WO2007029787A1 - 油圧緩衝器 - Google Patents

油圧緩衝器 Download PDF

Info

Publication number
WO2007029787A1
WO2007029787A1 PCT/JP2006/317776 JP2006317776W WO2007029787A1 WO 2007029787 A1 WO2007029787 A1 WO 2007029787A1 JP 2006317776 W JP2006317776 W JP 2006317776W WO 2007029787 A1 WO2007029787 A1 WO 2007029787A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
damping force
piston
shock absorber
oil
Prior art date
Application number
PCT/JP2006/317776
Other languages
English (en)
French (fr)
Inventor
Seiji Sawai
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to EP06797636A priority Critical patent/EP1923596B1/en
Priority to US12/066,129 priority patent/US8381887B2/en
Publication of WO2007029787A1 publication Critical patent/WO2007029787A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/06Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using both gas and liquid
    • F16F9/064Units characterised by the location or shape of the expansion chamber
    • F16F9/065Expansion chamber provided on the upper or lower end of a damper, separately there from or laterally on the damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/42Multiple pistons

Definitions

  • the piston for the cylinder tube is started at the beginning of each of these operations. This relates to a damping force characteristic that more effectively utilizes the bulk elasticity of hydraulic oil when the rod moving speed is low.
  • the hydraulic shock absorber is disclosed in Patent Document 1 below.
  • the hydraulic shock absorber is inserted into the cylinder tube so as to be slidable in the axial direction, and the inside of the cylinder tube is sequentially directed to the first chamber toward the other end side.
  • the first and second pistons partitioned into the intermediate chamber and the second chamber are connected to the first and second pistons at one end and the other end of the cylinder tube from the other end of the cylinder tube. And a piston rod extending outward.
  • the shock absorber penetrates the first piston from the first chamber toward the intermediate chamber when a first input is applied from the outside so that the piston rod more penetrates into the cylinder tube.
  • a first damping force generator for flowing the oil to relieve the first input, and an oil for penetrating the second piston from the intermediate chamber toward the second chamber when the first input is applied.
  • a second damping force generator for relaxing the first input.
  • the shock absorber When the shock absorber is given the external force first input and operates so that the first and second pistons and the piston rod enter the cylinder tube, that is, the shock absorber performs a contracting operation. When doing so, the first and second damping force generators work together to generate a damping force.
  • the damping force characteristics of the shock absorber in the above case include the following. That is, when the moving speed of the piston head with respect to the cylinder tube is small at the beginning of the contraction operation of the shock absorber, the increasing gradient of the damping force is increased. Thereafter, as the moving speed increases, the damping force increases. The distribution is gradually reduced ([0040]-[0043] in Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-331898
  • the first input is given via the wheel side from the shock absorber force traveling road surface applied to the vehicle to start the contracting operation.
  • the first orifice which is a part of the second damping force generator, and the bypass passage work simultaneously to generate damping force.
  • the second chamber expands and its hydraulic pressure decreases so as to be smaller than that of the intermediate chamber.
  • hydraulic oil used in a shock absorber is a compressive fluid having a property that causes a volume change with respect to pressurization and decompression (hereinafter, simply referred to as "volume elasticity").
  • volume elasticity a compressive fluid having a property that causes a volume change with respect to pressurization and decompression
  • the shock absorber when the shock absorber is given a second input from the outside and operates so that the first and second pistons and the piston rod are retracted from the cylinder tube, that is, the shock absorber is extended. At the beginning, the second chamber contracts and its hydraulic pressure is greater than that of the intermediate chamber.
  • the volume of only the second chamber is small as described above, the amount of volume change due to the “volume elasticity” of the oil in the second chamber is small (hard). For this reason, start the extension operation of the shock absorber Even at the beginning, the hydraulic pressure in the second chamber rapidly rises due to the withdrawal operation of the second piston. As a result, oil immediately tries to pass through the second damping force generation device from the second chamber toward the intermediate chamber. That is, the “responsiveness” is increased.
  • the present invention has been made paying attention to the above situation, and an object of the present invention is when the hydraulic shock absorber contracts and expands when first and second inputs are given from the outside.
  • an object of the present invention is when the hydraulic shock absorber contracts and expands when first and second inputs are given from the outside.
  • Another object of the present invention is to apply the shock absorber to a vehicle so that the ride comfort on the vehicle is softened, and at the same time, the large first and second inputs described above are given.
  • the ride center for the vehicle is further improved and the running stability is also improved.
  • the present invention is fitted into the cylinder tube so as to be slidable in the axial direction, and the inside of the cylinder tube is sequentially directed to the one end side force toward the other end side, and the first chamber, the intermediate chamber, and the second chamber.
  • the first and second pistons which are partitioned into one end, are connected to the first and second pistons at one end, and the other end is at the other end of the cylinder tube.
  • the piston rod extends outward from the cylinder tube.
  • a hydraulic shock absorber comprising: an extension-side second damping force generation device that relaxes the second input by causing oil to flow through the second piston toward the intermediate chamber;
  • the damping force of the compression side and extension side first damping force generator is made larger than that of the compression side and extension side second damping force generator.
  • the compression side and extension side second damping force generators are larger than the damping force of the compression side and extension side first damping force generators, and the gas is sealed.
  • the gas sealing chamber is connected to the first chamber via a free piston.
  • the compression-side and extension-side first damping force generating device may include a first hydraulic pressure between the first chamber and the intermediate chamber when the first and second inputs are given.
  • the pressure side and extension side second damping force generator includes a pressure side and extension side first valve that allows oil to flow through the first piston due to the difference, and a first orifice that passes through the first piston.
  • the second valve on the pressure side and the extension side causes the oil to flow through the second piston due to the second hydraulic pressure difference between the intermediate chamber and the second chamber.
  • valve opening pressure characteristics of the compression side and extension side first valves are made weaker than those of the compression side and extension side second valves, and the first orifice Make the cross-sectional area smaller than that of the second orifice.
  • the cross-sectional area of the second orifice may be 1.5 to 10 times the cross-sectional area of the first orifice.
  • the kinematic viscosity of the oil may be 4 10 centistokes (cSt) at 40 ° C.
  • an adjusting device that makes the value of the cross-sectional area of the second orifice variable may be provided.
  • the outer diameter of the portion of the piston rod to which the first piston is coupled is larger than the outer diameter of the other portion of the piston rod to which the second piston is coupled. Chi / J ⁇ may be cramped.
  • another cylinder tube is provided as a separate body from the cylinder tube, and the free piston is slidable in the axial direction in the cylinder tube.
  • One of the two chambers in the cylinder tube defined by the free piston is used as one oil storage chamber filled with the oil and communicating with the first chamber, while the other chamber is used as the oil storage chamber.
  • the gas sealing chamber in which high-pressure gas is sealed may be used.
  • the cylinder tube is fitted so as to be slidable in the axial direction so as to be positioned between the first piston and the second piston in the axial direction of the cylinder tube.
  • An intermediate piston is provided, and on this intermediate piston, the compression side and extension side first damping force generator, or the same configuration as the compression side and extension side second damping force generator, the pressure side and extension side intermediate damping force generator of the same action are provided.
  • the intermediate piston may be coupled to one end of the piston rod.
  • the free piston is fitted into the first chamber of the cylinder tube so as to be slidable in the axial direction, and two of the first chamber defined by the free piston are inserted. Of the chambers, the chamber on the opposite side of the first piston from the free piston is used as the gas-filled chamber.
  • the adjusting device includes a one-dollar valve fitted into a through hole formed on the axis of the piston rod, and formed on the axis of the piston rod.
  • the sectional area of a part of the second orifice may be made variable by the needle valve.
  • the outer diameter of the portion of the piston rod to which the first piston is coupled is less than the outer diameter of the portion of the piston rod to which the second piston is coupled. J, please do it.
  • a hydraulic shock absorber applied to a vehicle suspension device is provided between the vehicle body side of the vehicle and each wheel side suspended on the vehicle body side. Please do it.
  • the present invention is fitted into the cylinder tube so as to be slidable in the axial direction, and the first chamber, the intermediate chamber, and the second chamber are sequentially arranged so that the inside of the cylinder tube is directed toward the one end side force and the other end side.
  • the first and second pistons divided into one end and one end are coupled to the first and second pistons and the other end
  • the side of the cylinder tube is the other side force of the cylinder tube.
  • the piston rod extends outward from the cylinder tube, and the external force is applied so that the piston rod enters the cylinder tube.
  • a pressure side first damping force generator that relaxes the first input by flowing oil through the first piston from the first chamber toward the intermediate chamber, and the first input
  • a pressure side second damping force generator that relaxes the first input by flowing oil through the second piston from the intermediate chamber toward the second chamber when a force is applied, and the cylinder tube force is also a piston.
  • the second input is also applied to the external force so that the rod is retracted, the intermediate chamber force is forced to flow through the first piston toward the first chamber, and the second input is relaxed to slow down the second input.
  • the extension side second damping force relaxes the second input by flowing oil through the second piston from the second chamber toward the intermediate chamber.
  • the damping force of the compression side and extension side first damping force generator is made larger than that of the compression side and extension side second damping force generator.
  • the compression side and extension side second damping force generators are larger than the damping force of the compression side and extension side first damping force generators, and the gas is sealed.
  • the gas sealing chamber is connected to the first chamber via a free piston, and the following “effect” occurs.
  • the oil in the first chamber is directed toward the first chamber force intermediate chamber. And flow through the compression side first damping force generator. Also, the oil in the intermediate chamber flows from the intermediate chamber toward the second chamber through the compression-side second damping force generator in the second piston.
  • the compression side first and second damping force generators try to generate a damping force by the oil flowing through them.
  • the first chamber is contracted by the intrusion operation of the first and second pistons and the piston rod into the cylinder tube.
  • the hydraulic pressure will try to rise.
  • the gas sealing chamber in which the gas is sealed is connected to the first chamber via the free piston. For this reason, when the first chamber contracts and its hydraulic pressure begins to rise, The increase in the hydraulic pressure in the first chamber is suppressed by the movement of the free piston and the contraction of the gas in the gas filled chamber. Therefore, at the beginning of the contraction operation of the shock absorber, the oil immediately flows through the compression side first damping force generator toward the first chamber force intermediate chamber and the second chamber by the hydraulic pressure of the first chamber. That is prevented.
  • the total volume of the intermediate chamber and the second chamber is larger than that of the single chamber. Therefore, the volume change due to the "volume elasticity" of the oil in the intermediate chamber and the second chamber Is kept large (soft). Therefore, even if the first and second pistons enter the cylinder tube at the beginning of the contraction operation of the shock absorber, the rate of decrease in hydraulic pressure in the intermediate chamber and the second chamber is suppressed to a small level. Is done. Therefore, it is possible to prevent the oil from immediately flowing through the pressure side first damping force generating device from the first chamber toward the intermediate chamber and the second chamber. That is, at the beginning of the contraction operation of the shock absorber, the “responsiveness” is suppressed to a low level, and the intrusion of the piston rod into the cylinder tube is prevented from being rapidly suppressed.
  • the volume change amount due to the “volume property” of the oil in the second chamber is small (hard). For this reason, with the intrusion operation of the second piston, the rate of decrease of the hydraulic pressure in the second chamber increases, and the “responsiveness” in the compression-side second damping force generator increases.
  • the shock absorber 1 when the shock absorber 1 is extended by being given a second input, generally, the oil in the second chamber flows from the second chamber toward the intermediate chamber in the second piston. It is made to flow through the extension side second damping force generator. Also, the oil in the intermediate chamber flows from the intermediate chamber toward the first chamber through the extension-side first damping force generator in the first piston. Thus, the extension side first and second damping force generators try to generate a damping force by the oil flowing through them.
  • the first chamber is expanded by the retraction operation of the first and second pistons and the piston rod from the cylinder tube.
  • the hydraulic pressure will try to drop.
  • the gas sealing chamber in which the gas is sealed is connected to the first chamber via the free piston. For this reason, when the first chamber expands and the hydraulic pressure starts to decrease, the decrease in the hydraulic pressure in the first chamber is suppressed by the movement of the free piston and the expansion of the gas in the gas filled chamber. Is done. Therefore, at the beginning of the extension operation of the shock absorber, the oil immediately flows from the intermediate chamber and the second chamber through the extension-side first damping force generator toward the first chamber by the hydraulic pressure of the first chamber. This is prevented.
  • the damping force of the extension side first damping force generator is equal to that of the extension side second damping force generator. It is also big. For this reason, when the moving speed is low as in the beginning of the extension operation of the shock absorber, the extension side first damping force generator is dominant among the extension side first and second damping force generators. Damping force is generated, and almost no damping force is generated by the above-mentioned second extension damping force generator. Therefore, the pressure in both the first chamber and the intermediate chamber at the rear of the traveling direction of the first and second pistons interlocking with the piston rod decreases. And since these drop pressures are almost the same, these first chamber and intermediate chamber are like one integrated chamber.
  • the total volume of the first chamber and the intermediate chamber is larger than that of the single chamber. Therefore, the volume change due to the "volume elasticity" of the oil in the first chamber and the intermediate chamber. Is kept large (soft). For this reason, even if the first and second pistons are retracted from the cylinder tube at the beginning of the expansion operation of the shock absorber 1, the rising speed of the hydraulic pressure in the intermediate chamber and the second chamber is suppressed to be small. The Therefore, it is possible to prevent the oil from immediately flowing through the extension side first damping force generator from the intermediate chamber and the second chamber toward the first chamber. That is, at the beginning of the extension operation of the shock absorber, the “responsiveness” is suppressed to a low level, and the piston rod withdrawing even with the cylinder tube force is prevented from being rapidly suppressed.
  • the volume of only the second chamber is small, the amount of volume change due to the “volume property” of the oil in the second chamber is small (hard). For this reason, in the retreating operation of the second piston, the rising speed of the hydraulic pressure in the second chamber is increased, and the “responsiveness” in the extension-side second damping force generator is increased. [0046] As a result, if the shock absorber is applied to a vehicle, the second input is based on the second input when the shock absorber is extended by the second input while the vehicle is running. The impact energy is immediately absorbed by the extension side second damping force generator, so that the running stability of the vehicle is improved, and the other “effects” are more reliably generated.
  • the compression side and extension side first damping force generator penetrates the first piston due to a first hydraulic pressure difference between the first chamber and the intermediate chamber when the first and second inputs are given.
  • a pressure-side and extension-side first valve for allowing fluid to flow, and a first orifice penetrating the first piston.
  • the pressure-side and extension-side second damping force generator is provided with the first and second inputs.
  • the second valve passing through the second piston and the pressure side, second side valve that causes the oil to flow through the second piston due to the second hydraulic pressure difference between the intermediate chamber and the second chamber.
  • the opening pressure characteristics of the compression side and extension side first valves are weaker than those of the compression side and extension side second valves, and the sectional area of the first orifice is made smaller than that of the second orifice. ing.
  • the second chamber is expanded by the intrusion operation of the first and second pistons into the cylinder tube, The hydraulic pressure decreases. Then, in order to make up for the oil shortage in the second chamber, the first orifice of the first piston and the second orifice of the second piston are directed toward the second chamber from the first chamber and the intermediate chamber. The same amount of oil flows. As a result, the hydraulic pressure in the intermediate chamber decreases with respect to the hydraulic pressure in the first chamber, and the hydraulic pressure in the second chamber decreases with respect to the hydraulic pressure in the intermediate chamber.
  • the cross-sectional area of the first orifice of the compression-side first damping force generator of the first piston is smaller than that of the second orifice of the compression-side second damping force generator of the second piston. .
  • the first hydraulic pressure difference generated by the first orifice is larger than the second hydraulic pressure difference generated by the second orifice.
  • the damping force of the compression side second damping force generation device becomes larger than that of the compression side first damping force generation device, and this compression side second damping force generation occurs.
  • the device produces a damping force predominantly.
  • the second chamber contracts and the hydraulic pressure rises by the retraction operation of the first and second pistons from the cylinder tube. Then, in order to discharge excess oil in the second chamber, the first orifice of the first piston and the second orifice of the second piston are directed from the second chamber toward the first chamber and the intermediate chamber. And approximately the same amount of oil flows. As a result, the hydraulic pressure in the intermediate chamber rises relative to the hydraulic pressure in the first chamber, and the hydraulic pressure in the second chamber rises relative to the hydraulic pressure in the intermediate chamber.
  • the cross-sectional area of the first orifice of the first piston extension side first damping force generator of the first piston is larger than that of the second orifice of the second piston extension side second damping force generator. Is also small. For this reason, the first hydraulic pressure difference generated by the first orifice is larger than the second hydraulic pressure difference generated by the second orifice.
  • extension side first damping force generator of the above extension side first and second damping force generators produces a damping force predominantly, and the extension side first damping force generator has the damping force of the extension side first. 2 It becomes larger than that of the damping force generator.
  • the first hydraulic pressure difference between the hydraulic pressure in the first chamber and the intermediate chamber causes the first valve of the extension-side first damping force generator to When the valve opening pressure is reached, the first valve opens. Then, the oil in the intermediate chamber flows in the first valve in addition to the first orifice toward the first chamber, thereby reducing the increasing gradient of the damping force by the extension side first damping force generator. .
  • the damping force of the extension side second damping force generator is larger than that of the extension side first damping force generator, and the extension side second The damping force generator dominates to produce damping force.
  • the compression side and extension side first and second damping force generators are constituted by the first and second valves and the first and second orifices.
  • An “effect” is achieved. Since the first and second valves and the first and second orifices have a simple configuration, each of the above “effects” is achieved by a simple configuration.
  • the cross-sectional area of the second orifice may be 1.5 to 10 times the cross-sectional area of the first orifice.
  • the sectional area of the second orifice is less than 1.5 times the sectional area of the first orifice. If there is, the values of the cross-sectional areas of the first and second orifices are close to each other. For this reason, when the shock absorber receives the first and second inputs and performs the contracting operation or the extending operation, the compression side first, second damping force generating device, or the extension side first operating device from the beginning of each of these operations. The oil tends to flow almost at the same conditions in the 1st and 2nd damping force generators and almost the same damping force. Therefore, it is difficult for the compression side and extension side first damping force generators to dominately generate damping force at the beginning of each operation, and it is difficult to obtain the above-mentioned “effect”.
  • the kinematic viscosity of the oil may be 4 10 centistokes (cSt) at 40 ° C.
  • the kinematic viscosity of the oil is approximately 15 cSt at 40 ° C.
  • the range of decrease in kinematic viscosity due to the temperature increase of the oil increases, and the above-mentioned buffer is desired. It is difficult to accurately obtain the damping force.
  • a shock absorber using a plurality of pistons as in the present invention there are many parts that are affected by the viscosity (resistance) of oil. Therefore, in order to reduce the influence as much as possible, it is beneficial to use it in combination with low-viscosity oil such as 10 centistos or less.
  • the kinematic viscosity of the oil is determined to be 4 lOcSt at 40 ° C.
  • an adjustment device that makes the value of the cross-sectional area of the second orifice variable. May be provided.
  • the adjusting device by operating the adjusting device, it is possible to obtain desired characteristics by variously changing the damping force characteristics by the second orifice in the high speed region of the moving speed.
  • the cross-sectional area of the first orifice of the compression side and extension side first damping force generation device is kept fixed at a constant value. Therefore, when the shock absorber is applied to a vehicle, it is possible to obtain a desired ride comfort for the vehicle while ensuring the “effect and effect”.
  • the outer diameter of the portion of the piston rod to which the first piston is coupled is determined from the outer diameter of the other portion of the piston rod to which the second piston is coupled. Chi / J, go ahead.
  • the piston rod penetrating portion is formed at the axial end surface of the first piston by an amount that the outer diameter size of the piston rod portion is smaller than the outer diameter size of the other portion of the piston rod.
  • the effective area except for can be made larger than that of the second piston.
  • the pressure-side and extension-side first damping force is generated, for example, the effective area of the leaf valve body of the first valve can be increased, for example, the pressure-side and extension-side first damping force generator attached to the first piston.
  • the degree of freedom in device design can be improved. As a result, when the moving speed is extremely low, a minute value of the damping force generated by the oil flowing through the first valve of the compression side and extension side first damping force generator can be obtained with high accuracy. "Operational effects" are encouraged. Brief Description of Drawings
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to a first embodiment.
  • FIG. 2 is a partially enlarged view of FIG. 1, showing Example 1.
  • FIG. 3 is a graph showing the relationship between the moving speed of the piston rod and the damping force (damping force characteristic) according to the first embodiment.
  • FIG. 4 is a diagram corresponding to FIG. 1, showing Example 2.
  • FIG. 4 is a diagram corresponding to FIG. 1, showing Example 2.
  • FIG. 5 shows Example 3 and corresponds to FIG. 1.
  • FIG. 6 is a diagram corresponding to FIG. 2, showing Example 4.
  • FIG. 6 is a diagram corresponding to FIG. 2, showing Example 4.
  • FIG. 7 shows Example 5 and corresponds to FIG.
  • FIG. 8 shows Example 6 and corresponds to FIG. Explanation of symbols
  • the hydraulic shock absorber of the present invention when first and second inputs are given from the outside and the hydraulic shock absorber contracts and expands, the piston rod with respect to the cylinder tube is moved as in the beginning of the operation. When the moving speed is low, the “responsiveness” is suppressed to a low level, while when the first and second inputs are large and the moving speed is high, the “responsiveness” is increased.
  • the shock absorber By applying this shock absorber to the vehicle, the ride comfort of the vehicle is softened, and at the same time, when the large first and second inputs are given, the shock is absorbed without delay.
  • the best mode for carrying out the present invention is to realize the purpose of further improving the ride comfort and also improving the running stability. It is as follows.
  • the shock absorber is fitted into the cylinder tube so as to be slidable in the axial direction, and the inside of the cylinder tube is sequentially moved from one end side to the other end side in order from the first chamber, the intermediate chamber,
  • the first and second pistons partitioned into the second chamber and one end side are coupled to the first and second pistons, and the other end side force on the other end side of the cylinder tube extends outward from the cylinder tube.
  • the piston rod to be ejected and the outside so that the piston rod enters the cylinder tube
  • the compression-side first damping force generation device that relaxes the first input by flowing oil through the first piston from the first chamber toward the intermediate chamber, and the first chamber
  • a pressure side second damping force generator that relaxes the first input by allowing oil to flow through the second piston from the intermediate chamber toward the second chamber when an input is applied.
  • the shock absorber flows oil so that the intermediate chamber force also penetrates the first piston toward the first chamber.
  • An extension side first damping force generator that relaxes the second input, and when the second input is applied, causes the oil to flow through the second piston from the second chamber toward the intermediate chamber.
  • an extension side second damping force generator for relaxing the second input.
  • the damping force of the compression side and extension side first damping force generator is greater than that of the compression side and extension side second damping force generator.
  • the compression side and extension side second damping force generators are larger than the damping force of the compression side and extension side first damping force generators.
  • the enclosed gas enclosure chamber is connected to the first chamber via a free piston.
  • Example 1 In order to describe the present invention in more detail, Example 1 will be described with reference to the accompanying Figs. 1-3.
  • reference numeral 1 denotes a hydraulic shock absorber.
  • the shock absorber 1 is applied to a suspension device such as an automobile or a motorcycle that is the vehicle 2, and is installed on the vehicle body side 3 of the vehicle 2 and each wheel side 4 suspended on the vehicle body side 3. .
  • the shock absorber 1 includes a single cylinder cylinder tube 8 with an axial center 7 oriented vertically.
  • the cylinder tube 8 includes a tube body 9 positioned on the shaft center 7, a cap 11 that closes an opening at a lower end portion of the tube body 9 that is one end portion 10 of the cylinder tube 8, and the cylinder tube 8 described above. And a head cover 13 for closing the opening at the upper end of the tube body 9 which is the other end 12 of the cylinder.
  • the one end 10 of the cylinder tube 8 is pivotally supported by the pivot shaft 14 with respect to each wheel side 4. ing.
  • the cylinder tube 8 includes a plurality of first and second pipes so as to be slidable in the axial direction. Stones 17 and 18 are inserted.
  • the first piston 17 is disposed on the one end 10 side of the cylinder tube 8
  • the second piston 18 is disposed on the other end 12 side of the cylinder tube 8.
  • the internal force of the cylinder tube 8 is partitioned into a first chamber 19, an intermediate chamber 20, and a second chamber 21 sequentially from one end 10 side to the other end 12 side by the first and second pistons 17, 18. ing.
  • one end 22 is coupled to the first and second pistons 17 and 18, and the other end is the other end 12 side force of the cylinder tube 8.
  • 8 is provided with a piston rod 23 extending outward.
  • the one end side 22 of the piston rod 23 passes through the centers of the first and second pistons 17 and 18, and the first and second pistons 17 and 18 are connected to the piston rod 23 by the coupler 24. Connected to one end side 22.
  • the coupler 24 is fitted on the piston rod 23 and has a washer 25 sandwiching the first and second pistons 17 and 18, respectively, and the piston rod 23 is fitted on the first and second piston rods 23.
  • the first and second spacers 26 interposed between the pistons 17 and 18 and the step surface 28 formed between the one end side 22 and the other end side 27 of the piston rod 23 described above. 2 Pistons 17, 1 8, Washers 25, and fasteners 29 for fastening the spacers 26 integrally are provided.
  • the end of the other end 27 of the piston rod 23 is pivotally supported by the pivot shaft 30 with respect to the vehicle body 3.
  • the cylinder tube 8 is filled with oil 31 which is hydraulic oil.
  • the kinematic viscosity of this oil 31 is 4 10 centistos (cSt) at 40 ° C.
  • the pressure side first damping force generator 34 includes a pressure side first valve 36.
  • a plurality of valve holes 37 penetrating the first piston 17 are formed in the first piston 17 at intervals in the circumferential direction, and these nozzle holes 37 are connected to the first chamber 19 and the intermediate chamber 20. Communicate with each other ing.
  • the first valve 36 includes a pressure-side leaf valve body 38 that inertiaally closes the outlet side of the valve hole 37 so as to be openable and closable, and a notch 37a is formed on the inlet side of the nozzle hole 37. Yes.
  • the leaf valve body 38 is formed by stacking a plurality of (two) disk-like plate springs having different diameter dimensions, and the first piston 17 and the washer 25 of the coupler 24 are connected via a leaf seat 40. Is supported by the piston rod 23.
  • the compression-side first damping force generator 34 includes a first orifice 39 having a circular cross section formed in the first piston 17, and the first orifice 39 includes the first chamber 19 and the intermediate chamber 20.
  • the first piston 17 is passed through the valve hole 37 so as to communicate with each other.
  • the pressure side second damping force generator 35 includes a pressure side second valve 41.
  • a plurality of valve holes 42 penetrating the second piston 18 are formed in the second piston 18 at intervals in the circumferential direction, and the nozzle holes 42 connect the intermediate chamber 20 and the second chamber 21 to each other. They communicate with each other.
  • the second valve 41 includes a pressure-side leaf valve body 43 that inertiaally closes the outlet side of the valve hole 42 so as to be openable and closable, and a notch 42 a is formed on the inlet side of the valve hole 42.
  • the leaf valve body 43 is a stack of a plurality of (three) disk-shaped plate springs having different diameter dimensions, and a washer 25 for the second piston 18 and the coupler 24 via a leaf seat 45. Is supported by the piston rod 23.
  • the second hydraulic pressure difference (PN-P2) between the hydraulic pressure PN of the intermediate chamber 20 and the hydraulic pressure P2 of the second chamber 21 With the leaf valve element 43 is opened, and the oil 31 flows from the intermediate chamber 20 toward the second chamber 21 through the notch 42a and the valve hole 42.
  • the compression-side second damping force generator 35 includes a second orifice 44 having a circular cross section formed in the second piston 18, and the second orifice 44 includes the intermediate chamber 20, the second chamber 21, and the second chamber 44.
  • the second piston 18 passes through the valve hole 42 so as to communicate with each other.
  • the valve opening pressure characteristic of the first valve 36 is weaker than that of the second valve 41.
  • the value of the first hydraulic pressure difference (P1-PN) for starting the opening of the first valve 36 of the first piston 17 is the value of the opening of the second valve 41 of the second piston 18.
  • the value is smaller than the value of the second hydraulic pressure difference (PN-P2) that starts operation.
  • the sectional area of the first orifice 39 is made smaller than the sectional area of the second orifice 44. In this case, the sectional area of the second orifice 44 is 1.5 to 10 times the sectional area of the first orifice 39.
  • the cross-sectional areas of the first and second orifices 39 and 44 are not adjustable and are fixed to a constant value.
  • the first extension damping force generator 46 on the extension side is substantially the same in configuration, shape and operation as the first damping force generator 34 on the compression side, but the first extension valve 36 ', the valve hole 37', the notch 37a ', The leaf valve body 38 ′ and the leaf seat 4 (are provided, and the first orifice 39 and a part of the valve hole 37 connected thereto are shared by the extension-side first damping force generator 46.
  • an extension side second damping force generator 47 is provided for relaxing the second input.
  • This extension side second damping force generating device 47 is substantially the same in configuration, shape and action as the compression side second damping force generating device 35, the extension side second valve 41 /, the valve hole 42 'and the notch 42a'.
  • the second orifice 44 and a part of the valve hole 42 connected to the second orifice 44 are shared by the extension-side second damping force generator 47.
  • the notch 37a of the compression side first damping force generator 34 is formed so as to avoid the leaf valve body 38 'of the extension side first damping force generator 46, and the notch 37a 37 communicates with the first chamber 19. Further, the notch 37a ′ of the extension side first damping force generator 46 is formed so as to avoid the leaf valve body 38 of the compression side first damping force generator 34, and the notch 37a ′ is located in the middle of the valve hole 3. It communicates with Chamber 20.
  • the notch 42a of the compression side second damping force generator 35 is formed so as to avoid the leaf valve body 43 'of the extension side second damping force generator 47, and the notch 42a has a valve hole 42 formed in the intermediate chamber 20 Communicating with
  • the notch 42 of the extension side second damping force generating device 47 is formed so as to avoid the leaf valve body 43 of the compression side second damping force generating device 35, and the notch 42a 'has the valve hole 42 ⁇ . It communicates with the second chamber 21.
  • the leaf valve body is not hatched for the convenience of the force shown in cross section.
  • a spring 49 is provided between the vehicle body side 3 and the cylinder tube 8 to urge the shock absorber 1 to extend.
  • the urging force of the spring 49 corresponds to the second input. is doing.
  • a pressure accumulator 51 that constantly pressurizes the oil 31 in the first chamber 19, the intermediate chamber 20, and the second chamber 21 is provided.
  • the accumulator 51 is provided separately from the cylinder tube 8 and is free of a cylinder tube 52 supported on the vehicle body side 3 and fitted into the cylinder tube 52 so as to be slidable in the axial direction.
  • a piston 53 and a tube 55 for communicating an oil storage chamber 54, which is one of the two chambers in the cylinder tube 52 defined by the free piston 53, with the first chamber 19 are provided.
  • the oil storage chamber 54 is filled with oil 31, and the gas sealing chamber 56, which is the other chamber in the cylinder tube 52, is filled with high-pressure nitrogen gas that is compressed and compressed. . That is, the gas sealing chamber 56 is connected to the first chamber 19 via the free piston 53.
  • the shock absorber 1 is contracted by applying a first input A from the outside via the wheel side 4 from the traveling road surface.
  • the oil 31 in the first chamber 19 flows from the first chamber 19 toward the intermediate chamber 20 through the compression-side first damping force generator 34 in the first piston 17.
  • the oil 31 in the intermediate chamber 20 flows from the intermediate chamber 20 toward the second chamber 21 through the compression side second damping force generator 35 in the second piston 18. It is made.
  • the compression side first and second damping force generators 34 and 35 try to generate a damping force by the oil 31 flowing through them.
  • the gas sealing chamber 56 in which the gas is sealed is connected to the first chamber 19 via the free piston 53. Therefore, when the first chamber 19 contracts and the hydraulic pressure P1 starts to rise, the hydraulic pressure in the first chamber 19 is determined by the movement of the free piston 53 and the contraction of the gas in the gas sealing chamber 56. Increase in P1 is suppressed. Therefore, at the beginning of the contraction operation B of the shock absorber 1, the pressure side first damping force is generated from the first chamber 19 toward the intermediate chamber 20 and the second chamber 21 by the hydraulic pressure P1 of the first chamber 19. The oil 31 is prevented from flowing through the device 34 immediately.
  • the second chamber 21 is expanded by the intrusion operation of the first and second pistons 17 and 18 into the cylinder tube 8,
  • the hydraulic pressure P2 decreases.
  • the first orifice 39 and the second piston of the first piston 17 are directed toward the second chamber 21 from the first chamber 19 and the intermediate chamber 20.
  • the hydraulic pressure PN of the intermediate chamber 20 is reduced with respect to the hydraulic pressure P1 of the first chamber 19, and the hydraulic pressure PN of the second chamber 21 is reduced with respect to the hydraulic pressure PN of the intermediate chamber 20.
  • the cross-sectional area of the first orifice 39 of the compression-side first damping force generator 34 of the first piston 17 is equal to the second force of the compression-side second damping force generator 35 of the second piston 18 as described above. Smaller than that of orifice 44. For this reason, the first hydraulic pressure difference (P1 ⁇ PN) generated by the first orifice 39 is larger than the second hydraulic pressure difference (PN ⁇ P2) generated by the second orifice 44.
  • the compression side first and second damping force generators 34, 35 Among them, the compression side first damping force generator 34 generates a damping force predominantly, and the damping force of the compression side first damping force generator 34 is larger than that of the compression side second damping force generator 35.
  • the first hydraulic pressure difference (PI-PN) between the hydraulic pressure P1 of the first chamber 19 and the hydraulic pressure PN of the intermediate chamber 20 becomes larger than the first pressure side. 1
  • the opening pressure of the first valve 36 of the damping force generator 34 is reached, the first valve 36 is opened (a in FIG. 3).
  • the oil 31 in the first chamber 19 flows into the first orifice 39 toward the intermediate chamber 20 and flows through the first valve 36, whereby the damping force generated by the compression side first damping force generator 34 is reduced.
  • the increasing gradient force is squeezed (in Fig. 3, a-b).
  • the opening degree of the first valve 36 increases.
  • the total volume of each of the intermediate chamber 20 and the second chamber 21 is larger than that of the single chamber. Therefore, the "volume elasticity of the oil 31 in the intermediate chamber 20 and the second chamber 21" The volume change due to "is kept large (soft). Therefore, even if the first and second pistons 17 and 18 enter the cylinder tube 8 at the beginning of the contraction operation B of the shock absorber 1, the hydraulic pressure PN in the intermediate chamber 20 and the second chamber 21 Therefore, the decrease rate of P2 is suppressed to a small level. Therefore, the oil 31 is prevented from immediately flowing through the compression side first damping force generation device 34 from the first chamber 19 toward the intermediate chamber 20 and the second chamber 21. That is, at the beginning of the contraction operation B of the shock absorber 1, the “responsiveness” is suppressed to be low, and the intrusion of the piston rod 23 into the cylinder tube 8 is prevented from being rapidly suppressed.
  • the volume of only the second chamber 21 is small, the amount of volume change due to the “volume elasticity” of the oil 31 in the second chamber 21 is small (hard). For this reason, when the second piston 18 enters, the rate of decrease of the hydraulic pressure P2 in the second chamber 21 increases, and the “responsiveness” in the compression-side second damping force generator 35 increases.
  • the shock absorber 1 when the shock absorber 1 is given the second input, which is the urging force of the spring 49, to perform the expansion operation C, the oil 31 in the second chamber 21 is transferred from the second chamber 21 to the intermediate chamber.
  • the second piston 18 is caused to flow toward 20 through the extension-side second damping force generator 47.
  • the oil 31 in the intermediate chamber 20 is caused to flow from the intermediate chamber 20 toward the first chamber 19 through the extension-side first damping force generator 46 in the first piston 17.
  • the extension side first and second damping force generators 46 and 47 both try to generate a damping force as the oil 31 flows through them.
  • the gas-filled chamber 56 filled with gas is connected to the first chamber 19 via the free piston 53.
  • the first chamber 19 expands and its hydraulic pressure P1 decreases.
  • the movement of the free piston 53 and the expansion of the gas in the gas sealing chamber 56 suppress the decrease in the hydraulic pressure P1 in the first chamber 19. Therefore, at the beginning of the extension operation C of the shock absorber 1, the extension side first damping is performed from the intermediate chamber 20 and the second chamber 21 toward the first chamber 19 by the hydraulic pressure P1 of the first chamber 19.
  • the oil 31 is prevented from flowing through the force generator 46 immediately.
  • the second chamber 21 is contracted by the retraction operation of the first and second pistons 17 and 18 from the cylinder tube 8, and the second chamber 21 contracts. Hydraulic pressure P2 rises. Then, excess oil 31 is discharged in the second chamber 21, so that the force of the second chamber 21 is also directed toward the first chamber 19 and the intermediate chamber 20, so that the first orifice 39 and the first piston 39 of the first piston 17 Approximately the same amount of oil 31 flows through the second orifice 44 of the two pistons 18 respectively. As a result, the hydraulic pressure PN of the intermediate chamber 20 rises with respect to the hydraulic pressure P1 of the first chamber 19, and the hydraulic pressure P2 of the second chamber 21 rises with respect to the hydraulic pressure PN of the intermediate chamber 20.
  • the cross-sectional area of the first orifice 39 of the extension-side first damping force generator 46 of the first piston 17 is equal to that of the extension side second damping force generator 47 of the second piston 18 as described above. It is smaller than that of the second orifice 44. For this reason, the first hydraulic pressure difference (PN ⁇ P1) generated by the first orifice 39 is larger than the second hydraulic pressure difference (P2 ⁇ PN) generated by the second orifice 44.
  • the action during the extension operation C of the shock absorber 1 corresponds to the one obtained by reversing FIG. 3 180 ° downward with reference to the horizontal line where the damping force is 0 in FIG. Yes. Therefore, the action of the shock absorber 1 during the extension operation C will be described with reference to such a virtual inversion diagram 3. In the reverse figure 3, “pressure side” is read as “extension side”.
  • the extension side second damping force generator 47 While the moving speed V during the extension operation C is increasing (d in the reverse diagram 3), the extension side second damping force generator 47 generates the extension side first damping force generator 46. It agrees with the damping force.
  • the damping force of the extension side first damping force generator 46 is the extension side second damping force generation.
  • the extension side first damping force generator 46 is larger than the damping force.
  • the total volume of each of the first chamber 19 and the intermediate chamber 20 is larger than that of the single chamber. Therefore, the "volume elasticity of the oil 31 in the first chamber 19 and the intermediate chamber 20" The volume change due to "is kept large (soft). Therefore, even if the first and second pistons 17 and 18 are retracted from the cylinder tube 8 at the beginning of the extension operation C of the shock absorber 1, the hydraulic pressure PN, The rising speed of P2 is kept small. Accordingly, it is possible to prevent the oil 31 from immediately flowing through the extension side first damping force generating device 46 from the intermediate chamber 20 and the second chamber 21 toward the first chamber 19. That is, at the beginning of the extension operation C of the shock absorber 1, the “responsiveness” is suppressed to be low, and the withdrawal of the piston rod 23 from the cylinder tube 8 is prevented from being rapidly suppressed.
  • the volume of only the second chamber 21 is small, the amount of volume change due to the “volume elasticity” of the oil 31 in the second chamber 21 is small (hard). For this reason, when the second piston 18 is retracted, the rising speed of the hydraulic pressure P2 in the second chamber 21 is increased, and the “responsiveness” in the extension-side second damping force generator 47 is increased.
  • the sectional area of the second orifice 44 is set to 1.5 to 10 times the sectional area of the first orifice 39.
  • the values of the cross-sectional areas of the first and second orifices 39 and 44 are as follows. Approach each other. For this reason, when the shock absorber 1 is given the first and second inputs A and ⁇ 'to perform the contraction operation ⁇ and the extension operation C, the compression side first and second operations are started from the beginning of each operation ⁇ and C. 2
  • the oil 31 flows through the damping force generators 34 and 35 or the extension side first and second damping force generators 46 and 47 almost at the same time under almost the same conditions, and tends to generate almost the same damping force. Therefore, it is difficult for the compression-side first damping force generator 34 to dominantly generate a damping force at the beginning of each of the operation rods and C, and it is difficult to obtain the “effect”.
  • the magnification of each cross-sectional area of the first and second orifices 39, 44 is set to 1.5-10. In order to achieve the above-mentioned “effect” more reliably. This magnification is
  • the kinematic viscosity of the oil 31 is 4 to 10 centist tas (cS t) at 40 ° C.
  • the kinematic viscosity of the oil 31 is 15 cSt at 40 ° C.
  • the range of decrease in kinematic viscosity due to temperature rise of the oil 31 increases, and the buffer 1 It is difficult to obtain the desired damping force with high accuracy.
  • the shock absorber 1 using a plurality of pistons has more portions that are affected by the viscosity (resistance) of the oil 31. Therefore, in order to reduce the effect as much as possible, it is beneficial to use it in combination with low viscosity oil 31 such as 10 centistos or less.
  • the kinematic viscosity of the oil 31 is set to 4-lOcSt at 40 ° C, so that the above-mentioned "action and effect" are more reliably achieved.
  • the kinematic viscosity is more preferably 5-8 cSt.
  • the shock absorber 1 may be used by inverting the illustrated one or by using it horizontally or inclined.
  • the cross-sectional areas of the first and second orifices 39 and 44 are the same, and the length of the first orifice 39 is made longer than that of the second orifice 44, so that the oil 31 in the first orifice 39
  • the flow resistance (pressure loss) may be larger than that of the second orifice 44.
  • the first and second orifices 39 and 44 may be formed by a plurality of through holes, respectively. Further, such through holes may have the same diameter (the same cross-sectional area), and the number of the second orifices 44 may be larger than the number of the through holes of the first orifice 39.
  • Example 2-6 The following figures show Example 2-6. Each of these embodiments is common in many respects to the configuration and operational effects of the first embodiment. So about these common things In the drawings, the same reference numerals are attached to the drawings, the duplicated explanation is omitted, and different points are mainly explained. In addition, the configurations of the respective parts in each of these embodiments can be combined in various ways in light of the object and effect of the present invention.
  • Example 2 will be described with reference to FIG.
  • an intermediate piston 60 is fitted into the cylinder tube 8 so as to be slidable in the axial direction.
  • the intermediate piston 60 is disposed between the first and second pistons 17 and 18 and is coupled to the piston rod 23.
  • the intermediate chamber 60 is divided into two chambers by the intermediate piston 60.
  • the intermediate piston 60 has the same configuration and the same pressure side as the compression side and extension side first damping force generators 34 and 46 and the compression side and extension side second damping force generators 35 and 47.
  • An extension intermediate damping force generator is provided.
  • the intermediate damping force generator has its valve opened according to a value between the first hydraulic pressure difference (P1-PN) and the second hydraulic pressure difference (PN-P2).
  • the oil 31 is caused to flow through the intermediate piston 60.
  • the sectional area of the orifice of the intermediate damping force generator is a value between the sectional areas of the first and second orifices.
  • two or more intermediate pistons 60 may be provided, and the position where these intermediate pistons 60 are arranged can be freely selected.
  • Example 3 will be described with reference to FIG.
  • a pressure accumulator 51 is formed in the cylinder tube 8 as a whole.
  • the free piston 53 is fitted into the first chamber 19 so as to be slidable in the axial direction.
  • the free piston 53 divides the first chamber 19 into two chambers. With the free piston 53 as a reference, high pressure nitrogen gas is sealed in a chamber opposite to the first piston 17.
  • the shock absorber 1 can be made compact as a whole.
  • Example 4 [0158] In order to describe the present invention in more detail, Example 4 will be described with reference to FIG.
  • the shock absorber 1 shows a state in which the contraction operation B is performed.
  • An adjusting device 62 is provided for changing the value of the cross-sectional area of the second orifice 44 on the middle and high speed side by operating the shock absorber 1 with external force. This adjusting device 62 will be described in detail.
  • a through hole 63 that penetrates the piston rod 23 is formed on the shaft 7.
  • the opening on the one end 10 side (lower end side) of the tube body 9 in the through hole 63 is closed.
  • the through-hole 63 is communicated with the intermediate chamber 20 by a communication passage 65 formed to extend in the diametrical direction to the spacer 26, and by another communication passage 66 formed in the piston rod 23.
  • the second chamber 21 communicates with the second chamber 21.
  • a plug 67 is press-fitted into the through hole 63 between the two communication paths 65, 66, and the second orifice 44 is formed on the shaft center 7 of the plug 67.
  • the other end side (upper end side) force of the through hole 63 is also inserted into the piston rod 23 with the operation bolt 68 inserted therein.
  • a dollar valve 69 is physically attached to the fitting tip of the operation bolt 68, and the dollar valve 69 faces the second orifice 44. If the operation bolt 68 is twisted with the tool 70, the one-dollar valve 69 is interlocked with this, and the value of the substantial sectional area of the second orifice 44 is variable.
  • the one-dollar valve 69 can be fixed to the piston rod 23 together with the operation bolt 68 at a desired twisting position of the operation bolt 68.
  • Example 5 In order to describe the present invention in more detail, Example 5 will be described with reference to FIG. 7 attached.
  • the shock absorber 1 shows a state in which the contraction operation B is performed.
  • the outer diameter dimension D1 of the portion of the piston rod 23 to which the first piston 17 is coupled is made smaller than the outer diameter dimension D2 of the other portion of the piston rod 23 to which the second piston 18 is coupled.
  • the other end 27 of the piston rod 23 is larger than the outer diameter D2.
  • at least two step surfaces 28 are formed on the piston rod 23.
  • the first and second pistons 17 and 18 are individually fastened to the stepped surfaces 28 by fasteners 29, respectively. Therefore, the first and second pistons 17 and 18 are firmly coupled to the piston rod 23, respectively.
  • the outer diameter D1 of the portion of the piston rod 23 is smaller than the outer diameter D2 of the other portion of the piston rod 23, so that the axial end surface of the first piston 17
  • the effective area excluding the penetrating portion of the piston rod 23 can be made larger than that of the second piston 18.
  • the effective area of the leaf valve bodies 38, 38 ′ of the first nobels 36, 36 ′ of the compression side and extension side first damping force generators 34, 46 attached to the first piston 17 is increased.
  • the degree of freedom in designing the compression-side and extension-side first damping force generators 34, 46 can be improved.
  • the leaf valve bodies 38, 38 ' can be easily and accurately squeezed.
  • the minute value of the damping force generated by the oil 31 flowing through the first valves 36, 3 of the compression-side and extension-side first damping force generators 34, 46 is accurately measured. It can be obtained well, and the above-mentioned “effect” is promoted.
  • Example 6 In order to describe the present invention in more detail, Example 6 will be described with reference to FIG.
  • the suspension device of the vehicle 2 includes a pair of shock absorbers 1 and an intermediate unit 50 interposed between the shock absorbers 1.
  • Each shock absorber 1 is installed on the vehicle body side 3 and each wheel side 4.
  • each wheel side 4 may be the left or right wheel side or the front or rear wheel side.
  • the intermediate unit 50 includes a pressure accumulator 51, and another free piston 72 is provided in the oil storage chamber 54 of the pressure accumulator 51 so as to be slidable in the axial direction. Combined with the above free piston 53 It is supposed to slide.
  • the other free piston 72 divides the oil storage chamber 54 into two chambers.
  • a communication passage 74 is provided for communicating the first chambers 19 of the respective shock absorbers 1 with each other via the throttle 73.
  • the throttle portion 73 is provided on the other free piston 72, and includes a pair of valves 75 having the same configuration and function as the first valve. These valves 75 allow the flow of oil 31 in opposite directions.
  • the communication passage 74 is formed by either one of the first chambers 19 of the first chambers 19 and one of the two chambers in the oil storage chamber 54 defined by the other free piston 72.
  • a first tube 76 that communicates with one of the chambers, a second tube 77 that communicates the other first chamber 19 with the other of the two chambers in the oil storage chamber 54, and the oil storage chamber 54. It consists of
  • both the shock absorbers 1 perform the same operation, and therefore, rolling can be prevented from occurring in the vehicle 2. Further, during such a large movement of the vehicle 2, that is, when the moving speed V is high, according to the configuration of each embodiment corresponding to each claim of the present application, the intermediate chamber 20 of each buffer 1 and the second The effect of the volume elasticity of the oil 31 with the two chambers 21 is suppressed to be small, so that the accuracy of the amount of oil 31 flowing in and out of the intermediate unit 50 is improved, and the accuracy of the above “effect” is improved. improves.
  • the present invention may be achieved by appropriately combining the individual constituent members described above.

Abstract

 緩衝器を車両に適用することにより、車両への乗り心地が軟らかくなるようにして、車両への乗り心地をより向上させるようにし、かつ、走行安定性をも向上させるようにする。緩衝器(1)に対し外部から第1、第2入力(A,A′)が与えられた場合において、シリンダチューブ(8)に対するピストンロッド(23)の移動速度Vが小さいときには、圧側、伸側第1減衰力発生装置(34,46)の減衰力が圧側、伸側第2減衰力発生装置(35,47)のそれよりも大きくなるようにする。一方、移動速度Vが大きいときには、圧側、伸側第1減衰力発生装置(34,46)の減衰力よりも圧側、伸側第2減衰力発生装置(35,47)のそれが大きくなるようにする。ガスが封入されたガス封入室(56)をフリーピストン(53)を介し第1室(19)に連結する。

Description

油圧緩衝器
技術分野
[0001] 本発明は、油圧緩衝器がその外部から第 1、第 2入力を与えられて収縮動作と伸長 動作とを繰り返す場合において、これら各動作の開始当初のように、シリンダチュー ブに対するピストンロッドの移動速度が低速のときには、作動油の体積弾性をより効 果的に利用した減衰力特性が得られるようにしたものに関する。
背景技術
[0002] 上記油圧緩衝器には、従来、下記特許文献 1に示されるものがある。この公報のも のによれば、油圧緩衝器は、シリンダチューブに軸方向摺動可能に嵌入され、このシ リンダチューブの内部をその一端部側力 他端部側に向けて順次、第 1室、中間室、 および第 2室に区画する第 1、第 2ピストンと、一端部側がこれら第 1、第 2ピストンに結 合され、他端部側が上記シリンダチューブの他端部側からこのシリンダチューブの外 方に延出するピストンロッドとを備えている。
[0003] また、上記緩衝器は、上記シリンダチューブ内にピストンロッドがより侵入するよう外 部から第 1入力が与えられるとき、上記第 1室から中間室に向け上記第 1ピストンを貫 通するよう油を流動させて上記第 1入力を緩和する第 1減衰力発生装置と、上記第 1 入力が与えられるとき、上記中間室から第 2室に向けて上記第 2ピストンを貫通するよ う油を流動させて上記第 1入力を緩和する第 2減衰力発生装置とを備えている。
[0004] 上記緩衝器がその外部力 第 1入力を与えられて、上記シリンダチューブ内に第 1 、第 2ピストンとピストンロッドとが侵入するよう動作するとき、つまり、緩衝器が収縮動 作をするとき、上記第 1、第 2減衰力発生装置は共に同時に働いて、減衰力を生じる ようになっている。
[0005] そして、上記の場合の緩衝器の減衰力特性には、次のようなものがある。即ち、上 記緩衝器の収縮動作の開始当初であって、上記シリンダチューブに対するピストン口 ッドの移動速度が小さい場合には、減衰力の増加勾配が大きくなることとされる。また 、この後、上記移動速度が大きくなるに従って、減衰力は大きくなるが、その増加勾 配は徐々に小さくなることとされる(上記特許文献 1の [0040]— [0043])。
特許文献 1:特開平 10— 331898号公報
発明の開示
発明が解決しょうとする課題
[0006] ところで、車両の走行時に、この車両に適用された上記緩衝器力 走行路面から車 輪側を介し第 1入力を与えられて収縮動作を開始する当初には、上記したように第 1 、第 2減衰力発生装置の一部である第 1オリフィスとバイパス通路とは共に同時に働 いて、それぞれ減衰力を発生する。この際、上記第 2室は拡大して、その油圧は中間 室のそれよりも小さくなるよう低下する。
[0007] 一般に、緩衝器に用いられる作動油は、加圧、減圧に対して体積変化が起こる性 質 (以下、これを単に「体積弾性」という)を有する圧縮性流体である。そして、上記第 2室のみの容積は小さいことから、同じ値の圧力で、上記第 2室よりもより大きい容積 の仮定の室と比較した場合、上記第 2室における油の「体積弾性」による体積変化量 は、上記仮定の室のそれに比べて小さ!、 (硬 、)。
[0008] このため、上記緩衝器の収縮動作の開始当初でも、上記第 2ピストンの侵入動作に より、上記第 2室における油圧は急速に低下する。すると、これにより、上記中間室か ら第 2室に向けて上記第 2減衰力発生装置を油が直ちに通過して減衰力を発生しよ うとする。つまり、上記緩衝器への第 1入力である外力の入力時に対する減衰力発生 の応答性 (以下、これを単に「応答性」 、う)は高くなる。
[0009] よって、上記緩衝器の収縮動作の開始当初には、上記「応答性」が高いことに基づ き、乗員は車両力も硬い感覚を与えられがちとなる。しかし、これは、車両への乗り心 地向上の阻害要因になるおそれがあって、好ましくない。
[0010] 一方、上記緩衝器が外部から第 2入力を与えられて、上記シリンダチューブから第 1、第 2ピストンとピストンロッドとが退出するよう動作するとき、つまり、緩衝器が伸長動 作をするとき、その開始当初には、上記第 2室は収縮して、その油圧は中間室のそれ よりち大さくなる。
[0011] ここで、上記したように第 2室のみの容積は小さいことから、この第 2室における油の 「体積弾性」による体積変化量は小さい (硬い)。このため、緩衝器の伸長動作の開始 当初でも、上記第 2ピストンの退出動作により、上記第 2室における油圧は急速に上 昇する。すると、これにより、上記第 2室から中間室に向けて上記第 2減衰力発生装 置を油が直ちに通過しょうとする。つまり、上記「応答性」が高くなる。
[0012] よって、上記緩衝器の伸長動作の開始当初でも、乗員は車両力 硬い感覚を与え られがちとなり、上記と同様の問題点が生じるおそれがある。
課題を解決するための手段
[0013] 本発明は、上記のような事情に注目してなされたもので、本発明の目的は、外部か ら第 1、第 2入力が与えられて油圧緩衝器が収縮、伸長動作する場合において、その 動作開始当初のように、シリンダチューブに対するピストンロッドの移動速度が小さい ときには、上記「応答性」を低く抑制させるようにし、一方、上記第 1、第 2入力が大きく て、上記移動速度が大きいときには、上記「応答性」を高くさせるようにすることである
[0014] また、本発明の他の目的は、上記緩衝器を車両に適用し、これにより、この車両へ の乗り心地が軟らかくなるようにすると同時に、上記した大きな第 1、第 2入力が与えら れるときには、この入力に対し遅れなく衝撃を吸収することによって、車両への乗り心 地をより向上させるようにし、かつ、走行安定性をも向上させるようにすることである。
[0015] 本発明は、シリンダチューブに軸方向摺動可能に嵌入され、このシリンダチューブ の内部をその一端部側力 他端部側に向けて順次、第 1室、中間室、および第 2室 に区画する第 1、第 2ピストンと、一端部側がこれら第 1、第 2ピストンに結合され、他端 部側が上記シリンダチューブの他端部側力 このシリンダチューブの外方に延出す るピストンロッドと、上記シリンダチューブ内にピストンロッドが侵入するよう外部力 第 1入力が与えられるとき、上記第 1室から中間室に向け上記第 1ピストンを貫通するよ う油を流動させて上記第 1入力を緩和する圧側第 1減衰力発生装置と、上記第 1入 力が与えられるとき、上記中間室から第 2室に向けて上記第 2ピストンを貫通するよう 油を流動させて上記第 1入力を緩和する圧側第 2減衰力発生装置と、上記シリンダ チューブ力もピストンロッドが退出するよう外部力も第 2入力が与えられるとき、上記中 間室力 第 1室に向け第 1ピストンを貫通するよう油を流動させて上記第 2入力を緩 和する伸側第 1減衰力発生装置と、上記第 2入力が与えられるとき、上記第 2室から 中間室に向けて上記第 2ピストンを貫通するよう油を流動させて上記第 2入力を緩和 する伸側第 2減衰力発生装置とを備えた油圧緩衝器において、
上記シリンダチューブに対するピストンロッドの移動速度が小さいときには、上記圧 側、伸側第 1減衰力発生装置の減衰力が上記圧側、伸側第 2減衰力発生装置のそ れよりも大きくなるようにする一方、上記移動速度が大きいときには、上記圧側、伸側 第 1減衰力発生装置の減衰力よりも上記圧側、伸側第 2減衰力発生装置のそれが大 きくなるようにし、ガスが封入されたガス封入室をフリーピストンを介し上記第 1室に連 結したものである。
[0016] なお、上記発明に加えて、上記圧側、伸側第 1減衰力発生装置は、上記第 1、第 2 入力が与えられるとき、上記第 1室と中間室との間の第 1油圧差により上記第 1ピスト ンを貫通するよう油を流動させる圧側、伸側第 1バルブと、上記第 1ピストンを貫通す る第 1オリフィスとを備え、上記圧側、伸側第 2減衰力発生装置は、上記第 1、第 2入 力が与えられるとき、上記中間室と第 2室との間の第 2油圧差により上記第 2ピストン を貫通するよう油を流動させる圧側、伸側第 2バルブと、上記第 2ピストンを貫通する 第 2オリフィスとを備え、上記圧側、伸側第 1バルブの開弁圧特性を圧側、伸側第 2バ ルブのそれよりも弱くし、上記第 1オリフィスの断面積を第 2オリフィスのそれよりも小さ くしてちょい。
[0017] また、上記発明に加えて、上記第 2オリフィスの断面積を上記第 1オリフィスの断面 積の 1. 5— 10倍としてもよい
[0018] また、上記発明に加えて、上記油の動粘度を、 40°Cにおいて 4 10センチストーク ス(cSt)としてもよい。
[0019] また、上記発明に加えて、上記第 2オリフィスの断面積の値を可変とする調整装置 を設けてもよい。
[0020] また、上記発明に加えて、上記第 1ピストンを結合させた上記ピストンロッドの部分の 外径寸法を、上記第 2ピストンを結合させた上記ピストンロッドの他部分の外径寸法よ りち/ Jヽさくしてもよい。
[0021] また、上記発明に加えて、上記シリンダチューブとは別体として他のシリンダチュー ブを設け、このシリンダチューブ内に軸方向に摺動可能となるよう上記フリーピストン を嵌入し、このフリーピストンにより区画された上記シリンダチューブ内の 2つの室のう ち、一方の室を上記油が充填されて上記第 1室に連通する貯油室とする一方、他方 の室を高圧のガスが封入された上記ガス封入室としてもよい。
[0022] また、上記発明に加えて、上記シリンダチューブの軸方向で、上記第 1ピストンと第 2ピストンとの間に位置するよう上記シリンダチューブに軸方向に摺動可能となるよう 嵌入される中間ピストンを設け、この中間ピストンに、上記圧側、伸側第 1減衰力発生 装置、もしくは圧側、伸側第 2減衰力発生装置と同構成、同作用の圧側、伸側中間 減衰力発生装置を設け、上記ピストンロッドの一端部側に上記中間ピストンを結合し てもよい。
[0023] また、上記発明に加えて、上記シリンダチューブの第 1室にその軸方向に摺動可能 となるよう上記フリーピストンを嵌入し、このフリーピストンにより区画された上記第 1室 の 2つの室のうち、上記フリーピストンを基準として、上記第 1ピストンとは反対側の室 を上記ガス封入室としてもょ ヽ。
[0024] また、上記発明に加えて、上記調整装置が、上記ピストンロッドの軸心上に形成さ れた貫通孔に嵌入される-一ドル弁を備え、上記ピストンロッドの軸心上に形成され た上記第 2オリフィスの一部の断面積が、上記ニードル弁により可変とされるようにし てもよい。
[0025] また、上記発明に加えて、上記第 1ピストンを結合させた上記ピストンロッドの部分の 外径寸法を、上記第 2ピストンを結合させた上記ピストンロッドの部分の外径寸法より ち/ J、さくしてちょい。
[0026] また、上記発明に加えて、車両の懸架装置に適用される油圧緩衝器であって、上 記車両の車体側と、この車体側に懸架された各車輪側との間に架設されるようにして ちょい。
発明の効果
[0027] 本発明による効果は、次の如くである。
[0028] 本発明は、シリンダチューブに軸方向摺動可能に嵌入され、このシリンダチューブ の内部をその一端部側力 他端部側に向けて順次、第 1室、中間室、および第 2室 に区画する第 1、第 2ピストンと、一端部側がこれら第 1、第 2ピストンに結合され、他端 部側が上記シリンダチューブの他端部側力 このシリンダチューブの外方に延出す るピストンロッドと、上記シリンダチューブ内にピストンロッドが侵入するよう外部力 第
1入力が与えられるとき、上記第 1室から中間室に向け上記第 1ピストンを貫通するよ う油を流動させて上記第 1入力を緩和する圧側第 1減衰力発生装置と、上記第 1入 力が与えられるとき、上記中間室から第 2室に向けて上記第 2ピストンを貫通するよう 油を流動させて上記第 1入力を緩和する圧側第 2減衰力発生装置と、上記シリンダ チューブ力もピストンロッドが退出するよう外部力も第 2入力が与えられるとき、上記中 間室力 第 1室に向け第 1ピストンを貫通するよう油を流動させて上記第 2入力を緩 和する伸側第 1減衰力発生装置と、上記第 2入力が与えられるとき、上記第 2室から 中間室に向けて上記第 2ピストンを貫通するよう油を流動させて上記第 2入力を緩和 する伸側第 2減衰力発生装置とを備えた油圧緩衝器において、
上記シリンダチューブに対するピストンロッドの移動速度が小さいときには、上記圧 側、伸側第 1減衰力発生装置の減衰力が上記圧側、伸側第 2減衰力発生装置のそ れよりも大きくなるようにする一方、上記移動速度が大きいときには、上記圧側、伸側 第 1減衰力発生装置の減衰力よりも上記圧側、伸側第 2減衰力発生装置のそれが大 きくなるようにし、ガスが封入されたガス封入室をフリーピストンを介し上記第 1室に連 結しており、次の「作用効果」が生じる。
[0029] 即ち、上記油圧緩衝器が第 1入力を与えられて収縮動作する際、一般的には、上 記第 1室内の油が、この第 1室力 中間室に向けて上記第 1ピストンにおける圧側第 1減衰力発生装置を通り流動させられる。また、上記中間室内の油が、この中間室か ら第 2室に向けて上記第 2ピストンにおける圧側第 2減衰力発生装置を通り流動させ られる。そして、このように、圧側第 1、第 2減衰力発生装置は、これらを上記油がそれ ぞれ流動することにより、共に減衰力を生じようとする。
[0030] 上記の場合、緩衝器の収縮動作の開始当初には、まず、上記シリンダチューブ内 への第 1、第 2ピストンとピストンロッドとの侵入動作により、上記第 1室は収縮して、そ の油圧は上昇しょうとする。
[0031] しかし、前記したように、ガスが封入されたガス封入室をフリーピストンを介し第 1室 に連結している。このため、上記第 1室が収縮して、その油圧が上昇し始めるとき、上 記フリーピストンの移動と、上記ガス封入室内のガスの収縮とにより、上記第 1室の油 圧の上昇が抑制される。よって、上記緩衝器の収縮動作の開始当初に、上記第 1室 の油圧によりこの第 1室力 中間室と第 2室とに向けて上記圧側第 1減衰力発生装置 を油が直ちに流動する、ということは防止される。
[0032] ここで、上記したように、シリンダチューブに対するピストンロッドの移動速度が小さ いときには、圧側第 1減衰力発生装置の減衰力は圧側第 2減衰力発生装置のそれよ りも大きい。このため、緩衝器の収縮動作の開始当初のように、上記移動速度が小さ いときには、上記圧側第 1、第 2減衰力発生装置のうち、圧側第 1減衰力発生装置が 支配的に減衰力を生じ、上記圧側第 2減衰力発生装置では減衰力をほとんど生じる ことはない。よって、上記ピストンロッドに連動する第 1、第 2ピストンの進行方向の後 方における上記中間室と第 2室とは共に圧力低下する。そして、これらの低下圧力は 互いにほぼ同程度であることから、これら中間室と第 2室とは一体的な 1つの室のよう になる。
[0033] 上記の場合、中間室と第 2室との各容積を合計した容積はこれら単独のものよりも 大きいため、これら中間室と第 2室とにおける油の「体積弾性」による体積変化量は大 きく(軟らかく)保たれる。このため、緩衝器の収縮動作の開始当初において、上記シ リンダチューブ内に第 1、第 2ピストンが侵入動作しても、上記中間室と第 2室とにお ける油圧の低下速度は小さく抑制される。よって、上記第 1室から中間室と第 2室とに 向けて上記圧側第 1減衰力発生装置を油が直ちに流動する、ということは防止される 。つまり、上記緩衝器の収縮動作の開始当初では、上記「応答性」が低く抑制され、 シリンダチューブ内へのピストンロッドの侵入が急激に抑制されるということが防止さ れる。
[0034] 上記の結果、例えば、上記緩衝器を車両に適用すれば、この車両の走行中、路面 力 与えられる上記第 1入力により緩衝器が収縮動作する際の開始当初には、乗員 は車両力 軟らかい感覚を与えられることとなり、これにより、車両への乗り心地の向 上が達成される、という「作用効果」が生じる。
[0035] また、上記収縮動作時の移動速度が大きくなつたときには、上記圧側第 1減衰力発 生装置よりも圧側第 2減衰力発生装置の減衰力が大きくなつて、この圧側第 2減衰力 発生装置が支配的に減衰力を生じる。このため、上記第 2ピストンの進行方向の後方 における上記第 2室は拡大して、その油圧が低下する。
[0036] ここで、上記第 2室のみの容積は小さいことから、この第 2室における油の「体積弹 性」による体積変化量は小さい (硬い)。このため、上記第 2ピストンの侵入動作で、上 記第 2室における油圧の低下速度は速くなり、上記圧側第 2減衰力発生装置におけ る上記「応答性」は高くなる。
[0037] 上記の結果、例えば、上記緩衝器を車両に適用した場合において、この車両の走 行中、路面力 与えられる上記第 1入力により緩衝器が収縮動作する際の上記移動 速度の高速時には、上記車両に与えられる衝撃力に基づく衝撃エネルギーが上記 圧側第 2減衰力発生装置により直ちに吸収されて、車両の走行安定性の向上が達 成される、という他の「作用効果」も生じる。
[0038] 一方、上記緩衝器 1が第 2入力を与えられて伸長動作する際、一般的には、上記第 2室の油が、この第 2室から中間室に向けて上記第 2ピストンにおける伸側第 2減衰 力発生装置を通り流動させられる。また、上記中間室内の油が、この中間室から第 1 室に向けて上記第 1ピストンにおける伸側第 1減衰力発生装置を通り流動させられる 。そして、このように、伸側第 1、第 2減衰力発生装置は、これらを上記油がそれぞれ 流動することにより、共に減衰力を生じようとする。
[0039] 上記の場合、緩衝器の伸長動作の開始当初には、まず、上記シリンダチューブから の第 1、第 2ピストンとピストンロッドとの退出動作により、上記第 1室は拡大して、その 油圧は低下しょうとする。
[0040] しかし、前記したように、ガスが封入されたガス封入室をフリーピストンを介し第 1室 に連結している。このため、上記第 1室が拡大して、その油圧が低下し始めるとき、上 記フリーピストンの移動と、上記ガス封入室内のガスの膨張とにより、上記第 1室の油 圧の低下が抑制される。よって、上記緩衝器の伸長動作の開始当初に、上記第 1室 の油圧によりこの第 1室に向けて上記中間室と第 2室とから上記伸側第 1減衰力発生 装置を油が直ちに流動する、ということは防止される。
[0041] ここで、前記したように、シリンダチューブに対するピストンロッドの移動速度が小さ いときには、伸側第 1減衰力発生装置の減衰力は伸側第 2減衰力発生装置のそれよ りも大きい。このため、緩衝器の伸長動作の開始当初のように、上記移動速度が小さ いときには、上記伸側第 1、第 2減衰力発生装置のうち、伸側第 1減衰力発生装置が 支配的に減衰力を生じ、上記伸側第 2減衰力発生装置では減衰力をほとんど生じる ことはない。よって、上記ピストンロッドに連動する第 1、第 2ピストンの進行方向の後 方における上記第 1室と中間室とは共に圧力低下する。そして、これらの低下圧力は ほぼ同程度であることから、これら第 1室と中間室とは一体的な 1つの室のようになる
[0042] 上記の場合、第 1室と中間室との各容積を合計した容積はこれら単独のものよりも 大きいため、これら第 1室と中間室とにおける油の「体積弾性」による体積変化量は大 きく(軟らかく)保たれる。このため、緩衝器 1の伸長動作の開始当初において、上記 シリンダチューブから第 1、第 2ピストンが退出動作しても、上記中間室と第 2室とにお ける油圧の上昇速度は小さく抑制される。よって、上記中間室と第 2室とから第 1室に 向けて上記伸側第 1減衰力発生装置を油が直ちに流動する、ということは防止される 。つまり、上記緩衝器の伸長動作の開始当初では、上記「応答性」が低く抑制され、 シリンダチューブ力ものピストンロッドの退出が急激に抑制されるということが防止され る。
[0043] 上記の結果、上記緩衝器を車両に適用すれば、この車両の走行中、上記第 2入力 により緩衝器が伸長動作する際の開始当初には、乗員は車両力も軟らかい感覚を与 えられることとなり、これにより、車両への乗り心地の向上が達成され、前記「作用効 果」がより確実に生じる。
[0044] また、上記伸長動作時の移動速度が大きくなつたときには、上記伸側第 1減衰力発 生装置よりも伸側第 2減衰力発生装置の減衰力が大きくなつて、この伸側第 2減衰力 発生装置が支配的に減衰力を生じる。このため、上記第 2ピストンの進行方向の前方 における上記第 2室は収縮して、その圧力が上昇する。
[0045] ここで、上記第 2室のみの容積は小さいことから、この第 2室における油の「体積弹 性」による体積変化量は小さい (硬い)。このため、上記第 2ピストンの退出動作で、上 記第 2室の油圧の上昇速度は速くなり、上記伸側第 2減衰力発生装置における上記 「応答性」は高くなる。 [0046] 上記の結果、上記緩衝器を車両に適用すれば、この車両の走行中、上記第 2入力 により緩衝器が伸長動作する際の上記移動速度の高速時には、上記第 2入力に基 づく衝撃エネルギーが上記伸側第 2減衰力発生装置により直ちに吸収されて、車両 の走行安定性の向上が達成され、前記他の「作用効果」がより確実に生じる。
[0047] なお、上記発明にお 、て、次のようにしてもよ!、。即ち、上記圧側、伸側第 1減衰力 発生装置は、上記第 1、第 2入力が与えられるとき、上記第 1室と中間室との間の第 1 油圧差により上記第 1ピストンを貫通するよう油を流動させる圧側、伸側第 1バルブと 、上記第 1ピストンを貫通する第 1オリフィスとを備え、上記圧側、伸側第 2減衰力発生 装置は、上記第 1、第 2入力が与えられるとき、上記中間室と第 2室との間の第 2油圧 差により上記第 2ピストンを貫通するよう油を流動させる圧側、伸側第 2バルブと、上 記第 2ピストンを貫通する第 2オリフィスとを備え、上記圧側、伸側第 1バルブの開弁 圧特性を圧側、伸側第 2バルブのそれよりも弱くし、上記第 1オリフィスの断面積を第 2オリフィスのそれよりも小さくしている。
[0048] 上記のようにすれば、上記緩衝器の収縮動作の開始当初には、上記シリンダチュ ーブ内への第 1、第 2ピストンの侵入動作により、上記第 2室は拡大して、その油圧は 低下する。すると、この第 2室で不足する油を補うため、上記第 1室と中間室とから上 記第 2室に向力うよう上記第 1ピストンの第 1オリフィスと第 2ピストンの第 2オリフィスと をそれぞれほぼ同量の油が流動する。これにより、上記中間室の油圧が第 1室の油 圧に対し低下し、かつ、第 2室の油圧が中間室の油圧に対し低下する。
[0049] ここで、上記したように、第 1ピストンの圧側第 1減衰力発生装置の第 1オリフィスの 断面積は第 2ピストンの圧側第 2減衰力発生装置の第 2オリフィスのそれよりも小さい 。このため、上記第 1オリフィスによって生じる第 1油圧差は上記第 2オリフィスによつ て生じる第 2油圧差よりも大きくなる。
[0050] 即ち、緩衝器の収縮動作の開始当初であって、上記移動速度が小さいときには、 上記圧側第 1、第 2減衰力発生装置のうち、圧側第 1減衰力発生装置が支配的に減 衰カを生じ、この圧側第 1減衰力発生装置の減衰力は圧側第 2減衰力発生装置の それよりも大きくなる。
[0051] 次に、上記収縮動作時の移動速度がより大きくなつて、上記第 1室の油圧と中間室 の油圧との第 1油圧差が上記圧側第 1減衰力発生装置の第 1バルブの開弁圧にな れば、この第 1バルブが開弁する。すると、上記第 1室の油が上記中間室に向けて上 記第 1オリフィスに加え第 1バルブを流動し、これにより、この圧側第 1減衰力発生装 置による減衰力の増加勾配が小さくされる。
[0052] また、上記したように移動速度が大きくなることにより、上記第 1オリフィスと圧側第 1 減衰力発生装置の第 1バルブとを流動する油の流量が多くなると、この油が上記圧 側第 2減衰力発生装置の第 2オリフィスを流動することによる流動抵抗 (圧力損失)が 増加し、この圧側第 2減衰力発生装置の減衰力が大きくなる。
[0053] 上記収縮動作時の移動速度が更に大きくなつて、上記圧側第 2減衰力発生装置の 第 2オリフィスの流量が増加し、その流動抵抗が大きくなつて、上記中間室の油圧と 第 2室の油圧との第 2油圧差が、上記圧側第 2減衰力発生装置の第 2バルブの開弁 圧に達すれば、この第 2バルブが開弁する。すると、上記中間室の油が上記第 2室に 向けて上記第 2オリフィスに加え第 2バルブを流動し、これにより、この圧側第 2減衰 力発生装置による減衰力の増加勾配が小さくされる。
[0054] そして、上記収縮動作時の移動速度が大きくなつたときには、上記圧側第 1減衰力 発生装置よりも圧側第 2減衰力発生装置の減衰力が大きくなつて、この圧側第 2減衰 力発生装置が支配的に減衰力を生じる。
[0055] 一方、上記緩衝器の伸長動作の開始当初には、上記シリンダチューブからの第 1、 第 2ピストンの退出動作により、上記第 2室は収縮して、その油圧は上昇する。すると 、この第 2室で余剰となる油を排出するため、上記第 2室から上記第 1室と中間室とに 向力うよう上記第 1ピストンの第 1オリフィスと第 2ピストンの第 2オリフィスとをそれぞれ ほぼ同量の油が流動する。これにより、上記中間室の油圧が第 1室の油圧に対し上 昇し、かつ、第 2室の油圧が中間室の油圧に対して上昇する。
[0056] ここで、上記したように、第 1ピストンの伸側第 1減衰力発生装置の第 1オリフィスの 断面積は第 2ピストンの伸側第 2減衰力発生装置の第 2オリフィスのそれよりも小さい 。このため、上記第 1オリフィスによって生じる第 1油圧差は上記第 2オリフィスによつ て生じる第 2油圧差よりも大きくなる。
[0057] 即ち、上記緩衝器の伸長動作の開始当初であって、上記移動速度が小さいときに は、上記伸側第 1、第 2減衰力発生装置のうち、伸側第 1減衰力発生装置が支配的 に減衰力を生じ、この伸側第 1減衰力発生装置の減衰力は伸側第 2減衰力発生装 置のそれよりも大きくなる。
[0058] 次に、上記伸長動作時の移動速度が大きくなつて、上記第 1室の油圧と中間室の 油圧との第 1油圧差が上記伸側第 1減衰力発生装置の第 1バルブの開弁圧になれ ば、この第 1バルブが開弁する。すると、上記中間室の油が上記第 1室に向けて上記 第 1オリフィスに加え第 1バルブを流動し、これにより、この伸側第 1減衰力発生装置 による減衰力の増加勾配が小さくされる。
[0059] また、上記したように、移動速度が大きくなることにより、上記第 1オリフィスと伸側第 1減衰力発生装置の第 1バルブとを流動する油の流量が多くなると、この油が上記伸 側第 2減衰力発生装置の第 2オリフィスを流動することによる流動抵抗が増加し、この 圧側第 2減衰力発生装置の減衰力が大きくなる。
[0060] 上記伸長動作時の移動速度が更に大きくなつて、上記伸側第 2減衰力発生装置の 第 2オリフィスの流量が増加し、その流動抵抗が大きくなつて、上記中間室の油圧と 第 2室の油圧との第 2油圧差が、上記伸側第 2減衰力発生装置の第 2バルブの開弁 圧に達すれば、この第 2バルブが開弁する。すると、上記第 2室の油が中間室に向け て上記第 2オリフィスに加え第 2バルブを流動し、これにより、この伸側第 2減衰力発 生装置による減衰力の増加勾配が小さくされる。
[0061] そして、上記伸長動作時の移動速度が大きくなつたときには、上記伸側第 1減衰力 発生装置よりも伸側第 2減衰力発生装置の減衰力が大きくなつて、この伸側第 2減衰 力発生装置が支配的に減衰力を生じる。
[0062] 即ち、上記圧側、伸側第 1、第 2減衰力発生装置は、上記第 1、第 2バルブや第 1、 第 2オリフィスにより構成され、この具体的な構成により、前記各「作用効果」が達成さ れる。そして、上記第 1、第 2バルブや、第 1、第 2オリフィスは構成簡単なものである ため、上記各「作用効果」は、簡単な構成によって達成される。
[0063] また、上記発明において、上記第 2オリフィスの断面積を上記第 1オリフィスの断面 積の 1. 5— 10倍としてもよい。
[0064] ここで、上記第 2オリフィスの断面積が上記第 1オリフィスの断面積の 1. 5倍未満で あるとすると、これら第 1、第 2オリフィスの各断面積の値が互いに接近する。このため 、緩衝器が第 1、第 2入力を与えられて収縮動作や伸長動作をするとき、これら各動 作の開始当初から、上記圧側第 1、第 2減衰力発生装置、もしくは伸側第 1、第 2減衰 力発生装置をそれぞれほぼ同時にほぼ同じ条件で油が流動し、ほぼ同じ減衰力を 生じがちとなる。よって、上記各動作の開始当初に、上記圧側、伸側第 1減衰力発生 装置が支配的に減衰力を発生する、ということは困難となり、上記「作用効果」は得難 くなる。
[0065] 一方、上記第 2オリフィスの断面積が上記第 1オリフィスの断面積の 10倍を越えると すると、上記第 2オリフィスの断面積が過大となって、この第 2オリフィスを油が流動し ても、所望の減衰力が得難くなる。よって、特に、上記移動速度が大きいとき、上記緩 衝器に所望の減衰力を得ることは困難となる。
[0066] そこで、上記したように、第 1、第 2オリフィスの断面積の倍率を 1. 5— 10倍と定める ことが好ましい。
[0067] また、上記発明において、上記油の動粘度を、 40°Cにおいて 4 10センチストーク ス(cSt)としてもよい。
[0068] このようにすれば、ここで、上記緩衝器を繰り返し使用すると、油の温度が上昇して 、動粘度が低下しがちとなる。また、一般に、油の動粘度が高い程、温度による動粘 度の低下幅が大きい。
[0069] 一般には、上記油の動粘度は 40°Cにおいてほぼ 15cStとされる力 この種の油を 用いると、この油の温度上昇による動粘度の低下幅が大きくなり、上記緩衝器に所望 の減衰力を精度よく得ることは困難となる。また、本発明のように、複数のピストンを用 いる緩衝器においては油の粘度の影響 (抵抗)を受ける部分が多くなる。そこで、そ の影響をできる限り少なくするため、上記 10センチスト一タス以下のような低粘度の 油と組み合わせて使用することが有益である。
[0070] 一方、上記油の動粘度を 4未満にすると、油が低粘度過ぎることによるこの油の潤 滑性の低下に伴い、その消費量の増大を招き、また、耐久性が低下する。
[0071] そこで、上記したように、油の動粘度を、 40°Cにおいて 4 lOcStと定めている。
[0072] また、上記発明にお 、て、上記第 2オリフィスの断面積の値を可変とする調整装置 を設けてもよい。
[0073] このようにすれば、上記調整装置を操作することにより、上記移動速度の中、高速 域で、第 2オリフィスによる減衰力特性を種々変化させて所望の特性を得ることができ る。一方、上記調整装置を操作しても、上記圧側、伸側第 1減衰力発生装置の第 1ォ リフィスの断面積は一定値に固定されたままに保たれる。よって、上記緩衝器を車両 に適用すれば、前記「作用効果」を確保しつつ、車両に好みの乗り心地を得ることが できる。
[0074] また、上記発明にお 、て、上記第 1ピストンを結合させた上記ピストンロッドの部分 の外径寸法を、上記第 2ピストンを結合させた上記ピストンロッドの他部分の外径寸法 よりち/ J、さくしてちょい。
[0075] このようにすれば、上記ピストンロッドの部分の外径寸法を、ピストンロッドの他部分 の外径寸法よりも小さくした分、上記第 1ピストンの軸方向端面において、ピストンロッ ドの貫通部を除く有効面積を、上記第 2ピストンのそれに比べてより大きくできる。
[0076] よって、上記第 1ピストンに取り付けられる上記圧側、伸側第 1減衰力発生装置の例 えば第 1バルブのリーフ弁体の有効面積を大きくできるなど、圧側、伸側第 1減衰力 発生装置の設計の自由度を向上させることができる。この結果、上記移動速度の極 低速時に、圧側、伸側第 1減衰力発生装置の第 1バルブを油が流動することにより生 じる減衰力の微小な値を精度よく得ることができ、前記「作用効果」が助長される。 図面の簡単な説明
[0077] [図 1]実施例 1を示し、緩衝器の縦断面図である。
[図 2]実施例 1を示し、図 1の部分拡大図である。
[図 3]実施例 1を示し、ピストンロッドの移動速度と減衰力との関係 (減衰力特性)を示 すグラフ図である。
[図 4]実施例 2を示し、図 1に相当する図である。
[図 5]実施例 3を示し、図 1に相当する図である。
[図 6]実施例 4を示し、図 2に相当する図である。
[図 7]実施例 5を示し、図 2に相当する図である。
[図 8]実施例 6を示し、図 1に相当する図である。 符号の説明
1
2 車両
3 車体側
4 車輪側
7 g心
8 シリンダチューブ
10 一端部
12 他端部
17 第 1ピストン
18 第 2ピストン
19 第 1室
20 中間室
21 第 2室
22 一端部側
23 ピストンロッド
31 油
34 圧側第 1減衰力発生装置
35 圧側第 2減衰力発生装置
36 第 1バルブ
39 第 1オリフィス
41 第 2バルブ
44 第 2オリフィス
46 伸側第 1減衰力発生装置
47 伸側第 2減衰力発生装置
50 中間ユニット
53 フリーピストン
54 貯油室 55 チューブ
56 ガス封入室
62 調整装置
73 絞り部
74 連通路
75 バルブ
A 第 1入力
A' 第 2入力
B 収縮動作
C 伸長動作
Dl, , D2 外径寸法
PI, PN, P2 油圧
V 移動速度
発明を実施するための最良の形態
[0079] 本発明の油圧緩衝器に関し、外部から第 1、第 2入力が与えられて油圧緩衝器が 収縮、伸長動作する場合において、その動作開始当初のように、シリンダチューブに 対するピストンロッドの移動速度が小さいときには、上記「応答性」を低く抑制させるよ うにし、一方、上記第 1、第 2入力が大きくて、上記移動速度が大きいときには、上記「 応答性」を高くさせるようにし、この緩衝器を車両に適用することにより、この車両への 乗り心地が軟らかくなるようにすると同時に、上記した大きな第 1、第 2入力が与えら れるときには、遅れなく衝撃を吸収することによって、車両への乗り心地をより向上さ せるようにし、かつ、走行安定性をも向上させるようにする、という目的を実現するため 、本発明を実施するための最良の形態は、次の如くである。
[0080] 即ち、緩衝器は、シリンダチューブに軸方向摺動可能に嵌入され、このシリンダチュ ーブの内部をその一端部側から他端部側に向けて順次、第 1室、中間室、および第 2室に区画する第 1、第 2ピストンと、一端部側がこれら第 1、第 2ピストンに結合され、 他端部側が上記シリンダチューブの他端部側力 このシリンダチューブの外方に延 出するピストンロッドと、上記シリンダチューブ内にピストンロッドが侵入するよう外部か ら第 1入力が与えられるとき、上記第 1室から中間室に向け上記第 1ピストンを貫通す るよう油を流動させて上記第 1入力を緩和する圧側第 1減衰力発生装置と、上記第 1 入力が与えられるとき、上記中間室から第 2室に向けて上記第 2ピストンを貫通するよ う油を流動させて上記第 1入力を緩和する圧側第 2減衰力発生装置とを備えている。
[0081] また、上記緩衝器は、上記シリンダチューブ力もピストンロッドが退出するよう外部か ら第 2入力が与えられるとき、上記中間室力も第 1室に向け第 1ピストンを貫通するよう 油を流動させて上記第 2入力を緩和する伸側第 1減衰力発生装置と、上記第 2入力 が与えられるとき、上記第 2室から中間室に向けて上記第 2ピストンを貫通するよう油 を流動させて上記第 2入力を緩和する伸側第 2減衰力発生装置とを備えている。
[0082] 上記シリンダチューブに対するピストンロッドの移動速度が小さいときには、上記圧 側、伸側第 1減衰力発生装置の減衰力が上記圧側、伸側第 2減衰力発生装置のそ れよりも大きくなるようにする一方、上記移動速度が大きいときには、上記圧側、伸側 第 1減衰力発生装置の減衰力よりも上記圧側、伸側第 2減衰力発生装置のそれが大 きくなるようにし、ガスが封入されたガス封入室がフリーピストンを介し上記第 1室に連 結されている。
実施例 1
[0083] 本発明をより詳細に説明するために、その実施例 1を添付の図 1—3に従って説明 する。
[0084] 図 1, 2において、符号 1は油圧緩衝器である。この緩衝器 1は、車両 2である自動 車や自動二輪車等の懸架装置に適用され、この車両 2の車体側 3と、この車体側 3に 懸架された各車輪側 4とに架設されている。
[0085] 上記緩衝器 1は、軸心 7が縦向きで単筒式のシリンダチューブ 8を備えている。この シリンダチューブ 8は、上記軸心 7上に位置するチューブ本体 9と、上記シリンダチュ ーブ 8の一端部 10であるチューブ本体 9の下端部の開口を閉じるキャップ 11と、上 記シリンダチューブ 8の他端部 12であるチューブ本体 9の上端部の開口を閉じるへッ ドカバー 13とを備え、上記シリンダチューブ 8の一端部 10は、上記各車輪側 4に対し 枢支軸 14により枢支されている。
[0086] 上記シリンダチューブ 8には、その軸方向に摺動可能となるよう複数の第 1、第 2ピ ストン 17, 18が嵌入されている。上記第 1ピストン 17が上記シリンダチューブ 8の一端 部 10側に配置され、上記第 2ピストン 18が上記シリンダチューブ 8の他端部 12側に 配置されている。上記第 1、第 2ピストン 17, 18により上記シリンダチューブ 8の内部 力 その一端部 10側から他端部 12側に向けて順次第 1室 19、中間室 20、および第 2室 21に区画されている。
[0087] 上記軸心 7上に位置して、一端部側 22が上記第 1、第 2ピストン 17, 18に結合され 、他端部側が上記シリンダチューブ 8の他端部 12側力 このシリンダチューブ 8の外 方に延出するピストンロッド 23が設けられている。このピストンロッド 23の上記一端部 側 22は、上記第 1、第 2ピストン 17, 18の中心を貫通し、これら第 1、第 2ピストン 17, 18は、結合具 24により上記ピストンロッド 23の上記一端部側 22に結合されている。
[0088] 上記結合具 24は、上記ピストンロッド 23に外嵌されて上記第 1、第 2ピストン 17, 18 をそれぞれ挟む座金 25と、上記ピストンロッド 23に外嵌されて上記第 1、第 2ピストン 17, 18の間に介設されるスぺーサ 26と、上記ピストンロッド 23における上記一端部 側 22と他端部側 27との間に形成される段差面 28に対し上記第 1、第 2ピストン 17, 1 8、座金 25、およびスぺーサ 26を一体的に締結させる締結具 29とを備えている。上 記ピストンロッド 23の他端部側 27の端部は、上記車体側 3に対し枢支軸 30により枢 支されている。上記シリンダチューブ 8内には作動油である油 31が充填されている。 この油 31の動粘度は 40°Cにおいて 4 10センチスト一タス(cSt)とされている。
[0089] 上記シリンダチューブ 8内にピストンロッド 23が侵入するよう緩衝器 1に外部力も第 1 入力 Aが与えられるとき、つまり、この緩衝器 1が収縮動作 Bするとき、上記第 1室 19 力も中間室 20に向け上記第 1ピストン 17を貫通するよう油 31を流動させて上記第 1 入力 Aを緩和する圧側第 1減衰力発生装置 34が設けられている。また、上記第 1入 力 Aが与えられて、上記緩衝器 1が収縮動作 Bするとき、上記中間室 20から第 2室 2 1に向け上記第 2ピストン 18を貫通するよう油 31を流動させて上記第 1入力 Aを緩和 する圧側第 2減衰力発生装置 35が設けられて ヽる。
[0090] 上記圧側第 1減衰力発生装置 34は圧側第 1バルブ 36を備えている。上記第 1ビス トン 17には、この第 1ピストン 17を貫通する複数のバルブ孔 37が周方向に間隔をお いて形成され、これらノ レブ孔 37は、上記第 1室 19と中間室 20とを互いに連通させ ている。上記第 1バルブ 36は、上記バルブ孔 37の出口側を開閉可能に弹性的に閉 じる圧側リーフ弁体 38を備え、上記ノ レブ孔 37の入口側には切り欠き 37aが形成さ れている。上記リーフ弁体 38は、互いに径寸法の異なる複数枚(2枚)の円板状の板 ばねを重ねたもので、リーフシート 40を介して第 1ピストン 17と上記結合具 24の座金 25との間に挟まれてピストンロッド 23に支持されている。
[0091] 上記第 1入力 Aが与えられて、緩衝器 1が収縮動作 Bするとき、上記第 1室 19の油 圧 P1と中間室 20の油圧 PNとの第 1油圧差(P1— PN)により、上記リーフ弁体 38が 開弁させられて、上記第 1室 19から中間室 20に向けて油 31が切り欠き 37aとバルブ 孔 37とを通り流動させられる。また、上記圧側第 1減衰力発生装置 34は、上記第 1ピ ストン 17に形成される断面円形の第 1オリフィス 39を備え、この第 1オリフィス 39は上 記第 1室 19と中間室 20とを互いに連通させるよう上記第 1ピストン 17を上記バルブ孔 37を介して貫通している。
[0092] 上記圧側第 2減衰力発生装置 35は圧側第 2バルブ 41を備えている。上記第 2ビス トン 18には、この第 2ピストン 18を貫通する複数のバルブ孔 42が周方向に間隔をお いて形成され、これらノ レブ孔 42は上記中間室 20と第 2室 21とを互いに連通させて いる。上記第 2バルブ 41は、上記バルブ孔 42の出口側を開閉可能に弹性的に閉じ る圧側リーフ弁体 43を備え、上記バルブ孔 42の入口側には切り欠き 42aが形成され ている。上記リーフ弁体 43は、互いに径寸法の異なる複数枚(3枚)の円板状の板ば ねを重ねたもので、リーフシート 45を介して第 2ピストン 18と上記結合具 24の座金 25 との間に挟まれてピストンロッド 23に支持されている。
[0093] 上記第 1入力 Aが与えられて、緩衝器 1が収縮動作 Bするとき、上記中間室 20の油 圧 PNと第 2室 21の油圧 P2との第 2油圧差 (PN—P2)により、上記リーフ弁体 43が 開弁させられて、上記中間室 20から第 2室 21に向けて油 31が切り欠き 42aとバルブ 孔 42とを通り流動させられる。また、上記圧側第 2減衰力発生装置 35は、上記第 2ピ ストン 18に形成される断面円形の第 2オリフィス 44を備え、この第 2オリフィス 44は上 記中間室 20と第 2室 21とを互いに連通させるよう上記第 2ピストン 18を上記バルブ孔 42を介して貫通している。
[0094] 図 3において、上記緩衝器 1の収縮動作 B時に、上記シリンダチューブ 8内へのビス トンロッド 23の移動速度 Vが小さいとき(図 3中、 VL)には、上記圧側第 1減衰力発生 装置 34の減衰力が上記圧側第 2減衰力発生装置 35のそれよりも大きくなることとさ れている。一方、上記移動速度 Vが大きいとき(図 3中、 VH)には、上記圧側第 1減 衰カ発生装置 34の減衰力よりも圧側第 2減衰力発生装置 35のそれが大きくなること とされている。
[0095] これを実現するための具体的構成として、上記第 1バルブ 36の開弁圧特性が第 2 バルブ 41のそれよりも弱くされている。これを換言すれば、上記第 1ピストン 17の第 1 バルブ 36の開弁を開始させる上記第 1油圧差 (P1— PN)の値が、上記第 2ピストン 1 8の第 2バルブ 41の開弁を開始させる第 2油圧差 (PN— P2)の値よりも小さくされて いる。また、上記第 1オリフィス 39の断面積が第 2オリフィス 44の断面積よりも小さくさ れている。この場合、第 2オリフィス 44の断面積は第 1オリフィス 39の断面積の 1. 5- 10倍とされている。また、これら第 1、第 2オリフィス 39, 44の各断面積は調整不可で 、一定値に固定されている。
[0096] 一方、上記第 1入力 Aと反対方向に第 2入力 が与えられてシリンダチューブ 8か らピストンロッド 23が退出するとき、つまり、上記緩衝器 1が伸長動作 Cするとき、上記 中間室 20から第 1室 19に向けて上記第 1ピストン 17を貫通するよう油 31を流動させ て上記第 2入力 を緩和する伸側第 1減衰力発生装置 46が設けられている。この 伸側第 1減衰力発生装置 46は、上記圧側第 1減衰力発生装置 34と構成、形状、作 用においてほぼ同等の伸側第 1バルブ 36' 、バルブ孔 37' 、切り欠き 37a' 、リー フ弁体 38' 、およびリーフシート 4( を備え、上記第 1オリフィス 39とこれに連なるバ ルブ孔 37の一部とは、上記伸側第 1減衰力発生装置 46に共用されている。
[0097] また、上記第 2入力 が与えられて、上記緩衝器 1が伸長動作 Cするとき、上記第 2室 21から中間室 20に向け上記第 2ピストン 18を貫通するよう油 31を流動させて上 記第 2入力 を緩和する伸側第 2減衰力発生装置 47が設けられている。この伸側 第 2減衰力発生装置 47は、上記圧側第 2減衰力発生装置 35と構成、形状、作用に おいてほぼ同等の伸側第 2バルブ 41/ 、バルブ孔 42' 、切り欠き 42a' 、リーフ弁 体 43' 、およびリーフシート 45' を備え、上記第 2オリフィス 44とこれに連なるバル ブ孔 42の一部とは、上記伸側第 2減衰力発生装置 47に共用されている。 [0098] 上記の場合、圧側第 1減衰力発生装置 34の切り欠き 37aは伸側第 1減衰力発生装 置 46のリーフ弁体 38' を回避するよう形成され、上記切り欠き 37aはバルブ孔 37を 第 1室 19に連通させている。また、上記伸側第 1減衰力発生装置 46の切り欠き 37a ' は圧側第 1減衰力発生装置 34のリーフ弁体 38を回避するよう形成され、上記切り 欠き 37a' は上記バルブ孔 3 を中間室 20に連通させている。一方、上記圧側第 2減衰力発生装置 35の切り欠き 42aは伸側第 2減衰力発生装置 47のリーフ弁体 43 ' を回避するよう形成され、上記切り欠き 42aはバルブ孔 42を中間室 20に連通させ ている。また、上記伸側第 2減衰力発生装置 47の切り欠き 42 は圧側第 2減衰力 発生装置 35のリーフ弁体 43を回避するよう形成され、上記切り欠き 42a' は上記バ ルブ孔 42^ を第 2室 21に連通させている。なお、各図において、リーフ弁体は断面 が図示されている力 便宜上、ハッチングは付していない。
[0099] 上記車体側 3とシリンダチューブ 8との間に架設され、上記緩衝器 1を伸長させるよ う付勢するばね 49が設けられ、このばね 49の付勢力は、上記第 2入力 に相当し ている。
[0100] 上記第 1室 19、中間室 20、および第 2室 21内の油 31を常時加圧する蓄圧器 51が 設けられている。この蓄圧器 51は、上記シリンダチューブ 8とは別体として設けられ、 車体側 3に支持される他のシリンダチューブ 52と、このシリンダチューブ 52に軸方向 に摺動可能となるよう嵌入されるフリーピストン 53と、このフリーピストン 53により区画 されたシリンダチューブ 52内の 2室のうち、一方の室である貯油室 54を上記第 1室 1 9に連通させるチューブ 55とを備えている。上記貯油室 54には油 31が充填され、上 記シリンダチューブ 52内の他方の室であるガス封入室 56には、圧縮性があって圧縮 状態とされた高圧の窒素ガスが封入されている。つまり、ガス封入室 56がフリーピスト ン 53を介し上記第 1室 19に連結されている。
[0101] 上記車両 2の走行時、上記緩衝器 1は走行路面から車輪側 4を介し外部から第 1入 力 Aを与えられて収縮動作 Bする。この際、まず、上記第 1室 19内の油 31が、この第 1室 19から中間室 20に向けて上記第 1ピストン 17における圧側第 1減衰力発生装置 34を通り流動させられる。また、上記中間室 20内の油 31が、この中間室 20から第 2 室 21に向けて上記第 2ピストン 18における圧側第 2減衰力発生装置 35を通り流動さ せられる。そして、このように、圧側第 1、第 2減衰力発生装置 34, 35は、これらを上 記油 31がそれぞれ流動することにより、共に減衰力を生じようとする。
[0102] 上記の場合、緩衝器 1の収縮動作 Bの開始当初には、まず、上記シリンダチューブ 8内への第 第 2ピストン 17, 18とピストンロッド 23との侵入動作により、上記第 1室 1 9は収縮して、その油圧 P1は上昇しょうとする。
[0103] しかし、前記したように、ガスが封入されたガス封入室 56がフリーピストン 53を介し 上記第 1室 19に連結されている。このため、上記第 1室 19が収縮して、その油圧 P1 が上昇し始めるとき、上記フリーピストン 53の移動と、上記ガス封入室 56内のガスの 収縮とにより、上記第 1室 19の油圧 P1の上昇が抑制される。よって、上記緩衝器 1の 収縮動作 Bの開始当初に、上記第 1室 19の油圧 P1によりこの第 1室 19から中間室 2 0と第 2室 21とに向けて上記圧側第 1減衰力発生装置 34を油 31が直ちに流動する、 ということは防止される。
[0104] また、上記緩衝器 1の収縮動作 Bの開始当初には、上記シリンダチューブ 8内への 第 1、第 2ピストン 17, 18の侵入動作により、上記第 2室 21は拡大して、その油圧 P2 は低下する。すると、この第 2室 21で不足する油 31を補うため、上記第 1室 19と中間 室 20とから上記第 2室 21に向力 よう上記第 1ピストン 17の第 1オリフィス 39と第 2ピ ストン 18の第 2オリフィス 44とをそれぞれほぼ同量の油 31が流動する。これにより、上 記中間室 20の油圧 PNが第 1室 19の油圧 P1に対し低下し、かつ、第 2室 21の油圧 PNが中間室 20の油圧 PNに対し低下する。
[0105] し力も、上記したように、第 1ピストン 17の圧側第 1減衰力発生装置 34の第 1オリフィ ス 39の断面積は第 2ピストン 18の圧側第 2減衰力発生装置 35の第 2オリフィス 44の それよりも小さい。このため、上記第 1オリフィス 39によって生じる第 1油圧差 (P1— P N)は上記第 2オリフィス 44によって生じる第 2油圧差 (PN— P2)よりも大きくなる。
[0106] 即ち、緩衝器 1の収縮動作 Bの開始当初であって、上記移動速度 Vが小さいとき( 図 3中、 O-a)には、上記圧側第 1、第 2減衰力発生装置 34, 35のうち、圧側第 1減 衰カ発生装置 34が支配的に減衰力を生じ、この圧側第 1減衰力発生装置 34の減衰 力は圧側第 2減衰力発生装置 35のそれよりも大きくなる。
[0107] 上記緩衝器 1の収縮動作 B時には、シリンダチューブ 8にピストンロッド 23が侵入す る分、上記シリンダチューブ 8の容積が減少する。そこで、この減少容積に相当する 量の油 31が、上記蓄圧器 51のフリーピストン 53の移動と、上記ガス封入室 56のガス の収縮とにより、上記第 1室 19から貯油室 54にチューブ 55を通し流入させられる。こ れにより、上記緩衝器 1の収縮動作 Bが円滑に行なわれる。
[0108] そして、上記収縮動作 B時の移動速度 Vがより大きくなつて、上記第 1室 19の油圧 P1と中間室 20の油圧 PNとの第 1油圧差 (PI— PN)が上記圧側第 1減衰力発生装 置 34の第 1バルブ 36の開弁圧になれば、この第 1バルブ 36が開弁する(図 3中、 a) 。すると、上記第 1室 19の油 31が上記中間室 20に向けて上記第 1オリフィス 39にカロ え第 1バルブ 36を流動し、これにより、この圧側第 1減衰力発生装置 34による減衰力 の増加勾配力 、さくされる(図 3中、 a— b)。なお、上記第 1油圧差 (PI PN)が大き くなるほど、上記第 1バルブ 36の開度は大きくなる。
[0109] また、上記したように移動速度 Vが大きくなることにより、上記第 1オリフィス 39と圧側 第 1減衰力発生装置 34の第 1バルブ 36とを流動する油 31の流量が多くなると、この 油 31が上記圧側第 2減衰力発生装置 35の第 2オリフィス 44を流動することによる流 動抵抗が増加し、この圧側第 2減衰力発生装置 35の減衰力が大きくなる(図 3中、 a c)。
[0110] 上記収縮動作 B時の移動速度 Vが大きくなる途中(図 3中、 d)で、上記圧側第 2減 衰カ発生装置 35の減衰力が上記圧側第 1減衰力発生装置 34の減衰力に、一旦、 一致する。この一致点までのように上記移動速度 Vが小さいとき(図 3中、 0— d=VL )には、上記圧側第 1減衰力発生装置 34の減衰力は圧側第 2減衰力発生装置 35の それよりも大きいが、上記一致点の後のように上記移動速度 Vが大きいとき(図 3中、 d-b=VH)には、上記圧側第 1減衰力発生装置 34の減衰力よりも圧側第 2減衰力 発生装置 35のそれが大きくなる。
[0111] 上記収縮動作 B時の移動速度 Vが更に大きくなつて、上記圧側第 2減衰力発生装 置 35の第 2オリフィス 44の流量が増加し、その流動抵抗が大きくなつて、上記中間室 20の油圧 PNと第 2室 21の油圧 P2との第 2油圧差 (PN— P2)力 上記圧側第 2減衰 力発生装置 35の第 2バルブ 41の開弁圧に達すれば、この第 2バルブ 41が開弁する (図 3中、 c)。すると、上記中間室 20の油 31が上記第 2室 21に向けて上記第 2オリフ イス 44に力卩ぇ第 2バルブ 41を流動し、これにより、この圧側第 2減衰力発生装置 35に よる減衰力の増加勾配力 、さくされる(図 3中、 c— b)。なお、上記第 2油圧差 (PN— P2)が大きくなるほど、上記第 2バルブ 41の開度は大きくなる。
[0112] そして、上記収縮動作 B時の移動速度 Vの各部における上記圧側第 1減衰力発生 装置 34と圧側第 2減衰力発生装置 35とのそれぞれ減衰力の合計が緩衝器 1の圧側 減衰力特性 (図 3中、一点鎖線)とされる。
[0113] ここで、上記したように、緩衝器 1の収縮動作 Bの開始当初のように、シリンダチュー ブ 8に対するピストンロッド 23の移動速度 Vが小さいとき(図 3中、 VL)には、上記圧 側第 1、第 2減衰力発生装置 34, 35のうち、圧側第 1減衰力発生装置 34が支配的に 減衰力を生じ、上記圧側第 2減衰力発生装置 35では減衰力をほとんど生じることは ない。よって、上記ピストンロッド 23に連動する第 1、第 2ピストン 17, 18の進行方向 の後方における上記中間室 20と第 2室 21とは共にその油圧 PN, P2が低下する。そ して、これらの各低下圧力は互いにほぼ同程度であることから、これら中間室 20と第 2室 21とは一体的な 1つの室のようになる。
[0114] 上記の場合、中間室 20と第 2室 21との各容積を合計した容積はこれら単独のもの よりも大きいため、これら中間室 20と第 2室 21とにおける油 31の「体積弾性」による体 積変化量は大きく(軟らかく)保たれる。このため、緩衝器 1の収縮動作 Bの開始当初 において、上記シリンダチューブ 8内に第 1、第 2ピストン 17, 18が侵入動作しても、 上記中間室 20と第 2室 21とにおける油圧 PN, P2の低下速度は小さく抑制される。よ つて、上記第 1室 19から中間室 20と第 2室 21とに向けて上記圧側第 1減衰力発生装 置 34を油 31が直ちに流動する、ということは防止される。つまり、上記緩衝器 1の収 縮動作 Bの開始当初では、上記「応答性」が低く抑制され、シリンダチューブ 8内への ピストンロッド 23の侵入が急激に抑制されるということが防止される。
[0115] 上記の結果、上記緩衝器 1を車両 2に適用すれば、この車両 2の走行中、路面から 与えられる上記第 1入力 Aにより緩衝器 1が収縮動作 Bする際の開始当初には、乗員 は車両 2から軟らかい感覚を与えられることとなり、これにより、車両 2への乗り心地の 向上が達成される、という「作用効果」が生じる。
[0116] また、上記収縮動作 B時の移動速度 Vが大きくなつたときには、上記圧側第 1減衰 力発生装置 34よりも圧側第 2減衰力発生装置 35の減衰力が大きくなつて、この圧側 第 2減衰力発生装置 35が支配的に減衰力を生じる。このため、上記第 2ピストン 18 の進行方向の後方における上記第 2室 21は拡大して、その油圧 P2が低下する。
[0117] ここで、上記第 2室 21のみの容積は小さいことから、この第 2室 21における油 31の「 体積弾性」による体積変化量は小さい (硬い)。このため、上記第 2ピストン 18の侵入 動作で、上記第 2室 21の油圧 P2の低下速度は速くなり、上記圧側第 2減衰力発生 装置 35における上記「応答性」は高くなる。
[0118] 上記の結果、上記緩衝器 1を車両 2に適用すれば、この車両 2の走行中、路面から 与えられる上記第 1入力 Aにより緩衝器 1が収縮動作 Bする際の上記移動速度 Vの 高速時には、上記車両 2に与えられる衝撃力に基づく衝撃エネルギーが上記圧側第 2減衰力発生装置 35により直ちに吸収されて、車両 2の走行安定性の向上が達成さ れる、という他の「作用効果」も生じる。
[0119] 上記緩衝器 1の収縮動作 Bが進行すると、その分、前記ばね 49の付勢力が増加す る。上記第 1入力 Aとばね 49の付勢力が一致すれば、上記緩衝器 1の収縮動作 Bが 終了し、次に、上記ばね 49の付勢力、つまり、第 2入力 により緩衝器 1が伸長動 作 Cさせられて元の長さに戻されようとする。
[0120] 上記したように、緩衝器 1がばね 49の付勢力である第 2入力 を与えられて伸長 動作 Cする際、上記第 2室 21の油 31が、この第 2室 21から中間室 20に向けて上記 第 2ピストン 18における伸側第 2減衰力発生装置 47を通り流動させられる。また、上 記中間室 20内の油 31が、この中間室 20から第 1室 19に向けて上記第 1ピストン 17 における伸側第 1減衰力発生装置 46を通り流動させられる。そして、このように、伸側 第 1、第 2減衰力発生装置 46, 47は、これらを上記油 31がそれぞれ流動することに より、共に減衰力を生じようとする。
[0121] 上記の場合、緩衝器 1の伸長動作 Cの開始当初には、まず、上記シリンダチューブ 8からの第 1、第 2ピストン 17, 18とピストンロッド 23との退出動作により、上記第 1室 1 9は拡大して、その油圧 P1は低下しょうとする。
[0122] しかし、前記したように、ガスが封入されたガス封入室 56をフリーピストン 53を介し 第 1室 19に連結している。このため、上記第 1室 19が拡大して、その油圧 P1が低下 し始めるとき、上記フリーピストン 53の移動と、上記ガス封入室 56内のガスの膨張と により、上記第 1室 19の油圧 P1の低下が抑制される。よって、上記緩衝器 1の伸長 動作 Cの開始当初に、上記第 1室 19の油圧 P1によりこの第 1室 19に向けて上記中 間室 20と第 2室 21とから上記伸側第 1減衰力発生装置 46を油 31が直ちに流動する 、ということは防止される。
[0123] また、上記緩衝器 1の伸長動作 Cの開始当初には、上記シリンダチューブ 8からの 第 1、第 2ピストン 17, 18の退出動作により、上記第 2室 21は収縮して、その油圧 P2 は上昇する。すると、この第 2室 21で余剰となる油 31を排出するため、上記第 2室 21 力も上記第 1室 19と中間室 20とに向力 よう上記第 1ピストン 17の第 1オリフィス 39と 第 2ピストン 18の第 2オリフィス 44とをそれぞれほぼ同量の油 31が流動する。これに より、上記中間室 20の油圧 PNが第 1室 19の油圧 P1に対し上昇し、かつ、第 2室 21 の油圧 P2が中間室 20の油圧 PNに対して上昇する。
[0124] し力も、上記したように、第 1ピストン 17の伸側第 1減衰力発生装置 46の第 1オリフィ ス 39の断面積は第 2ピストン 18の伸側第 2減衰力発生装置 47の第 2オリフィス 44の それよりも小さい。このため、上記第 1オリフィス 39によって生じる第 1油圧差 (PN— P 1)は上記第 2オリフィス 44によって生じる第 2油圧差 (P2— PN)よりも大きくなる。
[0125] ここで、緩衝器 1の伸長動作 C時における作用は、図 3において、減衰力が 0である 横線を基準として、この図 3を 180° 下側に反転させたものに相当している。そこで、 このような仮想の反転図 3を参照して、上記緩衝器 1の伸長動作 C時の作用を説明す る。なお、反転図 3中、圧側とあるは、伸側と読み替えるものとする。
[0126] 上記反転図 3において、上記緩衝器 1の伸長動作 Cの開始当初であって、上記移 動速度 Vが小さいとき (反転図 3中、 O-a)には、上記伸側第 1、第 2減衰力発生装置 46, 47のうち、伸側第 1減衰力発生装置 46が支配的に減衰力を生じ、この伸側第 1 減衰力発生装置 46の減衰力は伸側第 2減衰力発生装置 47のそれよりも大きくなる。
[0127] 上記緩衝器 1の伸長動作 C時には、シリンダチューブ 8からピストンロッド 23が退出 する分、上記シリンダチューブ 8の容積が増加する。この場合、この増加容積に相当 する量の油 31が、上記蓄圧器 51のフリーピストン 53の移動と、上記ガス封入室 56の ガスの膨張とにより、上記貯油室 54から上記第 1室 19内にチューブ 55を通し流入さ せられる。これにより、上記緩衝器 1の伸長動作 Cが円滑に行われる。
[0128] そして、上記伸長動作 C時の移動速度 Vが大きくなつて、上記第 1室 19の油圧 P1と 中間室 20の油圧 PNとの第 1油圧差 (PN— P1)が上記伸側第 1減衰力発生装置 46 の第 1バルブ 36' の開弁圧になれば、この第 1バルブ 36' が開弁する (反転図 3中 、 a) 0すると、上記中間室 20の油 31が上記第 1室 19に向けて上記第 1オリフィス 39 に加え第 1バルブ 36' を流動し、これにより、この伸側第 1減衰力発生装置 46による 減衰力の増加勾配力 、さくされる (反転図 3中、 a— b)。なお、上記第 1油圧差 (PN — P1)が大きくなるほど、上記第 1バルブ 36^ の開度は大きくなる。
[0129] また、上記したように、移動速度 Vが大きくなることにより、上記第 1オリフィス 39と伸 側第 1減衰力発生装置 46の第 1バルブ 3 とを流動する油 31の流量が多くなると、 この油 31が上記伸側第 2減衰力発生装置 47の第 2オリフィス 44を流動することによ る流動抵抗が増加し、この圧側第 2減衰力発生装置 35の減衰力が大きくなる (反転 図 3中、 a-c) 0
[0130] 上記伸長動作 C時の移動速度 Vが大きくなる途中 (反転図 3中、 d)で、上記伸側第 2減衰力発生装置 47の減衰力が上記伸側第 1減衰力発生装置 46の減衰力に、一 且、一致する。この一致点までのように上記移動速度 Vが小さいとき (反転図 3中、 0 -d=VL)には、上記伸側第 1減衰力発生装置 46の減衰力は伸側第 2減衰力発生 装置 47のそれよりも大き 、が、上記一致点の後のように移動速度 Vが大き 、とき (反 転図 3中、 d-b=VH)には、上記伸側第 1減衰力発生装置 46の減衰力よりも伸側 第 2減衰力発生装置 47のそれが大きくなる。
[0131] 上記伸長動作 C時の移動速度 Vが更に大きくなつて、上記伸側第 2減衰力発生装 置 47の第 2オリフィス 44の流量が増加し、その流動抵抗が大きくなつて、上記中間室 20の油圧 PNと第 2室 21の油圧 P2との第 2油圧差 (P2— PN)力 上記伸側第 2減衰 力発生装置 47の第 2バルブ 41/ の開弁圧に達すれば、この第 2バルブ 41/ が開弁 する(反転図 3中、 c) 0すると、上記第 2室 21の油 31が中間室 20に向けて上記第 2 オリフィス 44に力卩ぇ第 2バルブ 41/ を流動し、これにより、この伸側第 2減衰力発生 装置 47による減衰力の増加勾配が小さくされる (反転図 3中、 c— b)。なお、上記第 2 油圧差 (P2— PN)が大きくなるほど、上記第 2バルブ 4 の開度は大きくなる。 [0132] そして、上記伸長動作 C時の移動速度 Vの各部における上記伸側第 1減衰力発生 装置 46と伸側第 2減衰力発生装置 47とのそれぞれ減衰力の合計が緩衝器 1の伸側 減衰力特性 (反転図 3中、一点鎖線)とされる。
[0133] ここで、前記したように、シリンダチューブ 8に対するピストンロッド 23の移動速度 V が小さいとき (反転図 3中、 VL)には、伸側第 1減衰力発生装置 46の減衰力は伸側 第 2減衰力発生装置 47のそれよりも大きい。このため、緩衝器 1の伸長動作 Cの開始 当初のように、上記移動速度 Vが小さいときには、上記伸側第 1、第 2減衰力発生装 置 46, 47のうち、伸側第 1減衰力発生装置 46が支配的に減衰力を生じ、上記伸側 第 2減衰力発生装置 47では減衰力をほとんど生じることはない。よって、上記ピストン ロッド 23に連動する第 1、第 2ピストン 17, 18の進行方向の後方における上記第 1室 19と中間室 20とは共にその油圧 PI, PNが低下する。そして、これらの低下圧力は ほぼ同程度であることから、これら第 1室 19と中間室 20とは一体的な 1つの室のよう になる。
[0134] 上記の場合、第 1室 19と中間室 20との各容積を合計した容積はこれら単独のもの よりも大きいため、これら第 1室 19と中間室 20とにおける油 31の「体積弾性」による体 積変化量は大きく (軟らかく)保たれる。このため、緩衝器 1の伸長動作 Cの開始当初 において、上記シリンダチューブ 8から第 1、第 2ピストン 17, 18が退出動作しても、 上記中間室 20と第 2室 21とにおける油圧 PN, P2の上昇速度は小さく抑制される。よ つて、上記中間室 20と第 2室 21とから第 1室 19に向けて上記伸側第 1減衰力発生装 置 46を油 31が直ちに流動する、ということは防止される。つまり、上記緩衝器 1の伸 長動作 Cの開始当初では、上記「応答性」が低く抑制され、シリンダチューブ 8からの ピストンロッド 23の退出が急激に抑制されるということが防止される。
[0135] 上記の結果、上記緩衝器 1を車両 2に適用すれば、この車両 2の走行中、上記ばね 49から与えられる第 2入力 により緩衝器 1が伸長動作 Cする際の開始当初には、 乗員は車両 2から軟らかい感覚を与えられることとなり、これにより、車両 2への乗り心 地の向上が達成され、前記「作用効果」がより確実に生じる。
[0136] また、上記伸長動作 C時の移動速度 Vが大きくなつたときには、上記伸側第 1減衰 力発生装置 46よりも伸側第 2減衰力発生装置 47の減衰力が大きくなつて、この伸側 第 2減衰力発生装置 47が支配的に減衰力を生じる。このため、上記第 2ピストン 18 の進行方向の前方における上記第 2室 21は収縮して、その圧力 P2が上昇する。
[0137] ここで、上記第 2室 21のみの容積は小さいことから、この第 2室 21における油 31の「 体積弾性」による体積変化量は小さい (硬い)。このため、上記第 2ピストン 18の退出 動作で、上記第 2室 21の油圧 P2の上昇速度は速くなり、上記伸側第 2減衰力発生 装置 47における上記「応答性」は高くなる。
[0138] 上記の結果、上記緩衝器 1を車両 2に適用すれば、この車両 2の走行中、上記ばね 49からの第 2入力 A' により緩衝器 1が伸長動作 Cする際の上記移動速度 Vの高速 時には、上記第 2入力 に基づく衝撃エネルギーが上記伸側第 2減衰力発生装置 47により直ちに吸収されて、車両 2の走行安定性の向上が達成され、前記他の「作 用効果」がより確実に生じる。
[0139] 以下、上記緩衝器 1の収縮動作 Bと伸長動作 Cとが交互に繰り返されて、それぞれ の第 1、第 2入力 A, が緩和され、上記車両 2の円滑な進行が維持される。
[0140] また、前記したように、第 2オリフィス 44の断面積を上記第 1オリフィス 39の断面積の 1. 5— 10倍として!/ヽる。
[0141] ここで、上記第 2オリフィス 44の断面積が上記第 1オリフィス 39の断面積の 1. 5倍 未満であるとすると、これら第 1、第 2オリフィス 39, 44の各断面積の値が互いに接近 する。このため、緩衝器 1が第 1、第 2入力 A, Α' を与えられて収縮動作 Βや伸長動 作 Cをするとき、これら各動作 Β, Cの開始当初から、上記圧側第 1、第 2減衰力発生 装置 34, 35、もしくは伸側第 1、第 2減衰力発生装置 46, 47をそれぞれほぼ同時に ほぼ同じ条件で油 31が流動し、ほぼ同じ減衰力を生じがちとなる。よって、上記各動 作 Β, Cの開始当初に、上記圧側第 1減衰力発生装置 34が支配的に減衰力を発生 する、ということは困難となり、前記「作用効果」は得難くなる。
[0142] 一方、上記第 2オリフィス 44の断面積が上記第 1オリフィス 39の断面積の 10倍を越 えるとすると、上記第 2オリフィス 44の断面積が過大となって、この第 2オリフィス 44を 油 31が流動しても、所望の減衰力が得難くなる。よって、特に、上記移動速度 Vが大 きいとき(図 3中、 VH)、上記緩衝器 1に所望の減衰力を得ることは困難となる。
[0143] そこで、上記したように、第 1、第 2オリフィス 39, 44の各断面積の倍率を 1. 5— 10 倍と定め、上記「作用効果」をより確実に達成するようにしている。なお、この倍率は、
2— 4倍であること力 より好ましい。
[0144] また、前記したように、油 31の動粘度を、 40°Cにおいて 4— 10センチスト一タス(cS t)としている。
[0145] ここで、上記緩衝器 1を繰り返し使用すると、油 31の温度が上昇して、動粘度が低 下しがちとなる。また、一般に、油 31の動粘度が高い程、温度による動粘度の低下幅 が大きい。
[0146] 一般には、上記油 31の動粘度は 40°Cにおいて 15cStとされる力 この種の油 31を 用いると、この油 31の温度上昇による動粘度の低下幅が大きくなり、上記緩衝器 1に 所望の減衰力を精度よく得ることは困難となる。また、上記構成のように、複数のビス トンを用いる緩衝器 1にお 、ては油 31の粘度の影響 (抵抗)を受ける部分が多くなる 。そこで、その影響をできる限り少なくするため、上記 10センチスト一タス以下のような 低粘度の油 31と組み合わせて使用することが有益である。
[0147] 一方、上記油 31の動粘度を 4未満にすると、油 31が低粘度過ぎることによるこの油 31の潤滑性の低下に伴い、その消費量の増大を招き、また、耐久性が低下する。
[0148] そこで、上記したように、油 31の動粘度を、 40°Cにおいて 4— lOcStと定め、上記「 作用効果」をより確実に達成するようにしている。なお、この動粘度は、 5— 8cStであ ることが、より好まし 、。
[0149] なお、以上は図示の例によるが、上記緩衝器 1は図例のものを倒立させて用いても よぐ水平や傾斜させて用いてもよい。また、上記第 1、第 2オリフィス 39, 44の断面 積を互いに同じとし、第 1オリフィス 39の長さを第 2オリフィス 44のそれより長くするな どして上記第 1オリフィス 39における油 31の流動抵抗 (圧力損失)が第 2オリフィス 44 のそれよりも大きくなるようにしてもよい。また、上記第 1、第 2オリフィス 39, 44をそれ ぞれ複数本の貫通孔により形成してもよい。また、このような貫通孔を互いに同径(同 じ断面積)とし、第 1オリフィス 39の貫通孔の本数よりも第 2オリフィス 44のそれを多く してちよい。
[0150] 以下の各図は、実施例 2— 6を示している。これら各実施例は、前記実施例 1と構成 、作用効果において多くの点で共通している。そこで、これら共通するものについて は、図面に共通の符号を付してその重複した説明を省略し、異なる点につき主に説 明する。また、これら各実施例における各部分の構成を、本発明の目的、作用効果 に照らして種々組み合せてもょ ヽ。
実施例 2
[0151] 本発明をより詳細に説明するために、その実施例 2を添付の図 4に従って説明する
[0152] 図 4において、上記シリンダチューブ 8にはその軸方向に摺動可能となるよう中間ピ ストン 60が嵌入されている。この中間ピストン 60は、上記第 1、第 2ピストン 17, 18の 間に配置されて、上記ピストンロッド 23に結合されている。上記中間ピストン 60により 、上記中間室 20が 2つの室に区画されている。上記中間ピストン 60には、図示しな いが、上記圧側、伸側第 1減衰力発生装置 34, 46や圧側、伸側第 2減衰力発生装 置 35, 47と同構成、同作用の圧側、伸側中間減衰力発生装置が設けられている。
[0153] 上記の場合、中間減衰力発生装置は、そのバルブが、上記第 1油圧差 (P1— PN) と第 2油圧差 (PN— P2)との間の値により開弁して、上記中間ピストン 60を貫通する よう油 31を流動させる。また、上記中間減衰力発生装置のオリフィスの断面積は、上 記第 1、第 2オリフィスの各断面積の間の値とされて 、る。
[0154] なお、上記中間ピストン 60は、 2つ以上設けてもよぐこれらを配置する位置は自由 に選択できる。
実施例 3
[0155] 本発明をより詳細に説明するために、その実施例 3を添付の図 5に従って説明する
[0156] 図 5において、上記シリンダチューブ 8に蓄圧器 51がー体的に形成されている。具 体的には、上記第 1室 19にその軸方向に摺動可能となるよう上記フリーピストン 53が 嵌入されている。このフリーピストン 53により、上記第 1室 19が 2つの室に区画されて おり、このフリーピストン 53を基準として、上記第 1ピストン 17とは反対側の室に高圧 の窒素ガスが封入されて 、る。
[0157] この実施例によれば、緩衝器 1を全体的にコンパクトにできる。
実施例 4 [0158] 本発明をより詳細に説明するために、その実施例 4を添付の図 6に従って説明する
[0159] 図 6において、緩衝器 1は収縮動作 Bした状態を示している。上記緩衝器 1の外部 力もの操作により、中、高速側の上記第 2オリフィス 44の断面積の値を可変とする調 整装置 62が設けられている。この調整装置 62にっき説明する。
[0160] 上記軸心 7上で上記ピストンロッド 23を貫通する貫通孔 63が形成されている。この 貫通孔 63におけるチューブ本体 9の一端部 10側(下端部側)の開口は閉じられてい る。上記貫通孔 63は、前記スぺーサ 26に直径方向に延びるよう形成された連通路 6 5により上記中間室 20に連通させられ、また、上記ピストンロッド 23に形成された他の 連通路 66により上記第 2室 21に連通させられている。上記両連通路 65, 66の間の 貫通孔 63にプラグ 67が圧入され、このプラグ 67の上記軸心 7上に上記第 2オリフィス 44が形成されている。
[0161] 上記貫通孔 63の他端部側(上端部側)力も操作ボルト 68が嵌入されて、上記ピスト ンロッド 23に螺合されて 、る。上記操作ボルト 68の嵌入先端に-一ドル弁 69がー体 的に取り付けられ、この-一ドル弁 69が上記第 2オリフィス 44に対向している。工具 7 0により、上記操作ボルト 68を捻回させれば、これに-一ドル弁 69が連動して、上記 第 2オリフィス 44の実質的な断面積の値が可変とされる。また、上記-一ドル弁 69は 、上記操作ボルト 68の所望捻回位置で、この操作ボルト 68と共に上記ピストンロッド 23に固定可能とされている。
[0162] 上記構成によれば、調整装置 62を操作することにより、上記移動速度 Vの中、高速 域で、第 2オリフィス 44による減衰力特性を種々変化させて所望の特性を得ることが できる。一方、上記調整装置 62を操作しても、上記圧側、伸側第 1減衰力発生装置 3 4, 46の第 1オリフィス 39の断面積は一定値に固定されたままに保たれる。よって、上 記緩衝器 1を車両 2に適用すれば、前記「作用効果」を確保しつつ、車両 2に好みの 乗り心地を得ることができる。
実施例 5
[0163] 本発明をより詳細に説明するために、その実施例 5を添付の図 7に従って説明する [0164] 図 7において、緩衝器 1は収縮動作 Bした状態を示している。上記第 1ピストン 17を 結合させた上記ピストンロッド 23の部分の外径寸法 D1が、上記第 2ピストン 18を結 合させた上記ピストンロッド 23の他部分の外径寸法 D2よりも小さくされている。また、 上記ピストンロッド 23の他端部側 27は上記外径寸法 D2よりも大きくされている。これ により、上記ピストンロッド 23には少なくとも 2つの段差面 28が形成される。そして、こ れら各段差面 28に対し上記第 1、第 2ピストン 17, 18がそれぞれ締結具 29により個 別に締結される。このため、上記第 1、第 2ピストン 17, 18は、上記ピストンロッド 23に それぞれ強固に結合される。
[0165] 上記構成によれば、ピストンロッド 23の部分の外径寸法 D1を、ピストンロッド 23の 他部分の外径寸法 D2よりも小さくした分、上記第 1ピストン 17の軸方向端面におい て、ピストンロッド 23の貫通部を除く有効面積を、上記第 2ピストン 18のそれに比べて より大きくできる。
[0166] よって、上記第 1ピストン 17に取り付けられる上記圧側、伸側第 1減衰力発生装置 3 4, 46の第 1ノ レブ 36, 36' のリーフ弁体 38, 38' の有効面積を大きくできて、この リーフ弁体 38, 38' の橈みを容易かつ精度よくできるなど、圧側、伸側第 1減衰力 発生装置 34, 46の設計の自由度を向上させることができる。この結果、上記移動速 度 Vの極低速時、圧側、伸側第 1減衰力発生装置 34, 46の第 1バルブ 36, 3 を 油 31が流動することにより生じる減衰力の微小な値を精度よく得ることができ、前記「 作用効果」が助長される。
実施例 6
[0167] 本発明をより詳細に説明するために、その実施例 6を添付の図 8に従って説明する
[0168] 図 8において、上記車両 2の懸架装置は一対の上記緩衝器 1と、これら緩衝器 1の 間に介設される中間ユニット 50とを備えている。上記各緩衝器 1は、車体側 3と各車 輪側 4とに架設されている。この場合、各車輪側 4とは、左右車輪側であってもよぐ 前、後車輪側であってもよい。また、上記中間ユニット 50は蓄圧器 51を備え、この蓄 圧器 51の貯油室 54に軸方向に摺動自在となるよう嵌入される他のフリーピストン 72 が設けられ、この他のフリーピストン 72は上記フリーピストン 53と結合されて一体的に 摺動することとされている。上記他のフリーピストン 72は上記貯油室 54を 2室に区画 している。
[0169] 上記各緩衝器 1の第 1室 19同士を、絞り部 73を介し互いに連通させる連通路 74が 設けられている。上記絞り部 73は、上記他のフリーピストン 72に設けられ、上記第 1 バルブ 36と同様の構成、作用の一対のバルブ 75を備えている。これらバルブ 75は 互いに逆方向の油 31の流動を許容する。
[0170] 上記連通路 74は、上記両第 1室 19のうちのいずれか一方の第 1室 19と、上記他の フリーピストン 72で区画された上記貯油室 54内の 2室のうちのいずれか一方の室と を連通させる第 1チューブ 76と、他方の第 1室 19と上記貯油室 54内の 2室のうちの 他方の室とを連通させる第 2チューブ 77と、上記貯油室 54とで構成されて 、る。
[0171] 上記車両 2の走行中に、上記両緩衝器 1のうち、いずれか一方(図 8中、左側)の緩 衝器 1が第 1入力 Aを与えられて収縮動作 Bしたとする。この場合には、上記左側の 緩衝器 1の第 1室 19の油 31が上記中間ユニット 50における蓄圧器 51の貯油室 54 のうち、他のフリーピストン 72の下側の室に流入する。すると、上記フリーピストン 53と 共に他のフリーピストン 72が上記シリンダチューブ 52に対し下方移動し、上記他のフ リーピストン 72の上側の室の容積が増大する。すると、上記両緩衝器 1のうちの他方( 右側)の緩衝器 1の第 1室 19の油 31が上記他のフリーピストン 72の上側の室に向け て吸引され、これにより、上記右側の緩衝器 1も収縮動作 Bする。
[0172] よって、上記両緩衝器 1は共に同一の動作をすることから、車両 2にローリングゃピ ツチングが生じることが防止される。また、このような車両 2の大きな動き、即ち、上記 移動速度 Vの高速時に際しては、本願の各請求項に対応する各実施例の構成によ つて、各緩衝器 1の中間室 20と第 2室 21との油 31の体積弾性による影響が小さく抑 制されることにより、上記中間ユニット 50に対し流入、流出する油 31の量の精度が向 上し、前記「作用効果」の精度が向上する。
[0173] また、本発明は、前記した個々の構成部材を適宜組み合わせることによって、達成 されるものであってもよ ヽ。

Claims

請求の範囲
[1] シリンダチューブ (8)に軸方向摺動可能に嵌入され、このシリンダチューブ(8)の内 部をその一端部(10)側力 他端部(12)側に向けて順次、第 1室(19)、中間室(20 )、および第 2室(21)に区画する第 1、第 2ピストン(17, 18)と、一端部側(22)がこ れら第 1、第 2ピストン(17, 18)に結合され、他端部側が上記シリンダチューブ (8)の 他端部(12)側力 このシリンダチューブ(8)の外方に延出するピストンロッド(23)と、 上記シリンダチューブ (8)内にピストンロッド(23)が侵入するよう外部から第 1入力(A )が与えられるとき、上記第 1室(19)力も中間室 (20)に向け上記第 1ピストン(17)を 貫通するよう油(31)を流動させて上記第 1入力 (A)を緩和する圧側第 1減衰力発生 装置 (34)と、上記第 1入力 (A)が与えられるとき、上記中間室 (20)から第 2室 (21) に向けて上記第 2ピストン(18)を貫通するよう油(31)を流動させて上記第 1入力 (A )を緩和する圧側第 2減衰力発生装置(35)と、上記シリンダチューブ (8)からピストン ロッド(23)が退出するよう外部力 第 2入力 ( )が与えられるとき、上記中間室(2 0)から第 1室(19)に向け第 1ピストン(17)を貫通するよう油(31)を流動させて上記 第 2入力 (Α' )を緩和する伸側第 1減衰力発生装置 (46)と、上記第 2入力 (Α' )が 与えられるとき、上記第 2室(21)から中間室(20)に向けて上記第 2ピストン(18)を 貫通するよう油(31)を流動させて上記第 2入力 )を緩和する伸側第 2減衰力発 生装置 (47)とを備えた油圧緩衝器にぉ 、て、
上記シリンダチューブ (8)に対するピストンロッド(23)の移動速度 (V)が小さ 、とき (図 3中、 VL)には、上記圧側、伸側第 1減衰力発生装置 (34, 46)の減衰力が上記 圧側、伸側第 2減衰力発生装置(35, 47)のそれよりも大きくなるようにする一方、上 記移動速度 (V)が大きいとき(図 3中、 VH)には、上記圧側、伸側第 1減衰力発生装 置(34, 46)の減衰力よりも上記圧側、伸側第 2減衰力発生装置(35, 47)のそれが 大きくなるようにし、ガスが封入されたガス封入室(56)をフリーピストン(53)を介し上 記第 1室(19)に連結したことを特徴とする油圧緩衝器。
[2] 上記圧側、伸側第 1減衰力発生装置 (34, 46)は、上記第 1、第 2入力 (A, Α' )が 与えられるとき、上記第 1室(19)と中間室(20)との間の第 1油圧差 (P1— ΡΝ) (ΡΝ P1)により上記第 1ピストン(17)を貫通するよう油(31)を流動させる圧側、伸側第 1バルブ(36, 3 )と、上記第 1ピストン(17)を貫通する第 1オリフィス(39)とを備え 、上記圧側、伸側第 2減衰力発生装置 (35, 47)は、上記第 1、第 2入力 (A, Α' )が 与えられるとき、上記中間室(20)と第 2室(21)との間の第 2油圧差 (ΡΝ— Ρ2) (Ρ2 -ΡΝ)により上記第 2ピストン(18)を貫通するよう油(31)を流動させる圧側、伸側第 2バルブ (41, 41' )と、上記第 2ピストン(18)を貫通する第 2オリフィス (44)とを備え 、上記圧側、伸側第 1バルブ (36, 3 )の開弁圧特性を圧側、伸側第 2バルブ (41 , 41' )のそれよりも弱くし、上記第 1オリフィス(39)の断面積を第 2オリフィス (44)の それよりも小さくしたことを特徴とする請求の範囲第 1項に記載の油圧緩衝器。
[3] 上記第 2オリフィス (44)の断面積を上記第 1オリフィス(39)の断面積の 1. 5— 10 倍としたことを特徴とする請求の範囲第 2項に記載の油圧緩衝器。
[4] 上記油(31)の動粘度を、 40°Cにおいて 4— 10センチスト一タス(cSt)としたことを 特徴とする請求の範囲第 1項に記載の油圧緩衝器。
[5] 上記第 2オリフィス (44)の断面積の値を可変とする調整装置 (62)を設けたことを特 徴とする請求の範囲第 2項に記載の油圧緩衝器。
[6] 上記第 1ピストン(17)を結合させた上記ピストンロッド(23)の部分の外径寸法 (D1 )を、上記第 2ピストン(18)を結合させた上記ピストンロッド (23)の他部分の外径寸 法 (D2)よりも小さくしたことを特徴とする請求の範囲第 2項に記載の油圧緩衝器。
[7] 上記シリンダチューブ (8)とは別体として他のシリンダチューブ(52)を設け、このシ リンダチューブ(52)内に軸方向に摺動可能となるよう上記フリーピストン(53)を嵌入 し、このフリーピストン(53)により区画された上記シリンダチューブ(52)内の 2つの室 のうち、一方の室を上記油(31)が充填されて上記第 1室(19)に連通する貯油室(5 4)とする一方、他方の室を高圧のガスが封入された上記ガス封入室(56)としたこと を特徴とする請求の範囲第 1項に記載の油圧緩衝器。
[8] 上記シリンダチューブ (8)の軸方向で、上記第 1ピストン(17)と第 2ピストン(18)と の間に位置するよう上記シリンダチューブ(8)に軸方向に摺動可能となるよう嵌入さ れる中間ピストン (60)を設け、この中間ピストン (60)に、上記圧側、伸側第 1減衰力 発生装置 (34, 46)、もしくは圧側、伸側第 2減衰力発生装置 (35, 47)と同構成、同 作用の圧側、伸側中間減衰力発生装置を設け、上記ピストンロッド (23)の一端部側 (22)に上記中間ピストン (60)を結合したことを特徴とする請求の範囲第 1項に記載 の油圧緩衝器。
[9] 上記シリンダチューブ (8)の第 1室(19)にその軸方向に摺動可能となるよう上記フ リーピストン(53)を嵌入し、このフリーピストン(53)により区画された上記第 1室(19) の 2つの室のうち、上記フリーピストン(53)を基準として、上記第 1ピストン(17)とは 反対側の室を上記ガス封入室(56)としたことを特徴とする請求の範囲第 1項に記載 の油圧緩衝器。
[10] 上記調整装置 (62)が、上記ピストンロッド (23)の軸心 (7)上に形成された貫通孔( 63)に嵌入されるニードル弁(69)を備え、上記ピストンロッド(23)の軸心(7)上に形 成された上記第 2オリフィス (44)の一部の断面積が、上記ニードル弁(69)により可 変とされたことを特徴とする請求の範囲第 5項に記載の油圧緩衝器。
[11] 上記第 1ピストン(17)を結合させた上記ピストンロッド(23)の部分の外径寸法 (D1 )を、上記第 2ピストン(18)を結合させた上記ピストンロッド (23)の部分の外径寸法( D2)よりも小さくしたことを特徴とする請求の範囲第 1項に記載の油圧緩衝器。
[12] 車両(2)の懸架装置に適用される油圧緩衝器(1)であって、上記車両(2)の車体 側(3)と、この車体側 3に懸架された各車輪側 (4)との間に架設されたことを特徴とす る請求の範囲第 1項に記載の油圧緩衝器。
PCT/JP2006/317776 2005-09-09 2006-09-07 油圧緩衝器 WO2007029787A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06797636A EP1923596B1 (en) 2005-09-09 2006-09-07 Hydraulic shock absorber
US12/066,129 US8381887B2 (en) 2005-09-09 2006-09-07 Hydraulic shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-262224 2005-09-09
JP2005262224A JP4753238B2 (ja) 2005-09-09 2005-09-09 油圧緩衝器

Publications (1)

Publication Number Publication Date
WO2007029787A1 true WO2007029787A1 (ja) 2007-03-15

Family

ID=37835902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317776 WO2007029787A1 (ja) 2005-09-09 2006-09-07 油圧緩衝器

Country Status (4)

Country Link
US (1) US8381887B2 (ja)
EP (1) EP1923596B1 (ja)
JP (1) JP4753238B2 (ja)
WO (1) WO2007029787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315066A (zh) * 2010-03-02 2015-01-28 日立汽车系统株式会社 缓冲器
EP2242939A4 (en) * 2007-12-19 2017-12-20 Öhlins Racing Ab Shock absorber with dual piston

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898512B2 (ja) * 2007-03-23 2012-03-14 株式会社ショーワ 減衰力発生装置
JP4919045B2 (ja) * 2007-04-19 2012-04-18 日立オートモティブシステムズ株式会社 減衰力調整式流体圧緩衝器
JP5248852B2 (ja) * 2007-12-27 2013-07-31 ヤマハ発動機株式会社 車体用振動減衰装置
US8297418B2 (en) * 2008-06-05 2012-10-30 Tenneco Automotive Operating Company Inc. Nested check high speed valve
TW201028329A (en) * 2009-01-19 2010-08-01 Y S S Thailand Co Ltd Advanced triple piston damper
EP2249057A1 (de) * 2009-05-06 2010-11-10 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dämpfungseinrichtung für Radfahrzeuge
EP2587088B1 (de) 2010-07-05 2014-10-29 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. KG Dämpfungseinrichtung für Radfahrzeuge
ITMI20111890A1 (it) * 2011-10-18 2013-04-19 Caimi Export Spa Ammortizzatore
CN103557260A (zh) * 2013-09-30 2014-02-05 太仓康茂电子有限公司 一种油气弹簧
JP2015129552A (ja) * 2014-01-07 2015-07-16 株式会社ショーワ 圧力緩衝装置
JP6259676B2 (ja) * 2014-02-13 2018-01-10 株式会社ショーワ 圧力緩衝装置
JP5620596B1 (ja) * 2014-02-19 2014-11-05 千博産業株式会社 構造物の制振装置
EP2913460B1 (en) 2014-02-19 2017-08-23 Chihiro Sangyo Co., Ltd. Vibration control device for a building
CN107208726B (zh) * 2015-02-03 2019-10-01 天纳克汽车营运公司 用于减振器的次级阻尼组件
WO2016127076A1 (en) * 2015-02-06 2016-08-11 Tenneco Automotive Operating Company Inc. Secondary dampening assembly for a shock absorber
WO2019092480A1 (en) * 2017-11-10 2019-05-16 Maranini Simone Shock absorbing system of a vehicle
DE102018217372B3 (de) * 2018-10-11 2020-03-05 Zf Friedrichshafen Ag Dämpfervorrichtung sowie Fahrzeug mit der Dämpfervorrichtung
DE102018217371B3 (de) * 2018-10-11 2020-01-23 Zf Friedrichshafen Ag Dämpfervorrichtung sowie Fahrzeug mit der Dämpfervorrichtung
DE102019110219A1 (de) * 2019-04-17 2020-10-22 Bayerische Motoren Werke Aktiengesellschaft Kolbenstange für einen Teleskop-Schwingungsdämpfer mit hydraulischem Endanschlag
EP3809012A1 (en) * 2019-10-18 2021-04-21 Öhlins Racing AB Front fork position-dependent damping for bicycles and motorcycles
WO2023188284A1 (ja) * 2022-03-31 2023-10-05 日立Astemo株式会社 緩衝装置、懸架装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295043A (ja) * 1988-05-20 1989-11-28 Soqi Inc 油圧緩衝器
JPH02168038A (ja) * 1988-09-30 1990-06-28 Tokico Ltd 油圧緩衝器
JPH08312710A (ja) * 1995-05-18 1996-11-26 Oehlins Racing Ab ショックアブソーバ装置
JPH10331898A (ja) * 1997-06-02 1998-12-15 Toyota Motor Corp ショックアブソーバ
JP2000170821A (ja) * 1998-12-02 2000-06-23 Oehlins Racing Ab ショックアブソ―バ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2740500A (en) * 1951-06-29 1956-04-03 Gen Motors Corp Shock absorber
DE1249037B (ja) * 1961-06-02 1967-08-31
DE2551516B2 (de) * 1975-11-17 1980-04-10 Fa. August Bilstein, 5828 Ennepetal Hydropneumatischer Einrohrschwingungsdämpfer, insbesondere Lenkungsdämpfer
JPS5845293A (ja) * 1981-09-10 1983-03-16 Idemitsu Kosan Co Ltd 緩衝器用流体組成物
US4588053A (en) * 1984-09-19 1986-05-13 The United States Of America As Represented By The Secretary Of The Air Force Multiple rate shock isolator damping valve
DE3446133A1 (de) * 1984-12-18 1986-06-19 Fichtel & Sachs Ag, 8720 Schweinfurt Schwingungsdaempfer mit veraenderbarer daempfkraft
GB2250080B (en) * 1990-10-19 1994-08-17 Tokico Ltd Hydraulic shock absorber
DE4203508A1 (de) * 1992-02-07 1993-08-12 Fichtel & Sachs Ag Drehschieber-ventil fuer einen schwingungsdaempfer mit verstellbarer daempfkraft
DE19618055C1 (de) * 1996-05-06 1998-01-15 Mannesmann Sachs Ag Kolben-Zylinderaggregat mit wegabhängigem Dämpfkraftfeld
SE9602507L (sv) * 1996-06-25 1997-12-26 Oehlins Racing Ab Stötdämpare
US5823306A (en) * 1996-11-12 1998-10-20 Tenneco Automotive Inc. Stroke dependent damping
US6352145B1 (en) * 1998-10-07 2002-03-05 Tenneco Automotive Inc. Stroke dependent damping
US6120049A (en) * 1998-10-29 2000-09-19 Answer Products, Inc. Bicycle shock absorber including lockout means
DE19945632B4 (de) * 1999-09-23 2005-11-03 Thyssenkrupp Bilstein Gmbh Vorrichtung zur Erhöhung der Dämpfung
US6776269B1 (en) * 2003-06-18 2004-08-17 Tenneco Automotive Operating Company, Inc. Twin piston shock absorber
GB2412954A (en) 2004-04-08 2005-10-12 Mojo Suspension Hoodoo Ltd A damper for a vehicle suspension system
SE531694C2 (sv) * 2007-12-19 2009-07-07 Oehlins Racing Ab Stötdämpare med dubbelkolv

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295043A (ja) * 1988-05-20 1989-11-28 Soqi Inc 油圧緩衝器
JPH02168038A (ja) * 1988-09-30 1990-06-28 Tokico Ltd 油圧緩衝器
JPH08312710A (ja) * 1995-05-18 1996-11-26 Oehlins Racing Ab ショックアブソーバ装置
EP0748950A1 (en) 1995-05-18 1996-12-18 Öhlins Racing Ab Shock absorber device and use thereof
JPH10331898A (ja) * 1997-06-02 1998-12-15 Toyota Motor Corp ショックアブソーバ
JP2000170821A (ja) * 1998-12-02 2000-06-23 Oehlins Racing Ab ショックアブソ―バ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1923596A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2242939A4 (en) * 2007-12-19 2017-12-20 Öhlins Racing Ab Shock absorber with dual piston
CN104315066A (zh) * 2010-03-02 2015-01-28 日立汽车系统株式会社 缓冲器

Also Published As

Publication number Publication date
JP2007071367A (ja) 2007-03-22
EP1923596B1 (en) 2012-12-26
JP4753238B2 (ja) 2011-08-24
EP1923596A4 (en) 2011-12-21
EP1923596A1 (en) 2008-05-21
US20090101459A1 (en) 2009-04-23
US8381887B2 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
WO2007029787A1 (ja) 油圧緩衝器
CN107636344B (zh) 用于车辆悬架的液压减震器
CN103591207B (zh) 减震器的活塞阀
JP6212340B2 (ja) 緩衝器及び懸架装置
CN106104066B (zh) 作动缸装置
CN103502048B (zh) 车辆座椅的头枕
WO2011104911A1 (ja) 油圧緩衝器
JP6595831B2 (ja) サスペンション装置およびアキュムレータ
JP2017180801A (ja) 緩衝器
JP2017180689A (ja) 油圧緩衝器
JP2010084831A (ja) 緩衝器
JP2015200404A (ja) 緩衝器
WO2012176682A1 (ja) 緩衝器
JP2014149057A (ja) 緩衝器
JP5456597B2 (ja) 油圧緩衝器
JP5549889B2 (ja) 車両のサスペンション装置
JP2018179091A (ja) 油圧緩衝器
JP2020026831A (ja) フロントフォーク
RU2010151514A (ru) Демпфер
JP2004190716A (ja) 油圧緩衝器
JP4059664B2 (ja) 油圧緩衝器の減衰力調整装置
JP4010803B2 (ja) 油圧緩衝器の減衰力調整装置
JP4815454B2 (ja) 緩衝器
JP2601394Y2 (ja) 油圧緩衝器の圧側減衰力発生バルブ構造
JP2003278820A (ja) ダンパ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12066129

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006797636

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE