WO2007004443A1 - タングステン膜形成方法,成膜装置,記憶媒体及び半導体装置 - Google Patents
タングステン膜形成方法,成膜装置,記憶媒体及び半導体装置 Download PDFInfo
- Publication number
- WO2007004443A1 WO2007004443A1 PCT/JP2006/312606 JP2006312606W WO2007004443A1 WO 2007004443 A1 WO2007004443 A1 WO 2007004443A1 JP 2006312606 W JP2006312606 W JP 2006312606W WO 2007004443 A1 WO2007004443 A1 WO 2007004443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- tungsten film
- tungsten
- supplying
- containing gas
- Prior art date
Links
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 274
- 239000010937 tungsten Substances 0.000 title claims abstract description 274
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 273
- 238000000034 method Methods 0.000 title claims abstract description 152
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 238000003860 storage Methods 0.000 title claims description 8
- 239000007789 gas Substances 0.000 claims abstract description 282
- 238000012545 processing Methods 0.000 claims abstract description 72
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 47
- 239000010703 silicon Substances 0.000 claims abstract description 47
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000001257 hydrogen Substances 0.000 claims abstract description 44
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 44
- -1 hydrogen compound Chemical class 0.000 claims abstract description 31
- 238000010926 purge Methods 0.000 claims abstract description 29
- 239000011261 inert gas Substances 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims description 90
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 3
- 150000004678 hydrides Chemical class 0.000 claims 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 1
- 150000001282 organosilanes Chemical class 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 abstract description 29
- 230000004888 barrier function Effects 0.000 abstract description 28
- 239000011737 fluorine Substances 0.000 abstract description 28
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 27
- 239000010408 film Substances 0.000 description 248
- 239000010410 layer Substances 0.000 description 42
- 238000007796 conventional method Methods 0.000 description 22
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 230000000977 initiatory effect Effects 0.000 description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 10
- 238000000231 atomic layer deposition Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000002052 molecular layer Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 2
- 229910004469 SiHx Inorganic materials 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- PUUOOWSPWTVMDS-UHFFFAOYSA-N difluorosilane Chemical compound F[SiH2]F PUUOOWSPWTVMDS-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76855—After-treatment introducing at least one additional element into the layer
- H01L21/76856—After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76871—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
- H01L21/76876—Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Definitions
- Tungsten film forming method Tungsten film forming method, film forming apparatus, storage medium, and semiconductor device
- the present invention relates to a method for forming a tungsten film on the surface of an object to be processed such as a semiconductor wafer, a film forming apparatus, a storage medium, and a semiconductor device.
- a semiconductor device manufacturing process includes a process of forming a metal film on the surface of an object to be processed, for example, a semiconductor wafer (hereinafter also simply referred to as “wafer”).
- a metal film is formed when a wiring pattern is formed on the wafer surface, or when recesses (via via holes) between wires or recesses (contact holes) for substrate contacts are embedded.
- metal-based films include metals such as W (tungsten), WSi (tungsten silicide), WN (tungsten nitride), Ti (titanium), TiN (titanium nitride), and TiSi (titanium silicide). Is a thin film on which a metal compound is deposited.
- tungsten film since the metal film is used for wiring and the like, one having a resistance as low as possible is desired. From such a viewpoint, tungsten film, for example, has a particularly low resistivity and a low filming temperature among the above metal-based films, so it is often used for embedding recesses between wirings and recesses for substrate contacts. .
- WF tungsten hexafluoride
- Tungsten films are deposited by using it as a metal source gas and reducing it with a reducing gas such as hydrogen, silane or difluorosilane.
- a TiN film is first formed on the wafer surface or a TiN film is formed on the Ti film for reasons such as improving adhesion and suppressing reaction with the underlying wiring metal or substrate.
- a barrier layer as a base film such as a film (TiNZTi film) is formed thinly and uniformly, and the above-mentioned tungsten film is deposited on this barrier layer.
- Figure 10 shows the mechanism of volcano generation. It shows how the reaction proceeds in the order of Fig. 10A, Fig. 10B, and Fig. 10C. According to Fig. 10, the behavior of fluorine greatly affects the generation of volcano, and TiF produced by reaction with fluorine in the barrier layer breaks upward.
- the barrier layer and fluorine react to produce titanium fluoride mainly composed of TiF (Fig. 10A).
- an initial tungsten film is formed as a nucleation layer before the main tungsten film is deposited. Shielding the attack on the layer is done
- a method of atomic layer deposition (ALD) that alternately supplies 6 2 6 gas with a purge step interposed between them is disclosed! (See, for example, Patent Document 1).
- the tungsten film deposited by this method has low resistance, and the fluorine concentration in the tungsten film is low, so that the formation of fluorine compounds with the underlying metal can be avoided.
- FIG. 11A shows an example of each gas supply mode by the conventional method
- Fig. 11B shows another example of each gas supply mode by the conventional method
- Fig. 11A shows the supply form of each gas in the above ALD method, in which BH gas is used as the reducing gas
- Figure 11B shows the case where SiH gas is used as the reducing gas.
- FIG. 12 is a diagram showing a process for filling a buried hole with tungsten formed in the gas supply form shown in FIG.
- the wafer M used here has a nanolayer 4 formed on the entire wafer surface including the inner surface of the buried hole 2 such as a contact hole.
- B H gas and WF gas are alternately shortened on wafer M as shown in FIG. 12A.
- the initial tungsten film 8 is formed by repeatedly flowing a plurality of times each time.
- a purge step is performed to eliminate the above. Adsorbed on the wafer surface by the WF gas supply step
- the WF gas molecular layer is reduced by the B H gas supplied in the next step, so that one-time alternate supply
- a tungsten film of several atomic layers is grown. By repeating this process an arbitrary number of times, an initial tungsten film 8 having a desired film thickness is formed as shown in FIG. 12B.
- the main tungsten film forming process is performed by simultaneously supplying WF gas and H gas.
- the main tungsten film 10 is deposited to fill the buried hole 2.
- SiH monosila
- the gas supply step time is extended from the other SiH gas supply steps thereafter.
- It may also serve as a so-called cision treatment that attaches decomposition intermediates such as SiHx (0 ⁇ x ⁇ 4) to the wafer surface.
- Patent Document 1 JP 2002-038271 A
- Patent Document 2 JP 2003-193233 A
- the shape of the initial tungsten film is formed on the thin TiNZTi laminated film as described above.
- the ALD method which alternately supplies WF gas and BH gas, is used.
- Fig. 13 shows an electron micrograph of a ten film deposited with a practical thickness. According to Fig. 13, it can be seen that volcano is easily generated by the thin film of the nora layer. This is because the film quality of the initial tungsten film formed by the conventional method is sufficient to block the WF attack.
- the initial tungsten film as the nucleation layer contains silicon, and there is a disadvantage that the resistivity of the main tungsten film deposited on it increases.
- the resistivity of the conventional initial tungsten film and the main tungsten film using the ALD method is sufficiently low, the adhesion to the nanolayer made of TiN or the like tends to decrease. There is. For this reason, when the CMP process as described above is performed in the process after the conventional tungsten film formation process to scrape off unnecessary portions of the tungsten film, the slurry (polishing) is caused by the stress applied to the wafer by the pad of the CMP apparatus. Solvent) entered the boundary between the tungsten film and the barrier layer, causing the tungsten film to lose its contact hole force.
- the present invention has been made in view of such problems, and the object of the present invention is to reduce the fluorine concentration particularly at the boundary with the underlying barrier layer while keeping the resistivity small.
- the object is to provide a method for forming a tungsten film that can not only suppress the occurrence of volcano but also improve the adhesion to the barrier layer.
- a method for forming a tungsten film on a surface of an object to be processed in a processing vessel configured to be evacuated A step of supplying a silicon-containing gas to the workpiece, a tungsten-containing gas supply step for supplying a tungsten-containing gas after the step, and a hydrogen compound gas supply step for supplying a hydrogen-containing gas not containing silicon are performed between the steps.
- a step of forming a first tungsten film by alternately and repeatedly performing a purge step for supplying an inert gas into the processing vessel and a evacuation step for evacuating the processing vessel.
- a method for forming a tungsten film is provided.
- a silicon-containing gas is used in an initiation process (pretreatment process) performed prior to the initial tungsten film formation process, and the subsequent initial tungsten film formation process. Since the initial tungsten film was formed by alternately supplying a tungsten-containing gas and a hydrogen compound gas not containing silicon, the resistivity of the initial tungsten film, including the main tungsten film formed after that, was also increased. Can be reduced. In addition, the fluorine concentration at the boundary between the tungsten layer and the substrate layer can be reduced, and the diffusion and penetration of fluorine into the barrier layer can be suppressed. As a result, the generation of volcano can be suppressed and the adhesion with the underlying noro layer can be improved.
- it may further include a step of forming a second tungsten film by simultaneously supplying the tungsten-containing gas and the reducing gas onto the first tungsten film.
- the first tungsten film forming step and the second tungsten film forming step are performed, for example, in the same processing container.
- the silicon-containing gas is selected from, for example, monosilane, disilane, and organic silane.
- the hydrogen compound gas not containing silicon is, for example, diborane or phosphine. Further, the hydrogen compound gas not containing silicon is, for example, a hydrogen-diluted siborane gas.
- the reducing gas is, for example, hydrogen.
- the tungsten-containing gas is, for example, WF.
- the surface of the object to be processed includes, for example, a TiN film.
- a nora layer is formed.
- a silicon-containing gas is supplied to an object to be processed in which a contact hole is formed in a processing container configured to be evacuated.
- a tungsten-containing gas for supplying a tungsten-containing gas after the step A supply step and a hydrogen compound gas supply step for supplying a hydrogen compound gas not containing silicon
- a purge step for supplying an inert gas into the processing vessel between the steps, and Z or a vacuum for evacuating the processing vessel
- a step of further forming a second tungsten film and embedding the contact hole, and a chemical mechanical polishing process for example, on the surface of the object after the second tungsten film is formed
- a processing container configured to be evacuated and a processing container provided in the processing container for placing an object to be processed are provided.
- Gas supply capable of supplying at least a silicon hydrogen-containing gas, a tungsten-containing gas, and a hydrogen-containing gas not containing silicon into the processing vessel, a heating means for heating the object to be processed, and a processing vessel
- a tungsten-containing gas supply step for supplying a tungsten-containing gas by the gas supply means and a hydrogen compound gas supply step for supplying a hydrogen compound gas not containing silicon by the gas supply means are both provided.
- the first tundane film is formed by alternately performing a purge step for supplying an inert gas into the processing vessel and a evacuation step for evacuating the processing vessel between the steps. And a control unit that executes the film forming process.
- a processing container configured to be evacuated and a processing container provided in the processing container for placing an object to be processed A mounting table; heating means for heating the object to be processed; and gas supply means for supplying at least a silicon hydrogen-containing gas, a tungsten-containing gas, and a hydrogen-containing gas not containing silicon into the processing container.
- a computer for causing the computer to execute a tungsten film forming process on the object to be processed in the processing container.
- the tungsten film forming process includes a step of supplying a silicon-containing gas to the object to be processed by the gas supply means, and a gas supply means after the process.
- a tungsten-containing gas and a hydrogen compound gas supplying step for supplying a hydrogen compound gas not containing silicon by the gas supply means, and supplying an inert gas into the processing vessel between the two steps.
- a step of forming the first tundane film by repeatedly performing the purge step and Z or evacuating the processing vessel alternately and intervening the evacuation step. Is done.
- a silicon-containing gas is supplied to an object to be processed in which a contact hole is formed in a processing container configured to be evacuated. And a hydrogen-containing gas supply step for supplying a tungsten-containing gas after the step and a hydrogen-containing gas supply step for supplying a hydrogen-containing gas not containing silicon.
- a step of forming the first tungsten film by alternately and repeatedly performing a purge step of supplying a gas and Z or a vacuuming step of evacuating the processing vessel; and A second tungsten film is further formed on the contact by supplying the tungsten-containing gas and the reducing gas at the same time.
- a contact plug formed by a method comprising: embedding a contact hole; and forming a contact plug by subjecting the surface of the object to be processed to chemical mechanical polishing after the formation of the second tungsten film.
- the step of supplying the silicon-containing gas is performed prior to the initial tungsten film forming step, and the tungsten-containing gas and the tungsten-containing gas are formed in the subsequent initial tungsten film forming step. Since the initial tungsten film was formed by alternately and repeatedly supplying a hydrogen compound gas not containing silicon, the resistivity of the initial tungsten film including the main tungsten film formed later could be reduced. it can. In addition, the fluorine concentration at the boundary with the nanolayer, which is the base of the tanta- sten film, can be reduced, and the diffusion and penetration of fluorine into the nanolayer can be suppressed. As a result, the generation of Volcano It can be suppressed, and the adhesion with the underlying barrier layer can be further improved.
- FIG. 1 is a cross-sectional configuration diagram showing an example of a film forming apparatus for performing a tungsten film forming method according to an embodiment of the present invention.
- FIG. 2 is a view showing a supply mode of each gas when forming a tungsten film in the same embodiment.
- FIG. 3A is a schematic diagram for explaining a step of forming a tungsten film on the wafer surface.
- FIG. 3B is a schematic view for explaining a step of forming a tungsten film on the wafer surface.
- FIG. 3C is a schematic diagram for explaining a step of forming a tungsten film on the wafer surface.
- FIG. 3D is a schematic diagram for explaining a process of forming a tungsten film on the wafer surface.
- FIG. 3E is a schematic view for explaining a step of forming a tungsten film on the wafer surface.
- FIG. 4 is a graph showing the resistivity of the entire tungsten film including the initial tungsten film and the main tungsten film.
- FIG. 5A is a graph showing the resistivity of the entire tungsten film including the initial tungsten film and the main tungsten film by the conventional method.
- FIG. 5B is a graph showing the resistivity of the entire tungsten film including the initial tungsten film and the main tungsten film according to the method of the present invention.
- FIG. 6 is a graph showing the fluorine concentration distribution in the depth direction of a wafer on which a tungsten film is formed.
- FIG. 7 is a second graph showing the fluorine concentration distribution in the depth direction of the wafer on which the tungsten film is formed.
- FIG. 8A is a drawing-substituting photograph showing the presence or absence of the occurrence of volcano in the case of the conventional method.
- FIG. 8B is a drawing-substituting photograph showing the presence or absence of volcano generation in the case of the method of the present invention.
- FIG. 9A Initial tungsten film and main tungsten formed on barrier layer by conventional method It is a figure which shows the evaluation result when evaluating the adhesiveness of the laminated film with a film
- FIG. 9B is a diagram showing an evaluation result when the adhesion of the laminated film of the initial tungsten film and the main tandane film formed on the barrier layer by the method of the present invention is evaluated.
- FIG. 10A is a schematic diagram for explaining the mechanism of volcano generation.
- FIG. 10B is a schematic diagram for explaining the mechanism of volcano generation.
- FIG. 10C is a schematic diagram for explaining the mechanism of volcano generation.
- FIG. 11A is a diagram showing an example of a supply form of each gas in a conventional tungsten film forming method.
- FIG. 11B is a diagram showing another example of the supply form of each gas in the conventional method for forming a tungsten film.
- FIG. 12A is a schematic diagram for explaining a process when a buried hole is filled with tungsten formed in the gas supply mode shown in FIG. 11A.
- FIG. 12B is a schematic diagram for explaining a process when the buried hole is filled with tungsten formed in the gas supply mode shown in FIG. 11A.
- FIG. 12C is a schematic diagram for explaining a process when the buried hole is filled with tungsten formed in the gas supply mode shown in FIG. 11A.
- FIG. 1 is a cross-sectional configuration diagram showing a configuration example of a film forming apparatus capable of performing a tungsten film forming method according to an embodiment of the present invention.
- the film forming apparatus 13 has, for example, an aluminum processing container 14 having a substantially cylindrical cross section.
- a shower head section 16 serving as a gas supply means for introducing, for example, various film forming gases and inert gases as the flow-controlled process gas at the same time or selectively is provided on the ceiling of the processing container 14. It is provided via a seal member 18 such as an O-ring, and a film forming gas is injected toward the processing space S from a number of gas injection ports 20 provided on the lower surface.
- Some shower head sections 16 have a structure in which one or a plurality of diffusion plates having a plurality of diffusion holes are provided to promote diffusion of the gas introduced therein.
- a showerhead with a structure is used. Also, here as an example B H (diborane)
- Each gas is individually controlled in flow rate by a flow rate controller (not shown) such as a mass flow controller, and the start and stop of the supply are also controlled.
- a flow rate controller such as a mass flow controller
- the start and stop of the supply are also controlled.
- B H gas for example, B H diluted to 5% using H as a diluent gas (base gas)
- a cylindrical reflector 22 erected from the bottom of the processing container is covered with, for example, three L-shaped holding members 24 (only two are shown in FIG. 1).
- a mounting table 26 for mounting a wafer M as a processing body is provided.
- a plurality of, for example, three L-shaped lifter pins 28 (only two are shown in the drawing) are provided upright.
- the base portion is connected to the ring member 30 in common through a vertically long through hole (not shown) formed in the reflector 22.
- the ring member 30 is moved up and down by a push-up bar 32 penetrating through the bottom of the processing container, so that the lifter pin 28 is passed through the lifter pin hole 34 penetrating through the mounting table 26 and passed through the wafer M. Is getting lifted up.
- an exhaust port 40 is provided at the peripheral edge of the bottom of the processing vessel 14, and a vacuum exhaust system 46 is connected to the exhaust port 40 through a pressure control valve 42 and a vacuum pump 44 in order.
- a vacuum exhaust system 46 is connected to the exhaust port 40 through a pressure control valve 42 and a vacuum pump 44 in order.
- the inside of the processing container 14 can be evacuated to a predetermined degree of vacuum.
- a gate valve 48 that is opened and closed when the wafer M is loaded and unloaded is provided on the side wall of the processing vessel 14.
- a transmission window 51 made of a heat ray transmitting material such as quartz is airtightly provided through a sealing member 50 such as an O-ring at the bottom of the container immediately below the mounting table 26, and below this
- a box-shaped heating chamber 52 is provided so as to surround the transmission window 51.
- a plurality of heating lamps 54 are attached as a heating means to a turntable 56 that also serves as a reflecting mirror.
- the turntable 56 is provided at the bottom of the heating chamber 52 via a rotating shaft. Rotated by a rotating motor 58.
- the heat rays emitted from the heating lamp 54 are thinly transmitted through the transmission window 51, irradiate the lower surface of the mounting table 26 to heat it, and further heat the wafer M on the mounting table 26 indirectly. Is getting ready to do.
- a heating means instead of the above heating lamp, a resistance heater may be provided on the mounting table 26 to heat the wafer M.
- a control unit 60 made of, for example, a microcomputer or the like is provided.
- the control unit 60 performs a series of controls necessary for film forming processes such as the start and stop of supply of various gases, flow rate control, wafer temperature control and pressure control.
- the control unit 60 stores a program such as a floppy (registered trademark) disk or a flash memory for storing a program for controlling the operation of the entire apparatus and executing a tungsten film forming process to be described later. It has medium 62.
- each operation of the film forming apparatus 13 is performed based on the program stored in the storage medium 62 as described above.
- the gate valve 48 provided on the side wall of the processing container 14 is opened, the wafer M is loaded into the processing container 14 by a transfer arm (not shown), and the lifter pin 28 is pushed up to lift the wafer M. Yeha M is transferred to the lifter pin 28 side. Then, the lifter pin 28 is lowered by lowering the push-up bar 32, and the wafer M is placed on the mounting table 26. On the surface of this wafer M, for example, as shown in FIG.
- NOR layer 74 such as a TiNZTi film has already been formed as a base film including the inner surface of the buried hole 72 as a base film.
- the NOR layer 74 is not limited to a laminated structure like the TiNZTi film, but may be a single layer structure of a TiN film, for example.
- a predetermined film forming gas, an inert gas, or the like as a processing gas from a processing gas source is supplied to the shower head unit 16 serving as a gas supply unit by a predetermined amount in a gas supply mode as described later. Then, it is supplied almost uniformly from the gas injection port 20 on the lower surface into the processing container 14. At the same time, the inside atmosphere is evacuated to a desired pressure by sucking and exhausting the internal atmosphere from the exhaust port 40, and the heating lamps 54 of the heating means positioned below the mounting table 26 are rotated. Drives and radiates heat energy.
- the radiated heat rays pass through the transmission window 51 and then irradiate the back surface of the mounting table 26 to heat it. Since the mounting table 26 is very thin, for example, about 1 mm, as described above, the mounting table 26 is heated quickly. Therefore, the wafer M mounted on the mounting table 26 can be quickly heated to a predetermined temperature.
- the supplied deposition gas causes a predetermined chemical reaction, and a thin tungsten film is deposited on the entire surface of the wafer.
- Fig. 2 is a diagram showing how each gas is supplied
- Fig. 3 is a schematic diagram showing the process of forming a tungsten film on the surface of wafer M.
- the inside of the processing vessel 14 is continuously evacuated during a series of film forming steps, and Ar, N gas, for example, is used as an inert gas.
- the tungsten film forming method (tungsten film forming process) according to the present embodiment includes an initiation process performed as a pre-process prior to forming the initial tungsten film, and an initial tungsten film that is a first tungsten film.
- Initial tungsten film formation to form After the initial tungsten film formation process, the main tungsten film formation process for forming the main tungsten film, which is the second tungsten film, is sequentially performed in this order.
- a silicon-containing gas is supplied onto the wafer, for example, in an initiation process.
- the tungsten-containing gas supply step for supplying the tungsten-containing gas in the initial tungsten film forming process and the hydrogen compound gas supply step for supplying the hydrogen compound gas not containing silicon are performed between the two steps.
- the initial tungsten film is formed by alternately repeating the purge step to exhaust or replace the atmosphere (residual gas) in the container.
- the main tungsten film is formed by simultaneously supplying the tungsten-containing gas and the reducing gas in the main tungsten film forming step.
- the purge step is also performed when each process is shifted, and the film forming gas remaining in the container is exhausted.
- the tungsten-containing gas is WF
- SiH gas is used as the silicon-containing gas
- BH gas is used as the product gas. During the series of processes, the inside of the container is continuously true.
- N gas or Ar gas is allowed to flow as carrier gas or purge gas.
- an initiation process (initiation process) is performed on the wafer M as shown in FIG.
- SiH gas is continuously supplied as a silicon-containing gas for a certain amount of time and then flowed.
- decomposition intermediates 76 such as Si—, SiH—, and SiH (0 ⁇ x ⁇ 4) are attached to the surface of the barrier layer 74 of the wafer M.
- This initiation process improves the electronegativity of the surface of the barrier layer 74 made of TiN film, etc. Is improved.
- the processing conditions in the initiation process are set as follows, for example.
- the process pressure pressure in the processing chamber
- the flow rate of SiH gas is, for example, 700 for a 300 mm wafer.
- the processing time of the initiation process depends on the flow rate of SiH gas.
- the process temperature is set within the range of 300 ° C to 400 ° C. For example, it is set to 350 ° C.
- the process temperature can be set to the same without changing, for example, until the final main tungsten film formation process.
- an initial tungsten film forming process is performed.
- WF gas and B H gas are alternately repeated in this order for a short time.
- a purge step is performed between the two gas supply steps to remove the gas supplied immediately before from the container. During this purge step, it is preferable to promote the elimination of residual gas by supplying, for example, N gas, which is an inert gas, as the purge gas.
- N gas which is an inert gas
- the flow rate of the WF gas is set to about 160 sccm for a 300 mm wafer, for example.
- N gas or Ar gas should be used as carrier gas.
- the flow rate of B H gas is set to about lOOOsccm, for example.
- B H gas diluted to 5% with H as the base gas is used. That
- B H gas is an unstable gas and can be easily
- the BH gas is diluted with H as the base gas to suppress polymerization and It is preferable to use it for gas supply after filling the tank.
- the process pressure is preferably much lower than that in the initiation step, for example, lOOOPa or less.
- the period from one WF gas supply step to the next WF gas supply step is one cycle.
- the time T1 of the WF gas supply step (tungsten-containing gas supply step) is 1.
- the purge step time T3 is about 1.5 seconds. These times are not limited.
- the deposition rate per cycle at this time varies depending on the process conditions, but is about 0.7 to 1.2 nm, for example, and the initial tungsten film thickness is usually set to 6 to 7 nm.
- a main tungsten film forming process is performed.
- the main tungsten film formation process for example, WF gas and reducing gas H gas are supplied simultaneously, and CVD is performed at a high film formation rate.
- the main tungsten film 82 is deposited by the method, and the buried hole 72 is completely buried as shown in FIG. 3D.
- the flow rate of the WF gas at this time is, for example, 200 to 35 for a 300 mm wafer.
- the H gas flow rate is, for example, about 2200 sccm. Also the process
- the pressure is about 10666Pa.
- the deposition rate at this time is, for example, about 170 to 240 nmZmin although it depends on the process conditions.
- the wafer M is taken out from the film forming apparatus, and subjected to CMP (chemical mechanical polishing) treatment to flatten the flat surface as shown in FIG. 3E. Then, the excess tungsten film and barrier layer are removed, and the contact plug 83 is formed. Thereafter, a predetermined process is performed to manufacture a semiconductor device (semiconductor device).
- CMP chemical mechanical polishing
- FIG. 4 2 shows a graph yl showing the resistivity of the entire tungsten film formed by the method of the present invention.
- FIG. 4 also shows a graph y2 showing the resistivity of the entire tungsten film formed by the conventional method.
- an initiation process in which the SiH gas is supplied, WF gas and BH gas are alternately supplied.
- the initial tungsten film formation process and the main tungsten film formation process by ALD were performed in succession.
- conventional methods include WF gas and B H gas as described above.
- both the method of the present invention and the conventional method show a decrease in resistivity as the thickness increases.
- the method of the present invention is always lower by about 1 to 3 Q cm.
- the resistivity of the main tungsten film deposited thereon is lowered.
- the reason can be considered as follows, for example. That is, the initial tungsten film 80, which is the nucleation layer of the main tungsten film 82, is converted into SiH gas.
- the initiation process performed by supplying 4 becomes amorphous, and this state also affects the growth of the main tungsten film 82. It can be inferred that the grain size (crystal grain size) of the main tungsten film 82 is maintained higher than that of the main tungsten film 10 formed by the conventional method and the resistivity is lowered.
- 5A and 5B are the X-ray diffraction analysis (XRD) results of the initial tungsten film formed by the method of the present invention and the conventional method, respectively, and the cross-sectional SEM photographs of the respective main tungsten films.
- XRD X-ray diffraction analysis
- Fig. 5A shows the standard process by the conventional method
- Fig. 5B shows the improvement process by the method of the present invention.
- Si (200) and Si (400) indicate the crystallinity of the substrate.
- a (110) and ⁇ (200) are the peaks indicating the crystallinity of the initial tungsten film. According to this, it can be understood that when the process according to the present invention is used, the initial tungsten film has a (200) disappeared, a (110) becomes broad, and is approaching an amorphous state.
- the XRD results of the initial tungsten film formed by ALD indicate that the more the initial tungsten film becomes amorphous, the larger the grains (crystal grains) of the main tungsten film.
- Figure 6 shows the result of measuring the fluorine concentration distribution in the depth direction of the wafer on which the tungsten film was formed, using SIMS (secondary ion mass spectrometry).
- SIMS secondary ion mass spectrometry
- FIGS. 8A and 8B show photographs substituted for drawings in which the state of volcano generation on the entire surface of the substrate was observed with an optical microscope.
- FIG. 8A shows a wafer processed by the conventional method
- FIG. B shows a wafer processed by the method of the present invention.
- FIG. 8A and FIG. 8B schematic diagrams are also shown for easy understanding of the effect of the present invention.
- the black dots indicate the occurrence of volcano. According to this, many volcanoes are generated in the case of the conventional method (FIG. 8A), but the method of the present invention (FIG. 8B). In the case of), almost no porkeino was generated, confirming the effectiveness of the method of the present invention.
- the boundary between the tungsten film and the barrier layer is obtained by the SiH initiation process. Since the fluorine concentration in the portion can be reduced, the generation of volcano and the like can be prevented by suppressing the diffusion and penetration of fluorine to the NOR layer.
- FIG. 7 shows the fluorine concentration distribution in the initial tungsten film formed by the above-described method as compared with the conventional purge method. From Fig. 7, it can be seen that the fluorine concentration in the initial tungsten film decreases by more than two orders of magnitude compared to the conventional method, which is very effective.
- the SiH gas is supplied before the initial tungsten film formation step.
- the fluorine concentration at the boundary between the tungsten film and the barrier layer can be reduced by adding an oxygen process, but the fluorine concentration in the initial tungsten film can also be reduced by changing the purge gas supply mode in the initial tungsten film formation process. It was. According to the method of the present invention, it is expected that the generation of volcano can be further suppressed.
- Figures 9A and 9B show the results of evaluating the adhesion by depositing a multilayer film of the initial tungsten film and the main tungsten film by ALD on the NOR layer.
- Figure 9 shows the standard for each class that classifies the degree of peeling according to IS
- Figure 9B shows the results of peeling of the tungsten film of the present invention method (improved) and the conventional method.
- the adhesion evaluation method is based on the above-mentioned JIS.
- the peel ratio is 35 to 65% (1 B) when only the initial tungsten film is included, and 65 to 100% (OB) when the main tungsten film is included.
- the peeling ratio is 5% (1B) or less when only the initial tungsten film is included, and 35 to 65% (4B) when the main tungsten film is included. According to the invention, it was confirmed that the adhesion could be improved considerably. The reason for this improvement in adhesion is probably due to the presence of a fluorine atom present at the interface between the initial tungsten film and the barrier layer or a fluorine compound produced by reaction with this fluorine nuclear S barrier layer and the TiN film, which is a NOR layer.
- a silicon hydrogen compound such as disilane is used as an organic silane such as trimethylsilane ((CH 3) SiH). be able to.
- diborane is used as the hydrogen compound gas not containing silicon.
- the present invention is not limited to this, and a strong reducing gas such as phosphine can be used.
- the tungsten gas-containing gas is not limited to WF,
- the present invention is applicable to a method for forming a tungsten film on the surface of an object to be processed such as a semiconductor wafer, a film forming apparatus, a storage medium, and a semiconductor device.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electrodes Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
従来よりも,抵抗率が小さく,下地のバリヤ層との境界部分のフッ素濃度が低く,バリヤ層との密着性が高いタングステン膜を形成する。 処理容器14内のウエハMに,シリコン含有ガスを供給する工程と,該工程後にタングステン含有ガスを供給するタングステン含有ガス供給ステップとシリコンを含まない水素化合物ガスを供給する水素化合物ガス供給ステップとを,両ステップ間に処理容器内に不活性ガスを供給するパージステップ及び/又は処理容器を真空引きする真空引きステップを介在させて,交互に繰り返し実行することにより第一のタングステン膜70を形成する工程とを有する。
Description
明 細 書
タングステン膜形成方法,成膜装置,記憶媒体及び半導体装置 技術分野
[0001] 本発明は,半導体ウェハ等の被処理体の表面にタングステン膜を形成する方法, 成膜装置,記憶媒体及び半導体装置に関する。
背景技術
[0002] 一般に,半導体デバイスの製造工程にお 、ては,被処理体例えば半導体ウェハ( 以下,単に「ウェハ」とも称する。)の表面に金属系膜を形成する工程がある。例えば ウェハ表面に配線パターンを形成したり,配線間の凹部(ビアホーノレ)や基板コンタク ト用の凹部 (コンタクトホール)を埋め込んだりする場合に金属系膜を成膜する。この ような金属系膜としては,例えば W (タングステン), WSi (タングステンシリサイド), W N (タングステンナイトライド), Ti (チタン), TiN (チタンナイトライド), TiSi (チタンシリ サイド)等の金属或 、は金属化合物を堆積させた薄膜が挙げられる。
[0003] このように,金属系膜は配線などに使用されるので,できる限り低い抵抗のものが望 まれる。このような観点カゝら例えばタングステン膜は上記金属系膜の中でも特に抵抗 率が小さく,膜付け温度も小さくて済むので,配線間の凹部や基板コンタクト用の凹 部の埋め込みに多用されている。
[0004] このようなタングステン膜を形成するには,一般に, WF (六フッ化タングステン)を
6
金属系原料ガスとして用い,これを水素,シラン,ジフロルシラン等の還元性ガスによ り還元することにより,タングステン膜を堆積させている。また,タングステン膜を形成 する場合には,密着性の向上,下層の配線金属又は基板との反応の抑制等の理由 から,先ずウェハ表面に TiN膜,又は Ti膜上に TiN膜を形成した積層膜 (TiNZTi 膜)などの下地膜となるバリヤ層を薄く且つ均一に形成し,このノ リャ層上に上記タン ダステン膜を堆積させる。
[0005] ところで,タングステン膜により凹部等の埋め込みを行う場合,埋め込み性を良好に するため,還元性ガスとしてはシランよりも還元性が弱い水素ガスが主として用いられ る。このような水素ガスを還元性ガスとして用いた場合,ボルケーノが発生したり,埋
め込み穴(例えばコンタクトホール)にボイドが発生したりする場合がある。
[0006] ここで,ボルケーノ発生のメカニズムを図 10に示す。図 10A,図 10B,図 10Cの順 に反応が進む様子を示している。図 10によれば,ボルケーノの発生にはフッ素の挙 動が大きく影響し,バリヤ層にてフッ素と反応して生成された TiFが上方へ突き破る
3
様子が理解できる。具体的には未反応の WFガスにより上記ノ リャ層がアタックされ
6
てバリヤ層とフッ素が反応し, TiFを主体とするチタンフッ化物が生成される(図 10A
3
, 10B参照)。このチタンフッ化物は体積的に膨張するので,バリヤ層を上方へ突き 破ってボルケーノが発生する(図 10C参照)。
[0007] このようなボルケーノ等の発生を防止するために,主たるタングステン膜を堆積する 前に,核付け層として初期タングステン膜を形成することにより,主たるタングステン 膜の形成時に WFガスによる下地ノ リャ層に対するアタックを遮蔽することが行われ
6
ている。上記初期タングステン膜の形成の際には上記未反応の WFガスを速やかに
6
除去すると共に,タングステン膜に含有されるフッ素が下地のノ リャ層と直接反応し ないように上記タングステン膜中のフッ素濃度を抑制する必要がある。
[0008] 上記初期タングステン膜の形成方法としては, WFガスと還元性の B H (ジボラン)
6 2 6 ガスとを,これらの間にパージステップを介在させて,交互に供給する原子層堆積 (A LD : Atomic Layered Deposition)の手法が開示されて!、る(例えば特許文献 1 参照)。この手法で堆積したタングステン膜は低抵抗であると共に,タングステン膜中 のフッ素濃度が低くなり,下地金属とのフッ素化合物の形成を回避できるとされてい る。
[0009] このような従来のタングステン膜の形成方法における各ガスの供給形態を図面を参 照しながら説明する。図 11Aは,従来方法による各ガスの供給形態の一例を示した ものであり,図 11Bは従来方法による各ガスの供給形態の他の例を示したものである 。図 11Aは上記 ALD法の各ガスの供給形態を示したものであり,還元性ガスとして B Hガスを使用した場合である。図 11Bは還元性ガスとして SiHガスを用いた場合で
2 6 4
ある。図 12は図 11に示すガスの供給形態で形成されるタングステンにより埋め込み 穴を埋め込む際の工程を示す図である。
[0010] ここでは還元性ガスとして B Hガスを用いた場合(図 11A参照)を例にとって説明
する。なお,キャリアガスやパージガスとして Arガスと Nガスをそれぞれ一定の流量
2
で流し,プロセス圧力は全処理期間に亘つて一定である。また,ここで使用するゥェ ハ Mには,図 12Aに示すように例えばコンタクトホールのような埋め込み穴 2内の内 面を含んだウェハ表面全体にノ リャ層 4が形成されている。
[0011] まず,図 12Aに示すようなウェハ Mに対して, B Hガスと WFガスとを,交互に短
2 6 6
時間ずつ複数回繰り返して流して初期タングステン膜 8の形成を行う。この場合, B
2
Hガス供給ステップと WFガス供給ステップの両ステップ間では容器内の残留ガス
6 6
を排除するパージ工程を行う。 WFガス供給ステップにより,ウェハ表面に吸着した
6
WFガス分子層を次ステップで供給する B Hガスにより還元し, 1回の交互供給に
6 2 6
つき数原子層のタングステン膜を成長させる。これを任意の回数繰り返すことにより, 図 12Bに示すように所望の膜厚の初期タングステン膜 8を形成する。
[0012] 次に, WFガスと Hガスとを同時に供給して主タングステン膜形成工程を行うことに
6 2
より,図 12Cに示すように主タングステン膜 10を堆積させて埋め込み穴 2を埋め込む 。また,他のガス供給形態としては図 11Bに示すように B Hに代えて SiH (モノシラ
2 6 4 ン)を用いることも行われている(例えば特許文献 2参照)。この場合,最初の SiHガ
4 ス供給ステップの時間を,それ以降の他の SiHガス供給ステップより延長して行い,
4
ウェハ表面に SiHx (0≤x<4)などの分解中間体を付着させるいわゆるィ-シエー シヨン処理を兼ねるようにしてもょ ヽ。
特許文献 1 :特開 2002— 038271号公報
特許文献 2 :特開 2003— 193233号公報
発明の開示
発明が解決しょうとする課題
[0013] ところで,今後は,半導体デバイスの更なる微細化及び動作速度の高速ィ匕にともな い,コンタクト (ビア)抵抗を下げるためにタングステン膜の更なる低抵抗化,比抵抗が 比較的高いバリヤ層の薄膜ィ匕が要請されている。ところが,上述したような従来のタン ダステン膜形成方法では,例えばバリヤ膜として 5nm以下の膜厚に薄膜化された Ti N膜を用いると,ボルケーノ発生を抑制できなくなる。
[0014] ここで,薄膜ィ匕された TiNZTi積層膜上に,上述のように初期タングステン膜の形
成に際して, WFガスと B Hガスとを交互供給する ALD法を使用し,主たるタンダス
6 2 6
テン膜を実用的な膜厚で堆積した場合の電子顕微鏡写真を図 13に示す。図 13によ れば,ノ リャ層の薄膜ィ匕によってボルケーノが容易に発生していることが分かる。これ は従来の方法で形成した初期タングステン膜の膜質では十分に WFのアタックを遮
6
蔽できないためか,或いは初期タングステン膜の形成時に既に下地のノ リャ層のァ タックが発生して 、たためと ヽぅ可能性もある。
[0015] また, WFガスと SiHガスとを交互に供給する ALD法の場合は,下地のバリヤ層
6 4
のアタックが抑制される可能性もあるが,核付け層としての初期タングステン膜はシリ コンを含有し,この上に堆積する主たるタングステン膜の抵抗率が増大してしまうとい う不都合が生ずる。
[0016] ところで,従来は上記タングステン膜でコンタクト (ビア)ホールの穴埋めした後はェ ツチバックによって平坦ィ匕するのが一般的であつたが,更なる微細化,多層化により 最近はコンタクトホール埋め込みの後工程で CMP処理によって平坦ィ匕する手法が 多用されるようになっている。一方,上述の WFガスと B Hガスとを交互に供給する
6 2 6
ALD法を用いた従来の初期タングステン膜及び主タングステン膜との積層膜ではそ の抵抗率は十分低くなるもものの,その反面 TiN等よりなるノ リャ層との密着性が低 下してしまう傾向がある。このため,従来のタングステン膜形成工程後の工程で上記 のような CMP処理を施してタングステン膜の不要部分を削り取る際には, CMP装置 のパッドがウェハに加える応力に起因して,スラリー (研磨溶剤)がタングステン膜とバ リャ層との境界に侵入して,タングステン膜がコンタクト穴力も脱離してしまうという問 題もあった。
[0017] 本発明は,このような問題に鑑みてなされたもので,その目的とするところは,抵抗 率を小さく保ちつつ,特に,下地のバリヤ層との境界部分のフッ素濃度を低減し,ボ ルケーノの発生を抑制できるのみならず,バリヤ層との密着性を向上させることができ るタングステン膜の形成方法等を提供することにある。
課題を解決するための手段
[0018] 上記課題を解決するために,本発明のある観点によれば,真空引き可能に構成さ れた処理容器内にて被処理体の表面にタングステン膜を形成する方法であって,前
記被処理体にシリコン含有ガスを供給する工程と,該工程後にタングステン含有ガス を供給するタングステン含有ガス供給ステップとシリコンを含まない水素化合物ガスを 供給する水素化合物ガス供給ステップとを,両ステップ間に前記処理容器内に不活 性ガスを供給するパージステップ及び Z又は前記処理容器を真空引きする真空引き ステップを介在させて,交互に繰り返し実行することにより第一のタングステン膜を形 成する工程と,を有することを特徴とするタングステン膜の形成方法が提供される。
[0019] このような本発明によれば,タングステン膜を形成するに際して,初期タングステン 膜形成工程に先立って行うイニシエーション工程 (前処理工程)ではシリコン含有ガ スを用い,その後の初期タングステン膜形成工程では,タングステン含有ガスとシリコ ンを含まない水素化合物ガスとを交互に繰り返し供給することにより初期タングステン 膜を形成するようにしたので,さらにその後に形成される主タングステン膜も含めて, その抵抗率を小さくすることができる。またタングステン膜の下地であるノ リャ層との 境界部分のフッ素濃度を低減して,バリヤ層へのフッ素の拡散及び突き抜けを抑制 することができる。この結果,ボルケーノの発生を抑制でき,下地のノ リャ層との密着 性を向上することができる。
[0020] この場合,さらに,上記第一のタングステン膜上に前記タングステン含有ガスと還元 性ガスとを同時に供給することにより,第二のタングステン膜を形成する工程を有する ようにしてもょ ヽ。また上記第一のタングステン膜形成工程と前記第二のタングステン 膜形成工程は例えば同一処理容器内で実行される。また,上記シリコン含有ガスは, 例えばモノシラン,ジシラン,有機シランより選択される。
[0021] また,上記シリコンを含まない水素化合物ガスは,例えばジボランまたはホスフィン である。また,上記シリコンを含まない水素化合物ガスは,例えば水素希釈シボラン ガスである。また,上記還元性ガスは,例えば水素である。また,上記タングステン含 有ガスは,例えば WFである。また,上記被処理体の表面には例えば TiN膜を含む
6
ノ リャ層が形成されている。
[0022] 上記課題を解決するために,本発明の別の観点によれば,真空引き可能に構成さ れた処理容器内にて,コンタクトホールが形成された被処理体にシリコン含有ガスを 供給する工程と,該工程後にタングステン含有ガスを供給するタングステン含有ガス
供給ステップとシリコンを含まない水素化合物ガスを供給する水素化合物ガス供給ス テツプとを,両ステップ間に前記処理容器内に不活性ガスを供給するパージステップ 及び Z又は前記処理容器を真空引きする真空引きステップを介在させて,交互に繰 り返し実行することにより第一のタングステン膜を形成する工程と,前記第一のタンダ ステン膜上に前記タングステン含有ガスと還元'性ガスとを同時に供給することにより, さらに第二のタングステン膜を形成して前記コンタクトホールを埋め込む工程と,前記 第二のタングステン膜形成後に前記被処理体の表面に化学機械研磨処理 (例えば
CMP : Chemical Mechanical Polishing)を施すことによってコンタクトプラグを 形成する工程と,を有することを特徴とするタングステン膜形成方法が提供される。
[0023] 上記課題を解決するために,本発明の別の観点によれば,真空引き可能に構成さ れた処理容器と,前記処理容器内に設けられ,被処理体を載置するための載置台と ,前記被処理体を加熱するための加熱手段と,前記処理容器内に,少なくともシリコ ン水素含有ガスと,タングステン含有ガスと,シリコンを含まない水素化合物ガスとを 供給可能なガス供給手段と,前記載置台に載置された被処理体の表面にタンダステ ン膜を形成する際に,前記ガス供給手段により前記被処理体にシリコン含有ガスを供 給する工程と,該工程後に前記ガス供給手段によりタングステン含有ガスを供給する タングステン含有ガス供給ステップと前記ガス供給手段によりシリコンを含まない水素 化合物ガスを供給する水素化合物ガス供給ステップとを,両ステップ間に前記処理 容器内に不活性ガスを供給するパージステップ及び Z又は前記処理容器を真空引 きする真空引きステップを介在させて,交互に繰り返し実行することにより第一のタン ダステン膜を形成する工程と,を実行する制御部と,を備えたことを特徴とする成膜装 置が提供される。
[0024] 上記課題を解決するために,本発明の別の観点によれば,真空引き可能に構成さ れた処理容器と,前記処理容器内に設けられ,被処理体を載置するための載置台と ,前記被処理体を加熱するための加熱手段と,前記処理容器内に,少なくともシリコ ン水素含有ガスと,タングステン含有ガスと,シリコンを含まない水素化合物ガスとを 供給するガス供給手段とを備える成膜装置を制御して,コンピュータに,前記処理容 器内の前記被処理体に対してタングステン膜形成処理を実行させるためのプロダラ
ムを記憶したコンピュータ読み取り可能な記憶媒体であって,前記タングステン膜形 成処理は,前記ガス供給手段により前記被処理体にシリコン含有ガスを供給するェ 程と,該工程後に前記ガス供給手段によりタングステン含有ガスを供給するタンダス テン含有ガス供給ステップと前記ガス供給手段によりシリコンを含まない水素化合物 ガスを供給する水素化合物ガス供給ステップとを,両ステップ間に前記処理容器内 に不活性ガスを供給するパージステップ及び Z又は前記処理容器を真空引きする 真空引きステップを介在させて,交互に繰り返し実行することにより第一のタンダステ ン膜を形成する工程とを有することを特徴とする記憶媒体が提供される。
[0025] 上記課題を解決するために,本発明の別の観点によれば,真空引き可能に構成さ れた処理容器内にて,コンタクトホールが形成された被処理体にシリコン含有ガスを 供給する工程と,該工程後にタングステン含有ガスを供給するタングステン含有ガス 供給ステップとシリコンを含まない水素化合物ガスを供給する水素化合物ガス供給ス テツプとを,両ステップ間に前記処理容器内に不活性ガスを供給するパージステップ 及び Z又は前記処理容器を真空引きする真空引きステップを介在させて,交互に繰 り返し実行することにより第一のタングステン膜を形成する工程と,前記第一のタンダ ステン膜上に前記タングステン含有ガスと還元'性ガスとを同時に供給することにより, さらに第二のタングステン膜を形成して前記コンタクトホールを埋め込む工程と,前記 第二のタングステン膜形成後に前記被処理体の表面に化学機械研磨処理を施すこ とによってコンタクトプラグを形成する工程とを有する方法によって形成されたコンタク トプラグを備えることを特徴とする半導体装置が提供される。
発明の効果
[0026] 本発明によれば,タングステン膜を形成する際に,初期タングステン膜形成工程に 先立って,シリコン含有ガスを供給する工程を行い,その後の初期タングステン膜形 成工程にてタングステン含有ガスとシリコンを含まない水素化合物ガスとを交互に繰 り返し供給することにより初期タングステン膜を形成するようにしたので,この後に形 成される主タングステン膜も含めて,その抵抗率を小さくすることができる。またタンダ ステン膜の下地であるノ リャ層との境界部分のフッ素濃度を低減して,ノ リャ層のへ フッ素の拡散及び突き抜けを抑制することができる。これにより,ボルケーノの発生を
抑制でき,下地のバリヤ層との密着性をより向上させることができる。
図面の簡単な説明
[図 1]本発明の実施形態に係るタングステン膜形成方法を実施する成膜装置の一例 を示す断面構成図である。
[図 2]同実施形態においてタングステン膜を形成する際の各ガスの供給態様を示す 図である。
[図 3A]ウェハ表面にタングステン膜を形成する工程を説明するための模式図である
[図 3B]ウェハ表面にタングステン膜を形成する工程を説明するための模式図である。
[図 3C]ウェハ表面にタングステン膜を形成する工程を説明するための模式図である
[図 3D]ウェハ表面にタングステン膜を形成する工程を説明するための模式図である
[図 3E]ウェハ表面にタングステン膜を形成する工程を説明するための模式図である。
[図 4]初期タングステン膜と主タングステン膜とを含むタングステン膜全体の抵抗率を 示すグラフである。
[図 5A]従来方法による初期タングステン膜と主タングステン膜とを含むタングステン膜 全体の抵抗率を示すグラフである。
[図 5B]本発明方法による初期タングステン膜と主タングステン膜とを含むタングステン 膜全体の抵抗率を示すグラフである。
[図 6]タングステン膜が形成されたウェハの深さ方向におけるフッ素濃度の分布を示 すグラフである。
[図 7]タングステン膜が形成されたウェハの深さ方向におけるフッ素濃度の分布を示 す第 2のグラフである。
[図 8A]従来方法による場合のボルケーノの発生の有無を示す図面代用写真である。
[図 8B]本発明方法による場合のボルケーノの発生の有無を示す図面代用写真であ る。
[図 9A]従来方法によりバリヤ層上に形成された初期タングステン膜と主タングステン
膜との積層膜の密着性を評価したときの評価結果を示す図である。
[図 9B]本発明方法によりバリヤ層上に形成された初期タングステン膜と主タンダステ ン膜との積層膜の密着性を評価したときの評価結果を示す図である。
[図 10A]ボルケーノ発生のメカニズムを説明するための模式図である。
[図 10B]ボルケーノ発生のメカニズムを説明するための模式図である。
[図 10C]ボルケーノ発生のメカニズムを説明するための模式図である。
[図 11A]従来のタングステン膜の形成方法における各ガスの供給形態の一例を示す 図である。
[図 11B]従来のタングステン膜の形成方法における各ガスの供給形態の他の例を示 す図である。
[図 12A]図 11Aに示すガスの供給形態で形成されるタングステンにより埋め込み穴を 埋め込む時の工程を説明するための模式図である。
[図 12B]図 11Aに示すガスの供給形態で形成されるタングステンにより埋め込み穴を 埋め込む時の工程を説明するための模式図である。
[図 12C]図 11Aに示すガスの供給形態で形成されるタングステンにより埋め込み穴を 埋め込む時の工程を説明するための模式図である。
圆 13]従来技術によりタングステン膜を堆積した時のボルケーノの発生状況を示す電 子顕微鏡写真である。
符号の説明
13 成膜装置
14 処理容器
16 シャワーヘッド部 (ガス供給手段)
18 シール部材
20 ガス噴射口
22 リフレクタ
24 保持部材
26 載置台
28 リフタピン
30 リング部材
32 上げ棒
34 リフタピン:?し
36 ベローズ
38 ァクチユエータ
40 排気口
42 圧力制御弁
46 真空排気系
48 ゲートバノレブ
50 シール部材
51 透過窓
52 加熱室
54 加熱ランプ (加熱手段)
56 回転台
58 回転モータ
60 制御部
62 記憶媒体
72 埋め込み穴
74 バリヤ層
76 分解中間体
80 初期タングステン膜 (第一のタングステン膜)
82 主タングステン膜 (第二のタングステン膜)
83 コンタクトプラグ
M ウェハ (被処理体)
発明を実施するための最良の形態
以下に添付図面を参照しながら,本発明の好適な実施の形態について詳細に説 明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構 成要素については,同一の符号を付することにより重複説明を省略する。
[0030] (成膜装置の構成例)
図 1は本発明の実施形態に係るタングステン膜形成方法を実施可能な成膜装置の 構成例を示す断面構成図である。図 1に示すように,成膜装置 13は,例えば断面が 略円筒形状のアルミニウム製の処理容器 14を有して ヽる。処理容器 14内の天井部 には流量制御された処理ガスとして例えば各種の成膜ガスや不活性ガス等を,同時 に,或いは選択的に導入するためのガス供給手段としてのシャワーヘッド部 16が Oリ ング等のシール部材 18を介して設けられており,この下面に設けた多数のガス噴射 口 20から処理空間 Sに向けて成膜ガスを噴射するようになっている。
[0031] このシャワーヘッド部 16内には,複数の拡散孔を有する 1枚,或いは複数枚の拡散 板を設けて,ここに導入されたガスの拡散を促進するようにした構造のものもあるし, 或いは内部を複数の区画室に分割し,それぞれ別々に導入したガスを別々に処理 空間 sへ噴射するようにした構造のものもあり,いずれにしても使用するガス種に応じ て適切な構造のシャワーヘッド部を用いる。また,ここでは一例として B H (ジボラン)
2 6 ガス, WFガス, SiH (モノシラン)ガス, Hガス, Nガス, Arガス等が用いられる力
6 4 2 2
各ガスはそれぞれマスフローコントローラのような流量制御器(図示せず)で流量が個 別に制御され,またその供給の開始及び停止も制御されるようになっている。なお, 上記 B Hガスとしては,例えば Hを希釈ガス(ベースガス)として 5%に希釈した B H
2 6 2 2 ガスが用いられる。
6
[0032] この処理容器 14内には,処理容器底部より起立させた円筒状のリフレクタ 22上に, 例えば L字状の 3本の保持部材 24 (図 1では 2本のみ記す)を介して被処理体として のウェハ Mを載置するための載置台 26が設けられている。
[0033] この載置台 26の下方には,複数本,例えば 3本の L字状のリフタピン 28 (図示例で は 2本のみ記す)が上方へ起立させて設けられており,このリフタピン 28の基部は, 上記リフレクタ 22に形成した縦長揷通孔(図示せず)を挿通して,リング部材 30に共 通に接続されている。そして,このリング部材 30を処理容器底部に貫通して設けられ た押し上げ棒 32により上下動させることにより,上記リフタピン 28を載置台 26に貫通 させて設けたリフタピン孔 34に揷通させてウェハ Mを持ち上げ得るようになつている。
[0034] 上記押し上げ棒 32の容器底部の貫通部には,処理容器 14において内部の気密
状態を保持するために伸縮可能なベローズ 36が介設され,この押し上げ棒 32の下 端はァクチユエータ 38に接続されて 、る。
[0035] また,処理容器 14の底部の周縁部には,排気口 40力設けられ,この排気口 40に は圧力制御弁 42及び真空ポンプ 44を順次介設した真空排気系 46が接続されてお り,処理容器 14内を所定の真空度まで真空引きし得るようになつている。また,処理 容器 14の側壁には,ウェハ Mを搬出入する際に開閉されるゲートバルブ 48が設けら れる。
[0036] また,載置台 26の直下の容器底部には,石英等の熱線透過材料よりなる透過窓 5 1が Oリング等のシール部材 50を介して気密に設けられており,この下方には,透過 窓 51を囲むように箱状の加熱室 52が設けられている。この加熱室 52内には加熱手 段として例えば複数の加熱ランプ 54が反射鏡も兼ねる回転台 56に取り付けられてお り,この回転台 56は,回転軸を介して加熱室 52の底部に設けた回転モータ 58により 回転される。従って,この加熱ランプ 54より放出された熱線は,透過窓 51を透過して 薄 、載置台 26の下面を照射してこれを加熱し,更にこの載置台 26上のウェハ Mを 間接的に加熱し得るようになつている。なお,加熱手段としては上記加熱ランプに代 えて,載置台 26に抵抗加熱ヒータを設けてウェハ Mを加熱するようにしてもよい。
[0037] そして,この成膜装置 13の全体の動作を制御するために例えばマイクロコンピュー タ等よりなる制御部 60が設けられている。この制御部 60により,各種ガスの供給開始 ,その停止,流量制御,ウェハの温度制御及び圧力制御等の成膜処理に必要な一 連の制御が行われる。また,この制御部 60は,上記した装置全体の動作を制御して 後述するタングステン膜形成処理などを実行するためのプログラムを記憶するための 例えばフロッピー(登録商標)ディスクやフラッシュメモリ等よりなる記憶媒体 62を有し ている。
[0038] (成膜装置の動作例)
次に,上記のように構成された成膜装置の動作例について説明する。成膜装置 13 の各動作は,上述したように記憶媒体 62に記憶されたプログラムに基づ 、て行われ る。先ず,処理容器 14の側壁に設けたゲートバルブ 48を開いて図示しない搬送ァ ームにより処理容器 14内にウェハ Mを搬入し,リフタピン 28を押し上げることによりゥ
ェハ Mをリフタピン 28側に受け渡す。そして,リフタピン 28を,押し上げ棒 32を下げ ることによって降下させ,ウェハ Mを載置台 26上に載置する。このウェハ Mの表面に は,例えば図 3Aに示すように埋め込み穴 72の内面も含めて前工程にてすでに下地 膜として TiNZTi膜のようなノ リャ層 74が形成されている。このノ リャ層 74は,上記 TiNZTi膜のような積層構造のものに限られるものではなく,例えば TiN膜の単層構 造であってもよい。
[0039] 次いで,図示しない処理ガス源カゝら処理ガスとして所定の成膜ガスや不活性ガス等 を,後述するようなガス供給態様でガス供給手段としてのシャワーヘッド部 16へ所定 量ずつ供給して,これを下面のガス噴射口 20から処理容器 14内へ略均等に供給す る。これと同時に,排気口 40から内部雰囲気を吸引排気することにより処理容器 14 内を所望する圧力に真空引きしつつ,且つ載置台 26の下方に位置する加熱手段の 各加熱ランプ 54を回転させながら駆動し,熱エネルギを放射する。
[0040] 放射された熱線は,透過窓 51を透過した後,載置台 26の裏面を照射してこれを加 熱する。この載置台 26は,前述のように例えば lmm程度と非常に薄いことから迅速 に加熱され,従って,この上に載置してあるウェハ Mを迅速に所定の温度まで加熱 することができる。供給された成膜ガスは所定の化学反応を生じ,タングステン膜の 薄膜がウェハ表面の全面に堆積して形成される。
[0041] (タングステン膜形成方法の具体例)
次に,本実施形態に係るタングステン膜形成方法 (タングステン膜形成処理)及び 各ガスの供給態様の具体例を図面を参照しながら説明する。図 2は各ガスの供給態 様を示す図であり,図 3はウェハ Mの表面にタングステン膜が形成される過程を示す 模式図である。図 2に示すガス供給態様においては,一連の成膜ステップの間,処 理容器 14内を連続的に真空引きすると共に,不活性ガスとして例えば Ar, Nガスを
2 一定の流量で (又は必要に応じて流量を変えて)連続的に供給し,また Nガスを容
2 器内に残留する成膜ガスのパージガスとして必要に応じて供給する。
[0042] 本実施形態に係るタングステン膜形成方法 (タングステン膜形成処理)は,初期タン ダステン膜を形成するのに先立って前処理工程として行うイニシエーション工程と, 第一のタングステン膜である初期タングステン膜を形成する初期タングステン膜形成
工程と,この初期タングステン膜形成工程後に,第二のタングステン膜である主タン ダステン膜を形成する主タングステン膜形成工程とを,この順序で順次行うようになつ ている。
[0043] 具体的には,図 2に示すガス供給態様のように,例えばイニシエーション工程にて ウェハ上にシリコン含有ガスを供給する。このイニシエーション工程後に,初期タンダ ステン膜形成工程にてタングステン含有ガスを供給するタングステン含有ガス供給ス テツプとシリコンを含まない水素化合物ガスを供給する水素化合物ガス供給ステップ とを,両ステップ間に上記処理容器内の雰囲気 (残留ガス)を排気または置換するパ ージステップを介在させて交互に繰り返し行うことにより,初期タングステン膜を形成 する。続いて,主タングステン膜形成工程にて上記タングステン含有ガスと還元性ガ スとを同時に供給することにより主タングステン膜を形成する。
[0044] なお,上記パージステップは,各工程を移行する際にも行われ,容器内に残留する 成膜ガスを排気するようになっている。ここでは,タングステン含有ガスとしては WF
6 ガスを用い,シリコン含有ガスとしては SiHガスを用い,シリコンを含まない水素化合
4
物ガスとしては B Hガスを用いている。また一連の工程の間,容器内は連続的に真
2 6
空引きされると共に, Nガスや Arガスをキャリアガスまたはパージガスとして流してお
2
り,これらのガス供給は,パージステップにおける略中間期間 T4において完全に停 止し,この時は真空引きのみが継続的に行われて容器内の残留ガスが略完全に排 除される。従って,この期間 T4では容器内圧力が最も低下する。以下,ィ-シエーシ ヨン工程,初期タングステン膜形成工程,主タングステン膜形成工程についてより具 体的に説明する。
[0045] (イニシエーション工程)
先ず,図 3Aに示すようなウェハ Mに対して前処理工程としてイニシエーション工程 (イニシエーション処理)を実行する。イニシエーション工程では,上述したようにシリ コン含有ガスとして SiHガスをある程度の時間だけ連続的に供給して流す。これによ
4
り,図 3Bに示すようにウェハ Mのバリヤ層 74の表面に, Si—, SiH- , SiH (0≤x< 4)等の分解中間体 76を付着させる。このイニシエーション工程により, TiN膜等より なるバリヤ層 74の表面の電気陰性度が改善されて,後続する成膜ガス等の吸着性
が改善される。
[0046] イニシエーション工程における処理条件としては,例えば以下のように設定する。す なわち,プロセス圧力(処理室内圧力)は,イニシエーション工程に後続する初期タン ダステン膜形成工程におけるプロセス圧力よりも高く設定し,例えば 10666Pa (80T orr)程度に設定する。また, SiHガスの流量は 300mmウェハの場合は例えば 700
4
sccm程度に設定する。また,イニシエーション工程の処理時間は SiHガスの流量と
4
分圧に依存する。例えば 15sec程度に設定される。またプロセス温度は, 300°C〜4 00°Cの範囲内で設定される。例えば 350°Cに設定される。プロセス温度は,最後の 主タングステン膜形成工程まで,例えば変えることなく同一に設定することができる。
[0047] (初期タングステン膜形成工程)
次いで,初期タングステン膜形成工程を実行する。初期タングステン膜形成工程で は,上述したように WFガスと B Hガスとをこの順序で交互に短時間ずつ繰り返し供
6 2 6
給し,且つ両ガスの供給ステップ間では直前に供給したガスを容器内から排除する パージステップを行う。このパージステップの際には,パージガスとして例えば不活性 ガスである Nガスを供給することにより,残留ガスの排除を促進するのが好ましい。
2
[0048] WFガス供給ステップでウェハ表面に吸着した WFガス分子層を次ステップで供
6 6
給する B Hガスにより還元して, 1回の交互供給につき数原子層のタングステン膜を
2 6
成長させる。これを任意の回数繰り返して,図 3Cに示すように所望の膜厚の初期タ ングステン膜 80を形成する。
[0049] この時, WFガスの流量は, 300mmウェハの場合は例えば 160sccm程度に設定
6
する。なお, WFガスを流す時には, Nガスや Arガスをキャリアガスとして用いるのが
6 2
好ましい。また B Hガスの流量は例えば lOOOsccm程度に設定する。この際, Arを
2 6
キャリアガスとして用いるようにしてもよ!、。
[0050] なお,ここでは Hをベースガスとして 5%に希釈した B Hガスを使用している。その
2 2 6
理由は,以下の如く考えられる。すなわち, B Hガスは不安定なガスであり,容易に
2 6
重合して安定なデカボランとなる。そして,この生成したデカボラン微粒子が供給ライ ンの経路で凝集し,安定供給ができなくなったり,また,パーティクルが発生したりす る場合もある。従って, B Hガスは重合を抑制する Hをベースガスとして希釈してボ
ンべに充填した上で,ガス供給に使用することが好ましい。そして,プロセス圧力は, 上記イニシエーション工程の場合よりも遥かに低い例えば lOOOPa以下が好ましい。 また,ある WFガス供給ステップカゝら次の WFガス供給ステップまでの期間を 1サイク
6 6
ルとし,必要に応じて数サイクルカゝら数十サイクル程度の処理を行う。
[0051] ここで, WFガス供給ステップ (タングステン含有ガス供給ステップ)の時間 T1は 1.
6
5sec程度であり, B Hガス供給ステップ (水素化合物ガス供給ステップ)の時間 T2
2 6
は 3sec程度である。また,パージステップの時間 T3は 1. 5sec程度である。なお,こ れらの時間は限定されるものではない。また,この時の 1サイクル当たりの成膜レート は,プロセス条件によっても異なるが,例えば 0. 7〜1. 2nm程度であり,通常は初期 タングステン膜の膜厚は 6〜7nmに設定する。こうして,初期タングステン膜形成ェ 程が終了したならば,次に,主タングステン膜形成工程へ移行する。
[0052] (主タングステン膜形成工程)
次に,主タングステン膜形成工程を実行する。主タングステン膜形成工程は,例え ば WFガスと還元性ガスである Hガスとを同時に供給して,高い成膜レートで CVD
6 2
法により主タングステン膜 82を堆積させ,図 3Dに示すように埋め込み穴 72を完全に 埋め込む nこの時の WFガスの流量は, 300mmウェハの場合は,例えば 200〜35
6
Osccm程度であり,また Hガスの流量は例えば 2200sccm程度である。またプロセ
2
ス圧力は 10666Pa程度である。またこの時の成膜レートは,プロセス条件にもよるが ,例えば 170〜240nmZmin程度である。
[0053] 以上のように,主タングステン膜形成工程が終了すると,ウェハ Mを成膜装置から 取り出し,これに CMP (化学機械研磨)処理をかけることにより,図 3Eに示すように平 面を平坦ィ匕して余分なタングステン膜やバリヤ層を除去し,コンタクトプラグ 83を形成 する。そして,これ以降は,所定の処理が行われて半導体デバイス(半導体装置)が 製造される。
[0054] (タングステン膜の抵抗率の評価)
次に,上記のような本発明方法により形成した初期タングステン膜と主タングステン 膜とを含むタングステン膜全体の抵抗率にっ 、て評価を行った結果にっ 、て,従来 方法によって形成したタングステン膜全体の抵抗率と比較しながら説明する。図 4は
本発明方法により形成したタングステン膜全体の抵抗率を示すグラフ ylを示している 。また図 4には従来方法により形成したタングステン膜全体の抵抗率を示すグラフ y2 も併せて記載している。ここでは,本発明方法としては,その 1例として上述したよう〖こ SiHガスを供給して行うイニシエーション工程, WFガスと B Hガスを交互に供給し
4 6 2 6
て行う ALDによる初期タングステン膜形成工程,主タングステン膜形成工程を連続し て行う方法を実行した。また,従来方法としては,上述したように WFガスと B Hガス
6 2 6 を交互に供給して行う ALDによる初期タングステン膜形成工程,主タングステン膜形 成工程とを連続して行う方法を実行した。なお,上述したように初期タングステン膜の 厚さは 6〜7nm程度であるため,図 4に示す横軸の厚さはほとんど主タングステン膜 の厚さとなっている。
[0055] このグラフ yl, y2からも明らかなように,本発明方法及び従来方法は,共に厚さが 増加する程,抵抗率が低下しているが,同一厚さの部分では従来方法よりも本発明 方法の方が常に 1〜3 Q cm程度低くなつており,この結果,本発明方法で初期タ ングステン膜を形成した場合には,この上に堆積する主タングステン膜の抵抗率を低 下させることができることが確認できた。この理由は,例えば以下の如く考えられる。 すなわち,主タングステン膜 82の核付け層となる初期タングステン膜 80が SiHガス
4 を供給して行うイニシエーション工程によりアモルファス (非晶質)となり,この状態が 主タングステン膜 82の成長にも影響を与える。この主タングステン膜 82のグレインサ ィズ (結晶粒径)が,従来方法で形成した主タングステン膜 10よりも高く維持されて抵 抗率が下がるものと推論できる。
[0056] これを検証するために,結晶性を変えた初期タングステン膜に主タングステン膜を 堆積させ,主タングステン膜の断面を SEM (電子顕微鏡)で観察した。図 5A,図 5B はそれぞれ本発明方法と従来方法で形成した初期タングステン膜の X線回折分析( XRD)結果と,それぞれの主タングステン膜の断面 SEM写真である。なお,図 5では 理解を容易にするために部分的な模式図を各断面 SEM写真の下側に併記している 。図 5Aは従来方法による標準プロセスを示し,図 5Bは本発明方法による改善プロセ スを示している。
[0057] また,図 5A,図 5Bの XRD結果において, Si (200) , Si (400)は基板の結晶性を
示すピークであり, a (110) , α (200)が初期タングステン膜の結晶性を示すピーク である。これによれば,本発明方法によるプロセスを用いると初期タングステン膜は, a (200)が消失し, a (110)がブロードになり,アモルファス状態に近づいていること が理解できる。そして, ALDにより形成した初期タングステン膜の XRD結果カゝら初期 タングステン膜がアモルファスになるほど,主タングステン膜のグレイン (結晶粒)が大 きくなることがゎカゝる。一般にタングステン膜はグレインサイズが大きくなるほど抵抗率 が下がることが知られているので,本発明方法による改善プロセスを用いた方が従来 方法による標準プロセスを用いた場合に比してタングステン膜全体の抵抗率が低下 していることがわ力る。
[0058] (フッ素濃度の評価)
次に,タングステン膜とバリヤ層との境界部分におけるフッ素濃度について評価を 行った結果について説明する。図 6はタングステン膜が形成されたウェハの深さ方向 におけるフッ素濃度の分布を SIMS (2次イオン質量分析法)により測定した結果であ る。ここでは境界部分のフッ素濃度の差を明瞭にするために実際よりも約 5倍ほど初 期タングステン膜を厚く形成してその評価を行って 、る。
[0059] なお,本評価における初期タングステン膜形成工程では WFガスと B Hガスの交
6 2 6 互供給ステップ間のパージステップではパージガス流量及び圧力を一定としている。 この図 6から明らかなように,タングステン膜とバリヤ層の境界部分において,本発明 方法のフッ素濃度は従来方法の場合よりも 1桁程度低く,良好な結果を示しているこ とが確認できた。
[0060] ここで,基板全面のボルケーノ発生の状態を光学顕微鏡により観察した図面代用 写真を図 8A,図 8Bに示す。図 8Aは従来方法によって処理したウェハの場合であり ,図 Bは本発明方法によって処理したウェハの場合である。図 8A,図 8Bにおいては ,本発明の効果の理解を容易にするために模式図を併記してある。図 8A,図 8Bに おいて,黒点はボルケーノの発生を示しており,これによれば,従来方法の場合(図 8 A)にはボルケーノが多数発生しているが,本発明方法(図 8B)の場合にはポルケ一 ノがほとんど発生しておらず,本発明方法の有効性が確認できた。
[0061] このように, SiHイニシエーション処理によって,タングステン膜とバリヤ層との境界
部分のフッ素濃度を低減できるので,その分,ノ リャ層側へのフッ素の拡散や,突き 抜けが発生することを抑制してボルケーノ等の発生も阻止することができる。
[0062] 次に,初期タングステン膜形成工程でのパージガス供給形態による,初期タンダス テン膜中のフッ素濃度変化について評価を行った。上述の評価では初期タンダステ ン膜形成工程における WFガスと B Hガスの交互供給ステップ間のパージステップ
6 2 6
にて Arガス及び Nガスの流量を一定としたが,これらのガス供給をパージステップ略
2
中間 T4 (図 2参照)において完全に停止し,真空引きのみとし,処理容器内の圧力を 急激に下げる。この方法により残留ガスの排除効率が大きく向上し, WFガスと Β Η
6 2 6 ガスの気相反応を抑制し,ウェハ表面でより完全な WFガス吸着と Β Ηガスによる
6 2 6
還元反応を継続させる。図 7は従来のパージ方法と比較して上述の方法で形成した 初期タングステン膜中のフッ素濃度分布を示す。この図 7から従来の方法に比較して 初期タングステン膜中のフッ素濃度は 2桁以上下がり極めて大きな効果があることが ゎカゝる。
[0063] 上述のように初期タングステン膜形成工程前に SiHガスを供給するィ-シエーショ
4
ン工程を加えることによりタングステン膜とバリヤ層境界部分のフッ素濃度を低減でき るが,更に初期タングステン膜形成工程でのパージガス供給形態を変えることにより 初期タングステン膜中のフッ素濃度も低減できることが確認できた。本発明方法によ れば更にボルケーノ発生を抑制できると予想される。
[0064] (密着性の評価)
次に,タングステン膜とバリヤ層との密着性について, JIS cross cut法 (JIS k54 00)に基づいて評価を行った結果について説明する。図 9A,図 9Bは,ノ リャ層上に ALDによる初期タングステン膜と主タングステン膜との積層膜を堆積し,密着性を評 価した結果を示す図である。図 9Αίお ISにより剥離の程度を分類したクラス毎の基準 を示し,図 9Bは本願発明方法 (改善)と従来方法のタングステン膜の剥離結果を示 す。密着性の評価方法は,上記し^ JISに基づいており,タングステン膜を堆積後に ダイヤモンドペンで縦横に碁盤状に所定の傷を付け,その上に規定のスコッチテー プを貼り,一気に剥がす。その剥がれの割合を JIS基準値と比較し,密着性のクラスを 決定する。
[0065] この結果によれば, SiHイニシエーション処理を用いることにより,初期タンダステ
4
ン膜及び主タングステン膜ともに密着性は大きく向上することが判明した。すなわち, 従来方法による場合には,剥離比率は初期タングステン膜だけの時は 35〜65% (1 B) ,主タングステン膜を含めると 65〜100% (OB)であり,かなり密着性が劣っていた
[0066] これに対して,本発明方法による場合には,剥離比率は初期タングステン膜だけの 時は 5% (1B)以下,主タングステン膜を含めると 35〜65% (4B)であり,本発明によ ればかなり密着性を改善できることを確認することができた。この密着性の改善の理 由は,恐らくは初期タングステン膜とバリヤ層との界面に存在するフッ素原子またはこ のフッ素原子力 Sバリヤ層と反応して生成したフッ素化合物がノ リャ層である TiN膜と タングステン膜の密着を阻害する原因であり,上記界面フッ素の低減により,本来の TiN—W (タングステン)の密着性を回復したと予想される。またこのように,密着性を 改善できる結果,例えば図 3Eに示すように CMP処理を行っても,使用する溶剤が内 部の境界部分に侵入することを防止でき,この結果,タングステン膜がコンタクトホー ルカ 脱離してしまう等の問題が発生することを回避することができる。
[0067] 以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本 発明は係る例に限定されないことは言うまでもない。当業者であれば,特許請求の範 囲に記載された範疇内において,各種の変更例または修正例に想到し得ることは明 らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される
[0068] 例えば,上記実施形態ではシリコン水素含有ガスとしてモノシランを用いたが,これ に限定されるものではなく,ジシランなどのシリコン水素化合物ゃトリメチルシラン((C H ) SiH)などの有機シランを用いることができる。
3 3
[0069] また,上記実施形態では,シリコンを含まない水素化合物ガスとしてジボランを用い たが,これに限定されず,ホスフィンなどの強力な還元性ガスを用いることができる。 更には,タングステンガス含有ガスとしては WFに限定されず,有機タングステンソー
6
スガスも用 、ることができる。
産業上の利用可能性
本発明は,半導体ウェハ等の被処理体の表面にタングステン膜を形成する方法, 成膜装置,記憶媒体及び半導体装置に適用可能である。
Claims
[1] 真空引き可能に構成された処理容器内にて被処理体の表面にタングステン膜を形 成する方法であって,
前記被処理体にシリコン含有ガスを供給する工程と,
該工程後にタングステン含有ガスを供給するタングステン含有ガス供給ステップと シリコンを含まな 、水素化合物ガスを供給する水素化合物ガス供給ステップとを,両 ステップ間に前記処理容器内に不活性ガスを供給するパージステップ及び Z又は前 記処理容器を真空引きする真空引きステップを介在させて,交互に繰り返し実行す ることにより第一のタングステン膜を形成する工程と,
を有することを特徴とするタングステン膜の形成方法。
[2] さらに,前記第一のタングステン膜上に前記タングステン含有ガスと還元性ガスとを 同時に供給することにより,第二のタングステン膜を形成する工程を有することを特徴 とする請求項 1記載のタングステン膜の形成方法。
[3] 前記第一のタングステン膜形成工程と前記第二のタングステン膜形成工程は,同一 処理容器内で実行されることを特徴とする請求項 2記載のタングステン膜形成方法。
[4] 前記シリコン含有ガスは,モノシラン,ジシラン,有機シランより選択されることを特徴 とする請求項 1〜3のいずれかに記載のタングステン膜形成方法。
[5] 前記シリコンを含まない水素化合物ガスは,ジボランまたはホスフィンであることを特 徴とする請求項 1〜4のいずれかに記載のタングステン膜形成方法。
[6] 前記シリコンを含まない水素化合物ガスは,水素希釈シボランガスであることを特徴と する請求項 1〜4のいずれかに記載のタングステン膜形成方法。
[7] 前記還元性ガスは,水素であることを特徴とする請求項 2〜6のいずれかに記載のタ ングステン膜形成方法。
[8] 前記タングステン含有ガスは, WFであることを特徴とする請求項 1〜7のいずれかに
6
記載のタングステン膜形成方法。
[9] 前記被処理体の表面には TiN膜を含むノ リャ層が形成されて 、ることを特徴とする 請求項 1〜8のいずれか〖こ記載のタングステン膜形成方法。
[10] 真空引き可能に構成された処理容器内にて,コンタクトホールが形成された被処理
体にシリコン含有ガスを供給する工程と,
該工程後にタングステン含有ガスを供給するタングステン含有ガス供給ステップと シリコンを含まな 、水素化合物ガスを供給する水素化合物ガス供給ステップとを,両 ステップ間に前記処理容器内に不活性ガスを供給するパージステップ及び Z又は前 記処理容器を真空引きする真空引きステップを介在させて,交互に繰り返し実行す ることにより第一のタングステン膜を形成する工程と,
前記第一のタングステン膜上に前記タングステン含有ガスと還元性ガスとを同時に 供給することにより,さらに第二のタングステン膜を形成して前記コンタクトホールを埋 め込む工程と,
前記第二のタングステン膜形成後に前記被処理体の表面に化学機械研磨処理を 施すことによってコンタクトプラグを形成する工程と,
を有することを特徴とするタングステン膜形成方法。
[11] 真空引き可能に構成された処理容器と,
前記処理容器内に設けられ,被処理体を載置するための載置台と,
前記被処理体を加熱するための加熱手段と,
前記処理容器内に,少なくともシリコン水素含有ガスと,タングステン含有ガスと,シ リコンを含まない水素化合物ガスとを供給可能なガス供給手段と,
前記載置台に載置された被処理体の表面にタングステン膜を形成する際に,前記 ガス供給手段により前記被処理体にシリコン含有ガスを供給する工程と,該工程後に 前記ガス供給手段によりタングステン含有ガスを供給するタングステン含有ガス供給 ステップと前記ガス供給手段によりシリコンを含まない水素化合物ガスを供給する水 素化合物ガス供給ステップとを,両ステップ間に前記処理容器内に不活性ガスを供 給するパージステップ及び Z又は前記処理容器を真空引きする真空引きステップを 介在させて,交互に繰り返し実行することにより第一のタングステン膜を形成するェ 程と,を実行する制御部と,
を備えたことを特徴とする成膜装置。
[12] 真空引き可能に構成された処理容器と,前記処理容器内に設けられ,被処理体を載 置するための載置台と,前記被処理体を加熱するための加熱手段と,前記処理容器
内に,少なくともシリコン水素含有ガスと,タングステン含有ガスと,シリコンを含まない 水素化合物ガスとを供給可能なガス供給手段とを備える成膜装置を用いて,コンビュ ータに,前記処理容器内の前記被処理体に対してタングステン膜形成処理を実行さ せるためのプログラムを記憶したコンピュータ読み取り可能な記憶媒体であって, 前記タングステン膜形成処理は,
前記ガス供給手段により前記被処理体にシリコン含有ガスを供給する工程と, 該工程後に前記ガス供給手段によりタングステン含有ガスを供給するタングステン 含有ガス供給ステップと前記ガス供給手段によりシリコンを含まない水素化合物ガス を供給する水素化合物ガス供給ステップとを,両ステップ間に前記処理容器内に不 活性ガスを供給するパージステップ及び Z又は前記処理容器を真空引きする真空 引きステップを介在させて,交互に繰り返し実行することにより第一のタングステン膜 を形成する工程と,
を有することを特徴とする記憶媒体。
真空引き可能に構成された処理容器内にて,コンタクトホールが形成された被処理 体にシリコン含有ガスを供給する工程と,
該工程後にタングステン含有ガスを供給するタングステン含有ガス供給ステップと シリコンを含まな 、水素化合物ガスを供給する水素化合物ガス供給ステップとを,両 ステップ間に前記処理容器内に不活性ガスを供給するパージステップ及び Z又は前 記処理容器を真空引きする真空引きステップを介在させて,交互に繰り返し実行す ることにより第一のタングステン膜を形成する工程と,
前記第一のタングステン膜上に前記タングステン含有ガスと還元性ガスとを同時に 供給することにより,さらに第二のタングステン膜を形成して前記コンタクトホールを埋 め込む工程と,
前記第二のタングステン膜形成後に前記被処理体の表面に化学機械研磨処理を 施すことによってコンタクトプラグを形成する工程と,
を有する方法によって形成されたコンタクトプラグを備えることを特徴とする半導体 装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/994,339 US8168539B2 (en) | 2005-07-01 | 2006-06-23 | Method for forming tungsten film at a surface of a processing target material, film-forming apparatus, storage medium and semiconductor device with a tungsten film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005194170A JP4945937B2 (ja) | 2005-07-01 | 2005-07-01 | タングステン膜の形成方法、成膜装置及び記憶媒体 |
JP2005-194170 | 2005-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007004443A1 true WO2007004443A1 (ja) | 2007-01-11 |
Family
ID=37604313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312606 WO2007004443A1 (ja) | 2005-07-01 | 2006-06-23 | タングステン膜形成方法,成膜装置,記憶媒体及び半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8168539B2 (ja) |
JP (1) | JP4945937B2 (ja) |
KR (1) | KR100939124B1 (ja) |
CN (2) | CN101899649B (ja) |
TW (1) | TWI390612B (ja) |
WO (1) | WO2007004443A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2375785C1 (ru) * | 2008-07-14 | 2009-12-10 | Учреждение Российской Академии наук Институт проблем технологии микроэлектроники и особочистых материалов | Способ изготовления тонкопленочной металлической структуры вольфрама на кремнии |
US7945501B2 (en) | 2007-04-09 | 2011-05-17 | Pricelock, Inc. | System and method for constraining depletion amount in a defined time frame |
US8019694B2 (en) | 2007-02-12 | 2011-09-13 | Pricelock, Inc. | System and method for estimating forward retail commodity price within a geographic boundary |
US8156022B2 (en) | 2007-02-12 | 2012-04-10 | Pricelock, Inc. | Method and system for providing price protection for commodity purchasing through price protection contracts |
JP2013122068A (ja) * | 2011-12-09 | 2013-06-20 | Ulvac Japan Ltd | タングステン化合物膜の形成方法、及び半導体装置 |
US8516715B2 (en) | 2007-06-07 | 2013-08-27 | Tokyo Electron Limited | Evacuation method and storage medium |
WO2015145750A1 (ja) * | 2014-03-28 | 2015-10-01 | 株式会社日立国際電気 | 半導体デバイスの製造方法及び基板処理装置 |
RU2712681C1 (ru) * | 2016-10-27 | 2020-01-30 | Общество с ограниченной ответственностью научно-производственное предприятие "ЭФОМ" | Способ нанесения тонких металлических покрытий |
Families Citing this family (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9076843B2 (en) | 2001-05-22 | 2015-07-07 | Novellus Systems, Inc. | Method for producing ultra-thin tungsten layers with improved step coverage |
JP2008192835A (ja) * | 2007-02-05 | 2008-08-21 | Tokyo Electron Ltd | 成膜方法,基板処理装置,および半導体装置 |
KR100890047B1 (ko) * | 2007-06-28 | 2009-03-25 | 주식회사 하이닉스반도체 | 반도체소자의 배선 형성방법 |
KR100881716B1 (ko) * | 2007-07-02 | 2009-02-06 | 주식회사 하이닉스반도체 | 낮은 시트저항의 텅스텐막을 갖는 텅스텐배선 제조 방법 및그를 이용한 반도체소자의 게이트 제조 방법 |
JP5428151B2 (ja) * | 2007-11-26 | 2014-02-26 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
JP5547380B2 (ja) | 2008-04-30 | 2014-07-09 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
US8129270B1 (en) | 2008-12-10 | 2012-03-06 | Novellus Systems, Inc. | Method for depositing tungsten film having low resistivity, low roughness and high reflectivity |
US9159571B2 (en) | 2009-04-16 | 2015-10-13 | Lam Research Corporation | Tungsten deposition process using germanium-containing reducing agent |
US8623733B2 (en) | 2009-04-16 | 2014-01-07 | Novellus Systems, Inc. | Methods for depositing ultra thin low resistivity tungsten film for small critical dimension contacts and interconnects |
US10256142B2 (en) | 2009-08-04 | 2019-04-09 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
US9548228B2 (en) | 2009-08-04 | 2017-01-17 | Lam Research Corporation | Void free tungsten fill in different sized features |
JP5646190B2 (ja) * | 2010-03-12 | 2014-12-24 | 東京エレクトロン株式会社 | 洗浄方法及び処理装置 |
US8865594B2 (en) * | 2011-03-10 | 2014-10-21 | Applied Materials, Inc. | Formation of liner and barrier for tungsten as gate electrode and as contact plug to reduce resistance and enhance device performance |
JP5959991B2 (ja) * | 2011-11-25 | 2016-08-02 | 東京エレクトロン株式会社 | タングステン膜の成膜方法 |
JP2013182961A (ja) * | 2012-02-29 | 2013-09-12 | Toshiba Corp | 半導体製造装置及び半導体装置の製造方法 |
US11437269B2 (en) | 2012-03-27 | 2022-09-06 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
CN113862634A (zh) | 2012-03-27 | 2021-12-31 | 诺发系统公司 | 钨特征填充 |
US10381266B2 (en) | 2012-03-27 | 2019-08-13 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
WO2013148444A1 (en) * | 2012-03-27 | 2013-10-03 | Novellus Systems, Inc. | Tungsten feature fill with nucleation inhibition |
US9969622B2 (en) | 2012-07-26 | 2018-05-15 | Lam Research Corporation | Ternary tungsten boride nitride films and methods for forming same |
US8853080B2 (en) | 2012-09-09 | 2014-10-07 | Novellus Systems, Inc. | Method for depositing tungsten film with low roughness and low resistivity |
US9230815B2 (en) | 2012-10-26 | 2016-01-05 | Appled Materials, Inc. | Methods for depositing fluorine/carbon-free conformal tungsten |
US11043386B2 (en) | 2012-10-26 | 2021-06-22 | Applied Materials, Inc. | Enhanced spatial ALD of metals through controlled precursor mixing |
US9153486B2 (en) | 2013-04-12 | 2015-10-06 | Lam Research Corporation | CVD based metal/semiconductor OHMIC contact for high volume manufacturing applications |
US9589808B2 (en) | 2013-12-19 | 2017-03-07 | Lam Research Corporation | Method for depositing extremely low resistivity tungsten |
US10643925B2 (en) * | 2014-04-17 | 2020-05-05 | Asm Ip Holding B.V. | Fluorine-containing conductive films |
CN105097474B (zh) * | 2014-05-09 | 2018-03-06 | 中国科学院微电子研究所 | 一种半导体器件的制造方法 |
KR101593671B1 (ko) * | 2014-06-20 | 2016-02-12 | (주)알파코 | 엘엠 가이드의 텅스텐 코팅방법 |
US9349637B2 (en) | 2014-08-21 | 2016-05-24 | Lam Research Corporation | Method for void-free cobalt gap fill |
US9748137B2 (en) | 2014-08-21 | 2017-08-29 | Lam Research Corporation | Method for void-free cobalt gap fill |
WO2016046909A1 (ja) * | 2014-09-24 | 2016-03-31 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置、半導体装置およびプログラム |
US9997405B2 (en) | 2014-09-30 | 2018-06-12 | Lam Research Corporation | Feature fill with nucleation inhibition |
US9953984B2 (en) | 2015-02-11 | 2018-04-24 | Lam Research Corporation | Tungsten for wordline applications |
US10002834B2 (en) | 2015-03-11 | 2018-06-19 | Applied Materials, Inc. | Method and apparatus for protecting metal interconnect from halogen based precursors |
JP6416679B2 (ja) * | 2015-03-27 | 2018-10-31 | 東京エレクトロン株式会社 | タングステン膜の成膜方法 |
US10170320B2 (en) * | 2015-05-18 | 2019-01-01 | Lam Research Corporation | Feature fill with multi-stage nucleation inhibition |
US9613818B2 (en) | 2015-05-27 | 2017-04-04 | Lam Research Corporation | Deposition of low fluorine tungsten by sequential CVD process |
US9978605B2 (en) | 2015-05-27 | 2018-05-22 | Lam Research Corporation | Method of forming low resistivity fluorine free tungsten film without nucleation |
US9754824B2 (en) * | 2015-05-27 | 2017-09-05 | Lam Research Corporation | Tungsten films having low fluorine content |
US9972504B2 (en) | 2015-08-07 | 2018-05-15 | Lam Research Corporation | Atomic layer etching of tungsten for enhanced tungsten deposition fill |
US9978610B2 (en) | 2015-08-21 | 2018-05-22 | Lam Research Corporation | Pulsing RF power in etch process to enhance tungsten gapfill performance |
JP6346595B2 (ja) | 2015-08-25 | 2018-06-20 | 東芝メモリ株式会社 | 半導体装置及びその製造方法 |
JP2017069313A (ja) * | 2015-09-29 | 2017-04-06 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置、ガス供給システムおよびプログラム |
US10214807B2 (en) * | 2016-06-02 | 2019-02-26 | Lam Research Corporation | Atomic layer deposition of tungsten for enhanced fill and reduced substrate attack |
JP6998873B2 (ja) * | 2016-07-26 | 2022-01-18 | 東京エレクトロン株式会社 | タングステン膜の成膜方法 |
US10573522B2 (en) | 2016-08-16 | 2020-02-25 | Lam Research Corporation | Method for preventing line bending during metal fill process |
US10211099B2 (en) | 2016-12-19 | 2019-02-19 | Lam Research Corporation | Chamber conditioning for remote plasma process |
JP6788545B2 (ja) * | 2017-04-26 | 2020-11-25 | 東京エレクトロン株式会社 | タングステン膜を形成する方法 |
JP7609636B2 (ja) | 2017-08-14 | 2025-01-07 | ラム リサーチ コーポレーション | 3次元垂直nandワード線用の金属充填プロセス |
CN109750274B (zh) * | 2017-11-01 | 2021-10-22 | 长鑫存储技术有限公司 | 半导体生产设备及半导体工艺方法 |
JP2021523292A (ja) | 2018-05-03 | 2021-09-02 | ラム リサーチ コーポレーションLam Research Corporation | 3d nand構造内にタングステンおよび他の金属を堆積させる方法 |
KR102607081B1 (ko) * | 2018-06-28 | 2023-11-29 | 도쿄엘렉트론가부시키가이샤 | 성막 방법, 성막 시스템 및 성막 장치 |
KR102513403B1 (ko) * | 2018-07-30 | 2023-03-24 | 주식회사 원익아이피에스 | 텅스텐 증착 방법 |
JP7705347B2 (ja) | 2018-12-05 | 2025-07-09 | ラム リサーチ コーポレーション | ボイドフリーの低応力充填 |
KR20210092840A (ko) | 2018-12-14 | 2021-07-26 | 램 리써치 코포레이션 | 3d nand 구조체 상의 원자 층 증착 |
SG11202108725XA (en) | 2019-02-13 | 2021-09-29 | Lam Res Corp | Tungsten feature fill with inhibition control |
SG11202111277UA (en) | 2019-04-11 | 2021-11-29 | Lam Res Corp | High step coverage tungsten deposition |
US12237221B2 (en) | 2019-05-22 | 2025-02-25 | Lam Research Corporation | Nucleation-free tungsten deposition |
KR20220047333A (ko) | 2019-08-12 | 2022-04-15 | 램 리써치 코포레이션 | 텅스텐 증착 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003193233A (ja) * | 2001-08-14 | 2003-07-09 | Tokyo Electron Ltd | タングステン膜の形成方法 |
JP2004273764A (ja) * | 2003-03-07 | 2004-09-30 | Tokyo Electron Ltd | タングステン膜の形成方法 |
JP2004277864A (ja) * | 2003-03-18 | 2004-10-07 | Toshiba Corp | 成膜方法及び成膜装置 |
JP2005505690A (ja) * | 2001-10-10 | 2005-02-24 | アプライド マテリアルズ インコーポレイテッド | 一連の堆積技術を用いる耐火性金属層を堆積する方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1097848C (zh) * | 1997-11-21 | 2003-01-01 | 台湾茂矽电子股份有限公司 | 制造集成电路的化学机械研磨方法及其装置 |
US6982226B1 (en) * | 1998-06-05 | 2006-01-03 | Agere Systems Inc. | Method of fabricating a contact with a post contact plug anneal |
JP2000114369A (ja) * | 1998-10-05 | 2000-04-21 | Sony Corp | 金属膜の形成方法および電子装置の製造方法 |
JP3331334B2 (ja) * | 1999-05-14 | 2002-10-07 | 株式会社東芝 | 半導体装置の製造方法 |
US6214714B1 (en) * | 1999-06-25 | 2001-04-10 | Applied Materials, Inc. | Method of titanium/titanium nitride integration |
US6303480B1 (en) * | 1999-09-13 | 2001-10-16 | Applied Materials, Inc. | Silicon layer to improve plug filling by CVD |
US6936538B2 (en) * | 2001-07-16 | 2005-08-30 | Applied Materials, Inc. | Method and apparatus for depositing tungsten after surface treatment to improve film characteristics |
US7101795B1 (en) | 2000-06-28 | 2006-09-05 | Applied Materials, Inc. | Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer |
KR100688652B1 (ko) * | 2001-08-14 | 2007-03-02 | 동경 엘렉트론 주식회사 | 텅스텐막의 형성 방법 |
US6787466B2 (en) * | 2002-02-15 | 2004-09-07 | Applied Materials, Inc. | High throughout process for the formation of a refractory metal nucleation layer |
US7427426B2 (en) * | 2002-11-06 | 2008-09-23 | Tokyo Electron Limited | CVD method for forming metal film by using metal carbonyl gas |
US6924223B2 (en) * | 2003-09-30 | 2005-08-02 | Tokyo Electron Limited | Method of forming a metal layer using an intermittent precursor gas flow process |
JP3759525B2 (ja) * | 2003-10-27 | 2006-03-29 | 松下電器産業株式会社 | 半導体装置の製造方法 |
-
2005
- 2005-07-01 JP JP2005194170A patent/JP4945937B2/ja not_active Expired - Lifetime
-
2006
- 2006-06-23 US US11/994,339 patent/US8168539B2/en active Active
- 2006-06-23 CN CN200910253445XA patent/CN101899649B/zh active Active
- 2006-06-23 CN CNA2006800241124A patent/CN101213320A/zh active Pending
- 2006-06-23 KR KR1020077030782A patent/KR100939124B1/ko not_active Expired - Fee Related
- 2006-06-23 WO PCT/JP2006/312606 patent/WO2007004443A1/ja active Application Filing
- 2006-06-30 TW TW095123889A patent/TWI390612B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003193233A (ja) * | 2001-08-14 | 2003-07-09 | Tokyo Electron Ltd | タングステン膜の形成方法 |
JP2005505690A (ja) * | 2001-10-10 | 2005-02-24 | アプライド マテリアルズ インコーポレイテッド | 一連の堆積技術を用いる耐火性金属層を堆積する方法 |
JP2004273764A (ja) * | 2003-03-07 | 2004-09-30 | Tokyo Electron Ltd | タングステン膜の形成方法 |
JP2004277864A (ja) * | 2003-03-18 | 2004-10-07 | Toshiba Corp | 成膜方法及び成膜装置 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8019694B2 (en) | 2007-02-12 | 2011-09-13 | Pricelock, Inc. | System and method for estimating forward retail commodity price within a geographic boundary |
US8156022B2 (en) | 2007-02-12 | 2012-04-10 | Pricelock, Inc. | Method and system for providing price protection for commodity purchasing through price protection contracts |
US8538795B2 (en) | 2007-02-12 | 2013-09-17 | Pricelock, Inc. | System and method of determining a retail commodity price within a geographic boundary |
US7945501B2 (en) | 2007-04-09 | 2011-05-17 | Pricelock, Inc. | System and method for constraining depletion amount in a defined time frame |
US8516715B2 (en) | 2007-06-07 | 2013-08-27 | Tokyo Electron Limited | Evacuation method and storage medium |
RU2375785C1 (ru) * | 2008-07-14 | 2009-12-10 | Учреждение Российской Академии наук Институт проблем технологии микроэлектроники и особочистых материалов | Способ изготовления тонкопленочной металлической структуры вольфрама на кремнии |
JP2013122068A (ja) * | 2011-12-09 | 2013-06-20 | Ulvac Japan Ltd | タングステン化合物膜の形成方法、及び半導体装置 |
WO2015145750A1 (ja) * | 2014-03-28 | 2015-10-01 | 株式会社日立国際電気 | 半導体デバイスの製造方法及び基板処理装置 |
JPWO2015145750A1 (ja) * | 2014-03-28 | 2017-04-13 | 株式会社日立国際電気 | 半導体デバイスの製造方法、基板処理装置およびプログラム |
RU2712681C1 (ru) * | 2016-10-27 | 2020-01-30 | Общество с ограниченной ответственностью научно-производственное предприятие "ЭФОМ" | Способ нанесения тонких металлических покрытий |
Also Published As
Publication number | Publication date |
---|---|
US8168539B2 (en) | 2012-05-01 |
TW200710968A (en) | 2007-03-16 |
CN101213320A (zh) | 2008-07-02 |
JP2007009298A (ja) | 2007-01-18 |
CN101899649A (zh) | 2010-12-01 |
KR100939124B1 (ko) | 2010-01-28 |
CN101899649B (zh) | 2012-11-21 |
TWI390612B (zh) | 2013-03-21 |
KR20080015129A (ko) | 2008-02-18 |
JP4945937B2 (ja) | 2012-06-06 |
US20090045517A1 (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4945937B2 (ja) | タングステン膜の形成方法、成膜装置及び記憶媒体 | |
TWI857007B (zh) | 包括處理步驟之循環沉積方法及其設備 | |
US9812355B2 (en) | Method of manufacturing semiconductor device | |
JP3956049B2 (ja) | タングステン膜の形成方法 | |
JP6671262B2 (ja) | 窒化膜の形成方法および形成装置 | |
TWI529806B (zh) | 形成鎢接觸點及小臨界尺寸互連線之方法 | |
KR101414358B1 (ko) | 텅스텐막의 성막 방법 | |
JP4032872B2 (ja) | タングステン膜の形成方法 | |
KR101498960B1 (ko) | 박막의 형성 방법 및 성막 장치 | |
US20170309490A1 (en) | Method of manufacturing semiconductor device | |
US9337015B2 (en) | Method of manufacturing a semiconductor device, method of processing a substrate, substrate processing apparatus, and recording medium | |
WO2007018003A1 (ja) | 金属系膜形成方法及びプログラムを記録した記録媒体 | |
KR20160094310A (ko) | 텅스텐 막의 성막 방법 | |
US7592256B2 (en) | Method of forming tungsten film | |
JP7154159B2 (ja) | 成膜方法および成膜装置 | |
JP6583064B2 (ja) | マスク構造体の形成方法及び成膜装置 | |
KR102314998B1 (ko) | 실리콘막의 형성 방법 및 형성 장치 | |
KR20200097646A (ko) | 기판 처리 방법 및 성막 시스템 | |
JP7083890B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
TW202228190A (zh) | 半導體裝置的製造方法、基板處理裝置及程式 | |
JP2007035740A (ja) | 成膜方法、成膜装置及び記憶媒体 | |
WO2023013483A1 (ja) | 成膜方法及び成膜装置 | |
JP7296790B2 (ja) | 成膜方法及び基板処理システム | |
JP7159446B2 (ja) | 基板処理方法、基板処理装置、プログラムおよび半導体装置の製造方法 | |
JP2021167466A (ja) | バリア層のないインシトゥタングステン堆積 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680024112.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020077030782 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11994339 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06780643 Country of ref document: EP Kind code of ref document: A1 |