WO2007020916A1 - スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材 - Google Patents

スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材 Download PDF

Info

Publication number
WO2007020916A1
WO2007020916A1 PCT/JP2006/316021 JP2006316021W WO2007020916A1 WO 2007020916 A1 WO2007020916 A1 WO 2007020916A1 JP 2006316021 W JP2006316021 W JP 2006316021W WO 2007020916 A1 WO2007020916 A1 WO 2007020916A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
mass
steel
less
steel wire
Prior art date
Application number
PCT/JP2006/316021
Other languages
English (en)
French (fr)
Inventor
Takeshi Kuroda
Hidenori Sakai
Mikako Takeda
Takuya Kochi
Takashi Onishi
Tomotada Maruo
Takaaki Minamida
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/063,324 priority Critical patent/US8216394B2/en
Priority to EP06796411A priority patent/EP1921172B1/en
Priority to CN2006800233880A priority patent/CN101208440B/zh
Publication of WO2007020916A1 publication Critical patent/WO2007020916A1/ja
Priority to US12/795,109 priority patent/US8382916B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • oxide scale formed on the surface of a steel material produced by hot rolling adheres with good adhesion during cooling or storage and transport, and soot is generated.
  • a method of manufacturing a steel material in which the scale is easily removed at the time of mechanical descaling and pickling treatment, which precedes the wire drawing and drawing process that is the secondary processing of the steel material is the secondary processing of the steel material.
  • Steel materials produced by hot rolling remove the oxide scale on the surface formed during heating or rolling of the steel slab that is the raw material before secondary processing such as wire drawing and drawing. Need to leave (descaling).
  • this descaling method a mechanical descaling method that removes physically (mechanically) or a pickling method that removes chemically is adopted.
  • the scale cannot be removed sufficiently during the descaling process and remains on the surface of the steel material, the scale will be hard, resulting in product flaws during drawing or a reduction in the working die life. Or it may cause the die to break, leading to a decrease in productivity.
  • the steel materials have good scale peelability due to mechanical descaling (hereinafter abbreviated as MD) or pickling in the descaling process prior to the secondary force.
  • MD mechanical descaling
  • the mechanical descaling method has been widely adopted as the descaling method. Therefore, the quality of the scale peelability during the mechanical descaling is particularly important in steel production. It becomes an important deciding factor.
  • the winding temperature is taken up at 800 ° C or lower, and the range of 600 to 400 ° C is cooled at 0.5 ° C / sec or higher to produce Fe 2 O (magnetite) that hardly peels off.
  • the scale layer in contact with the ground iron is brittle FeO, and the adhesion of the scale per hot upper force S is insufficient.
  • it is effective to form ferrite (Fe SiO 2), but the viewpoint of adhesion is also considered.
  • Patent Document 1 JP-A-4-293721
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-246322
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-118806
  • Patent Document 4 Japanese Patent Publication No. 5-87566
  • Patent Document 5 Japanese Patent Laid-Open No. 2004-10960
  • the present invention overcomes the disadvantages of the scale characteristics of the steel materials targeted for descaling in the prior art, and ensures reliable adhesion of the scales during cooling, storage, and transportation of the steel materials after hot rolling.
  • the purpose of the present invention is to provide a steel wire manufacturing method and a steel wire material excellent in both mechanical-calcal descaling before secondary processing and scale peelability during pickling. Means for solving the problem
  • the inventors of the present invention have oxidized steel materials that have been hot-rolled in a humid atmosphere, particularly in an environment where water vapor and Z or mist water with a particle size of 100 m or less are present. If processed, FeO (usteite) necessary to ensure mechanical-caldescalability and pickling properties is sufficiently generated to increase the amount of scale generated, and the steel after hot rolling is cooled, stored and transported. Fe SiO (firelight)
  • the present invention has been completed.
  • the first invention of the present invention is a steel slab, particularly C: 0.05-: L 2% by mass, and Si: 0.
  • a steel piece containing 01 to 0.5% by mass is heated and hot-rolled, and the steel material that has been hot-rolled is subjected to the steel material in an environment where water vapor and Z or mist water with a particle size of 100 m or less are present. It is a method for producing a steel material excellent in scale peelability during descaling, characterized by oxidizing the surface.
  • the present inventors uniformly generate a Fe 2 SiO (firelite) layer having a certain property at the interface between the ground iron and the scale in the hot rolled wire rod.
  • the residual compressive stress of the scale that occurs during cooling of the wire can be reduced to 200 MPa or less. It has been found that it is possible to provide a steel wire that can prevent peeling and facilitate the peeling of the scale during mechanical descaling.
  • the second invention of the present invention is such that C: 0.05-: L 2% by mass (hereinafter, simply referred to as%), Si: 0.01-0.50%, and Mn: 0.1 Steel wire that contains ⁇ 1.5%, P: 0.02% or less, S: 0.02% or less, and N: 0.005% or less, formed during hot rolling
  • a Fe SiO (firelight) layer is formed in contact with the scale's base metal side, and
  • An object of the present invention is to provide a mechanical wire descaling steel wire characterized in that the compressive stress generated during hot rolling and remaining in the scale is adjusted to 200 MPa or less.
  • the present inventors have found that the scale formed on the surface of the steel material is Fe O, F from the upper layer.
  • FeO has lower brittle strength than FeO and FeO, so the M arity is improved and good
  • Fe SiO amount is less than 0.1 lvol%
  • the third invention of the present invention contains C: 0.05-: L 2% by mass, Si: 0.01-0.50% by mass, Mn: 0.1-1.5% by mass Steel wire rod, the scale adhesion amount is 0.1-0.7 mass%, Fe SiO (firelite) layer force scale formed during hot rolling
  • FeO 30 vol% or more in the scale Fe SiO 0.
  • the fourth invention of the present invention contains C: 0.05-: L 2 mass%, Si: 0.01-0.50 mass%, Mn: 0.1-1.5 mass% Steel wire rod, Fe SiO (firelight) layer
  • Another object of the present invention is to provide a steel wire rod having excellent mechanical descaling property, characterized by the presence of 5 to 20 cracking forces having a length of 25% or more of the scale thickness per interface length of 200 / zm.
  • the fifth invention of the present invention contains C: 0.05-: L 2 mass%, Si: 0.01-0.5 mass%, Mn: 0.1-1.5 mass% Steel wire rod, Fe SiO (firelight) layer
  • a P-concentrated portion with a maximum P concentration of 2.5 mass% or less is formed.
  • An object of the present invention is to provide a steel wire rod excellent in ringability.
  • the steel material after hot rolling is subjected to an oxidation treatment in a humid atmosphere, particularly in an environment where water vapor and Z or mist water having a particle size of 100 m or less are present.
  • a humid atmosphere particularly in an environment where water vapor and Z or mist water having a particle size of 100 m or less are present.
  • the steel produced by the method according to the first invention of the present invention can obtain reliable adhesion of the scale during cooling, storage and transportation of the steel after hot rolling.
  • an Fe SiO (firelite) layer is uniformly formed at the interface between the ground iron and the scale in the hot-rolled wire, thereby generating the wire during cooling.
  • the residual compressive stress of the scale can be reduced to 200MPa or less, preventing the scale from spontaneously peeling during hot rolling wire cooling, storage and transportation, and only the scale peeling during mechanical-calcal scaling is easy. Can be.
  • FeO is more brittle than FeO and FeO.
  • Fe SiO content is less than 10 vol%.
  • a crack having a length of 25% or more of the scale thickness starting from the interface between the scale and the steel surface is removed in the scale of the steel surface.
  • the separation start point it can be peeled off easily because it has 5 to 20 cracks per 200 m of interface length.
  • the maximum value of the P concentration in the P concentrated portion formed by concentrating P at the interface between the steel and the scale is as low as 2.5 mass% or less. Therefore, it is possible to obtain a scale that can prevent the scale from peeling off during cooling after hot rolling and can withstand impacts during transportation.
  • the conversion part also contributes to the scale peelability, and the scale can be easily removed.
  • FIG. 1 is a diagram schematically showing a cross-sectional configuration of a scale layer of a steel wire for descaling according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of a cross section perpendicular to the longitudinal direction of the steel wire rod.
  • FIG. 3 is a schematic diagram showing an example of an interface structure between a scale and steel in the steel wire rod according to the present invention.
  • FIG. 4A is a schematic view showing an example of an interface structure between a scale and steel in the steel wire rod according to the present invention
  • FIG. 4A is a schematic view showing the scale on steel and steel.
  • FIG. 4B is a schematic diagram showing the structure of the scale of FIG. 4A and the structure of the interface between the scale and steel.
  • the steel slab is heated and then hot-rolled, and the steel material after milling is passed through a humid atmosphere with a dew point of 30 ° C to 80 ° C for 0.1 to 60 seconds to make the surface of the steel material acidic. It is in the method of processing.
  • water vapor diffuses inward into the scale and oxidizes the inside of the iron core, forming a scale rich in FeO, increasing the amount of scale deposited, and improving the MD property.
  • This Fe SiO is composed of FeO formed in the steel and steel.
  • the steel material obtained by the method of the present invention is sufficiently brittle and easily cracked even when descaling by the pickling method, so that the acid is cracked or defective in FeO. To reach the interface with the steel and efficiently dissolve Fe SiO.
  • the wet atmosphere in the production method according to the present invention can be easily created by spraying water vapor or mist water having a particle size of 100 ⁇ m or less onto the steel material surface.
  • the steam force surrounding the surface of the steel material diffuses inward into the S scale, and as a result of rapid oxidation of the iron, it is possible to generate a large amount of FeO-rich scale on the steel surface as described above. It is possible to form Fe SiO (firelight) at the interface between the iron and FeO
  • a preferable scale adhesion amount of the steel material produced by the production method according to the present invention is 0.1 to 0.7 mass%. If the amount of scale attached is less than 0.1% by mass, the scale composition tends to be Fe O (magnetite) with poor peelability.
  • the dew point of the wet atmosphere employed in the production method according to the present invention should be 30 to 80 ° C. If this dew point is less than 30 ° C, the above-mentioned scale formation with less effect of water vapor acid and the formation effect of Fe 2 O and Fe 2 SiO are insufficient. If this dew point exceeds 80 ° C,
  • the dew point is confirmed by measuring the moisture content in the atmosphere near the steel surface. Can be recognized. Specifically, it is determined by collecting an atmospheric gas within a height of 50 cm from the steel surface and measuring it with a dew point meter.
  • mist water in order to create a wet atmosphere, water vapor or mist water is sprayed and evaporated on the surface of the high-temperature steel material.
  • the particle diameter of mist is a key point.
  • mist particle size When the mist particle size is larger than 100 ⁇ m, the surface temperature of the steel material decreases rapidly because the mist is deposited on the steel surface in a water droplet state where evaporation of mist is not sufficient, and scale generation becomes insufficient. As the mist particle size becomes finer, water vaporization tends to be promoted. However, in order to obtain a fine mist, it is necessary to use a large amount of high-pressure air or a nozzle with a small foreign substance passage diameter. In terms of cost and stable production, about 10-50 m is desirable. As a method for measuring the mist particle diameter, a liquid immersion method or a laser diffraction method is usually used. In the present invention, a value obtained by measuring the mist diameter by the laser diffraction method is adopted.
  • the oxidation treatment time (water vapor oxidation time) of the steel material in a humid atmosphere in the production method according to the present invention needs to be 0.1 second or more and 60 seconds or less. If this time is less than 0.1 second, the amount of scale generated is insufficient, and improvement in scale peeling during descaling cannot be expected. If this time exceeds 60 seconds, the amount of scale generation becomes saturated and meaningless. Depending on the steel type, if the steam acid time is too long, the surface acid will increase, and Fe O (magnetite) with poor scale peelability will increase, which is not preferable. Therefore, preferably 50 seconds or less
  • the starting temperature of the steel material during the oxidation treatment is preferably 750 to 015 ° C. If this start temperature is below 750 ° C, the end temperature during the oxidation process will be low, and the water vapor effect may be insufficient. On the other hand, at a high starting temperature exceeding 1015 ° C, scale generation becomes excessive, scale loss increases and yield deteriorates, so it is practical to keep it below 1015 ° C. is there.
  • the end temperature during the oxidation treatment of the steel material (end temperature during the steam oxidation treatment) in the production method according to the present invention is kept at a high temperature of at least 600 ° C or higher. If the end temperature is less than 600 ° C, the effect of water vapor will be insufficient, and Fe O (magnetite) with poor scale release will be generated and the scale release at the time of descaling will be impaired immediately.
  • the oxidation end temperature is maintained at 650 ° C. or higher.
  • the scale formed and adhered to the steel surface by the method of the present invention after hot rolling of the steel slab are the primary scales generated in the heating furnace before hot rolling.
  • the primary scale generated in the heating furnace is removed as much as possible and rolled. In order to completely remove this primary scale, descaling is performed at least once before finishing rolling at a pressure of 3 MPa or more.
  • Descaling may be performed during the heating furnace exit side rough rolling, or it can be removed more efficiently by performing descaling after breaking the scale to some extent by rough rolling. If the pressure of the high-pressure water is less than 3 MPa, descaling will be insufficient, and the peelability of the secondary scale will be adversely affected. Further, the descaling pressure is lOOMPa or less, more preferably 50 MPa or less. If this descaling pressure exceeds lOOMPa, rolling will be difficult due to a significant decrease in the surface temperature of the steel.
  • the heating temperature is 1200 ° C or lower.
  • the heating temperature exceeds S1200 ° C, the primary scale is excessively generated and the descaling property deteriorates, causing the secondary scale to deteriorate. Yield deterioration is also a problem due to scale loss.
  • the lower limit of the heating temperature is not particularly limited, but is appropriately selected from the viewpoint of reducing the rolling load. This heating temperature is the value obtained by measuring the steel slab surface temperature immediately after extraction from the heating furnace with a radiation thermometer.
  • Components of the steel material to which the present invention is applied include C content: 0.05 to L: 2 mass% L, Si content: 0.01-0. This component is not particularly limited. Other components Mn (0. 1 ⁇ 1. 5 mass 0/0), A1 (0. 1 mass% or less), P (0. 02 wt% or less), S (0. 02 wt% or less) , N (0.005 mass% or less), Cu, Ni, Cr, B, Ni, Mo, Zr, V, Ti, and Hf. Number in () The value preferably indicates the content.
  • C is a main element that determines the mechanical properties of steel, and is set to 0.05 mass% or more in order to secure the necessary strength as a steel material, and is also processed during hot rolling. 1. In order to avoid deterioration of properties, it is preferable to make it 2% by mass or less.
  • Si which is another main component, influences the force necessary as a deoxidizing material for steel and also the formation of Fe SiO, which is an essential component of the scale obtained by the present invention.
  • the amount is also defined. That is, in order to keep the adhesion between the scale and the ground iron appropriately and to adhere the scale stably, it is desirable that the Si content in the steel is 0.01 to 0.50 mass%.
  • the present invention contains C: 0.05-: L 2%, Si: 0.01-0.50% and Mn: 0.1-1.5%, P: 0.02% or less, S : Steel wire controlled to 0.02% or less and N: 0.005% or less.
  • This steel wire should be selected as the basic steel grade, from mild steel to hard steel, and even alloy steel, depending on the properties and quality of the final product.
  • C is a main element that determines the mechanical properties of steel, and is required to be 0.05% by mass or more in order to ensure the necessary strength as a steel wire, and hot workability during wire manufacturing. In order to avoid the decrease of 1.
  • the upper limit is 2% by mass.
  • Si is a force necessary as a deoxidizing material for steel, and further, the amount of the essential component firelite Fe SiO on the scale structure, which is a feature of the present invention, influences the amount.
  • Fig. 1 schematically shows the layer structure of scale 1 in the present invention. From the outermost surface of steel 2, there are four layers of FeO layer 3, FeO layer 4, FeO layer 5 and Fe SiO layer 6. On the other hand, The scale is based on the premise of a three-layer structure of Fe 2 O, Fe 2 O and FeO.
  • the intention is to improve the peelability of the tool.
  • it is usually necessary to generate a secondary scale at a high temperature, which has the disadvantage of increasing the scale loss as the scale becomes thicker.
  • it was extremely difficult to simultaneously achieve the reciprocity of increasing the FeO ratio and reducing the layer thickness at the same time.
  • Si in the steel wire of the present invention is indispensable for forming a firelite layer of a predetermined thickness in a scale that is not only necessary as a deoxidizer for steel. Therefore, the lower limit was set to 0.01% by mass. However, when the Si content is 0.5 mass% or more, the ferrite is excessively generated, and conversely, the mechanical descaling property is remarkably deteriorated. Therefore, the Si content is limited to 0.01 to 0.50 mass%.
  • the production amount of the ferrite thin layer itself was successfully quantified as follows. In other words, the area occupied by the firelite layer at the interface between the base iron and the scale in the cross section of the steel wire rod is observed at the magnification of 15000 times with an electron microscope. This means that it is over 60% of the length of m.
  • the thickness of the firelite layer is less than 0.01 ⁇ m, the stress relaxation effect on the scale is not sufficiently exhibited. If the thickness exceeds 1. Adhesion of the material becomes excessive, making mechanical descaling difficult. Also, if the area ratio occupied by the ferrite under the above conditions is less than 60%, the stress relaxation action is insufficient and the scale may be peeled off spontaneously.
  • Mn requires 0.1 or more in order to ensure the hardenability of steel and increase its strength, but if it exceeds 1.5 mass%, Mn will paralyze in the cooling process after hot rolling of the wire. Further, a supercooled structure such as martensite, which is harmful to the wire drawing property, is likely to occur.
  • P degrades the toughness and ductility of the steel and causes wire breakage in the wire drawing process and the like, so it is set to 0.02 mass% or less, preferably 0.01 mass% or less, more preferably is 0.
  • S degrades the toughness and ductility of steel, and also causes breakage in wire drawing and subsequent stranded wire processing, etc., so 0.02% by mass or less, preferably 0.01 Less than mass%, more preferably less than 0.005 mass%.
  • Cu has the effect of promoting the peeling of the scale. If added over 0.2 mass%, the peeling of the scale will increase abnormally and a thin adhesion scale will be regenerated on the peeled surface, or the coil will be stored. There is a risk of starting.
  • Nb, V, Ti, Hf and Zr are added in an amount of 0.003% by mass or more to precipitate these fine carbonitrides, resulting in high strength of steel. Contributing to However, a total addition of 0.1% by mass excessively deteriorates the ductility of the steel.
  • A1 or Mg is a deoxidizing agent. When excess of these oxide-based inclusions occurs frequently and disconnection occurs frequently, even if added, A1: 0.1% by mass or less, Mg : 0.01% by mass or less.
  • B is present in the steel as free B, and has the ability to suppress the formation of second-layer ferrite, particularly when high strength wires that require suppression of longitudinal cracks are used, 0.0001 mass% or more is added. It is effective. However, the upper limit of B is 0.005 mass% in order not to deteriorate the ductility of the steel.
  • the present invention incorporates a scale refining method during hot rolling as follows in order to uniformly form a thin layer in the scale during hot rolling. It was.
  • heating conditions are set to 30 minutes or more and less than 120 minutes to completely convert the firelite generated in the heating furnace into a liquid phase. Then, immediately after the billet is taken out of the heating furnace, the molten firelight is completely removed by descaling. This descaling may be performed, for example, by means of high pressure water descaling.
  • Firelight may be generated during this rolling. In this case, at least once before finishing rolling is completed. It is desirable to remove this firelight completely by performing descaling That's right.
  • the descaling in this case may be performed by a normal high pressure water descaling method.
  • the oxidation time of the re-oxidation treatment is confirmed to be about several seconds when the wire passes at a normal linear velocity.
  • the wire after the re-oxidation treatment is cooled at a cooling rate of CZsec or more, preferably 5 ° C Zsec or more. Under these conditions, cooling is too slow without increasing scale loss.
  • the steel wire rod according to another embodiment of the present invention C: 0. 05 ⁇ : L 2 Mass 0/0, Si:. 0. 01 ⁇ 0 50 wt%, Mn: 0. 1 ⁇ 1 . in steel wire rod containing 5 wt%, a scale deposition amount is 0.1 to 0.7 mass 0/0, 30 vol% or more of FeO in scale, 0.1 to Fe SiO. 01 to
  • MD property mechano-cal descaling property
  • the steel wire according to Embodiment 3 of the present invention has components and scales attached to the steel wire.
  • the amount of deposit and the composition of the scale are specified. The specific reason will be described below.
  • C is the main element that determines the mechanical properties of steel. In order to secure the required strength of the steel wire, the C content should be at least 0.05% by mass. On the other hand, if the amount of C is excessive, the hot workability during wire manufacturing deteriorates, so the upper limit is set to 1.2% by mass in consideration of hot workability. Therefore, C: 0.05-: L 2% by mass (hereinafter also referred to as%).
  • Si is an element necessary for deoxidation of steel, and if its content is too small, the deoxidation effect becomes insufficient, so the lower limit is made 0.01 mass%. On the other hand, when Si is added excessively, MD properties deteriorate significantly due to excessive formation of Fe SiO (firelight), and surface decarburization.
  • the upper limit is set to 0.50% by mass because problems such as layer formation occur. Accordingly, Si: 0.01 to 0.50 mass% is set.
  • Mn is an element useful for securing the hardenability of the steel and increasing the strength. In order to exert such an action effectively, it is necessary to add 0.1% by mass or more, and it is desirable to add 0.3% by mass or more. However, if added excessively, segregation occurs in the cooling process after hot rolling, and a supercooled structure such as martensite, which is harmful to the wire drawing property, is likely to be generated. It is necessary to make it 1.0% by mass or less. Therefore, Mn: and from 0.1 to 1 5 weight 0/0.. Preferably, Mn: Ru 0.35 to 0 8 mass 0/0 der..
  • Components other than C, Si, and Mn are not particularly limited, and the balance is substantially Fe, but it is desirable to add the following elements in order to further improve properties such as strength. It is also desirable to suppress the contents of P, S, N, A1, etc. as follows.
  • Cr and Ni are both elements that increase the hardenability and contribute to strength improvement. In order to exert this effect, it is preferable to add Cr 0.1% by mass or more and Ni 0.1% by mass or more. However, if added excessively, martensite is likely to be generated, and scale adhesion becomes excessively high, so that the scale can be removed, so that 0 :: 0.3 mass% or less, Ni: 0.3 mass 0 / It should be 0 or less. These elements may be added alone or in combination. [0080] [One or more of Nb, V, Ti, Hf, Zr: 0.003 to 0.1 mass% in total]
  • Nb, V, Ti, Hf, and Zr are all elements that contribute to high strength by precipitating fine carbonitrides. In order to effectively exert such effects, it is preferable to add one or more of Nb, V, Ti, Hf, and Zr: 0.003% by mass or more in total. However, since ductility deteriorates if added excessively, at least one of Nb, V, Ti, Hf, and Zr: the total should be 0.1% by mass or less. These elements may be added alone or in combination.
  • the P is an element that deteriorates the toughness and ductility of steel, and it is desirable that the upper limit of the P content be 0.02 mass% to prevent disconnection in the wire drawing process. Accordingly, the P content is preferably 0.02% by mass or less (including 0% by mass). More preferably, the P content is 0.01% by mass or less, and still more preferably the P content is 0.005% by mass or less.
  • the S content is preferably 0.02% by mass or less (including 0% by mass). More preferably, the S content is 0.01% by mass or less, and still more preferably the S content is 0.005% by mass or less.
  • N is desirably 0.01% by mass or less in order to deteriorate the toughness and ductility of the wire.
  • Al and Mg are effective as deoxidizers. When added in excess, Al O, MgO—Al O, etc.
  • A1 0.05% by mass or less
  • Mg 0.01% by mass or less are desirable.
  • B is known to suppress the formation of second-layer ferrite because it exists as free B that dissolves in steel.
  • B It is effective to add In order to obtain such effects, it is preferable to add B: 0.001% by mass or more. However, adding more than 0.005 mass% will deteriorate ductility Because, B: good to 0.005 mass 0/0 or less.
  • Cu has the effect of improving corrosion fatigue properties and concentrating at the interface between the scale and steel, making it easier to peel off the scale. In order to exert such effects, it is preferable to add 0.01% by mass or more of Cu. However, if excessively added, scale peeling will be severe and the scale will be peeled off during the conveyance of the wire, causing rusting and reducing the ductility of the steel. Therefore, Cu should be 0.2% by mass or less.
  • ⁇ 0.7 mass% is optimal.
  • the scale is poor in peelability due to the magnetite, and the scale peelability is deteriorated. For this reason, scale remains on the surface of the wire after MD, which has poor M-ability.
  • the scale deposition amount and 0.1 to 0.7 mass 0/0.
  • the scale has a structure consisting of four layers of Fe O, Fe O, FeO, and Fe SiO from the upper layer.
  • the higher the FeO ratio the better the M dwarfness. If the FeO ratio is 30 vol% or more, good MD characteristics can be obtained.
  • Fe SiO itself is very brittle.
  • Fe 2 SiO 3 is from 0.01 to L0 vol%. Fe SiO content is less than 0.01 vol%
  • the steel wire according to the present invention specifies the components of the steel wire, the amount of scale attached, and the composition of the scale as described above for the reasons described above. Therefore, it is possible to eliminate the above-mentioned problems of the prior art, and it is a steel wire material excellent in mechanical descaling property (MD property), and scale removal by MD can be performed satisfactorily.
  • MD property mechanical descaling property
  • the method described in Japanese Patent Laid-Open No. 4-293721 has the problems of the method described in Japanese Patent Laid-Open No.
  • the method for producing a steel wire rod according to the present invention includes: C: 0.05-: L 2% by mass; Si: 0.
  • a steel slab containing 01 to 0.50% by mass and Mn: 0.1 to 1.5% by mass is hot-rolled into a steel wire, and the steel wire is cut at a temperature of 750 to 850 ° C., and then has a dew point of 30 to
  • This is a method for producing a steel wire material excellent in mechanical descaling property (MD property) characterized by being oxidized for at least 0.1 second in a humid atmosphere at 80 ° C.
  • MD property mechanical descaling property
  • the method for producing a steel wire according to the present invention specifies the components of the steel wire, the temperature of the steel wire after hot rolling, and the method of oxidizing the steel wire after the cutting as described above. . The specific reasons are explained below.
  • the M tension has a clear correlation with the amount of scale attached, and the larger the amount of scale attached, the better the MD property and the smaller the amount of residual scale.
  • the scale deposition amount 0.1 to 0.7% by mass
  • the scale composition necessary to improve the M property are obtained.
  • the film is wound in a temperature range of 750 to 850 ° C. and then oxidized in a humid atmosphere having a dew point of 30 ° C. to 80 ° C.
  • the dew point is the moisture content in the atmosphere near the surface of the steel wire. Confirm by measuring.
  • the steam acid time is 0.1 seconds or longer. 0. If it is less than 1 second, the accelerated oxidation effect is not sufficient. Even if the time is too long, the surface oxidizes and changes to Fe O, so FeO decreases.
  • the steam oxidation time is 60 seconds at the longest, more preferably 30 seconds, and even more preferably 10 seconds.
  • the method for producing a steel wire rod according to the present invention includes: 0.05 to 1.2% by mass, Si: 0.01 to 0. 0.
  • a steel slab containing 50% by mass and Mn: 0.1 to 1.5% by mass is hot-rolled and added to a steel wire, and after the steel wire is cut at a temperature of 750 to 850 ° C., the dew point is 30 to 80 It is supposed to be acidified for 0.1 second or more in a humid atmosphere of ° C.
  • a steel wire containing 0.01 to L0 vol% of SiO can be obtained. That is, the steel according to the present invention
  • a wire can be obtained.
  • the content (vol%) of FeO and Fe SiO in the scale means FeO relative to the volume of the scale.
  • the dew point is confirmed by measuring the moisture content in the atmosphere near the surface of the steel wire.
  • an atmospheric gas within a height of 50 cm from the surface of the steel wire is collected and exposed. Determine by measuring with a point meter.
  • the dew point is preferably 30 ° C to 80 ° C. Below 30 ° C, the effect of water vapor acid is insufficient. Also, if the temperature exceeds 80 ° C, the scale grows too much and the scale loss increases.
  • the steel wire rod according to still another embodiment of the present invention includes: C: 0.05-: L 2% by mass, Si: 0.
  • the scale and steel table are included in the scale of the steel surface in the cross section perpendicular to the longitudinal direction of the steel wire. Crack strength with a length of 25% or more of the scale thickness starting from the interface with the surface 5-20 pieces per 200 ⁇ m of interface length.
  • the steel wire according to the present invention is obtained by specifying the components of the steel wire and the number of specific cracks in the scale as described above. Hereinafter, the specific reason will be described.
  • the reason for specifying the components of the steel wire is the same as in the third embodiment.
  • the present inventors have observed the cross-sections of various steel wire rods, and have conducted a scale adhesion property and mechano-descaling property investigation test, and based on the results, within the scales observed in the cross-section of the steel wire material. The relationship between cracks, scale adhesion and mechano-calde-scaling properties was investigated.
  • the length of the scale thickness is 25% or more starting from the interface between the scale and the steel surface.
  • Cracking force (hereinafter also referred to as crack A) Interfacial length 5 to 20 steel wires per 200 / zm
  • the mechanical wire descaling has good scale adhesion and is difficult to peel off during transport. We have found that sometimes the scale peelability is good and the mechanical-caldescaling property is excellent.
  • the steel wire with the crack A above less than 5 per 200 m of interface length has good scale adhesion during transportation and the scale is difficult to peel off, but the scale peels off when mechanical-caldeskeling. Inferior to mecha chanore descaling.
  • the scale adhesion is good when the steel wire is transported, and the scale is difficult to peel off.
  • 5 to 20 cracks A per 200 m of interface length should be observed in the observed scale of the steel surface.
  • the interface between the scale and the steel surface in the scale of the steel surface in the cross section perpendicular to the longitudinal direction of the steel wire starts from the interface between the scale and the steel surface, and is longer than 25% of the scale thickness. It is specified that there are 5 to 20 cracks (crack A) having a thickness per 200 m of interface length.
  • the crack A can be prevented by controlling the steel wire temperature and atmosphere during the winding process after rolling. It is possible to obtain 5 to 20 scales per 200 m length.
  • the crack A can be observed with an optical microscope, a scanning electron microscope or the like by polishing a cross section perpendicular to the longitudinal direction of the steel wire.
  • the steel wire according to the present invention is composed of the components of the steel wire and the number of specific cracks (cracks A) in the scale (piece Z interface length 200 ⁇ m). per m). Therefore, the scale adherence is good when transporting and the scale is difficult to peel off. When the scale is double scaled, the scalel peel is good and the mechanical double scale is good. Therefore, according to the steel wire according to the present invention, the generation of wrinkles due to scale peeling during transportation (exposure of the surface of the iron bar) is suppressed, so that wrinkles are generated, and scale removal by mechanical-calcal scaling is good. To be able to do that.
  • the dew point in the water vapor atmosphere is confirmed by measuring the dew point in the atmosphere near the surface of the steel wire rod.
  • the dew point is measured by collecting an atmospheric gas within a height of 50 cm from the steel surface.
  • Fig. 2 shows an example of a cross section perpendicular to the longitudinal direction of the steel wire.
  • a, b, and c all indicate cracks starting from the interface 17 between the scale 11 and the steel 12.
  • the crack a is a crack whose length is less than 25% of the scale thickness.
  • the crack of b is a crack whose length is 25% of the scale thickness, and the crack of c is a crack whose length is more than 25% of the scale thickness.
  • cracks b and c correspond to cracks A (cracks starting from the interface between the scale and the steel surface and having a length of 25% or more of the scale thickness).
  • the line indicating the scale surface and the line indicating the interface between the scale and the steel surface are strictly forces that form a circular arc. Normally, the diameter of the steel wire is approximately 5 mm and the thickness of the scale is approximately 10 m.
  • the line indicating the scale surface and the line indicating the interface between the scale and the steel surface are arcs with extremely large diameters, which are almost straight lines.
  • a steel wire according to still another embodiment of the present invention includes: C: 0.05-: L 2% by mass, Si: 0.
  • the steel wire is characterized in that a Fe SiO layer is formed immediately above the P-enriched part.
  • the steel wire according to the present invention comprises the components of the steel wire, the maximum value of the P concentration in the P concentrated portion at the interface between the scale and the steel, and the Fe SiO directly above the P concentrated portion.
  • the layer is formed
  • the reason for specifying the component of the steel wire is the same as that in the third embodiment.
  • the Fe SiO layer is formed just above the P-enriched part at the interface between the scale and steel.
  • the scale formed on the surface of the steel wire consists of Fe 2 O, Fe 2 O, and FeO from the upper layer.
  • Fe SiO is easily generated even in the atmosphere.
  • the amount of Si is 0.
  • SiO is a strong and dense oxide, it has a mechano-caldescale structure.
  • a SiO layer is formed.
  • the thickness of the Fe SiO layer should be controlled to 0.01 to 1 / ⁇ ⁇ .
  • the steel wire according to the present invention is composed of the components of the steel wire, the maximum value of the P concentration in the P concentrated portion at the interface between the scale and the steel, and Fe SiO directly above the P thickening part
  • Te Oi steel wire material containing by mass%, at the interface between the scale and the steel, the maximum value of P concentration: 2.5 wt% or less of P thickened portion is formed,
  • the steel wire is characterized in that an Fe SiO layer is formed immediately above the P-enriched part.
  • scale peeling during hot rolling is suppressed, scale adhesion is good during transport, and scale peeling is difficult during scale-mechanical descaling. Therefore, according to the steel wire rod according to the present invention, the generation of wrinkles due to scale peeling (exposure of the surface of the steel) during hot rolling or during conveyance is suppressed, so that wrinkles are generated.
  • the scale removal by can be performed satisfactorily.
  • the Fe SiO layer is formed during mechanical caldescaling.
  • the P concentration portion formed at the interface between the scale and the steel has a maximum P concentration of 2.5 mass% or less.
  • An Fe SiO layer is formed immediately above the part. In order to obtain a rough interface structure, At high temperatures, the Fe SiO layer was preferentially formed by oxidizing in a short time in a high dew point atmosphere.
  • methods for producing a high dew point atmosphere include a method of injecting high-temperature steam onto the wire coil surface and a method of injecting water into the wire coil surface in a mist state to vaporize it. It is recommended to adjust the dew point to 30 ° C or higher for sufficient formation.
  • the oxidation time for forming Fe SiO in the atmosphere is 5 seconds or less, preferably 3
  • the temperature at which the steam acid treatment is performed is preferably about 750 to 1015 ° C. Below 750 ° C, the effect of water vapor is not sufficient and Fe SiO is not formed sufficiently.
  • the cooling rate is 10 ° CZsec or more, preferably 20 ° CZsec or more, more preferably 40 ° CZsec or more.
  • the cooling method after the oxidation treatment in the water vapor atmosphere is performed by water cooling or air cooling.
  • the cooling method in the temperature range below 600 ° C adjusts the viewpoint of material structure control as appropriate, but in this temperature range there is almost no influence on the interface structure itself.
  • the thickness of the above-mentioned Fe SiO layer is determined by TEM (transmission electron microscope) or the like.
  • JEM-2010F JEOL field emission transmission electron microscope
  • the maximum value of the P concentration in the above-mentioned P-concentrated portion is, for example, measured by a TEM-EDX at a beam diameter of lnm and the interface between the scale and steel in the vertical direction at 1 Onm intervals.
  • the maximum value can be obtained. More specifically, the maximum value of P concentration at 20 points per interface length of 500 nm is measured by such a measuring method, and the average value (a) at 20 points is obtained. Or Take several measurements, and calculate a (the average value of the maximum value of 20 P concentrations) at each location, and calculate the average value of these values as the maximum value of P concentration. By such measurement, the maximum value of P concentration in the P-enriched part could be obtained accurately.
  • a JEOL field emission transmission electron microscope (JEM-2010F) and an EDX detector (NO RAN-VANTAGE) were used as the apparatus, and the measurement conditions were an acceleration voltage of 200 kV.
  • a steel wire containing Cr: more than 0% by mass and 0.3% by mass or less and Z or Ni: more than 0% by mass and 0.3% by mass or less means: 0.05 to 1.2% by mass, Si: 0.01 to 0.5% by mass, Mn: 0.1 to 1.5% by mass, Cr: more than 0% by mass, 0.3% by mass or less and Z or Ni: more than 0% by mass, 0.3% by mass or less, with the balance being Fe and inevitable impurities or Ranaru steel wire, or, Ji: 0.05 to 1.2 wt%, Si: 0.01 to 0.5 mass 0/0, Mn:.
  • ⁇ 4 is a side sectional view (a view of a cross section parallel to and passing through the center line of the steel wire rod).
  • A is steel (steel part)
  • B is P enriched part
  • C is Fe SiO layer
  • D is scale
  • Scale D is, for example, the surface of steel wire, Fe O layer
  • the P-enriched part B and Z or the Fe SiO layer C may exist in a discontinuous striped pattern.
  • FIG. 4A shows steel A and scale D on steel A
  • FIG. 4B shows the structure of the scale of FIG. 4A and the structure of the interface between the scale and steel.
  • Example 1 of the present invention will be described below.
  • a 150 mm square steel slab with the components shown in Table 1 was heated in a heating furnace, and the primary scale generated in the heating furnace was descaled and rolled.
  • the rolled steel material was scraped and oxidized in a wet atmosphere, and then cooled to obtain a steel material.
  • Table 2 shows the hot rolling conditions of the steel slab and the oxidation conditions in the moist atmosphere after the steel material is scraped.
  • Table 3 shows the characteristics of the scale attached to the surface of the steel material obtained.
  • the state of peeling of the scale of the steel material after hot rolling was obtained by collecting three steel materials each having a length of 500 mm from the front, center, and rear ends of the steel coil. The surface appearance of the outer and inner peripheral surfaces of the steel was photographed with a digital camera, and the area ratio (%) of the part where the scale was peeled off was calculated using image analysis processing software to obtain the average value. A scale peel rate of 3% or less was accepted.
  • Residual scale (mass 0/0) (W1 -W2 ) / W1 X 100 ⁇ ⁇ ⁇ (1)
  • the primary scale generated in the furnace is completely removed by the descaling process, and mist of appropriate conditions or water vapor is generated by spraying water vapor, and Fe SiO is removed.
  • the steam oxidation start temperature is too high, and accelerated oxidation by steam occurs violently, the scale becomes too thick and the amount of deposit exceeds 0.7 mass%, and the scale peels off during the cooling process. is there.
  • a thin tertiary scale (magnetite: Fe 2 O 3) that is difficult to peel off during cooling is generated, and therefore, the M lattice property is deteriorated.
  • the dew point is too high, causing accelerated oxidation by water vapor, causing the scale to become too thick and peeling off during cooling.
  • a thin tertiary scale (magnetite: Fe 2 O 3), which is difficult to peel off during cooling, is generated.
  • the steam oxidation treatment according to the method of the present invention was performed after the hot rolling of the steel slab and the steel material was wound up.
  • the present invention is not limited to this.
  • the steel material is wound up
  • the key to doing this is that it does not work at any time after hot rolling is completed.
  • Example 2 of the present invention will be described below.
  • the billet of the 10 types of steel composition shown in Table 4 is used in common with the comparative example, and the tempering conditions at the time of wire manufacture are changed between the example and the comparative example. It was decided. That is, for each billet of each steel composition in Table 4, the tempering conditions equivalent to the present invention shown in Table 5 and the tempering conditions of a comparative example outside the regulation range were combined, and these billets were combined. By performing rolling and tempering the scale, differences in scale characteristics obtained and suitability were investigated, and the results shown in Table 6 were obtained. First, examples of the present invention will be described.
  • the heated billet is immediately descaled with high pressure water and Fe After sufficiently removing and removing SiO, rolling was performed. During this staged rolling process, Fe SiO
  • a thin SiO layer was formed uniformly.
  • the comparative examples show that when the dew point during reoxidation is too high (d), when the dew point is too low (e), and when the heating temperature in the billet furnace is increased (f ). In (f), the billet heating temperature is high, so the Fe SiO generated in the heating furnace is melted.
  • Table 6 shows various types of steel wire rods produced by combining a steel grade of 0 and tempering conditions.
  • the residual stress of the scale was measured by the X-ray diffraction method (sin2 ⁇ method).
  • sin2 ⁇ method the X-ray diffraction method
  • the peak position of the diffraction line changes when the X-ray incident angle ( ⁇ ) is changed. Therefore, the peak position of this changed diffraction line is taken on the vertical axis, the incident angle of X-ray sin2 ⁇ is taken on the horizontal axis, and the slope is obtained by linear regression using the least square method, and the Young's modulus and Poisson are obtained. Multiplying the specific stress by the stress constant, the stress value was calculated using the following formula (3) (see “Residual stress on scale” in Table 6).
  • examples of the present invention (steel types A2 to J2 and tempered under tempering conditions a2 to c2; 201, 202, 205, 207, 209, 210, 213, 216, 218, 219, 222, 224 ⁇ 227) has a thickness of Fe SiO measured by an electron microscope under certain conditions of 0.01 to: L and The ratio of the generation length of Fe SiO to 10 m of the steel surface length is 60% or more,
  • the residual stress of the scale is suppressed to 200MPa or less regardless of the cooling rate after scraping of the wire, the scale peeling rate of the wire after hot rolling and the residual scale after mechanical-calde-scale Both quantities can be reduced.
  • the acceptable line for the residual amount of scale was set to 0.05% or less as the quality required for actual products.
  • the comparative examples (steel grades C2, D2, F2, and H2 that were tempered under tempering conditions d2; 2 08, 211, 217, and 223) had a too high dew point during reoxidation of the wire.
  • comparative examples (steel grades A2, D2, G2, J2 were tempered under tempering condition f2; 203, 212, 221 and 229) are for cases where the heating temperature in the billet furnace is high. Yes, the Fe SiO generated in the furnace melts, and the scale rapidly grows due to intense Fe diffusion through this.
  • Fe SiO is thicker than in the present invention
  • Example 3 of the present invention will be described below.
  • a steel slab (billet) having the composition shown in Table 7 is heated in a heating furnace and then hot-rolled into a steel wire having a predetermined wire diameter, and then the steel wire is wound around a coil at a temperature of 755 to 1050 ° C.
  • the steel wire after this treatment is wound around a coil.
  • Samples with a length of 500 mm were taken from the front end, center, and rear end of the steel wire coil after the above treatment.
  • each ratio was calculated from the peak intensity ratio of 34, FeO, and Fe SiO2. Furthermore, from these, each coil (each
  • the average value of the entire steel wire was obtained, and this was used as the scale composition value for each coil (each steel wire).
  • the weight is then measured to determine the weight (Wl) .
  • the sample is immersed in hydrochloric acid and adhered to the surface of the wire, the scale is completely peeled off, the weight is measured again, and the weight (W2 ).
  • the residual scale amount was determined by the above formula (1).
  • the amount of scale attached to the steel wire was obtained from the above equation (2).
  • the average value of the residual scale amount at the front, center, and rear ends of the coil was used as the residual scale amount.
  • the average value of scale adhesion at the front, center, and rear ends of the coil was used as the scale adhesion.
  • the scale adhesion amount of the steel wire is 0.1 to 0.7% by mass, which is accelerated and oxidized compared to the comparative example in which no steam is added. Therefore, the amount of scale attached increases, and the ratio of FeO and Fe SiO increases in both the force and scale structure within the appropriate range (
  • FeO 30vol% or more, Fe SiO: 0.1 ⁇ : L0vol%)
  • the MD property was a little less than the amount% and was good.
  • Example 4 of the present invention will be described below.
  • the steel slab (billet) with the composition shown in Table 9 is heated in a heating furnace and then hot-rolled to a steel wire with a wire diameter of 5.5 mm, and then the steel wire is in a temperature range of about 750 ° C and 1030 ° C. After winding, this steel wire was passed through a steam atmosphere and subjected to steam oxidation. At this time, if the cooling rate after rolling is changed, the passage time in the water vapor atmosphere changes, the steam oxidation treatment time changes, and the scale properties (crack generation state, scale peeling area) change.
  • the adhesion state of the scale in the steel wire after the steam oxidation treatment was examined as follows. Samples 500 mm long from the front end, center, and rear end of the steel wire coil, and measure the area where the scale peeled off (scale peeling area). The ratio of the scale peeling area to the entire surface of the sample was obtained. The larger the ratio, the greater the scale peeling of the steel wire rod after rolling (after steam oxidation treatment). Over 60% is X (extremely poor), 40-60% (excluding 40%) is ⁇ (Poor), 20-40% (excluding 20%) was rated as ⁇ (good), and 20% or less was rated as ⁇ (very good). For ⁇ and ⁇ , the scale is stably attached after rolling (after steam oxidation treatment) and does not require the application of an antifungal agent or the like.
  • the mechano-cal descaling property of the steel wire material after the steam acid soaking treatment was examined as follows. Take a sample with a length of 250 mm from the front, center and rear ends of the steel wire coil, attach it to the crosshead with a distance between chucks of 200 mm, give it 4% tensile strain, and then remove it from the chuck It was. Next, wind was blown on the sample to blow off the scale on the surface of the wire, and then the piece was cut to a length of 200 mm and weighed to determine the weight (W1), and then the sample was immersed in hydrochloric acid. The scale attached to the surface of the wire was completely peeled off, and the weight was measured again to obtain the weight (W2).
  • the value of weight measurement The amount of residual scale was obtained from the above equation (1).
  • the average value of the residual scale amount at the front end portion, the central portion, and the rear end portion of the steel wire coil coil obtained in this manner was used as the residual scale amount after applying strain.
  • the residual amount of scale after applying strain is 0.05 mass% or less. did.
  • Example 5 of the present invention will be described below.
  • a billet of the composition shown in Table 11 is heated in a heating furnace, then hot-rolled to a steel wire with a wire diameter of 5.5 mm, and then the steel wire is scraped, and then the steel wire is dew pointed to 30 ° C.
  • the steam was oxidized by passing through the above steam atmosphere. Thereafter, the P concentration was controlled by changing the cooling rate to 600 ° C. [0179] With respect to the steel wire thus obtained, the maximum value of the P concentration in the P-concentrated portion formed at the interface between the scale and the steel, the thickness of the Fe 2 SiO layer, and the scale peeling state were measured.
  • the thickness of the Fe SiO layer was measured as follows. Cross section from steel wire (steel wire).
  • the average value was obtained by spot measurement, and the average value at three locations of the wire (front end, center, and rear end of the coil) was determined as the thickness of the Fe SiO layer.
  • the equipment used for this measurement is JEOL field emission.
  • the maximum value of the P concentration in the P concentrating portion was measured as follows. Three samples of cross-sections (sections perpendicular to the longitudinal direction of the steel wire) are taken from the steel wire, and for each cross-section sample, the interface between the scale and the steel is perpendicular with a beam diameter of lnm by TEM-EDX. Measure the P concentration at 10nm intervals to obtain the maximum value of P concentration. Perform such measurements at 20 points per 500 nm of interface length, obtain the maximum value of P concentration at each point, and obtain the average value (a) of the P concentration maximum value at 20 points.
  • the average value of all a (average value of P concentration maximum value at 20 points) was obtained and set as the maximum value of P concentration.
  • the equipment used for this measurement is a JEOL field emission transmission electron microscope (JEM-2010F) and an EDX detector (NORAN-VANTAGE), and the measurement conditions are an acceleration voltage of 200 kV.
  • the average value of the residual scale amount at the front end portion, the central portion, and the rear end portion of the steel wire coil obtained in this manner was used as the residual scale amount after applying strain.
  • the residual amount of scale after applying strain was 0.05% by mass or less.
  • Table 12 shows the results of the above measurement.
  • ⁇ or ⁇ is also in accordance with the present invention
  • Composition of this kind of Okaoka wire (C: 0.05 to 1.2 mass%, Si: 0.1 to 0.5 mass%, Mn: 0.3 to: L0 mass)
  • Si: 0.1 to 0.5% by mass is satisfied. Therefore, the thickness of the Fe SiO layer formed at the interface between the scale and the steel is 1 m or less without being too thick, and P Thickening part
  • the maximum value of P concentration is 2.5 mass% or less. For this reason, the scale peeling area of the steel wire after hot rolling is difficult to peel during hot rolling, and the scale adhesion state is ⁇ (good) or ⁇ (very good) and is being stored. In addition, the generation of soot is suppressed, and the residual amount of scale after applying strain is 0.05% by mass or less, and the mechanical-caldescaling property is good.
  • P concentration is remarkable because it is slow.
  • the maximum value of P concentration in the P concentration part is over 2.5%.
  • the ratio of the scale peeling area of the steel wire after hot rolling where the scale peeling during hot rolling is severe is large and the scale adhesion state is X (defect). Therefore, scale removal during cooling A new thin adhesion scale (tertiary scale) is generated on the separation surface, and creases occur on the separation surface during storage.
  • the residual amount of steel is larger than 0.05% by mass and the mechanical descaling property is poor.
  • the Fe SiO layer formed at the interface between the scale and steel is too thick and exceeds 1 m regardless of the presence or absence of steam oxidation treatment
  • the amount of residual scale after applying strain is greater than 0.05% by mass, and the mechanical-caldescaling property is extremely poor.
  • the steel wire according to the present invention has good adhesion to the scale during transportation, and the scale peels off and is hard, so that no flaws are generated even when stored for a long period of time, and further, scale peeling occurs during mechanical-calcal scaling. Since it has good mechanical properties and mechanical descaling properties, it can be used very favorably as a steel wire material (elementary wire) for manufacturing steel wires, and is very useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 本発明は、鋼材の冷却中や保管・搬送時においてスケールの確実な密着性を有し、2次加工前のメカニカルデスケーリングや酸洗時においては優れたスケール剥離性を有する鋼材の製造方法を提供することを目的とする。  上記目的を達成するため、鋼片を加熱して熱間圧延し、熱間圧延を終了した鋼材に、水蒸気および/または粒径100μm以下のミスト水を噴霧し、その表面を酸化処理する。

Description

明 細 書
スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた 鋼線材
技術分野
[0001] 本発明は、熱間圧延により製造される鋼材の表面に形成された酸化物のスケール( 以下、単にスケールということがある)が冷却中や保管搬送時には密着性良く付着し て鲭発生を抑えるとともに、鋼材の 2次加工である伸線'引き抜き加工等に先行するメ 力二カルデスケーリングや酸洗処理時には当該スケールが容易に除去される鋼材の 製造方法に関する。
背景技術
[0002] 熱間圧延により製造された鋼材は、その素材となる鋼片の加熱時ないし圧延時に 形成された表面上の酸化物のスケールを、伸線'引き抜き加工等の 2次加工前に除 去する(デスケーリング)する必要がある。このデスケーリング法として、物理的 (機械 的)に除去するメカニカルデスケーリング法や化学的に除去する酸洗法が採用されて いる。
[0003] このデスケーリング処理時にスケールが十分に除去できずに鋼材の表面に残留し た場合、スケールが硬質であるために引き抜き加工時に製品疵が発生したり、加工 ダイス寿命の低下がおこるばかりか、ダイスの破壊の原因ともなり、生産性の低下を 招く。
[0004] 従って、鋼材の製造にあたっては、 2次力卩ェに先立つデスケーリング工程における メカ-カルデスケーリング(以下、 MDと略称することがある)もしくは酸洗によるスケー ルの剥離性が良好な鋼材が得られるよう留意しなければならな 、。近年環境問題や コスト低減の観点から、デスケーリング法としてメカ-カルデスケーリング法が多く採用 されるようになっているため、特にメカ-カルデスケーリングの際におけるスケールの 剥離性の良否が鋼材の製造に当たって重要な決め手となる。
[0005] メカ-カルデスケーリング法は、伸線'引き抜き加工のインラインでローラなどによる 曲げ歪やショットブラストで物理的に鋼材のデスケーリングを行う。ところが、伸線工程 までにスケールが剥離してしまって 、ると、剥離部分に鲭びゃ薄!、3次スケールが発 生する。 3次スケールは非常に薄く硬質なマグネタイトスケールであるために、曲げ歪 では容易に除去できず、ダイスの破壊の問題が発生する。そのため、伸線工程の前 まではスケールが剥離せずに、曲げ歪等の負荷を付与した時や酸洗時に剥離する スケール性状の確保が求められて 、る。
[0006] MDや酸洗によるスケール剥離性を改善するためには、スケール組成を FeO (ウス タイト)の比率の高い組成とする必要があり、メカ-カルデスケーリング性や酸洗性の 改善技術にっ 、ては、従来より 、くつかの提案がなされて 、る。
[0007] 線材圧延後の卷取りを 870〜930°Cの高温で行い、剥離性の良い FeOを生成させ たあと、冷却速度を上げて剥離性の悪い Fe Oの生成を抑える方法 (特許文献 1参
3 4
照)が提案されている。しかし、この方法では、 FeOの生成を抑制しやすい Siや Cを 多く含有する硬鋼線材においては高温卷取りのみでは十分な FeO量を確保できな い。また、軟鋼線材においても、高温で保持される時間が極短時間であることから Fe Oの生成は必ずしも十分ではなく Mひ性の改善効果は小さい。
[0008] また、卷取り温度を 800°C以下で巻き取って、 600〜400°Cの範囲を 0. 5°C/sec以 上で冷却して、剥離しにくい Fe O (マグネタイト)の生成を抑える方法 (特許文献 2参
3 4
照)も提案されている。しかし、この方法においても前記の方法と同様、 FeOの生成 は不十分であり、スケール剥離性は十分ではな 、。
[0009] さらに、巻き取られた線材コイルの中空領域に衝風を吹き込んで均一に冷却し、線 材コイル全長にわたつてスケール組成 ·厚みを所定範囲内に制御する方法 (特許文 献 3参照)も提案されているが、本方法によっても特に C、 Siを多く含有してスケール が成長しにく!/、硬鋼線では十分ではな 、。
[0010] これら従来の方法はすべて、地鉄に接したスケール層は脆い FeOであり、熱間上 力 Sりのスケールの密着性は不十分である。スケールの密着性を高めるためには、ファ ィァライト (Fe SiO )を形成させることが有効であるが、密着性の観点力もは検討が
2 4
なされておらず、鋼材の耐鲭性も問題がある。
[0011] なお、上記以外の方法として鋼材の冷却による機械的特性改善を主目的としたも の(特許文献 4、 5参照)があるが、いずれも剥離性の良いスケール性状の確保の観 点からは不十分である。
特許文献 1 :特開平 4— 293721号公報
特許文献 2:特開平 2000— 246322号公報
特許文献 3:特開平 2005 - 118806号公報
特許文献 4:特公平 5— 87566号公報
特許文献 5 :特開平 2004— 10960号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、前記従来技術におけるデスケーリングを対象とする鋼材のスケール特 性の欠点を克服し、熱間圧延後の鋼材の冷却中や保管,搬送時のスケールの確実 な密着性と、 2次加工前のメカ-カルデスケーリングや酸洗時におけるスケールの剥 離性の両面にすぐれた鋼材の製造方法及び鋼線材を提供することを目的とする。 課題を解決するための手段
[0013] 本発明者らは、鋭意研究を行った結果、熱間圧延を終了した鋼材を、湿潤雰囲気 中、特に水蒸気および Zまたは粒径 100 m以下のミスト水の存在する環境下で酸 化処理すれば、メカ-カルデスケーリング性や酸洗性の確保に必要な FeO (ウスタイ ト)を十分に生成させてスケールの生成量を増やし、且つ熱間圧延後の鋼材の冷却 中や保管 ·搬送時のスケールの確実な密着性の確保に必要な Fe SiO (ファイアライ
2 4
ト)を生成させることができることを見出し、本発明を完成するに至った。
[0014] したがって、本発明の第 1発明は、鋼片、特に C : 0. 05〜: L 2質量%、及び Si: 0.
01〜0. 50質量%を含有する鋼片を加熱して熱間圧延し、熱間圧延を終了した鋼材 に、水蒸気および Zまたは粒径 100 m以下のミスト水の存在する環境下で鋼材の 表面を酸化処理することを特徴とするデスケーリング時のスケール剥離性に優れた 鋼材の製造方法にある。
[0015] また、本発明者らは、上記製造方法によれば、熱間圧延線材における地鉄とスケー ルとの界面に、一定の特性を具有する Fe SiO (ファイアライト)層を均一に生成させる
2 4
ことにより、線材の冷却中に発生するスケールの残留圧縮応力を 200MPa以下に低 減することができ、熱間圧延線材の冷却中や保管 ·搬送時におけるスケールの自然 剥離を防止し、メカ-カルデスケーリング時におけるスケールの剥離を容易にするこ とができる鋼線材を提供できることを見出した。
[0016] したがって、本発明の第 2発明は、 C : 0. 05〜: L 2質量%(以下、単に%とする。 ) 、 Si: 0. 01〜0. 50%および Mn: 0. 1〜1. 5%を含有し、 P : 0. 02%以下、 S : 0. 0 2%以下および N : 0. 005%以下に制御された鋼線材であって、熱間圧延時に形成 されたスケールの地鉄側に接して Fe SiO (ファイアライト)層が形成されており、かつ
2 4
熱間圧延時に発生してスケール内に残留する圧縮応力が 200MPa以下に調整され ていることを特徴とするメカ-カルデスケーリング用鋼線材を提供することにある。
[0017] さらに、本発明者らは、鋼材の表面上に形成されたスケールは、上層より Fe O、 F
2 3 e O、 FeO、 Fe SiOの 4層からなり、この中で FeO比率が 30vol%以上であれば、
3 4 2 4
FeOは Fe O、 Fe Oに比べると脆ぐ強度が低いため、 Mひ性は改善され、良好な
2 3 3 4
MD特性が得られること、 Fe SiO量力 0. lvol%より少ない場合は、 Fe SiO層に
2 4 2 4 亀裂が入り難くスケールの界面剥離が起こりにくい一方、 10vol%を超えると、地鉄 内に Fe SiOが楔状に食い込んでスケールが剥離しにくぐ Mひ性が悪ィ匕することを
2 4
見出した。
[0018] したがって、本発明の第 3発明は、 C : 0. 05〜: L 2質量%、 Si: 0. 01〜0. 50質量 %、Mn: 0. 1〜1. 5質量%を含有する鋼線材において、スケール付着量が 0. 1〜0 . 7質量%であり、 Fe SiO (ファイアライト)層力 熱間圧延時に形成されたスケール
2 4
の地鉄側に接して形成され、前記スケール中に FeOを 30vol%以上、 Fe SiOを 0·
2 4
01〜: L0vol%を含有することを特徴とするメカ-カルデスケーリング性に優れた鋼線 材を提供することにある。
[0019] また、本発明者らは、種々の鋼線材について、鋼線材の断面において観察される スケール内のクラックとスケール密着性及びメカ-カルデスケーリング性との関係を調 ベた結果、鋼線材の長手方向に対して垂直方向の断面にお!、て観察される鋼表面 のスケール内に、スケールと鋼表面との界面を起点とし、スケール厚みの 25%以上 の長さを有するクラック力 界面長さ 200 mあたり 5〜20個認められる鋼線材は、搬 送時にはスケール密着性が良くてスケールが剥離しにくぐメカ-カルデスケーリング 時にはスケール剥離性が良くてメカ-カルデスケーリング性に優れていることを見出 した。
[0020] したがって、本発明の第 4発明は、 C : 0. 05〜: L 2質量%、 Si: 0. 01〜0. 50質量 %、 Mn: 0. 1〜1. 5質量%を含有する鋼線材において、 Fe SiO (ファイアライト)層
2 4
力 熱間圧延時に形成されたスケールの地鉄側に接して形成され、鋼線材の長手方 向に対して垂直方向の断面における鋼表面のスケール内に、スケールと鋼表面との 界面を起点とし、スケール厚みの 25%以上の長さを有するクラック力 界面長さ 200 /z mあたり 5〜20個存在することを特徴とするメカ-カルデスケーリング性に優れた 鋼線材を提供することにある。
[0021] さらにまた、本発明者らは、高温でのスケール成長時には、酸ィ匕に伴って Pが鋼とス ケールの界面部に濃化して Fe SiO層と鋼との界面に P濃化部が形成される。熱間
2 4
圧延後の冷却速度を調整すると Pの濃化が妨げられるので、 P濃化部での Pの最大 濃度 (P濃度の最大値)が低下する。 P濃化部における P濃度が高すぎるとスケール 密着性が大きく低下するが、 P濃化部における P濃度の最大値が 2. 5質量%以下で あれば、熱間圧延後の冷却途中でスケールが剥離するのを抑えると共に、搬送中の 衝撃等にも耐え得るスケールが得られる一方で、メカ-カルデスケーリングの応力負 荷時には、 P濃化部もスケール剥離性に寄与してスケールが取れやすくなることを見 出した。
[0022] したがって、本発明の第 5発明は、 C : 0. 05〜: L 2質量%、 Si: 0. 01〜0. 5質量 %、 Mn: 0. 1〜1. 5質量%を含有する鋼線材において、 Fe SiO (ファイアライト)層
2 4
力 熱間圧延時に形成されたスケールの地鉄側に一部接して形成され、スケールと 鋼との界面に、 P濃度の最大値: 2. 5質量%以下の P濃化部が形成され、かつ、この P濃化部の直上に Fe SiO層が形成されていることを特徴とするメカ-カルデスケー
2 4
リング性に優れた鋼線材を提供することにある。
発明の効果
[0023] 本発明の第 1発明によれば、熱間圧延後の鋼材を、湿潤雰囲気中、特に水蒸気お よび Zまたは粒径 100 m以下のミスト水の存在する環境下で酸ィ匕処理し、それによ りメカ-カルデスケーリング性や酸洗性の確保に必要な FeO (ウスタイト)を十分に生 成させてスケールの生成量が増加し、さらに熱間圧延後の鋼材の冷却中や保管 -搬 送時のスケールの確実な密着性の確保に必要な Fe SiO (ファイアライト)の生成量も
2 4
増加する。そのため、本発明の第 1発明に係る方法により作製された鋼材は、熱間圧 延後の鋼材の冷却中や保管 ·搬送時においてはスケールの確実な密着性を得られ
、さらに 2次カ卩ェ前のメカ-カルデスケーリングや酸洗時においては良好なスケール 剥離性を得ることができる。
[0024] また、本発明の第 2発明によれば、熱間圧延線材における地鉄とスケールとの界面 に Fe SiO (ファイアライト)層を均一に生成させることにより、線材の冷却中に発生す
2 4
るスケールの残留圧縮応力を 200MPa以下に低減することができるため、熱間圧延 線材の冷却中や保管 ·搬送時におけるスケールの自然剥離を防止し、メカ-カルデ スケーリング時におけるスケールの剥離のみを容易にすることができる。
[0025] さらにまた、本発明の第 3発明によれば、 FeOは、 Fe O、 Fe Oに比べると脆くそ
2 3 3 4
の強度は低 、ため、 FeO比率が 30vol%以上であれば良好な MD特性が得られる。 また、 Fe SiO量が 0. lvol%より多いので、 Fe SiO層に亀裂が入り易くスケールの
2 4 2 4
界面剥離が起こり易ぐ Fe SiO量が 10vol%より少ないので、地鉄内に Fe SiOが
2 4 2 4 楔状に食い込むことが抑えられスケールが剥離し易くなり、 MD性を改善することが できる。
[0026] また、本発明の第 4発明によれば、鋼表面のスケール内に、スケールと鋼表面との 界面を起点としスケール厚みの 25%以上の長さを有するクラックがあるためそこを剥 離開始点として剥離しやすぐ界面長さ 200 mあたり 5〜20個のクラックを有するた め良好に剥離することができる。
[0027] さらに、本発明の第 5発明によれば、 Pが鋼とスケールの界面部に濃化して形成さ れた P濃化部における P濃度の最大値が 2. 5質量%以下と低濃度であるため、熱間 圧延後の冷却途中でスケールが剥離するのを抑えると共に、搬送中の衝撃等にも耐 え得るスケールが得られる一方で、メカ-カルデスケーリングの応力負荷時には、 P 濃化部もスケール剥離性に寄与してスケールが取れやすくなる。
図面の簡単な説明
[0028] [図 1]図 1は、本発明に係るデスケーリング用鋼線材のスケール層の断面構成を模式 的に表わした図である。 [図 2]図 2は、鋼線材の長手方向に対して垂直方向の断面の例を示す模式図である
[図 3]図 3は、本発明に係る鋼線材におけるスケールと鋼との界面構造の例を示す模 式図である。
[図 4A]本発明に係る鋼線材におけるスケールと鋼との界面構造の例を示す模式図 であって、図 4Aは鋼と鋼上のスケールを示す模式図である。
[図 4B]図 4Bは図 4Aのスケールの構造およびスケールと鋼との界面の構造を示す模 式図である。
符号の説明
[0029] a〜c クラック
A 鋼
B P濃化部
C Fe SiO層
2 4
D スケール
発明を実施するための最良の形態
[0030] 以下、図面を参照しながら、本発明に係るデスケーリング時にぉ 、てスケール剥離 性に優れた鋼材及びその製造方法の好ましい実施の形態について詳細に説明する
[0031] 〔実施の形態 1〕
本発明は、鋼片を加熱した後熱間圧延を行い、卷取り後の鋼材を露点 30°C〜80 °Cの湿潤雰囲気中を 0. l〜60secの間通過させて鋼材の表面を酸ィヒ処理する方法 にある。この方法を適用することによって、水蒸気がスケール内方へ拡散して地鉄内 を酸化するため、 FeOに富むスケールが形成されて、スケールの付着量が増し、 MD 性が改善される。
[0032] また、この方法を適用することによって、熱間圧延後の鋼材の冷却中や保管'搬送 時のスケールの密着性の確保に必要な Fe SiO (ファイアライト)を、スケールと鋼との
2 4
界面に形成させることができる。この Fe SiOは地鉄内に形成された FeOと鋼材中の
2 4
Siに由来する SiOの反応により上記界面に均一に生成し、地鉄との密着性が高ぐ またスケール成長に伴う応力緩和効果もあり、スケールを安定的に鋼材表面に付着 させることができる。従って、このスケールは鋼材の冷却中や保管搬送時に剥がれる ことがなぐ耐鲭性が改善される。しかも、この Fe SiOはこれ自体が低温では脆ぐ
2 4
曲げ歪等の負荷を付与したときには、 Fe SiOと地鉄の界面部から綺麗に剥離する
2 4
ため、 Mひ性に悪影響を与えることもない。
[0033] 本発明法により得られた鋼材は、酸洗法によるデスケーリング時にぉ 、ても、脆く割 れが発生しやすい FeOが十分に形成されているため、酸が FeO内の割れや欠陥を 介して地鉄との界面まで到達して Fe SiOを効率的に溶解し、スケール剥離性は全
2 4
く問題がない。なお、通常の大気酸ィ匕においては鋼中の Siが SiOとなって地鉄表面
2
に分散し、 Fe拡散を阻害することから FeOが十分に生成されな 、。
[0034] 本発明に係る製造方法における当該湿潤雰囲気は、水蒸気または粒径 100 μ m 以下のミスト水を鋼材表面に噴霧することによって容易に作ることができる。このように すると、鋼材表面の周囲を包囲した水蒸気力 Sスケール内方へ拡散して地鉄を迅速に 酸化する結果、前記のように FeOに富んだ多量のスケールを鋼材表面に生成させる ことができ、且つ地鉄と FeOとの界面に Fe SiO (ファイアライト)を形成させることが
2 4
できるのである。
[0035] 本発明に係る製造方法により作製された鋼材の好ましいスケール付着量は 0. 1〜 0. 7質量%である。スケール付着量が 0. 1質量%未満の場合は、スケール組成が剥 離性の悪い Fe O (マグネタイト)となりやすいため、メカ-カルデスケーリングや酸洗
3 4
によって剥離しにくぐ好ましくない。一方、スケール付着量が 0. 7質量%を超えると スケールロスが増えること力も好ましくな 、。
[0036] 本発明に係る製造方法で採用される湿潤雰囲気の露点は 30〜80°Cとすべきであ る。この露点が 30°C未満では水蒸気酸ィ匕の効果が少なぐ上記のスケール生成、 Fe Oおよび Fe SiOの生成効果が不十分である。また、この露点が 80°Cを超えるとスケ
2 4
ール生成が過剰となってスケールロスが多くなるほか、途中でスケールが剥離してし まう問題が生じる。さらには、冷却過程で剥離しにくい Fe O (マグネタイト)が剥離面
3 4
に発生し、 MD性を悪ィ匕させる要因となる。
[0037] そして、この露点は、鋼材表面近傍の雰囲気中の水分量を測定することによって確 認することができる。具体的には、鋼材表面より 50cm以内の高さ内の雰囲気ガスを 採取して、これを露点計で測定することによって決定する。
[0038] 本発明に係る製造方法にお!、ては、湿潤雰囲気を作製するために、水蒸気または ミスト水を噴霧してこれを高温の鋼材表面で蒸発させる。ミスト水によって本発明に必 要な露点を確保するためには、ミストの粒径がポイントとなる。粒径が 100 m以下の 微細なミストを吹き付けることにより、ミストが鋼材の熱で蒸発し、本発明で必要な露点 30°C (水分量で約 30g/m3)以上が得られる。ミスト粒径が 100 μ mより大きい場合 は、ミストの蒸発が十分でなぐ水滴状態で鋼材表面に付着するために鋼材表面温 度が急激に低下し、スケールの生成が不十分となる。このミスト粒径は微細なほど水 蒸気化が促進されやすいが、微細なミストを得るには、多量かつ高圧の空気を使用 するか、または異物通過径の小さいノズルを用いることが必要であり、コスト面や安定 生産の面では 10〜50 m程度が望ましい。なお、ミスト粒径の測定方法については 通常、液浸法やレーザ回折法などが使用されるが、本発明ではレーザ回折法により ミスト径を測定した値を採用する。
[0039] 本発明に係る製造方法における湿潤雰囲気中での鋼材の酸化処理時間(水蒸気 酸化の時間)は 0. 1秒以上 60秒以下とすることが必要である。この時間が 0. 1秒未 満ではスケールの生成量が不十分で、デスケーリング時のスケール剥離性の改善が 見込めない。またこの時間が 60秒を超えるとスケールの生成量は飽和し、意味がなく なる。鋼種によってはあまり水蒸気酸ィ匕時間が長くなると表面酸ィ匕が進んでスケール 剥離性の悪い Fe O (マグネタイト)が増えて好ましくない。従って、好ましくは 50秒以
3 4
下、より好ましくは 30秒以下である。
[0040] また、鋼材の酸化処理時の開始温度 (水蒸気酸化処理時の開始温度)は 750〜1 015°Cとすることが好ましい。この開始温度が 750°Cを下回ると、酸化処理時の終了 温度が低くなり、水蒸気効果が不十分となる可能性がある。また逆に 1015°Cを超え る高温の開始温度では、スケール生成が過剰となって、スケールロスが増えて歩留ま りが悪ィ匕するため 1015°C以下に保持することが実用的である。
[0041] さらに、本発明に係る製造方法における鋼材の酸化処理時の終了温度 (水蒸気酸 化処理時の終了温度)は、少なくとも 600°C以上の高温に保持することが好ましい。 この終了温度が 600°C未満では水蒸気の効果が不十分となり、スケール剥離性の悪 い Fe O (マグネタイト)が生成しやすぐデスケーリング時のスケール剥離性を損な
3 4
V、やす 、。より好ましくはこの酸ィ匕終了温度を 650°C以上に保持して実施することが 良い。
[0042] 鋼片の熱間圧延後に本発明法によって鋼材表面に付着、生成されるスケール、所 謂 2次スケールの性状とその剥離性は、熱間圧延前の加熱炉で発生する 1次スケー ルのデスケーリング性にも大きく左右される。デスケーリングでスケールが取れ残ると 圧延中に鋼材に押し込まれて、鋼材表面が凹凸化し、その後に発生する 2次スケー ルが楔状に鋼材に食い込むため、 2次スケールの剥離性劣化の原因となる。そのた め、加熱炉で発生する 1次スケールは極力除去して圧延する。この 1次スケールを完 全に除去するためにデスケーリングは 3MPa以上の圧力で仕上げ圧延までに 1回以 上行う。デスケーリングは加熱炉出側力 粗圧延に至る間に行ってもよいし、粗圧延 である程度スケールを破壊してから、デスケーリングを行うとさらに効率的に除去でき る。高圧水の圧力は 3MPa未満ではデスケーリングが不十分となり、 2次スケールの 剥離性を悪ィ匕させる。またデスケーリング圧力は lOOMPa以下、より好ましくは 50M Pa以下である。このデスケーリング圧力が lOOMPaを超えると鋼材の表面温度の低 下が著しぐ圧延が困難となる。
[0043] また、本発明に係る製造方法において、加熱温度は 1200°C以下とする。加熱温度 力 S1200°Cを超えると、 1次スケールの発生が過剰となり、デスケーリング性が悪ィ匕し て、 2次スケールの剥離性劣化の原因となる。またスケールロスにより歩留まり悪化も 問題となる。加熱温度の下限は特に限定されないが、圧延負荷低減の観点から適宜 選定される。なお、この加熱温度は、加熱炉より抽出直後の鋼片表面温度を放射温 度計により測定した値とする。
[0044] 本発明が対象とする鋼材の成分は主成分として C量: 0. 05〜: L 2質量%、 Si量: 0 . 01-0. 5質量%含有するものであれば良ぐその他の成分については特にこれを 限定するものではない。その他の成分としては Mn(0. 1〜1. 5質量0 /0)、A1 (0. 1質 量%以下)、 P (0. 02質量%以下)、 S (0. 02質量%以下)、 N (0. 005質量%以下) 、 Cu、 Ni、 Cr、 B、 Ni、 Mo、 Zr、 V、 Ti、及び Hfなどが挙げられる。なお、( )内の数 値は好ま 、含有量を示す。
[0045] 主成分のうち、 Cは鋼の機械的性質を決定する主要元素であって、鋼材としての必 要強度を確保するために 0. 05質量%以上とし、また熱間圧延時における加工性の 低下を避けるために 1. 2質量%以下とすることが好ま 、。
[0046] もうひとつの主成分である Siは、鋼の脱酸材として必要である力 さらには本発明に よって得られるスケールの必須成分である Fe SiOの生成を左右するので、この理由
2 4
からもその量が規定される。すなわち、スケールと地鉄との密着性を適切に保ち、ス ケールを安定的に付着させるためには、鋼中の Siを 0. 01〜0. 50質量%とすること が望ましい。
[0047] 〔実施の形態 2〕
続いて、本発明に係るメカ-カルデスケーリング用鋼線材について説明する。本発 明は、 C : 0. 05〜: L 2%、Si: 0. 01〜0. 50%および Mn: 0. 1〜1. 5%を含有し、 P : 0. 02%以下、 S : 0. 02%以下そして N : 0. 005%以下に制御された鋼線材を対 象としている。この鋼線材は、基本鋼種として、軟鋼から硬鋼、さらには合金鋼に至る まで、最終製品の特性および品質等に応じて選択すればょ 、。
[0048] Cは鋼の機械的性質を決定する主要元素であって、鋼線材としての必要強度を確 保するために、 0. 05質量%以上必要とし、また線材製造時の熱間加工性の低下を 避けるために 1. 2質量%を上限とする。
[0049] Siは、鋼の脱酸材として必要である力 さらには本発明の特徴とするスケール構成 上の必須成分ファイアライト Fe SiOの量を左右するので、この理由からもその量が
2 4
規定される。すなわち、鋼線材を熱間圧延して製造するとき、その冷却過程において 、地鉄とスケールとの熱膨張率の差にともなってスケールの内部に圧縮応力が生じ、 これは冷却途中ゃ線材コイルの保管,搬送中にスケールが自然剥離する原因となる 。このような事態がおこると、その跡に鉄鲭を誘発して好ましくない。ところが、地鉄と スケールとの界面に上記のファイアライト層を薄くかつ均一に形成させておくと、この 層が上記した熱膨張率差に起因する圧縮応力を都合よく緩和することができる。
[0050] 図 1に本発明におけるスケール 1の層構成を模式的に示した力 鋼 2の最表面から Fe O層 3、 Fe O層 4、 FeO層 5および Fe SiO層 6の 4層であるのに対し、従来、 スケールは、 Fe O、 Fe Oおよび FeOの 3層構成を前提として、主に FeO比率が、
2 3 3 4
メカ-カルデスケーリング時のスケールの物性値として管理されている。これは、 FeO 力 SFe Oおよび Fe Oに比して少ないために、より多くの FeOを存在させることでスケ
2 3 3 4
ールの剥離性をよくしょうとする意図である。ところが、 FeO比率を高くするためには、 通常、高温下で二次スケールを生成させる必要があり、その分スケールが厚くなつて スケールロスを増加する不利益がある。実際、 FeOの比率を高くすると同時に層厚を 薄くする相反性を同時に両立させるのはきわめて困難であった。
[0051] 本発明では、スケールを構成する 4層のうちファイアライト層の機械的強度が他の酸 化物成分に比較してもっとも小さいとの知見にもとづいて、この層を薄く均一に形成し 、この層をメカ-カルデスケーリング時に優先的に破壊させることに成功したのである 。そして、この層は、図 1から明らかなように、地鉄に接しているために、その破壊は同 時に層全体に進展し、比較的大き ヽ箔状となって地鉄力 容易に剥離して効率よく 除去される。その結果、線材の表面には、 0. 1mm以下のスケール微粉さえほとんど 残留することがないので、後続の伸線工程において、スケールの微粉に起因する潤 滑不良により、線材の表面に疵がついたり、ダイスの寿命を低下させるような不都合 力も開放される。しかも、ファイアライト層によるこのような作用は、スケール層中の Fe O比率を意識的に増加させないで、その層が薄いままでも期待できるので、地鉄分 の歩留まり低下が阻止できる。
[0052] 以上の理由により、本発明の鋼線材中の Siは、単に鋼の脱酸材として必要とするの みではなぐスケール中に所定厚さのファイアライト層を生成するためにも不可欠であ り、そのため下限を 0. 01質量%とした。しかし、 Siは 0. 5質量%以上になると、フアイ ァライトが過剰に生成され、逆にメカ-カルデスケーリング性を著しく劣化させるため 、 0. 01〜0. 50質量%に限定した。
[0053] このようにして、 Si量を制御することによって、地鉄の表面に厚さが 0. 01〜: L Ο μ mのファイアライト薄層が均一に生成することができる。さらに、本発明では、このファ ィァライト薄層自体の生成量については、つぎのようにして定量ィ匕することに成功した 。すなわち、鋼線材の断面において、電子顕微鏡による倍率 15000倍の観察のもと で、地鉄とスケールとの界面部に、ファイアライト層の占める面積が、観察断面におけ る mの長さに対して 60%以上となるようにしたことである。
[0054] そして、ファイアライト層の厚さが 0. 01 μ m未満であると、スケールに対する応力緩 和作用が十分に発揮されず、また 1. O /z mを超えると、地鉄とスケールとの密着性が 過大となり、メカ-カルデスケーリングが至難となる。また、上記条件のもとでのフアイ ァライトの占める面積比が 60%未満では、応力緩和作用が不足してスケールが自然 剥離するおそれがある。
[0055] このようにしてスケール中の最深部にファイアライト層を形成させることにより、スケ ール内に不可避的に残留する圧縮応力は 200MPa以下に抑制され、線材の冷却 中な 、し保管 ·搬送時にスケールの自然剥離ならびにそれにともなう発鲭も確実に防 止できる。
[0056] その他の鋼成分元素の量規制は以下の理由による。
Mnは、鋼の焼入れ性を確保し、強度を増すために 0. 1以上を必要とするが、 1. 5 質量%をこえると、線材の熱間圧延後の冷却過程で Mnが偏祈し、伸線カ卩ェ性に有 害なマルテンサイト等の過冷組織が発生しやすくなる。
[0057] Pは、鋼の靭性 ·延性を劣化させるとともに、伸線カ卩ェ工程等における断線の原因と もなるので 0. 02質量%以下とし、好ましくは 0. 01質量%以下、さらに好ましくは 0.
005質量%以下がよい。
[0058] Sも Pと同様に、鋼の靭性 ·延性を劣化させるとともに、伸線や後続の撚り線加工等 における断線の原因ともなるので、 0. 02質量%以下とし、好ましくは 0. 01質量%以 下、さらに好ましくは 0. 005質量%以下がよい。
[0059] 選択添加元素として Crや Niは、いずれも鋼の焼入れ性を高めて強度を向上するが
、過剰になるとマルテンサイトが発生しやすくなり、またスケールを剥離しにくくするの で、添加するにしてもそれぞれ 0. 3質量%以下とする。
[0060] Cuは、スケールの剥離を促進する効果がある力 0. 2質量%を超えて添加すると、 スケールの剥離が異常増大して剥離面に薄い密着スケールを再生したり、コイルの 保管中に発鲭する危険がある。
[0061] Nb、 V、 Ti、 Hfおよび Zrは、その 1種もしくは 2種以上を、それぞれ 0. 003質量% 以上添加することにより、これらの微細な炭窒化物を析出して鋼の高強度化に寄与 するが、合計で 0. 1質量%の過剰添カ卩は、鋼の延性を劣化させる。
[0062] A1あるいは Mgは脱酸剤である力 過剰になるとそれらの酸ィ匕物系介在物が多発し て断線が頻発するので、添加するにしても A1: 0. 1質量%以下、 Mg : 0. 01質量% 以下とする。
[0063] Caは鋼材の耐食性をよくする力 0. 01質量%を超えて過剰になると力卩ェ性を低下 させる。
[0064] Bは鋼中に遊離 Bとして存在して第 2層フェライトの生成を抑制する力 とくに縦割れ の抑制を必要とする高強度線材を目的とする場合、 0. 0001質量%以上添加して有 効である。ただし、 Bは鋼の延性を劣化させないために 0. 005質量%を上限とする。
[0065] つぎに、本発明は、既述したように、熱間圧延時にスケール中の薄層を均一に形成 させるために、次のようにして、熱間圧延時にスケールの調質方法を取り入れた。
[0066] まず、熱間圧延に先立って鋼ビレットを加熱炉内で加熱するとき、 1200°C未満の 温度で、 30分以上 120分未満の加熱を行う。鋼材成分として Siを含有するため、加 熱時にはビレット表面にファイアライトを生成する力 1200°Cを超えると溶融したファ ィァライトを介した Fe拡散が激しくなつてスケールの成長が急激に成長するため、ス ケールロスの観点から好ましくない。加熱温度の下限は圧延負荷限界から決定され る。また、液層化したファイアライトは、加熱炉カも取り出した直後の高圧水デスケーリ ングによって除去しやす 、ため、その融点である 1173°C直上の温度で加熱を行え ば、スケールを急成長させることなくファイアライトを効率的に除去できるため、より好 ましい。
[0067] その融点である 1173°C以上の温度で、 30分以上 120分未満の加熱条件とするこ とにより、加熱炉内で発生するファイアライトを完全に液相化させる。そして、このビレ ットを加熱炉から取り出した直後にデスケーリングにより、溶融状態のファイアライトを 完全に除去する。このデスケーリングは、たとえば高圧水デスケーリングの手段で実 施すればよい。
[0068] つぎに、ビレットを常法にしたがって熱間圧延して線材に加工する力 この圧延中 にもファイアライトが発生することがあるので、この場合は、仕上げ圧延を終えるまで に 1回以上のデスケーリングを実施してこのファイアライトを完全に除去するのが望ま しい。この場合のデスケーリングは、通常の高圧水デスケーリング法によればよい。
[0069] このようにして、不可避的に形成されるファイアライトをすベて除去したクリーンな熱 間圧延線材は、つぎに、その巻き取り直後に、 750〜1000°Cの温度域で露点 30〜 80°Cの高露点雰囲気において再酸ィヒ処理に付すことにより、地鉄側に新たにフアイ ァライトの薄層が均一に生成する。なお、高露点雰囲気での再酸化処理によりフアイ ァライト薄層が均一に生成する理由は、必ずしも明らかではないが、上記高露点雰 囲気下での水蒸気力スケール層内を介してスケールと地鉄との界面に直接作用し、 一様に Si酸ィ匕物と反応してファイアライトつまり Fe SiOの均一生成をもたらすものと
2 4
推定される。
[0070] なお、上記再酸化処理の酸化時間は、通常の線速で線材が通過するときの数秒程 度で十分なことを確認して 、る。
[0071] 再酸化処理後を終えた線材は、 CZsec以上、好ましくは 5°CZsec以上の冷却 速度で冷却する。この条件であれば、冷却が遅すぎてスケールロスを増すことなしに
、スケール量の適正な冷却が実施できる。
このようにして、熱間圧延時のスケールを調質することにより、適切なファイアライトが 生成し、これがスケールの圧縮応力を有効に緩和し、線材冷却中にスケールが自然 剥離することは確実に防止できるので、スケールの自然剥離後に不可避的に発生す る 3次スケールにより、線材のメカ-カルデスケーリング性をいたずらに阻害するよう なことが防止できる。
[0072] 〔実施の形態 3〕
続ヽて、本発明に係るメカ-カルデスケーリング性に優れた鋼線材の別の実施の 形態について説明する。
[0073] 本発明の別の実施の形態に係る鋼線材は、 C : 0. 05〜: L 2質量0 /0、 Si: 0. 01〜0 . 50質量%、Mn: 0. 1〜1. 5質量%を含有する鋼線材において、スケール付着量 が 0. 1〜0. 7質量0 /0であり、スケール中に FeOを 30vol%以上、 Fe SiOを 0. 01〜
2 4
10vol%含有することを特徴とするメカ-カルデスケーリング性 (MD性)に優れた鋼 線材である。
[0074] 本発明の実施形態 3に係る鋼線材は、上記のように鋼線材の成分、スケールの付 着量およびスケールの組成を特定したものである。以下、その特定の理由等につい て説明する。
[0075] (1)鋼線材の成分について
Cは鋼の機械的性質を決定する主要元素である。鋼線材の必要強度確保のため には、 C量は少なくとも 0. 05質量%含有する必要がある。一方、 C量が過多になると 線材製造時の熱間加工性が劣化するので、熱間加工性を考慮して上限を 1. 2質量 %とする。従って、 C : 0. 05〜: L 2質量%(以下、%ともいう)とする。
[0076] Siは鋼の脱酸のために必要な元素であり、その含有量が少なすぎる場合は、脱酸 効果が不充分となるため、下限を 0. 01質量%とする。一方、 Siは過剰に添加すると 、 Fe SiO (ファイアライト)の過剰生成により MD性が著しく劣化するほか、表面脱炭
2 4
層の生成などの問題が生じるため、上限を 0. 50質量%とする。従って、 Si: 0. 01〜 0. 50質量%とする。
[0077] Mnは鋼の焼入れ性を確保し、強度を高めるのに有用な元素である。このような作 用を有効に発揮させるには 0. 1質量%以上添加することが必要であり、 0. 3質量% 以上添加することが望ましい。ただし、過剰に添加すると、熱間圧延後の冷却過程で 偏析を起こし、伸線カ卩ェ性に有害なマルテンサイト等の過冷組織が発生しやすくなる ため、 1. 5質量%以下にすることが必要であり、 1. 0質量%以下にすることが望まし い。従って、 Mn: 0. 1〜1. 5質量0 /0とする。好ましくは Mn: 0. 35〜0. 8質量0 /0であ る。
[0078] なお、 C、 Si、 Mn以外の成分は特には限定されず、残部は実質的に Feであるが、 強度等の特性を更に向上させるために下記元素を添加することが望ましい。また、 P や S、 N、 A1等の含有量を下記のように抑制することが望ましい。
[0079] 〔0:: 0.1〜0.3質量%、?^: 0.1〜0.3質量%〕
Cr、 Niはいずれも焼き入れ性を高めて強度向上に寄与する元素である。本作用を 発揮させるために、 Crを 0.1質量%以上、 Niを 0.1質量%以上添加するのが好まし い。ただし、過剰に添加すると、マルテンサイトが発生しやすくなる上、スケールの密 着性が過剰に高まりすぎて、スケールが取れに《なるので、 0:: 0.3質量%以下、 Ni : 0.3質量0 /0以下とするのがよい。これらの元素は単独で添加しても、併用してもよい [0080] [Nb, V, Ti, Hf, Zrの 1種以上:合計で 0.003〜0.1質量%〕
Nb, V, Ti, Hf, Zrは、いずれも、微細な炭窒化物を析出して、高強度化に寄与す る元素である。このような作用効果を有効に発揮させるために、 Nb, V, Ti, Hf, Zr の 1種以上:合計で 0.003質量%以上添加するのが好ましい。ただし、過剰に添加す ると、延性が劣化するため、 Nb, V, Ti, Hf, Zrの 1種以上:合計で 0.1質量%以下と するのがよい。これらの元素は単独で添カ卩しても、併用してもよい。
[0081] 〔P含有量: 0.02質量%以下 (0質量%を含む)〕
Pは鋼の靭性 ·延性を劣化させる元素であり、伸線工程等における断線を防止する ために P量の上限を 0.02質量%とすることが望ましい。従って、 P含有量: 0.02質量 %以下 (0質量%を含む)とすることが好ましい。より好ましくは P含有量: 0.01質量% 以下であり、更に好ましくは P含有量: 0.005質量%以下である。
[0082] 〔S含有量: 0.02質量%以下 (0質量%を含む)〕
Sも Pと同様、鋼の靭性 '延性を劣化させる元素であり、伸線やその後の撚り工程に おける断線を防止するために S量の上限を 0.02質量%とすることが望ましい。従って 、 S含有量: 0.02質量%以下 (0質量%を含む)とすることが好ましい。より好ましくは S 含有量: 0.01質量%以下、更に好ましくは S含有量: 0.005質量%以下である。
[0083] 〔N : 0.01質量%以下〕
Nは線材の靭性、延性を劣化させるため、 0.01質量%以下とすることが望ましい。
[0084] 〔A1: 0.05質量%以下、 Mg : 0.01質量%以下〕
Al、 Mgは脱酸剤として有効である力 過剰に添加すると Al Oや MgO— Al O等
2 3 2 3 の酸ィ匕物系介在物が多く発生して断線が多発することから、 A1: 0.05質量%以下、 Mg: 0.01質量%以下とすることが望まし 、。
[0085] 〔B : 0.001〜0.005質量0 /0
Bは鋼中に固溶するフリー Bとして存在することにより、第 2層フェライトの生成を抑 制することで知られており、特に縦割れの抑制が必要な高強度線材を製造するには Bの添カ卩が有効である。このような作用効果を得るために、 B: 0.001質量%以上添 加するのが好ましい。ただし、 0.005質量%を超えて添加すると延性を劣化させるた め、 B : 0.005質量0 /0以下とするのがよい。
[0086] [Cu: 0. 01〜0. 2質量0 /0
Cuは、腐食疲労特性を向上させるとともに、スケールと鋼の界面に濃化し、スケー ルを剥離しやすくする効果がある。このような作用効果を発揮させるために、 Cuを 0. 01質量%以上添加することが好ましい。ただし、過剰に添加するとスケール剥離が ひどくなつて線材の搬送中にスケールが剥がれ、さび発生の原因となる上、鋼の延 性を低下させるので、 Cuは 0. 2質量%以下とする。
[0087] (2)スケールの付着量
MD性はスケールの付着量が多い方が良くなることはよく知られている力 付着量 が多すぎてもスケールロスによる歩留まり低下のほ力 スケール層を MDで均一に除 去できずに一部が残って、伸線性に悪影響を与える。
[0088] 本発明者らは、 Mひ性を改善させる適正なスケール付着量を検討した結果、 0. 1
〜0.7質量%が最適であることを見出した。 0. 1質量%より少ない場合は、マグネタイ ト主体の剥離性の悪いスケールとなり、スケール剥離性が悪くなる。そのため、 Mひ性 が悪ぐ MD後も線材表面にスケールが残留する。一方、 0.7質量%を超えると、スケ ールが取れすぎて、圧延中や運搬中に剥離し、鲭発生の原因となり、また、スケール ロスの観点力もも好ましくない。従って、スケール付着量: 0.1〜0.7質量0 /0とする。
[0089] (3)スケールの組成
スケールは、上層より Fe O、 Fe O、 FeO、 Fe SiOの 4層力らなる構造をとる。ス
2 3 3 4 2 4
ケール中の FeO量と MD性は明確な相関があり、 FeOは Fe O、 Fe Oに比べると
2 3 3 4
脆ぐ強度が低いため、 FeO比率が高いほど Mひ性は改善され、 FeO比率が 30vol %以上であれば、良好な MD特性が得られる。
[0090] Fe SiOの量が多すぎると、地鉄側に食い込んで MD性を著しく劣化させる。 Fe S
2 4 2 iO量が適正な量であれば、 Fe SiO 自体が非常に脆いため、界面部の Fe SiO層
4 2 4 2 4 力 亀裂が入ってスケール全体が界面より剥離 (界面剥離)し、 MD性が改善される。 この Fe SiOの適正量は、 0. 01〜: L0vol%である。 Fe SiO量が 0. 01vol%より少
2 4 2 4
ない場合は、 Fe SiO層に亀裂が入り難ぐスケールの界面剥離が起こりにくい。
2 4 一 方、 10vol%を超えると、地鉄内に Fe SiOが楔状に食い込んでスケールが剥離し にくく、 Mひ性が悪化する。
[0091] 従って、 FeO量: 30vol%以上、 Fe SiO : 0.01〜: L0vol%とする。
2 4
[0092] 本発明に係る鋼線材は、以上のような理由により、前述のように鋼線材の成分、スケ ールの付着量およびスケールの組成を特定している。従って、前記従来技術の有す る問題点を解消することができ、メカ-カルデスケーリング性 (MD性)に優れた鋼線 材であり、 MDによるスケール除去を良好に行うことができる。即ち、特開平 4-293721 号公報記載の方法ゃ特開平 11-172332号公報記載の方法が有する問題点〔厚いス ケール形成による歩留まり低下、 MD前の時点でのスケール剥離 (地鉄露出)による 鲭の発生、局部的残留スケールによる伸線工程での潤滑不良〕を解消し得ると共に、 特開平 8-295992号公報記載の方法が有する問題点〔鋼 スケール界面粗度調整の 安定性欠如によるスケール除去処理の安定性欠如〕ゃ特開平 10-324923号公報記 載の方法が有する問題点〔スケール中への気孔の導入の安定性欠如、気孔の応力 緩和作用によるスケール剥離性の低下〕を解消することができ、 MD性に優れ、 MD によるスケール除去を良好に行うことができる。
[0093] 本発明に係る鋼線材の製造方法は、前述のように、 C : 0. 05〜: L 2質量%、 Si: 0.
01〜0.50質量%、Mn: 0.1〜1.5質量%を含有する鋼片を熱間圧延して鋼線材に 加工し、該鋼線材を 750〜850°Cの温度で卷取りした後、露点 30〜80°Cの湿潤雰 囲気中で 0. 1秒以上酸ィ匕させることを特徴とするメカ-カルデスケーリング性 (MD性 )に優れた鋼線材の製造方法であることとして 、る。
[0094] 本発明に係る鋼線材の製造方法は、上記のように鋼線材の成分、熱間圧延後の鋼 線材の卷取り温度、卷取り後の鋼線材の酸化方法を特定したものである。以下、その 特定の理由等について説明する。
[0095] Mひ性はスケールの付着量と明確な相関があり、スケールの付着量が多いほうが M D性はよくなり、残留スケール量が少なくなる。発明者らは、水蒸気を含有した湿潤雰 囲気中で酸化させると酸化が促進され、 Mひ性を改善させるに必要なスケール付着 量 (0. 1〜0. 7質量%)とスケール組成が得られることを見出した。本発明のスケール 組成および付着量を得るには、 750— 850°Cの温度域で巻き取り後、露点 30°C〜8 0°Cの湿潤雰囲気中で酸化させる。露点は鋼線材表面近傍の雰囲気中の水分量を 測定することによって確認する。なお水蒸気酸ィ匕時間は 0. 1秒以上とする。 0. 1秒 未満では、加速酸化効果が十分ではなぐ Mひ性改善に必要なスケール付着量が得 られない。時間が長すぎても、表面が酸化して Fe Oに変化するため、 FeOが減少
3 4
する。したがって、水蒸気酸化時間は、長くて 60秒、より好ましくは 30秒、さらに好ま しくは 10秒である。
[0096] 鋼線材の成分を、じ:0.05〜1.2質量%、 Si: 0.01〜0.50質量0 /0、 Mn: 0.1〜1.5 質量%を含有するものとしている理由は、本発明に係る鋼線材の場合と同様である。
[0097] 従って、本発明に係る鋼線材の製造方法は、じ:0.05〜1.2質量%、 Si: 0.01〜0.
50質量%、Mn: 0.1〜1.5質量%を含有する鋼片を熱間圧延して鋼線材に加ェし、 該鋼線材を 750〜850°Cの温度で卷取りした後、露点 30〜80°Cの湿潤雰囲気中で 0. 1秒以上酸ィ匕させることとしている。
[0098] 以上よりわかるように、本発明に係る鋼線材の製造方法によれば、 C : 0.05〜1.2質 量%、 Si: 0.01〜0.50質量%、 Mn: 0.1〜1.5質量%を含有する鋼線材にぉぃて、 スケール付着量が 0.1〜0.7質量%であり、スケール中に FeOを 30vol%以上、 Fe
2
SiOを 0.01〜: L0vol%含有する鋼線材を得ることができる。即ち、本発明に係る鋼
4
線材を得ることができる。
[0099] なお、本発明に係る鋼線材にお 、て、鋼線材のスケール付着量 (質量%)とは、鋼 線材の質量に対するスケール (鋼線材に付着して 、るスケール)の質量の割合(百分 率)のことである。即ち、鋼線材の質量を Agとし、この鋼線材に付着しているスケール の質量を Bgとし、この鋼線材のスケール付着量を C質量0 /0とすると、 C= 100 X B/ Aである。
[0100] スケール中の FeO、 Fe SiOの含有量 (vol%)とは、スケールの体積に対する FeO
2 4
、 Fe SiOの体積の割合(百分率)のことである。即ち、鋼線材に付着しているスケー
2 4
ルの体積を Dcm3とし、このスケールに含まれる FeO、 Fe SiOの体積を各々 Ecm3
2 4
Fcm3とし、この FeO、 Fe SiOの含有量を各々 Gvol%、 Hvol%とすると、 G= 100
2 4
XEZDであり、 H= IOOXFZDである。
[0101] 露点は、鋼線材表面近傍の雰囲気中の水分量を測定することによって確認する。
具体的には、鋼線材表面より 50cm以内の高さ内の雰囲気ガスを採取して、これを露 点計で測定することによって決定する。露点は 30°C〜80°Cが好ましい。 30°Cより下 回ると水蒸気酸ィ匕の効果が不十分である。また、 80°Cを超えると、スケールが成長し すぎてスケールロスが増えるため好ましくな!/、。
[0102] 〔実施の形態 4〕
続ヽて、本発明に係るメカ-カルデスケーリング性に優れた鋼線材のさらに別の実 施の形態について説明する。
[0103] 本発明のさらに別の実施の形態に係る鋼線材は、 C : 0. 05〜: L 2質量%、 Si: 0.
01〜0. 50質量%、Mn: 0. 1〜1. 5質量%を含有する鋼線材において、鋼線材の 長手方向に対して垂直方向の断面における鋼表面のスケール内に、スケールと鋼表 面との界面を起点とし、スケール厚みの 25%以上の長さを有するクラック力 界面長 さ 200 μ mあたり 5〜20個存在することを特徴とする鋼線材である。
[0104] 本発明に係る鋼線材は、上記のように鋼線材の成分、及び、スケール内の特定のク ラックの個数を特定したものである。以下、その特定の理由等について、説明する。 鋼線材の成分の特定理由は上記実施の形態 3の場合と同様である。
[0105] (1)スケーノレ内の特定のクラックの個数について
本発明者らは、種々の鋼線材について、その断面を観察すると共に、スケール密 着性及びメカ-カルデスケーリング性の調査試験を行い、この結果に基づき、鋼線材 の断面において観察されるスケール内のクラックとスケール密着性及びメカ-カルデ スケーリング'性との関係を調べた。
[0106] その結果、鋼線材の長手方向に対して垂直方向の断面において観察される鋼表 面のスケール内に、スケールと鋼表面との界面を起点とし、スケール厚みの 25%以 上の長さを有するクラック(以下、クラック Aともいう)力 界面長さ 200 /z mあたり 5〜2 0個認められる鋼線材は、搬送時にはスケール密着性が良くてスケールが剥離しにく ぐメカ-カルデスケーリング時にはスケール剥離性が良くてメカ-カルデスケーリン グ性に優れていることを見出した。
[0107] 上記のクラック Aが界面長さ 200 mあたり 5個未満しか認められない鋼線材は、搬 送時にはスケール密着性が良くてスケールが剥離しにくいものの、メカ-カルデスケ 一リング時にはスケーノレ剥離'性が悪くてメカ二カノレデスケーリング'性に劣って ヽる。ク ラック Aが界面長さ 200 mあたり 20個超認められる鋼線材は、搬送時にスケールが 剥離して地鉄表面が露出し、保管時等に鲭が発生する。
[0108] 従って、鋼線材の搬送時にはスケール密着性が良くてスケールが剥離しにくぐメ 力二カノレデスケーリング時にはスケーノレ剥離'性が良くてメカ二カノレデスケーリング'性 に優れて 、るようにするには、鋼線材の長手方向に対して垂直方向の断面にお!、て 観察される鋼表面のスケール内に、クラック Aが界面長さ 200 mあたり 5〜20個認 められるようにするとよい。よって、本発明に係る鋼線材においては、鋼線材の長手 方向に対して垂直方向の断面における鋼表面のスケール内に、スケールと鋼表面と の界面を起点とし、スケール厚みの 25%以上の長さを有するクラック (クラック A)が、 界面長さ 200 mあたり 5〜20個存在することに特定する。
[0109] なお、熱間圧延後の鋼線材には、スケールが 5〜20 μ m程度付着するが、圧延後 の巻き取り過程での鋼線材温度と雰囲気を制御することにより、クラック Aが界面長さ 200 mあたり 5〜20個存在するスケールを得ることができる。上記クラック Aは、鋼 線材の長手方向に対して垂直方向の断面を研磨し、光学顕微鏡や走査型電子顕微 鏡等により観察することができる。
[0110] 本発明に係る鋼線材は、以上のような理由により、前述のように鋼線材の成分、及 び、スケール内の特定のクラック(クラック A)の個数 (個 Z界面長さ 200 μ mあたり)を 特定している。故に、搬送時にはスケール密着性が良くてスケールが剥離しにくぐメ 力二カノレデスケーリング時にはスケーノレ剥離'性が良くてメカ二カノレデスケーリング'性 に優れている。従って、本発明に係る鋼線材によれば、搬送時のスケール剥離 (地鉄 表面の露出)による鲭の発生が抑制されて鲭が発生しに《なると共に、メカ-カルデ スケーリングによるスケール除去を良好に行うことができるようになる。
[0111] 前述のクラック A (スケールと鋼表面との界面を起点とし、スケール厚みの 25%以上 の長さを有するクラック)が界面長さ 200 mあたり 5〜20個存在するスケール(以下 、本発明に係るスケールともいう)を得るためには、熱間圧延後の鋼線材を水蒸気雰 囲気 (大気中に水蒸気を添加した雰囲気)中で酸化させることが望ま 、。
[0112] 熱間圧延後の鋼線材を水蒸気雰囲気で酸化 (水蒸気酸化)すると、水蒸気がスケ ール内に一気に内方拡散してスケールと鋼表面との界面に達し、鋼内を直接酸ィ匕し てウスタイトを形成するため、上層のウスタイトとの整合性の良い界面が生成されて、 スケールの密着性を高める効果がある。一方で、水蒸気によってスケールが急激に 成長するため、成長応力によるクラックが発生して、スケールが剥離しやすくなる。こ れらの相反する効果を適正に制御して、所望のスケールを得るためには、水蒸気雰 囲気で酸化 (水蒸気酸化)する温度と時間と水蒸気量を適正に制御することが必要 である。具体的には、 800°C〜1015°C程度で、できるだけ短時間で水蒸気酸ィ匕する と、密着性を確保しつつ、適正なクラックを有するスケール (本発明に係るスケール) を得ることができる。あまり長時間水蒸気酸化を行うと、成長応力〖こよるクラックが多数 発生し、本発明に係るスケールが得られない。水蒸気雰囲気としては、雰囲気中の 露点を 30〜80°Cに調整した雰囲気が適切であり、熱間圧延後に水蒸気効果を発揮 できる 800〜: L015°C程度で、この適切な雰囲気内で 5秒以内酸化させると、本発明 に係るスケールが得られる。水蒸気量が多すぎても、加速酸化が進みすぎて、成長 応力〖こよるクラックが多数発生し、本発明に係るスケールが得られな!/、。
[0113] 水蒸気雰囲気中の露点は、鋼線材表面近傍の雰囲気中の露点を測定することに よって確認する。鋼材表面より 50cm以内の高さ内の雰囲気ガスを採取して露点を測 定する。
[0114] 鋼線材の長手方向に対して垂直方向の断面の例を図 2に示す。この図 2において 、 a、 b、及び cはいずれもスケール 11と鋼 12との界面 17を起点とするクラックを示す ものである。 aのクラックは長さがスケール厚みの 25%未満のクラックである。 bのクラ ックは長さがスケール厚みの 25%のクラックであり、 cのクラックは長さがスケール厚み の 25%超のクラックである。これらの中、 bのクラック、 cのクラックは、クラック A (スケ一 ルと鋼表面との界面を起点とし、スケール厚みの 25%以上の長さを有するクラック) に相当する。なお、スケール表面を示す線およびスケールと鋼表面との界面を示す 線は、厳密には円弧となる力 通常、鋼線材の直径が 5mm程度、スケールの厚みが 10 m程度であり、拡大すると、スケール表面を示す線およびスケールと鋼表面との 界面を示す線は、直径の極めて大きい円弧となり、ほぼ直線に近くなつてくるので、 線にした。
[0115] 〔実施の形態 5〕 ヽて、本発明に係るメカ-カルデスケーリング性に優れた鋼線材のさらに別の実 施の形態について説明する。
[0116] 本発明のさらに別の実施の形態に係る鋼線材は、 C : 0. 05〜: L 2質量%、 Si: 0.
01〜0. 50質量0 /o、Mn: 0. 1〜1. 5質量%を含有する鋼線材において、スケールと 鋼との界面に、 P濃度の最大値: 2.5質量%以下の P濃化部が形成され、かつ、この P 濃化部の直上に Fe SiO層が形成されていることを特徴とする鋼線材であることとし
2 4
ている。
[0117] 本発明に係る鋼線材は、上記のように鋼線材の成分、スケールと鋼との界面での P 濃化部の P濃度の最大値、及び、 P濃化部の直上に Fe SiO層が形成されているこ
2 4
とを特定したものである。以下、その特定の理由等について、説明する。鋼線材の成 分の特定理由は上記実施の形態 3の場合と同様である。
[0118] (1)スケールと鋼との界面の P濃化部の直上に Fe SiO層が形成されていることにつ
2 4
いて:
鋼線表面に形成されるスケールは、上層より Fe O、 Fe O、 FeOからなる。 FeOを
2 3 3 4
増やすほどスケールの剥離性が良くなることは知られている。しかしながら、 FeOの 比率を増やしすぎても、スケーノレが厚くなりすぎて、メカ二カノレデスケーリングで均一 に綺麗に除去するのが難し 、。
[0119] そこで、本発明者らは、スケールの機械的特性と剥離性の関係を検討した結果、鋼 とスケール (FeO)の界面部に、高硬度で脆い Fe SiO層を形成させると、メカ-カル
2 4
デスケーリング時に Fe SiO層力 亀裂が入ってスケールが剥離しやすくなることを
2 4
見出した。
[0120] Fe SiOの生成は Si量と雰囲気露点の影響を強く受ける。 Si量が 0. 5質量%を超
2 4
えると、大気中酸ィ匕であっても容易に Fe SiOが生成される。し力しながら、 Si量が 0.
2 4
5質量%以下の鋼材においては、大気中では SiOが界面部に生成されても、 Fe Si
2 2
Oは生成されない。 SiOは強固で緻密な酸ィ匕物であるため、メカ-カルデスケーリ
4 2
ング性を改善させる効果が全くなぐむしろ悪化させる。これに対し、水蒸気雰囲気等 の高露点雰囲気で酸化させると、 Si量が 0. 5質量%以下と少なくても、 2[Fe] + [SiO ] + 2[H Ol = [Fe SiO ] + 2[H ]の反応が進行して、脆い Fe SiOが形成されやす くなる。雰囲気の露点は 30°C以上であれば、 Si量が 0. 5質量%以下であっても Fe
2
SiO層が形成される。
4
[0121] 一方、 Fe SiO層は適正厚みであれば、メカニカルデスケーリング性を高めつつも
2 4
スケールの密着性を高める作用があり、熱間圧延途中や搬送中にスケールが剥がれ るのを防ぐ効果がある。このように搬送中のスケール剥離が抑制されると、搬送後、メ 力-カルデスケーリング前の保管中での鲭の発生が抑制されて鲭が発生しにくくなる
。また、このように熱間圧延途中のスケール剥離が抑制されると、熱間圧延、巻き取り 後の冷却過程での 3次スケールの生成が抑制され、ひいては、メカ-カルデスケーリ ング性が更に向上する。即ち、熱間圧延途中にスケールが剥がれると、巻き取り後の 冷却過程の 400°C以下の温度域にお!、てスケール剥離面 (露出した地鉄表面)に薄 く密着性の高い低温スケール(3次スケール)が新たに生成し、これカ 力-カルデス ケーリング性を悪ィ匕させるのに対し、熱間圧延途中のスケール剥離が抑制されると、 力かる 3次スケールの生成が抑制され、ひいては、 3次スケールによるメカ-カルデス ケーリング性の悪化が抑制されて、メカ-カルデスケーリング性が更に向上する。この ような効果を発揮させるためには、 Fe SiO層の厚みを 0.01〜1 /ζ πιに制御すること
2 4
が望ましい。 Si量が 0.5質量%超と多い場合は、雰囲気での水蒸気の有無によらず、 Fe SiOが過剰に生成して、 Fe SiO層の厚みが 1 mを超え、鋼との密着性が高
2 4 2 4
まりすぎて、メカ-カルデスケーリング性を却って悪ィ匕させる。
[0122] (2)スケールと鋼との界面での P濃化部の P濃度の最大値につ!、て:
高温でのスケール成長時には、酸ィ匕に伴って Pが鋼とスケールの界面部に濃化し て Fe SiO層の直下 (Fe SiO層と鋼の界面)に P濃化部が形成される。熱間圧延後
2 4 2 4
の冷却速度を調整すると Pの濃化が妨げられるので、 P濃化部での Pの最大濃度 (P 濃度の最大値)が低下する。 P濃化部における P濃度が高すぎるとスケール密着性が 大きく低下する。 P濃化部における P濃度の最大値が 2.5質量%以下であれば、熱間 圧延後の冷却途中でスケールが剥離するのを抑えると共に、搬送中の衝撃等にも耐 え得るスケールが得られる。一方で、メカ-カルデスケーリングの応力負荷時には、 P 濃化部もスケール剥離性に寄与してスケールが取れやすくなる。なお、界面の P濃化 部は、直線状であっても、不連続に縞状に存在する場合であってもどちらでもよい。 [0123] 本発明に係る鋼線材は、以上のような理由により、前述のように鋼線材の成分、スケ ールと鋼との界面での P濃化部の P濃度の最大値、及び、 P濃化部の直上に Fe SiO
2 層が形成されていることを特定している。即ち、 :0.05〜1.2質量%、 Si: 0.01〜0.
4
5質量0 /0、 Mn: 0.1〜1.5質量%を含有する鋼線材にぉぃて、スケールと鋼との界面 に、 P濃度の最大値: 2.5質量%以下の P濃化部が形成され、かつ、この P濃化部の 直上に Fe SiO層が形成されていることを特徴とする鋼線材であることとしている。故
2 4
に、熱間圧延途中のスケール剥離が抑制され、搬送時にはスケール密着性が良くて スケールが剥離しにくぐメカ-カルデスケーリング時にはスケール剥離性が良くてメ 力-カルデスケーリング性に優れている。従って、本発明に係る鋼線材によれば、熱 間圧延途中や搬送時のスケール剥離 (地鉄表面の露出)による鲭の発生が抑制され て鲭が発生しに《なると共に、メカ-カルデスケーリングによるスケール除去を良好 に行うことができるようになる。
[0124] 前述のように、 Fe SiO層を形成させると、メカ-カルデスケーリング時に Fe SiO
2 4 2 4 層から亀裂が入ってスケールが剥離しやすくなる。また、熱間圧延途中や搬送中の スケール剥離が抑制される。前者の熱間圧延途中のスケール剥離が抑制されること により、熱間圧延、巻き取り後の冷却過程での 3次スケールの生成が抑制されてメカ 二カルデスケーリング性が更に向上する(3次スケールによるメカ-カルデスケーリン グ性の悪ィ匕が抑制される)。後者の搬送中のスケール剥離が抑制されることにより、 搬送後、メカ-カルデスケーリング前の保管中での鲭の発生が抑制されて鲭が発生 しにくくなる。このような効果を充分に発揮するには、 Fe SiO層の厚みを 0.01〜1
2 4
mに制御することが望ましい。 Fe SiO層の厚みが 1 μ m超の場合には、鋼との密着
2 4
性が高まりすぎてメカ-カルデスケーリング性が却って悪ィ匕する傾向があり、 Fe SiO
2 層の厚みが 0.01 μ m未満の場合には、前述のメカニカルデスケーリング時の Fe Si
4 2 o層からの亀裂導入によるスケール剥離性の向上の程度が小さくなり、また、熱間圧
4
延途中や搬送中のスケール剥離の抑制の程度が小さくなる。
[0125] 本発明に係る鋼線材においては、前述のように、スケールと鋼との界面において形 成された P濃化部は P濃度の最大値: 2.5質量%以下であり、この P濃化部の直上に Fe SiO層が形成されている。カゝかる界面構造を得るには、線材の卷き取り直後の 高温時は高露点雰囲気において短時間で酸ィ匕させて Fe SiO層を優先形成させた
2 4
後、 Pの濃化を軽減するために出来るだけ冷却速度を速めて冷却するとよい。具体 的には、高露点雰囲気の作製法として、高温水蒸気を線材コイル表面に噴射する方 法や、水をミスト状態で線材コイル表面に噴射して水蒸気化する方法等があるが、 Fe SiOを十分に形成させるには 30°C以上の露点に調整するとよい。また、高露点雰
2 4
囲気で Fe SiOを形成させるための酸ィ匕時間は 5秒以内で十分であり、好ましくは 3
2 4
秒以内である。また、水蒸気酸ィ匕処理を行う温度は 750〜1015°C程度が好ましい。 750°Cを下回ると水蒸気の効果が十分ではなぐ Fe SiOが十分に形成されない。
2 4
また 1015°Cを超えると、スケールが急成長し、スケールロスが増えるだけでなぐ冷 却中にスケールが剥離しやすくなり、 3次スケール (マグネタイト)の発生によるメカ- カルデスケーリング性の悪化が懸念される。高露点の水蒸気雰囲気で酸化して適正 厚みの Fe SiO層を形成した後、スケールが成長して Pが濃化しやすい 600°C程度
2 4
までの冷却速度を速めて Pの濃化を軽減する。冷却速度は 10°CZsec以上とすると よぐ好ましくは 20°CZsec以上、より好ましくは 40°CZsec以上である。この水蒸気 雰囲気での酸化処理後の冷却方法は、水冷もしくは風冷などで行う。 600°Cより下の 温度域における冷却方法は、材料の組織制御の観点力も適宜調整するが、本温度 域では界面構造自体への影響はほとんどな 、。
[0126] 前述の Fe SiO層の厚みは、 TEM (透過型電子顕微鏡)等で Si濃化層の厚みを
2 4
測定することによって確認できる。具体的には、例えば、鋼線材より断面試料を任意 に 3箇所採取し、各断面試料の組織写真を 5000倍以上の倍率で撮影し、 Fe SiO
2 4 層の厚みを 1断面から任意に 3点測定してその平均値を求め、さらに線材 3箇所での 平均値を求めて Fe SiO層の厚みとする。力かる測定により、 Fe SiO層の厚みを的
2 4 2 4
確に確認できた。力かる測定には、装置として、 JEOL製電界放射型透過電子顕微 鏡 (JEM-2010F)を用い、その測定条件は加速電圧 200kVである。
[0127] 前述の P濃化部の P濃度の最大値は、例えば、 TEM-EDXによりビーム径 lnmで スケールと鋼の界面部を垂直方向に 1 Onm間隔で P濃度を測定し、 P濃度の最大値 を求めることが出来る。より具体的には、このような測定法により、界面長さ 500nmあ たり 20点についての P濃度の最大値を測定し、その 20点の平均値 (a)を求める。か 力る測定を数個所にっ 、て行って、それぞれの個所での a (20点の P濃度の最大値 の平均値)を求め、それらの平均値を求めて P濃度の最大値とする。かかる測定によ り、 P濃化部の P濃度の最大値を的確に求めることができた。かかる測定には、装置と して、 JEOL製電界放射型透過電子顕微鏡 (JEM-2010F)および EDX検出器 (NO RAN-VANTAGE製)を用い、その測定条件は加速電圧 200kVである。
[0128] 本発明において、じ:0.05〜1.2質量%、 Si: 0.01〜0.5質量0 /0、 Mn: 0.1〜1.5質 量0 /0を含有する鋼線材とは、じ:0.05〜1.2質量%、 Si: 0.01〜0.5質量。 /0、 Mn: 0. 1〜1.5質量%を含有し、残部が Fe及び不可避的不純物力 なる鋼線材、または、 C : 0.05〜1.2質量%、 Si: 0.01〜0.5質量%、 Mn: 0.1〜1.5質量%を含有すると共 に、それ以外に必要に応じて添加される元素を含有し、残部が Fe及び不可避的不 純物からなる鋼線材のことである。
[0129] この鋼線材において Cr: 0質量%超 0.3質量%以下および Zまたは Ni: 0質量%超 0.3質量%以下を含有する鋼線材とは、じ:0.05〜1.2質量%、 Si: 0.01〜0.5質量 %、 Mn: 0.1〜1.5質量%を含有すると共に、 Cr: 0質量%超 0.3質量%以下および Zまたは Ni: 0質量%超 0.3質量%以下を含有し、残部が Fe及び不可避的不純物か らなる鋼線材、または、じ:0.05〜1.2質量%、 Si: 0.01〜0.5質量0 /0、 Mn: 0.1〜l. 5質量%を含有すると共に、 Cr: 0質量%超 0.3質量%以下および Zまたは Ni: 0質 量%超 0.3質量%以下を含有し、更に、それ以外に必要に応じて添加される元素を 含有し、残部が Fe及び不可避的不純物からなる鋼線材のことである。
[0130] 本発明に係る鋼線材においては、前述のように、スケールと鋼との界面に、 P濃度 の最大値: 2.5質量%以下の P濃化部が形成され、かつ、この P濃化部の直上に Fe
2
SiO層が形成されている。力かる界面構造の例を模式的に図 3〜4に示す。この図 3
4
〜4は側断面図(鋼線材の中心線に平行で、かつ、この中心線を通る断面の図)であ る。この図 3において、 Aは鋼(鋼部)、 Bは P濃化部、 Cは Fe SiO層、 Dはスケール(
2 4
鉄の酸化物)を示すものである。スケール Dは、例えば、鋼線材の表面カゝら Fe O層
2 3
E、 Fe O層 F、 FeO層 Gからなり、 FeO層 Gが Fe SiO層 Cと接している。なお、この
3 4 2 4
図 3においては P濃化部 Bおよび Fe SiO層 Cは直線状で連続している(つながって
2 4
いる)が、 P濃化部 Bおよび Zまたは Fe SiO層 Cが不連続に縞状に存在する場合も ある。図 4Aは鋼 Aと鋼 A上のスケール Dを示すものであり、図 4Bは前記図 4Aのスケ ールの構造およびスケールと鋼との界面の構造を示すものである。
実施例 1
[0131] 本発明の実施例 1について、以下説明する。表 1に示す成分の 150mm角の鋼片 を、加熱炉内で加熱し、加熱炉内で生成した 1次スケールをデスケーリング除去した 後に圧延を行った。圧延を終了した鋼材を卷取り後に湿潤雰囲気処理で酸化処理し た後、冷却して鋼材を得た。表 2に鋼片の熱間圧延条件ならびに鋼材卷取り後の湿 潤雰囲気による酸化処理条件を示す。また、表 3に得られた鋼材の表面に付着した スケールの特性を示す。
[0132] [表 1] 供試鋼の成分 (質量%)
Figure imgf000031_0001
[0133] [表 2] 供試鋼の圧延条件 (水蒸気噴霧の場合は露点と時間のみ記載)
Figure imgf000032_0001
[表 3]
Fe 2 Si04 圧延上がりの MD後のス
番 鋼 圧延 の生成有無 線材のスケーノレ ケール残留
備考 号 条件 剥離率(%) 里
(質量%)
101 Al a 1 〇 0.65 2.5 0.008 実施例
102 CI b 1 〇 0.42 1.8 0.034 実施例
103 Bl c 1 〇 0.70 2.2 0.003 実施例
104 El d 1 〇 0.32 1.6 0.011 実施例
105 CI e 1 〇 0.40 0.3 0.024 実施例
106 Fl f 1 〇 0.51 1.8 0.018 実施例
107 Dl 1 〇 0.48 0.5 0.023 実施例
108 Gl h 1 〇 0.55 0.6 0.042 実施例
109 El c 1 〇 0.29 0.6 0.031 実施例
110 Fl e 1 〇 0.42 Γ 0.4 0.029 実施例 き'、
111 Gl 1 〇 0.46 1.3 0.021 実施例
Λ
112 El i 1 〇 0.51 お 1.1 0.023 実施例
113 Dl j 1 〇 0.42 0.9 0.016 実施例
114 El k 1 〇 0.42 1.5 0.048 実施例
115 Fl 1 1 〇 0.46 1.2 0.040 実施例
116 Al m 1 〇 0.60 2.8 0.049 実施例
117 El 1 X 0.08 0.3 0.076 比較例
118 Bl o 1 〇 0.83 61 0. 13 比較例
119 Gl 1 X 0.09 0.2 0.088 比較例
120 Fl Q 1 〇 0.78 45 0. 18 比較例
121 Al r 1 X 0.07 0.4 0.069 比較例
122 El s 1 X 0.09 0.1 0.089 比較例
123 Fl t 1 〇 0.45 1.2 0. 11 比較例
124 CI u 1 〇 0.33 0.8 0.097 比較例
[0135] ここで、熱間圧延上がりの鋼材のスケールの剥離状態 (スケールの密着性)は、鋼 材コイルの先端、中央部、後端より各々 500mm長さの鋼材を各 3本採取して、鋼材 の外周面、内周面の表面外観をデジタルカメラで撮影し、スケールが剥離した部分 の面積率 (%)を画像解析処理ソフトにより算出して平均値を求めた。スケールの剥離 率は 3%以下であれば合格とした。
[0136] また、スケールの組成は、コイルの前端、中央部、後端より 10mm長さのサンプルを 採取し、各々のサンプルより任意の 3箇所を X線回折測定し、各鋼材のスケール付着 量、およびスケールの剥離性 (メカ-カルデスケーリング後のスケール残留量)を評価 した。上記の各鋼材を長さ 250mmに切断'採取し、この重量測定をして重量 (後述 のチャック間距離 200mm相当部の重量: W3)を求めた。次に、このサンプルをチヤ ック間距離 200mmとしてクロスヘッドの変位が 12mmまで (4%)引張荷重を与え、チ ャック力 取り外した後にサンプルに風を吹きかけて鋼材表面のスケールを吹き飛ば して、 200mm長さに切断して重量測定した (Wl)。次に、このサンプルを塩酸中に 浸漬して鋼材表面に付着して 、るスケールを完全に剥離させ、再度重量を測定した (W2)。この重量測定の値から以下の(1)式により残留スケールを求め、スケール残 留量が 0.05質量%以下であるものを合格とした。また、(2)式より、鋼材のスケール 付着量を求めた。
残留スケール(質量0 /0) = (W1 -W2) /W1 X 100· · · (1)
スケール付着量(質量0 /0) = (W3-W2) /W3 X 100· · · (2)
[0137] (実施例 No.101—116)
加熱炉で発生した 1次スケールはデスケーリング処理によって完全に除去され、か つ適正条件のミスト、もしくは水蒸気の噴霧により水蒸気酸ィ匕が生じて、 Fe SiOを
2 4 含有する好ま 、状態のスケール組成が得られるとともにスケール付着量も 、ずれも 0.1質量%以上 0.7質量%以下の好ましい範囲にあることがわかる。このため、 MD 後のスケール残留量は極めて少なぐ Mひ性が非常に良好な結果が得られている。 し力も、圧延上がりのスケール剥離率も少なぐ耐鲭性が良好であり、防鲭剤の塗布 を必要としな 、ことが判明した。
[0138] (比較例 No.117)
水蒸気酸ィ匕開始温度が低ぐ水蒸気酸ィ匕終了温度も低いために水蒸気が十分に 作用せず、スケールの組成 (Fe SiO生成なし)、付着量ともに不良の状態となり、こ
2 4
の結果、 MD性が悪くなつた例である。
[0139] (比較例 No.118)
水蒸気酸化開始温度が高すぎるために、水蒸気による加速酸化が激しく起こり、ス ケールが厚くつき過ぎてその付着量が 0.7質量%を超えてしまい、冷却プロセス中に スケールが剥離してしまった例である。この場合、冷却中に剥離しにくい薄い 3次スケ ール (マグネタイト: Fe O )が発生し、このため Mひ性が劣化している。
3 4
[0140] (比較例 No.119)
ミストの粒径が大きすぎる(露点:低い)ために、水蒸気が十分に作用せず、スケー ルの組成 (Fe SiO生成なし)、付着量ともに不良の状態となり、この結果、 MD性が 悪くなつた例である。
[0141] (比較例 No.120)
露点が高すぎるために、水蒸気による加速酸化が激しく起こり、スケールが厚く付き 過ぎて冷却中にスケールが剥離してしまった例である。この場合、冷却中に剥離しに くい薄い 3次スケール (マグネタイト: Fe O )が発生し、このため MD性が劣化した例
3 4
である。
[0142] (比較例 No.121、 122)
水蒸気酸化時間が短すぎるために、スケールの組成 (Fe SiOなし)、付着量ともに
2 4
不十分な状態となり、この結果、 MD性が劣化した例である。
[0143] (比較例 No.123、 124)
水蒸気噴霧による水蒸気酸ィ匕時間が長すぎるために、表面酸ィ匕が進んで剥離しに くいマグネタイト(Fe O )が生成したため、 Mひ性が劣化した例である。
3 4
なお、本実施例においては本発明法に係る水蒸気酸化処理を、鋼片の熱間圧延 を終了して鋼材を巻き取った後に行った力 本発明はこれに限らず、例えば鋼材の 巻き取り時に行っても良ぐ要は熱間圧延を終了した後であれば何時の時期でも力ま わないものである。
実施例 2
[0144] 続いて、本発明の実施例 2について、以下説明する。この実施例では、比較例とと もに、表 4に示した 10種の鋼組成のビレットを共通使用することとし、実施例と比較例 とで、線材製造時におけるスケールの調質条件を変えることとした。すなわち、表 4の 各鋼組成のそれぞれのビレットに対して、表 5に示した本発明相当の調質条件と、そ の規制範囲外の比較例の調質条件とを組み合わせ、これらのビレットを圧延ならびに スケールの調質をおこなうことにより、得られるスケール特性の違 ヽおよび適否を調 查し、表 6の結果を得た。まず、本発明の実施例について説明する。
[0145] 表 4の各ビレットを加熱炉で表 5の a2〜c2の各温度に加熱する力 これらは加熱に より生成した Fe SiOを溶融化させつつ急激なスケール成長を抑制することを目的と
2 4
した Fe SiOの融点 (1173°C)近傍の加熱条件を含め、 1200°C未満の加熱温度に
2 4
設定した。加熱されたビレットは直ちに、高圧水によるデスケーリングを行なって、 Fe SiOを十分に剥離除去したのち圧延した。この段階的圧延の過程で Fe SiOが再
4 2 4 度発生する場合は、仕上げ圧延までに必要回数のデスケーリングを実施することにし た。このようにして圧延を終えたクリーンな線材は、 750〜1000°Cの温度範囲で巻き 取った直後に、表 5の a2〜c2に示す高露点の湿潤雰囲気中で再酸化処理して Fe
2
SiOの薄層を均一に形成した。
4
[0146] [表 4] 鋼ビレットの組成 (質量0 /0)
Figure imgf000036_0001
[0147] [表 5] スケールの調質条件
Figure imgf000036_0002
なお、比較例は、表 5に示すように、再酸化処理時の露点が高すぎる場合 (d)、露 点が低すぎる場合 (e)およびビレット加熱炉内の加熱温度を高くした場合 (f)の 3通り とした。(f)は、ビレット加熱温度が高いために、加熱炉で発生した Fe SiOが溶融化
2 4 し、これを介した Fe拡散が激しいためにスケールが急激に成長する。すると、その後 のデスケーリングによっても十分にスケールが取りきれず、圧延中に押し込まれて界 面が凹凸化して、均一に Fe SiOが発生できない場合である。(g)は卷取り温度が高
2 4
すぎて、スケールが過剰に生成して、冷却途中にスケールが剥離してしまう場合であ る。
[0149] これらの異 Q 0 ϋ
0なる鋼種と調質条件との組み合わせにより製造された多種の鋼線材に つ!、て表 6に示す ①各スケール特性を測定した。
[0150] [表 6] スケール特性
F e a S i 04 スケール
試験 No. 鋼種 Z調質 厚さ 生成長さ残留応力剥離率 残留量 区別
条件 ( μ m) (%) (MP a) (%) (質量%)
201 A2/a2 0.06 72 176 2.4 0.018 実施例
202 A2/ c2 0.12 81 136 1.8 0.022 実施例
203 A 2/ f 2 0.28 19 265 42 0.11 比較例
204 A2/g2 0.19 65 198 65 0.12 比較例
205 B2/b2 0.07 76 164 2.2 0.027 実施例
206 0.02 13 271 45 0.13 比較例
207 C2/ c2 0.25 67 172 2.5 0.032 実施例
208 1.1 86 140 0.7 0.22 比較例
209 D2/a2 0.05 65 186 2.6 0.023 実施例
210 0.18 78 145 2.2 0.031 実施例
211 1.3 90 164 0.5 0.25 比較例
212 D2/ f 2 0.23 32 240 45 0.19 比較例
213 0.09 62 176 2 0.036 実施例
214 E2/ e2 0.02 21 226 48 0.21 比較例
215 E2/g2 0.13 68 186 61 0.17 比較例
216 F2/ c2 0.34 75 122 1.8 0.028 実施例
217 1.2 80 153 0.8 0.18 比較例
218 0.42 65 135 2.3 0.013 実施例
219 0.66 72 124 1.9 0.024 実施例
220 0.03 19 249 49 0.16 比較例
221 G2/f2 1.5 72 105 0.9 0.19 比較例
222 H2/ 2 0.59 70 110 1.6 0.025 実施例
223 1.5 88 157 0.2 0.12 比較例
224 I 2/ c2 0.68 76 98 0.9 0.016 実施例
225 I 2/ a 2 0.59 64 106 1.4 0.033 実施例
226 0.74 78 110 0.2 0.026 実施例
227 0.98 82 89 0.1 0.013 実施例
228 J 2/ e2 0.12 43 272 40 0.19 比較例
229 J2/f2 1.7 64 124 0.8 0.23 比較例 [0151] まず、 Fe SiOの生成状態は、線材コイルの先端、中央および後端から、断面観察
2 4
用の試料を各 1個ずつ採取し、それぞれ 4箇所ずつを電子顕微鏡により 15000倍の 視野で撮影し、各測定値の平均値を求めた (表 6の「Fe SiO厚」)。なお、 Fe SiOの
2 4 2 4 生成長さは、鋼表面の長さ 10 /z mあたりの Fe SiO層の長さを測定し、その平均値
2 4
を算出した (表 6の「Fe SiO生成長さ」)。
2 4
[0152] つぎに、スケールの残留応力は X線回折法 (sin2 φ法)により測定した。この方法は 、被測定部に X線を照射して回折線のピーク位置を求める力 残留応力が存在する 場合、 X線の入射角( φ )を変えると回折線のピーク位置が変化する。そこで、この変 化した回折線のピーク位置を縦軸、 X線の入射角の sin2 φを横軸にとり、最小 2乗法 により直線回帰してその傾きを得、得られた傾きにヤング率およびポアソン比力も求 めた応力定数を乗じ、下式(3)により応力値を求めた (表 6の「スケールの残留応力」
) o
σ = -E/2 (l + v ) -cot 0 · π /180·Μ=Κ·Μ (3)
σ:応力値(MPa)
E :ヤング率(MPa)
v:ポアソン比
2 Θ:無歪の回折角 (° )
K:応力定数 (MPa)
M :回帰直線 2 Θ -sin2 Θの傾き
なお、スケール組成のうち、地鉄側に存在する FeO (ウスタイト)の回折ピーク [FeO (
311)面]を選択して測定を行った。また、 X線残留応力測定は次の条件による。
•使用装置:理学電機社製 PSPC微小部 X線応力測定装置
'特性 X線 : Cr-K a
'管電圧、管電流 : 40kV、 30mA
•X線ビーム径 : φ 1. Omm
,測定方法 : 傾斜法
•測定角(2 0 ) : 123. 6°
0
• φ角 : 0、 14、 19、 24、 28、 31、 35、 38、 42、 45Q •X線照射時間 : 300secZ (i)
また、 FeO (ウスタイト)の解析条件はつぎのとおりである。
•回折面 : FeO (311)
•回折角(2 Θ ) : 123. 6°
'応力定数 : -467. 92MPa/deg
,ヤング率 : 130000MPa
•ポアソン比 : 0. 3
[0153] 熱間圧延を終えた線材のスケールの剥離状態すなわちスケールの密着性を調査 するために、各線材コイルの先端、中央部ならびに後端力 それぞれ 250mm長さの サンプルを 3本ずつ採取し、コイルの外周側と内周側に相当する部分の表面の外観 をデジタルカメラで撮影した。そして、スケールが剥離している部分の面積率(%)を 画像解析処理ソフトにより算出してその平均値を算出した (表 6の「スケールの剥離率 」)。
[0154] 本法により得られるスケールの剥離率は少ないほど、熱間圧延線材の冷却中や、 保管搬送時のスケールの密着性が良好である。
[0155] さらに、各線材のメカ-カルデスケーリング性を調べる目的でスケールの剥離性お よび残留量を測定した。各線材を長さ 250mmに切断し、これにチャック間距離 200 mmとして、クロスヘッドの変異が 12mm (4%)まで引っ張り荷重を与えた。そして、チ ャック力 取り外した各サンプル表面のスケールを衝風力により機械的に除去したの ち、 200mmの長さに切断し、つぎに各サンプルを重量測定 (W1)してから、塩酸中 に浸漬して残存スケールを完全に剥離し、再度サンプルを重量測定 (W2)した。上 記式(1)により、残留スケールの量を計算にて求めた (表 6の「スケール残留量」)。本 法により得られるスケール残留量は、 0. 05質量%以下であるものを、メカ-カルデス ケーリング性が良好と判定した。
[0156] 表 6からつぎのような考察ができる。
まず、本発明の実施例 (鋼種 A2〜J2を用い調質条件 a2〜c2で調質したもの; 201 、 202、 205、 207、 209、 210、 213、 216、 218、 219、 222、 224~227)は、電子 顕微鏡により一定の条件下で計測された Fe SiOの厚さが 0. 01〜: L および Fe SiOの生成長さが鋼表面長さの 10 mに占める比率が 60%以上であって、とも
2 4
に本発明の規制条件を充足している。スケール中の Fe SiOがこのような特性を備え
2 4
ていることで、線材の卷き取り後の冷却速度の大小にかかわらず、スケールの残留応 力が 200MPa以下に抑制され、熱間圧延上がり線材のスケール剥離率およびメカ- カルデスケール後のスケール残留量ともに低減させることができる。なお、スケール 残留量の合格ラインは、実際の製品に要求される品質として、 0. 05%以下とした。 これに対し、比較例(鋼種 C2、 D2、 F2、 H2を用い調質条件 d2で調質したもの; 2 08、 211、 217、 223)は、線材の再酸化処理時の露点が高すぎて Fe SiOが本発
2 4 明の場合よりも厚さが大となっており、熱間圧延上がり線材のスケール剥離率は低い ものの、メカ-力ノレデスケーノレ性が悪ィ匕して不合格となって!/、る。
[0157] また、比較例(鋼種 A2、 D2、 G2、J2を用い調質条件 f 2で調質したもの; 203、 212 、 221、 229)は、ビレット加熱炉での加熱温度が高い場合であり、加熱炉で発生した Fe SiOが溶融化し、これを介した Fe拡散が激しいためにスケールが急激に成長す
2 4
る。すると、その後のデスケーリングによっても十分にスケールが取りきれず、圧延中 に押し込まれて界面が凹凸化する。したがって、卷取り後に水蒸気酸化処理すると、 Siが高い鋼種(G2 : 221、 J2 : 229)においては、加熱炉で発生した Fe SiOの取れ
2 4 残りと合わせて非常に厚い Fe SiOが形成される。 Fe SiOが本発明の場合よりも厚
2 4 2 4
さが大となっており、熱間圧延上がり線材のスケール剥離率は低いものの、メカ-力 ルデスケール性が悪化して不合格となって 、る。
[0158] 一方、低 Siの鋼種 (A2 : 203、 D2 : 212)でも、界面凹凸の影響でメカ-カルデスケ 一リング性が劣化する。 Fe SiOが均一に生成せず、 Fe SiOの生成長さが小さい
2 4 2 4
ために、残留応力が大きぐ熱間圧延上がりのスケール剥離率が大きい。冷却時にス ケールの剥離面に新たな薄 、マグネタイトスケールが発生して、 Mひ性が悪 、。
[0159] さらに、比較例(鋼種 B2、 E2、 G2、 J2を用い調質条件 e2で調質したもの; 206、 21 4、 220、 228)は、逆に再酸化処理時の露点が低くなりすぎたために、 Fe SiOが十
2 4 分に生成せず、冷却中に発生する圧縮応力の影響を受けてスケールが剥離し、熱 間圧延上がり線材のスケール剥離率が高くなり、メカ-カルデスケール性が悪ィ匕して 不合格となって 、る。冷却時にスケールの剥離面に新たな薄 、マグネタイトスケール が発生し、 MD性が悪い。
[0160] さらに、比較例(鋼種 A2、 E2を用い調質条件 g2で調質したもの; 204、 215)は、 卷取り温度が高いためにスケールが成長しすぎて、冷却途中でスケールが剥離し、 その剥離面に、剥離性の悪 、マグネタイトスケールが発生して Mひ性が悪ィ匕した例 である。
[0161] 以上の実施例および比較例から明らかなように、同種の鋼組成であっても、熱間圧 延によりメカ-カルデスケール用鋼線材を製造する段階で、必然的に生成するスケ ールを、本発明が規制する一定の条件下で調質することによって、メカ-カルデスケ 一リングに最適の特性を具有するものに転ィ匕できることが理解できる。
実施例 3
[0162] 続いて、本発明の実施例 3について、以下説明する。表 7に示す組成の鋼片(ビレ ット)を加熱炉で加熱し、次いで所定の線径の鋼線材に熱間圧延した後、この鋼線材 を 755〜1050°Cの温度でコイルに巻き取って床面上にループ状に載置した直後に 湿潤空気中を走行させ、この湿潤空気中に曝して酸ィヒして鋼線材表面にスケールを 形成させた。その後、コンベア(例えばステルモアコンベア)上に搬送して、所望の機 械的特性が得られるよう、適宜適正な冷却条件で冷却させた。なお、この処理後の鋼 線材はコイルに巻き取られた状態となって 、る。
[0163] 上記処理後の鋼線材コイルの前端、中央部、後端より 500mm長さのサンプルを採 取し、各々のサンプルより任意の 3箇所を X線回折測定し、 Fe O
2 3、 Fe O
3 4、 FeO、 F e SiO のピーク強度比からそれぞれの比率を求めた。更に、これらより各コイル (各
2 4
鋼線材)での全体の平均値を求め、これを各コイル (各鋼線材)でのスケール組成値 とした。
[0164] 更に、各鋼線材のスケール付着量、及び、メカ-カルデスケーリング性を、次のよう にして調べた。各鋼線材コイルの前端、中央部、後端より長さ 250mmのサンプルを 採取し、この重量測定をして重量 (後述のチャック間距離 200mm相当部の重量: W 3)を求めた。次に、このサンプルをチャック間距離 200mmとしてクロスヘッドに取り 付け、これに 4%の引っ張り歪を与えた後、チャックから取り外した。次に、このサンプ ルに風を吹きかけて線材表面のスケールを吹き飛ばし、この後、 200mm長さに切断 して重量測定して重量 (Wl)を求め、次に、このサンプルを塩酸中に浸漬して線材表 面に付着して 、るスケールを完全に剥離させ、再度重量を測定して重量 (W2)を求 めた。この重量測定の値から上記式(1)により残留スケール量を求めた。また、上記 式 (2)により鋼線材のスケール付着量を求めた。なお、コイルの前端、中央部、後端 での残留スケール量の平均値を残留スケール量として用いた。コイルの前端、中央 部、後端でのスケール付着量の平均値をスケール付着量として用いた。
[0165] 上記測定の結果を表 8に示す。残留スケール量は多いほど MD性 (メカ-カルデス ケーリング性)が悪ぐ残留スケール量が 0.05質量%以下であるものを、 MD性が良 好と判定した。
[0166] 表 8からわ力るように、実施例の場合は、鋼線材のスケール付着量が 0.1〜0.7質量 %であり、水蒸気添加をしていない比較例と比べると、加速酸ィ匕されてスケールの付 着量が増大し、し力もスケールの構造も FeO、 Fe SiOの比率が増えて適正範囲内(
2 4
FeO : 30vol%以上、 Fe SiO : 0.1〜: L0vol%)にあるため、残留スケールが 0.05質
2 4
量%以下と少なぐ MD性が良好であった。
[0167] [表 7]
Figure imgf000042_0001
[0168] [表 8] 水蒸気酸 スケール スケール組成 (vol» MD後の
卷取温度 水 スケール 鋼種 CO 度 (vol» 化時間 付着量 備考
(sec) (wt%) FeO Fe2Si04 残留量
(wt%)
301 845 0 0 0.15 28.0 0.00 0.072 比較例
302 | JD 830 10 7 0.55 32.1 7.69 0.028 実施例
303 848 30 20 0.45 21.0 12.50 0.230 比較例
304 820 30 1 0.18 34.1 0.06 0.1 10 比較例
305 835 5 7 0.1 7 37.0 0.02 0.080
A3 比較例
306 770 25 7 0.49 51.0 1.20 0.035 実施例
307 849 50 3 0.76 54.8 12.00 0.003 比較例
308 755 38 8 0.35 72.9 8.30 0.034 実施例
309 800 40 9 0.34 50.2 2.90 0.047 実施例
31 0 900 15 8 0.89 98.0 0.02 0.004 比較例
31 1 845 10 10 0.52 46.9 2.90 0.012 実施例
31 2 840 0 0 0.15 28.0 0.01 0.180 比較例
31 3 837 35 7 0.53 58.4 5.30 0.021
B3 実施例
31 4 801 40 20 0.23 15.0 13.10 0.320 比較例
31 5 910 25 6 0.49 60.0 3.20 0.018 実施例
31 6 790 20 8 0.46 56.3 3.60 0.043 実施例
31 7 895 10 8 0.96 74.9 0.03 0.001 比較例
31 8 847 50 8 0.78 96.0 4.90 0.002 比較例
31 9 C3 803 25 7 0.45 58.4 3.80 0.036 実施例
320 935 31 6 0.65 57.0 4.20 0.029 実施例
321 800 0 0 0.12 28.0 0.00 0.210 比較例
322 836 30 6 0.57 54.8 4.50 0.030 実施例
323 848 60 6 0.91 59.1 17.60 0.001 比較例
324 D3 800 30 10 0.44 72.6 7.80 0.023 実施例
325 875 15 7 1.03 99.0 0.01 0.001 比較例
326 836 30 20 0.33 12.9 1 1.2 0.35 比較例
327 780 32 8 0.13 35 0.02 0.01 1 実施例
328 825 0 0 0.07 13 0 0.067
E3 比較例
329 845 20 6 0.39 42 0.09 0.015 実施例
330 1000 12 6 0.67 58 0.12 0.003 実施例
331 765 22 7 0.19 38 0.05 0.019 実施例
332 F3 810 55 8 0.78 65 2.8 0.066 比較例
333 980 19 6 0.63 59 0.21 0.021 実施例
334 850 21 8 0.45 43 0.33 0.035
G3 実施例
335 1050 10 5 0.91 87 5.7 0.082 比較例
336 775 25 7 0.45 37 0.89 0.024 実施例
337 H3 870 3 9 0.09 28 0.01 0.075 比較例
338 910 18 20 0.56 30 8.6 0.046 実施例 実施例 4
[0169] 続いて、本発明の実施例 4について、以下説明する。表 9に示す組成の鋼片(ビレ ット)を加熱炉で加熱し、次いで線径 5.5mmの鋼線材に熱間圧延した後、鋼線材が 750°C 1030°C程度の温度域にある巻き取り後に、この鋼線材を水蒸気雰囲気中 を通過させて水蒸気酸化処理を行った。このとき、圧延後の冷却速度を変えると、水 蒸気雰囲気中通過時間が変わり、水蒸気酸化処理時間が変化して、スケールの性 状 (クラック発生状態、スケール剥離面積)が変わる。
[0170] 上記水蒸気酸化処理後の鋼線材から断面 (鋼線材の長手方向に対して垂直方向 の断面)観察用試料を任意に 3個所採取し、各断面観察用試料を研磨した後、光学 顕微鏡により各断面を観察し、断面組織写真を 16点、 500倍の倍率で撮影した。こ の写真より、界面長さ 200 mあたりのスケール中のクラック Aの個数を測定した。即 ち、断面上のスケール内に認められるクラックであって、スケールと鋼表面との界面を 起点とし、スケール厚みの 25%以上の長さを有するクラック(クラック A)について、界 面長さ 200 mあたりのクラック個数を測定し、この平均値を求めた。
[0171] また、上記水蒸気酸化処理後の鋼線材でのスケールの付着状態を、次のようにし て調べた。鋼線材コイルの前端部、中央部、後端部より各々 500mm長さのサンプル を採取し、各々のサンプルにつ!/、てスケールが剥離した個所の面積 (スケール剥離 面積)を測定し、各々のサンプルの全表面に対するスケール剥離面積の割合を求め た。この割合が大きいほど、圧延後(水蒸気酸化処理後)の鋼線材のスケール剥離が 大きぐ 60%超のものを X (極不良)、 40〜60% (40%を含まず)のものを△ (不良) 、 20〜40% (20%を含まず)のものを〇(良好)、20%以下のものを© (極良好)とし た。なお、◎、〇のものについては、圧延後(水蒸気酸化処理後)はスケールが安定 して付着しており、防鲭剤の塗布等を必要としな 、水準のものである。
[0172] 更に、上記水蒸気酸ィ匕処理後の鋼線材のメカ-カルデスケーリング性を、次のよう にして調べた。鋼線材コイルの前端部、中央部、後端部より長さ 250mmのサンプル を採取し、これをチャック間距離 200mmとしてクロスヘッドに取り付け、これに 4%の 引っ張り歪を与えた後、チャックから取り外した。次に、このサンプルに風を吹きかけ て線材表面のスケールを吹き飛ばし、この後、 200mm長さに切断して重量測定して 重量 (W1)を求め、次に、このサンプルを塩酸中に浸漬して線材表面に付着している スケールを完全に剥離させ、再度重量を測定して重量 (W2)を求めた。この重量測 定の値力 上記式 (1)により残留スケール量を求めた。このようにして求められた鋼線 材コイルの前端部、中央部、後端部での残留スケール量の平均値を、歪付与後のス ケール残留量とした。この歪付与後のスケール残留量が多 ヽほどメカ-カルデスケー リング性が悪ぐこの歪付与後のスケール残留量が 0.05質量%以下であるものを、メ 力二カノレデスケーリング'性が良好と判定した。
[0173] 上記測定の結果を表 10に示す。表 10からわかるように、 No.409、 416、 427 (い ずれも比較例)の場合は、界面長さ 200 μ mあたりのスケール中のクラック Αの個数 力 個未満であり、圧延後(水蒸気酸化処理後)の鋼線材のスケール剥離面積の割 合が小さくてスケール付着状態は◎ (極良好)であるが、歪付与後のスケール残留量 は 0.05質量%よりも大きくてメカ-カルデスケーリング性が悪い。
[0174] No.402、 404、 407、 410、 412、 414、 418、 420、 422、 426、 429、 431 (いず れも比較例)の場合は、界面長さ 200 μ mあたりのスケール中のクラック Αの個数が 2 0個超であり、圧延後(水蒸気酸化処理後)の鋼線材のスケール剥離面積の割合が 大きくてスケール付着状態は X (極不良)または△ (不良)である。
[0175] これに対し、 No.401、 403、 405、 406、 408、 411、 413、 415、 417、 419、 421 、 423、 424、 425、 428、 430 (いずれも本発明の実施例)の場合は、界面長さ 200 μ mあたりのスケール中のクラック Αの個数が 5〜20個の範囲内にあり、圧延後(水 蒸気酸ィ匕処理後)の鋼線材のスケール剥離面積の割合が小さくてスケール付着状態 は◎ (極良好)または〇(良好)であると共に、歪付与後のスケール残留量は 0.05質 量%以下であってメカ-カルデスケーリング性が良好である。
[0176] [表 9]
Figure imgf000045_0001
[0177] [表 10] スケール割
卷取 水蒸気 MD後のスケー
れ個数 (個 /2 スケー
麵号 鋼種 温度 酸化時 ル残留量 備考 00!丄 m界面長 ル剥離
(°C) fki (sec ; (質量%)
)
401 750 4 12 © 0. 01 1 実施例
402 850 12 28
A4 △ 0. 023 比較例
403 950 3 14 © 0. 022 実施例
404 1030 1 34 X 0. 160 比較例
405 805 2 15 ◎ 0. 003 実施例
406 B4 860 4 19 @ 0. 009 実施例
407 985 10 31 Δ 0. 15 比較例
408 775 3 15 @ 0. 005 実施例
409 755 6 1 © 0. 099 比較例
410 C4 810 11 23 △ 0. 009 比較例
411 965 4 17 〇 0. 008 実施例
412 1030 1 39 X 0. 140 比較例
413 780 2 17 O 0. 028 実施例
414 D4 925 11 25 △ 0. 032 比較例
415 985 1 11 ◎ 0. 014 実施例
416 780 5 2 @ 0. 2 比較例
417 800 4 13 © 0. 049 実施例
418 E4 848 10 24 X 0. 001 比較例
419 870 2 8 O 0. 040 実施例
420 940 2 30 X 0. 002 比較例
421 805 4 6 ◎ 0. 050 実施例
422 F4 860 9 28 △ 0. 012 比較例
423 910 3 14 O 0. 043 実施例
424 895 2 16 o 0. 030 実施例
425 G4 847 3 11 〇 0. 042 実施例
426 803 7 21 △ 0. 036 比較例
427 790 5 3 © 0. 230 比較例
428 848 3 13 o 0. 033 実施例
429 H4 897 10 38 X 0. 003 比較例
430 910 3 14 o 0. 018 実施例
431 935 2 43 X 0. 001 比較例 実施例 5
本発明の実施例 5について、以下説明する。表 11に示す組成の鋼片(ビレット)を 加熱炉で加熱し、次いで線径 5.5mmの鋼線材に熱間圧延した後、鋼線材を卷き取 つた後に、この鋼線材を露点 30°C以上の水蒸気雰囲気中を通過させて水蒸気酸化 処理をした。この後、 600°Cまでの冷却速度を変えて Pの濃化を制御した。 [0179] このようにして得られた鋼線材について、スケールと鋼との界面に形成された P濃化 部の P濃度の最大値、 Fe SiO 層の厚み、および、スケール剥離状況を測定した。
2 4
[0180] このとき、スケール剥離状況については、次のようにして測定した。鋼線材コイルの 刖
[0181] 端部、中央部、後端部より 500mm長さのサンプルを採取し、各サンプルについてス ケールが剥離した個所の面積 (スケール剥離面積)を測定し、各サンプルの全表面 に対するスケール剥離面積の割合を求めた。この割合が大きいほど、熱間圧延後の 鋼線材のスケール剥離が大きぐ 40%超のものを X (不良)、 20〜40% (20%を含 まず)のものを△ (良好)、 20%以下のものを〇(極良好)とした。なお、〇、△のもの については、熱間圧延後はスケールが安定して付着しており、防鲭剤の塗布等を必 要としない水準のものであり、また、巻き取り後の冷却過程での 3次スケールの発生 が少ない。
[0182] Fe SiO 層の厚みについては、次のようにして測定した。鋼線材より断面 (鋼線材
2 4
の長手方向に対して垂直方向の断面)試料を任意に各 3箇所採取し、各断面試料の 組織写真を 5000倍以上の倍率で撮影し、 Fe SiO層の厚みを 1断面から任意に 3
2 4
点測定してその平均値を求め、さらに線材 3箇所 (コイルの前端、中央、後端)での平 均値を求めて Fe SiO層の厚みとした。この測定に用いた装置は、 JEOL製電界放
2 4
射型透過電子顕微鏡 (JEM-2010F)であり、測定条件は加速電圧 200kVである。
[0183] P濃化部の P濃度の最大値については、次のようにして測定した。鋼線材より断面( 鋼線材の長手方向に対して垂直方向の断面)試料を任意に 3箇所採取し、各断面試 料について、 TEM- EDXによりビーム径 lnmでスケールと鋼の界面部を垂直方向に 10nm間隔で P濃度を測定し、 P濃度の最大値を求める。このような測定を、界面長さ 500nmあたり 20点について行い、各々の点での P濃度の最大値を求め、その 20点 での P濃度最大値の平均値 (a)を求める。そして、線材 3箇所 (コイルの前端、中央、 後端)の各々につ 、ての a (20点での P濃度最大値の平均値)の平均値を求めて P濃 度の最大値とした。この測定に用いた装置は、 JEOL製電界放射型透過電子顕微鏡 (JEM- 2010F)および EDX検出器(NORAN- VANTAGE製)であり、測定条件は 加速電圧 200kVである。 [0184] 更に、上記のようにして得られた鋼線材についてのメカ-カルデスケーリング性を次 のようにして調べた。鋼線材コイルの前端部、中央部、後端部より長さ 250mmのサン プルを採取し、これをチャック間距離 200mmとしてクロスヘッドに取り付け、これに 4 %の引っ張り歪を与えた後、チャック力 取り外した。次に、このサンプルに風を吹き かけて線材表面のスケールを吹き飛ばし、この後、 200mm長さに切断して重量測定 して重量 (W1)を求め、次に、このサンプルを塩酸中に浸漬して線材表面に付着して いるスケールを完全に剥離させ、再度重量を測定して重量 (W2)を求めた。この重量 測定の値力 上記式 (1)により残留スケール量を求めた。このようにして求められた鋼 線材コイルの前端部、中央部、後端部での残留スケール量の平均値を、歪付与後の スケール残留量とした。この歪付与後のスケール残留量が多 ヽほどメカ-カルデスケ 一リング性が悪ぐこの歪付与後のスケール残留量が 0.05質量%以下であるものを、 メカ-カルデスケーリング性が良好と判定した。
[0185] 上記測定の結果を表 12に示す。表 11〜12からわ力るように、試験番号 501、 503 、 505、 506、 508、 509、 511、 513、 516、 517、 519、 520、 521、 524、 525、 52 8— 531、 533〜535、 537、 539、 540の場合 ίま、 ヽずれも、本発明【こ係るま岡線材 の組成(C : 0.05〜1.2質量%、 Si: 0.1〜0.5質量%、 Mn: 0.3〜: L0質量%を含有 する)を満たし、特に Si: 0.1〜0.5質量%を満たすため、スケールと鋼との界面に形 成された Fe SiO層の厚みが厚すぎることなぐ 1 m以下であり、かつ、 P濃化部の
2 4
P濃度の最大値が 2.5質量%以下である。このため、熱間圧延中にスケールが剥離 しにくぐ熱間圧延後の鋼線材のスケール剥離面積の割合力 、さくてスケール付着 状態は△ (良好)または〇(極良好)であり、保管中の鲭の発生が抑制されており、ま た、歪付与後のスケール残留量は 0.05質量%以下であってメカ-カルデスケーリン グ'性が良好である。
[0186] 試験番号 502、 510、 512、 515、 523、 526、 532、 536、 538の場合は、水蒸気 酸ィ匕処理によって Fe SiO層は形成しているが、水蒸気酸化処理後の冷却速度が
2 4
遅いために P濃化が著しぐ P濃化部の P濃度の最大値が 2.5 %超である。このため、 熱間圧延中のスケール剥離が激しぐ熱間圧延後の鋼線材のスケール剥離面積の 割合が大きくてスケール付着状態は X (不良)である。従って、冷却中にスケール剥 離面に新たな薄い密着スケール(3次スケール)が発生したり、保管中にスケール剥 離面に鲭びが発生する。
[0187] 試験番号 504、 518、 522、 527の場合は、水蒸気酸化処理を行っていないので、 Fe SiO層は形成されず、 SiO層が形成されている。このため、歪付与後のスケー
2 4 2
ル残留量は 0.05質量%よりも大きくてメカ-カルデスケーリング性が悪い。
[0188] 試験番号 541〜544の場合は、いずれも、本発明に係る鋼線材の組成の中の Si:
0. 01〜0.5質量%を満たしていないため、水蒸気酸化処理の有無にかかわらず、ス ケールと鋼との界面に形成された Fe SiO層の厚みが厚すぎて、 1 mを超えている
2 4
。このため、歪付与後のスケール残留量は 0.05質量%よりも大きくてメカ-カルデス ケーリング'性が極めて悪 、。
[0189] 試験番号 507、 514の場合は、水蒸気酸化温度が高すぎて、スケールが急成長し たために、冷却中にスケールが剥離して、その剥離面に新たな薄い密着スケール(3 次スケール)が発生し、 MD性が悪くなつた。
[0190] [表 11]
Figure imgf000049_0001
[0191] [表 12] 水蒸
水 気 水 気酸 Ρ濃度 MD後のス 気酸 Fe2¾i04 スケー
験 酸化時 化後の冷 最大 ケール残
鋼種 化温 層の厚み ル剥離 備考 番号 間 却速度( 値 留量
度(°c ( ,um) ¾無
(sec) 。し/ sec) (%) (質量%)
)
501 753 5 12 0.01 2.3 〇 0.004 実施例
502 780 4 1 0.012 3.1 X 0.001 比較例
A5
503 910 0.6 21 0.014 1.6 〇 0.008 実施例
504 950 0 10 0 1.9 Δ 0. 11 比較例
505 855 4 13 0.018 1.8 Δ 0.007 実施例
506 B5 960 4 35 0.019 1.4 〇 0.009 実施例
507 1050 0.8 10 0.013 2.1 X 0.088 比較例
508 789 3 16 0.023 1.9 〇 0.011 実施例
509 C5 840 1 45 0.05 1.0 〇 0.009 実施例
510 985 0.5 0.5 0.07 3.5 X 0.095 比較例
511 750 5 38 0.13 1.3 〇 0.021 実施例
512 795 3 0. 1 0.28 3.9 X 0.002 比較例
D5
513 990 1 45 0.31 0.8 〇 0.015 実施例
514 1100 0.1 15 0.44 1.8 X 0. 1 比較例
515 755 4 3 0.02 2.7 X 0.005 比較例
516 823 3 11 0.04 2.3 Δ 0.042 実施例
517 E5 848 2 15 0.07 2.2 Δ 0.050 実施例
518 875 0 18 0 2.2 Δ 0. 180 比較例
519 935 1 30 0.1 1.6 〇 0.038 実施例
520 774 5 15 0.09 2.2 △ 0.021 実施例
521 809 4 18 0.12 2.1 Δ 0.043 実施例
522 F5 835 0 12 0 2.2 Δ 0.250 比較例
523 880 3.5 1 0.2 3.0 X 0.012 比較例
524 923 2 24 0.25 1.8 〇 0.033 実施例
525 787 4 12 0.08 2.1 Δ 0.045 実施例
526 820 3 2 0.21 3.1 X 0.042 比較例
527 G5 855 0 30 0 1.7 〇 0.220 比較例
528 890 2 22 0.24 1.6 〇 0.034 実施例
529 937 1 35 0.35 0.7 〇 0.023 実施例
530 762 5 29 0.12 1.6 〇 0.041 実施例
531 847 4 16 0.3 2.2
H5 △ 0.011 実施例
532 890 3 4 0.45 2.6 X 0.001 比較例
533 914 0.5 45 0.5 1.0 〇 0.028 実施例
534 778 5 50 0.33 0.8 〇 0.044 実施例
535 843 4 48 0.49 0.9 〇 0.035 実施例
15
536 912 2 3 0.57 2.7 X 0.002 比較例
537 945 1 13 0.46 2.3 Δ 0.045 実施例 538 782 3 2 0. 41 2. 8 X 0. 003 比較例
539 J5 859 2 22 0. 68 1. 9 〇 0. 032 実施例
540 892 0. 5 48 0. 7 0. 9 〇 0. 048 実施例
541 870 0 15 1. 2 2. 2 Δ 0. 9 比較例
K5
542 916 1 2 3. 5 3. 1 X 1. 5 比較例
543 825 0 20 2. 4 1. 8 Δ 1. 1 比較例 し 5
544 900 1 3 4. 7 2. 8 X 1. 7 比較例
[0192] なお、本発明はこれらの実施例に限定されるものではなぐ本発明の趣旨に適合し 得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明 の技術的範囲に含まれる。
産業上の利用可能性
[0193] 本発明に係る鋼線材は、搬送時にはスケール密着性が良くてスケールが剥離し〖こ くいため、長期間保存しても鲭が発生せず、更に、メカ-カルデスケーリング時にはス ケール剥離性が良くてメカ-カルデスケーリング性に優れて ヽるので、鋼線製造用の 鋼線材 (素線材)として極めて好適に用いることができて非常に有用である。

Claims

請求の範囲
[1] 鋼片を加熱して熱間圧延し、熱間圧延を終了した鋼材に、水蒸気および Zまたは 粒径 100 μ m以下のミスト水の存在する環境下で鋼材の表面を酸化処理することを 特徴とするデスケーリング時のスケール剥離性に優れた鋼材の製造方法。
[2] C : 0. 05〜: L 2質量%、及び Si: 0. 01〜0. 50質量%を含有する鋼片を加熱して 熱間圧延し、熱間圧延を終了した鋼材に、水蒸気および Zまたは粒径 100 m以下 のミスト水の存在する環境下で鋼材の表面を酸化処理することを特徴とするデスケー リング時のスケール剥離性に優れた鋼材の製造方法。
[3] 前記鋼片が、更に Mn: 0. 1〜1. 5質量%、 P : 0. 02質量%以下、 S : 0. 02質量% 以下および N: 0. 005質量%以下に制御されたことを特徴とする請求項 2記載のデ スケーリング時のスケール剥離性に優れた鋼材の製造方法。
[4] 前記酸化処理により形成されたスケール中に Fe SiO (ファイアライト)層が前記鋼
2 4
片に接して形成されることを特徴とする請求項 1又は 2に記載のデスケーリング時のス ケール剥離性に優れた鋼材の製造方法。
[5] 前記酸化処理を、露点 30〜80°Cの湿潤雰囲気中で行うことを特徴とする請求項 1 又は 2に記載のデスケーリング時のスケール剥離性に優れた鋼材の製造方法。
[6] 前記湿潤雰囲気中に前記鋼材を 0. 1秒以上 60秒以下通過させることを特徴とす る請求項 5に記載のデスケーリング時のスケール剥離性に優れた鋼材の製造方法。
[7] C : 0. 05〜: L 2質量%、及び Si: 0. 01〜0. 50質量%を含有する鋼片を加熱して 熱間圧延し、熱間圧延を終了した鋼材を、露点 30〜80°Cの湿潤雰囲気中を 0. 1秒 以上 60秒以下通過させて鋼材の表面を酸ィ匕処理することを特徴とするデスケーリン グ時のスケール剥離性に優れた鋼材の製造方法。
[8] 前記鋼材の酸ィ匕処理時の開始温度が 750〜1015°Cであることを特徴とする請求 項 1〜7のいずれかに記載のデスケーリング時のスケール剥離性に優れた鋼材の製 造方法。
[9] 前記鋼片を加熱して熱間圧延するにあたり、 1200°C以下の温度で加熱炉より抽出 して圧延することを特徴とする請求項 1〜8のいずれかに記載のデスケーリング時の スケール剥離性に優れた鋼材の製造方法。
[10] 前記鋼材の酸ィ匕処理時の終了温度が 600°C以上であることを特徴とする請求項 1 〜9のいずれかに記載のデスケーリング時のスケール剥離性に優れた鋼材の製造方 法。
[11] C : 0. 05〜: L 2質量%、 Si: 0. 01〜0. 50質量%および Mn: 0. 1〜1. 5質量% を含有し、 P : 0. 02質量%以下、 S : 0. 02質量%以下および N : 0. 005質量%以下 に制御された鋼線材であって、熱間圧延時に形成されたスケールの地鉄側に接して Fe SiO (ファイアライト)層が形成されていることを特徴とするメカ-カルデスケーリン
2 4
グ用鋼線材。
[12] 前記熱間圧延時に発生してスケール内に残留する圧縮応力が 200MPa以下に調 整されて!ヽることを特徴とする請求項 11記載のメカ-カルデスケーリング用鋼線材。
[13] 前記 Fe SiO (ファイアライト)層の厚さが 0. 01〜: L 0 /z mであり、前記ファイアライト
2 4
層の占める面積が、その断面において、電子顕微鏡による倍率 15000倍の観察のも とで、 10 mの長さに対して 60%以上であることを特徴とする請求項 11記載のメカ 二カルデスケーリング用鋼線材。
[14] 前記 Fe SiO (ファイアライト)層の厚さが 0. 01〜: L 0 /z mであり、前記ファイアライト
2 4
層の占める面積が、その断面において、電子顕微鏡による倍率 15000倍の観察のも とで、 10 /z mの長さに対して 60%以上であり、かつ熱間圧延時に発生してスケール 内に残留する圧縮応力が 200MPa以下であることを特徴とする請求項 11に記載の メカ-カルデスケーリング用鋼線材。
[15] Cr: 0. 3質量%以下および Zまたは Ni: 0. 3質量%以下を含有することを特徴とす る請求項 11〜14のいずれかに記載のメカ-カルデスケーリング用鋼線材。
[16] Cu: 0. 2質量%以下を含有することを特徴とする請求項 11〜15のいずれかに記 載のメカ-カルデスケーリング用鋼線材。
[17] Nb、 V、Ti、Hfおよび Zrの 1種もしくは 2種以上を合計 0. 1質量%以下含有するこ とを特徴とする請求項 11〜16のいずれかに記載のメカ-カルデスケーリング用鋼線 材。
[18] A1: 0. 1質量%以下を含有することを特徴とする請求項 11〜17のいずれかに記載 のメカ-カルデスケーリング用鋼線材。
[19] B:0.0001-0.005質量%を含有することを特徴とする請求項 11〜18のいずれ かに記載のメカ-カルデスケーリング用鋼線材。
[20] Ca:0.01質量%以下および Mg:0.01質量%以下を含有することを特徴とする請 求項 11〜 19のいずれかに記載のメカ-カルデスケーリング用鋼線材。
[21] C:0.05〜: L 2質量0 /0、 Si:0.01〜0.50質量0 /0、 Mn:0.1〜1.5質量%を含 有し、 P:0.02質量%以下、 S:0.02質量%以下および N:0.005質量%以下に制 御された鋼線材であって、 Fe SiO (ファイアライト)層力 熱間圧延時に形成されたス
2 4
ケールの地鉄側に接して形成され、スケール付着量が 0. 1〜0.7質量%であり、前 記スケール中に FeOを 30vol%以上、 Fe SiOを 0.01〜10vol%を含有することを
2 4
特徴とするメカ-カルデスケーリング性に優れた鋼線材。
[22] C:0.05〜: L 2質量0 /0、 Si:0.01〜0.50質量0 /0、 Mn:0.1〜1.5質量%を含 有し、 P:0.02質量%以下、 S:0.02質量%以下および N:0.005質量%以下に制 御された鋼線材であって、 Fe SiO (ファイアライト)層力 熱間圧延時に形成されたス
2 4
ケールの地鉄側に接して形成され、鋼線材の長手方向に対して垂直方向の断面に おける鋼表面のスケール内に、スケールと鋼表面との界面を起点とし、スケール厚み の 25%以上の長さを有するクラック力 界面長さ 200 μ mあたり 5〜20個存在するこ とを特徴とするメカ-カルデスケーリング性に優れた鋼線材。
[23] Cr:0. 1〜0.3質量%および Zまたは Ni:0.1〜0.3質量%を含有する請求項 2
2記載のメカ-カルデスケーリング性に優れた鋼線材。
[24] Cu:0.01〜0.2質量%を含有する請求項 22または 23記載のメカ-カルデスケー リング性に優れた鋼線材。
[25] Nb、 Ti、 V、 Hf、 Zrの 1種以上を合計で 0.003〜0.1質量%含有する請求項22〜
24のいずれか〖こ記載のメカ-カルデスケーリング性に優れた鋼線材。
[26] A1含有量: 0.05質量%以下(0質量%を含む)である請求項 22〜25のいずれか に記載のメカ-カルデスケーリング性に優れた鋼線材。
[27] :0.001〜0.005質量%を含有する請求項22〜26のぃずれかに記載のメカ-カ ルデスケーリング性に優れた鋼線材。
[28] C:0.05〜: L 2質量%、 Si:0.01〜0.5質量%、 Mn:0.1〜1.5質量%を含有 し、 P: 0. 02質量%以下、 S : 0. 02質量%以下および N : 0. 005質量%以下に制御 された鋼線材であって、 Fe SiO (ファイアライト)層力 熱間圧延時に形成されたスケ
2 4
一ルの地鉄側に接して形成され、スケールと鋼との界面に、 P濃度の最大値: 2. 5質 量%以下の P濃化部が形成され、かつ、この P濃化部の直上に Fe SiO層が形成さ
2 4 れていることを特徴とするメカ-カルデスケーリング性に優れた鋼線材。
[29] 前記 Fe SiO層の厚みが 0. 01〜1 μ mである請求項 28記載のメカ-カルデスケ
2 4
一リング性に優れた鋼線材。
[30] 0:: 0質量%超0. 3質量%以下および Zまたは Ni: 0質量%超 0. 3質量%以下を 含有する請求項 28または 29記載のメカ-カルデスケーリング性に優れた鋼線材。
[31] Cu: 0質量%超 0. 2質量%以下を含有する請求項 28〜30のいずれかに記載のメ 力-カルデスケーリング性に優れた鋼線材。
[32] Nb、 Ti、 V、 Hf、 Zrの 1種以上を合計で 0質量%超 0. 1質量%以下を含有する請 求項 28〜31のいずれか〖こ記載のメカ-カルデスケーリング性に優れた鋼線材。
[33] :0.001〜0.005質量%を含有する請求項28〜32のぃずれかに記載のメカ-カ ルデスケーリング性に優れた鋼線材。
PCT/JP2006/316021 2005-08-12 2006-08-14 スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材 WO2007020916A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/063,324 US8216394B2 (en) 2005-08-12 2006-08-14 Method for production of steel product with outstanding descalability; and steel wire with outstanding descalability
EP06796411A EP1921172B1 (en) 2005-08-12 2006-08-14 Method for production of steel material having excellent scale detachment property, and steel wire material having excellent scale detachment property
CN2006800233880A CN101208440B (zh) 2005-08-12 2006-08-14 氧化皮剥离性优异的钢材的制造方法及氧化皮剥离性优异的钢线材
US12/795,109 US8382916B2 (en) 2005-08-12 2010-06-07 Method for production of steel product with outstanding descalability; and steel wire with outstanding descalability

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005234606 2005-08-12
JP2005-234606 2005-08-12
JP2005-236782 2005-08-17
JP2005236782 2005-08-17
JP2006014127 2006-01-23
JP2006-014127 2006-01-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/063,324 A-371-Of-International US8216394B2 (en) 2005-08-12 2006-08-14 Method for production of steel product with outstanding descalability; and steel wire with outstanding descalability
US12/795,109 Division US8382916B2 (en) 2005-08-12 2010-06-07 Method for production of steel product with outstanding descalability; and steel wire with outstanding descalability

Publications (1)

Publication Number Publication Date
WO2007020916A1 true WO2007020916A1 (ja) 2007-02-22

Family

ID=37757576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316021 WO2007020916A1 (ja) 2005-08-12 2006-08-14 スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材

Country Status (5)

Country Link
US (2) US8216394B2 (ja)
EP (4) EP2166114B1 (ja)
KR (1) KR100973390B1 (ja)
CN (1) CN101208440B (ja)
WO (1) WO2007020916A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049391A (ja) * 2006-08-28 2008-03-06 Kobe Steel Ltd スケール剥離性に優れた鋼材の製造方法。
JP2009013432A (ja) * 2007-06-29 2009-01-22 Kobe Steel Ltd 表面性状にすぐれた高Si熱延鋼板の製造方法
EP2113580A1 (en) * 2008-04-28 2009-11-04 Kabushiki Kaisha Kobe Seiko Sho Steel wire rod excellent in mechanical descaling
CN106623276A (zh) * 2016-12-30 2017-05-10 宁夏鸿亚特种钢管有限公司 球化退火后轴承钢毛管表面氧化铁皮的去除方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980471B1 (ja) * 2011-01-07 2012-07-18 株式会社神戸製鋼所 鋼線材及びその製造方法
DE102013004905A1 (de) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
RU2506339C1 (ru) * 2012-11-01 2014-02-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Сталь арматурная термомеханически упрочненная для железобетонных конструкций
JP6139943B2 (ja) * 2013-03-29 2017-05-31 株式会社神戸製鋼所 酸洗い性に優れた軟磁性部品用鋼材、および耐食性と磁気特性に優れた軟磁性部品とその製造方法
CN103805937A (zh) * 2014-01-24 2014-05-21 大连液压件有限公司 抗咬合侧板表面处理工艺
CN106661649B (zh) * 2014-10-08 2019-05-03 新日铁住金株式会社 具有高强度和优异的化学转化处理性的热处理钢制品及其制造方法
MX2017012873A (es) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Miembro de lamina de acero con tratamiento termico y metodo para producirlo.
BR112017020004A2 (ja) * 2015-04-08 2018-06-19 Nippon Steel & Sumitomo Metal Corporation The steel plate for heat treatment
CN107532255B (zh) 2015-04-08 2019-06-28 日本制铁株式会社 热处理钢板构件以及其的制造方法
CN106734352A (zh) * 2017-01-24 2017-05-31 江苏省沙钢钢铁研究院有限公司 一种提高盘条机械剥壳性能的装置及方法
CN106825067A (zh) * 2017-04-01 2017-06-13 首钢总公司 一种改善合金焊丝表面镀铜色差的控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719172B2 (ja) * 1977-05-11 1982-04-21
JPS58130226A (ja) * 1982-01-29 1983-08-03 Sumitomo Electric Ind Ltd ばね加工性のすぐれた鋼線の製造法
JPH05295484A (ja) * 1992-04-16 1993-11-09 Kobe Steel Ltd メカニカルデスケーリング性に優れた硬鋼線材
JP2721861B2 (ja) * 1988-09-16 1998-03-04 トーア・スチール株式会社 熱間圧延鋼線材の直接急冷方法
JPH10158785A (ja) * 1996-12-03 1998-06-16 Nippon Steel Corp 鋼線用線材
JPH11172332A (ja) * 1997-12-15 1999-06-29 Sumitomo Metal Ind Ltd 高炭素鋼線材
JP2004115859A (ja) * 2002-09-25 2004-04-15 Sumitomo Denko Steel Wire Kk オイルテンパー線

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719172A (en) 1980-07-08 1982-02-01 Mitsubishi Electric Corp Pulse arc welding device
JPS6148558A (ja) 1984-08-10 1986-03-10 Nippon Steel Corp メカニカルデスケ−リング性のよい硬鋼線材
JPH075991B2 (ja) * 1988-04-01 1995-01-25 住友電気工業株式会社 鋼線材の熱処理方法
JP2764167B2 (ja) * 1988-06-13 1998-06-11 トーア・スチール株式会社 熱間圧延リング状線材の直接パテンティング装置およびその方法
JP2764170B2 (ja) * 1988-09-16 1998-06-11 トーア・スチール株式会社 高延性鋼線材の製造方法
JP2969293B2 (ja) 1991-03-22 1999-11-02 新日本製鐵株式会社 メカニカルデスケーリング性に優れた軟鋼線材の製造法
JP2816264B2 (ja) 1991-09-30 1998-10-27 アンリツ株式会社 変位測定装置
JP2768152B2 (ja) * 1992-06-26 1998-06-25 住友電気工業株式会社 高強度,高延性を有する熱間圧延炭素鋼線材の製造方法
JP3434080B2 (ja) 1995-04-21 2003-08-04 新日本製鐵株式会社 デスケーリング用線材
JP3353537B2 (ja) * 1995-05-19 2002-12-03 株式会社神戸製鋼所 伸線性に優れたばね用鋼線材の製造方法
JPH10324923A (ja) 1997-05-27 1998-12-08 Nippon Steel Corp 鋼線用線材
EP1026276B1 (en) * 1998-08-05 2010-12-29 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
KR100368530B1 (ko) * 1998-12-21 2003-01-24 가부시키가이샤 고베 세이코쇼 가공성이 우수한 스프링용 강
JP2000246322A (ja) 1999-02-25 2000-09-12 Kobe Steel Ltd 酸洗性に優れた圧延線材およびその製造方法
JP2000319758A (ja) 1999-03-10 2000-11-21 Nippon Steel Corp メカニカルデスケーリング後の残留スケールの少ない線材
JP2000319730A (ja) * 1999-05-07 2000-11-21 Nippon Steel Corp 表面性状及び成形性に優れた熱延鋼板の製造方法
JP3944388B2 (ja) 2001-12-05 2007-07-11 株式会社神戸製鋼所 酸洗性に優れた鋼材及びその製造方法
JP4102113B2 (ja) 2002-06-06 2008-06-18 新日本製鐵株式会社 鋼帯の連続焼鈍ラインにおける冷却方法
JP3959722B2 (ja) 2003-10-15 2007-08-15 住友金属工業株式会社 線材コイルの冷却装置
DE602005017248D1 (de) * 2004-02-26 2009-12-03 Pursuit Dynamics Plc Huntingdo Verfahren und vorrichtung zur erzeugung von nebel
EP1674588B1 (en) 2004-12-22 2010-02-10 Kabushiki Kaisha Kobe Seiko Sho High carbon steel wire material having excellent wire drawability and manufacturing process thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719172B2 (ja) * 1977-05-11 1982-04-21
JPS58130226A (ja) * 1982-01-29 1983-08-03 Sumitomo Electric Ind Ltd ばね加工性のすぐれた鋼線の製造法
JP2721861B2 (ja) * 1988-09-16 1998-03-04 トーア・スチール株式会社 熱間圧延鋼線材の直接急冷方法
JPH05295484A (ja) * 1992-04-16 1993-11-09 Kobe Steel Ltd メカニカルデスケーリング性に優れた硬鋼線材
JPH10158785A (ja) * 1996-12-03 1998-06-16 Nippon Steel Corp 鋼線用線材
JPH11172332A (ja) * 1997-12-15 1999-06-29 Sumitomo Metal Ind Ltd 高炭素鋼線材
JP2004115859A (ja) * 2002-09-25 2004-04-15 Sumitomo Denko Steel Wire Kk オイルテンパー線

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049391A (ja) * 2006-08-28 2008-03-06 Kobe Steel Ltd スケール剥離性に優れた鋼材の製造方法。
JP2009013432A (ja) * 2007-06-29 2009-01-22 Kobe Steel Ltd 表面性状にすぐれた高Si熱延鋼板の製造方法
EP2113580A1 (en) * 2008-04-28 2009-11-04 Kabushiki Kaisha Kobe Seiko Sho Steel wire rod excellent in mechanical descaling
US8092916B2 (en) 2008-04-28 2012-01-10 Kobe Steel, Ltd. Steel wire rod
CN106623276A (zh) * 2016-12-30 2017-05-10 宁夏鸿亚特种钢管有限公司 球化退火后轴承钢毛管表面氧化铁皮的去除方法

Also Published As

Publication number Publication date
EP2166114A3 (en) 2010-11-10
EP2166115A2 (en) 2010-03-24
CN101208440B (zh) 2012-12-12
US8216394B2 (en) 2012-07-10
CN101208440A (zh) 2008-06-25
EP2166116A3 (en) 2010-11-03
EP1921172A1 (en) 2008-05-14
EP2166114B1 (en) 2017-01-11
US20090229710A1 (en) 2009-09-17
KR100973390B1 (ko) 2010-07-30
EP2166116A2 (en) 2010-03-24
EP1921172B1 (en) 2012-11-28
EP2166115A3 (en) 2010-11-10
KR20080036081A (ko) 2008-04-24
EP2166114A2 (en) 2010-03-24
US8382916B2 (en) 2013-02-26
EP1921172A4 (en) 2009-08-12
US20100236667A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
WO2007020916A1 (ja) スケール剥離性に優れた鋼材の製造方法及びスケール剥離性に優れた鋼線材
JP4958998B1 (ja) 鋼線材及びその製造方法
KR101103233B1 (ko) 강선재
JP4980471B1 (ja) 鋼線材及びその製造方法
JP4248790B2 (ja) メカニカルデスケーリング性に優れた鋼線材およびその製造方法
CN114096692A (zh) 耐硫酸露点腐蚀性优异的无缝钢管及其制造方法
JP4891709B2 (ja) メカニカルデスケーリング用鋼線材
JP5084206B2 (ja) 伸線性に優れた鋼線材の製造方法
JP5679112B2 (ja) スケール密着性に優れた熱延鋼板およびその製造方法
JP4704978B2 (ja) スケール剥離性に優れた鋼材の製造方法。
JP4971719B2 (ja) メカニカルデスケーリング用鋼線材
JP2003171739A (ja) 酸洗性に優れた鋼材及びその製造方法
JP4891700B2 (ja) メカニカルデスケーリング用鋼線材
JP5064934B2 (ja) スケール剥離性に優れたSi、Cr含有条鋼材の製造方法
JP2019072750A (ja) 継目無鋼管の製造方法
JP2012021217A (ja) メカニカルデスケーリング性に優れた鋼線材およびその製造方法
JP4971720B2 (ja) メカニカルデスケーリング用鋼線材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023388.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12063324

Country of ref document: US

Ref document number: 2006796411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087003415

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE