.201113316 六、發明說明: 【發明所屬之技術領域】 本發明係關於具有高熱傳導性的樹脂成形體及其製造 方法。 【先前技術】 以往,在各種工業製品中使用樹脂成形體。許多電子 零件因伴隨發熱,故以其冷卻爲目的,期待具有高熱傳導 性的樹脂成形體。例如,在下述專利文獻1中,揭示有含 有:以數平均纖維徑爲1〜50μιη的氧化鋁爲主成分的纖維 、數平均纖維徑爲1〜50μπι的碳纖維、及熱固性樹脂的熱 傳導性樹脂組成物。當然,若在樹脂內混入大量的放熱材 料,則其熱傳導率會上升。 專利文獻1 :日本特開2 0 0 8 - 1 3 8 1 5 7號公報 【發明內容】 但是,若使每單位體積的放熱材料量增加,會有在樹 脂成形時該放熱材料硏磨模具或螺桿的問題,或樹脂組成 物之流動性降低的問題,又,由於放熱材料多爲導電性材 料’因此樹脂成形體的電阻率會變小,對用於要求絕緣性 的電子零件尙有改善的餘地。若使放熱材料的含有率降低 ,雖可抑制這些問題,但此時冷卻效率降低。 本發明係鑒於上述課題而作成的發明,其目的爲提供 具有充分的熱傳導性之樹脂成形體及其製造方法。 -5- 201113316 爲了解決上述的課題,本發明之樹脂成形體的製造方 法係具備:將藉由混合由成分(X)所構成的熱塑性樹脂與 由成分(γ)所構成的無機塡料而進行造粒所得到的樹脂組 成物注入已被加熱之模具間的步驟,和藉由冷卻模具而固 化樹脂組成物以得到樹脂成形體的步驟之樹脂成形體的製 造方法,其特徵爲:熱塑性樹脂的成分(X)係由沿著樹脂 組成物之注入時的流動方向具有定向性的材料所構成,無 機塡料之成分(Y)在3 00K的熱傳導率爲l〇W/mK以上,在 將樹脂組成物的流動開始溫度設爲T 1 (°c )、將朝模具注入 樹脂組成物時的模具溫度設爲T2(°c )時,滿足以下的關係 式:T2(°C T1(°C )-140(°C )。 於本發明方法中,在進行樹脂成形時,預先在熱塑性 樹脂內混合無機塡料而進行造粒。如上所述,由放熱材料 所構成的無機塡料’放熱性雖優異,但由於其硬度比熱塑 性樹脂高’因此會有在造粒時或樹脂注入時等導致硏磨周 邊構件的傾向。本發明者們發現,若使模具溫度T2爲高 溫以滿足上述關係式,則由放熱材料所構成的無機塡料之 排列方向會變得不規則,藉由無機塡料在內部接觸,而增 加有效的熱容量,提高冷卻效率(放熱效率)。於本方法中 ’即使在樹脂內並未含有多量到硏磨周邊構件程度之放熱 材料時’也可以具有充分的熱傳導性。此外,成分(γ)的 無機塡料不含放熱性不優異的玻璃0 又’成分(Y)係以由氧化鎂、氧化鋁、氮化鋁、氮化 硼、氮化矽、碳化矽、碳所組成群中選出的至少一種爲佳 201113316 。使用這些的無機塡料由於熱傳導率高,因此樹脂組成物 的熱傳導性優異。 又,成分(Y)係以纖維狀爲佳。亦即,在無機塡料由 縱橫比高的纖維所構成時,藉由上述的不規則排列,多數 個無機塡料在內部接觸的機率提高。因此,根據上述的方 法’可使實質的由無機塡料產生的熱容量增加,可製造冷 卻效率優異的樹脂成形體。 又,前述的無機塡料可進一步含有成分(Y)以外的成 分。亦即,藉由預先混合熱傳導性雖差但有助於樹脂強化 等的無機塡料,可使剛性等的其他特性提高。該成分(Y) 以外的成分以纖維狀爲佳,例如,可以混入玻璃纖維。 又’成分(X)係以液晶聚合物(液晶性聚酯)爲佳。由於 液晶聚合物在模具中的流動性優異,因此可以提高樹脂成 形體的精度。另外,在混合無機塡料和液晶聚合物時,可 以得到剛性非常高的樹脂成形體。接著,液晶聚合物雖具 有沿著流動方向定向的性質,但若如本發明方法所示注入 高溫的模具’則其定向表現出無規化的傾向,可以使無機 塡料不規則排列。 又,加熱模具的加熱器係以高頻誘導加熱加熱器(IH 加熱器)爲佳。 在使用IH加熱器進行加熱時,由於能夠迅速地加熱 模具,因此生產效率提高。 又’ IH加熱器的特徵爲具備:具有構成前述模具之 樹脂成形用凹凸圖型的金屬製頂板、設置於金屬製頂板之 201113316 金屬製的柱材、和包圍柱材的軸之周圍的線圈。 若對線圈進行通電,金屬製的柱材被誘導加熱’該熱 被傳導至金屬製頂板。在這樣的結構時,由於具有有助於 樹脂成形用凹凸圖型的金屬製頂板之加熱的構件,亦即體 積比較小的柱材被選擇性地誘導加熱,該熱被傳導至金屬 製頂板,因此可以抑制生產時的能量消耗量,可降低生產 成本。 又,本發明的樹脂成形體,其特徵爲,藉由上述樹脂 成形體的製造方法所製造。該樹脂成形體的冷卻效率優異 〇 本發明的樹脂成形體,其特徵爲,在3 00K時的電阻 率爲1〇12Ω · m以上。若使放熱材料的添加量增加,則樹 脂成形體的電阻率會變小,但本發明的樹脂成形體,如上 所述’即使放熱材料的含量低,藉由無機塡料的無規排列 化與內部接觸’由於有效的熱容量增加,冷卻效率提高, 因此可用於要求絕緣性的電子零件用途。 根據本發明之樹脂成形體的製造方法,可以得到冷卻 效率優異的樹脂成形體。 【實施方式】 以下’針對實施形態之樹脂成形體的製造方法進行說 明。此外’針對相同元件使用相同符號,並省略重複的說 明。 第1圖爲示意性地顯示(A)比較例及(B)實施形態之樹 201113316 脂成形體的內部結構之樹脂成形體的剖面圖。又,第2圖 爲示意性地顯示(A)比較例及(B)實施形態(B)的熱傳導機制 的圖。熱塑性樹脂1的成分(X)係由沿著樹脂組成物注入 時的流動方向具有定向性的材料所構成,無機塡料2的成 分(Y)在3 00K的熱傳導率爲l〇W/mK以上,且由放熱材料 所構成。 在第1(A)圖所示之比較例的樹脂成形體中,纖維狀的 無機塡料2沿著成形體的萇度方向排列。在該狀態下,即 使無機塡料2由放熱材料所構成,由於在無機塡料2之間 存在絕緣性的熱塑性樹脂1,因此熱傳導的性能降低。 亦即’如第2(A)圖所示,在熱源τ接觸樹脂成形體時 ,其熱在熱塑性樹脂1內傳導,而到達內部的無機塡料2 。爲了使已在該無機塡料2內傳導的熱到達鄰接的無機塡 料2,必須再在熱塑性樹脂1內傳導。 由於熱塑性樹脂係由有機絕緣體,即熱傳導性低的材 料所構成,因此由熱源T產生的熱在樹脂成形體中不怎麼 被吸收,熱源T幾乎未被冷卻。 另一方面’在第1(B)圖之實施形態的樹脂成形體中, 無機塡料2不規則地配置在熱塑性樹脂1內。爲了製造這 樣的樹脂成形體’首先’在進行樹脂成形之前,預先在熱 塑性樹脂內混合無機塡料而進行造粒。接著,若將經造粒 的樹脂組成物注入已被加熱達較高溫度T 2的模具間進行 成形’則由纖維狀的放熱材料所構成之無機塡料2的排列 方向會變得不規則。 -9- 201113316 亦即’如第2(B)圖所示,在熱源T接觸樹脂成形體時 ,其熱在無機塡料2內傳導,在該無機塡料2內傳導的熱 被傳導到在內部接觸的無機塡料2。根據該結構的樹脂成 形體,藉由多數個無機塡料2在內部接觸,而增加有效的 熱容量’提高樹脂成形體的冷卻效率(放熱效率)。此外, 在成分(Υ)的無機塡料中,不含放熱性不優異的玻璃❶ 又’成分(Υ)係以由氧化鎂、氧化鋁、氮化鋁、氮化 硼、碳所組成群中選出的至少一種爲佳。使用這些的無機 塡料由於熱傳導率高,因此樹脂組成物的熱傳導性優異。 又,成分(Υ)係以纖維狀爲佳。亦即,在無機塡料2 係由縱橫比高的纖維所構成時,藉由上述的不規則排列, 多數個無機塡料在內部接觸的機率提高。因此,根據上述 的方法’可以使實質的由無機塡料產生的熱容量增加,可 製造冷卻效率優異的樹脂成形體。由該觀點考慮,無機塡 料2的縱橫比係以2以上爲佳,1 〇以上更佳。該縱橫比的 上限係由在將熱塑性樹脂和無機塡料2進行造粒的步驟中 抑制無機塡料之斷裂的理由考慮,可設爲40以下。 當然’無機塡料2可進一步含有成分(γ)以外的成分 。亦即,藉由預先混合熱傳導性雖差但有助於樹脂強化等 的無機塡料’而可使剛性等的其他特性提高。該成分(γ) 以外的成分係以纖維狀爲佳,例如,可以混入玻璃纖維。 又’成分(X)係以液晶聚合物(液晶性聚酯)爲佳。由於 液晶聚合物在模具中的流動性優異,因此可以提高樹脂成 形體的精度。另外,在混合無機塡料2和液晶聚合物時, -10- 201113316 可以得到剛性非常高的樹脂成形體。接著,液晶聚合物具 有沿著流動方向定向的性質,但如上所述,若注入高溫的 模具’則其定向表現出無規化的傾向,可以使無機塡料2 不規則排列。 ί妾著’將針對上述之樹脂成形體的製造方法之詳細內 容進行以下說明。 有關實施形態之樹脂成形體的製造方法,依序實施以 下步驟(1)〜(4)。 (1) 液晶性聚酯(液晶聚合物)的製造步驟 (2) 含有液晶性聚酯和無機塡料之樹脂組成物的造粒步驟 (3 )朝模具內注入樹脂的步驟 (4)模具冷卻步驟 以下’針對各步驟進行詳細說明。 (1 )液晶性聚酯的製造步驟 首先,適當地準備以下的原材料(Χ1)〜(Χ4)。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molded body having high thermal conductivity and a method of manufacturing the same. [Prior Art] Conventionally, a resin molded body has been used in various industrial products. Many electronic parts are expected to have a high thermal conductivity by forming a resin for heating. For example, Patent Document 1 listed below discloses a thermally conductive resin comprising a fiber having a number average fiber diameter of 1 to 50 μm as a main component, a carbon fiber having a number average fiber diameter of 1 to 50 μm, and a thermosetting resin. Things. Of course, if a large amount of exothermic material is mixed into the resin, the thermal conductivity thereof will increase. Patent Document 1: Japanese Laid-Open Patent Publication No. H0 8 - 1 3 8 1 5 7 SUMMARY OF THE INVENTION However, if the amount of the heat releasing material per unit volume is increased, the heat releasing material may be honed at the time of resin molding or The problem of the screw, or the problem that the fluidity of the resin composition is lowered, and since the heat releasing material is mostly a conductive material', the electrical resistivity of the resin molded body becomes small, and the electronic component for insulation is improved. room. When the content rate of the heat releasing material is lowered, these problems can be suppressed, but at this time, the cooling efficiency is lowered. The present invention has been made in view of the above problems, and an object thereof is to provide a resin molded body having sufficient thermal conductivity and a method for producing the same. -5-201113316 In order to solve the above problems, the method for producing a resin molded body of the present invention comprises: mixing a thermoplastic resin composed of the component (X) and an inorganic material composed of the component (γ). a step of injecting a resin composition obtained by granulation into a mold which has been heated, and a method of producing a resin molded body in which a resin composition is cured by cooling a mold to obtain a resin molded body, which is characterized by: a thermoplastic resin The component (X) is composed of a material having a directional property along the flow direction at the time of injection of the resin composition, and the component (Y) of the inorganic mash has a thermal conductivity of 300 W or more at 300 W, and the resin is used. When the flow start temperature of the composition is T 1 (°c ) and the mold temperature when the resin composition is injected into the mold is T2 (°c), the following relationship is satisfied: T2 (°C T1 (°C) -140 (° C.) In the method of the present invention, in the case of performing resin molding, an inorganic tantalum is previously mixed in a thermoplastic resin to perform granulation. As described above, the heat release property of the inorganic tantalum material composed of the heat releasing material is Excellent, but due to Since the hardness is higher than that of the thermoplastic resin, there is a tendency to honing the peripheral member at the time of granulation or resin injection. The inventors have found that if the mold temperature T2 is made high to satisfy the above relationship, the exothermic material is used. The arrangement direction of the inorganic pigments is irregular, and the inorganic binder is internally contacted to increase the effective heat capacity and improve the cooling efficiency (heat release efficiency). In the present method, 'there is not a large amount in the resin. It is also possible to have sufficient thermal conductivity when honing the exothermic material of the peripheral member. In addition, the inorganic material of the component (γ) does not contain glass 0 which is not excellent in exothermic property, and the component (Y) is made of magnesium oxide. At least one selected from the group consisting of alumina, aluminum nitride, boron nitride, tantalum nitride, tantalum carbide, and carbon is preferably 201113316. The inorganic binder using these has high thermal conductivity, and therefore has excellent thermal conductivity of the resin composition. Further, the component (Y) is preferably a fibrous form. That is, when the inorganic tantalum is composed of fibers having a high aspect ratio, the irregular arrangement is used, and a plurality of According to the above-described method, the heat capacity of the inorganic material can be increased, and a resin molded body having excellent cooling efficiency can be produced. Further, the inorganic material can further contain the resin material. A component other than the component (Y), that is, an inorganic binder which is poor in thermal conductivity but contributes to resin strengthening or the like, and other characteristics such as rigidity can be improved. Components other than the component (Y) are fibers. For example, it is preferable to mix glass fibers. The component (X) is preferably a liquid crystal polymer (liquid crystalline polyester). Since the liquid crystal polymer is excellent in fluidity in a mold, the resin molded body can be improved. Further, when the inorganic pigment and the liquid crystal polymer are mixed, a resin molded body having a very high rigidity can be obtained. Next, although the liquid crystal polymer has a property of being oriented in the flow direction, if the mold is injected at a high temperature as shown in the method of the present invention, the orientation thereof tends to be random, and the inorganic tantalum can be irregularly arranged. Further, it is preferable that the heater for heating the mold is a high frequency induction heating heater (IH heater). When heating is performed using an IH heater, since the mold can be heated quickly, the production efficiency is improved. Further, the IH heater is characterized by comprising a metal top plate having a concave-convex pattern for resin molding constituting the mold, a column made of metal of 201113316 provided on a metal top plate, and a coil surrounding the shaft of the column. If the coil is energized, the metal column is induced to heat. This heat is conducted to the metal top plate. In such a configuration, since the member having the heating of the metal top plate which contributes to the concave-convex pattern for resin molding, that is, the column having a relatively small volume is selectively induced to be heated, the heat is conducted to the metal top plate. Therefore, the amount of energy consumption during production can be suppressed, and the production cost can be reduced. Further, the resin molded article of the present invention is produced by the method for producing a resin molded article. The resin molded article is excellent in cooling efficiency. The resin molded article of the present invention is characterized in that the electrical resistivity at 300 K is 1 〇 12 Ω·m or more. When the amount of the heat-releasing material to be added is increased, the electrical resistivity of the resin molded body is reduced. However, as described above, the resin molded body of the present invention has a low content of the heat-releasing material, and is randomly arranged by the inorganic material. Internal contact 'As the effective heat capacity increases, the cooling efficiency increases, so it can be used for electronic parts requiring insulation. According to the method for producing a resin molded article of the present invention, a resin molded body excellent in cooling efficiency can be obtained. [Embodiment] Hereinafter, a method for producing a resin molded body according to an embodiment will be described. Further, the same reference numerals are used for the same elements, and the repeated description is omitted. Fig. 1 is a cross-sectional view schematically showing a resin molded body having an internal structure of a fat molded article of (A) Comparative Example and (B) Embodiment Tree 201113316. Further, Fig. 2 is a view schematically showing the heat transfer mechanism of (A) comparative example and (B) embodiment (B). The component (X) of the thermoplastic resin 1 is composed of a material having a directivity along the flow direction when the resin composition is injected, and the thermal conductivity of the component (Y) of the inorganic coating 2 at 300 K is l〇W/mK or more. And composed of exothermic materials. In the resin molded body of the comparative example shown in Fig. 1(A), the fibrous inorganic pigments 2 are arranged along the twist direction of the molded body. In this state, even if the inorganic coating 2 is composed of a heat releasing material, since the insulating thermoplastic resin 1 exists between the inorganic coatings 2, the heat conduction performance is lowered. That is, as shown in Fig. 2(A), when the heat source τ is in contact with the resin molded body, heat is conducted in the thermoplastic resin 1 to reach the inorganic material 2 inside. In order for the heat which has been conducted in the inorganic crucible 2 to reach the adjacent inorganic binder 2, it is necessary to conduct it again in the thermoplastic resin 1. Since the thermoplastic resin is composed of an organic insulator, that is, a material having low thermal conductivity, heat generated by the heat source T is not absorbed much in the resin molded body, and the heat source T is hardly cooled. On the other hand, in the resin molded body of the embodiment of Fig. 1(B), the inorganic coating 2 is irregularly disposed in the thermoplastic resin 1. In order to manufacture such a resin molded body, first, before the resin molding, the inorganic tantalum is previously mixed in the thermoplastic resin to carry out granulation. Next, when the granulated resin composition is injected between the dies which have been heated to a higher temperature T 2 to form, the arrangement direction of the inorganic mash 2 composed of the fibrous heat releasing material becomes irregular. -9- 201113316 That is, as shown in Fig. 2(B), when the heat source T contacts the resin molded body, heat is conducted in the inorganic material 2, and heat conducted in the inorganic material 2 is conducted to Inorganic tanning material 2 in internal contact. According to the resin molded body of this structure, a large number of inorganic tantalum 2 are brought into contact with each other to increase the effective heat capacity, and the cooling efficiency (heat release efficiency) of the resin molded body is improved. Further, in the inorganic material of the component (Υ), the glass crucible which is not excellent in exothermicity is not contained, and the 'component' is composed of magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, and carbon. At least one selected is preferred. Since the inorganic coating material using these has high thermal conductivity, the resin composition is excellent in thermal conductivity. Further, the component (Υ) is preferably a fibrous form. That is, when the inorganic coating 2 is composed of fibers having a high aspect ratio, the probability of contact of a plurality of inorganic coatings inside is improved by the irregular arrangement described above. Therefore, according to the above method, the substantial heat capacity generated by the inorganic binder can be increased, and a resin molded body excellent in cooling efficiency can be produced. From this viewpoint, the aspect ratio of the inorganic coating 2 is preferably 2 or more, more preferably 1 Torr or more. The upper limit of the aspect ratio is considered to be 40 or less in consideration of the reason for suppressing