の製造方法。
[17] 半導体基板に形成された絶縁層上に N型の埋め込み層を形成する工程と、
前記埋め込み層上に前記埋め込み層よりも低濃度の N型の低濃度層を形成する 工程と、
前記低濃度層および前記埋め込み層を分離して独立した共通の力ソード領域を区 画するもので、前記絶縁層に達する素子分離領域を形成する工程と、
前記低濃度層にフォトダイオードのアノードとなる P型領域を形成する工程と を備えたことを特徴とする半導体装置の製造方法。
[18] N型の半導体基板に P型の埋め込み層と PN接合型の素子分離領域となるもので N型の素子分離層の下層を形成する工程と、
前記埋め込み層および前記素子分離領域の下層を含む前記半導体基板上に前 記埋め込み層よりも低濃度の P型の低濃度層を形成する工程と、
前記低濃度層に前記素子分離層の下層に達する N型の素子分離層の上層を形成 して、前記素子分離層の下層および上層および半導体基板によって独立した共通 のアノード領域を区画する工程と、
前記低濃度層にフォトダイオードの力ソードとなる N型領域を形成する工程と を備えたことを特徴とする半導体装置の製造方法。
P型の半導体基板に N型の埋め込み層と PN接合型の素子分離領域となるもので N型の素子分離層の下層を形成する工程と、
前記埋め込み層および前記素子分離領域の下層を含む前記半導体基板上に前 記埋め込み層よりも低濃度の N型の低濃度層を形成する工程と、
前記低濃度層に前記素子分離層の下層に達する P型の素子分離層の上層を形成 して、前記素子分離層の下層および上層および半導体基板によって独立した共通 の力ソードを区画する工程と、
前記低濃度層にフォトダイオードのアノードとなる P型領域を形成する工程と を備えたことを特徴とする半導体装置の製造方法。
PCT/JP2006/315837 2005-09-12 2006-08-10 半導体装置およびその製造方法 WO2007032165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06782631A EP1933390A4 (en) 2005-09-12 2006-08-10 SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
KR1020087005372A KR101248084B1 (ko) 2005-09-12 2006-08-10 반도체 장치 및 그 제조 방법
CN2006800412984A CN101300685B (zh) 2005-09-12 2006-08-10 半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005263366A JP4618064B2 (ja) 2005-09-12 2005-09-12 半導体装置およびその製造方法
JP2005-263366 2005-09-12

Publications (1)

Publication Number Publication Date
WO2007032165A1 true WO2007032165A1 (ja) 2007-03-22

Family

ID=37864763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315837 WO2007032165A1 (ja) 2005-09-12 2006-08-10 半導体装置およびその製造方法

Country Status (7)

Country Link
US (1) US7928511B2 (ja)
EP (1) EP1933390A4 (ja)
JP (1) JP4618064B2 (ja)
KR (1) KR101248084B1 (ja)
CN (1) CN101300685B (ja)
TW (1) TW200715594A (ja)
WO (1) WO2007032165A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513947A (ja) * 2008-02-26 2011-04-28 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 半導体基板を製造するための方法
TWI790385B (zh) * 2018-09-20 2023-01-21 台灣積體電路製造股份有限公司 光偵測器及其形成方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915525A (zh) * 2014-04-08 2014-07-09 上海电力学院 一种提高光电转化性能的红外焦平面探测器
CN107039425B (zh) * 2017-03-29 2018-07-13 湖北京邦科技有限公司 一种半导体光电倍增器件
FR3071356B1 (fr) * 2017-09-21 2020-11-13 Safran Electronics & Defense Dispositif de detection et de localisation comprenant une pluralite de photodiodes
DE102018105752B4 (de) * 2018-03-13 2019-10-24 X-Fab Semiconductor Foundries Gmbh Elektrisch modulierte Fotodiode und Verfahren zu deren Herstellung
KR102017125B1 (ko) * 2018-03-28 2019-09-03 주식회사 포셈 포토다이오드의 제조방법
CN108573989B (zh) * 2018-04-28 2021-09-14 中国科学院半导体研究所 硅基雪崩光电探测器阵列及其制作方法
JP7039411B2 (ja) 2018-07-20 2022-03-22 株式会社東芝 光検出器、光検出システム、ライダー装置及び車
JP7222851B2 (ja) 2019-08-29 2023-02-15 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
JP7153001B2 (ja) 2019-09-18 2022-10-13 株式会社東芝 光検出器、光検出システム、ライダー装置、及び車
CN117954378A (zh) * 2024-03-26 2024-04-30 粤芯半导体技术股份有限公司 一种半导体器件及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666453A1 (fr) 1990-08-31 1992-03-06 Commissariat Energie Atomique Batterie de photopiles montees en serie.
JPH0818093A (ja) * 1994-06-30 1996-01-19 Sony Corp 半導体受光素子及び半導体装置並びにそれらの作製方法
JPH10242312A (ja) * 1997-02-27 1998-09-11 Sony Corp 半導体装置及びその製造方法
JP2000150842A (ja) * 1998-11-05 2000-05-30 Sharp Corp 受光素子及びその製造方法
JP2000277792A (ja) * 1999-03-29 2000-10-06 Siird Center:Kk 多チャンネルpinフォトダイオードの駆動方法
EP1079436A2 (en) 1999-08-23 2001-02-28 Sony Corporation Semiconductor device having photodetector and optical pickup system using the same
US20020014643A1 (en) 2000-05-30 2002-02-07 Masaru Kubo Circuit-incorporating photosensitve device
US20020070417A1 (en) 2000-12-07 2002-06-13 Shigeharu Kimura Photo semiconductor integrated circuit device and optical recording reproducing apparatus
JP2003204070A (ja) * 2001-12-06 2003-07-18 Internatl Rectifier Corp 光起電力発生装置
JP2004071058A (ja) * 2002-08-06 2004-03-04 Sharp Corp 受光増幅回路および光ピックアップ装置
EP1453106A2 (en) 2003-02-25 2004-09-01 Samsung Electronics Co., Ltd. Light-receiving device, method for manufacturing the same, and optoelectronic integrated circuit comprising the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610790A (en) * 1995-01-20 1997-03-11 Xilinx, Inc. Method and structure for providing ESD protection for silicon on insulator integrated circuits
JPH0953984A (ja) * 1995-08-18 1997-02-25 Mitsubishi Electric Corp 輝度検出回路
JPH09237912A (ja) * 1995-12-28 1997-09-09 Sony Corp 受光素子及びその製造方法
JPH09331080A (ja) * 1996-06-12 1997-12-22 Sony Corp 受光素子を含む半導体装置およびその製造方法
JP4131031B2 (ja) 1998-03-17 2008-08-13 ソニー株式会社 受光素子を有する半導体装置、光学ピックアップ装置、および受光素子を有する半導体装置の製造方法
US6894324B2 (en) * 2001-02-15 2005-05-17 United Microelectronics Corp. Silicon-on-insulator diodes and ESD protection circuits
US6822295B2 (en) * 2002-07-30 2004-11-23 Honeywell International Inc. Overvoltage protection device using pin diodes
TW200500979A (en) * 2003-05-20 2005-01-01 Adv Lcd Tech Dev Ct Co Ltd Light emission type display apparatus
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
WO2007055299A1 (en) * 2005-11-09 2007-05-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7821097B2 (en) * 2006-06-05 2010-10-26 International Business Machines Corporation Lateral passive device having dual annular electrodes
US8131225B2 (en) * 2008-12-23 2012-03-06 International Business Machines Corporation BIAS voltage generation circuit for an SOI radio frequency switch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666453A1 (fr) 1990-08-31 1992-03-06 Commissariat Energie Atomique Batterie de photopiles montees en serie.
JPH0818093A (ja) * 1994-06-30 1996-01-19 Sony Corp 半導体受光素子及び半導体装置並びにそれらの作製方法
JPH10242312A (ja) * 1997-02-27 1998-09-11 Sony Corp 半導体装置及びその製造方法
JP2000150842A (ja) * 1998-11-05 2000-05-30 Sharp Corp 受光素子及びその製造方法
JP2000277792A (ja) * 1999-03-29 2000-10-06 Siird Center:Kk 多チャンネルpinフォトダイオードの駆動方法
EP1079436A2 (en) 1999-08-23 2001-02-28 Sony Corporation Semiconductor device having photodetector and optical pickup system using the same
US20020014643A1 (en) 2000-05-30 2002-02-07 Masaru Kubo Circuit-incorporating photosensitve device
US20020070417A1 (en) 2000-12-07 2002-06-13 Shigeharu Kimura Photo semiconductor integrated circuit device and optical recording reproducing apparatus
JP2003204070A (ja) * 2001-12-06 2003-07-18 Internatl Rectifier Corp 光起電力発生装置
JP2004071058A (ja) * 2002-08-06 2004-03-04 Sharp Corp 受光増幅回路および光ピックアップ装置
EP1453106A2 (en) 2003-02-25 2004-09-01 Samsung Electronics Co., Ltd. Light-receiving device, method for manufacturing the same, and optoelectronic integrated circuit comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513947A (ja) * 2008-02-26 2011-04-28 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 半導体基板を製造するための方法
JP4810649B2 (ja) * 2008-02-26 2011-11-09 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 半導体基板を製造するための方法
TWI790385B (zh) * 2018-09-20 2023-01-21 台灣積體電路製造股份有限公司 光偵測器及其形成方法

Also Published As

Publication number Publication date
US20100155867A1 (en) 2010-06-24
CN101300685B (zh) 2010-05-19
TWI307968B (ja) 2009-03-21
KR101248084B1 (ko) 2013-03-27
CN101300685A (zh) 2008-11-05
EP1933390A4 (en) 2012-05-23
JP2007080905A (ja) 2007-03-29
EP1933390A1 (en) 2008-06-18
KR20080053464A (ko) 2008-06-13
TW200715594A (en) 2007-04-16
US7928511B2 (en) 2011-04-19
JP4618064B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
WO2007032165A1 (ja) 半導体装置およびその製造方法
US7511346B2 (en) Design of high-frequency substrate noise isolation in BiCMOS technology
US20060180885A1 (en) Image sensor using deep trench isolation
US7651883B2 (en) High energy implant photodiode stack
US7777289B2 (en) Integrated photodiode of the floating substrate type
US7875915B2 (en) Integrated circuit comprising a photodiode of the floating substrate type and corresponding fabrication process
WO2008133787A1 (en) Image sensor with improved quantum efficiency of red pixels and corresponding fabrication method
JP4671981B2 (ja) 光半導体装置
JP2006194784A (ja) 赤外線固体撮像装置およびその製造方法
US20090261441A1 (en) Optical semiconductor device
WO2007135810A1 (ja) 光半導体装置およびその製造方法
JP2001284629A (ja) 回路内蔵受光素子
JPH10284753A (ja) 半導体装置及びその製造方法
JP4083553B2 (ja) 光半導体装置
JP2003318379A (ja) 光電変換装置及びその製造方法
JP2007311648A (ja) 固体撮像装置及びその製造方法
JPH10242312A (ja) 半導体装置及びその製造方法
US7008815B1 (en) Method of manufacturing a self-aligned guard ring of a photo diode
JP3768829B2 (ja) 光電変換半導体装置およびその製造方法
JPH09275199A (ja) 半導体装置及びその製造方法
JP7537840B2 (ja) 半導体装置の製造方法及び固体撮像装置の製造方法
JPH10233525A (ja) アバランシェフォトダイオード
JP4940511B2 (ja) 半導体装置およびその製造方法
US7061031B1 (en) High-sensitivity image sensor and fabrication method thereof
JP2003297845A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041298.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087005372

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006782631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE