WO2007015371A1 - 樹脂組成物、その製造方法、それから得られる成形体 - Google Patents

樹脂組成物、その製造方法、それから得られる成形体 Download PDF

Info

Publication number
WO2007015371A1
WO2007015371A1 PCT/JP2006/314234 JP2006314234W WO2007015371A1 WO 2007015371 A1 WO2007015371 A1 WO 2007015371A1 JP 2006314234 W JP2006314234 W JP 2006314234W WO 2007015371 A1 WO2007015371 A1 WO 2007015371A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
fiber
mass
polylactic acid
Prior art date
Application number
PCT/JP2006/314234
Other languages
English (en)
French (fr)
Inventor
Yohei Kabashima
Ken-Ichi Kawada
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to EP06781241A priority Critical patent/EP1911809A4/en
Priority to US11/989,626 priority patent/US20090093575A1/en
Priority to CN200680016507XA priority patent/CN101175819B/zh
Priority to JP2007529208A priority patent/JP5246645B2/ja
Publication of WO2007015371A1 publication Critical patent/WO2007015371A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • C08L67/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • C08J2367/07Unsaturated polyesters having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a resin composition, a method for producing the composition, and a molded product obtained therefrom.
  • Polypropylene (PP), ABS, polyamide are generally used as raw materials for resin molded products
  • Resin such as (PA6, PA66), polyester (PET, PBT), polycarbonate (PC) is used.
  • PA6, PA66 polyester
  • PET PET
  • PBT polycarbonate
  • moldings made from these types of resin are excellent in moldability and mechanical strength, but when discarded, they increase the amount of dust and are almost completely decomposed in the natural environment. Do not be! Therefore, even if it is buried, it remains in the ground semipermanently.
  • biodegradable polyester resin including polylactic acid has attracted attention from the viewpoint of environmental conservation.
  • biodegradable coagulants polylactic acid, polyethylene succinate, polybutylene succinate, etc. are highly useful because they can be mass-produced.
  • Polylactic acid can be produced using plants such as corn and sweet potato as raw materials.
  • JP-A-2005-23250 proposes a molded article obtained by reinforcing biodegradable resin mainly composed of lactic acid-based resin with aramid (aromatic polyamide) fiber.
  • aramid aromatic polyamide
  • JP-A-2003-128901 has proposed a resin composition in which polylactic acid is kneaded with a (meth) acrylic acid ester compound and a peroxide.
  • a (meth) acrylic acid ester compound and a peroxide there are cases where the impact resistance is at a sufficient level.
  • polylactic acid has a slow crystallization rate, and therefore has a long molding cycle.
  • the molded body obtained as described above is inferior in mechanical strength and heat resistance.
  • the present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a resin composition excellent in various physical properties, a method for producing the same, and a molded article obtained by the method.
  • the resin composition of the present invention comprises a crosslinked biodegradable polyester resin and high-strength fibers.
  • the resin composition of the present invention includes a polylactic acid resin composition in which a polylactic acid resin and a (meth) acrylic acid ester compound are mixed in the presence of a peracid compound. It is characterized by containing high-strength fibers.
  • the high-strength fiber is preferably a polyester fiber.
  • the polyester fiber has a glass transition temperature of 90 ° C or less and is not observed.
  • the resin composition of the present invention specifically includes 70 to 99% by mass of a crosslinked biodegradable polyester resin and 30 to 1% by mass of aramid fiber and Z or LCP fiber.
  • This resin composition contains 0.01 to 10 parts by mass of a calpositimide compound with respect to 100 parts by mass of the total amount of crosslinked biodegradable polyester resin and aramid fiber and Z or LCP fiber. It is preferable to blend it.
  • a resin composition containing a crosslinked biodegradable polyester resin, aramid fiber, and Z or LCP fiber has a (meth) acrylate ester compound as a crosslinking agent per 100 parts by mass of the biodegradable polyester resin. 0.1 to 20 parts by mass is preferably blended.
  • the biodegradable polyester resin is preferably polylactic acid.
  • the carpositimide compound preferably has an isocyanate group as a terminal group.
  • biodegradable polyester resin has been produced with plant-based raw materials.
  • a method for producing a resin composition of the present invention includes a polylactic acid resin composition in which a polylactic acid resin and a (meth) acrylic acid ester compound are mixed in the presence of a peroxyacid compound, and a high
  • the high-strength fibers are preliminarily focused to a size having a width of 1 to 5 mm and a length of 1 to 5 mm.
  • the molded body of the present invention is obtained by molding the above-mentioned rosin composition.
  • the resin composition of the present invention includes a polylactic acid resin composition in which a polylactic acid resin and a (meth) acrylic acid ester compound are mixed in the presence of a peroxide, and contains high-strength fibers. Because it is included, it has excellent heat resistance, impact resistance, and flexibility.
  • this resin composition in the casing and attachment / detachment part of electronic devices, the range of use of polylactic acid resin, which is a low environmental load material, can be greatly expanded, and the industrial utility value can be greatly increased. it can.
  • the resin composition of the present invention contains 70 to 99% by mass of a cross-linked biodegradable polyester resin and 30 to 1% by mass of amide fiber and Z or LCP fiber.
  • An excellent machine due to the addition of 0.01 parts by mass of calpositimide compound to 100 parts by mass of the total amount of crosslinked biodegradable polyester resin, aramid fiber and Z or LCP fiber.
  • Strength, heat resistance, heat and humidity resistance, moldability, and petroleum-based It is possible to provide a resin composition having a low dependence on products. In particular, the impact strength and moist heat resistance can be greatly improved by blending a calpositimide compound.
  • This resin composition has a very high industrial utility value, such as being able to be formed into various molded bodies by various molding methods.
  • the polylactic acid-based resin composition of the present invention comprises a resin composition prepared by mixing polylactic acid resin and a (meth) acrylic acid ester compound in the presence of a peroxide, and a high-strength fiber. contains.
  • Another ⁇ composition of the invention comprises a 70 to 99 wt% crosslinked biodegradable polyester ⁇ , and Aramido fibers and Z or LCP fibers 30-1 mass 0/0.
  • this resin composition 0.01 to 10 parts by mass of a calpositimide compound is blended with respect to 100 parts by mass of the total amount of crosslinked biodegradable polyester resin and aramid fiber and Z or LCP fiber. This is preferred.
  • polylactic acid resin includes poly (L lactic acid), poly (D lactic acid), and mixtures thereof in terms of heat resistance and moldability.
  • a copolymer can be used.
  • poly (L-lactic acid) is the main component.
  • the melting point of polylactic acid resin mainly composed of poly (L lactic acid) varies depending on the optical purity. In the present invention, considering the mechanical properties and heat resistance of the molded product, the melting point is preferably 160 ° C. or higher. In a polylactic acid resin mainly composed of poly (L-lactic acid), in order to achieve a melting point of 160 ° C or higher, the proportion of D-lactic acid component should be less than about 3 mol%.
  • the melt flow rate of the polylactic acid resin at 190 ° C and a load of 21.2N is preferably 0.1 to 50 gZlO. More preferred is 2-20 gZlO min. More preferred is 5-10 gZlO min.
  • the melt flow rate exceeds 50 gZlO, the melt viscosity is too low, and the mechanical properties and heat resistance of the molded product may be inferior.
  • the melt flow rate is less than 0.1 lgZlO, the load during molding may increase and the operability may decrease.
  • Polylactic acid resin is a known melt polymerization method, or further combined with a solid phase polymerization method, Manufactured.
  • a method of adjusting the melt flow rate of the polylactic acid resin to a predetermined range when the melt flow rate is too high, a small amount of chain extender, for example, diisocyanate compound, bisoxazolin compound, epoxy compound, A method for increasing the molecular weight of the resin using an acid anhydride or the like is mentioned.
  • a polyester resin having a high melt flow rate may be mixed with a low molecular weight compound.
  • the (meth) acrylic acid ester compound is used for improving the heat resistance by linking molecules of polylactic acid to promote crystallization.
  • monomers that have high reactivity with polylactic acid resin are left behind, and rosin is relatively less toxic and less colored. Therefore, it has the ability to have two or more (meth) acryl groups in the molecule.
  • a compound having one or more (meth) acryl groups and one or more glycidyl groups or vinyl groups is preferred.
  • Specific compounds include glycidyl metatalylate, glycidyl attalate, glycerol dimetatalylate, trimethylol propane trimetatalylate, trimethylol propane tritalylate, allyloxypolyethylene glycol monoatarylate, allyloxy (poly).
  • examples include glycol dimetatalate.
  • the alkylene glycol portion may be a copolymer of alkylene having various lengths.
  • Specific examples of the compound further include butanediol metatalylate and butanediol atarylate.
  • the amount of the (meth) acrylic acid ester compound is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the polylactic acid resin. Is more preferably 0.1 to 5 parts by mass.
  • the peroxide is used to promote the reaction between the (meth) acrylic acid ester compound and the polylactic acid resin.
  • Specific examples include benzoyl peroxide, bis (butylperoxy) trimethylcyclohexane, bis (butylbaxy) cyclododecane, butylbis (butylbaxy) valerate, dicumyl peroxide, butyl baroxybenzoate, dibutylperoxide.
  • Oxide bis (Butylba 1 year old) Diisopropyl Examples include benzene, dimethyldi (butyl butyl) hexane, dimethyldi (butyl butyl) hexine, and butyl peroxycumene.
  • the blending amount of the peroxyacid compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polylactic acid resin, and is 0.1 to L0 parts by mass. More preferred. It can be used even if it exceeds 20 parts by mass, but it is disadvantageous in terms of cost. In addition, since such peracids are decomposed when mixed with rosin, even if used at the time of blending, they may not be included in the obtained rosin composition.
  • polyester fiber As the high-strength fiber, high impact resistance can be obtained. Furthermore, by using polyester fibers whose glass transition temperature is not observed in the range of 90 ° C or lower, crystallization during molding is promoted and the time required for cooling can be shortened. Examples of the polyester fiber whose glass transition temperature is not observed in the range of 90 ° C or lower include polyarylate fiber, polyethylene naphthalate fiber, polycyclohexanedimethylene terephthalate fiber, polycyclohexane dimethylene terephthalate isophthalate fiber, and the like. Can do.
  • the high-strength fibers are preliminarily focused to a size of 1 to 5 mm in width and 1 to 5 mm in length, the frequency of clogging of the high-strength fiber input portion during kneading can be reduced. In the case of focusing on a size smaller than the above size, the effect of reducing the frequency of clogging is small. On the other hand, when the particles are concentrated to a size larger than the above size, the dispersibility at the time of kneading is lowered, and as a result, the impact resistance may be lowered.
  • a bundle of high-strength fibers so as to have a desired bundling width is soaked in molten resin, and after cooling and solidification, this is boiled with a cutting machine or the like.
  • a method of cutting to length can be used.
  • the high-strength fiber is a polyester fiber
  • a polyester resin can be suitably used as the resin for immersing the fiber. If a resin other than polyester resin is used, the adhesion between the high-strength fibers and the polylactic acid resin may be reduced, and as a result, the impact resistance may be reduced.
  • the polyester resin used include polylactic acid, polyethylene terephthalate, polybutylene terephthalate, and the like. From the viewpoint of adhesion described above, it is preferable to use polylactic acid resin.
  • the compounding amount of the high-strength fiber is preferably 1 to 50 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polylactic acid resin. Is more preferable.
  • the high-strength fiber can be added from the hopper in the extruder, or can be added in the middle of the kneading process using a side feeder. A high-strength fiber is processed into a masterbatch and then diluted with a base resin during molding.
  • Glass fibers may be added to the polylactic acid based resin composition of the present invention for the purpose of improving its mechanical strength and heat resistance.
  • the blending amount is preferably 1 to 50 parts by weight, more preferably 1 to 20 parts by weight, and more preferably LO parts by weight with respect to 100 parts by weight of polylactic acid resin.
  • the glass fiber may be subjected to a surface treatment in order to improve the adhesion with rosin.
  • a method for adding to the resin it can be added from a hopper in an extruder, or can be added in the middle of a kneading process using a side feeder. By processing the glass fiber in a masterbatch, it can be used by diluting it with base oil during molding.
  • the polylactic acid-based resin composition of the present invention includes a pigment, a heat stabilizer, an antioxidant, a weathering agent, a flame retardant, a plasticizer, a lubricant, a release agent, as long as the properties are not significantly impaired.
  • An agent, an antistatic agent, a filler, a crystal nucleus material, and the like can be added.
  • heat stabilizer and the antioxidant examples include hindered phenols, phosphorus compounds, hindered amines, rho compounds, copper compounds, alkali metal halides, and the like.
  • Non-halogen flame retardants include phosphorus flame retardants, hydrated metal compounds (hydroxyaluminum hydroxide, magnesium hydroxide), N-containing compounds (melamine-based, guanidine-based), inorganic compounds (boric acid) Salt, molybdenum compound).
  • inorganic fillers include talc, calcium carbonate, zinc carbonate, wollastonite, silica, alumina, magnesia, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, Glass balloon, carbon Examples thereof include black, zinc oxide, antimony trioxide, zeolite, hydrated talcite, metal fiber, metal whisker, ceramic whisker, potassium titanate, boron nitride, graphite, and carbon fiber.
  • examples of the inorganic crystal nucleus material include talc and kaolin.
  • examples of the organic crystal nucleus material include sorbitol compounds, benzoic acid and metal salts of the compounds, ester metal salts of phosphate, Examples include rosin compounds.
  • the method of mixing these additives with the polylactic acid based resin composition of the present invention is not particularly limited.
  • means for mixing the polylactic acid resin, the (meth) acrylate ester, the peroxide, and the high-strength fiber is not particularly limited.
  • a method of melt kneading using a general extruder can be mentioned.
  • a twin screw extruder In order to improve the kneading state, it is preferable to use a twin screw extruder.
  • the kneading temperature is preferably in the range of (melting point of polylactic acid resin + 5 ° C) to (melting point of polylactic acid resin + 100 ° C), and the kneading time is preferably 20 seconds to 30 minutes.
  • a blending method a method of dry blending or a method of supplying high-strength fibers using a powder feeder is preferable.
  • the resin composition of the present invention containing a crosslinked biodegradable polyester resin, an aramid fiber and a Z or LCP fiber, and preferably further containing a carpositimide compound will be described.
  • the biodegradable polyester resin used in the cross-linked biodegradable polyester resin includes poly (L-lactic acid), poly (D-lactic acid), polydalcolic acid, poly force prolatatone, polybutylene succinate, polyethylene succinate , Polybutylene adipate 'terephthalate, polybutylene succinate' terephthalate, and the like.
  • poly (L-lactic acid), poly (D-lactic acid), a mixture thereof, or a copolymer thereof can also be used in terms of heat resistance and moldability. The details are as described above.
  • the melt flow rate of such a biodegradable polyester resin at 190 ° C and a load of 21.2N is preferably 0.1 to 50 g / 10 min, more preferably 0.2 to 20 g ZlO. Is 0.5 to: LOgZlO minutes.
  • the melt flow rate exceeds 50 gZlO, the melt viscosity is too low, and the mechanical properties and heat resistance of the molded product tend to be inferior. If the melt flow rate is less than SO.lgZlO, the load during molding may become too high and the operability may decrease.
  • the biodegradable polyester resin in the present invention is produced by a known melt polymerization method or by further adding a solid phase polymerization method. Further, as a method for adjusting the melt flow rate of the biodegradable polyester resin to the above-mentioned predetermined range, if the melt flow rate is too large, a small amount of chain extender, for example, diisocyanate compound is used. And a method of increasing the molecular weight of the resin using a product, a bisoxazoline compound, an epoxy compound, an acid anhydride, or the like. Conversely, if the melt flow rate is too low, a biodegradable polyester resin having a high melt flow rate can be mixed with a low molecular weight compound.
  • a method for adjusting the melt flow rate of the biodegradable polyester resin to the above-mentioned predetermined range if the melt flow rate is too large, a small amount of chain extender, for example, diisocyanate compound is used. And a method of increasing the molecular
  • the crosslinked biodegradable polyester resin in the present invention is obtained by introducing a crosslinked structure into the biodegradable polyester resin described above.
  • the crosslinking agent divinylbenzene, diallylbenzene, divinylnaphthalene, divinino fenenole, divinyl carbazole, dibule pyridine, and their nuclear-substituted compounds and related homologues; ethylene glycol ditalylate , Polyfunctional acrylic compounds such as butylene glycol ditalylate, triethylene glycol ditalylate, 1,6-hexanediol ditalylate, tetramethylol methane tetratalylate; and ethylene glycol dimethalate, Butylene glycol dimetatalylate, triethylene glycol dimetatalylate, tetraethylene glycol dimetatalylate, 1,6-hexanediol dimetatalylate, 1,9-nonanedi
  • Aroma Polybutyl ether or polyallyl ether of aromatic polyhydric alcohols aryl esters of cyanuric acid or isocyanuric acid such as triallyl cyanurate and triallyl isocyanurate, triallyl phosphate, trisacryloxychetyl phosphate; N— Multifunctional, such as maleimide compounds such as fermaleimide, N, N, 1m-phenolene bismaleimide, and compounds having two or more triple bonds such as dipropargyl phthalate and dipropargyl maleate Monomers can be used.
  • aryl esters of cyanuric acid or isocyanuric acid such as triallyl cyanurate and triallyl isocyanurate, triallyl phosphate, trisacryloxychetyl phosphate
  • N— Multifunctional such as maleimide compounds such as fermaleimide, N, N, 1m-phenolene bismaleimide, and compounds having two or more triple bonds such as dipropargyl phthalate and di
  • a (meth) acrylic acid ester compound is desirable as in the case of the above-described polylactic acid-based resin composition.
  • the polyester resin component is cross-linked, and mechanical strength, heat resistance, and dimensional stability are improved.
  • the details of the (meth) acrylic acid ester compound are the same as in the case of the above-mentioned polylactic acid-based resin composition.
  • the method of blending the (meth) acrylic acid ester compound with the biodegradable polyester resin is the same as in the case of the polylactic acid resin composition described above.
  • the (meth) acrylic acid ester compound is in liquid form, it is preferable to inject it from the middle of the extruder using a pressure pump.
  • a peroxyacid compound can be blended in the same manner.
  • a preferred method when using a (meth) acrylic acid ester compound and a peracid compound in combination is as follows:
  • a (meth) acrylic acid ester compound and Z or a peroxide are dissolved or dispersed in a medium and injected into a kneader, and this can significantly improve the operability. That is, during the melt-kneading of the biodegradable polyester resin component and the peroxide, a solution or dispersion of the (meth) acrylate compound is injected, or the biodegradable polyester resin is melt-kneaded. In addition, a solution or dispersion of a (meth) acrylic ester compound and a peroxyacid compound can be poured and melt kneaded.
  • the medium for dissolving or dispersing the (meth) acrylic acid ester compound and Z or peracid compound a general medium is used and is not particularly limited.
  • a plasticizer excellent in compatibility with the biodegradable polyester resin of the present invention is preferable.
  • aliphatic polyvalent carboxylic acid ester derivatives, aliphatic polyhydric alcohol ester derivatives, aliphatic ox Examples thereof include one or more plasticizers that are selected, such as sieester derivatives, aliphatic polyether derivatives, and aliphatic polyether polycarboxylic acid ester derivatives.
  • Specific compounds include dimethyl adipate, dibutyl adipate, triethylene glycol diacetate, methyl acetyl ricinoleate, acetyl butyl citrate, polyethylene glycol, dibutyl diglycol succinate, glycerin diaceto monocaprylate, glycerin dicaprate. Acetate monolaurate.
  • the amount of the plasticizer used is 30 parts by mass or less, preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the biodegradable polyester resin polyester resin. When the reactivity of the crosslinking agent is low, it is not necessary to use a plasticizer, but when the reactivity is high, it is preferable to use 0.1 parts by mass or more. Since this plasticizer may volatilize when mixed with rosin, this plasticizer may be contained in the obtained rosin composition even if used during manufacture. .
  • heat resistance, mechanical properties, and the like can be reinforced by blending a cross-linked biodegradable polyester resin with aramid fiber and Z or LCP fiber.
  • the aramid fiber in the present invention is a fiber made of a resin having an aromatic amide structure such as polyparaphenylene-terephthalamide or copolyparaphenylene di-3,4, mono-oxydiphenylene-terephthalamide.
  • aromatic amide structure such as polyparaphenylene-terephthalamide or copolyparaphenylene di-3,4, mono-oxydiphenylene-terephthalamide.
  • Specific examples include “Kepler” manufactured by DuPont, “Technola” manufactured by Teijin Techno Products, and “Twaron”. These are usually formed into fibers by dissolving the aramide raw material in sulfuric acid or methylpyrrolidone and performing wet spinning.
  • the LCP fiber in the present invention is a fiber made of a resin that exhibits liquid crystallinity when melted, and usually refers to a fiber formed of polyester (Liquid Crystalline Polyester) that exhibits liquid crystallinity when melted.
  • Polyester that exhibits liquid crystallinity when melted means that a polyester sample powder is placed on a heated sample table between two polarizing plates that are orthogonal to each other by 90 °, and then heated up. Means something that can penetrate
  • polyesters examples include aromatic polyester.
  • This aromatic polyester is composed of an aromatic dicarboxylic acid, an aromatic diol and / or an aromatic hydroxycarboxylic acid or a derivative thereof, and in some cases, these and an alicyclic dicarboxylic acid, an alicyclic diol, an aliphatic Copolymers with diols and derivatives thereof are also included.
  • the aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 4,4'-dicarboxydiphenyl, 2,6 dicarboxynaphthalene, 1,2 bis (4 carboxyphenoxy) ethane, and alkyls thereof. And aryl substituents of aryl, alkoxy and halogen groups.
  • aromatic diol examples include hydroquinone, resorcin, 4,4, -dihydroxydiphenol, 4,4, -dihydroxybenzophenone, 4,4'-dihydroxydiphenolemethane, 4,4 'dihydroxy Diphenyl-noreethane, 2, 2 bis (4 hydroxyphenol) propane, 4, 4, 1 dihydroxydiphenyl ether, 4, 4'-dihydroxydiphenyl sulfone, 4, 4 'dihydroxydiphenylsulfide, 2, Examples thereof include 6-dihydroxynaphthalene, 1,5-dihydroxynaphthalene and the like, and nuclear substitution products such as alkyl, aryl, alkoxy and halogen groups.
  • aromatic hydroxycarboxylic acid examples include p-hydroxybenzoic acid, m-hydroxybenzoic acid, 2-hydroxynaphthalene-6-carboxylic acid, 1-hydroxynaphthalene-1-5-carboxylic acid, and their alkyl, aryl, Examples thereof include nuclear substitutions of alkoxy and halogen groups.
  • Examples of the alicyclic dicarboxylic acid include trans-1,4 dicarboxycyclohexane, cis-1,4-dicarboxycyclohexane and the like, and substituted alkyl, aryl, and halogen groups thereof.
  • Examples of the alicyclic and aliphatic diols include trans-1,4 dihydroxycyclohexane, cis-1,4-dihydroxycyclohexane, ethylene glycolanol, 1,4 butanediol, and xylylenediol. It is done.
  • LCP fibers are usually obtained by melt spinning these polyester raw materials.
  • Specific examples of the L CP fiber include “Vectran” made of Kurarene made of hydroxybenzoic acid and hydroxynaphthalenecarboxylic acid, “Sumika Super Fiber” made by Sumitomo Chemical Co., Ltd., which is mainly composed of hydroxybenzoic acid, and the like.
  • the blending amount of the aramid fiber and the Z or LCP fiber needs to be 1 to 30 parts by mass with respect to 99 to 70 parts by mass of the crosslinked biodegradable polyester resin. Preferably, it is 5 to 20 parts by mass (crosslinked biodegradable polyester resin 95 to 80 parts by mass). 1 mass If it is less than the part, reinforcing effects such as heat resistance and mechanical properties cannot be sufficiently obtained. If the blending amount exceeds 30 parts by mass, poor feeding to the molding machine may occur, clogging in the hopper may occur, the fluidity of the resin composition may be poor, and molding processability may be impaired. In addition, it is not necessarily economical, so it is disadvantageous in terms of cost.
  • the diameter of the aramid fiber and the Z or LCP fiber is preferably 1 to 40 / ⁇ ⁇ , more preferably 5 to 20 / ⁇ ⁇ . Below the power range, the price of the fiber increases and the economic efficiency decreases, and the handleability decreases due to a decrease in bulk density. On the other hand, if it exceeds the above, the effect of improving the strength of the greaves composition is reduced.
  • the length of the aramid fiber and the cocoon or LCP fiber is preferably from 0.5 to 30 mm, more preferably from 1 to: LOmm, and even more preferably from 2 to 6 mm. Below the powerful range, the effect of improving the heat resistance and strength of the resin composition becomes poor. On the other hand, problems such as reduced workability, such as bridging by the hopper of the molding machine, and markedly hindering melting characteristics occur.
  • the form of the aramid fiber and the Z or LCP fiber may take any form such as a staple, a cut filament, a chopped strand, a chopped strand mat, and a pulp within the range having the above-mentioned diameter and length. .
  • a surface treatment agent can be applied to the amide fiber and the Z or LCP fiber.
  • the surface treatment agent include compounds having two or more epoxy groups, carboxyl groups, carboxylic groups, oxazole groups, hydroxyl groups, amino groups, and the like, such as acid anhydride-modified polyolefin and ethylenic glycidyl methacrylate.
  • Polymer (EGMA) epoxy resin, acid anhydride-modified polyester, phenoxy resin, di-troamine, acid anhydride-modified polyester and the like are preferable.
  • the method of mixing the aramid fiber and the Z or LCP fiber into the crosslinked biodegradable polyester resin is not particularly limited, but the following two methods are particularly preferable.
  • the first method is to prepare a compound by kneading a cut fiber stable with a predetermined length into a crosslinked biodegradable polyester resin using a twin screw extruder or a melt mixer. Is the law. At this time, when feeding the fiber to the extruder, only the cross-linked biodegradable polyester resin is first melted, and then the half force of the twin-screw extruder is fed by a side feeder or the like. Eid.
  • a continuous filament or continuous stable yarn in a wound state is unwound and fed out to extrude a polyester resin, particularly a lactic acid resin, with a crosshead die force.
  • a polyester resin particularly a lactic acid resin
  • This is a method using a so-called pultrusion method in which coating is impregnated.
  • the pultruded strand is cut into an appropriate size by a pellet cutter or the like to obtain a resin pellet.
  • the length of the fiber contained in the resin pellet is controlled almost equal to the length of the resin pellet.
  • the resin composition containing the cross-linked biodegradable polyester resin of the present invention, aramid fiber, and Z or LCP fiber has improved heat and moisture resistance by containing a carpositimide compound, and is more compatible with melt kneading. The mechanical properties are improved.
  • Examples of the carbodiimide compound used in the present invention include 4,4'-dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, N, N-dimethylphenylcarbodiimide, N, N, -di-2,6-diisopropyl. Examples thereof include phenol and carbodiimide.
  • the compound is not particularly limited as long as it is a carpositimide compound having one or more carposimide groups in the molecule.
  • Such a carpositimide compound can be produced by a method that is also known in the prior art. Specifically, it can be produced by a carposimide reaction involving deoxidation and carbon reaction using a diisocyanate compound as a raw material. If the end-capping treatment is not performed, the end group has an isocyanate group.
  • the calpositimide compound used in the resin composition of the present invention it is desirable to use a calpositimide compound in which an isocyanate group remains from the viewpoint of improvement in heat and moisture resistance and mechanical properties.
  • the isocyanate group has a higher reactivity than the carpositimide group, and a higher effect is obtained.
  • the compounding amount of the carpositimide compound is 0.01 to 10 parts by mass with respect to 100 parts by mass in total of the crosslinked biodegradable polyester resin, the aramide fiber, and the Z or LCP fiber. 0.1 to 5 parts by mass is even more preferable.
  • the blending amount is less than 0.01 parts by mass, the effects of improving the heat and moisture resistance and mechanical properties of the resin composition are not observed. On the other hand, if it exceeds 10 parts by mass, the heat resistance and moldability will decrease.
  • the resin composition containing the cross-linked biodegradable polyester resin of the present invention has a glass fiber for the purpose of improving mechanical strength and heat resistance in the same manner as the polylactic acid-based resin composition described above. You may add The details are as described above.
  • the resin composition containing the crosslinked biodegradable polyester resin of the present invention is not limited to pigments, A stabilizer, an antioxidant, a weathering agent, a flame retardant, a plasticizer, a lubricant, a release agent, an antistatic agent, a filler, a crystal nucleus material, and the like can be added.
  • a stabilizer an antioxidant, a weathering agent, a flame retardant, a plasticizer, a lubricant, a release agent, an antistatic agent, a filler, a crystal nucleus material, and the like can be added.
  • a stabilizer an antioxidant
  • a weathering agent e.g., a weathering agent
  • a flame retardant e.g., a flame retardant
  • plasticizer e.g., ethylene glycol dimethacrylate
  • a lubricant e.g., a lubricant, a release agent
  • an antistatic agent e.g., sodium bicarbonate, sodium bi
  • the resin composition containing the crosslinked biodegradable polyester resin of the present invention has, as its mechanical properties, a bending strength exceeding 120 MPa, an elastic modulus exceeding 4. OGPa, and a bending fracture strain of 4 Preferred to exceed%. Charpy impact value preferred to exceed 3kj / m 2,.
  • the heat distortion temperature is preferably above 120 ° C. Further, as the heat and moisture resistance, it is preferable that the strength retention rate described later exceeds 90%.
  • the polylactic acid-based resin composition of the present invention, and the resin composition containing crosslinked biodegradable polyester resin, alamide fiber, and Z or LCP fiber are injection-molded, blow-molded and extruded.
  • Various molded products can be obtained by a molding method such as inflation molding, vacuum forming after sheet processing, pressure forming, or vacuum / pressure forming.
  • gas injection molding, injection press molding, and the like can be employed in addition to the general injection molding method in which it is preferable to adopt the injection molding method.
  • the cylinder temperature is higher than the melting point or flow start temperature of the resin composition, preferably 180 to 280 ° C, optimally 200 to 270 °.
  • the temperature is within the range of C and the mold temperature is (melting point ⁇ 20 ° C) or less of the resin composition. If the molding temperature is too low, the operability becomes unstable, such as short-circuiting in the molded product, and overload tends to occur. On the other hand, if the molding temperature is too high, the resin composition is decomposed, and the strength of the resulting molded product is reduced, and problems such as coloring are likely to occur.
  • the molding cycle is preferably a force of 70 seconds or less, as measured by the method described below.
  • the heat resistance of the resin composition containing the polylactic acid-based resin composition of the present invention and the crosslinked biodegradable polyester resin resin can be increased by promoting crystallization.
  • crystallization is promoted by cooling in the mold during injection molding. There is a way to make it. In that case, at the time of injection molding, the mold temperature is kept at (glass transition temperature + 20 ° C) or more and (melting point 20 ° C) or less of the resin composition for a predetermined time, and then cooled to the glass transition temperature or less. It is preferable to do.
  • the mold temperature is directly lowered to a temperature lower than or equal to the glass transition temperature, and then the temperature is raised again to be higher than the glass transition temperature and lower than (melting point ⁇ 20 ° C). It is preferable to heat treat rosin.
  • a specific example of a molded article using the polylactic acid-based resin composition of the present invention and a molded article using a crosslinked resin composition containing a crosslinked biodegradable polyester resin includes strap parts for mobile phones. ; Bones of fan; buttons; golf tees; personal computer casing parts and casings, mobile phone casing parts and casings, and other oil-resisting parts for appliances such as OA equipment casing parts; bumpers and instruments Examples include automobile grease parts such as panels, console boxes, garnishes, door trims, ceilings, floors, and panels around the engine.
  • the molded body may be a film, a sheet, a hollow molded product, or the like.
  • MFR Melt flow rate
  • Examples 1 to 9, Comparative Examples 1 to 3) or 0.45 MPa Examples 10 to 18 and Comparative Examples 4 to 9.
  • High-strength fibers were put into a pan, heated to 300 ° C at a rate of 20 ° CZ, and then rapidly cooled with dry ice. Next, using a differential scanning calorimeter (DSC) at a speed of 10 ° CZ—20 The glass transition temperature was measured by raising the temperature from ° C to 300 ° C.
  • DSC differential scanning calorimeter
  • the above-mentioned bending strength test piece for measuring bending strength was treated for 500 hours in an environment of temperature 60 ° C and humidity 90% RH, then the bending strength was measured, and the strength retention was calculated and evaluated. .
  • the resin compositions A to L, N, and O excluding the resin composition M were molded using an injection molding machine (IS-80G type manufactured by Toshiba Machine Co., Ltd.). A molded body was obtained. At this time, the resin compositions A to J, K, L, and O are melted at a cylinder set temperature of 190 to 170 ° C and filled into a 105 ° C mold with an injection pressure of 100 MPa and an injection time of 30 seconds. did.
  • the resin composition N when the mold was filled under the above conditions, the molding cycle was as long as 300 seconds, so the molding conditions were 15 ° C at an injection pressure of 100 MPa and an injection time of 15 seconds. Changed to filling the mold. The molding cycle is such that the molded product obtained by injecting (filling, holding pressure) the resin composition into the mold and force-cooling can be taken out without sticking to the mold and without resistance. It was the shortest time to be.
  • Ethylene glycol dimetatalylate (hereinafter abbreviated as “EGDM”):
  • PET fiber Polyethylene terephthalate fiber “Bright PET staple fiber 521>” (hereinafter abbreviated as “PET fiber”) manufactured by Duca.
  • Vectran made by Kuraray; CF1670T (hereinafter abbreviated as “Vectran”).
  • crosslinked PLA a crosslinked biodegradable polyester resin
  • LA-1 manufactured by Nisshinbo Co., Ltd .; Isocyanate group content 1 to 3%.
  • HMV-8CA manufactured by Nisshinbo Co., Ltd .
  • Vectran as a high-strength fiber was passed through a molten polylactic acid resin at 190 ° C over a length of 10 cm in a state of being bundled in a plate shape having a width of 2 mm. Next, this was cooled in air and solidified, and then crushed into pellets with a length of 2 mm to obtain a focused vector.
  • Table 1 shows the amount and type of polylactic acid resin, glass fiber, high-strength fiber, bundling resin, EGDM, and peroxide. In addition, the presence or absence of the focusing process was changed as shown in Table 1. Other than that, polylactic acid-based resin composition pellets were obtained in the same manner as in Example 1. The obtained pellets were injection molded and various physical properties were measured.
  • Table 1 also shows the evaluation results for Examples 2 to 9 and Comparative Examples 1 to 3.
  • Examples 1 to 3 are examples in which the bundling size of the high-strength fibers was in the range of width 1 to 5 mm and length 1 to 5 mm, so the width and length were below this range. Better results were obtained in terms of operability during kneading compared to 4, and better results in terms of impact resistance compared to Example 5 where the width and length exceeded this range. .
  • polylactic acid resin which is polyester resin, is used for bundling high-strength fibers, so it is more suitable in impact resistance than Example 6 using polyethylene. A good result was obtained.
  • Examples 1 to 3 were examples in which the glass transition temperature was not observed in the range of 90 ° C or less among the polyester fibers as the high-strength fibers, and thus the glass transition temperature was observed at 76 ° C. Compared to 7, a more favorable result was obtained in terms of moldability, in other words, rapid cooling and solidification during molding.
  • Example 8 since high-strength fibers were not bundled, the operability was slightly lowered as compared with other Examples.
  • Example 9 since the polyester fiber was not used as the high-strength fiber, the impact resistance was slightly lowered as compared with the other examples.
  • Each raw material is supplied to the twin screw extruder (TEM 37BS manufactured by Toshiba Machine Co., Ltd.) at the ratio shown in Table 2, and melt kneaded and extruded at a processing temperature of 170 ° C to 190 ° C. Cut into pellets to obtain rosin compositions A to K.
  • TEM 37BS manufactured by Toshiba Machine Co., Ltd.
  • Each raw material is supplied to the twin screw extruder (TEM 37BS manufactured by Toshiba Machine Co., Ltd.) at the ratio shown in Table 2, and melt kneaded and extruded at a processing temperature of 170 ° C to 190 ° C.
  • the resin composition was cut into pellets to obtain the resin compositions L, M, and O.
  • the aramid fiber was clogged in the molding machine hopper, and the resin composition N was unable to be obtained.
  • Table 2 summarizes the results of various physical property evaluations.
  • the resin compositions A to I obtained in Examples 10 to 18 were excellent in bending properties, impact resistance, heat resistance, moist heat resistance, and moldability.
  • the resin composition J obtained in Example 19 had no carbodiimide compound, so compared with Examples 12 to 15 in which carbodiimide compound was blended under the same conditions as others, the impact resistance The results were slightly inferior in heat and humidity resistance and moldability.
  • the resin composition K obtained in Example 20 had a large amount of 20 parts by mass of the calpositimide compound, and therefore, an appropriate amount of the calpositimide compound was compounded under the same conditions. Compared to -15, the heat resistance and moldability were slightly inferior.
  • Comparative Example 5 is a compound containing a carposimidimide compound, but a aramide fiber and Z or L
  • Comparative Example 7 used PLA rather than crosslinked PLA, the results were inferior in heat resistance and moist heat resistance compared to Example 14 using crosslinked PLA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 第1の樹脂組成物は、ポリ乳酸系の樹脂組成物であって、ポリ乳酸樹脂と(メタ)アクリル酸エステル化合物とを過酸化物の存在下に混合したポリ乳酸樹脂組成物を含むとともに、高強度繊維を含む。第2の樹脂組成物は、架橋生分解性ポリエステル樹脂70~99質量部と、アラミド繊維および/またはLCP繊維30~1質量部とを含む。第2の樹脂組成物は、好ましくは、架橋生分解性ポリエステル樹脂と、アラミド繊維および/またはLCP繊維との合計量100質量部に対して、カルボジイミド化合物0.01~10質量部を含む。

Description

明 細 書
樹脂組成物、その製造方法、それから得られる成形体
技術分野
[0001] 本発明は、榭脂組成物、その製造方法、それから得られる成形体に関する。
背景技術
[0002] 榭脂成形品のための原料として、一般的に、ポリプロピレン (PP)、 ABS、ポリアミド
(PA6、 PA66)、ポリエステル(PET、 PBT)、ポリカーボネート(PC)等の榭脂が使 用されている。し力しながら、このような榭脂から製造された成形物は、成形性や機械 的強度に優れているが、廃棄する際に、ゴミの量を増すうえに、自然環境下で殆ど分 解されな!、ために埋設処理しても半永久的に地中に残留する。
[0003] 一方、近年、環境保全の見地から、ポリ乳酸をはじめとする生分解性ポリエステル 榭脂が注目されている。生分解性榭脂の中でも、ポリ乳酸、ポリエチレンサクシネート 、ポリブチレンサクシネートなどは、大量生産可能なためコストも安ぐ有用性が高い。 ポリ乳酸は、トウモロコシゃサツマィモ等の植物を原料として製造可能である。
[0004] し力しながら、ポリ乳酸をそのまま一般工業製品として用いるには、耐熱性や機械 的強度が必ずしも十分であるとはいえない。さらに、携帯電話のカバーなど、日常的 な着脱を前提とした製品については、上記の耐熱性や機械的強度を備えた上で、さ らにある程度以上の柔軟性を備えて ヽることが求められる。
[0005] そのために、乳酸系榭脂を主体とする生分解性榭脂をァラミド (芳香族ポリアミド)繊 維で強化した成形体が、 JP-A- 2005 - 23250で提案されて!、る。しかしながら、 その耐熱性ゃ耐衝撃性の改善効果は不充分であり、実用レベルの耐熱性を得るに は、成形後のベーキング処理を要する。し力も、ベーキング後の柔軟性は不充分なレ ベルである。
[0006] 一方、ポリ乳酸を (メタ)アクリル酸エステル化合物および過酸化物とともに混練した 榭脂組成物が、 JP—A— 2003— 128901で提案されている。しかしながら、その耐 衝撃性は充分なレベルであるとは 、えな 、場合がある。
[0007] また、ポリ乳酸は、結晶化速度が遅 、ために、成形サイクルが長 、だけでなぐ上 述のように得られる成形体の機械的強度や耐熱性に劣る。
[0008] 生分解性ポリエステル榭脂の結晶化速度を向上させる方法として、例えば、乳酸系 ポリマーに結晶核剤として通常のタルク、シリカ、乳酸カルシウム等を添加する方法 が開発されている(例えば、 JP—A— 8— 193165)。しかし、このようにしても、結晶 化速度はなお遅ぐ得られた成形体の耐熱性は 100°C以下と低!ヽ。
[0009] ポリ乳酸にアミド基を有する低分子化合物と有機ォニゥム塩で有機化された層状粘 土鉱物とを添加し、それらの相乗効果によりポリ乳酸の結晶化速度および耐熱性を 向上させることも提案されている(例えば、 JP—A— 2003— 226801)。し力し、この 場合は、結晶化速度および耐熱性の向上は認められるものの、その効果は未だ不十 分である。このため射出成形時の成形サイクルが長ぐまた実使用に耐えうる耐熱性 を付与するには至って ヽな 、。
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、前記の問題点を解決しょうとするものであり、諸物性に優れた榭脂組成 物、その製造方法、それ力 得られる成形体を提供しょうとするものである。
課題を解決するための手段
[0011] 上記目的を達成するため本発明の榭脂組成物は、架橋生分解性ポリエステル榭脂 と高強度繊維とを含むものである。
[0012] 本発明の榭脂組成物は、詳しくは、ポリ乳酸樹脂と (メタ)アクリル酸エステルイ匕合物 とを過酸ィ匕物の存在下に混合したポリ乳酸榭脂組成物を含むとともに、高強度繊維 を含むことを特徴とする。
[0013] 上記の榭脂組成物においては、高強度繊維がポリエステル繊維であることが好適 である。
[0014] このポリエステル繊維は、 90°C以下でガラス転移温度が観測されないものであるこ とが好適である。
[0015] 本発明の榭脂組成物は、詳しくは、架橋生分解性ポリエステル榭脂 70〜99質量% と、ァラミド繊維および Zまたは LCP繊維 30〜1質量%とを含むことを他の特徴とす る。 [0016] この榭脂組成物には、架橋生分解性ポリエステル榭脂とァラミド繊維および Zまた は LCP繊維との合計量 100質量部に対して、カルポジイミドィ匕合物 0. 01〜10質量 部が配合されて ヽることが好適である。
[0017] 架橋生分解性ポリエステル榭脂とァラミド繊維および Zまたは LCP繊維とを含む榭 脂組成物は、生分解性ポリエステル榭脂 100質量部あたり、架橋剤として (メタ)アタリ ル酸エステル化合物が 0. 01〜20質量部配合されていることが好適である。
[0018] 上記の生分解性ポリエステル榭脂は、ポリ乳酸であることが好適である。
[0019] カルポジイミド化合物は、末端基にイソシァネート基を有することが好適である。
[0020] 上記の生分解性ポリエステル榭脂は、植物系原料力も製造されたものであることが 好適である。
[0021] 本発明の榭脂組成物の製造方法は、ポリ乳酸樹脂と (メタ)アクリル酸エステル化合 物とを過酸ィ匕物の存在下に混合したポリ乳酸榭脂組成物を含むとともに高強度繊維 を含むポリ乳酸系榭脂組成物を製造するに際し、高強度繊維をあらかじめ幅 l〜5m m、長さ l〜5mmのサイズに集束させておくものである。
[0022] この製造方法においては、高強度繊維の集束に際してポリエステル榭脂を用いるこ とが好適である。
[0023] 本発明の成形体は、上記の榭脂組成物が成形加工されたものである。
発明の効果
[0024] 本発明の榭脂組成物は、ポリ乳酸樹脂と (メタ)アクリル酸エステルイ匕合物とを過酸 化物の存在下に混合したポリ乳酸榭脂組成物を含むとともに、高強度繊維を含むも のであるため、耐熱性、耐衝撃性、および、柔軟性に優れる。この榭脂組成物を電子 機器の筐体や着脱部に用いることで、低環境負荷材料であるポリ乳酸樹脂の使用範 囲を大きく広げることができ、産業上の利用価値をきわめて高くすることができる。
[0025] また本発明の榭脂組成物は、架橋生分解性ポリエステル榭脂 70〜99質量%と、ァ ラミド繊維および Zまたは LCP繊維 30〜1質量%とを含むものであることにより、そし て特に、架橋生分解性ポリエステル榭脂とァラミド繊維および Zまたは LCP繊維との 合計量 100質量部に対して、カルポジイミドィ匕合物 0. 01〜: LO質量部が配合されて いることにより、優れた機械的強度、耐熱性、耐湿熱性、成形性を有し、かつ石油系 製品への依存度の低い榭脂組成物を提供することができる。特に、カルポジイミド化 合物を配合することで、衝撃強度と耐湿熱性とを大きく向上させることができる。この 榭脂組成物は、各種成形方法により、種々の成形体とすることができるなど、産業上 の利用価値が極めて高い。
発明を実施するための最良の形態
[0026] 本発明のポリ乳酸系の榭脂組成物は、ポリ乳酸榭脂および (メタ)アクリル酸エステ ル化合物を過酸化物の存在下に混合した榭脂組成物と、高強度繊維とを含有する。
[0027] また本発明の別の榭脂組成物は、架橋生分解性ポリエステル榭脂 70〜99質量% と、ァラミド繊維および Zまたは LCP繊維 30〜1質量0 /0とを含む。この榭脂組成物に は、架橋生分解性ポリエステル榭脂とァラミド繊維および Zまたは LCP繊維との合計 量 100質量部に対して、カルポジイミドィ匕合物 0. 01〜10質量部が配合されているこ とが好適である。
[0028] 上記のポリ乳酸系の榭脂組成物にぉ 、て、ポリ乳酸榭脂としては、耐熱性、成形性 の面から、ポリ(L 乳酸)、ポリ(D 乳酸)、およびこれらの混合物または共重合体 を用いることができる。なかでも、生分解性の観点から、ポリ(L—乳酸)を主体とする ことが好ましい。
[0029] ポリ(L 乳酸)を主体とするポリ乳酸榭脂は、光学純度によってその融点が異なる 。本発明においては、成形体の機械的特性や耐熱性を考慮すると、その融点を 160 °C以上とすることが好ましい。ポリ (L 乳酸)を主体とするポリ乳酸榭脂において、融 点を 160°C以上とするためには、 D 乳酸成分の割合を約 3モル%未満とすればよ い。
[0030] ポリ乳酸樹脂の 190°C、荷重 21. 2Nにおけるメルトフローレート(例えば、 JIS K— 7210 (試験条件 4)による値)は、 0. l〜50gZlO分であることが好ましぐ 0. 2〜20 gZlO分であることがより好ましぐ 0. 5〜10gZlO分であることがいっそう好ましい。 メルトフローレートが 50gZlO分を超える場合は、溶融粘度が低すぎて成形物の機 械的特性や耐熱性が劣ることがある。メルトフローレートが 0. lgZlO分未満の場合 は、成形加工時の負荷が高くなつて、操業性が低下することがある。
[0031] ポリ乳酸榭脂は、公知の溶融重合法で、あるいは、さらに固相重合法を併用して、 製造される。ポリ乳酸樹脂のメルトフローレートを所定の範囲に調節する方法として、 メルトフローレートが高すぎる場合は、少量の鎖長延長剤、例えば、ジイソシァネート 化合物、ビスォキサゾリンィ匕合物、エポキシ化合物、酸無水物等を用いて榭脂の分 子量を増大させる方法が挙げられる。逆に、メルトフローレートが低すぎる場合は、メ ルトフローレートの大きなポリエステル榭脂ゃ低分子量ィ匕合物と混合する方法が挙げ られる。
[0032] (メタ)アクリル酸エステルイ匕合物は、ポリ乳酸の分子どうしを連結して結晶化を促進 することにより、その耐熱性を向上させるために使用されるものである。なかでも、ポリ 乳酸樹脂との反応性が高ぐモノマーが残りにくぐかつ、毒性が比較的少なぐ榭脂 の着色も少ないことから、分子内に 2個以上の (メタ)アクリル基を有する力、または、 1 個以上の(メタ)アクリル基と 1個以上のグリシジル基もしくはビニル基を有する化合物 が好ましい。具体的な化合物としては、グリシジルメタタリレート、グリシジルアタリレー ト、グリセロールジメタタリレート、トリメチロールプロパントリメタタリレート、トリメチロー ルプロパントリアタリレート、ァリロキシポリエチレングリコールモノアタリレート、ァリロキ シ(ポリ)エチレングリコールモノメタタリレート、(ポリ)エチレングリコールジメタクリレー ト、(ポリ)エチレングリコールジアタリレート、(ポリ)プロピレングリコールジメタクリレー ト、(ポリ)プロピレングリコールジアタリレート、(ポリ)テトラメチレングリコールジメタタリ レート等が挙げられる。これらにおけるアルキレングリコール部が様々な長さのアルキ レンの共重合体であるものでもよい。具体的な化合物として、さらに、ブタンジオール メタタリレート、ブタンジオールアタリレート等が挙げられる。
[0033] (メタ)アクリル酸エステル化合物の配合量は、ポリ乳酸榭脂 100質量部に対して、 0 . 01〜20質量部であることが好ましぐ 0. 05〜10質量部であることがより好ましぐ 0 . 1〜5質量部であることがさらに好ましい。
[0034] 過酸化物は、(メタ)アクリル酸エステル化合物とポリ乳酸樹脂との反応を促進する ために使用されるものである。その具体例としては、ベンゾィルパーオキサイド、ビス( ブチルパーォキシ)トリメチルシクロへキサン、ビス(ブチルバ一才キシ)シクロドデカン 、ブチルビス(ブチルバ一才キシ)バレレート、ジクミルパーオキサイド、ブチルバーオ キシベンゾエート、ジブチルパーオキサイド、ビス(ブチルバ一才キシ)ジイソプロピル ベンゼン、ジメチルジ(ブチルバ一才キシ)へキサン、ジメチルジ(ブチルバ一才キシ) へキシン、ブチルパーォキシクメン等が挙げられる。
[0035] 過酸ィ匕物の配合量は、ポリ乳酸榭脂 100質量部に対して 0. 1〜20質量部であるこ と力 子ましく、 0. 1〜: L0質量部であることがより好ましい。 20質量部を超えても使用 できるが、コスト面では不利となる。なお、こうした過酸ィ匕物は、榭脂との混合の際に 分解するため、たとえ配合時に使用されても、得られた榭脂組成物中には含まれて いない場合がある。
[0036] 高強度繊維としてポリエステル繊維を用いることにより、高い耐衝撃性を得ることが できる。さら〖こ、 90°C以下の範囲でガラス転移温度が観測されないポリエステル繊維 を用いることにより、成形時の結晶化が促進され、冷却に要する時間を短くすることが できる。 90°C以下の範囲でガラス転移温度が観測されな 、ポリエステル繊維としては 、ポリアリレート繊維、ポリエチレンナフタレート繊維、ポリシクロへキサンジメチレンテ レフタレート繊維、ポリシクロへキサンジメチレンテレフタレートイソフタレート繊維等を 挙げることができる。
[0037] 高強度繊維は、あらかじめ幅 l〜5mm、長さ l〜5mmのサイズに集束されているこ とにより、混練時における高強度繊維投入部の詰まりの頻度を小さくすることができる 。前記サイズよりも小さいサイズに集束されている場合は、詰まりの頻度を小さくする 効果が小さい。逆に、前記サイズよりも大きいサイズに集束されている場合は、混練 時の分散性が低下し、ひいては、耐衝撃性を低下させる恐れがある。
[0038] 高強度繊維の集束の方法としては、高強度繊維を目的の集束幅になるよう束ねた ものを融解状態の榭脂に浸潰させ、冷却固化後にこれを切断機等で目的の集束長 さに切断する方法を用いることができる。高強度繊維がポリエステル繊維である場合 には、この繊維を浸漬させる榭脂としては、ポリエステル榭脂を好適に用いることがで きる。ポリエステル榭脂以外の榭脂を用いた場合は、高強度繊維とポリ乳酸樹脂との 密着性が低下し、ひいては、耐衝撃性を低下させる恐れがある。用いるポリエステル 榭脂の具体例としては、ポリ乳酸、ポリエチレンテレフタレート、ポリブチレンテレフタ レート等が挙げられる。上記した密着性の観点によれば、ポリ乳酸榭脂を用いること が好ましい。 [0039] 高強度繊維の配合量は、ポリ乳酸榭脂 100質量部に対し 1〜50質量部であること が好ましぐ 1〜20質量部であることがより好ましぐ 1〜10質量部であることがいっそ う好ましい。高強度繊維は、押出機において、ホッパーから添加することができ、ある いはサイドフィーダ一を用いて混練過程の途中から添加することができる。高強度繊 維をマスターバッチ加工したうえで、これを成形時にベース榭脂で希釈して使用する ことちでさる。
[0040] 本発明のポリ乳酸系の榭脂組成物には、その機械的強度や耐熱性の向上を目的 として、ガラス繊維を添加させてもよい。その配合量は、ポリ乳酸榭脂 100質量部に 対し 1〜50質量部が好ましぐ 1〜20質量部がより好ましぐ 1〜: LO質量部がさらに好 ましい。ガラス繊維には、榭脂との密着性を高めるために、表面処理を施しても良い。 榭脂への添加の方法としては、押出機において、ホッパーから添加することができ、 あるいはサイドフィーダ一を用いて混練過程の途中から添加することができる。ガラス 繊維をマスターバッチ加工することで、これを成形時にベース榭脂で希釈して使用す ることちでさる。
[0041] 本発明のポリ乳酸系の榭脂組成物には、その特性を大きく損なわない限りにおい て、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、滑剤、離型剤、帯電防 止剤、充填材、結晶核材等を添加することができる。
[0042] 熱安定剤や酸ィ匕防止剤としては、たとえばヒンダードフエノール類、リンィ匕合物、ヒ ンダードァミン、ィォゥ化合物、銅化合物、アルカリ金属のハロゲン化物等が挙げられ る。
[0043] 難燃剤としては、ハロゲン系難燃剤、リン系難燃剤、無機系難燃剤等が使用できる 。なかでも、環境を配慮した場合、非ハロゲン系難燃剤の使用が望ましい。非ハロゲ ン系難燃剤としては、リン系難燃剤、水和金属化合物 (水酸ィ匕アルミニウム、水酸ィ匕 マグネシウム)、 N含有化合物 (メラミン系、グァ-ジン系)、無機系化合物 (硼酸塩、 モリブデンィ匕合物)が挙げられる。
[0044] 充填材のうち、無機充填材としては、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナ イト、シリカ、アルミナ、マグネシア、ケィ酸カルシウム、アルミン酸ナトリウム、アルミン 酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、カーボン ブラック、酸化亜鉛、三酸ィ匕アンチモン、ゼォライト、ハイド口タルサイト、金属繊維、 金属ウイスカー、セラミツクウイスカー、チタン酸カリウム、窒化ホウ素、グラフアイト、炭 素繊維等が挙げられる。
[0045] 結晶核材のうち、無機結晶核材としては、タルク、カオリン等が挙げられ、有機結晶 核材としては、ソルビトール化合物、安息香酸およびその化合物の金属塩、リン酸ェ ステル金属塩、ロジンィ匕合物等が挙げられる。
[0046] 本発明のポリ乳酸系の榭脂組成物にこれらの添加材を混合する方法は、特に限定 されない。
[0047] 本発明のポリ乳酸系の榭脂組成物の製造に際して、ポリ乳酸樹脂と (メタ)アクリル 酸エステルと過酸化物と高強度繊維とを混合する手段は、特に限定されない。例え ば、一般的な押出機を用いて溶融混練する方法を挙げることができる。混練状態をよ くする意味で、二軸の押出機を使用することが好ましい。混練温度は、(ポリ乳酸榭脂 の融点 + 5°C)〜(ポリ乳酸樹脂の融点 + 100°C)の範囲が好ましぐまた混練時間は 、 20秒〜 30分が好ましい。これらの範囲より低温や短時間であると、混練や反応が 不充分となりやすい。逆にこれらの範囲より高温や長時間であると、榭脂の分解や着 色が起きる場合がある。配合方法としては、ドライブレンドする方法や、高強度繊維を 粉体フィーダ一を用いて供給する方法が好まし 、。
[0048] 次に、架橋生分解性ポリエステル榭脂と、ァラミド繊維および Zまたは LCP繊維とを 含み、好適にはさらにカルポジイミド化合物を含む、本発明の榭脂組成物について 説明する。
[0049] 架橋生分解性ポリエステル榭脂に使用される生分解性ポリエステル榭脂としては、 ポリ(L—乳酸)、ポリ(D—乳酸)、ポリダルコール酸、ポリ力プロラタトン、ポリブチレン サクシネート、ポリエチレンサクシネート、ポリブチレンアジペート'テレフタレート、ポリ ブチレンサクシネート'テレフタレート等が挙げられる。なかでも、耐熱性、成形性の面 力もポリ(L—乳酸)、ポリ(D—乳酸)、および、これらの混合物、または、これらの共 重合体を用いることができる。その詳細は、上述の通りである。
[0050] このような生分解性ポリエステル榭脂の 190°C、荷重 21. 2Nにおけるメルトフロー レートは、好ましくは 0. l〜50g/10分、より好ましくは 0. 2〜20gZlO分、最適に は 0. 5〜: LOgZlO分である。メルトフローレートが 50gZlO分を超える場合は、溶融 粘度が低すぎて成形物の機械的特性や耐熱性が劣りやすくなる。メルトフローレート 力 SO. lgZlO分未満の場合は、成形加工時の負荷が高くなりすぎて操業性が低下 する場合がある。
[0051] 本発明における生分解性ポリエステル榭脂は、公知の溶融重合法によって、あるい は、さらに固相重合法を追加して、製造される。また、生分解性ポリエステル榭脂のメ ルトフローレートを上記した所定の範囲に調節する方法として、メルトフローレートが 大きすぎる場合は、少量の鎖長延長剤、例えば、ジイソシァネートイ匕合物、ビスォキ サゾリン化合物、エポキシィ匕合物、酸無水物等を用いて榭脂の分子量を増大させる 方法が挙げられる。逆に、メルトフローレートが小さすぎる場合は、メルトフローレート の大きな生分解性ポリエステル榭脂ゃ低分子量化合物と混合する方法が挙げられる
[0052] 本発明における架橋生分解性ポリエステル榭脂は、前記した生分解性ポリエステ ル榭脂に架橋構造を導入したものである。このとき、架橋剤としては、ジビニルベンゼ ン、ジァリルベンゼン、ジビニルナフタレン、ジビニノレフエ二ノレ、ジビニルカルバゾー ル、ジビュルピリジンおよびこれらの核置換ィ匕合物や近縁同族体や;エチレングリコ ールジアタリレート、ブチレングリコールジアタリレート、トリエチレングリコールジアタリ レート、 1, 6—へキサンジオールジアタリレート、テトラメチロールメタンテトラアタリレ ート等の多官能性アクリル酸系化合物や;エチレングリコールジメタタリレート、ブチレ ングリコールジメタタリレート、トリエチレングリコールジメタタリレート、テトラエチレング リコールジメタタリレート、 1, 6—へキサンジオールジメタタリレート、 1, 9ーノナンジォ ールジメタタリレート、 1, 10—デカンジオールジメタタリレート、トリメチロールプロパン トリメタタリレート、テトラメチロールメタンテトラメタタリレート等の多官能性メタクリル酸 系化合物や;ジビュルフタレート、ジァリルフタレート、ジァリルマレート、ビスアタリロイ ルォキシェチルテレフタレート等の、脂肪族または芳香族多価カルボン酸のポリビ- ルエステル、ポリアリルエステル、ポリアクリロイルォキシアルキルエステル、ポリメタク リロイルォキシアルキルエステルや;ジエチレングリコールジビュルエーテル、ヒドロキ ノンジビュルエーテル、ビスフエノール Aジァリルエーテル等の、脂肪族または芳香 族多価アルコールのポリビュルエーテルまたはポリアリルエーテルや;トリァリルシア ヌレート、トリアリルイソシァヌレート等の、シァヌール酸またはイソシァヌール酸のァリ ルエステル、トリアリルホスフェート、トリスアクリルォキシェチルホスフェートや; N—フ ェ-ルマレイミド、 N, N,一m—フエ-レンビスマレイミド等のマレイミド系化合物や;フ タル酸ジプロパギル、マレイン酸ジプロパギル等の 2個以上の三重結合を有する化 合物などの多官能性モノマーを使用することができる。
[0053] なかでも、特に架橋反応性の点から、上述のポリ乳酸系の榭脂組成物の場合と同 様に、(メタ)アクリル酸エステルイ匕合物が望ましい。この成分により、ポリエステル榭 脂成分が架橋され、機械的強度、耐熱性、寸法安定性が向上する。(メタ)アクリル酸 エステルイ匕合物の詳細は、上述のポリ乳酸系の榭脂組成物の場合と同様である。
[0054] (メタ)アクリル酸エステルイ匕合物を生分解性ポリエステル榭脂に配合する場合には 、過酸化物を併用すると、架橋反応が促進されるので好ましい。過酸化物の詳細は、 上述のポリ乳酸系の榭脂組成物の場合と同様である。
[0055] 生分解性ポリエステル榭脂に (メタ)アクリル酸エステルイ匕合物を配合する方法も、 上記のポリ乳酸系の榭脂組成物の場合と同様である。配合に際して、(メタ)アクリル 酸エステルイ匕合物が液体状である場合は、加圧ポンプを用いて押出機の途中から注 入することが好ま U、。同様の方法で過酸ィ匕物を配合することもできる。
[0056] (メタ)アクリル酸エステルイ匕合物と過酸ィ匕物を併用する場合の好ま 、方法として、
(メタ)アクリル酸エステル化合物および Zまたは過酸化物を媒体に溶解または分散 して混練機に注入する方法が挙げられ、これにより操業性を格段に改良することがで きる。すなわち、生分解性ポリエステル榭脂成分と過酸化物との溶融混練中に (メタ) アクリル酸エステルイ匕合物の溶解液または分散液を注入したり、生分解性ポリエステ ル榭脂を溶融混練中に、(メタ)アクリル酸エステル化合物と過酸ィ匕物との溶解液また は分散液を注入して溶融混練したりすることができる。
[0057] (メタ)アクリル酸エステルイ匕合物および Zまたは過酸ィ匕物を溶解または分散させる 媒体としては、一般的なものが用いられ、特に限定されない。なかでも、本発明の生 分解性ポリエステル榭脂との相溶性に優れた可塑剤が好ましい。例えば、脂肪族多 価カルボン酸エステル誘導体、脂肪族多価アルコールエステル誘導体、脂肪族ォキ シエステル誘導体、脂肪族ポリエーテル誘導体、脂肪族ポリエーテル多価カルボン 酸エステル誘導体など力 選ばれた 1種以上の可塑剤などが挙げられる。具体的な 化合物としては、ジメチルアジペート、ジブチルアジペート、トリエチレングリコールジ アセテート、ァセチルリシノール酸メチル、ァセチルトリブチルクェン酸、ポリエチレン グリコール、ジブチルジグリコールサクシネート、グリセリンジァセトモノカプリレート、グ リセリンジァセトモノラウレートなどが挙げられる。可塑剤の使用量は、生分解性榭脂 ポリエステル榭脂 100質量部に対し 30質量部以下、好ましくは、 0. 1〜20質量部で ある。架橋剤の反応性が低い場合は可塑剤を使用しなくてもよいが、反応性が高い 場合には 0. 1質量部以上用いることが好ましい。この可塑剤は、榭脂との混合時に 揮発することがあるため、たとえ製造時に使用しても、得られた榭脂組成物中にはこ の可塑剤が含まれて ヽな 、場合がある。
[0058] 本発明にお ヽては、架橋生分解性ポリエステル榭脂にァラミド繊維および Zまたは LCP繊維を配合することによって、耐熱性や機械物性などを補強することができる。
[0059] 本発明におけるァラミド繊維は、ポリパラフエ-レンテレフタラミドや、コポリパラフエ 二レン · 3, 4,一ォキシジフエ-レン'テレフタラミド等の芳香族アミド構造を有する榭 脂からなる繊維である。具体例としては、デュポン社製「ケプラー」、帝人テクノプロダ タツ社製「テクノーラ」、「トワロン」等がある。これらは、通常、ァラミド原料を硫酸や Ν メチルピロリドンに溶解させ、湿式紡糸することにより、繊維に成形される。
[0060] 本発明における LCP繊維は、溶融時に液晶性を示す榭脂からなる繊維であり、通 常は溶融時に液晶性を示すポリエステル(Liquid Crystalline Polyester)にて形 成された繊維を指す。溶融時に液晶性を示すポリエステルとは、 90° 直交した 2枚 の偏光板の間にある加熱試料台上にポリエステル試料粉末を置 、て昇温して 、つた 時に、流動可能な温度域において、光を透過しうる性質を有するものを意味している
[0061] このようなポリエステルとして、芳香族ポリエステルが挙げられる。この芳香族ポリエ ステルは、芳香族ジカルボン酸、芳香族ジオールおよび/または芳香族ヒドロキシカ ルボン酸やこれらの誘導体からなるもので、場合によりこれらと脂環族ジカルボン酸、 脂環族ジオール、脂肪族ジオールやこれらの誘導体との共重合体も含まれる。 [0062] 上記の芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、 4, 4'ージカル ボキシジフエニル、 2, 6 ジカルボキシナフタレン、 1, 2 ビス(4 カルボキシフエノ キシ)エタン等ゃこれらのアルキル、ァリール、アルコキシ、ハロゲン基の核置換体が 挙げられる。
[0063] 芳香族ジオールとしては、ヒドロキノン、レゾルシン、 4, 4,ージヒドロキシジフエ-ル 、 4, 4,ージヒドロキシベンゾフエノン、 4, 4'ージヒドロキシジフエ二ノレメタン、 4, 4' ジヒドロキシジフエ-ノレェタン、 2, 2 ビス(4 ヒドロキシフエ-ル)プロパン、 4, 4, 一 ジヒドロキシジフエニルエーテル、 4, 4'ージヒドロキシジフエニルスルホン、 4, 4' ジヒドロキシジフエ-ルスルフイド、 2, 6 ジヒドロキシナフタレン、 1, 5 ジヒドロキシ ナフタレン等やこれらのアルキル、ァリール、アルコキシ、ハロゲン基等の核置換体が あげられる。
[0064] 芳香族ヒドロキシカルボン酸としては、 p ヒドロキシ安息香酸、 m—ヒドロキシ安息 香酸、 2 ヒドロキシナフタレン一 6—カルボン酸、 1—ヒドロキシナフタレン一 5—カル ボン酸等やこれらのアルキル、ァリール、アルコキシ、ハロゲン基の核置換体があげ られる。
[0065] 脂環族ジカルボン酸としては、 trans— 1, 4 ジカルボキシシクロへキサン、 cis— 1 , 4ージカルボキシシクロへキサン等やこれらのアルキル、ァリール、ハロゲン基の置 換体があげられる。
[0066] 脂環族および脂肪族ジオールとしては、 trans— 1, 4 ジヒドロキシシクロへキサン 、 cis— 1, 4ージヒドロキシシクロへキサン、エチレングリコーノレ、 1, 4 ブタンジォー ル、キシリレンジオール等があげられる。
[0067] LCP繊維は、通常これらのポリエステル原料を溶融紡糸することにより得られる。 L CP繊維の具体例としては、ヒドロキシ安息香酸とヒドロキシナフタレンカルボン酸から なるクラレネ土製「ベクトラン」や、ヒドロキシ安息香酸を主成分とした住友化学工業社製 「スミカスーパー繊維」等が挙げられる。
[0068] ァラミド繊維および Zまたは LCP繊維の配合量は、架橋生分解性ポリエステル榭 脂 99〜70質量部に対して 1〜30質量部であることが必要である。好ましくは、 5〜2 0質量部 (架橋生分解性ポリエステル榭脂 95〜80質量部)である。配合量が 1質量 部未満では、耐熱性、機械物性などの補強効果が十分に得られない。配合量が 30 質量部を超えると、成形機へのフィード不良が起こったり、ホッパーでの詰まりが起こ つたり、榭脂組成物の流動性が劣ったり、成形加工性が損なわれたりする。また、必 ずしも経済的ではな 、ため、コスト面では不利となる。
[0069] ァラミド繊維および Zまたは LCP繊維の直径は、 1〜40 /ζ πιであることが好ましぐ 5〜20 /ζ πιであることがより望ましい。力かる範囲を下回ると、繊維の価格が上がって 経済性が低下したり、嵩密度の低下によりハンドリング性が低下したりする。逆に上回 ると、榭脂組成物の強度改良効果が低下する。
[0070] ァラミド繊維および Ζまたは LCP繊維の長さは、 0. 5〜30mmであることが好ましく 、 1〜: LOmmであることがさらに好ましぐ 2〜6mmであることがいっそう望ましい。力 力る範囲を下回ると、榭脂組成物の耐熱性や強度の改良効果が乏しくなる。逆に上 回ると、成形機のホッパーでブリッジを起こすなど作業性が低下したり、溶融特性を 著しく阻害したりする等の問題を生ずる。
[0071] ァラミド繊維および Zまたは LCP繊維の形態としては、上記直径と長さを有する範 囲で、ステープル、カットフィラメント、チョップドストランド、チョップドストランドマット、 パルプ等の、任意の形態をとることができる。
[0072] 架橋生分解性ポリエステル榭脂に対する分散性や接着性の改良を目的として、ァ ラミド繊維および Zまたは LCP繊維に表面処理剤を塗布することもできる。表面処理 剤としては、エポキシ基、カルボキシル基、カルボ-ル基、ォキサゾ-ル基、水酸基、 アミノ基などを 2個以上持った化合物、例えば、酸無水物変性ポリオレフイン、ェチレ ングリシジルメタタリレート共重合体 (EGMA)、エポキシ榭脂、酸無水物変性ポリェ ステル、フエノキシ榭脂、ジ-トロアミン、酸無水物変性ポリエステルなどが好ましい。
[0073] ァラミド繊維および Zまたは LCP繊維を架橋生分解性ポリエステル榭脂へ混合す る方法は、特に限定されないが、とりわけ以下の 2つの方法が好ましい。第 1の方法 は、あら力じめ所定の長さを有するカット繊維ゃステーブルを、 2軸押出機や溶融ミキ サーを用いて架橋生分解性ポリエステル榭脂に練り込んでコンパゥンドを作製する方 法である。この時、繊維を押出機にフィードするにあたり、まず架橋生分解性ポリエス テル榭脂のみを溶融させた後、サイドフィーダ一等で 2軸押出機の半ば力も繊維をフ イードしてもよ ヽ。
[0074] 第 2の方法は、巻かれた状態の連続フィラメントや連続ステーブルヤーンを巻き戻し て繰り出し、ポリエステル榭脂、とりわけ乳酸系榭脂をクロスヘッドダイ力も押し出すと 同時に上記の繊維に榭脂を被覆 '含浸させるという、いわゆる引き抜き成形法を利用 する方法である。引き抜き成形されたストランドは、ペレットカッター等により適当なサ ィズにカットされ、榭脂ペレットとされる。榭脂ペレットに含まれる繊維の長さは、榭脂 ペレットの長さとほぼ同等に制御される。
[0075] 本発明の架橋生分解性ポリエステル榭脂とァラミド繊維および Zまたは LCP繊維と を含む榭脂組成物は、カルポジイミド化合物を含有することによって耐湿熱性が向上 し、溶融混練による相溶性もより良好になり、機械物性も向上する。
[0076] 本発明に使用されるカルボジイミド化合物としては、 4, 4'ージシクロへキシルメタン カルボジイミド、テトラメチルキシリレンカルボジイミド、 N, N—ジメチルフヱ-ルカル ボジイミド、 N, N,—ジ— 2, 6—ジイソプロピルフエ-ルカルボジイミド等があげられる 力 分子中に 1個以上のカルポジイミド基を有するカルポジイミドィ匕合物であれば、特 に限定されない。
[0077] このようなカルポジイミドィ匕合物は、従来力も知られている方法で製造できる。詳しく は、ジイソシァネートイ匕合物を原料とする脱二酸ィ匕炭素反応を伴うカルポジイミド反 応により製造することができる。末端封止処理を行わなければ、末端にイソシァネート 基を有する。
[0078] 本発明の榭脂組成物に使用するカルポジイミドィ匕合物としては、耐湿熱性と機械物 性の向上の点から、イソシァネート基を残したカルポジイミド化合物を使用することが 望ましい。イソシァネート基は、カルポジイミド基よりも高い反応性を有し、より高い効 果が得られる。
[0079] カルポジイミド化合物の配合量は、架橋生分解性ポリエステル榭脂とァラミド繊維お よび Zまたは LCP繊維との合計 100質量部に対して、 0. 01〜10質量部であること 力 S好ましく、 0. 1〜5質量部であることがいっそう好ましい。配合量が 0. 01質量部未 満であると、榭脂組成物についての耐湿熱性と機械物性の向上の効果が見られない 。一方、 10質量部を越えると、耐熱性、成形性が低下する。 [0080] 本発明の架橋生分解性ポリエステル榭脂を含む榭脂組成物には、上記したポリ乳 酸系の榭脂組成物と同様に、機械的強度や耐熱性の向上を目的としてガラス繊維を 添カ卩してもよい。その詳細は、上述の通りである。
[0081] 本発明の架橋生分解性ポリエステル榭脂を含む榭脂組成物には、上記したポリ乳 酸系の榭脂組成物と同様に、その特性を大きく損なわない限りにおいて、顔料、熱安 定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、滑剤、離型剤、帯電防止剤、充填材 、結晶核材等を添加することができる。その詳細は、上述の通りである。
[0082] 本発明の架橋生分解性ポリエステル榭脂を含む榭脂組成物は、その機械的な物 性として、曲げ強度が 120MPaを超え、弾性率が 4. OGPaを超え、曲げ破断歪みが 4%を超えることが好ま 、。シャルピー衝撃値は 3kj/m2を超えることが好ま 、。 熱変形温度は 120°Cを超えることが好ましい。また、耐湿熱性として、後述の強度保 持率が 90%を超えることが好ましい。
[0083] 本発明のポリ乳酸系の榭脂組成物、および架橋生分解性ポリエステル榭脂とァラミ ド繊維および Zまたは LCP繊維とを含む榭脂組成物は、射出成形、ブロー成形、押 出成形、インフレーション成形、および、シート加工後の真空成形、圧空成形、真空 圧空成形等の成形方法により、各種成形体とすることができる。とりわけ、射出成形法 を採ることが好ましぐ一般的な射出成形法のほか、ガス射出成形、射出プレス成形 等も採用できる。本発明の榭脂組成物に適した射出成形条件の一例を挙げれば、シ リンダ温度を榭脂組成物の融点または流動開始温度以上、好ましくは 180〜280°C 、最適には 200〜270°Cの範囲とし、金型温度は榭脂組成物の(融点— 20°C)以下 とするのが適当である。成形温度が低すぎると、成形品にショートが発生するなど操 業性が不安定になったり、過負荷に陥りやすくなる。逆に、成形温度が高すぎると、 榭脂組成物が分解し、得られる成形体の強度が低下したり、着色する等の問題が発 生しやすくなる。その成形サイクルは、後述する方法で測定されるものである力 70 秒以下であることが好まし 、。
[0084] 本発明のポリ乳酸系の榭脂組成物および架橋生分解性ポリエステル榭脂を含む榭 脂組成物は、結晶化を促進させることにより、その耐熱性を高めることができる。この ための方法として、例えば射出成形時における金型内での冷却にて結晶化を促進さ せる方法がある。その場合には、射出成形時に、金型温度を榭脂組成物の (ガラス転 移温度 + 20°C)以上かつ(融点 20°C)以下で所定時間保った後、ガラス転移温度 以下に冷却することが好ましい。また、成形後に結晶化を促進させる方法としては、 金型温度を直接ガラス転移温度以下の低温とした後、再度ガラス転移温度以上かつ (融点― 20°C)以下となるように温度上昇させて、榭脂を熱処理することが好ま 、。
[0085] 本発明のポリ乳酸系の榭脂組成物を用いた成形体および架橋生分解性ポリエステ ル榭脂を含む榭脂組成物を用いた成形体の具体例としては、携帯電話用ストラップ 部品;うちわの骨部;ボタン;ゴルフのティー;パソコン筐体部品および筐体、携帯電 話筐体部品および筐体、その他 OA機器筐体部品等の電化製品用榭脂部品;バン パー、インストルメントパネル、コンソールボックス、ガーニッシュ、ドアトリム、天井、フ ロア、エンジン周りのパネル等の自動車用榭脂部品等が挙げられる。成形体は、フィ ルム、シート、中空成形品などとすることもできる。
実施例
[0086] 以下、本発明の実施例を説明する。
[0087] 以下の実施例および比較例の榭脂組成物の評価に用いた測定法は、次のとおり である。
[0088] (1)メルトフローレート(以下、「MFR」と略称する):
JIS K 7210 (試験条件 4)に従い、 190°C、荷重 21. 2Nで測定した。
[0089] (2)熱変形温度:
ISO 75に準拠し、荷重 1. 8MPa (実施例 1〜9、比較例 1〜3)または 0. 45MPa (実施例 10〜18、比較例 4〜9)で測定した。
[0090] (3)シャルピー衝撃値:
ISO 179に準拠して測定した。
[0091] (4)曲げ強度、曲げ弾性率、曲げ破断歪:
ISO 178に準拠して測定した。
[0092] (5)高強度繊維のガラス転移温度:
高強度繊維をパンに入れ、 20°CZ分の速度で 300°Cまで昇温した後、ドライアイス にて急冷した。次に示差走査熱量測定機 (DSC)において 10°CZ分の速度で— 20 °Cから 300°Cまで昇温し、ガラス転移温度を測定した。
[0093] (6)耐湿熱性
上述の曲げ強度を測定するための曲げ強度試験片を、温度 60°C、湿度 90%RH の環境下で 500時間処理した後、曲げ強度を測定して、強度保持率を算出し、評価 した。
[0094] (7)成形サイクル
後述の榭脂組成物 A〜0のうち、榭脂組成物 Mを除く榭脂組成物 A〜L、 N、 Oを、 射出成形機 (東芝機械社製 IS— 80G型)を用いて成形し、成形体を得た。このとき、 榭脂組成物 A〜J、 K、 L、 Oについては、シリンダ設定温度 190〜170°Cで溶融して 、射出圧力 100MPa、射出時間 30秒で、 105°Cの金型に充填した。榭脂組成物 N につ 、ては、上記の条件で金型に充填したところ成形サイクルが 300秒と長くなつた ので、成形条件を、射出圧力 100MPa、射出時間 15秒で、 15°Cの金型に充填する ことに変更した。成形サイクルは、榭脂組成物が金型内に射出(充填、保圧)されて 力 冷却されることにより得られた成形体が、金型に固着することなくまた抵抗なく取 り出せるようになるまでの最短の時間とした。
[0095] 以下の実施例、比較例に用いた各種原料は、次の通りである。
[0096] (a)ポリ乳酸榭脂(以下、 rpLAjと略称する):
カーギルダウ社製 「NatureWorks 6201D」; MFR= lOgZlO分、融点 168°C
[0097] (b)エチレングリコールジメタタリレート(以下「EGDM」と略称する):
日本油脂社製 「ブレンマー PDE— 50」。
[0098] (c)ポリエステル繊維:
ュ-チカ社製 ポリエチレンテレフタレート繊維「ブライト PET短繊維く 521 >」(以 下「PET繊維」と略称する)。
[0099] (d) LCP繊維(ポリエステル繊維):
クラレネ土製「ベクトラン」; CF1670T (以下「ベクトラン」と略称する)。
[0100] (e)ァラミド繊維:
帝人社製 「テクノーラ T322EH3— 12」。 [0101] (f)ガラス繊維:
旭ファイバーグラス社製 「FT592」。
[0102] (g)過酸化物:
日本油脂社製 ジー t ブチルパーオキサイド 「パーブチル D」。
[0103] (h)ポリエチレン榭脂:
出光石油化学社製 「520MB」。
[0104] (i)架橋ポリ乳酸榭脂:
次のようにして作製した。詳細には、二軸押出成形機 (東芝機械社製 TEM 37BS )を使用して、トップフィーダ力も PLAを供給し、加工温度 190°Cで溶融混練押出し を実施した。その際、架橋剤であるポリエチレングリコールジメタタリレート(日本油脂 社製) 1. 0質量部と、架橋反応を促進させるための過酸化物であるジー tーブチルバ 一オキサイド(日本油脂社製) 1. 0質量部とを、可塑剤であるグリセリンジァセトモノ力 プリレート 2. 5質量部に溶解した溶液を、混練機途中からポンプを用いて注入した。 そして、吐出された榭脂をペレット状にカッティングして、架橋生分解性ポリエステル 榭脂(以下、「架橋 PLA」と略称する)を得た。得られた架橋 PLAの MFRは 1. 2gZ 10分であった。
[0105] (j)カルポジイミドィ匕合物:
日清紡社製 「LA—1」; イソシァネート基含有率 1〜3%。
[0106] (k)カルボジイミド化合物:
日清紡社製 「HMV— 8CA」; イソシァネート基封止品。
[0107] 実施例 1
高強度繊維としてのベクトランを幅 2mmの板状に束ねた状態で、 190°Cの融解ポリ 乳酸榭脂中を 10cmの長さにわたり通過させた。次に、これを空気中で冷却し、固化 したものを、長さ 2mmのペレット状に粉砕し、集束べクトランを得た。
[0108] 二軸押出機 (東芝機械社製 TEM37BS型)を用い、 PLA90質量部を押出機の根 元供給口から供給し、バレル温度 200°C、スクリュー回転数 130rpm、吐出量 15kg Zhの条件で、ベントを効かせながら押出しを実施した。さらに、 EGDMO. 22質量 部、過酸化物 0. 45質量部、ガラス繊維 5質量部、および、前記集束べクトラン 5質量 部を、シリンダ内に供給した。そして、吐出された榭脂をペレット状にカツとして、榭脂 組成物のペレットを得た。
[0109] このペレットを 70°C、 24時間の条件で真空乾燥したのち、東芝機械社製 IS - 100 E型射出成形機を用いて、一般物性測定用 (ISO型)試験片を作成し、各種測定に 供した。このときの成形条件および測定結果を表 1に示す。
[0110] [表 1]
Figure imgf000021_0001
*低温金型を使用
[0111] 実施例 2〜9、および比較例 1〜3
ポリ乳酸榭脂、ガラス繊維、高強度繊維、集束用榭脂、 EGDM、過酸化物につい て、その量、種類を表 1に示すように変化させた。また集束処理の有無を、表 1に示 すように変化させた。そして、それ以外は実施例 1と同様にしてポリ乳酸系榭脂組成 物ペレットを得た。得られたペレットを射出成形して、各種物性を測定した。
[0112] 実施例 2〜9、比較例 1〜3についての評価結果も、あわせて表 1に示す。
[0113] 表 1から明らかなように、実施例 1〜9においては、耐衝撃性、耐熱性、および、柔 軟性に優れた榭脂組成物が得られた。
[0114] さら〖こ、実施例 1〜3は、高強度繊維の集束サイズが幅 l〜5mm、長さ l〜5mmの 範囲内であったため、幅および長さがこの範囲を下回った実施例 4と比較して混練時 の操業性に関してより良好な結果が得られるとともに、幅および長さがこの範囲を上 回った実施例 5と比較して耐衝撃性に関してより良好な結果が得られた。カロえて、実 施例 1〜3は、高強度繊維の集束にポリエステル榭脂であるポリ乳酸榭脂を用いたた め、ポリエチレンを使用した実施例 6と比較して、耐衝撃性においてより好適な結果 が得られた。さらに実施例 1〜3は、高強度繊維として、ポリエステル繊維のうち 90°C 以下の範囲でガラス転移温度が観測されな 、ものを用いたため、 76°Cでガラス転移 温度が観測された実施例 7と比較して、成形性すなわち換言すると成形時の冷却固 化の迅速性にぉ 、て、より好適な結果が得られた。
[0115] 実施例 8は、高強度繊維が集束されていないため、他の実施例と比較して、操業性 がやや低下した。実施例 9は、高強度繊維としてポリエステル繊維が用いられていな いため、他の実施例と比較して、耐衝撃性がやや低下した。
[0116] 比較例 1および 2は、高強度繊維が用いられていないため、耐衝撃性、柔軟性に劣 る結果となった。比較例 3は、(メタ)アクリル酸エステルイ匕合物が用いられておらず、 かつ、高強度繊維が収束されていないため、耐熱性および操業性に劣る結果となつ た。
実施例 10〜20
各原料を、表 2に示す割合で、二軸押出成形機 (東芝機械社製 TEM 37BS)に 供給し、加工温度 170°C〜190°Cで溶融混練押出しをおこない、吐出された榭脂を ペレット状にカットして、榭脂組成物 A〜Kを得た。
比較例 4〜7
各原料を、表 2に示す割合で、二軸押出成形機 (東芝機械社製 TEM 37BS)に 供給し、加工温度 170°C〜190°Cで溶融混練押出しをおこない、吐出された榭脂を ペレット状にカットして、榭脂組成物 L、 M、 Oを得た。ただし、比較例 6では、ァラミド 繊維が成形機ホッパーに詰まり、榭脂組成物 Nは得ることができな力 た。
[0117] 各種物性評価をおこなった結果をまとめて表 2に示す。
[0118] [表 2]
Figure imgf000024_0001
[0119] 実施例 10〜18で得られた榭脂組成物 A〜Iについては、曲げ特性、耐衝撃性、耐 熱性、耐湿熱性、成形性に優れる結果となった。実施例 19で得られた榭脂組成物 J は、カルボジイミド化合物が用いられていなかつたため、他を同一の条件としてカル ポジイミドィ匕合物を配合した実施例 12〜15と比較して、耐衝撃性、耐湿熱性、成形 性にやや劣る結果となった。実施例 20で得られた榭脂組成物 Kは、カルポジイミド化 合物を 20質量部と多量に配合していたため、他を同一の条件としてカルポジイミドィ匕 合物を適量配合して 、た実施例 12〜 15と比べて耐熱性、成形性にやや劣る結果と なった。
[0120] 比較例 4は、ァラミド繊維および Zまたは LCP繊維と、カルポジイミドィ匕合物とを配 合していないため、耐衝撃性、耐湿熱性、成形性に劣る結果となった。
[0121] 比較例 5は、カルポジイミドィ匕合物を配合して 、るが、ァラミド繊維および Zまたは L
CP繊維を配合して ヽな 、ため、これらを配合した実施例 10〜18に比べて耐衝撃性
、耐湿熱性、成形性に劣る結果となった。
[0122] 比較例 7は、架橋 PLAではなぐ PLAを使用したため、架橋 PLAを使用した実施 例 14に比べて耐熱性および耐湿熱性に劣る結果となった。

Claims

請求の範囲
[I] 榭脂組成物であって、架橋生分解性ポリエステル榭脂と高強度繊維とを含む。
[2] 請求項 1の榭脂組成物であって、ポリ乳酸樹脂と (メタ)アクリル酸エステルイ匕合物と を過酸ィ匕物の存在下に混合したポリ乳酸榭脂組成物を含むとともに、高強度繊維を 含む。
[3] 請求項 2の榭脂組成物であって、高強度繊維がポリエステル繊維である。
[4] 請求項 3の榭脂組成物であって、ポリエステル繊維は、 90°C以下でガラス転移温 度が観測されな 、ものである。
[5] 請求項 1の榭脂組成物であって、架橋生分解性ポリエステル榭脂 70〜99質量%と
、ァラミド繊維および Zまたは LCP繊維 30〜1質量%とを含む。
[6] 請求項 5の榭脂組成物であって、架橋生分解性ポリエステル榭脂とァラミド繊維お よび Zまたは LCP繊維との合計量 100質量部に対して、カルポジイミド化合物 0. 01
〜 10質量部が配合されている。
[7] 請求項 5の榭脂組成物であって、生分解性ポリエステル榭脂 100質量部あたり、架 橋剤として (メタ)アクリル酸エステルイ匕合物が 0. 01〜20質量部配合されている。
[8] 請求項 5の榭脂組成物であって、生分解性ポリエステル榭脂がポリ乳酸である。
[9] 請求項 6の榭脂組成物であって、カルポジイミドィ匕合物が末端基にイソシァネート 基を有する。
[10] 請求項 5の榭脂組成物であって、生分解性ポリエステル榭脂が植物系原料力ゝら製 造されたものである。
[I I] 榭脂組成物の製造方法であって、ポリ乳酸樹脂と (メタ)アクリル酸エステル化合物 とを過酸ィ匕物の存在下に混合したポリ乳酸榭脂組成物を含むとともに高強度繊維を 含むポリ乳酸系榭脂組成物を製造するに際し、高強度繊維をあらかじめ幅 l〜5mm 、長さ l〜5mmのサイズに集束させておく。
[12] 請求項 11の製造方法であって、高強度繊維の集束に際してポリエステル榭脂を用 いる。
[13] 成形体であって、請求項 2の榭脂組成物が成形カ卩ェされたものである。
[14] 成形体であって、請求項 5の榭脂組成物が成形カ卩ェされたものである。
PCT/JP2006/314234 2005-08-02 2006-07-19 樹脂組成物、その製造方法、それから得られる成形体 WO2007015371A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06781241A EP1911809A4 (en) 2005-08-02 2006-07-19 RESIN COMPOSITIONS, METHOD OF PRODUCTION AND MATERIAL OBTAINED THEREFROM
US11/989,626 US20090093575A1 (en) 2005-08-02 2006-07-19 Resin compositions, method of producing the same and molded article obtained therefrom
CN200680016507XA CN101175819B (zh) 2005-08-02 2006-07-19 树脂组合物、其制造方法、由其所得的成型物
JP2007529208A JP5246645B2 (ja) 2005-08-02 2006-07-19 樹脂組成物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-223530 2005-08-02
JP2005223530 2005-08-02
JP2005-239243 2005-08-22
JP2005239243 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007015371A1 true WO2007015371A1 (ja) 2007-02-08

Family

ID=37708650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314234 WO2007015371A1 (ja) 2005-08-02 2006-07-19 樹脂組成物、その製造方法、それから得られる成形体

Country Status (6)

Country Link
US (1) US20090093575A1 (ja)
EP (1) EP1911809A4 (ja)
JP (1) JP5246645B2 (ja)
KR (1) KR20080039336A (ja)
CN (1) CN101175819B (ja)
WO (1) WO2007015371A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278156A (ja) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd スピーカ用振動板およびこれを用いたスピーカ
WO2009011312A1 (ja) * 2007-07-17 2009-01-22 Fujifilm Corporation Pet繊維強化ポリ乳酸系樹脂射出成形品およびその製造方法
WO2009041186A1 (ja) * 2007-09-27 2009-04-02 Fujifilm Corporation 有機繊維強化ポリ乳酸樹脂射出成形品
JP2009132814A (ja) * 2007-11-30 2009-06-18 Kao Corp ポリ乳酸樹脂組成物
JP2009209233A (ja) * 2008-03-03 2009-09-17 Unitika Ltd 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JP2009221336A (ja) * 2008-03-14 2009-10-01 Mitsubishi Chemicals Corp 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP2009256487A (ja) * 2008-04-17 2009-11-05 Inoac Corp ポリ乳酸組成物、その製造方法及びその成形体
WO2010029869A1 (ja) * 2008-09-10 2010-03-18 Ntn株式会社 射出成形体、樹脂製滑り軸受、樹脂製歯車、冠型樹脂製保持器、樹脂製シールおよび転がり軸受
US20100292398A1 (en) * 2007-11-09 2010-11-18 Teijin Aramid B.V. Aramid particles containing peroxide radical intiator
JP2011105889A (ja) * 2009-11-20 2011-06-02 Unitika Ltd ポリ乳酸系樹脂組成物
JP2011137095A (ja) * 2009-12-28 2011-07-14 Kao Corp ポリ乳酸樹脂組成物の製造方法
JP2012082315A (ja) * 2010-10-12 2012-04-26 Umg Abs Ltd 複合ポリ乳酸系熱可塑性樹脂組成物およびその成形品
US8283392B2 (en) 2006-10-06 2012-10-09 Teijin Aramid B.V. Particle comprising a matrix and a radical initiator
CN101622310B (zh) * 2007-02-23 2012-11-14 帝人株式会社 聚乳酸组合物
US8722774B2 (en) 2008-07-22 2014-05-13 Kao Corporation Biodegradable resin composition
JP2015502448A (ja) * 2011-12-26 2015-01-22 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 生分解性樹脂組成物とこれを用いた生分解性シートの製造方法
CN109294184A (zh) * 2018-09-05 2019-02-01 安徽新翔包装材料有限公司 一种环保降解塑料袋及其制作工艺
CN113845760A (zh) * 2021-09-30 2021-12-28 金发科技股份有限公司 一种低浮纤的增强pbt/pet合金组合物及其制备方法和应用

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025030A1 (de) * 2004-05-18 2005-12-15 S&C Polymer Silicon- und Composite-Spezialitäten GmbH Nano-Apatit-Füllstoffe enthaltende härtbare Restaurationsmaterialien
US20100189986A1 (en) * 2007-07-12 2010-07-29 Fujifilm Corporation Injection-molded article of a fiber-reinforced polylactic acid resin
ES2426774T3 (es) 2008-06-25 2013-10-25 Metabolix, Inc. Composiciones de PHA ramificado, procedimientos para su producción y uso en aplicaciones
US8023261B2 (en) 2008-09-05 2011-09-20 Apple Inc. Electronic device assembly
TW201113144A (en) * 2009-06-15 2011-04-16 Sumitomo Chemical Co Resin formed body, producing method thereof, and relay
KR101302335B1 (ko) * 2009-09-23 2013-08-30 (주)엘지하우시스 바닥재 및 그 제조 방법
US8231954B2 (en) 2009-12-08 2012-07-31 International Paper Co. Thermoformed articles made from reactive extrusion products of biobased materials
US8797721B2 (en) 2010-02-02 2014-08-05 Apple Inc. Portable electronic device housing with outer glass surfaces
EP2547505A1 (en) * 2010-03-16 2013-01-23 Andersen Corporation Sustainable compositions, related methods, and members formed therefrom
US9235240B2 (en) 2010-11-11 2016-01-12 Apple Inc. Insert molding around glass members for portable electronic devices
US9182789B2 (en) 2011-03-01 2015-11-10 Apple Inc. Transparent electronic device components with opaque edge coverings
CN103030955B (zh) * 2011-10-08 2016-08-03 支朝晖 一种聚乳酸改性材料及其制备方法
KR101447773B1 (ko) * 2012-03-29 2014-10-06 (주)엘지하우시스 가교된 폴리락트산을 이용한 보드 및 이의 제조방법
KR101505708B1 (ko) * 2012-03-29 2015-03-24 (주)엘지하우시스 가교된 폴리락트산을 이용한 보드 및 이의 제조방법
KR101430802B1 (ko) * 2012-03-30 2014-08-18 (주)엘지하우시스 폴리락트산과 목섬유를 이용한 친환경 보드 및 그 제조 방법
ES2879250T3 (es) 2012-06-05 2021-11-22 Cj Cheiljedang Corp Mezclas poliméricas biodegradables
CN104755538B (zh) 2012-08-17 2018-08-31 Cj 第一制糖株式会社 用于聚合物共混物的生物基橡胶改性剂
US9871898B2 (en) 2013-05-08 2018-01-16 Apple Inc. Ceramic cover for electronic device housing
EP3004225A1 (en) 2013-05-30 2016-04-13 Metabolix, Inc. Recyclate blends
EP3122817B1 (en) 2014-03-27 2020-07-29 CJ CheilJedang Corporation Highly filled polymer systems
US11091632B2 (en) 2015-11-17 2021-08-17 Cj Cheiljedang Corporation Polymer blends with controllable biodegradation rates
KR101881006B1 (ko) * 2016-07-29 2018-09-06 주식회사 휴비스 저융점 폴리에스테르 수지를 포함하는 자동차 내외장재 및 이의 제조방법
CN106120152A (zh) * 2016-08-24 2016-11-16 朱小涛 一种医用无纺布复合材料及其制备方法与应用
EP3395854A1 (en) * 2017-04-26 2018-10-31 Bio Bond ApS Resins derived from renewable sources and structures manufactured from said resins

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247152A (ja) * 1988-08-10 1990-02-16 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JPH02203901A (ja) * 1989-01-31 1990-08-13 Asahi Chem Ind Co Ltd 集束された補強用繊維又は短繊維チップの製造法
JPH081662A (ja) * 1994-06-16 1996-01-09 Toray Ind Inc 繊維強化熱可塑性樹脂ペレットの製造方法、繊維強化熱可塑性樹脂ペレットおよびダイス装置
JPH08193165A (ja) 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc 耐熱性乳酸系ポリマー成形物
JP2003128901A (ja) 2001-08-10 2003-05-08 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2003226801A (ja) 2002-02-04 2003-08-15 Toyota Central Res & Dev Lab Inc ポリ乳酸複合材料及び成形体
JP2005023250A (ja) 2003-07-04 2005-01-27 Mitsubishi Plastics Ind Ltd 繊維強化成形体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124384A (en) * 1997-08-19 2000-09-26 Mitsui Chemicals, Inc. Composite resin composition
JP4245333B2 (ja) * 2002-11-08 2009-03-25 日清紡績株式会社 生分解性プラスチック組成物、その成形品及びこれを利用した生分解速度制御方法
JP4585749B2 (ja) * 2003-08-07 2010-11-24 日清紡ホールディングス株式会社 黄変を抑えたカルボジイミド組成物、耐加水分解安定剤及び熱可塑性樹脂組成物
JP2005082642A (ja) * 2003-09-05 2005-03-31 Nisshinbo Ind Inc エステル基を有する樹脂用の耐加水分解安定剤及び熱可塑性樹脂組成物
FI122108B (fi) * 2004-11-17 2011-08-31 Jvs Polymers Oy Silloittuva biopolymeeri
CN101128535B (zh) * 2005-06-07 2011-12-21 尤尼吉可株式会社 生物降解聚酯树脂组合物、其制造方法及该组合物成型所得的成型体
WO2007049529A1 (ja) * 2005-10-25 2007-05-03 Unitika Ltd. ポリエステル樹脂組成物及びそれを用いた成形体
CN103923447A (zh) * 2006-02-14 2014-07-16 日本电气株式会社 聚乳酸类树脂组合物及成形体
US8586658B2 (en) * 2006-02-14 2013-11-19 Nec Corporation Polylactic acid resin composition and molded item

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247152A (ja) * 1988-08-10 1990-02-16 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JPH02203901A (ja) * 1989-01-31 1990-08-13 Asahi Chem Ind Co Ltd 集束された補強用繊維又は短繊維チップの製造法
JPH08193165A (ja) 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc 耐熱性乳酸系ポリマー成形物
JPH081662A (ja) * 1994-06-16 1996-01-09 Toray Ind Inc 繊維強化熱可塑性樹脂ペレットの製造方法、繊維強化熱可塑性樹脂ペレットおよびダイス装置
JP2003128901A (ja) 2001-08-10 2003-05-08 Unitika Ltd 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2003226801A (ja) 2002-02-04 2003-08-15 Toyota Central Res & Dev Lab Inc ポリ乳酸複合材料及び成形体
JP2005023250A (ja) 2003-07-04 2005-01-27 Mitsubishi Plastics Ind Ltd 繊維強化成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1911809A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524805B2 (en) 2006-10-06 2013-09-03 Teijin Aramid B.V. Particle comprising a matrix and a radical initiator
US8283392B2 (en) 2006-10-06 2012-10-09 Teijin Aramid B.V. Particle comprising a matrix and a radical initiator
CN101622310B (zh) * 2007-02-23 2012-11-14 帝人株式会社 聚乳酸组合物
JP2008278156A (ja) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd スピーカ用振動板およびこれを用いたスピーカ
CN101743109A (zh) * 2007-07-17 2010-06-16 富士胶片株式会社 Pet纤维增强的聚乳酸树脂的注塑制品及其制造方法
WO2009011312A1 (ja) * 2007-07-17 2009-01-22 Fujifilm Corporation Pet繊維強化ポリ乳酸系樹脂射出成形品およびその製造方法
WO2009041186A1 (ja) * 2007-09-27 2009-04-02 Fujifilm Corporation 有機繊維強化ポリ乳酸樹脂射出成形品
JP2011503283A (ja) * 2007-11-09 2011-01-27 テイジン・アラミド・ビー.ブイ. 過酸化物ラジカル開始剤を含有するアラミドパーティクル
US20100292398A1 (en) * 2007-11-09 2010-11-18 Teijin Aramid B.V. Aramid particles containing peroxide radical intiator
US8575253B2 (en) * 2007-11-09 2013-11-05 Teijin Aramid B.V. Aramid particles containing peroxide radical intiator
JP2009132814A (ja) * 2007-11-30 2009-06-18 Kao Corp ポリ乳酸樹脂組成物
JP2009209233A (ja) * 2008-03-03 2009-09-17 Unitika Ltd 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JP2009221336A (ja) * 2008-03-14 2009-10-01 Mitsubishi Chemicals Corp 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP2009256487A (ja) * 2008-04-17 2009-11-05 Inoac Corp ポリ乳酸組成物、その製造方法及びその成形体
US8722774B2 (en) 2008-07-22 2014-05-13 Kao Corporation Biodegradable resin composition
WO2010029869A1 (ja) * 2008-09-10 2010-03-18 Ntn株式会社 射出成形体、樹脂製滑り軸受、樹脂製歯車、冠型樹脂製保持器、樹脂製シールおよび転がり軸受
JP2011105889A (ja) * 2009-11-20 2011-06-02 Unitika Ltd ポリ乳酸系樹脂組成物
JP2011137095A (ja) * 2009-12-28 2011-07-14 Kao Corp ポリ乳酸樹脂組成物の製造方法
JP2012082315A (ja) * 2010-10-12 2012-04-26 Umg Abs Ltd 複合ポリ乳酸系熱可塑性樹脂組成物およびその成形品
JP2015502448A (ja) * 2011-12-26 2015-01-22 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 生分解性樹脂組成物とこれを用いた生分解性シートの製造方法
CN109294184A (zh) * 2018-09-05 2019-02-01 安徽新翔包装材料有限公司 一种环保降解塑料袋及其制作工艺
CN113845760A (zh) * 2021-09-30 2021-12-28 金发科技股份有限公司 一种低浮纤的增强pbt/pet合金组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN101175819B (zh) 2012-05-23
CN101175819A (zh) 2008-05-07
KR20080039336A (ko) 2008-05-07
EP1911809A1 (en) 2008-04-16
JPWO2007015371A1 (ja) 2009-02-19
EP1911809A4 (en) 2010-05-19
US20090093575A1 (en) 2009-04-09
JP5246645B2 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2007015371A1 (ja) 樹脂組成物、その製造方法、それから得られる成形体
US7445835B2 (en) Kenaf-fiber-reinforced resin composition
JP5036539B2 (ja) 生分解性ポリエステル樹脂組成物、その製造方法、同組成物を成形してなる成形体
WO2007049529A1 (ja) ポリエステル樹脂組成物及びそれを用いた成形体
JP5279415B2 (ja) 樹脂組成物およびそれを用いた成形体
JP2007161957A (ja) 樹脂組成物およびそれからなる成形体
JP5344902B2 (ja) 樹脂組成物およびそれを成形してなる成形体
JP4643154B2 (ja) 熱可塑性樹脂組成物、およびそれを成形してなる成形体。
JP4996668B2 (ja) ポリ乳酸樹脂組成物、ポリ乳酸樹脂組成物の製造方法、成形品、携帯電話機用卓上ホルダー、携帯電話機の内部シャーシ部品、電子機器用筐体及び電子機器用内部部品
JP2008255269A (ja) 樹脂組成物、およびそれを成形してなる成形体
JP2007262339A (ja) ポリ乳酸系ポリエステル樹脂組成物、その製造方法、それを用いた成形体
JP2012207170A (ja) ポリ乳酸系樹脂組成物および成形体
JP2008201863A (ja) ポリ乳酸樹脂成形体の製造方法
JP4948099B2 (ja) ポリ乳酸系樹脂組成物、および、それを成形してなる成形体
JP4988398B2 (ja) 難燃かつ柔軟性樹脂組成物およびそれを成形してなる成形体
JP2019218545A (ja) バイオプラスチック複合材及びその製造方法
JP2011032417A (ja) 樹脂組成物、該樹脂組成物の製造方法および該樹脂組成物からなる成形体
JP2011157538A (ja) 樹脂組成物
JP2005336220A (ja) ガラス長繊維強化ポリ乳酸樹脂組成物、そのペレットおよびその成形品
JP4953597B2 (ja) ポリブチレンサクシネート樹脂組成物、その製造方法、それからなる成形体
KR102257140B1 (ko) 생분해성 수지 조성물, 이를 포함하는 성형품, 및 그 성형품의 제조 방법
JP2007211129A (ja) 脂肪族ポリエステル樹脂組成物及びその成形体
JP2008255268A (ja) ポリ乳酸系樹脂組成物、およびそれを成形してなる成形体
JPH06345946A (ja) 共重合ポリブチレンテレフタレート組成物
JP2012180434A (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016507.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529208

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077027160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11989626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006781241

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE