TW201113144A - Resin formed body, producing method thereof, and relay - Google Patents

Resin formed body, producing method thereof, and relay Download PDF

Info

Publication number
TW201113144A
TW201113144A TW099119282A TW99119282A TW201113144A TW 201113144 A TW201113144 A TW 201113144A TW 099119282 A TW099119282 A TW 099119282A TW 99119282 A TW99119282 A TW 99119282A TW 201113144 A TW201113144 A TW 201113144A
Authority
TW
Taiwan
Prior art keywords
resin
resin molded
molded body
mold
producing
Prior art date
Application number
TW099119282A
Other languages
Chinese (zh)
Inventor
Mitsuo Maeda
Yasuo Matsumi
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201113144A publication Critical patent/TW201113144A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

This invention relates to a resin formed body, producing method thereof, and relay. When performing forming of a resin composition by mixing and pelletizing thermoplastic resin with inorganic filler, the stiffness of the resin formed body is enhanced. By setting the flow starting temperature of the resin composition as T1 (DEG C) and setting the mold temperature for injecting the resin composition into the mold as T2 (DEG C), it is better to satisfy the relationship: T2 (DEG C) ≥ T1 (DEG C)-120 DEG C. When the relationship is satisfied, the dust generated by the resin formed body can be significantly suppressed. Since the relay using resin formed body as a container is low in dust, blocking up of dusts between contact points does not occur, so as to maintain good contact of the contact points.

Description

201113144 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種可抑制粉塵產生的樹脂成形體及其 製造方法,以及將樹脂成形體作爲容器使用的繼電器。 【先前技術】 以往,繼電器等的電子零件係收容於液晶聚合物等的 樹脂製容器內,這樣的技術係例如專利文獻1所記載。一 般而言,若樹脂表面磨損,或樹脂表面發生自然劣化,會 由樹脂表面產生粉塵。若由樹脂表面產生微量的粉塵,則 有該粉塵阻礙繼電器開關的接觸,接觸特性劣化等的問題 。又,關於液晶聚合物的技術係例如專利文獻2、專利文 獻3所記載。 專利文獻1 :日本特開2 0 0 1 - 3 1 9 5 5 3號公報 專利文獻2:日本特開2008-100528號公報 專利文獻3 :日本特開2008-138221號公報 【發明內容】 然而,在以往之樹脂成形體的製造方法中,由於無法 製作可以充分抑制粉塵產生的樹脂成形體,因此期待可以 進一步低粉塵化的製造方法。特別是,在將低粉塵化之樹 脂成形體作爲繼電器的容器使用時,可以改善繼電器開關 的接觸特性。 本發明係鑒於上述課題而作成的發明,其目的爲,提 -5 - 201113144 供一種可以充分抑制粉塵產生的樹脂成形體及其 ’以及將樹脂成形體作爲容器使用的繼電器。 爲了解決上述課題,本發明之樹脂成形體的 係具備:藉由將熱塑性樹脂與無機塡料混合並造 的樹脂組成物注入已被加熱之模具間的步驟,和 模具而固化前述樹脂組成物以得到樹脂成形體的 脂成形體的製造方法,其特徵爲,樹脂組成物的 溫度設爲T1 ( °c ),將樹脂組成物注入模具時的 度設爲T2 ( °c )時,滿足以下關係式:T2 ( t:) )-120。。。 亦即,經本案發明者們深入硏究樹脂成形體 法之結果發現,在由在熱塑性樹脂中混合無機塡 造粒的樹脂組成物進行成形時,樹脂成形體的剛 此時’在滿足上述關係式時,可以顯著地抑制由 體產生的粉塵。 又,加熱模具的加熱器係以高頻感應加熱加 加熱器)爲佳》 在使用IH加熱器進行加熱時,由於可以迅速 具,因此生產效率提高。 又,該IH加熱器係具備:具有構成前述模具 形用凹凸模型的金屬製頂板、設置於金屬製頂板 的柱材、及包圍柱材的軸之周圍的線圈。 若對線圈進行通電,則金屬製的柱材會被感 該熱被傳導至金屬製頂板。由於在金屬製頂板設 製造方法 製造方法 粒而得到 藉由冷卻 步驟之樹 流動開始 模具的溫 2 T1 ( t: 的製造方 料並進行 性提高, 樹脂成形 熱器(IH 地加熱模 的樹脂成 之金屬製 應加熱, 置有模具 -6 - 201113144 ’故模具會被加熱。在這樣的結構時,由於有助於具有樹 脂成形用凹凸模型的金屬製頂板之加熱的構件,亦即體積 比較小的柱材被選擇性地感應加熱,該熱被傳導至金屬製 頂板’因此可以抑制生產時的能量消耗量,可降低生產成 本。 又’上述的熱塑性樹脂係以液晶聚合物爲佳。 由於液晶聚合物在模具內的流動性優異,因此可以提 高樹脂成形體的精度。又’在混合無機塡料和液晶聚合物 時,可以得到剛性非常高的樹脂成形體。 又’上述樹脂組成物係以相對於熱塑性樹脂1 0 0重量 份含有5〜250重量份的無機塡料爲佳。 無機塡料的重量份在上述的範圍內時,在維持流動性 的同時’可得到機械強度提高、樹脂成形體的尺寸性提高 的效果’在無機塡料的重量份比上限値高時,有成形性降 低’又’機械強度也降低並變脆的傾向,在比上述下限値 低時’樹脂成形體的尺寸穩定性降低,而難以得到期望尺 寸的樹脂成形體’又’液晶聚合物強烈表現出各向異性, 而有樹脂成形體發生翹曲等的可能性。 又’上述無機塡料也可含有板狀塡料。 此時’具有降低液晶聚合物的各向異性,抑制樹脂成 形體之翹曲的效果。 又,上述無機塡料係以含有具有纖維直徑爲〇 〇5〜 15μηι、及纖維長度爲5〜200μηι的纖維狀塡料爲佳。 無機塡料的纖維直徑和纖維長度在上述範圍內時,可 201113144 得=到下述效果:所得到的樹脂成形體的強度、特別是表示 樹脂流動末端之間的接合面強度的熔接強度進一步提升的 效果 '所得到的樹脂成形體的表面粗糙度難以增加,難以 產生粉塵的效果,這些値在上述範圍以外時,會有熔接強 度降低、變得容易產生粉塵的傾向。 又’該纖維狀塡料係以含有未藉由有機物進行表面塗 佈處理的纖維狀塡料爲佳。 此時,由於沒有由有機物產生氣體的情況,因此可得 到在樹脂內不產生由氣體導致的氣泡的效果。 又,藉由上述之製造方法所製造的樹脂成形體係可低 粉塵化。 又,本發明的繼電器,其特徵爲具備由上述的樹脂成 形體所形成的容器、及配置在容器內的繼電器本體。 將樹脂成形體作爲容器使用的繼電器由於是低粉塵, 因此在繼電器的接點間不會有粉塵阻塞,可以維持良好的 接點接觸。 根據本發明的樹脂成形體及其製造方法,可以充分抑 制粉塵的產生,將該樹脂成形體作爲容器使用的繼電器由 於是低粉塵,因此可以維持良好的接點接觸,因此,可以 抑制故障。 【實施方式】 以下,針對實施形態之樹脂成形體的製造方法進行說 明。此外,針對相同元件使用相同符號,並省略重複的說 -8- 201113144 明。 有關實施形態之樹脂成形體的製造方法,依序實施w 下步驟(1 )〜(4 )。 (1 )液晶性聚酯(液晶聚合物)的製造步驟 (2 )含有液晶性聚酯和無機塡料之樹脂組成物的^ 粒步驟 (3 )朝模具內注入樹脂的步驟 (4 )模具冷卻步驟 以下,針對各步驟進行詳細說明。 (1 )液晶性聚酯的製造步驟 首先,適當地準備以下的原材料(XI)〜(X4) ° 〔表1〕 原料 (XI) 芳香族羥基羧酸 (例如:對羥基苯甲酸) (X2) 芳香族二醇 (例如:4,4’-二羥基聯苯) (X3) 芳香族二羧酸 (例如:對苯二甲酸) (例如:間苯—甲酸) _ (X4) 脂肪酸酐 (例如:醋酸酐) 作爲適合的芳香族羥基羧酸,可以使用例示於下表中 之1種’亦可將於下表所示的2種以上的芳香族羥基羧酸組 -9 - 201113144 合使用。 _〔表 2〕 (XI)芳香族羥基羧酸 •對羥基苯甲酸 •間羥基苯甲酸 -2-羥基-6-萘甲酸 •2-羥基-3-萘甲酸 •1-羥基-4-萘甲酸 •2,6-二氯-對羥基苯甲酸 •2-氯-對羥基苯甲酸 •2,6-二氟-對羥基苯甲酸 •4-羥基-4’-聯苯甲酸 作爲適合的芳香族二醇,可以使用例示於下表中之1 種,亦可將於下表所示的2種以上的芳香族二醇組合使用 -10- 201113144[Technical Field] The present invention relates to a resin molded body capable of suppressing generation of dust, a method for producing the same, and a relay using the resin molded body as a container. [Prior Art] Conventionally, an electronic component such as a relay is housed in a resin container such as a liquid crystal polymer. Such a technique is described in Patent Document 1, for example. In general, if the surface of the resin is worn or the surface of the resin is naturally deteriorated, dust is generated from the surface of the resin. When a small amount of dust is generated from the surface of the resin, the dust may hinder the contact of the relay switch and the contact characteristics may deteriorate. Further, the technique of the liquid crystal polymer is described in, for example, Patent Document 2 and Patent Document 3. [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. 2008-138221 (Patent Document No. JP-A-2008-138221). In the conventional method for producing a resin molded body, since a resin molded body capable of sufficiently suppressing generation of dust cannot be produced, a production method capable of further reducing dusting is desired. In particular, when the low-dusting resin molded body is used as a container for a relay, the contact characteristics of the relay switch can be improved. The present invention has been made in view of the above-described problems, and an object of the invention is to provide a resin molded body which can sufficiently suppress the generation of dust, and a relay which uses the resin molded body as a container. In order to solve the above problems, the resin molded article of the present invention comprises a step of injecting a resin composition obtained by mixing a thermoplastic resin and an inorganic tantalum into a heated mold, and curing the resin composition with a mold. A method for producing a resin molded body of a resin molded article, wherein the temperature of the resin composition is T1 (°c), and when the degree of injection of the resin composition into the mold is T2 (°c), the following relationship is satisfied. Formula: T2 ( t:) ) - 120. . . That is, as a result of intensive investigation of the resin molded body method by the inventors of the present invention, it has been found that when the resin composition obtained by mixing inorganic cerium granules in a thermoplastic resin is molded, the resin molded body immediately satisfies the above relationship. In the formula, the dust generated by the body can be remarkably suppressed. Further, it is preferable that the heater for heating the mold is heated by a high-frequency induction heating heater. When heating with an IH heater, since the heating can be performed quickly, the production efficiency is improved. Further, the IH heater includes a metal top plate constituting the mold-shaped concave-convex model, a column member provided on the metal top plate, and a coil surrounding the shaft of the column member. When the coil is energized, the metal column is sensed to conduct heat to the metal top plate. The resin forming heat exchanger (the resin of the heating mold of IH) is obtained by the flow of the tree of the cooling step in the metal top plate manufacturing method manufacturing method, and the temperature of the mold is started to be 2 T1 (t:). The metal system should be heated, and the mold -6 - 201113144 is placed. Therefore, the mold is heated. In such a configuration, the member which contributes to the heating of the metal top plate having the concave-convex model for resin molding, that is, the volume is relatively small. The column material is selectively inductively heated, and the heat is conducted to the metal top plate. Therefore, the energy consumption during production can be suppressed, and the production cost can be reduced. Further, the above thermoplastic resin is preferably a liquid crystal polymer. Since the polymer has excellent fluidity in the mold, the precision of the resin molded body can be improved. Further, when the inorganic pigment and the liquid crystal polymer are mixed, a resin molded body having a very high rigidity can be obtained. It is preferably contained in an amount of 5 to 250 parts by weight based on 100 parts by weight of the thermoplastic resin of the inorganic material. The parts by weight of the inorganic material are as described above. In the case of the fluidity, the effect of improving the mechanical strength and the dimensionality of the resin molded body is improved. When the weight ratio of the inorganic material is higher than the upper limit, the formability is lowered. The tendency to reduce and become brittle, when the ratio is lower than the above lower limit, 'the dimensional stability of the resin molded body is lowered, and it is difficult to obtain a resin molded body of a desired size' and the liquid crystal polymer strongly exhibits anisotropy, and there is a resin. The molded body may be warped or the like. The above-mentioned inorganic material may also contain a plate-like material. In this case, the effect of reducing the anisotropy of the liquid crystal polymer and suppressing the warpage of the resin molded body is achieved. The inorganic tantalum is preferably a fibrous material having a fiber diameter of 5 to 15 μm and a fiber length of 5 to 200 μm. When the fiber diameter and the fiber length of the inorganic tantalum are within the above range, it may be 201113144 = The effect of the strength of the obtained resin molded body, particularly the weld strength indicating the joint strength between the resin flow ends, is further improved. The surface roughness of the obtained resin molded article is hard to increase, and the effect of dust is hard to be generated. When the ruthenium is out of the above range, the weld strength is lowered and dust tends to be generated. Further, the fibrous mash is contained. The fibrous coating which is not subjected to the surface coating treatment by the organic substance is preferred. In this case, since no gas is generated from the organic substance, the effect of not generating bubbles by the gas in the resin can be obtained. Further, the relay of the present invention is characterized in that it has a container formed of the above-described resin molded body and a relay body disposed in the container. The resin molded body is used as a resin molded body. Since the relay used in the container is low in dust, there is no dust blocking between the contacts of the relay, and good contact contact can be maintained. According to the resin molded body of the present invention and the method for producing the same, the generation of dust can be sufficiently suppressed, and the relay used as the container of the resin molded body is low in dust, so that good contact contact can be maintained, and therefore, trouble can be suppressed. [Embodiment] Hereinafter, a method for producing a resin molded body according to an embodiment will be described. In addition, the same reference numerals are used for the same elements, and the repeated description is omitted -8-201113144. In the method for producing a resin molded body according to the embodiment, steps (1) to (4) are sequentially carried out. (1) a production step of a liquid crystalline polyester (liquid crystal polymer) (2) a step of preparing a resin composition containing a liquid crystalline polyester and an inorganic tantalum (3) a step of injecting a resin into a mold (4) mold cooling Steps Hereinafter, each step will be described in detail. (1) Step of Producing Liquid Crystalline Polyester First, the following materials (XI) to (X4) ° are prepared as appropriate [Table 1] Raw material (XI) Aromatic hydroxycarboxylic acid (for example, p-hydroxybenzoic acid) (X2) Aromatic diol (for example: 4,4'-dihydroxybiphenyl) (X3) aromatic dicarboxylic acid (for example: terephthalic acid) (for example: m-benzene-formic acid) _ (X4) fatty acid anhydride (for example: Acetic anhydride) As the suitable aromatic hydroxycarboxylic acid, one of the following examples, which can be used in the following table, can also be used in combination with two or more kinds of aromatic hydroxycarboxylic acid groups -9 - 201113144 shown in the following table. _[Table 2] (XI) Aromatic hydroxycarboxylic acid • p-Hydroxybenzoic acid • m-hydroxybenzoic acid 2-hydroxy-6-naphthoic acid • 2-hydroxy-3-naphthoic acid • 1-hydroxy-4-naphthoic acid • 2,6-dichloro-p-hydroxybenzoic acid • 2-chloro-p-hydroxybenzoic acid • 2,6-difluoro-p-hydroxybenzoic acid • 4-hydroxy-4′-bibenzoic acid as a suitable aromatic The alcohol may be used in one of the following examples, or may be used in combination of two or more kinds of aromatic diols as shown in the following table - 201113144

〔表3 (X2)芳香族二醇 •4,4’-二羥基聯苯 .氫醌 -間苯二酚 -甲基氨醒 _氯代氫醌 •乙醯氧基氫醌 .硝基氫醌 •1,4-二羥基萘 •1,5-二羥基萘 •1,6-二羥基萘 •2,6-二羥基萘 •2,7-二羥基萘 •2,2-雙(4-羥基苯基)丙烷 •2,2-雙(4-羥基-3,5-二甲基苯基)丙烷 •2,2-雙(4_羥基-3,5-二氯苯基)丙烷 _2,2-雙(4_經基_3·甲基苯基)丙烷 .2,2-雙(4-羥基-3-氯苯基)丙烷 (4-羥基苯基)甲烷 •雙-(4-經基-3,5-二甲基苯基)甲烷 •雙-(4-羥基-3,5·二氯苯基)甲烷 •雙-(4_經基_3,5-二溴苯基)甲烷 •雙-(4_經基-3-甲基苯基)甲烷 •雙·(4-經基-3-氯苯基)甲烷 •U·雙(4_經基苯基)環己烷 •雙-(4·羥基苯基)酮 •雙-(4_羥基-3,5-二甲基苯基)酮 •雙-(4-經基-3,5-二氯苯基)酮 •雙-(4-羥基苯基)硫醚 •雙-(4-經基苯基)颯 •雙-(4-羥基苯基)醚 -----J 作爲適合的芳香族二羧酸,可以使用例示於下表中之 1種’但亦可將於下表所示的2種以上的芳香族二羧酸組合 使用。 -11 - 201113144 _〔表 4〕 (X3)芳香族二羧酸 •對苯二甲酸 •間苯二甲酸 •2,6-萘二甲酸 •1,5-萘二甲酸 •4,4’-聯苯二甲酸 •甲基對苯二甲酸 •甲基間苯二甲酸 此外,由耐熱性的觀點考慮,以使用對苯二甲酸、或 對苯二甲酸和2,6 -萘二甲酸兩種爲佳,由低熱膨脹性的觀 點考慮,以使用2,6-萘二甲酸爲佳。 作爲適合的脂肪酸酐,可以使用例示於下表中之1種 ,但亦可將於下表所示的2種以上的脂肪酸酐組合使用。 〔表5〕 (Χ4)脂肪酸酐 •醋酸酐 —溴醋酸酐 •丙酸酐 .二溴醋酸酐 •丁酸酐 •三溴醋酸酐 •異丁酸酐 •一氟醋酸酐 .戊酸酐 .二氟醋酸酐 •新戊酸酐 •三氟醋酸酐 •2-乙基己酸酐 .戊二酸酐 •一氯醋酸酐 •馬來酸酐 •二氯醋酸酐 .琥珀酸酐 •三氯醋酸酐 •β-溴丙酸酐 接著’將上述原料(XI)〜(Χ4)導入反應容器內 -12- 201113144 ,然後,將促進熔融聚合的觸媒(Χ5 )導入反應容器內, 在特定的熔融聚合溫度Τ(Μ)下,加熱反應容器。此外 ,在加熱期間,攪拌內容物。 作爲加入原料的觸媒(Χ5),已知有各種觸媒,但可 使用適合的咪唑化合物。 〔表6〕 (X5)觸媒 •味唑 •1-氰乙基-2-甲基咪唑 • 1-甲基咪唑 •1-氰乙基-2-苯基咪唑 •2-甲基咪唑 •4-氰乙基-2-乙基-4-甲基咪唑 •4-甲基咪唑 •1-胺乙基-2-甲基咪唑 •1-乙基咪唑 •2-烷基-4-甲醯基咪唑 •2-乙基咪唑 •2,4-二烷基-5·甲醯基咪哩 •4-乙基咪唑 •1-苄基-2-苯基咪唑 •1,2-二甲基咪唑 •1-胺乙基-2-甲基咪唑 •1,4-二甲基咪唑 •1-胺乙基-2-乙基咪唑 •2,4-二甲基咪唑 -4-甲醯基咪唑 •1-甲基-2-乙基咪唑 •2-甲基-4-甲醯基咪唑 •1-甲基-4-乙基咪唑 •4-甲基-5-甲醯基咪唑 •1-乙基-2-甲基咪唑 •2-乙基-4-甲基-5-甲醯基咪哩 •1-乙基-2-乙基咪唑 •2-苯基-4-甲基-4·甲醯基咪唑 •1-乙基-2-苯基咪唑 •2-乙基_4-甲基咪唑 •2-苯基咪唑 •1-苄基-2-甲基咪唑 •2·苯基-4-甲基咪唑 溶融聚合溫度T ( Μ )係以在聚合初期爲18〇〜32(rc 將其以〇.3〜5 .Ot /分鐘的比例升溫,最終成爲280〜400 -13- 201113144 °c爲佳。經聚合生成副產物脂肪酸,但以邊將脂肪酸排除 於體系外邊進行聚合爲佳。熔融聚合的氛圍氣係以在常壓 下,在氮、氬等的惰性氣體氛圍氣下爲佳。另外,熔融聚 合亦可在減壓下進行。熔融聚合的反應時間沒有特別限定 ,但通常爲0.3〜10小時左右。 所得到的固形分經冷卻至室溫,以粗粉碎機粉碎後, 在氮氛圍氣下,藉由從室溫升溫到固相聚合反應進行的溫 度T ( °C ),可得到液晶性聚酯(作爲(P ))。固相聚合 溫度T ( °C )通常爲200〜35〇°C左右,處理時間通常爲1〜 2 0小時左右。這樣所得到的液晶性聚酯的重平均分子量沒 有特別限定,但以1 0000〜5 0000爲佳。所得到的聚酯爲液 晶性一事係可藉由偏光顯微鏡的觀察等來確認。 此外,由於液晶性聚酯廣泛銷售,因此也可以購得, 即使其原料構成非爲上述者也可使用。 (2 )含有液晶性聚酯和無機塡料的樹脂組成物的造粒步 驟 藉由將上述的(P )液晶性聚酯和(X6 )無機塡料混 合,使用造粒機(例如:同向雙軸押出機)進行造粒,可 以得到粒狀的熱塑性樹脂組成物(作爲(Q )樹脂組成物 )0 作爲(X6 )無機塡料,可以使用以下的1種,但也可 以使用2種以上。此外,視需要可進一步混合適當的無機 塡料。以下爲現在已知適合的無機塡料。 -14- 201113144 〔表7〕 (X6憮機塡料 纖維狀 塡料 名稱 化學組成 纖維直徑 (μηι) 纖維長度 (μηι) 玻璃 Si02 3-25 30-3000 矽灰石 CaSi03 0.1-40 5-600 岩綿 Si02Al2〇3Fe203 MgOMnOCaO 1-20 100-800 矽酸鋁 Al203-3Si02 1-5 10-100 氧化鋁 Al2〇3 2-50 10-100 碳化砂 SiC 0.05-2.0 5-200 不鏽鋼纖維 FeCrNi FeNiCrMo FeCr 10-100 300-4000 銅纖維 Cu 10-100 300-4000 氮化矽 SiN 0.05-2.0 5-200 鈦酸鉀 K20-8Ti02 K20-6Ti02 0.1-1.5 10-100 鈦酸鋇 BaO*Ti02 0.2-2.0 10-30 硼酸銘 2B2〇3-9Al2〇3 0.5-1.0 10-30 氧化鈦 Ti02 0.05-0.5 1.5-15 碳酸鈣 CaC03 0.5-1.0 20-30 鹼性硫酸鎂 MgS04_2H20 0.5-10 8-100 氧化鋅 Zn02 0.2-3.0 2-50 碳纖維 C 0.1-30 30-6000 碳奈米管 C 0.001-0.15 1-20 硬矽鈣石(矽 酸鈣) 6Ca06Si02_H20 0.05-0.2 10-20 板狀塡料 名稱 化學組成 ϋ@(μιτι) 滑石 (含水矽酸鎂) 〔Mg3Si4O10(OH)2〕 0.5-50 雲母 K20.3Al203.6Si02.2H20 K20-6MgOAl203*6Si〇2-2H20 3-700 石墨 C 4-25 塊狀塡料 名稱 化學組成 粒徑(μηι) 氧化鋁 Al2〇3 0.01-1000 碳化矽 SiC 0.01-1000 氮化矽 SiN 0.01-1000 氧化鎂 MgO 0.01-1000 石墨 C 4-25 -15- 201113144 此外,在纖維狀塡料的纖維直徑和纖維長度滿足纖@ 直徑爲〇·〇5〜15μηι、纖維長度爲5〜200μιη時,可得到下述 效果:所得到的樹脂成形體的強度、特別是表示樹脂流動 末端之間的接合面強度的熔接強度進一步提升的效果、所 得到的樹脂成形體的表面粗糙度難以增加,難以產生粉塵 的效果,這些値在上述範圍以外時,會有熔接強度降低、 變得容易產生粉塵的傾向。特別是,本發明所使用的晶鬚 係由垂直於長度方向的截面面積大於0且爲5x1 04μιη以下、 長寬比爲1 0以上之單結晶所構成的人造結晶性纖維,在使 用它時,具有所得到的樹脂成形體的表面粗糙度難以增加 ,更難以產生粉塵的效果》 藉由使用上述範圍的纖維狀塡料,由於樹脂覆蓋纖維 狀塡料表面,在樹脂成形體的最表面纖維狀塡料難以存在 ,因此可以抑制粉塵產生。 用於製造(Q )樹脂組成物的(Ρ )液晶性聚酯和( Χ6 )無機塡料的混合比設定如下。 〔表8〕 (Q)樹脂組成物 (Ρ) ί 庚晶性聚酯(重量份) G (P) (Χ6)無機塡料 (Χ6A )纖維狀麵(重量份) G (X6A) (X6B)板狀塡料(重量份) G (X6B) 在(Ρ )液晶性聚酯的重量份G ( Ρ ) =100時,(Χ6 ) 無機塡料的重量份G(X6) = G(X6A) + G(X6B)設定 -16 - 201113144 爲5〜250。(X6)無機塡料的重量份在上述的範圍內時, 在維持流動性的同時,可得到機械強度的提高、樹脂成形 體的尺寸性提局的效果,在無機塡料的重量份比上限値高 時’難以維持流動性,在比上述下限値低時,樹脂成形體 的尺寸穩定性降低,而難以得到期望尺寸的樹脂成形體, 又,液晶聚酯強烈表現出各向異性,而有在樹脂成形體發 生翹曲等的可能性。 又’上述無機塡料含有板狀塡料時,有降低液晶聚醋 的各向異性,抑制樹脂成形體之翹曲的效果。 又’該纖維狀塡料以含有未經表面塗佈處理的纖維狀 塡料爲佳。此時’由於沒有由有機物產生氣體的情況,因 此可得到在樹脂內不產生氣泡的效果。 又’無機塡料也可以只含有纖維狀塡料。即使在這種 情況下’在(P )液晶性聚酯的重量份G ( P ) = 1 〇 〇時,( X6)無機塡料的重量部G(X6) = g(X6A)也設定爲5〜 250。(X6)無機塡料的重量份在上述的範圍內時,在維 胃 '流動性的同時’可得到機械強度提高、樹脂成形體的尺 寸性提高的效果,在無機塡料的重量份比上限値高時,難 以維持流動性’在比上述下限値低時,樹脂成形體的尺寸 穩定性降低’難以得到期望尺寸的樹脂成形體,又,液晶 聚II強烈表現出各向異性,而有在樹脂成形體發生翹曲等 的可能性。 (3 )朝模具內注入樹脂的步驟 -17- 201113144 在已被加熱的上下模具間的空間內,熔融並注入已造 粒的(Q)樹脂組成物,進行注射成形。加熱以使用高頻 感應加熱加熱器(IH加熱器)爲佳》 (4 )模具冷卻步驟 在模具內注入(Q )樹脂組成物後,藉由冷卻模具, 而固化樹脂組成物,然後,打開模具,可得到樹脂成形體 〇 如上所述,於本實施形態中,樹脂成形體的製造方法 具備:將藉由混合(P)熱塑性樹脂和(X6)無機塡料而 進行造粒所得到的(Q )樹脂組成物注入已被加熱的模具 間的步驟,和藉由冷卻模具而固化(Q )樹脂組成物以得 到樹脂成形體的步驟。 在此,在將(Q )樹脂組成物的流動開始溫度設爲T 1 C °C ),將朝模具注入(Q )樹脂組成物時之模具的溫度 設爲 T2 ( °C )時,滿足關係式(T2 ( °C ) 2 T1 ( °C ) -120 °C ) » 亦即,經本案發明者們深入硏究樹脂成形體的製造方 法的結果發現,在由在(P )熱塑性樹脂中經混合(X6 ) 無機塡料而造粒的(Q )樹脂組成物以進行成形時,樹脂 成形體的剛性提高,此時,在滿足上述關係式時,可以顯 著地抑制由樹脂成形體產生的粉塵。 此外,即使在使用聚丙烯樹脂、聚對苯二甲酸丁二醇 酯樹脂 '聚苯乙烯樹脂、丙烯酸樹脂、聚碳酸酯樹脂、聚 -18- 201113144 酯樹脂、聚醯胺樹脂、聚縮醛樹脂、聚苯醚樹脂、氟樹脂 、聚苯硫醚樹脂、聚颯樹脂、聚芳酯樹脂、聚醚醯亞胺樹 脂、聚醚颯樹脂、聚醚酮樹脂、聚醯胺醯亞胺樹脂、聚醢 亞胺樹脂等的(p)液晶性聚酯以外的熱塑性樹脂時,也 可以得到上述的效果。其原因在於,熱塑性樹脂係因藉由 使模具溫度爲高溫,固化難以進行,因此在成形體的最表 面纖維狀塡料難以存在,可以抑制粉塵產生。當然,上述 熱塑性樹脂係以液晶性聚酯(液晶聚合物)爲佳。由於液 晶聚合物在模具內的流動性優異,因此可以提高樹脂成形 體的精度。又,在混合無機塡料和液晶聚合物時,可以得 到剛性非常高的樹脂成形體。 又,加熱模具的加熱器係以高頻感應加熱加熱器(IH 加熱器)爲佳。在使用IH加熱器進行加熱時,由於可以迅 速加熱模具,因此生產效率提高。 第3圖爲具備IH加熱器的樹脂成形裝置的縱向截面圖 。於該圖中,顯示上下2個IH加熱器。 下部的IH加熱器具備:具有構成模具之樹脂成形用凹 凸模型MA的金屬製頂板21A、被設置於金屬製頂板21A之 金屬製的柱材21A’、 23A、和包圍柱材21A’、23A的軸之 周圍的線圈22A。上部的IH加熱器具備:具有構成模具之 樹脂成形用凹凸模型MB的金屬製頂板21B、設置於金屬製 頂板21B之金屬製的柱材21B’、23B'和包圍柱材21B’、 23B的軸之周圍的線圈22B。由於上部的樹脂成形用凹凸模 型MB在該圖的箭頭方向上移動’因此模具會打開或關閉 -19- 201113144 。在關閉已被加熱之樹脂成形用凹凸模型ΜΑ、MB的狀態 下,在這些樹脂成形用凹凸模型ΜΑ、MB之間的空間內, 將(Q )樹脂組成物RGN邊熔融邊注入,進行射出成形。 若對線圈22A、22B進行通電,則金屬製的柱材(的外 側構件21 A’、2 1B’)被感應加熱,該熱係經由內側構件 23A、23B,傳導至金屬製頂板21A、21B。由於在金屬製 頂板21A、21B上設置有樹脂成形用的凹凸模型ΜΑ、MB, 因此樹脂成形用的凹凸模型MA、MB會被加熱。在這樣的 結構時,由於有助於具有樹脂成形用凹凸模型MA、MB之 加熱的構件,亦即體積比較小的柱材被選擇性地感應加熱 ,該熱被傳導至樹脂成形用的凹凸模型ΜΑ、MB,因此可 以抑制生產時的能量消耗量,可降低生產成本。 此外,相比較於柱材的外側構件21 A’、21B’的材料( 例如:不鏽鋼:Fe ),內側構件23A、23B的部分可使用熱 傳導率高的材料(例如:Cu)製造,可進行高效率地熱傳 導。 又’藉由上述製造方法所製造的樹脂成形體係可低粉 塵化。低粉塵的特性係可特別運用於繼電器。 第1圖爲將樹脂成形體作爲容器使用之繼電器的分解 斜視圖,第2圖爲第1圖所示之繼電器的縱向截面圖。 該繼電器具備由上述樹脂成形體所構成的容器1、2及 配置在容器1、2內的繼電器本體。將樹脂成形體作爲容器 1、2使用的繼電器,由於爲低粉塵,因此在繼電器的接點 10A、10B之間不會發生粉塵阻塞,可以維持良好的接點接 -20- 201113144 觸。 詳而言之,該繼電器具備:構成容器下部的底板部1 、構成容器上部的包圍體2、和配置在容器內的繼電器本 體。繼電器本體具備:沿著Z軸貫通線圏8之中央的磁心1 1 、位於線圈9的軸方向之一端的下板3、和與下板3—起夾 持線圏的上板6,在X軸方向之一端直1L板4以由底板部1立 設的方式配置。直立板4係在XZ平面內彎曲成L字型之構 件的一部分,該構件的底部係被夾持在底板部1和下板3之 間。此外,XYZ正交坐標系係如圖所示進行設定。 在直立板4的外側倂設由導電性的彈簧材料所構成的 電極5A,電極5A在XZ平面內彎曲,以與樹脂製的骨架部6 相對向的方式使電極5A朝X軸方向延伸,該電極5A的端部 構成接點1 Ο A。 在直立板4的相反側,電極5B位於與電極5A—起夾持 線圈8的位置。電極5 B由底板部1延伸,在XZ平面內彎曲 ’延伸至與電極5A相對向的位置爲止,電極5B的前端部構 成接點1 0B。骨架部6的上板係固定磁心Η的上端,截面L 字型之直立板4的下部水平板係固定磁心1 1的下端。電線 圈8的兩端係連接於由底板部1向外部延伸的一對引線端子 9 ’若對引線端子9進行通電,則固定在電極5A之上部位置 的下面的磁性體7會被拉向線圈8,電極5A反抗彈力而沿著 箭頭Z1所示的方向朝-Z方向移動,同時,接點10A沿著 箭頭Z2所示的方向朝一 Z方向移動。藉此,接點1 0A和1 0B 接觸。 -21 - 201113144 若停止對線圈8的通電,則電極5A會隨著彈力而復原 到原始位置,接點1 0A和10B會分離。在此,除了容器1、2 之外’下板3、骨架部6亦由上述樹脂成形體所構成。在上 述樹脂成形體中,由於產生的粉塵少,因此在繼電器10A 、10B之間不會發生粉塵阻塞,可以維持良好的接點接觸 〔實施例〕 以下,針對本發明的實施例進行說明,但本發明不受 實施例限制。 (實驗條件) 首先,按照以下順序,製造液晶性聚酯(P 1、P2 ), 且使用該液晶聚酯製造熱塑性樹脂組成物(Q 1、Q2 )。 又,使用聚對苯二甲酸丁二醇酯樹脂(東麗(TORAY )股 份有限公司製,商品名電信(telecom)(註冊商標):等 級(grade ) 140 1 χ06 )、聚苯硫醚樹脂(DIC股份有限公 司製,T-4G ),製造熱塑性樹脂組成物(Q3、Q4、Q5 ) 。之後,在已被加熱的模具內注入熱塑性樹脂組成物(Q 1 、Q2、Q3、Q4、Q5 ),將其冷卻而製造樹脂成形體。 (I)液晶性聚酯(Ρ 1 )的製造 反應裝置係具備:備有在反應容器內轉動之葉片的攪 拌裝置、測量攪拌裝置葉片之旋轉扭矩的扭矩測量器、導 -22- 201113144 入氮氣到反應容器內的氮氣導入管、測量反應容器內之溫 度的溫度計、及冷卻由反應容器蒸餾出的氣體的回流冷凝 器。 在該反應裝置的反應容器內,導入以下的原料(XI) 〜(X4)。 〔表9〕 原料 重量 (XI) 對羥基苯甲酸 994_5g (7.2莫耳) (X2) 4,4’-二羥基聯苯 446.9g (2.4莫耳) (X3) 對苯二甲酸 299_0g (1_8莫耳) 間苯二甲酸 99.7g (0.6莫耳) (X4) 醋酸酐 1347.6g (13.2莫耳) 首先,經由氮氣導入管將氮氣導入反應容器內,以充 足的氮氣置換容器內部的氣體。使氮氣在反應容器內流動 ,同時用30分鐘將反應容器升溫到l5〇°C,保持該溫度, 回流3小時。此時,回流冷凝器係回流醋酸。 之後,添加2.4g觸媒(X5 ) " 1-甲基咪唑”後’蒸餾 除去蒸餾出的副反應生成物醋酸、未反應的醋酸酐,同時 用2小時5 0分鐘升溫到3 2 0 °C,將確認藉由扭矩測量器所測 量之扭矩上升的時刻視爲反應完畢’取出反應容器內的內 容物。 將所得到的固形分冷卻至室溫,使用粗粉碎機粉碎後 ,在氮氛圍氣下用1小時從室溫升溫到2 5 〇 °c ’用5小時從 2 5 0。(:升溫到2 9 5 °C,在2 9 5 °C下保持3小時,在固相進行聚 -23- 201113144 合反應,而得到液晶性聚酯(P 1 )。 (Π)液晶性聚酯(P2 )的製造步驟 在上述反應裝置的容器內導入以 〔表10 對羥基苯甲酸[Table 3 (X2) Aromatic Glycol • 4,4′-Dihydroxybiphenyl. Hydroquinone-Resorcinol-Methyl Ammonia _Chlorohydroquinone•Ethyloxyhydroquinone. Nitrohydroquinone • 1,4-Dihydroxynaphthalene•1,5-dihydroxynaphthalene•1,6-dihydroxynaphthalene•2,6-dihydroxynaphthalene•2,7-dihydroxynaphthalene•2,2-bis(4-hydroxyl Phenyl)propane • 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane • 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane_2, 2-bis(4_transyl-3-methylphenyl)propane. 2,2-bis(4-hydroxy-3-chlorophenyl)propane (4-hydroxyphenyl)methane•bis-(4- Benzyl-3,5-dimethylphenyl)methane•bis-(4-hydroxy-3,5·dichlorophenyl)methane•bis-(4_transyl- 3,5-dibromophenyl)methane • bis-(4_carbyl-3-methylphenyl)methane•bis(4-pyridyl-3-chlorophenyl)methane•U·bis(4_ylphenyl)cyclohexane•double -(4.hydroxyphenyl)ketone•bis-(4-hydroxy-3,5-dimethylphenyl)one•bis-(4-carbazhen-3,5-dichlorophenyl)one • double- (4-hydroxyphenyl) sulfide • bis-(4-pyridylphenyl)phosphonium bis-(4-hydroxyphenyl)ether----J as a suitable aromatic dicarboxylic acid One type used in the following table can be used, but two or more kinds of aromatic dicarboxylic acids shown in the following table can also be used in combination. -11 - 201113144 _[Table 4] (X3) Aromatic Dicarboxylic Acid • Terephthalic Acid • Isophthalic Acid • 2,6-Naphthalene Dicarboxylic Acid • 1,5-Naphthalene Dicarboxylic Acid • 4,4′-Linked Phthalic acid, methyl terephthalate, methyl isophthalic acid, and from the viewpoint of heat resistance, it is preferred to use terephthalic acid, or terephthalic acid and 2,6-naphthalene dicarboxylic acid. From the viewpoint of low thermal expansion, it is preferred to use 2,6-naphthalenedicarboxylic acid. As a suitable fatty acid anhydride, one of the following examples may be used, but two or more kinds of fatty acid anhydrides shown in the following table may be used in combination. [Table 5] (Χ4) Fatty acid anhydride, acetic anhydride, bromoacetic anhydride, propionic anhydride, dibromoacetic anhydride, butyric anhydride, tribromoacetic anhydride, isobutyric anhydride, monofluoroacetic anhydride, valeric anhydride, difluoroacetic anhydride, Penic anhydride • Trifluoroacetic anhydride • 2-ethylhexanoic anhydride • Glutaric anhydride • Monochloroacetic anhydride • Maleic anhydride • Dichloroacetic anhydride • Succinic anhydride • Trichloroacetic anhydride • β-Bromopropionic anhydride followed by ' The above raw materials (XI) to (Χ4) are introduced into the reaction vessel -12-201113144, and then the catalyst (Χ5) which promotes the melt polymerization is introduced into the reaction vessel, and the reaction vessel is heated at a specific melt polymerization temperature Μ(Μ). . In addition, the contents are stirred during heating. As the catalyst (Χ5) to which the raw material is added, various catalysts are known, but a suitable imidazole compound can be used. [Table 6] (X5) Catalyst • Isozoate • 1-cyanoethyl-2-methylimidazole • 1-methylimidazole • 1-cyanoethyl-2-phenylimidazole • 2-methylimidazole • 4 -Cyanoethyl-2-ethyl-4-methylimidazole•4-methylimidazole•1-Aminoethyl-2-methylimidazole•1-ethylimidazole•2-alkyl-4-methylindolyl Imidazole • 2-ethylimidazole • 2,4-dialkyl-5·methylpyridyl • 4-ethylimidazole • 1-benzyl-2-phenylimidazole • 1,2-dimethylimidazole • 1-Aminoethyl-2-methylimidazole•1,4-dimethylimidazole•1-Aminoethyl-2-ethylimidazole•2,4-Dimethylimidazole-4-carboxamidazole•1 -Methyl-2-ethylimidazole•2-methyl-4-carbamimidazole•1-methyl-4-ethylimidazole•4-methyl-5-carbamimidazole•1-ethyl- 2-methylimidazole•2-ethyl-4-methyl-5-methylpyridinyl•1-ethyl-2-ethylimidazole•2-phenyl-4-methyl-4·methyl hydrazino Imidazole•1-ethyl-2-phenylimidazole•2-ethyl_4-methylimidazole•2-phenylimidazole•1-benzyl-2-methylimidazole•2·phenyl-4-methyl The imidazole melt polymerization temperature T (Μ) is 18 〇 32 in the initial stage of polymerization (rc will be 〇.3~5 .Ot / The proportion of the bell is raised, and finally it is preferably 280~400 -13-201113144 °c. It is polymerized to form by-product fatty acid, but it is better to remove the fatty acid outside the system for polymerization. The melt polymerization atmosphere is at atmospheric pressure. In the inert gas atmosphere such as nitrogen or argon, the melt polymerization may be carried out under reduced pressure. The reaction time of the melt polymerization is not particularly limited, but is usually about 0.3 to 10 hours. After cooling to room temperature and pulverizing in a coarse pulverizer, a liquid crystalline polyester (as (P) can be obtained by heating from room temperature to a temperature T (° C.) by solid phase polymerization under a nitrogen atmosphere. The solid phase polymerization temperature T (°C) is usually about 200 to 35 ° C, and the treatment time is usually about 1 to 20 hours. The weight average molecular weight of the liquid crystalline polyester thus obtained is not particularly limited, but It is preferably from 1 0000 to 50,000. The liquid crystal property of the obtained polyester can be confirmed by observation by a polarizing microscope, etc. Further, since the liquid crystalline polyester is widely sold, it can be purchased even if its raw material is composed. non- The above may also be used. (2) A granulation step of a resin composition containing a liquid crystalline polyester and an inorganic cerium is carried out by mixing the above (P) liquid crystalline polyester and (X6) inorganic cerium, using granulation The granulation of a machine (for example, a co-axial twin-axis extruder) can obtain a granular thermoplastic resin composition (as (Q) resin composition) 0 as (X6) inorganic mash, and the following one can be used, but Two or more types can also be used. Further, an appropriate inorganic material may be further mixed as needed. The following are known inorganic dips known to date. -14- 201113144 [Table 7] (X6 塡 machine 纤维 fiber 塡 material name chemical composition fiber diameter (μηι) fiber length (μηι) glass SiO 2 3-25 30-3000 ash stone CaSi03 0.1-40 5-600 rock Mian Si02Al2〇3Fe203 MgOMnOCaO 1-20 100-800 Aluminum silicate Al203-3Si02 1-5 10-100 Alumina Al2〇3 2-50 10-100 Carbonized sand SiC 0.05-2.0 5-200 Stainless steel fiber FeCrNi FeNiCrMo FeCr 10- 100 300-4000 Copper fiber Cu 10-100 300-4000 Tantalum nitride SiN 0.05-2.0 5-200 Potassium titanate K20-8Ti02 K20-6Ti02 0.1-1.5 10-100 Barium titanate BaO*Ti02 0.2-2.0 10-30 Boric acid Ming 2B2〇3-9Al2〇3 0.5-1.0 10-30 Titanium oxide Ti02 0.05-0.5 1.5-15 Calcium carbonate CaC03 0.5-1.0 20-30 Alkaline magnesium sulfate MgS04_2H20 0.5-10 8-100 Zinc oxide Zn02 0.2-3.0 2-50 Carbon fiber C 0.1-30 30-6000 Carbon nanotube C 0.001-0.15 1-20 Hard strontium calcium (calcium citrate) 6Ca06Si02_H20 0.05-0.2 10-20 Plate-shaped material name Chemical composition ϋ@(μιτι) Talc (aqueous magnesium citrate) [Mg3Si4O10(OH)2] 0.5-50 mica K20.3Al203.6Si02.2H20 K20-6MgOAl203*6Si〇2-2H20 3-700 Graphite C 4-25 block Material name Chemical composition Particle size (μηι) Alumina Al2〇3 0.01-1000 Tantalum carbide SiC 0.01-1000 Tantalum nitride SiN 0.01-1000 Magnesium oxide MgO 0.01-1000 Graphite C 4-25 -15- 201113144 In addition, in the fiber When the fiber diameter and the fiber length of the mash material satisfy the fiber diameter of 〇·〇5 to 15 μm, and the fiber length is 5 to 200 μm, the following effects can be obtained: the strength of the obtained resin molded body, particularly the flow end of the resin The effect of further improving the welding strength of the joint surface strength, the surface roughness of the obtained resin molded body is hard to increase, and it is difficult to generate dust. When the bismuth is outside the above range, the weld strength is lowered and the pressure is likely to be generated. The tendency of dust. In particular, the whiskers used in the present invention are artificial crystal fibers composed of a single crystal having a cross-sectional area perpendicular to the longitudinal direction of more than 0 and 5×10 4 μm or less and an aspect ratio of 10 or more, when used, It is difficult to increase the surface roughness of the obtained resin molded body, and it is more difficult to generate dust. By using the fibrous material of the above range, since the resin covers the surface of the fibrous material, the outermost surface of the resin molded body is fibrous. The dip is difficult to exist, so dust generation can be suppressed. The mixing ratio of the (Ρ) liquid crystalline polyester and the (Χ6) inorganic pigment used for the production of the (Q) resin composition is set as follows. [Table 8] (Q) Resin composition (Ρ) ί Glyceryl polyester (parts by weight) G (P) (Χ6) Inorganic coating (Χ6A) Fibrous surface (parts by weight) G (X6A) (X6B) Plate-shaped material (parts by weight) G (X6B) When the weight fraction of (Ρ) liquid crystalline polyester G ( Ρ ) = 100, (Χ6) The weight of the inorganic material G(X6) = G(X6A) + G(X6B) is set to -16 - 201113144 for 5~250. (X6) When the weight fraction of the inorganic coating is within the above range, the fluidity can be improved, and the effect of improving the mechanical strength and the dimensional improvement of the resin molded body can be obtained, and the upper limit of the weight ratio of the inorganic coating material can be obtained. When the height is high, it is difficult to maintain the fluidity, and when it is lower than the lower limit, the dimensional stability of the resin molded body is lowered, and it is difficult to obtain a resin molded body having a desired size, and the liquid crystal polyester strongly exhibits anisotropy. There is a possibility that warpage or the like occurs in the resin molded body. Further, when the inorganic material contains a plate-like material, the anisotropy of the liquid crystal polycondensation is lowered, and the warpage of the resin molded body is suppressed. Further, the fibrous material is preferably a fibrous material which is not subjected to surface coating treatment. At this time, since there is no case where a gas is generated from an organic substance, an effect of not generating bubbles in the resin can be obtained. Further, the inorganic mash may contain only fibrous mash. Even in this case, when the weight fraction G(P) of the (P) liquid crystalline polyester is 1 〇〇, the weight portion G(X6) = g(X6A) of the (X6) inorganic tantalum is also set to 5 ~ 250. (X6) When the weight fraction of the inorganic mash is within the above range, the effect of improving the mechanical strength and the dimensionality of the resin molded body at the same time as the 'liquidity of the stomach' can be obtained, and the upper limit of the weight ratio of the inorganic mash is obtained. When the enthalpy is high, it is difficult to maintain the fluidity. When the temperature is lower than the lower limit, the dimensional stability of the resin molded body is lowered. It is difficult to obtain a resin molded body having a desired size, and the liquid crystal poly II strongly exhibits anisotropy. The resin molded body may be warped or the like. (3) Step of injecting resin into the mold -17- 201113144 In the space between the upper and lower molds which have been heated, the granulated (Q) resin composition is melted and injected, and injection molding is performed. Heating to use a high-frequency induction heating heater (IH heater) is preferred. (4) Mold cooling step After the (Q) resin composition is injected into the mold, the resin composition is cured by cooling the mold, and then the mold is opened. In the present embodiment, the method for producing a resin molded body includes a method of granulating by mixing (P) a thermoplastic resin and (X6) an inorganic mash (Q). The step of injecting the resin composition between the heated molds, and the step of curing the (Q) resin composition by cooling the mold to obtain a resin molded body. Here, when the flow start temperature of the (Q) resin composition is T 1 C ° C ) and the temperature of the mold when the (Q ) resin composition is injected into the mold is T2 (° C ), the relationship is satisfied. (T2 ( ° C ) 2 T1 ( ° C ) -120 ° C ) » That is, as a result of inventors of the present invention who have intensively studied the manufacturing method of the resin molded body, it has been found that in (P) thermoplastic resin When the (Q) resin composition which is granulated by mixing (X6) the inorganic material is molded, the rigidity of the resin molded body is improved. In this case, when the above relational expression is satisfied, the dust generated by the resin molded body can be remarkably suppressed. . In addition, even when using polypropylene resin, polybutylene terephthalate resin 'polystyrene resin, acrylic resin, polycarbonate resin, poly-18-201113144 ester resin, polyamide resin, polyacetal resin , polyphenylene ether resin, fluororesin, polyphenylene sulfide resin, polyfluorene resin, polyarylate resin, polyether phthalimide resin, polyether oxime resin, polyether ketone resin, polyamidoximine resin, poly In the case of a thermoplastic resin other than the (p) liquid crystalline polyester such as a quinone imine resin, the above effects can be obtained. The reason for this is that the thermoplastic resin is hard to be cured by setting the temperature of the mold to a high temperature. Therefore, the fibrous material is hard to be present on the outermost surface of the molded body, and generation of dust can be suppressed. Of course, the above thermoplastic resin is preferably a liquid crystalline polyester (liquid crystal polymer). Since the liquid crystal polymer is excellent in fluidity in the mold, the precision of the resin molded body can be improved. Further, when the inorganic pigment and the liquid crystal polymer are mixed, a resin molded body having a very high rigidity can be obtained. Further, it is preferable that the heater for heating the mold is a high frequency induction heating heater (IH heater). When the IH heater is used for heating, the productivity is improved because the mold can be heated quickly. Fig. 3 is a longitudinal sectional view of a resin molding apparatus equipped with an IH heater. In the figure, two IH heaters are shown. The lower IH heater includes a metal top plate 21A having a resin molding uneven pattern MA constituting a mold, metal pillars 21A' and 23A provided on the metal top plate 21A, and surrounding pillars 21A' and 23A. A coil 22A around the shaft. The upper IH heater includes a metal top plate 21B having a resin molding uneven pattern MB constituting a mold, metal pillars 21B' and 23B' provided on the metal top plate 21B, and a shaft surrounding the pillars 21B' and 23B. The coil 22B around it. Since the upper concave-convex mold MB for resin molding moves in the direction of the arrow of the figure', the mold is opened or closed -19-201113144. In the space between the resin molding concave-convex molds ΜΑ and MB, the (Q) resin composition RGN is injected while being melted, and the injection molding is performed in a state in which the resin molding concave-convex mold ΜΑ and MB are closed. . When the coils 22A and 22B are energized, the metal pillars (the outer members 21 A' and 2 1B') are inductively heated, and the heat is conducted to the metal top plates 21A and 21B via the inner members 23A and 23B. Since the concave-convex molds MB and MB for resin molding are provided on the metal top plates 21A and 21B, the concave-convex models MA and MB for resin molding are heated. In such a configuration, the member which contributes to the heating of the concave-convex models MA and MB for resin molding, that is, the column having a relatively small volume, is selectively inductively heated, and the heat is transmitted to the concave-convex model for resin molding. ΜΑ, MB, therefore, can suppress the energy consumption during production, and can reduce the production cost. Further, compared to the material of the outer members 21 A', 21B' of the column (for example, stainless steel: Fe), the portions of the inner members 23A, 23B can be made of a material having a high thermal conductivity (for example, Cu), and can be made high. Efficient geothermal conduction. Further, the resin molding system produced by the above production method can be made dust-free. The low dust characteristics are particularly useful for relays. Fig. 1 is an exploded perspective view showing a relay in which a resin molded body is used as a container, and Fig. 2 is a longitudinal sectional view of the relay shown in Fig. 1. This relay includes containers 1 and 2 composed of the above-described resin molded body, and a relay body disposed in the containers 1 and 2. Since the resin molded body is used as the relays for the containers 1, 2, since it is low in dust, no dust clogging occurs between the contacts 10A and 10B of the relay, and a good contact can be maintained -20-201113144. More specifically, the relay includes a bottom plate portion 1 constituting a lower portion of the container, a surrounding body 2 constituting an upper portion of the container, and a relay body disposed in the container. The relay body includes a core 1 1 extending through the center of the coil 8 along the Z-axis, a lower plate 3 located at one end of the coil 9 in the axial direction, and an upper plate 6 sandwiching the wire with the lower plate 3, at X One of the axial direction straight 1L plates 4 is disposed so as to be erected by the bottom plate portion 1. The upright plate 4 is a part of a member bent into an L-shape in the XZ plane, and the bottom of the member is sandwiched between the bottom plate portion 1 and the lower plate 3. In addition, the XYZ orthogonal coordinate system is set as shown in the figure. An electrode 5A made of a conductive spring material is disposed on the outer side of the upright plate 4, and the electrode 5A is bent in the XZ plane, and the electrode 5A is extended in the X-axis direction so as to face the resin frame portion 6. The end of the electrode 5A constitutes a contact 1 Ο A. On the opposite side of the upright plate 4, the electrode 5B is located at a position where the coil 8 is held together with the electrode 5A. The electrode 5B extends from the bottom plate portion 1, and is bent in the XZ plane to extend to a position facing the electrode 5A, and the tip end portion of the electrode 5B constitutes a contact 10B. The upper plate of the frame portion 6 fixes the upper end of the core pin, and the lower horizontal plate of the upright plate 4 of the cross-sectional L-shape fixes the lower end of the core 1 1 . Both ends of the electric coil 8 are connected to a pair of lead terminals 9' extending outward from the bottom plate portion 1. When the lead terminal 9 is energized, the magnetic body 7 fixed to the lower portion of the upper portion of the electrode 5A is pulled toward the coil. 8. The electrode 5A moves in the -Z direction in the direction indicated by the arrow Z1 against the elastic force, while the contact 10A moves in the Z direction in the direction indicated by the arrow Z2. Thereby, the contacts 10A and 10B are in contact. -21 - 201113144 If the energization of the coil 8 is stopped, the electrode 5A will return to the original position with the elastic force, and the contacts 10A and 10B will be separated. Here, in addition to the containers 1, 2, the lower plate 3 and the frame portion 6 are also composed of the above-mentioned resin molded body. In the resin molded body, since dust generated is small, dust clogging does not occur between the relays 10A and 10B, and good contact contact can be maintained. [Embodiment] Hereinafter, an embodiment of the present invention will be described. The invention is not limited by the examples. (Experimental Conditions) First, liquid crystalline polyesters (P1, P2) were produced in the following order, and thermoplastic resin compositions (Q1, Q2) were produced using the liquid crystal polyester. Further, a polybutylene terephthalate resin (manufactured by Toray Co., Ltd., trade name telecommunication (trademark): grade 140 1 χ 06), polyphenylene sulfide resin (manufactured by Toray Co., Ltd.) was used. Manufactured by DIC Corporation, T-4G), a thermoplastic resin composition (Q3, Q4, Q5). Thereafter, a thermoplastic resin composition (Q 1 , Q2, Q3, Q4, Q5 ) is injected into the heated mold, and this is cooled to produce a resin molded body. (I) The production reaction apparatus of the liquid crystalline polyester (Ρ 1 ) includes a stirring device equipped with a blade that rotates in a reaction vessel, and a torque measuring device that measures a rotational torque of the blade of the stirring device, and a nitrogen gas is introduced into the nitrogen gas. A nitrogen gas introduction pipe into the reaction vessel, a thermometer for measuring the temperature in the reaction vessel, and a reflux condenser for cooling the gas distilled from the reaction vessel. The following raw materials (XI) to (X4) were introduced into the reaction vessel of the reaction apparatus. [Table 9] Raw material weight (XI) p-hydroxybenzoic acid 994_5g (7.2 mol) (X2) 4,4'-dihydroxybiphenyl 446.9 g (2.4 mol) (X3) terephthalic acid 299_0 g (1_8 mol) 99.7 g (0.6 mol) of isophthalic acid (X4) 1347.6 g (13.2 mol) of acetic anhydride First, nitrogen gas was introduced into the reaction vessel through a nitrogen introduction tube, and the gas inside the vessel was replaced with sufficient nitrogen. Nitrogen gas was allowed to flow in the reaction vessel while the reaction vessel was heated to l5 ° C for 30 minutes, maintained at this temperature, and refluxed for 3 hours. At this time, the reflux condenser was refluxed with acetic acid. Thereafter, 2.4 g of catalyst (X5) " 1-methylimidazole was added, and then the distilled side reaction product acetic acid and unreacted acetic anhydride were distilled off, and the temperature was raised to 3 2 0 ° over 2 hours and 50 minutes. C, it is confirmed that the time at which the torque measured by the torque measuring device rises is regarded as the completion of the reaction. The contents in the reaction container are taken out. The obtained solid fraction is cooled to room temperature, pulverized by a coarse pulverizer, and then nitrogen atmosphere. Raise from room temperature to 2 5 〇 °c with air for 1 hour. From 5 to 5 hours with 5 hours. (: Warming up to 2 95 ° C, holding at 2 95 ° C for 3 hours, polymerizing in solid phase -23- 201113144 The reaction is carried out to obtain a liquid crystalline polyester (P 1 ). (制造) The production step of the liquid crystalline polyester (P2) is introduced into the container of the above reaction apparatus to [Table 10 p-hydroxybenzoic acid

994.5g (7.多可、 (X2) (X3) 4,4’-二羥基聯苯 446.9g (2.4^5^ 對苯二甲酸 間苯二甲酸 239.0g (1.44草瓦、 159.5g (0,96莫ΕΠ (X4) 醋酸酐 1347.6g (13.2莫K) 反應器內以充足的氮氣置換後,在氮氣氣流下用30分 鐘升溫到1 5 0 °C,保持溫度回流3小時。之後,添加2.4 g觸 媒(X5 ) “ 1 -甲基咪唑”後,蒸餾除去蒸餾出的副反應生 成物醋酸、未反應的醋酸酐,同時用2小時50分升溫到320 °C,將確認扭矩上升的時刻視爲反應完畢,取出內容物。 將所得到的固形分冷卻至室溫,使用粗粉碎機粉碎後,在 氮氛圍氣下用1小時從室溫升溫到220 r,用〇.5小時從22 〇 °C升溫到240。(:,在240°c下保持10小時’在固相進行聚合 反應,而得到液晶聚酯(P2) » (III )熱塑性樹脂組成物(Q1、Q2、Q3、Q4、Q5 )的製 造步驟 首先,作爲無機塡料(X6),準備含有以下材料的無 -24- 201113144 機塡料。 〔表 1 1〕 (X6)無機塡料 (X6A)纖維狀塡料 (X6A1)玻璃纖維 型號:EFH75-01 (Centra聰子股份有限公司製) 材料:玻璃(Si02) 纖維直徑:ΙΟμίΏ 纖維長度:75μηι (Χ6Α2)玻璃纖維 型號:CS03JAPX-1 (Owens Coming公司製) 材料:玻璃(Si02) 纖維直徑:ΙΟμιη 纖維長度。mm (X6A3)氧化鋁纖維 Denkaamsen (註冊商標):(電氣化學工業股份有限 公司製) 材料:含有1〇〇重量%氧化鋁 纖維直徑:3_2μιη 體積密度(bulkdensity) : 0_28g/cm3 (X6B)板狀塡料 型號:X-50 (日本TALC股份有限公司製) 材料:滑石 尺寸:粒徑14·5μηι (X6C)粒狀塡料 (X6C1)氧化鋁纖維粒狀物 將上述氧化鋁纖維攪拌造粒所得之物(*1) 此外,於上述 :* 1 )中記載的(X6C1 )氧化鋁纖維粒 狀物係將(X6A3 ) 氧化銘纖維投入亨歇爾(H e n s c h e 1 )混 合機(川田股份有限公司製,高速流動混合機G1 00 )內攪 拌造粒所得之物。又,亨歇爾混合機係指螺旋混合機式的 -25- 201113144 高速混合機的一種,主要用於粉粒體、塑膠原材料、著色 劑和添加劑等均勻混合的機器。 接著,混合在製造步驟(I)和製造步驟(II)所得的 液晶聚酯(P1、P2) '聚對苯二甲酸丁二醇酯樹脂或聚苯 硫醚樹脂和(X6)無機塡料,使用同向雙軸押出機(池貝 鐵鋼股份有限公司製P C Μ - 3 0 )進行造粒,而得到熱塑性 樹脂組成物。上述之混合比如下。 〔表 12〕 (Q1)熱塑性樹脂 組成物 (Q2)熱塑性樹脂 組成物 (Ρ1)液晶聚酯(重量份) 60 33 (Ρ2)液晶聚酯(重量份) 0 27 (Χ6Α)玻璃纖維(重量份) 40 10 (Χ6Β)滑石(重量份) 0 30 流動開始溫度T1 (°c) 320 307 表13 (Q3)熱塑 性樹脂組成 物 (Q4)熱塑 性樹脂組成 物 (Q5)熱塑 性樹脂組成 物 聚對苯二甲酸丁二醇酯樹脂(重量份) 70 70 0 聚苯硫醚樹脂(重量份) 0 0 70 (X6A2)玻璃纖維(重量份) 30 0 0 (X6C)粒狀塡料(重量份) 0 30 30 流動開始溫度T1 (°C) 234 233 286 測定所得之熱塑性樹脂組成物(Q 1、Q2、Q3、Q4、 Q5 )的流動開始溫度。 -26- 201113144 此外’流動開始溫度雖爲樹脂開始流動的溫度,但爲 了更精密地測定,於本實施例中,流動開始溫度係使用具 有內徑爲lmm、長度爲i〇mm2噴嘴的毛細管流變儀,在 100kg/cm2的負荷下,以4°C/分鐘的升溫速度由噴嘴押出加 熱熔融體時,熔融黏度爲48 000泊的溫度。 (實施例1 ) 使用熱塑性樹脂組成物Q 1,對第3圖的IH加熱器供給 高頻電流,藉由高頻感應加熱使頂板溫度上升後,在頂板 溫度達到200 °C時,進行注射成形。所得到的成形品係厚 度1mm、縱向尺寸70mm、橫向尺寸7mm的長方體。 (實施例2 ) 除了使頂板溫度爲2 2 7 °C以外’與實施例1同樣地進行 測定。 (實施例3 ) 除了使頂板溫度爲2 5 1 °C以外’與實施例1同樣地進行 測定。 (比較例1 ) 除了使頂板溫度爲13 0 °c以外’與實施例1同樣地進行 測定。 -27- 201113144 (比較例2 ) 除了使頂板溫度爲1 8 〇 °C以外’與實施例1同樣地進行 測定》 (評價和結果) 測定由上述長方體的樹脂成形體產生的微粒子(粉麈 )產生量。切斷所得到之成形體的閘門(gate ),藉由熱 型砧(swage)封止其閘門部位後,在500cc的純水中照射 10秒鐘3 8kHz的超音波,進行成形體的洗淨。將已洗淨的 成形體浸漬在500cc純水中’照射10秒鐘38kHz的超音波。 停止照射放置1 〇分鐘後,使用RION股份有限公司製的液 體中微粒子計測器,計算在洗淨水中分散的微粒子數。該 液體中微粒子計測器係由注射式採樣器KZ-3〇Wl (採取微 粒子分散液)、微粒子感測器KS-65、控制器KL-1 1 A構成 ,以個/ml爲單位計算樣品l〇ml中的2μιη〜ΙΟΟμιη尺寸的微 粒子。測定係以每5個樣品進行,將其平均値作爲已分散 的微粒子數進行計算。 以上的結果如下表所示。 -28- 201113144 〔表 14〕 實施例1 實施例2 實施例3 比較例1 比較例2 熱塑性樹脂組成物 〇1 Q1___ 01 01 Q1 流動開始溫度Tl (°c) 320 320 320 320 320 模具溫度T2 rc) 200 227 251 130 180 Tl-120 (°C) 200 200 200 200 200 微粒子產缝(個/ml) 320 264 132 877 589 (實施例4 ) 除了使熱塑性樹脂組成物爲(Q2 )熱塑性樹脂組成物 ,使頂板溫度爲200°C以外,與實施例1同樣地進行測定。 (實施例5 ) 除了使頂板溫度爲2 2 7 °C以外,與實施例4同樣地進行 測定。 (實施例6 ) 除了使頂板溫度爲2 5 1 °C以外’與實施例4同樣地進行 測定。 (比較例3 ) 除了使頂板溫度爲1 3 0 °C以外,與實施例4同樣地進行 測定。 (比較例4 ) 除了使頂板溫度爲1 8 0 C以外’與實施例4同樣地進行 -29- 201113144 測定。 以上的結果如下表所示。 〔表 1 5〕 實施例4 實施例5 實施例6 比較例3 比較例4 熱塑性樹脂組成物 02 Q2 02 02 02 涵開始mn (〇C) 307 307 307 307 307 模具溫度T2 rc) 200 227 251 130 180 Tl-120 (°C) 187 187 187 187 187 微粒子產生暈(個/ml) 420 316 261 887 674 (實施例7 ) 除了使熱塑性樹脂組成物爲(Q3 )熱塑性樹脂組成物 ’使頂板溫度爲1 50°C以外’與實施例1同樣地進行測定。 (比較例5 ) 除了使頂板溫度爲60 °C以外,與實施例7同樣地進行 測定。 (實施例8 ) 除了使熱塑性樹脂組成物爲(Q4 )熱塑性樹脂組成物 ,使頂板溫度爲1 50°C以外,與實施例1同樣地進行測定。 (比較例6 ) 除了使頂板溫度爲60 °C以外,與實施例8同樣地進行 測定。 -30- 201113144 (實施例9 ) 除了使熱塑性樹脂組成物爲(Q5 )熱塑性樹脂組成物 ,使頂板溫度爲2 0 0 °C以外,與實施例1同樣地進行測定。 (比較例7 ) 除了使頂板溫度爲1 3 0 °C以外,與實施例9同樣地進行 測定。 以上結果如下表所示。 表16 實施例7 比較例5 實施例8 比較例6 實施例9 比較例7 熱塑性樹脂組成物 03 03 04 04 05 05 流動開始酿T1 (。〇 234 234 233 233 286 286 模具溫度T2 (°c) 150 60 150 60 200 130 T1-120 (°〇 114 114 113 113 166 166 微粒子產缝(備ml) 112 185 274 2191 1338 1531 由以上實驗結果可知,T2 ( °c ) 2 T1 ( °c ) -1 20 (。〇 )時,可使微粒子產生量顯著減少。又,即使使用藉由混 合單數或多數個液晶性聚酯改變流動開始溫度的熱塑性樹 脂組成物Q 1、Q2中之任一種,在滿足上述關係時,可使 微粒子產生量顯著減少。 又可知,即使使用由聚對苯二甲酸丁二醇酯樹脂或聚 苯硫醚樹脂所生成的熱塑性樹脂組成物Q3、Q4、Q5中之 任一種’在滿足上述關係時,也可使微粒子產生量顯著減 -31 - 201113144 少。 如此一來,藉由使模具溫度T2相對於熱塑性樹脂組成 物的流動開始溫度Τ1爲特定値以上的高溫,由於模具內的 熱塑性樹脂組成物的固化變慢,熱塑性樹脂組成物可維持 在黏彈性低的狀態,因此其間發生相分離,在成形體的最 表面不容易存在無機塡料,故可減少微粒子產生量。 【圖式簡單說明】 第1圖爲使用樹脂成形體作爲容器之繼電器的分解斜 視圖。 第2圖爲第1圖所示之繼電器的縱向截面圖。 第3圖爲含有高頻感應加熱加熱器的樹脂成形裝置的 縱向截面圖。 【主要元件符號說明】 1 :容器(底板部) 2 :容器(包圍體) 3 :下板 4 :直立板 5A ' 5Β :電極 6 :上板(骨架部) 7 :磁性體 8 :線圈 9 :線圈 -32- 201113144 1 0 A、1 0 B :接點 1 1 :磁心 21A、21B:金屬製頂板 2 1 A’、2 1B’ :柱材(外側構件) 22A、22B :線圈 23A、23B :柱材(內側構件) MA、MB :凹凸模型 -33-994.5g (7. Poly, (X2) (X3) 4,4'-dihydroxybiphenyl 446.9g (2.4^5^ terephthalic acid isophthalic acid 239.0g (1.44 grass tile, 159.5g (0, 96 Mo (X4) acetic anhydride 1347.6 g (13.2 Mo K) After replacing the reactor with sufficient nitrogen, the temperature was raised to 150 ° C for 30 minutes under a nitrogen stream, and the temperature was maintained at reflux for 3 hours. Thereafter, 2.4 was added. After the catalyst (X5) "1-methylimidazole", the distilled side reaction product acetic acid and unreacted acetic anhydride are distilled off, and the temperature is raised to 320 °C in 2 hours and 50 minutes, and the time at which the torque rise is confirmed. After the completion of the reaction, the contents were taken out. The obtained solid fraction was cooled to room temperature, pulverized by a coarse pulverizer, and then heated from room temperature to 220 r in a nitrogen atmosphere for 1 hour, and used for 5 hours from 22 hours. 〇 ° C is heated to 240. (:, held at 240 ° C for 10 hours 'polymerization in the solid phase to obtain liquid crystal polyester (P2) » (III) thermoplastic resin composition (Q1, Q2, Q3, Q4 , Q5) Manufacturing procedure First, as the inorganic tantalum (X6), no -24-201113144 machine material containing the following materials is prepared. [Table 1 1] (X6) Inorganic tanning material (X6A) fibrous tanning material (X6A1) glass fiber Model: EFH75-01 (manufactured by Centra Satoshi Co., Ltd.) Material: Glass (Si02) Fiber diameter: ΙΟμίΏ Fiber length: 75μηι (Χ6Α2) Fiberglass Model: CS03JAPX -1 (manufactured by Owens Coming Co., Ltd.) Material: Glass (Si02) Fiber diameter: ΙΟμιη Fiber length. mm (X6A3) Alumina fiber Denkaamsen (registered trademark): (manufactured by Electric Chemical Industry Co., Ltd.) Material: 1 〇〇 weight % alumina fiber diameter: 3_2μιη Bulk density (bulkdensity): 0_28g/cm3 (X6B) Plate material type: X-50 (made by Japan TALC Co., Ltd.) Material: talc size: particle size 14·5μηι (X6C) (X6C1) Alumina fiber granules obtained by stirring and granulating the above alumina fibers (*1) Further, the (X6C1) alumina fiber granules described in the above: *1) will be X6A3) The oxidized Ming fiber was put into a Henschel mixer (Kawada Co., Ltd., high-speed flow mixer G1 00) and stirred and granulated. The machine is a type of spiral mixer type -25- 201113144 high-speed mixer, which is mainly used for evenly mixing machines such as powder and granules, plastic raw materials, colorants and additives. Next, the liquid crystal polyester (P1, P2) 'polybutylene terephthalate resin or polyphenylene sulfide resin and (X6) inorganic coating obtained in the production step (I) and the production step (II) are mixed. The granulation was carried out by using a co-rotating twin-axis extruder (PC Μ - 30 made by Chibei Iron and Steel Co., Ltd.) to obtain a thermoplastic resin composition. The above mixture is as follows. [Table 12] (Q1) thermoplastic resin composition (Q2) thermoplastic resin composition (Ρ1) liquid crystal polyester (parts by weight) 60 33 (Ρ2) liquid crystal polyester (parts by weight) 0 27 (Χ6Α) glass fiber (parts by weight) 40 10 (Χ6Β) Talc (parts by weight) 0 30 Flow start temperature T1 (°c) 320 307 Table 13 (Q3) Thermoplastic resin composition (Q4) Thermoplastic resin composition (Q5) Thermoplastic resin composition Poly(p-phenylene) Butylene formate resin (parts by weight) 70 70 0 Polyphenylene sulfide resin (parts by weight) 0 0 70 (X6A2) Glass fiber (parts by weight) 30 0 0 (X6C) Granular material (parts by weight) 0 30 30 Flow start temperature T1 (°C) 234 233 286 The flow start temperature of the obtained thermoplastic resin composition (Q1, Q2, Q3, Q4, Q5) was measured. -26- 201113144 In addition, the 'flow start temperature is the temperature at which the resin starts to flow, but for more precise measurement, in the present embodiment, the flow start temperature is a capillary flow having a nozzle having an inner diameter of 1 mm and a length of i 〇 mm 2 . In the transformer, when the heated melt was discharged from the nozzle at a temperature increase rate of 4 ° C / min under a load of 100 kg / cm 2 , the melt viscosity was 48 000 poise. (Example 1) Using the thermoplastic resin composition Q1, a high-frequency current was supplied to the IH heater of Fig. 3, and the temperature of the top plate was raised by high-frequency induction heating, and then injection molding was performed when the temperature of the top plate reached 200 °C. . The obtained molded product was a rectangular parallelepiped having a thickness of 1 mm, a longitudinal dimension of 70 mm, and a lateral dimension of 7 mm. (Example 2) The measurement was carried out in the same manner as in Example 1 except that the top plate temperature was 2 2 7 °C. (Example 3) The measurement was carried out in the same manner as in Example 1 except that the temperature of the top plate was changed to 2 5 1 °C. (Comparative Example 1) The measurement was carried out in the same manner as in Example 1 except that the temperature of the top plate was changed to 130 °C. -27-201113144 (Comparative Example 2) Measurement was carried out in the same manner as in Example 1 except that the temperature of the top plate was changed to 18 ° C (Evaluation and Results) The fine particles (whitefly) produced by the resin molded body of the above rectangular parallelepiped were measured. The amount produced. The gate of the obtained molded body was cut, and the gate portion was sealed by a hot anvil (swage), and then ultrasonic waves of 3 8 kHz were irradiated for 10 seconds in 500 cc of pure water to wash the molded body. . The washed molded body was immersed in 500 cc of pure water to irradiate an ultrasonic wave of 38 kHz for 10 seconds. After the irradiation was stopped for 1 minute, the number of fine particles dispersed in the washing water was calculated using a liquid particle measuring instrument manufactured by RION Co., Ltd. The liquid microparticle measuring instrument is composed of an injection sampler KZ-3〇Wl (using a microparticle dispersion), a microparticle sensor KS-65, and a controller KL-1 1 A, and the sample 1 is calculated in units of /ml. 2μιη~ΙΟΟμιη size microparticles in 〇ml. The measurement was carried out every 5 samples, and the average enthalpy was calculated as the number of dispersed fine particles. The above results are shown in the table below. -28- 201113144 [Table 14] Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Thermoplastic resin composition 〇1 Q1___ 01 01 Q1 Flow start temperature Tl (°c) 320 320 320 320 320 Mold temperature T2 rc 200 227 251 130 180 Tl-120 (°C) 200 200 200 200 200 Microparticle production joint (pieces/ml) 320 264 132 877 589 (Example 4) except that the thermoplastic resin composition is (Q2) thermoplastic resin composition The measurement was carried out in the same manner as in Example 1 except that the top plate temperature was 200 °C. (Example 5) Measurement was carried out in the same manner as in Example 4 except that the temperature of the top plate was 2 2 7 °C. (Example 6) The measurement was carried out in the same manner as in Example 4 except that the temperature of the top plate was changed to 2 5 1 °C. (Comparative Example 3) Measurement was carried out in the same manner as in Example 4 except that the temperature of the top plate was changed to 130 °C. (Comparative Example 4) The measurement was carried out in the same manner as in Example 4 except that the temperature of the top plate was changed to 180 ° C. The above results are shown in the table below. [Table 1 5] Example 4 Example 5 Example 6 Comparative Example 3 Comparative Example 4 Thermoplastic resin composition 02 Q2 02 02 02 Han beginning mn (〇C) 307 307 307 307 307 Mold temperature T2 rc) 200 227 251 130 180 Tl-120 (°C) 187 187 187 187 187 Microparticles generate halo (pcs/ml) 420 316 261 887 674 (Example 7) except that the thermoplastic resin composition is (Q3) thermoplastic resin composition' 1 was measured in the same manner as in Example 1 except at 50 °C. (Comparative Example 5) Measurement was carried out in the same manner as in Example 7 except that the temperature of the top plate was changed to 60 °C. (Example 8) The measurement was carried out in the same manner as in Example 1 except that the thermoplastic resin composition was a (Q4) thermoplastic resin composition and the top plate temperature was changed to 150 °C. (Comparative Example 6) Measurement was carried out in the same manner as in Example 8 except that the temperature of the top plate was changed to 60 °C. -30-201113144 (Example 9) Measurement was carried out in the same manner as in Example 1 except that the thermoplastic resin composition was a (Q5) thermoplastic resin composition and the top plate temperature was changed to 200 °C. (Comparative Example 7) Measurement was carried out in the same manner as in Example 9 except that the temperature of the top plate was changed to 130 °C. The above results are shown in the table below. Table 16 Example 7 Comparative Example 5 Example 8 Comparative Example 6 Example 9 Comparative Example 7 Thermoplastic Resin Composition 03 03 04 04 05 05 Flow started to brew T1 (. 〇234 234 233 233 286 286 Mold temperature T2 (°c) 150 60 150 60 200 130 T1-120 (°〇114 114 113 113 166 166 Microparticle production joint (for ml) 112 185 274 2191 1338 1531 From the above experimental results, T2 ( °c ) 2 T1 ( °c ) -1 When 20 (. 〇), the amount of generation of fine particles can be remarkably reduced. Further, even if any of the thermoplastic resin compositions Q 1 and Q 2 which change the flow start temperature by mixing a singular or a plurality of liquid crystalline polyesters is used, In the above relationship, the amount of fine particles generated can be remarkably reduced. It is also known that any of the thermoplastic resin compositions Q3, Q4, and Q5 produced from the polybutylene terephthalate resin or the polyphenylene sulfide resin is used. When the above relationship is satisfied, the amount of fine particles generated can be significantly reduced by -31 - 201113144. Thus, by setting the mold temperature T2 to a high temperature of a specific enthalpy or higher with respect to the flow start temperature Τ1 of the thermoplastic resin composition, The thermoplastic resin composition in the composition is slow to be cured, and the thermoplastic resin composition can be maintained in a state in which the viscoelasticity is low. Therefore, phase separation occurs therebetween, and inorganic pigment is less likely to be present on the outermost surface of the molded body, so that the amount of fine particles can be reduced. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an exploded perspective view of a relay using a resin molded body as a container. Fig. 2 is a longitudinal sectional view of the relay shown in Fig. 1. Fig. 3 is a high frequency induction heating heating Longitudinal sectional view of the resin molding apparatus of the device. [Description of main components] 1 : Container (bottom plate) 2 : Container (enclosed body) 3 : Lower plate 4 : Upright plate 5A ' 5Β : Electrode 6 : Upper plate (skeleton part) 7 : Magnetic body 8 : Coil 9 : Coil - 32 - 201113144 1 0 A, 1 0 B : Contact 1 1 : Core 21A, 21B: Metal top plate 2 1 A', 2 1B': Column (outer member 22A, 22B: Coils 23A, 23B: Column (inner member) MA, MB: Concave-convex model - 33-

Claims (1)

201113144 七、申請專利範圍: 1.—種樹脂成形體的製造方法,其係具備:藉由將 熱塑性樹脂與無機塡料混合並造粒而得到的樹脂組成物注 入已被加熱的模具間的步驟,和藉由冷卻前述模具而固化 前述樹脂組成物以得到樹脂成形體的步驟之樹脂成形體的 製造方法,其特徵爲: 前述樹脂組成物的流動開始溫度設爲T1 °c, 將前述樹脂組成物注入前述模具時的前述模具的溫度 設爲T2t時,滿足以下關係式: T 2 °c 2 T 1 °c -1 2 0 °c。 2 .如申請專利範圍第1項所記載之樹脂成形體的製造 方法,其中加熱前述模具的加熱器爲高頻感應加熱加熱器 〇 3. 如申請專利範圍第2項所記載之樹脂成形體的製造 方法,其中前述高頻感應加熱加熱器具備: 具有構成前述模具的樹脂成形用凹凸模型的金屬製頂 板、 設置於前述金屬製頂板之金屬製的柱材、及 包圍前述柱材的軸之周圍的線圏。 4. 如申請專利範圍第1項所記載之樹脂成形體的製造 方法’其中前述熱塑性樹脂爲液晶聚合物。 5 ·如申請專利範圍第1項所記載之樹脂成形體的製造 方法,其中相對於前述熱塑性樹脂1 00重量份,前述樹脂 組成物含有5〜2 50重量份的前述無機塡料。 -34- 201113144 6.如申請專利範圍第1項所記載之樹脂成形體的製造 方法,其中前述無機塡料含有板狀塡料。 1 ·如申請專利範圍第1項所記載之樹脂成形體的製造 方法’其中前述無機塡料係含有纖維狀塡料,其具有 纖維直徑爲0.05〜ΐ5μιΏ、及 纖維長度爲5〜200μιη。 8. 如申請專利範圍第7項所記載之樹脂成形體的製造 方法’其中前述纖維狀塡料含有未藉由有機物進行表面塗 佈處理的纖維狀塡料。 9. 一種樹脂成形體,其係藉由如申請專利範圍第1項 〜第8項中任一項所記載的樹脂成形體的製造方法所製造 〇 10. 一種繼電器,其特徵爲具備由如申請專利範圍第 9項所記載的樹脂成形體所形成的容器、及 配置在前述容器內的繼電器本體。 -35-201113144 VII. Patent application scope: 1. A method for producing a resin molded body comprising the steps of: injecting a resin composition obtained by mixing and granulating a thermoplastic resin with an inorganic material into a heated mold; And a method of producing a resin molded body in which the resin composition is cured by cooling the mold to obtain a resin molded body, wherein the resin composition has a flow initiation temperature of T1 °c, and the resin composition is When the temperature of the mold when the object is injected into the mold is T2t, the following relationship is satisfied: T 2 °c 2 T 1 °c -1 2 0 °c. 2. The method of producing a resin molded article according to the first aspect of the invention, wherein the heater for heating the mold is a high frequency induction heating heater. 3. The resin molded body according to claim 2 In the manufacturing method, the high-frequency induction heating heater includes: a metal top plate having a concave-convex mold for resin molding constituting the mold; a metal pillar provided on the metal top plate; and a periphery surrounding the shaft of the pillar The line 圏. 4. The method for producing a resin molded article according to claim 1, wherein the thermoplastic resin is a liquid crystal polymer. The method for producing a resin molded article according to the first aspect of the invention, wherein the resin composition contains 5 to 250 parts by weight of the inorganic tantalum based on 100 parts by weight of the thermoplastic resin. The method for producing a resin molded article according to claim 1, wherein the inorganic tantalum contains a plate-like pigment. 1. The method for producing a resin molded article according to the first aspect of the invention, wherein the inorganic coating material comprises a fibrous material having a fiber diameter of 0.05 to 5 μm and a fiber length of 5 to 200 μm. 8. The method for producing a resin molded article according to the seventh aspect of the invention, wherein the fibrous material contains a fibrous material which is not subjected to surface coating treatment by an organic material. A resin molded body produced by the method for producing a resin molded body according to any one of the first to eighth aspects of the invention, wherein the relay is characterized by A container formed of the resin molded body according to the ninth aspect of the invention, and a relay body disposed in the container. -35-
TW099119282A 2009-06-15 2010-06-14 Resin formed body, producing method thereof, and relay TW201113144A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142662 2009-06-15

Publications (1)

Publication Number Publication Date
TW201113144A true TW201113144A (en) 2011-04-16

Family

ID=43336720

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099119282A TW201113144A (en) 2009-06-15 2010-06-14 Resin formed body, producing method thereof, and relay

Country Status (4)

Country Link
JP (1) JP2011020445A (en)
KR (1) KR20100134523A (en)
CN (1) CN101921493A (en)
TW (1) TW201113144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662575B (en) * 2016-12-21 2019-06-11 松川精密股份有限公司 No arcing method when the relay is mated with the joint

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037709B2 (en) * 2012-08-07 2016-12-07 ポリプラスチックス株式会社 Relay and liquid crystal resin composition for relay
CN106674938A (en) * 2016-12-29 2017-05-17 江苏沃特特种材料制造有限公司 Dust-free liquid crystal polyester compound and preparation method and application thereof
CN112606345A (en) * 2020-12-30 2021-04-06 李元义 Cooling device of injection mold

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000077159A (en) * 1999-05-10 2000-12-26 고오사이 아끼오 Liquid crystal polyester resin composition
JP4586234B2 (en) * 2000-04-28 2010-11-24 住友化学株式会社 Method for producing thermoplastic resin composition
TWI259198B (en) * 2003-10-10 2006-08-01 Asahi Kasei Chemicals Corp Polyoxymethylene resin composition and its moldings
JP4815822B2 (en) * 2005-03-03 2011-11-16 小野産業株式会社 Method for producing composite thermoplastic resin plated molded article
WO2007015371A1 (en) * 2005-08-02 2007-02-08 Unitika Ltd. Resin compositions, method of producing the same and molded article obtained therefrom
JP5332188B2 (en) * 2007-02-26 2013-11-06 住友化学株式会社 Resin molded body and method for producing the same
JP2008238705A (en) * 2007-03-28 2008-10-09 Konica Minolta Opto Inc Injection molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662575B (en) * 2016-12-21 2019-06-11 松川精密股份有限公司 No arcing method when the relay is mated with the joint

Also Published As

Publication number Publication date
CN101921493A (en) 2010-12-22
JP2011020445A (en) 2011-02-03
KR20100134523A (en) 2010-12-23

Similar Documents

Publication Publication Date Title
TWI591121B (en) Wholly aromatic liquid crystalline polyester resin compound with anti-static property and article including the same
CN102206352A (en) Method for producing liquid-crystalline polyster powder
JP5366533B2 (en) Thermoplastic resin composition
JP6473796B1 (en) Liquid crystal polyester resin composition and molded body
JP5256716B2 (en) Resin composition and molded product obtained therefrom
US20080048150A1 (en) Method for producing liquid crystal polymer molded article
WO2006013852A1 (en) Liquid-crystal polyester resin composition
TWI475068B (en) Wholly aromatic polyester and polyester resin composition
WO2019103035A1 (en) Liquid crystal polyester resin composition, and moulded article
KR20130103310A (en) Thermoplastic resin with high thermal conductivity
JP5753144B2 (en) Totally aromatic polyester and polyester resin composition, and polyester molded article
KR101800459B1 (en) Liquid-crystalline polymer composition and molded article thereof
TW201211150A (en) Method for producing liquid crystal polyester composition
JP5141568B2 (en) Liquid crystal polymer composition and molded product using the same
CN102803338B (en) Methods of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with constant melt viscosity
TW201113144A (en) Resin formed body, producing method thereof, and relay
JP5162921B2 (en) Granular material and heat conductive resin composition using the same
JP2011084716A (en) Thermoplastic resin composition, and heat-radiation/heat-transferring resin material
TW201113316A (en) Resin forming body and production method thereof
KR20130079381A (en) Thermoplastic resin with high thermal conductivity
JP6294690B2 (en) Liquid crystalline polyester composition
JP2011063790A (en) Highly thermally conductive thermoplastic resin
JP2014091826A (en) Thermally conductive molded body
TW201335246A (en) Method for producing liquid crystal polymer composition and molded article
WO2015178500A1 (en) Wholly aromatic liquid crystalline polyester resin and injection molded body of said resin composition