the breakage of the inorganic coating in the step of granulating the thermoplastic resin and the inorganic coating 2 . Of course, the inorganic material 2 may further contain components other than the component (γ). In other words, other characteristics such as rigidity can be improved by premixing an inorganic binder which is poor in thermal conductivity but contributes to resin strengthening or the like. The components other than the component (γ) are preferably in the form of fibers, and for example, glass fibers may be mixed. Further, the component (X) is preferably a liquid crystal polymer (liquid crystalline polyester). Since the liquid crystal polymer is excellent in fluidity in the mold, the precision of the resin molded body can be improved. Further, in the case of mixing the inorganic tantalum 2 and the liquid crystal polymer, -10-201113316 can obtain a resin molded body having a very high rigidity. Next, the liquid crystal polymer has a property of being oriented in the flow direction, but as described above, if the mold of the high temperature is injected, the orientation thereof exhibits a tendency to be randomized, and the inorganic tantalum 2 can be irregularly arranged. The details of the method for producing the resin molded body described above will be described below. In the method for producing a resin molded article according to the embodiment, the following steps (1) to (4) are sequentially carried out. (1) Step of producing liquid crystalline polyester (liquid crystal polymer) (2) Granulation step of resin composition containing liquid crystalline polyester and inorganic tantalum (3) Step of injecting resin into mold (4) Die cooling The steps below are described in detail for each step. (1) Manufacturing procedure of liquid crystalline polyester First, the following raw materials (Χ1) to (Χ4) are appropriately prepared.
[表U 原料 -----— 一 (XI) 方香威羥基羧酸 — ·-— (例如:對羥基苯甲酸) (X2) 方香族二醇 (例如:4,4'-二羥基聯苯) (X3) 方香族二羧酸 (例如:對苯二甲酸) (例如:間苯二甲酸) (X4) 脂肪酸酐 L 1 - (例如:醋酸酐) -11 - 201113316 作爲適合的芳香族羥基羧酸,可以使用例示於下表中 之1種,亦可將於下表所示的2種以上的芳香族羥基羧酸 組合使用。 [表 2]_ (XI)芳香族羥基羧酸 •對羥基苯甲酸 •間羥基苯甲酸 • 2-經基-6-萘甲酸 • 2-經基-3-萘甲酸 • 1-羥基-4-萘甲酸 • 2,6-一氯-對淫基苯甲酸 • 2-氯-對羥基苯甲酸 • 2,6-二氟-對羥基苯甲酸 • 4-淫基-41-聯苯甲酸 作爲適合的芳香族二醇,可以使用例示於下表中之i 種’亦可將於下表所示的2種以上的芳香族二醇組合使用 -12- 201113316 [表 3] _ (X2)芳香族二醇 .4,4'-二羥基聯苯 •氫醌 •間苯二酚 •甲基氫醌 •氯代氫醌 •乙醯氧基氫醌 •硝基氫醌. • 1,4-二羥基萘 • 1,5-二羥基萘 • 1,6-二羥基萘 • 2,6-二羥基萘 • 2,7-二羥基萘 • 2,2-雙(4-羥基苯基)丙烷 • 2,2-雙(4-經基-3,5-二甲基苯基)丙烷 • 2,2-雙(4-羥基-3,5-二氯苯基)丙烷 • 2,2-雙(4-羥基-3-甲基苯基)丙烷 • 2,2-雙(4-羥基-3-氯苯基)丙烷 •雙-(4-羥基苯基)甲烷 •雙-(4-經基-3,5-二甲基苯基)甲烷 •雙-(4-經基-3,5-二氯苯基)甲烷 •雙-(4-經基-3,5-二溴苯基)甲烷 •雙-(4-經基-3-甲基苯基)甲烷 •雙-(4-羥基-3-氯苯基)甲烷 • 1,1_雙(4-羥基苯基)環己烷 •雙-(4-經基苯基)酮 •雙-(4-羥基-3,5-二甲基苯基)酮 •雙-(4-經基-3,5-二氯苯基)酮 •雙-(4-羥基苯基)硫醚 •雙-(4-羥基苯基)颯 •雙-(4-羥基苯基)醚 作爲適合的芳香族二羧酸,可以使用例示於下表中之 1種’但亦可將於下表所示的2種以上的芳香族二羧酸組 合使用。 -13- 201113316 [表 4]_ (X3)芳香族二羧酸 •對苯二甲酸 •間苯二甲酸 • 2,6-萘二甲酸 • 1,5-萘二甲酸 • 4,4'-聯苯二甲酸 •甲基對苯二甲酸 •甲基間苯二甲酸 而且,由耐熱性的觀點考慮,以使用對苯二甲酸、或 對苯二甲酸和2,6-萘二甲酸兩種爲佳,由低熱膨脹性的觀 點考慮,以使用2,6-萘二甲酸爲佳。 作爲適合的脂肪酸酐,可以使用例示於下表中之1種 ,但亦可將於下表所示的2種以上的脂肪酸酐組合使用。 [表5] (X4)脂肪酸酐 •醋酸酐 •一溴醋酸酐 •丙酸酐 •二溴醋酸酐 •丁酸酐 •三溴醋酸酐 •異丁酸酐 •一氟醋酸酐 •戊酸酐 •二氟醋酸酐 •新戊酸酐 •三氟醋酸酐 • 2-乙基己酸酐 •戊二酸酐 •一氯醋酸酐 •馬來酸酐 •二氯醋酸酐 •琥珀酸酐 •三氯醋酸酐 • β-溴丙酸酐 -14- 201113316 接者· ’將上述原料(X1)〜(X4)導入反應容器內,然後 ’將促進熔融聚合的觸媒(X5)導入反應容器內,在特定的 熔融聚合溫度Τ(Μ)下,加熱反應容器。此外,在加熱期 間,攪拌內容物。 作爲加入原料的觸媒(X5),已知有各種觸媒,但可使 用適合的咪唑化合物。 [表6] (Χ5)觸媒 •咪唑 • 1-氰乙基-2-甲基咪唑 • 1-甲基咪唑 • 1-氰乙基-2-苯基咪唑 • 2-甲基咪唑 • 4-氰乙基-2-乙基-4-甲基咪唑 • 4-甲基咪唑 • 1-胺乙基-2-甲基咪唑 • 1-乙基咪唑 • 2-烷基-4-甲醯基咪唑 • 2-乙基咪唑 • 2,4-二烷基-5-甲醯基咪唑 • 4-乙基咪唑 • 1-苄基-2-苯基咪唑 • 1,2-二甲基咪唑 • 1-胺乙基-2-甲基咪唑 • 1,4_二甲基咪唑 •卜胺乙基-2-乙基咪唑 .2,4-二甲基咪唑 • 4-甲醯基咪唑 .1-甲基-2-乙基咪唑 • 2-甲基-4-甲醯基咪唑 • 1-甲基-4-乙基咪唑 • 4-甲基-5-甲酸基咪唑 •卜乙基-2-甲基咪唑 • 2-乙基-4-甲基-5-甲醯基咪唑 • 1-乙基-2-乙基咪唑 • 2-苯基-4-甲基-4-甲醯基咪唑 • 1-乙基-2-苯基咪唑 • 2-乙基-4-甲基咪唑 • 2-苯基咪唑 .1-苄基-2-甲基咪唑 • 2-苯基-4-甲基咪唑 S: -15- 201113316 熔融聚合溫度Τ(Μ)係以在聚合初期爲180〜3 20°C, 將其以0.3〜5.〇t/分鐘的比例升溫,最終成爲280〜400 °C爲佳。經聚合生成副產物脂肪酸,但以邊將脂肪酸排除 於體系外邊進行聚合爲佳。熔融聚合的氛圍氣係以在常壓 下,在氮、氬等的惰性氣體氛圍氣下爲佳。另外,熔融聚 合亦可在減壓下進行。熔融聚合的反應時間係沒有特別限 定’但通常爲0.3〜10小時左右。 所得到的固形分經冷卻至室溫,以粗粉碎機粉碎後, 在氮氛圍氣下,從室溫升溫到固相聚合反應進行的溫度T ( °C ),可得到液晶性聚酯(作爲(P))。固相聚合溫度T(°c )通 常爲200〜3 5 0t左右,處理時間通常爲1〜20小時左右。 這樣所得到的液晶性聚酯的重平均分子量沒有特別限定, 但以1 0000〜5 0000爲佳。所得到的聚酯爲液晶性一事係 可藉由偏光顯微鏡的觀察等來確認。 此外,由於液晶性聚酯廣泛銷售,因此也可以購得, 即使其原料構成非爲上述者也可使用。 (2)含有液晶性聚酯和無機塡料的樹脂組成物的造粒步驟 藉由將上述的(P)液晶性聚酯和(X6)無機塡料混合,使 用造粒機(例如:同向雙軸押出機)進行造粒,可以得到粒 狀的熱塑性樹脂組成物(作爲(Q)樹脂組成物)。 作爲(X 6)無機塡料,可以使用以下的1種,但也可以 使用2種以上。此外,視需要可進一步混合適當的無機塡 料。以下爲現在已知適合的無機塡料。 -16- 201113316 此外,在以下的材料中,不是具有熱傳導率爲10 W/mK以上的放熱特性的成分(Y)的材料爲玻璃 '矽灰石 (Wollastonite)、岩綿(rock wool)、矽酸鋁、鈦酸鉀、鈦酸 鋇' 硼酸鋁、氧化鈦' 碳酸韩、鹼性硫酸鎂、氧化鋅、硬 矽鈣石、滑石、雲母’但坦些材料可基於放熱性改善以外 的目的另外混入。 -17- 201113316 [表7] (X6憮機塡料 纖維狀 塡料 名稱 化學組成 纖維徑 (μιη) 纖維長度 (μηι) 玻璃 Si02 3-25 30-3000 砂灰石 CaSi03 0.1-40 5-600 岩綿 Si02Al2〇3Fe2〇3MgOMnOCaO 1-20 100-800 矽酸鋁 Al2〇3-3Si02 1-5 10-100 氧化鋁 ai2o3 2-50 10-100 碳化矽 SiC 0.05-2.0 5-200 不鏽鋼纖維 FeCrNi FeNiCrMo FeCr 10-100 300-4000 銅纖維 Cu 10-100 300-4000 氮化矽 SiN 0.05-2.0 5-200 鈦酸鉀 K20-8Ti02 K20-6Ti02 0.1-1.5 10-100 鈦酸鋇 BaOTi02 0.2-2.0 10-30 硼酸鋁 2Β2〇3·9Α12〇3 0.5-1.0 10-30 氧化欽 Ti02 0.05-0.5 1.5-15 碳酸鈣 CaC03 0.5-1.0 20-30 鹼性硫酸鎂 MgS04-2H20 0.5-10 8-100 氧化鋅 Zn〇2 0.2-3.0 2-50 碳纖維 c 0.1-30 30-6000 碳奈米管 c 0.001-0.15 1-20 硬矽鈣石(矽酸鈣) 6Ca0-6Si02H20 0.05-0.2 10-20 臟 塡料 名稱 化學組成 粒徑(μηι) 滑石 (含水矽酸鎂) [Mg3Si4〇,〇(OH)2] 0.5-50 雲母 K20-3Al2〇3-6Si〇2-2H20 K20-6MgOAl2〇3-6Si〇2-2H2〇 3-700 石墨 C 4-25 Wik 塡料 名稱 化學組成 粒徑(μηι) 氧化鋁 Al2〇3 0.01-1000 碳化矽 SiC 0.01-1000 氮化矽 SiN 0.01-1000 氧化鎂 MgO 0.01-1000 石墨 C 4-25 -18- 201113316 此外,纖維狀塡料的纖維徑較佳爲0.001〜5〇μιη,更 佳爲 0.005〜30μηι’再更佳爲Ο.ΟΙμιη〜20μιη°若纖維徑 過大,則成形加工性會變差,若纖維徑過小,則在成形加 工時易折斷且熱傳導性的提高效果差,故不佳。又’纖維 狀塡料的纖維長度較佳爲1〜ΙΟΟΟΟμιη,更佳爲 5〜 8000 μιη,再更佳爲1〇〜6000 μιη。若該纖維長度爲上述範 圍,則樹脂組成物的成形加工性良好,作爲本發明的目的 之熱傳導性也進一步提高,故爲佳。 用於製造(Q)樹脂組成物的(Ρ)液晶性聚酯和(Χ6)無機 塡料的混合比設定如下。 [表8] (Q)樹脂組成物 (P)液晶性聚醋(重量份) G(P) (X6憮機塡料 (X6A纖維狀塡料(重量份) G(X6A) (X6B)板狀塡料(重量份) G(X6B) (X6C)粒子狀塡料(重量份) G(X6C) 在(Ρ)液晶性聚酯的重量份G(P) = 100時,(Χ6)無機塡 料的重量份 G(X6) = G(X6A) + G(X6B) + G(X6C)設定爲 5〜 25〇。(X6)無機塡料的重量份在上述的範圍內時,在維持 流動性的同時,可得到機械強度的提高、樹脂成形體的尺 寸性提高的效果,在無機塡料的重量份比上限値高時,難 以維持流動_性,在比上述下限値低時,樹脂成形體的尺寸 -19- 201113316 穩定性降低,而難以得到期望尺寸的樹脂成形體,又,液 晶聚酯強烈表現出各向異性,而有可能在樹脂成形體中發 生翹曲等。 夂’上述無機塡料含有板狀塡料時,有降低液晶聚酯 的各向異性,抑制樹脂成形體之翹曲的效果。 又’該纖維狀塡料以含有未經表面塗佈處理的纖維狀 塡料爲佳。此時,由於沒有由有機物產生氣體的情況,因 此可得到在樹脂內不產生氣泡的效果》 又’無機塡料也可以只含有纖維狀塡料。即使在這種 情況下,在(P)液晶性聚酯的重量份G(P)=100時,(X6)無 機塡料的重量部G(X6) = G(X6A)也設定爲5〜250。(X6)無 機塡料的重量份在上述的範圍內時,在維持流動性的同時 ,可得到機械強度提高、樹脂成形體的尺寸性提高的效果 ,在無機塡料的重量份比上限値高時·,難以維持流動性, 在比上述下限値低時,樹脂成形體的尺寸穩定性降低,難 以得到期望尺寸的樹脂成形體,又,液晶聚酯強烈表現出 各向異性,而有可能在樹脂成形體中發生翹曲等。 (3)朝模具內注入樹脂的步驟 在已被加熱的上下模具間的空間內,熔融並注入已造 粒的(Q)樹脂組成物,進行注射成形。加熱以使用高頻誘 導加熱加熱器(IH加熱器)爲佳。 (4)模具冷卻步驟 -20- 201113316 在模具內注入(Q)樹脂組成物後,藉由冷卻模具,而 固化樹脂組成物,然後,打開模具,可得到樹脂成形體。 如上所述,於本實施形態中,樹脂成形體的製造方法 具備:將藉由混合(P)熱塑性樹脂和(X6)無機塡料而進行造 粒所得到的(Q)樹脂組成物注入已被加熱的模具間的步驟 ,和藉由冷卻模具而固化(Q)樹脂組成物以得到樹脂成形 體的步驟。 在此,在將(Q)樹脂組成物的流動開始溫度設爲T 1 (°C ),將朝模具注入(Q)樹脂組成物時之模具的溫度設爲T2( °C)時,滿足關係式(T2(°C)2T1(°C)-140°C)» 亦即,經本案發明者們深入硏究樹脂成形體的製造方 法的結果發現,在由在(P)熱塑性樹脂中經混合(X6)無機塡 料而造粒的(Q)樹脂組成物以進行成形時,樹脂成形體的 剛性提高,此時,在滿足上述關係式的情況下,樹脂成形 體的冷卻效率顯著地改善。 此外,即使在使用聚對苯二甲酸丁二醇酯樹脂、聚苯 乙烯樹脂、丙烯酸樹脂、聚碳酸酯樹脂、聚酯樹脂、聚醯 胺樹脂、聚縮醛樹脂、聚苯醚樹脂、氟樹脂、聚苯硫醚樹 脂、聚颯樹脂、聚芳酯樹脂 '聚醚醯亞胺樹脂、聚醚颯樹 脂、聚醚酮樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹脂等的 (P)液晶性聚酯以外的熱塑性樹脂時,在低溫下具有在流 動方向上定向的傾向,在高溫下具有其定向性降低之傾向 的樹脂時,也可以得到上述的效果。其原因在於,本發明 係由起因於無機塡料之排列的無規化而成立的。在上述熱 BM· -21 - 201113316 塑性樹脂中,以聚對苯二甲酸丁二醇酯樹脂、聚苯乙烯樹 脂、聚酯樹脂、聚醯胺樹脂、聚縮醛樹脂、氟樹脂、聚苯 硫醚樹脂、聚醚酮樹脂、聚醯胺醯亞胺樹脂、聚醯亞胺樹 脂爲佳,以液晶性聚酯(液晶聚合物)更佳。由於液晶聚合 物在模具內的流動性優異,因此可提高樹脂成形體的精度 。又,在混合無機塡料和液晶聚合物時,可以得到剛性非 常高的的樹脂成形體。 又,加熱模具的加熱器係以高頻誘導加熱加熱器(IH 加熱器)爲佳。在使用IH加熱器進行加熱時,由於可以迅 速加熱模具,因此生產效率提高。 第3圖爲具備IH加熱器的樹脂成形裝置的縱向剖面 圖。於該圖中,顯示上下2個IH加熱器。 下部的IH加熱器具備:具有構成模具之樹脂成形用 凹凸圖型MA的金屬製頂板21A、被設置於金屬製頂板 21A之金屬製的柱材21A’、23A、和包圍柱材21A’、23A 的軸之周圍的線圈22A。上部的IH加熱器具備:具有構 成模具之樹脂成形用凹凸圖型MB的金屬製頂板21B、設 置於金屬製頂板21B之金屬製的柱材21B’、23B、和包圍 柱材21B'、23B的軸之周圍的線圈2 2B。由於上部的樹脂 成形用凹凸圖型MB在該圖的箭頭方向上移動,因此模具 打開或關閉。在關閉已被加熱之樹脂成形用凹凸圖型MA 、MB的狀態下,在這些樹脂成形用凹凸圖型MA、MB之 間的空間內,將(Q)樹脂組成物RGN邊熔融邊注入,進行 射出成形。 -22- 201113316 若對線圏22A、22B進行通電,則金屬製的柱材(的外 側構件2 1 A'、2 1 B ’)被誘導加熱,該熱係經由內側構件 23A、23B,傳導至金屬製頂板21A、21B。由於在金屬製 頂板21 A、21B上設置有樹脂成形用的凹凸圖型MA、MB ,因此樹脂成型用的凹凸圖型ΜΑ、MB被加熱。在這樣 的結構時,由於具有有助於樹脂成形用凹凸圖型ΜΑ、MB 之加熱的構件,亦即體積比較小的柱材被選擇性地誘導加 熱’該熱被傳導至樹脂成形用的凹凸圖型ΜΑ、MB,因此 可以抑制生產時的能量消耗量,可降低生產成本。 此外,相比較於柱材的外側構件2 1 A,、2 1 B,的材料( 例如:不銹鋼:F e),內側構件2 3 A、2 3 B的部分可使用熱 傳導率高的材料(例如·· Cu)製造,可進行高效率地熱傳導 〇 又’藉由上述之製造方法所製造的樹脂成形體,冷卻 效率優異’可適用於期待抑制發熱的多數電子零件等。 實施例 以下’針對本發明的實施例進行說明,但本發明不受 實施例限制》 (實驗條件) 首先’按照以下順序,製造液晶性聚酯(P 1、P2),且 使用該液晶聚酯製造熱塑性樹脂組成物(Q 1、Q 2、Q 3)。又 ’使用聚對苯二甲酸丁二醇酯樹脂(東麗(T〇R A Y)股份有[Table U Raw Material-------(XI) Fangxiangwei Hydroxycarboxylic Acid---- (for example: p-hydroxybenzoic acid) (X2) Fangxiangdiol (for example: 4,4'-dihydroxyl Biphenyl) (X3) scented dicarboxylic acid (eg terephthalic acid) (eg isophthalic acid) (X4) fatty acid anhydride L 1 - (eg acetic anhydride) -11 - 201113316 as a suitable aroma The hydroxycarboxylic acid may be used exemplified in the following table, or may be used in combination of two or more kinds of aromatic hydroxycarboxylic acids shown in the following table. [Table 2]_ (XI) Aromatic Hydroxycarboxylic Acid • p-Hydroxybenzoic Acid • m-Hydroxybenzoic Acid • 2-Pyridyl-6-naphthoic Acid • 2-Pyramyl-3-naphthoic Acid • 1-Hydroxy-4- Naphthoic acid • 2,6-monochloro-p-benzoic acid • 2-chloro-p-hydroxybenzoic acid • 2,6-difluoro-p-hydroxybenzoic acid • 4- oxyl-41-bibenzoic acid as suitable The aromatic diol can be used in the following examples, which can be used in the following table, or in combination of two or more aromatic diols shown in the following table. -12-201113316 [Table 3] _ (X2) Aromatic II Alcohol. 4,4'-Dihydroxybiphenyl•Hydrazine•Resorcinol•Methylhydroquinone•Chlorohydroquinone•Ethyloxyhydroquinone•Nitrohydroquinone.• 1,4-Dihydroxynaphthalene • 1,5-dihydroxynaphthalene • 1,6-dihydroxynaphthalene • 2,6-dihydroxynaphthalene • 2,7-dihydroxynaphthalene • 2,2-bis(4-hydroxyphenyl)propane • 2,2 - bis(4-carbyl-3,5-dimethylphenyl)propane • 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane • 2,2-bis(4-hydroxyl -3-methylphenyl)propane • 2,2-bis(4-hydroxy-3-chlorophenyl)propane • bis-(4-hydroxyphenyl)methane • bis-(4-carbyl-3,5 -dimethylphenyl)methane•bis-(4-carbyl-3,5- Dichlorophenyl)methane•bis-(4-carbyl-3,5-dibromophenyl)methane•bis-(4-carbyl-3-methylphenyl)methane•bis-(4-hydroxy- 3-chlorophenyl)methane • 1,1_bis(4-hydroxyphenyl)cyclohexane•bis-(4-pyridylphenyl)ketone•bis-(4-hydroxy-3,5-dimethyl Phenyl) ketone • bis-(4-carbyl-3,5-dichlorophenyl) ketone • bis-(4-hydroxyphenyl) sulfide • bis-(4-hydroxyphenyl) fluorene • bis-( As the suitable aromatic dicarboxylic acid, 4-hydroxyphenyl)ether can be used in combination of one of the following examples, but it can also be used in combination of two or more kinds of aromatic dicarboxylic acids shown in the following table. -13- 201113316 [Table 4]_ (X3) Aromatic Dicarboxylic Acid • Terephthalic Acid • Isophthalic Acid • 2,6-Naphthalene Dicarboxylic Acid • 1,5-Naphthalene Dicarboxylic Acid • 4,4'-Linked Phthalic acid, methyl terephthalate, methyl isophthalic acid, and from the viewpoint of heat resistance, it is preferred to use terephthalic acid, or terephthalic acid and 2,6-naphthalene dicarboxylic acid. From the viewpoint of low thermal expansion, it is preferred to use 2,6-naphthalenedicarboxylic acid. As a suitable fatty acid anhydride, one of the following examples may be used, but two or more kinds of fatty acid anhydrides shown in the following table may be used in combination. [Table 5] (X4) Fatty acid anhydride • Acetic anhydride • Monobromoacetic anhydride • Propionic anhydride • Dibromoacetic anhydride • Butyric anhydride • Tribromoacetic anhydride • Isobutyric anhydride • Monofluoroacetic anhydride • Valeric anhydride • Difluoroacetic anhydride • pivalic anhydride • trifluoroacetic anhydride • 2-ethylhexanoic anhydride • glutaric anhydride • monochloroacetic anhydride • maleic anhydride • dichloroacetic anhydride • succinic anhydride • trichloroacetic anhydride • β-bromopropionic anhydride-14 - 201113316 Receiver · 'Introducing the above-mentioned raw materials (X1) to (X4) into the reaction vessel, and then introducing the catalyst (X5) which promotes the melt polymerization into the reaction vessel at a specific melt polymerization temperature (Μ) Heat the reaction vessel. In addition, the contents were stirred during heating. As the catalyst (X5) to which the raw material is added, various catalysts are known, but a suitable imidazole compound can be used. [Table 6] (Χ5) Catalyst • Imidazole • 1-cyanoethyl-2-methylimidazole • 1-methylimidazole • 1-cyanoethyl-2-phenylimidazole • 2-methylimidazole • 4- Cyanoethyl-2-ethyl-4-methylimidazole • 4-methylimidazole • 1-Aminoethyl-2-methylimidazole • 1-ethylimidazole • 2-alkyl-4-carbamimidazole • 2-Ethylimidazole • 2,4-Dialkyl-5-carbamimidazole • 4-ethylimidazole • 1-Benzyl-2-phenylimidazole • 1,2-Dimethylimidazole • 1- Aminoethyl-2-methylimidazole • 1,4 dimethylimidazole • acetoethyl 2-ethyl imidazole. 2,4-dimethylimidazole • 4-carbamimidazole. 1-methyl 2-ethylimidazole • 2-methyl-4-carbamimidazole • 1-methyl-4-ethylimidazole • 4-methyl-5-carboxylic acid imidazole • ethyl-2-methylimidazole • 2 -ethyl-4-methyl-5-mercaptopimidazole• 1-ethyl-2-ethylimidazole• 2-phenyl-4-methyl-4-carbamimidazole• 1-ethyl-2 -Phenyl imidazole• 2-ethyl-4-methylimidazole• 2-phenylimidazole. 1-Benzyl-2-methylimidazole• 2-phenyl-4-methylimidazole S: -15- 201113316 Melting The polymerization temperature Τ(Μ) is 18 in the initial stage of polymerization. 0 to 3 at 20 ° C, it is heated at a ratio of 0.3 to 5. 〇 t / minute, and finally becomes 280 to 400 ° C. The by-product fatty acid is formed by polymerization, but it is preferred to carry out the polymerization by excluding the fatty acid from the outside of the system. The atmosphere of the melt polymerization is preferably an inert gas atmosphere such as nitrogen or argon under normal pressure. Further, the melt polymerization can also be carried out under reduced pressure. The reaction time of the melt polymerization is not particularly limited 'but usually about 0.3 to 10 hours. The obtained solid fraction is cooled to room temperature, pulverized by a coarse pulverizer, and then heated from room temperature to a temperature T (° C.) at which solid phase polymerization is carried out under a nitrogen atmosphere to obtain a liquid crystalline polyester (as (P)). The solid phase polymerization temperature T (°c) is usually about 200 to 3 50 tons, and the treatment time is usually about 1 to 20 hours. The weight average molecular weight of the liquid crystalline polyester thus obtained is not particularly limited, but is preferably from 10,000 to 50,000. The liquid crystal property of the obtained polyester can be confirmed by observation by a polarizing microscope or the like. Further, since the liquid crystalline polyester is widely sold, it can be purchased, and it can be used even if the raw material composition is not the above. (2) Granulation Step of Resin Composition Containing Liquid Crystalline Polyester and Inorganic Tanning Material A granulator is used by mixing the above (P) liquid crystalline polyester and (X6) inorganic cerium (for example: the same direction) The granulation is carried out to obtain a granular thermoplastic resin composition (as a (Q) resin composition). One type of the following may be used as the (X 6) inorganic material, but two or more types may be used. Further, an appropriate inorganic material may be further mixed as needed. The following are known inorganic dips known to date. -16- 201113316 In addition, among the following materials, the material (Y) which is not an exothermic property having a thermal conductivity of 10 W/mK or more is glass 'Wollastonite, rock wool, 矽Aluminum acid, potassium titanate, barium titanate 'aluminum borate, titanium oxide' Korean carbonate, alkaline magnesium sulfate, zinc oxide, hard calcite, talc, mica, but other materials can be used for purposes other than heat release improvement Mix in. -17- 201113316 [Table 7] (X6 塡 塡 纤维 纤维 纤维 名称 名称 名称 名称 名称 名称 名称 名称 纤维 纤维 纤维 纤维 纤维 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃 玻璃绵SiO2Al2〇3Fe2〇3MgOMnOCaO 1-20 100-800 Aluminum silicate Al2〇3-3Si02 1-5 10-100 Alumina ai2o3 2-50 10-100 SiC SiC 0.05-2.0 5-200 Stainless steel fiber FeCrNi FeNiCrMo FeCr 10 -100 300-4000 Copper fiber Cu 10-100 300-4000 Cerium nitride SiN 0.05-2.0 5-200 Potassium titanate K20-8Ti02 K20-6Ti02 0.1-1.5 10-100 Barium titanate BaOTi02 0.2-2.0 10-30 Boric acid Aluminum 2Β2〇3·9Α12〇3 0.5-1.0 10-30 Oxide Ti02 0.05-0.5 1.5-15 Calcium carbonate CaC03 0.5-1.0 20-30 Alkaline magnesium sulfate MgS04-2H20 0.5-10 8-100 Zinc oxide Zn〇2 0.2-3.0 2-50 carbon fiber c 0.1-30 30-6000 carbon nanotube c 0.001-0.15 1-20 hard calcite (calcium citrate) 6Ca0-6Si02H20 0.05-0.2 10-20 dirty material name chemical composition Diameter (μηι) talc (aqueous magnesium citrate) [Mg3Si4〇, 〇(OH)2] 0.5-50 mica K20-3Al2〇3-6Si〇2-2H20 K20-6MgOAl2〇3-6Si〇2-2H2〇3- 700 Graphite C 4-25 Wik Material name Chemical composition Particle size (μηι) Alumina Al2〇3 0.01-1000 SiC SiC 0.01-1000 Tantalum nitride SiN 0.01-1000 Magnesium oxide MgO 0.01-1000 Graphite C 4-25 -18- 201113316 In addition, fibrous The fiber diameter of the dip material is preferably 0.001 to 5 μm μη, more preferably 0.005 to 30 μηι′, and more preferably Ο.ΟΙμιη to 20 μιη°. If the fiber diameter is too large, the formability is deteriorated, and if the fiber diameter is too small, It is easy to break during forming and the effect of improving the thermal conductivity is poor, so it is not preferable. The fiber length of the fiber-like material is preferably 1 to ΙΟΟΟΟμηη, more preferably 5 to 8000 μηη, and even more preferably 1 to 6,000. Ιιη. When the fiber length is in the above range, the moldability of the resin composition is good, and the thermal conductivity as the object of the present invention is further improved. The mixing ratio of the (Ρ) liquid crystalline polyester and the (Χ6) inorganic pigment used for the production of the (Q) resin composition was set as follows. [Table 8] (Q) Resin composition (P) Liquid crystalline polyacetate (parts by weight) G (P) (X6 怃 塡 ( (X6A fibrous 塡 (parts by weight) G (X6A) (X6B) plate Dilute (parts by weight) G(X6B) (X6C) Particulate Dipping (parts by weight) G(X6C) In the case of (Ρ) liquid crystalline polyester in parts by weight G(P) = 100, (Χ6) Inorganic coating The weight fraction G(X6) = G(X6A) + G(X6B) + G(X6C) is set to 5 to 25 〇. (X6) When the weight fraction of the inorganic mash is within the above range, the fluidity is maintained. At the same time, the effect of improving the mechanical strength and the dimensionality of the resin molded body can be obtained. When the weight fraction of the inorganic tantalum is higher than the upper limit, it is difficult to maintain the fluidity, and when it is lower than the lower limit, the resin molded body is Size -19-201113316 The stability is lowered, and it is difficult to obtain a resin molded body of a desired size. Further, the liquid crystal polyester strongly exhibits anisotropy, and warpage or the like may occur in the resin molded body. When the plate-like coating material is contained, the anisotropy of the liquid crystal polyester is lowered, and the warpage of the resin molded body is suppressed. Further, the fibrous material is coated with an uncoated surface. The fibrous treated material is preferably treated. In this case, since no gas is generated from the organic substance, the effect of not generating bubbles in the resin can be obtained. Further, the 'inorganic coating material may contain only the fibrous material. Even in the case of In this case, when the weight fraction G(P) of the (P) liquid crystalline polyester is 100, the weight portion G(X6) = G(X6A) of the (X6) inorganic pigment is also set to 5 to 250. When the weight fraction of the inorganic binder is within the above range, the fluidity can be improved and the dimensionality of the resin molded body can be improved while maintaining the fluidity, and when the weight ratio of the inorganic binder is higher than the upper limit It is difficult to maintain fluidity, and when it is lower than the lower limit, the dimensional stability of the resin molded body is lowered, and it is difficult to obtain a resin molded body having a desired size. Further, the liquid crystal polyester strongly exhibits anisotropy, and may be in the resin. Warpage or the like occurs in the molded body. (3) Step of injecting resin into the mold In the space between the upper and lower molds which have been heated, the granulated (Q) resin composition is melted and injected, and injection molding is performed. Using high frequency induced heating The heat exchanger (IH heater) is preferred. (4) Mold cooling step -20- 201113316 After the (Q) resin composition is injected into the mold, the resin composition is solidified by cooling the mold, and then the mold is opened. In the present embodiment, the method for producing a resin molded body includes a (Q) resin composition obtained by granulating by mixing (P) a thermoplastic resin and (X6) an inorganic mash. The step of injecting between the heated molds and the step of curing the (Q) resin composition by cooling the mold to obtain a resin molded body. Here, when the flow start temperature of the (Q) resin composition is T 1 (° C.), and the temperature of the mold when the (Q) resin composition is injected into the mold is T2 (° C.), the relationship is satisfied. (T2 (°C) 2T1 (°C) - 140°C)» That is, as a result of intensive investigation of the method for producing a resin molded body by the inventors of the present invention, it was found that it was mixed by (P) thermoplastic resin. (X6) When the (Q) resin composition granulated by the inorganic mash is molded, the rigidity of the resin molded body is improved. In this case, when the above relational expression is satisfied, the cooling efficiency of the resin molded body is remarkably improved. In addition, even when using polybutylene terephthalate resin, polystyrene resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, polyacetal resin, polyphenylene ether resin, fluororesin , polyphenylene sulfide resin, polyfluorene resin, polyarylate resin 'polyether phthalimide resin, polyether oxime resin, polyether ketone resin, polyamidoximine resin, polyimine resin, etc. (P When a thermoplastic resin other than the liquid crystalline polyester tends to be oriented in the flow direction at a low temperature and has a tendency to lower the orientation property at a high temperature, the above effects can be obtained. The reason for this is that the present invention is established by the randomization of the arrangement of inorganic tantalum. In the above thermal BM· -21 - 201113316 plastic resin, polybutylene terephthalate resin, polystyrene resin, polyester resin, polyamide resin, polyacetal resin, fluororesin, polyphenylene sulfide The ether resin, the polyether ketone resin, the polyamidoximine resin, and the polyimine resin are preferred, and the liquid crystalline polyester (liquid crystal polymer) is more preferable. Since the liquid crystal polymer is excellent in fluidity in the mold, the precision of the resin molded body can be improved. Further, when the inorganic pigment and the liquid crystal polymer are mixed, a resin molded body having a very high rigidity can be obtained. Further, it is preferable that the heater for heating the mold is a high frequency induction heating heater (IH heater). When the IH heater is used for heating, the productivity is improved because the mold can be heated quickly. Fig. 3 is a longitudinal sectional view of a resin molding apparatus equipped with an IH heater. In the figure, two IH heaters are shown. The lower IH heater includes a metal top plate 21A having a concave-convex pattern MA for resin molding constituting a mold, metal pillars 21A' and 23A provided on the metal top plate 21A, and surrounding pillars 21A' and 23A. The coil 22A around the shaft. The upper IH heater includes a metal top plate 21B having a resin molding uneven pattern MB constituting a mold, metal pillars 21B' and 23B provided on the metal top plate 21B, and surrounding pillars 21B' and 23B. Coil 2 2B around the shaft. Since the upper resin molding concave-convex pattern MB moves in the direction of the arrow of the figure, the mold is opened or closed. In the state in which the resin pattern forming concave-convex patterns MA and MB are closed, the (Q) resin composition RGN is injected while being melted in the space between the resin molding uneven pattern types MA and MB. Injection molding. -22-201113316 When the coils 22A and 22B are energized, the metal pillars (the outer members 2 1 A' and 2 1 B ') are induced to be heated, and the heat is transmitted to the inner members 23A and 23B to the inner members 23A and 23B. Metal top plates 21A, 21B. Since the embossed patterns MA and MB for resin molding are provided on the metal top plates 21 A and 21B, the embossed pattern ΜΑ and MB for resin molding are heated. In such a configuration, the member which contributes to the resin forming concave-convex pattern ΜΑ and MB is heated, that is, the column having a relatively small volume is selectively induced to be heated, and the heat is transmitted to the unevenness for resin molding. The pattern type ΜΑ, MB, can suppress the energy consumption during production and reduce the production cost. Further, compared to the material of the outer member 2 1 A, 2 1 B of the column (for example, stainless steel: F e ), the portion of the inner member 2 3 A, 2 3 B may use a material having high thermal conductivity (for example, - Cu) is manufactured by a resin molded article produced by the above-described production method, and is excellent in cooling efficiency. It can be applied to many electronic parts and the like which are expected to suppress heat generation. EXAMPLES Hereinafter, the examples of the present invention will be described, but the present invention is not limited by the examples (Experimental Conditions) First, liquid crystal polyester (P 1 , P 2 ) is produced in the following order, and the liquid crystal polyester is used. A thermoplastic resin composition (Q 1 , Q 2, Q 3) was produced. Also 'using polybutylene terephthalate resin (Tong R (Y) shares have
-23 - S 201113316 限公司製,商品名電信(telecom)(註冊商標):等級(grade )1401x06),使用聚苯硫醚樹脂(DIC股份有限公司製,T_4G) ,製造熱塑性樹脂組成物(Q4、Q5)。之後,在已被加熱的 模具內注入熱塑性樹脂組成物(Ql、Q2、Q3、Q4、Q5), 將其冷卻而製造樹脂成形體。 (I)液晶性聚醋(pi)的製造 反應裝置係具備:備有在反應容器內轉動之葉片的攪 拌裝置、測量攪拌裝置葉片之旋轉扭矩的扭矩測量器、導 入氮氣到反應容器內的氮氣導入管、測量反應容器內之溫 度的溫度計、及冷卻由反應容器蒸餾出的氣體的回流冷凝 器。 在該反應裝置的反應容器內,導入以下的原料(XI)〜 (X4) 〇 表9] 原料 重量 (XI) 對羥基苯甲酸 994.5g(7.2 莫耳) (X2) 4^-二羥基聯苯 446.9g(2.4 莫耳) (X3) 對苯二甲酸 299.0g(1.8 莫耳) 間苯二甲酸 99.7g(0_6 莫耳) (X4) _ 醋酸酐 1347.6g(13.2 莫耳) 首先,經由氮氣導入管將氮氣導入反應容器內,以充 足的氮氣置換容器內部的氣體。使氮氣在反應容器內流動 ,同時用30分鐘將反應容器升溫到150°C,保持該溫度, -24- 201113316 回流3小時。使用回流冷凝器使醋酸回流。 之後,添加2.4g觸媒(X5) “ 1-甲基咪唑”後,蒸餾除 去蒸餾出的副反應生成物醋酸、未反應的醋酸酐,同時用 2小時50分鐘升溫到320°C,將確認藉由扭矩測量器所測 量之扭矩上升的時刻視爲反應完畢,取出反應容器內的內 容物。 將所得到的固形分冷卻至室溫,使用粗粉碎機粉碎後 ,在氮氛圍氣下用1小時從室溫升溫到250 °C,用5小時 從25 0°C升溫到295 ,在295 °C下保持3小時,在固相進 行聚合反應,而得到液晶性聚酯(P 1)。 (Π)液晶性聚酯(P2)的製造步驟 在上述反應裝置的容器內導入以下原料。 [表 10] 原料 重量 (XI) 對羥基苯甲酸 994_5g(7.2 莫耳) (X2) 4,4’-二羥基聯苯 446.9g(2.4 莫耳) (X3) 對苯二甲酸 239.0g(1.44 莫耳) 間苯二甲酸 159.5g(0.96 莫耳) (X4) 醋酸酐 1347.6g(13.2 莫耳) 反應器內以充足的氮氣置換後’在氮氣氣流下用3 0 分鐘升溫到1 5 0 °C,保持溫度回流3小時。之後,添加 2.4g觸媒(X5) “ 1-甲基咪唑”後’蒸餾除去蒸餾出的副反 應生成物醋酸、未反應的醋酸酐,同時用2小時50分升 -25- 201113316 溫到3 2 (TC,將確認扭矩上升的時刻視爲反應完畢,取出 內容物。將所得到的固形分冷卻至室溫,使用粗粉碎機粉 碎後,在氮氛圍氣下用1小時從室溫升溫到220°C,用 〇·5小時從220°C升溫到240°C,在240°C下保持10小時 ,在固相進行聚合反應,而得到液晶聚酯(P 2)。 (III)熱塑性樹脂組成物(Ql、Q2、Q3、Q4、Q5)的製造步驟 首先’作爲無機塡料(X6),準備含有以下材料的無機 塡料。 -26- 201113316-23 - S 201113316 Limited company system, trade name telecommunication (telecom) (registered trademark): grade (grade) 1401x06), using polyphenylene sulfide resin (made by DIC Corporation, T_4G), manufacturing thermoplastic resin composition (Q4 , Q5). Thereafter, a thermoplastic resin composition (Ql, Q2, Q3, Q4, Q5) is injected into the heated mold, and this is cooled to produce a resin molded body. (I) A liquid crystal polyester (pi) production reaction apparatus comprising: a stirring device equipped with a blade that rotates in a reaction vessel; a torque measuring device that measures a rotational torque of the stirring device blade; and a nitrogen gas that introduces nitrogen into the reaction container A introduction tube, a thermometer that measures the temperature in the reaction vessel, and a reflux condenser that cools the gas distilled from the reaction vessel. In the reaction vessel of the reaction apparatus, the following raw materials (XI) to (X4) were introduced. Table 9] Raw material weight (XI) p-hydroxybenzoic acid 994.5 g (7.2 mol) (X2) 4^-dihydroxybiphenyl 446.9g (2.4 moles) (X3) terephthalic acid 299.0g (1.8 moles) isophthalic acid 99.7g (0_6 moles) (X4) _ acetic anhydride 1347.6g (13.2 moles) First, via nitrogen The tube introduces nitrogen into the reaction vessel to replace the gas inside the vessel with sufficient nitrogen. Nitrogen gas was allowed to flow in the reaction vessel while the reaction vessel was heated to 150 ° C for 30 minutes, maintained at this temperature, and refluxed for -3 hours from -24 to 201113316. The acetic acid was refluxed using a reflux condenser. After that, 2.4 g of the catalyst (X5) "1-methylimidazole" was added, and the distilled side reaction product acetic acid and unreacted acetic anhydride were distilled off, and the temperature was raised to 320 ° C over 2 hours and 50 minutes to confirm. The time at which the torque measured by the torque measuring device rises is regarded as the completion of the reaction, and the contents in the reaction container are taken out. The obtained solid fraction was cooled to room temperature, pulverized by a coarse pulverizer, and then heated from room temperature to 250 ° C for 1 hour under nitrogen atmosphere, and heated from 25 ° C to 295 at 5 ° C for 5 hours at 295 ° The polymerization was carried out for 3 hours under C, and polymerization was carried out in a solid phase to obtain a liquid crystalline polyester (P 1 ). (Π) Manufacturing Step of Liquid Crystalline Polyester (P2) The following raw materials were introduced into the container of the above reaction apparatus. [Table 10] Raw material weight (XI) p-hydroxybenzoic acid 994_5g (7.2 moles) (X2) 4,4'-dihydroxybiphenyl 446.9g (2.4 moles) (X3) terephthalic acid 239.0g (1.44 Mo Ear) 159.5g (0.96 moles) of isophthalic acid (X4) 1347.6g (13.2 moles) of acetic anhydride. After replacing with sufficient nitrogen in the reactor, 'heat up to 150 °C in 30 minutes under nitrogen gas flow. Keep the temperature at reflux for 3 hours. After that, 2.4 g of catalyst (X5) "1-methylimidazole" was added, and then the distilled side reaction product acetic acid and unreacted acetic anhydride were distilled off, and simultaneously used for 2 hours and 50 minutes - 25 - 201113316 to 3 2 (TC, the time at which the torque rise was confirmed was regarded as the completion of the reaction, and the contents were taken out. The obtained solid fraction was cooled to room temperature, pulverized by a coarse pulverizer, and then heated from room temperature to 1 hour in a nitrogen atmosphere. At 220 ° C, the temperature was raised from 220 ° C to 240 ° C for 5 hours, and maintained at 240 ° C for 10 hours, and polymerization was carried out in a solid phase to obtain a liquid crystal polyester (P 2). (III) Thermoplastic resin The manufacturing steps of the compositions (Ql, Q2, Q3, Q4, Q5) are first prepared as an inorganic tantalum (X6), and an inorganic tantalum containing the following materials is prepared. -26- 201113316
型號:DIALEAD 〇23HG(三菱化學產資股份有限公司製) 熱傳導率:540W/mK 纖維徑:ΙΟμηι 纖維長度:6mm (X6A2)玻璃纖維 型號:CS03JAPX-1 (Owens Coming 公司製) 材料:玻璃(Si02) 熱傳導率:1.0W/mK 纖維徑:ΙΟμηι 纖維長度:3mm (X6A3)氧化鋁纖維Model: DIALEAD 〇23HG (Mitsubishi Chemical Co., Ltd.) Thermal conductivity: 540W/mK Fiber diameter: ΙΟμηι Fiber length: 6mm (X6A2) Fiberglass Model: CS03JAPX-1 (manufactured by Owens Coming Co., Ltd.) Material: Glass (Si02 Thermal conductivity: 1.0W/mK Fiber diameter: ΙΟμηι Fiber length: 3mm (X6A3) alumina fiber
Denkaarusen(註冊商標):(電氣化學工業股份有限公司製) 材料:含有1〇〇重量%氧化鋁 纖維徑:3.2μιη 體積密度(bulk density) : 0.28g/cm3 _Denkaarusen (registered trademark): (manufactured by Electric Chemical Industry Co., Ltd.) Material: 1% by weight of alumina Fiber diameter: 3.2μιη Bulk density: 0.28g/cm3 _
型號:X-5〇(日本TALC股份有限公司製) 材料:滑石 熱傳導率:〇.12W/mK (X6C)粒狀塡料 尺寸:粒徑14.5μιη (X6C1)氧化鋁纖維粒狀物 將上述氧化鋁纖維攪拌造粒所得之物 (X6C2)氧化鋁粒子(低鹼氧化鋁) 型號:ALM-41(住友化學股份有限公司製) 熱傳導率:36 W/mK 平均粒徑:1.5μιη 氧化鋁含量:99.9重量% 體積密度:〇.28g/cm3 -27- 201113316 此外,於上述(* 1)中記載的(X6 C 1)氧化鋁纖維粒狀物 係將(X6A3)氧化鋁纖維投入亨歇爾(Henschel)混合機(川田 股份有限公司製,高速流動混合機G 1 00)內攪拌造粒所得 之物。又,亨歇爾混合機係指螺旋混合機式的高速混合機 的一種,主要用於粉粒體、塑膠原材料、著色劑和添加劑 等均勻混合的機器。 接著,混合在製造步驟(I)和製造步驟(Π)所得的液晶 聚酯(PI、P2)、聚對苯二甲酸丁二醇酯樹脂或聚苯硫醚樹 脂和(X6)無機塡料,使用同向雙軸押出機(池貝鐵鋼股份 有限公司製PCM-30)進行造粒,而得到熱塑性樹脂組成物 。上述之混合比如下。 [表 12] (Q1)熱塑性樹 脂組成物 (Q2)熱塑性樹 脂組成物 (Q3)熱塑性樹 脂組成物 (P1)液晶聚酯(重量份) 32 15 20 (P2)液晶聚酯(重量份) 0 12 16 (X6C1)氧化鋁纖維粒狀物(重量份) 61 65 0 (X6A1)碳纖維(重量份) 7 0 0 (X6C2)氧化鋁粒子(重量份) 0 8 52 (X6B)滑石(重量份) 0 0 6 (X6A2)玻璃纖維(重量份) 0 0 6 流動開始溫度TlfC) 336 310 306 -28- 201113316 [表 13] (Q4)熱塑性樹脂組成物 (Q5)熱塑性樹脂組成物 聚對苯二甲酸丁二醇酯樹脂(重量份) 70 0 聚苯硫醚樹脂(重量份) 0 70 (X6C1)氧化鋁纖維粒狀物(重量份) 30 30 流動開始溫度Ή(°〇 233 286 測定所得之熱塑性樹脂組成物(Q1、Q2、Q3、Q4、 Q5)的流動開始溫度。 此外,流動開始溫度雖爲樹脂開始流動的溫度,但爲 了更精密地測定,於本實施例中,流動開始溫度係使用具 有內徑爲1mm、長度爲10mm之噴嘴的毛細管流變儀,在 100kg/cm2的負荷下’以4°C/分鐘的升溫速度由噴嘴押出 加熱熔融體時,熔融黏度爲48000泊的溫度。 (實施例1) 使用熱塑性樹脂組成物Q 1,對第3圖的IH加熱器供 給高頻電流,藉由高頻誘導加熱使頂板溫度上升後,在頂 板溫度達到2 2 7 C時’進行注射成形。此外,沿著成形品 的長度方向(縱向)使樹脂流動而進行注入。所得之成形品 爲在樹脂流動方向(縱向(MD))上的尺寸爲20mm、在垂直 於樹脂流動方向之方向(橫向(TD))上的尺寸爲7mm、在垂 直於縱向及橫向兩者的厚度方向(ZD)上的尺寸爲1mm的 長方體,將其作爲熱傳導率評價用樣品》 -29- 201113316 (實施例2) 除了使頂板溫度爲2 5 1 °C以外,與實施例1同樣地製 作樣品。 (比較例1) 除了使頂板溫度爲1 30°C以外,與實施例1同樣地製 作樣品。 (實施例3) 除了將熱塑性樹脂組成物變更爲Q2以外,與實施例 1同樣地製作樣品。 (實施例4) 除了使頂板溫度變更爲2 5 1 °C以外,與實施例3同樣 地製作樣品。 (比較例2) 除了使頂板溫度變更爲1 3 0°C以外,與實施例3同樣 地製作樣品。 (實施例5) 除了將熱塑性樹脂組成物變更爲Q3以外,與實施例 1同樣地製作樣品。 -30 - 201113316 (實施例6) 除了使頂板溫度變更爲251 °C以外,與實施例5同樣 地製作樣品。 (比較例3) 除了使頂板溫度變更爲1 3 0 °C以外,與實施例5同樣 地製作樣品。 (實施例7) 除了將熱塑性樹脂組成物變更爲Q4,且將頂板溫度 變更爲1 50°C以外,與實施例1同樣地製作樣品。 (比較例4) 除了使頂板溫度變更爲60t以外,與實施例7同樣地 製作樣品。 (實施例8) 除了將熱塑性樹脂組成物變更爲Q5,將頂板溫度變 更舄200。(:以外,與實施例1同樣地製作樣品。 (比較例5) 除了使頂板溫度變更爲1 30°C以外,與實施例7同樣 地製作樣品。 -31 - 201113316 (評價及結果) 使用上述樣品,測定各實施例及比較例中的樹脂的熱 擴散率。於該測定中,使用熱擴散率·熱傳導測定裝置 (ai-Phase股份有限公司製,熱擴散率·熱傳導測定裝置( 註冊商標))。比熱係使用DSC(PERKIN ELMER製DSC7)進 行測定,比重係使用自動比重測定裝置(關東measure股份 有限公司製,型號 ASG-3 20)進行測定。各方向(MD、TD 、ZD)的熱傳導率係由熱擴散率和比重的積算出。溫度 300K時的電阻率係使用 ASTM(美國材料試驗協會)-D257 的試驗方法進行測定。 以上的評價結果如下表所示。 [表 14] 實施例1 實施例2 比較例1 熱塑性樹脂組成物 Q1 01 01 流動開始溫度Tl(°c) 336 336 336 模具溫度T2(°C) 227 251 130 Τ1-140ΓΟ 196 196 196 熱傳導率(MD)W/mK 7.6 7.7 7.5 熱傳導率(TD)W/mK 8.8 9.3 8.3 熱傳導率(ZD)W/mK 1.8 1.8 1.6 電阻率(Ωιη) lxl〇13 lxlO13 lxlO13 -32- 201113316 [表 15] 實施例3 實施例4 比較例2 熱塑性樹脂組成物 Q2 Q2 Q2 流動開始溫度Tl(°c) 310 310 310 模具溫度T2fc) 227 251 130 Τ1-140(°〇 170 170 170 熱傳導率(MD)W/mK 5.0 5.1 , 4.7 熱傳導率(TD)W/mK 5.9 6.8 5.8 熱傳導率(ZD)W/mK 2.3 2.6 2.1 電阻率(Ωηι) 1χ1013 ΙχΙΟ13 ΙχΙΟ13 [表 16] 實施例5 實施例6 比較例3 熱塑性樹脂組成物 03 03 Q3 流動開始溫度ti(°c) 306 306 306 模具溫度T2(°C) 227 251 130 T1-140(°C) 166 166 166 熱傳導率(MD)W/mK 3.1 3.2 2.8 熱傳導率(TD)W/mK 2.4 3.9 2.1 熱傳導率(ZD)W/mK 1.1 1.3 0.8 電阻率(Ωιη) ΙχΙΟ13 ΙχΙΟ13 ΙχΙΟ13 [表 17] 實施例7 比較例4 實施例8 比較例5 熱塑性樹脂組成物 04 04 05 Q5 流動開始溫度Tl(°c) 233 233 286 286 模具溫度T2(°C) 150 60 200 130 Τ1-140(°〇 93 93 146 146 熱傳導率(MD)W/mK 0.5 0.4 0.5 0.4 熱傳導率(TD)W/mK 0.9 0.5 0.4 0.3 熱傳導率(ZD)W/mK 0.3 0.2 0.3 0.2 電阻率(Ωιη) ΙχΙΟ13 1x10° ΙχΙΟ13 ΙχΙΟ13 -33- 201113316 由以上實驗結果可知,在丁2(。(:)21'1(°〇)-14〇(°(:)時 ,可以提高熱傳導率。特別是,即使使用藉由混合單個或 多個液晶性聚酯而改變流動開始溫度的熱塑性樹脂組成物 Ql、Q2、Q3、Q4、Q5中之任一種,在滿足上述關係時, 也可顯著提高熱傳導率。如此一來,藉由使模具溫度T2 對應於熱塑性樹脂組成物的流動開始溫度T 1爲特定値以 上的高溫,由於模具內的熱塑性樹脂組成物的固化變慢, 熱塑性樹脂組成物可維持在黏彈性低的狀態,因此無機塡 料在其中的排列方向會變得不規則,藉由無機塡料在成形 體內部接觸,而可提高熱傳導率。 此外,由樹脂成形體的耐熱性的觀點考慮,以T 2 (°C ) $熱塑性樹脂的分解開始溫度爲佳。 又,熱塑性樹脂或無機塡料的材料即使是實驗例以外 的材料,藉由不規則排列,由所謂多數個無機塡料在熱塑 性樹脂內部接觸之機率會提高的理由而言,可得到與上述 同樣之熱傳導率提高的效果。 【圖式簡單說明】 第1圖爲示意性地顯示(A)比較例及(B)實施形態的樹 脂成形體內部結構之樹脂成形體的剖面圖。 第2圖爲示意性地顯示(A)比較例及(B)實施形態的熱 傳導機制的圖。 第3圖爲含有高頻誘導加熱加熱器的樹脂成形裝置的 -34 - 201113316 縱向剖面圖。 【主要元件符號說明】 1 :熱塑性樹脂 2 :無機塡料 21A、21B:金屬製頂板 2 1 A' ' 21B':柱材 2 2 A、2 2 B :線圈 23A、23B :柱材 T :熱源 MA :凹凸圖型 MB :凹凸圖型 RGN : (Q)樹脂組成物 -35-Model: X-5〇 (made by TALC Co., Ltd., Japan) Material: Thermal conductivity of talc: 〇.12W/mK (X6C) Granular size: Particle size: 14.5μιη (X6C1) Alumina fiber granules Aluminium fiber agitation granulation (X6C2) alumina particles (low alkali alumina) Model: ALM-41 (manufactured by Sumitomo Chemical Co., Ltd.) Thermal conductivity: 36 W/mK Average particle size: 1.5 μιη Alumina content: 99.9 wt% Bulk density: 28.28g/cm3 -27- 201113316 Further, the (X6 C 1) alumina fiber granules described in the above (*1) are (X6A3) alumina fibers are put into Henschel ( Henschel) A mixture of a mixer (manufactured by Kawada Co., Ltd., high-speed flow mixer G 1 00) was stirred and granulated. Further, the Henschel mixer is a type of a high-speed mixer of a spiral mixer type, and is mainly used for a machine for uniformly mixing powders, granules, plastic raw materials, colorants, and additives. Next, the liquid crystal polyester (PI, P2), the polybutylene terephthalate resin or the polyphenylene sulfide resin and the (X6) inorganic coating obtained in the production step (I) and the production step (Π) are mixed. Granulation was carried out using a co-rotating twin-axis extruder (PCM-30 manufactured by Ikebe Steel Co., Ltd.) to obtain a thermoplastic resin composition. The above mixture is as follows. (Q1) thermoplastic resin composition (Q2) thermoplastic resin composition (Q3) thermoplastic resin composition (P1) liquid crystal polyester (parts by weight) 32 15 20 (P2) liquid crystal polyester (parts by weight) 0 12 16 (X6C1) Alumina fiber granules (parts by weight) 61 65 0 (X6A1) Carbon fiber (parts by weight) 7 0 0 (X6C2) Alumina particles (parts by weight) 0 8 52 (X6B) Talc (parts by weight) 0 0 6 (X6A2) glass fiber (parts by weight) 0 0 6 Flow starting temperature TlfC) 336 310 306 -28- 201113316 [Table 13] (Q4) thermoplastic resin composition (Q5) thermoplastic resin composition polybutylene terephthalate Glycol ester resin (parts by weight) 70 0 Polyphenylene sulfide resin (parts by weight) 0 70 (X6C1) Alumina fiber granules (parts by weight) 30 30 Flow starting temperature Ή (°〇233 286 Determination of thermoplastic resin The flow start temperature of the composition (Q1, Q2, Q3, Q4, Q5). Although the flow start temperature is the temperature at which the resin starts to flow, in order to measure more precisely, in the present embodiment, the flow start temperature is used. Capillary rheometer with a diameter of 1 mm and a length of 10 mm, at 100 kg/cm2 When the heated melt was pressed from the nozzle at a temperature increase rate of 4 ° C /min, the melt viscosity was 48,000 poise. (Example 1) Using the thermoplastic resin composition Q 1, the IH heater of Fig. 3 was supplied. The high-frequency current is increased by the high-frequency induction heating, and then the injection molding is performed when the temperature of the top plate reaches 2 2 7 C. Further, the resin is flowed and injected along the longitudinal direction (longitudinal direction) of the molded article. The molded article has a size of 20 mm in the flow direction (longitudinal direction (MD)) of the resin, a size of 7 mm in the direction perpendicular to the flow direction of the resin (transverse direction (TD)), and a thickness perpendicular to both the longitudinal direction and the lateral direction. A rectangular parallelepiped having a size of 1 mm in the direction (ZD) was used as a sample for thermal conductivity evaluation. -29-201113316 (Example 2) A sample was produced in the same manner as in Example 1 except that the top plate temperature was 2 5 1 °C. (Comparative Example 1) A sample was produced in the same manner as in Example 1 except that the temperature of the top plate was changed to 30 ° C. (Example 3) A sample was produced in the same manner as in Example 1 except that the thermoplastic resin composition was changed to Q2. (real Example 4) A sample was produced in the same manner as in Example 3 except that the temperature of the top plate was changed to 2 5 1 ° C. (Comparative Example 2) A sample was produced in the same manner as in Example 3 except that the temperature of the top plate was changed to 130 ° C. (Example 5) A sample was produced in the same manner as in Example 1 except that the thermoplastic resin composition was changed to Q3. -30 - 201113316 (Example 6) A sample was produced in the same manner as in Example 5 except that the temperature of the top plate was changed to 251 °C. (Comparative Example 3) A sample was produced in the same manner as in Example 5 except that the temperature of the top plate was changed to 130 °C. (Example 7) A sample was produced in the same manner as in Example 1 except that the thermoplastic resin composition was changed to Q4 and the top plate temperature was changed to 150 °C. (Comparative Example 4) A sample was produced in the same manner as in Example 7 except that the temperature of the top plate was changed to 60 t. (Example 8) The top plate temperature was changed to 舄200 except that the thermoplastic resin composition was changed to Q5. A sample was prepared in the same manner as in Example 1. (Comparative Example 5) A sample was produced in the same manner as in Example 7 except that the temperature of the top plate was changed to 130 ° C. -31 - 201113316 (Evaluation and Results) The sample was measured for the thermal diffusivity of the resin in each of the examples and the comparative examples. In this measurement, a thermal diffusivity/heat conductivity measuring device (available from Ai-Phase Co., Ltd., thermal diffusivity/heat conductivity measuring device (registered trademark)) was used. The specific heat was measured by DSC (DSC7 manufactured by PERKIN ELMER), and the specific gravity was measured using an automatic specific gravity measuring device (manufactured by Kanto Measurement Co., Ltd., model ASG-3 20). Heat conduction in each direction (MD, TD, ZD) The rate is calculated from the product of the thermal diffusivity and the specific gravity. The electrical resistivity at a temperature of 300 K is measured by the ASTM (American Society for Testing and Materials)-D257 test method. The above evaluation results are shown in the following table. 1 Example 2 Comparative Example 1 Thermoplastic resin composition Q1 01 01 Flow start temperature Tl (°c) 336 336 336 Mold temperature T2 (°C) 227 251 130 Τ1-140ΓΟ 196 196 196 Heat conduction (MD) W/mK 7.6 7.7 7.5 Thermal conductivity (TD) W/mK 8.8 9.3 8.3 Thermal conductivity (ZD) W/mK 1.8 1.8 1.6 Resistivity (Ωιη) lxl〇13 lxlO13 lxlO13 -32- 201113316 [Table 15] Implementation Example 3 Example 4 Comparative Example 2 Thermoplastic resin composition Q2 Q2 Q2 Flow start temperature Tl (°c) 310 310 310 Mold temperature T2fc) 227 251 130 Τ 1-140 (° 〇 170 170 170 Thermal conductivity (MD) W/mK 5.0 5.1 , 4.7 Thermal Conductivity (TD) W/mK 5.9 6.8 5.8 Thermal Conductivity (ZD) W/mK 2.3 2.6 2.1 Resistivity (Ωηι) 1χ1013 ΙχΙΟ13 ΙχΙΟ13 [Table 16] Example 5 Example 6 Comparative Example 3 Thermoplastic Resin Composition Material 03 03 Q3 Flow start temperature ti(°c) 306 306 306 Mold temperature T2 (°C) 227 251 130 T1-140(°C) 166 166 166 Thermal conductivity (MD) W/mK 3.1 3.2 2.8 Thermal conductivity (TD ) W/mK 2.4 3.9 2.1 Thermal conductivity (ZD) W/mK 1.1 1.3 0.8 Resistivity (Ωιη) ΙχΙΟ13 ΙχΙΟ13 ΙχΙΟ13 [Table 17] Example 7 Comparative Example 4 Example 8 Comparative Example 5 Thermoplastic Resin Composition 04 04 05 Q5 Flow start temperature Tl (°c) 233 233 286 286 Mold temperature T2 (°C) 150 60 200 130 Τ1-140 (°〇93 93 146 146 Thermal conductivity (MD) W/mK 0.5 0.4 0.5 0.4 Thermal conductivity (TD) W/mK 0.9 0.5 0.4 0.3 Thermal conductivity (ZD) W/mK 0.3 0.2 0.3 0.2 Resistivity (Ωιη) ΙχΙΟ13 1x10° ΙχΙΟ13 ΙχΙΟ13 -33- 201113316 It can be seen from the above experimental results that in Ding 2 (. (:) 21'1 (°〇)-14〇 (°(:), the thermal conductivity can be improved. In particular, even if a thermoplastic resin is used which changes the flow initiation temperature by mixing a single or a plurality of liquid crystalline polyesters Any one of the substances Q1, Q2, Q3, Q4, and Q5 can also remarkably improve the thermal conductivity when the above relationship is satisfied. Thus, by setting the mold temperature T2 to the flow start temperature T 1 of the thermoplastic resin composition In the case of a high temperature above a certain temperature, since the curing of the thermoplastic resin composition in the mold is slow, the thermoplastic resin composition can be maintained in a state of low viscoelasticity, and thus the arrangement direction of the inorganic coating material becomes irregular, by The inorganic tantalum is contacted inside the molded body to improve the thermal conductivity. Further, from the viewpoint of heat resistance of the resin molded body, the decomposition starting temperature of the thermoplastic resin of T 2 (° C ) is preferably. Further, the thermoplastic resin or The material of the inorganic coating material, even if it is a material other than the experimental example, is irregularly arranged, and the probability that the contact of the so-called plurality of inorganic materials in the thermoplastic resin is increased may be improved. The effect of the improvement of the thermal conductivity of the resin molded body of the comparative example and (B) embodiment is a cross-sectional view of the resin molded body of the resin molded body of the comparative example and (B) embodiment. Fig. 2 is a view schematically showing the heat transfer mechanism of the comparative example (A) and the embodiment (B). Fig. 3 is a longitudinal sectional view of -34 - 201113316 of the resin molding apparatus including the high frequency induction heating heater. Explanation of main component symbols: 1 : Thermoplastic resin 2 : Inorganic coating 21A, 21B: Metal top plate 2 1 A' ' 21B': Column 2 2 A, 2 2 B : Coil 23A, 23B: Column T: Heat source MA : Bump pattern MB: Bump pattern RGN : (Q) Resin composition -35-