WO2006123771A1 - 分注量検出方法および吸液モニタ型分注装置 - Google Patents

分注量検出方法および吸液モニタ型分注装置 Download PDF

Info

Publication number
WO2006123771A1
WO2006123771A1 PCT/JP2006/310004 JP2006310004W WO2006123771A1 WO 2006123771 A1 WO2006123771 A1 WO 2006123771A1 JP 2006310004 W JP2006310004 W JP 2006310004W WO 2006123771 A1 WO2006123771 A1 WO 2006123771A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
liquid
pipette tip
pressure
tip
Prior art date
Application number
PCT/JP2006/310004
Other languages
English (en)
French (fr)
Inventor
Hideji Tajima
Michinori Koizuka
Hiroshi Suzuki
Susumu Kimura
Original Assignee
Universal Bio Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Bio Research Co., Ltd. filed Critical Universal Bio Research Co., Ltd.
Priority to EP06756360.1A priority Critical patent/EP1882951B1/en
Priority to US11/920,663 priority patent/US8307722B2/en
Priority to JP2007516347A priority patent/JP5122949B2/ja
Publication of WO2006123771A1 publication Critical patent/WO2006123771A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a dispensing amount detection method and a liquid amount monitoring type dispensing apparatus that detect a suction amount of a liquid by using a change in air pressure, and in particular, pipette tips for a liquid in which a biological material is suspended.
  • the present invention relates to a method of monitoring liquid amount detection in a dispensing device that sucks in and dispenses into a test container by changing suction pressure, and a device to which the method is applied.
  • Patent Document 1 a dispensing method in which a suction amount is detected and evaluated by sucking a liquid into a container force pipette tip with a dispensing device.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-64912
  • Patent Document 2 Japanese Patent No. 306500
  • the bubbles may be detected as the liquid level. If the liquid level is detected, it may be erroneously detected, which may cause a malfunction.
  • the present invention has been made in view of the above-mentioned problems in the prior art, and the technical problem specifically set in order to solve this problem is the liquid liquid contained in the container. It is an object of the present invention to provide a dispensing amount detection method and a liquid absorption monitor type dispensing device that can detect the amount of liquid simply by measuring a pressure change that does not require detection of a surface.
  • a problem-solving means that is specifically configured to cover all matters recognized as necessary for specifying a dispensing amount detection method and a liquid absorption monitor-type dispensing device that can effectively solve the problem. Is shown below.
  • a first problem-solving means includes a pipette tip, a liquid suction / discharge mechanism for the pipette tip, a pressure sensor for detecting a pressure in the pipette tip, and the pipette
  • the dispensing volume detection method that detects the suction state of the specified volume of the liquid to be sucked and discharged by the dispensing device having the tip lifting mechanism, up to the deepest part of the container that holds the liquid to be measured
  • the shape of the pipette tip, the specified suction speed, and the suction I time! It is characterized in that to have a and extent.
  • the rate of change (time differential value) based on the measured pressure change is calculated by comparing the measured pressure change with a predetermined threshold.
  • the suction state may be detected.
  • the “deepest part” is a position where the liquid contained in the container can be sucked, and is a position near or near the bottom of the container.
  • the second problem solving means is that, in the suction detection step, the measured pressure change is compared with a predetermined threshold value, and the threshold force is also based on a pressure value that deviates. Thus, the suction state is detected.
  • the third problem solving means according to the dispensing amount detection method is the same as that in the suction detection step. Based on the pressure value that deviates from the threshold force, it is detected whether there is insufficient suction or is empty.
  • a fourth problem solving means related to the dispensing amount detection method is the same as that in the suction detection step.
  • the presence or absence of the pipette tip is detected based on the presence or absence of the measured pressure change.
  • the fifth problem solving means according to the dispensing amount detection method is the same as that in the suction detection step.
  • the sixth problem solving means according to the dispensing amount detection method is characterized in that, in the insertion step, the tip of the pipette tip stops at a position where the bottom force of the container is spaced at a predetermined interval. It is.
  • the seventh problem solving means related to the dispensing amount detection method is the same as that described above, wherein the pipette tip is connected to the narrow-diameter portion provided with the tip, and the suction-discharge mechanism in communication with the small-diameter portion. And the thinning portion is inserted into the liquid in the insertion step.
  • examples of the shape of the pipette tip suitable for this dispensing amount detection method include, for example, the pipette tips of Design Registration No. 1068693 or No. 1068693-Class 1.
  • an intermediate-diameter portion having an intermediate size between the small-diameter portion and the large-diameter portion may be provided at an intermediate position between them.
  • a first problem-solving means includes a pipette tip, a lifting / lowering mechanism for the pipette tip, a liquid suction / discharge mechanism for the pipette tip, and the inside of the pipette tip.
  • the lift mechanism is operated so that the tip of the pipette tip is inserted to the deepest part of the container that stores the liquid to be measured, and the pressure sensor that detects the pressure of the liquid to be measured, and the liquid is inserted into the pipette tip at a predetermined suction speed.
  • the suction / discharge mechanism is operated so as to suck the pressure, and the measurement value of the pressure sensor is input, and the suction state is determined based on the measured pressure change, the shape of the pipette tip, the predetermined suction speed, and the suction time. And a control unit for detection.
  • the control unit determines the measured pressure change in advance.
  • the suction state is detected based on a pressure value that is out of the threshold force.
  • the pipette tip has a narrow-diameter portion provided with the tip, and a large-diameter portion communicating with the narrow-diameter portion and connectable to the suction / discharge mechanism. It is characterized by.
  • the specified liquid amount is obtained simply by measuring the pressure change without detecting the liquid level of the liquid contained in the container.
  • the liquid suction state can be detected.
  • the measured pressure change is compared with a preset threshold value, and based on the pressure value that is out of the threshold force, it is easy and high. It is possible to detect the suction state of the liquid of the liquid amount specified by reliability.
  • the amount of the sucked liquid is insufficient due to the comparison with a preset threshold value. It can detect whether the liquid is empty or empty.
  • the tip of the pipette tip is positioned at a certain distance from the bottom force of the container, so that the suction state becomes uniform and the liquid volume is measured. The reliability of the liquid is improved, and the dispensing amount can be detected with high accuracy.
  • a pipette tip having a small-diameter portion and a large-diameter portion is used, and the liquid contacts only the small-diameter portion. Therefore, the influence of the insertion into the liquid can be minimized, and a minute amount of liquid can be accommodated in various shapes of containers.
  • the control unit moves up and down. Operate the mechanism to insert the tip of the pipette tip to the deepest part of the container that contains the liquid to be measured, and operate the suction / discharge mechanism to suck the liquid into the pipette tip.
  • the suction / discharge mechanism By inputting the pressure as the measured value of the pressure sensor and correcting the measured pressure and its change in consideration of the shape of the pipette tip, the predetermined suction speed and the suction time, a normal specified fluid volume is aspirated. It is possible to identify insufficient suction or empty state, and to accurately grasp the suction state of the specified liquid volume at the time of dispensing.
  • the measured pressure change is compared with a predetermined threshold, and the suction is accurately performed based on the pressure value out of the threshold force.
  • a time-series change of the pulling state can be obtained. As a result, it is possible to discriminate whether the normal designated liquid amount is sucked or insufficiently sucked from the obtained time-series change of the sucked state, and the sucked state at the time of dispensing can be accurately grasped.
  • the pipette tip having a small diameter portion and a large diameter portion is used. Minimize, and can accommodate small volumes of liquids and containers of various shapes.
  • the pipetter 10 in the embodiment is supported in the container 1 while being supported substantially vertically above the opening la of the container 1! Insert the tip (lower end) 3a into the liquid 2 to be spilled.
  • a pressure sensor 7 connected from the side wall of the nozzle member 4 via a pipe or an air hose 6.
  • the tip portion 3a of the pipette tip 3 is provided in a small diameter portion 3c having a thickness that can be inserted into the container 1, and the upper end portion 3b communicates with the small diameter portion 3c and the suction / discharge mechanism.
  • the small diameter portion 3c and the large diameter portion 3d are funnel-shaped. Is connected via the transition part 3e. As the shape of the transition part 3e, there are other cases where there is a step or a tapered conical shape.
  • the pressure measurement result by the pressure sensor 7 is transmitted to the control unit 8, and the control unit 8 draws the suction liquid amount and its time-series change based on the pressure measurement result and normal suction of the specified liquid amount, insufficient suction, or
  • the suction state such as an empty state is identified and monitored, and the operation of the suction / discharge mechanism 5 is controlled according to the suction state.
  • control unit 8 operates a lifting mechanism (not shown) (in the arrow direction A) to move the pipetter 10 in the vertical direction, and moves the tip 3a of the pipette tip 3 to the container.
  • a lifting mechanism (not shown) (in the arrow direction A) to move the pipetter 10 in the vertical direction, and moves the tip 3a of the pipette tip 3 to the container.
  • the tip 3a of the pipette tip 3 is inserted to a position close to the bottom of the container 1 so that the liquid can be sucked.
  • Actuate structure 5 in the direction of arrow B to control the air to be taken in and out of pipette tip 3 and to suck or discharge liquid 2.
  • this control unit 8 when the dispensing amount is detected, the tip 3a of the pipette tip 3 is lowered, and a position above the bottom of the container 1 by a certain dimension (for example, 1 mm) (hereinafter referred to as the deepest part). When it is positioned at, stop descending and fix the suction position.
  • a certain dimension for example, 1 mm
  • the suction / discharge mechanism 5 is operated to perform suction at a constant suction volume, so that the liquid in the container 1 is sucked, the normal specified liquid volume is suctioned, the suction force is insufficient or empty, and the pipette tip
  • the suction is continued while monitoring the suction state, such as whether the tip 3a of 3 is clogged and the suction amount does not reach the predetermined amount, or whether the suction time has passed normally. If the specified suction time has passed without any abnormality, it is assumed that the specified amount of liquid has been sucked normally, and the suction / discharge mechanism 5 is stopped to stop the suction.
  • the control unit 8 determines the result measured by the pressure sensor 7 as follows.
  • the container When the tip 3a of the pipette tip 3 is located at the deepest part of the container 1, the container is empty if the pressure does not decrease below the set value.
  • the pressure set value is set to -0.2 atm.
  • the pressure set value is set to ⁇ 2 atm.
  • the timeout time is a time for sucking a predetermined volume of liquid.
  • the suction / discharge mechanism 5 and the lifting / lowering mechanism are returned to their original positions, and the container 1 containing the liquid to be dispensed is placed at the specified position of the dispensing device, and the dispensing device is ready for use. Complete the state (step 11).
  • the control unit 8 initializes the data processing unit including the cpu, and transmits the data transmitted from the pressure sensor 7 to the digital data at a sampling rate of 80 times per lmsec (millisecond). To be able to analyze the pressure measurement results (step 12).
  • the lifting mechanism is actuated downward, and the pipette tip 3 is lowered by a predetermined dimension, and the tip 3a of the pipette tip 3 is the deepest part of the container 1 containing the liquid (about lm m above the bottom).
  • the suction / discharge mechanism 5 is operated to the suction side, and the liquid in the container 1 is sucked into the pipette tip 3 (step 13).
  • the transmitted pressure information is AZD-converted by the control unit 8 and taken in as digital data at a predetermined sampling rate, data analysis is performed, the suction state is analyzed, and the state of each unit is monitored (step 14).
  • the control unit 8 analyzes the data acquired at the specified sampling rate, and the suction is continued even after the set suction time determined based on the specified amount of liquid. 15) No empty suction (step 16), no clogging (step 17), liquid is sucked as specified Step 18) is monitored, and it is checked whether or not the set suction time has been reached (Step 19) . If the specified suction time determined based on the specified fluid volume has not been reached, the procedure returns to Step 15 and suction and its suction are performed. The state monitoring is continued, and if the specified suction time has been reached, the suction processing is terminated normally (step 20).
  • the pipetter 10 After extracting the pipette tip 3 from the container 1, the pipetter 10 is moved to the position of the inspection container (not shown) that is arranged to receive the sucked liquid, and the lifting mechanism is moved downward. Then, the suction / discharge mechanism 5 is operated to the discharge side to discharge the liquid in the pipette tip 3 into the test container.
  • the lifting mechanism is moved upward to move the pipette tip 3 to the upper side of the cuvette, and then the pipetter 10 is returned to the position where the container 1 is placed to perform dispensing work. Repeat.
  • the control unit 8 takes in the atmospheric pressure as data from the pressure sensor 7 before suction (step 21), operates the suction / discharge mechanism 5 to the suction side, and measures the suction pressure (step 22)
  • the nozzle member 4 and therefore the pipette tip 3 are lowered by a predetermined amount (step 23).
  • Steps 25 and 27 the process of continuing the suction without passing through the following empty suction and liquid level detection processing steps. Proceed to step 26.
  • step 25 If the liquid is not sucked, while the pipette tip 3 is lowered, the temporary pressure change when reaching the liquid level is monitored to detect whether or not the liquid has been sucked (step 25). ). At this time, if there is a set pressure change, the liquid level is detected. If the liquid level is detected, the process proceeds to the continuous suction process (step 26).
  • Step 27 If there is no pressure change in the liquid level detection, the pressure change is continuously monitored, and the changes in both the amount of drop of the pipette tip 3 and the measured pressure are analyzed to determine whether or not empty suction is performed ( Step 27).
  • stop suction immediately (step 28).
  • control unit 8 samples the data from the pressure sensor 7 (step 31), and calculates the suction flow rate and suction amount from the pressure and elapsed time (step 32). ) Analyze the relationship between suction volume and pressure (step 33).
  • step 35 If clogging is not found as a result of this analysis, the suction is continued, and the suction is completed when the specified amount of the specified amount of liquid is sucked (step 35). If clogging is recognized, the suction is stopped because the suction amount is insufficient (step 36). In this case, the sample related to container 1 where clogging has occurred is excluded after dispensing.
  • FIG. 7 shows an example in which 500 ⁇ 1 of grease is sucked instead of the liquid.
  • the pressure drops to about -2 atm per about 10msec, resulting in a clogged state. That is, the rate of change in pressure is about -0.2 atm / msec.
  • this pressure value changes until the sucking time ends.
  • the control unit 8 samples data from the pressure sensor 7 (step 41), and monitors the change in pressure over time (step 42). As a result of monitoring the pressure change, the pressure starts to drop suddenly, whether or not the pressure drop in the set range continues for the set time (step 43), then the pressure starts to rise sharply and set Whether the pressure increase in the specified range continues for the set time (Step 4 4), and whether or not the idle suction is started after this sudden pressure fluctuation (Step 45). If so, it is determined that the amount of liquid is insufficient, and suction is immediately stopped (step 46) and error processing is executed (step 47), and the processing step for monitoring the shortage of liquid is completed.
  • Samples related to Container 1 with insufficient liquid volume are excluded after dispensing.
  • insufficient liquid amount for example, two types of solutions having different viscosities (Lysis solution, DW solution) are used, and three specified liquid amounts are drawn (100 1, 200 ⁇ 1, (400 / zl) as a result of dispensing work when the liquid in the container is (1) no shortage, (2) the same amount as the suction amount, and (3) 50 1 shortage are summarized in Figure 8.
  • the suction pressure of the highly viscous Lysis solution requires a stronger suction pressure, but the Lysis solution and the DW solution both have a suction curve without clogging, except when the liquid volume is insufficient. It is changing according to.
  • Suction curve shows a different change from the case, and it can be clearly distinguished from the case of normal dispensing by the state of the change that stands out.
  • the amount of liquid is about 50 1 short by evaluating by comparing with what point the standard suction curve deviates. Even in such a case, it becomes possible to detect a shortage of liquid.
  • the pressure change waveform shown in Fig. 8 is clearly divided into three regions (1, II, III).
  • the first region I corresponds to the small diameter portion 3c of the pipette tip 3
  • the second region II corresponds to the transition portion
  • the third region III corresponds to the large diameter portion. It corresponds to 3d.
  • the change in pressure depends on the shape of the pipette tip.
  • FIG. 9 is a perspective view showing the entire liquid absorption monitor type dispensing apparatus 50 according to the present embodiment.
  • the liquid absorption monitor type dispensing device 50 has a base plate 51 on the lower side.
  • An LM guide 52 is mounted on the base plate 51 along the X-axis direction (in a horizontal plane), and a stage 53 is connected to the LM guide 52. Is provided so as to be movable in the X-axis direction.
  • the base plate 51 is provided with a main body portion 54 provided so as to be unable to move in a horizontal plane including the X-axis direction.
  • the main body portion 54 includes a nozzle head 61 provided with six nozzle members 4 to which the pipette tip 3 is to be attached and the cylinder-type suction / discharge mechanism 5.
  • the nozzle head 61 is movable in the vertical direction, and has six inner diameters slightly larger than the outer diameter of the pipette tip 3 and slightly larger than the outer diameter of the nozzle member 4 at positions corresponding to the nozzle members 4.
  • a through hole is formed, and a prismatic remover 58 for removing the pipette chip 3 attached to the nozzle member 4 is provided.
  • the stage 53 is movable in the X-axis direction so as to be under the main body portion 54.
  • a tube hole 55a for placing or storing a container such as a sample tube at a position corresponding to the position of the six nozzle members 4 and the pipette tip 3 are mounted at a position corresponding to the position.
  • a cartridge rack 56 is provided to be placed or accommodated at a position corresponding to the above position.
  • the nozzle head 61 is inserted so that the nozzle member 4 is inserted from above into the pipette tip 3 accommodated in the tip hole 55b of the stage 53. Wear by lowering.
  • nozzle head 61 Inside the nozzle head 61, there are six pressure sensor units (not shown in FIG. 9) each incorporating a pressure sensor 7 communicating with the nozzle member 4 via a thin tube, and each nozzle member It is provided for every four.
  • a plunger 57 On the upper side of the nozzle head 61, a plunger 57 that slides in the cylinder of the suction / discharge mechanism 5 is provided.
  • the plunger 57 is fixed by a P-axis motor 59 that is fixed to the nozzle head 61.
  • the nozzle head 61, the plunger 57, and the P-axis motor 59 are driven in the vertical direction by the Z-axis motor 60 provided on the base plate 51. As a result, the tip of the pipette tip 3 attached to the nozzle member 4 can be lowered to the deepest part of the container.
  • a magnet unit 62 and a magnet unit motor 63 are provided below the nozzle member 4 and are driven so that the magnet unit 62 approaches and separates from the axis of the nozzle member 4.
  • the magnet unit 62 does not move up and down by the Z-axis motor 60 but is fixed in the vertical direction with respect to the base plate 51.
  • main body portion 54 may be movable in a horizontal plane with respect to the stage 53 as long as the stage 53 and the main body portion 54 are relatively movable. Further, the number of nozzle members 4 and the like is not limited to six.
  • the amount of sucked liquid can be obtained only by measuring the pressure change without detecting the liquid level of the liquid contained in the container.
  • the liquid level can also be detected from the pressure measurement results.
  • the force that the amount of sucked liquid is insufficient can be detected whether the liquid in the container is empty or empty.
  • the tip of the pipette tip is positioned at a certain distance from the bottom of the container, the suction state becomes uniform, the reliability of the specified liquid volume measurement is improved, and the dispensed volume is accurately detected. be able to.
  • the control unit operates the lifting mechanism to insert the tip of the pipette tip to the deepest part of the container that stores the liquid to be measured, and operates the suction / discharge mechanism to Liquid is sucked into the pipette tip, the pressure inside the pipette tip at the time of suction is also input as the pressure sensor force, and based on the measured pressure and its change and a predetermined threshold value, the pressure value deviating from the threshold value is By correcting in consideration of the shape of the chip, the predetermined suction speed and the suction time, the amount of suction liquid and its time-series change can be obtained with high accuracy.
  • FIG. 1 is a partial perspective explanatory view showing a pipetter according to an embodiment of the present invention.
  • FIG. 2 is a graph showing a pressure measurement result of a suction operation according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a suction operation using a pipetter according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of liquid level detection and idle suction monitoring processing using the pipettor.
  • FIG. 5 is a flowchart of clogging monitoring processing using the pipettor.
  • FIG. 6 is a flowchart of a liquid shortage monitoring process using the pipettor.
  • FIG. 7 is a graph showing the measurement result of the clogged state in the suction work according to the present invention.
  • FIG. 8 is a graph showing the measurement result of the insufficient liquid amount in the suction work according to the present invention.
  • FIG. 9 is an overall perspective view of a liquid absorption monitor type dispensing device according to an embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 容器内に収容されている液体の液面を検出する必要がなく、圧力変化を測定するだけで液量を検出することができる分注量検出方法および吸液モニタ型分注装置を提供することを課題とする。ピペットチップと、ピペットチップに対する液体の吸引吐出機構と、ピペットチップ内の圧力を検知する圧力センサと、ピペットチップの昇降機構とを有する分注装置による吸引し吐出する液体の液量を検出する分注量検出方法において、測定対象となる液体を収容する容器の最深部までピペットチップの先端を挿入する挿入工程と、ピペットチップを移動することなく、ピペットチップ内に液体を所定吸引速度で吸引しながら、その吸引中の圧力変化を測定する吸引圧力測定工程と、測定した圧力変化に基づいて吸引状態を求める吸引検出工程とを有する分注量検出方法およびこの方法を実行する吸液モニタ型分注装置を構成する。

Description

明 細 書
分注量検出方法および吸液モニタ型分注装置
技術分野
[0001] 本発明は、空気圧の変化を利用して液体の吸引量を検出する分注量検出方法お よび液量モニタ型分注装置に関し、特に、生体物質を懸濁させた液体をピペットチッ プ内に吸引して検査用容器に分注する分注装置における液量検出を吸引圧力の変 化によってモニタする方法およびその方法を適用した装置に関する。
背景技術
[0002] 従来、分注装置で容器力 ピペットチップ内へ液体を吸引することによって、吸引 量を検出し評価する分注方式があった (特許文献 1)。この分注方式では、
(a) 計量器と、被吸引液体を入れた容器との上下相対移動によって、計量器下端を 被吸引液体中に浸漬するとき、上記被吸引液体に計量器下端が接触する前の計量 器内圧に対して浸漬後の圧力変動幅が所定値を取る時点で液体の吸引を開始し、
(b) 所定時間経過後、計量器下端を被吸引液体から引き離し、その時点で計量器 内圧から正規分注量か否かの判定を行う。
[0003] その他、次のような方法で液体サンプルを吸引して吸引状態を評価するサンプル のピペッティング法があった (特許文献 2)。
(a) 初期状態でピぺッタ内の圧力を測定して、その値を基準の圧力読取値とする。
(b) ピぺッタを容器内の液体サンプルの方へ降下させながらピぺッタ内を負圧にして 空気を吸引し、
(c) ピぺッタ内の圧力変化をモニタしている場合に急激に圧力変化を示したときが、 ピペットチップの先端が液面に達した時であるから、液面に達したものとして降下と吸 引とを停止し、液面力 所定寸法以下にピペットチップの先端が位置して停止するよ うにする。
(d) 次に、ピぺッタを降下してピペットチップの先端を (規定寸法以下の範囲内で)さ らに下方へ移動し、吸引圧力に対応した体積流量 (制御された吸引量)で液体を吸 引しながら、収容されている液体を容器力 ピペットチップ内に吸引し、 (e) この液体の吸引中に吸引圧力の変化をモニタし、
(D 測定した圧力変化を予め決定された正常吸引圧力枠と比較し、
(g) 圧力値が正常吸引圧力枠力 外れている場合には、液体が不均質または吸引 量が規定外であると認定する。
[0004] 特許文献 1 :特開昭 62— 64912号公報
特許文献 2:特許第 306500号公報
[0005] 〔従来技術の問題点〕
従来における装置では、まず、容器内に収容されている液体の液面を検出する必 要があるため、
(1) 液面検出時に吸引した液体をピペットチップ内から排除する必要がある。
(2) 空気を吸引しながらピペットチップの下端を液面に合わせるように降下しなけれ ばならず、吸引工程と昇降工程とを同時に制御しなければならない。
(3) 液面を検知する工程を最初に行うようにするため、その容器内に液体が収容さ れて 、な 、場合であっても、ピペットチップの降下と空気の吸引とを一定時間継続す る必要がある。反対に、液体が十分に存在していた場合、吸引工程における不足は 検知できない。
(4) 容器形状に依存するから容器形状ごとに液面と液体体積の換算表を準備しなけ ればならない。
(5) 処理時間内に換算計算が必要になり、処理時間のロスが生じることになる。また 、液面検出後に液体を排除する工程の処理時間がロスタイムとなる。
(6) 液面検出後、付着した液がピペットチップに再度吸引されると、液面検出された と誤検知されることになり、誤動作を生じる。
(7) 液面に泡が発生していた場合には、泡を液面として検知するおそれがあり、液面 検知されたと誤検知されることになり、誤動作を生ずるおそれがある。
(8) ピペットチップを一旦使用すると、ピペットチップの先端力 完全に液を排除でき ないので、再使用または連続使用の際に誤動作を生ずるおそれがある。
等、多くの問題点が生じていた。
発明の開示 発明が解決しょうとする課題
[0006] 本発明は、従来の技術における前記問題点に鑑みて成されたものであり、これを解 決するため具体的に設定した技術的な課題は、容器内に収容されている液体の液 面を検出する必要がなぐ圧力変化を測定するだけで液量を検出することができる分 注量検出方法および吸液モニタ型分注装置を提供することである。
課題を解決するための手段
[0007] 前記課題が効果的に解決できる、分注量検出方法および吸液モニタ型分注装置 を特定するために必要と認める事項の全てが網羅されて具体的に構成された、課題 解決手段を以下に示す。
本発明の分注量検出方法に係る第 1の課題解決手段は、ピペットチップと、前記ピ ペットチップに対する液体の吸引吐出機構と、前記ピペットチップ内の圧力を検知す る圧力センサと、前記ピペットチップの昇降機構とを有する分注装置による吸引し吐 出する液体の指定された液量の吸引状態を検出する分注量検出方法において、測 定対象となる液体を収容する容器の最深部まで前記ピペットチップの先端を挿入す る挿入工程と、前記ピペットチップを移動することなぐ前記ピペットチップ内に前記 液体を所定吸引速度で吸引しながら、その吸引中の圧力変化を測定する吸引圧力 測定工程と、測定した圧力変化、前記ピペットチップの形状、前記所定吸引速度およ び吸弓 I時間に基づ!、て、指定した液量の吸弓 I状態を検知する吸引検出工程とを有 することを特徴とするものである。ここで、「測定した圧力変化に基づく」のであるから、 例えば、測定した圧力変化を、予め定めた閾値と比較することによって、測定した圧 力変化に基づく変化率 (時間微分値)を算出することによって、または圧力変化波形 若しくはパターンに基づいて、吸引状態を検知する場合がある。「最深部」は、その容 器内に収容した液体の吸引が可能な位置であって、容器の底または容器の底近傍 の位置である。
[0008] 同上分注量検出方法に係る第 2の課題解決手段は、前記吸引検出工程は、前記 測定した圧力変化を、予め定めた閾値と比較し、前記閾値力も外れている圧力値に 基づ 、て、吸引状態を検知することを特徴とするものである。
[0009] 同上分注量検出方法に係る第 3の課題解決手段は、前記吸引検出工程において 、前記閾値力 外れている圧力値に基づいて、吸引不足の有無または空であること を検知することを特徴とするものである。
[0010] 同上分注量検出方法に係る第 4の課題解決手段は、前記吸引検出工程において
、測定した圧力変化の有無に基づいて、前記ピペットチップの有無を検知することを 特徴とするものである。
圧力変化が無 、場合には、ピペットチップが無 、ことが検知される。
[0011] 同上分注量検出方法に係る第 5の課題解決手段は、前記吸引検出工程において
、前記圧力変化の変化率が、予め定めた値を越える場合は、詰まりが発生したことを 検知することを特徴とするものである。
[0012] 同上分注量検出方法に係る第 6の課題解決手段は、前記挿入工程において、前 記ピペットチップの先端は、前記容器の底力 一定間隔あけた位置で停止することを 特徴とするものである。
[0013] 同上分注量検出方法に係る第 7の課題解決手段は、前記ピペットチップは、前記 先端が設けられた細径部と、該細径部と連通し前記吸引吐出機構と接続可能な太 径部とを有し、前記挿入工程においては、前記細径部が液体に挿入されることを特 徴とするものである。ここで、この分注量検出方法に適したピペットチップの形状の例 としては、例えば、意匠登録番号第 1068693号または、第 1068693-類 1号のピぺ ットチップがある。また、細径部と、太径部とを有すれば、その中間の位置に、細径部 と太径部の中間の大きさの径をもつ中径部を設けるようにしても良 、。
[0014] 本発明の吸液モニタ型分注装置に係る第 1の課題解決手段は、ピペットチップと、 このピペットチップの昇降機構と、前記ピペットチップに対する液体の吸引吐出機構 と、前記ピペットチップ内の圧力を検知する圧力センサと、測定対象となる液体を収 容する容器の最深部まで前記ピペットチップの先端を挿入するように前記昇降機構 を作動し、前記ピペットチップ内に所定吸引速度で液体を吸引するように前記吸引 吐出機構を作動し、前記圧力センサの測定値を入力して、測定した圧力変化、前記 ピペットチップの形状、前記所定吸引速度および吸引時間とに基づいて、吸引状態 を検知する制御部とを備えたことを特徴とするものである。
[0015] 同上第 2の課題解決手段は、前記制御部は、前記測定した圧力変化を、予め定め た閾値と比較し、前記閾値力 外れている圧力値に基づいて、吸引状態を検知する ことを特徴とするものである。
[0016] 同上第 3の課題解決手段は、前記ピペットチップは、前記先端が設けられた細径部 と、該細径部と連通し前記吸引吐出機構と接続可能な太径部とを有することを特徴と するものである。
発明の効果
[0017] 本発明の分注量検出方法に係る第 1の課題解決手段では、容器内に収容されて いる液体の液面を検出することなぐ圧力変化を測定するだけで、指定された液量の 液体の吸引状態を検知することができる。
[0018] 同上分注量検出方法に係る第 2の課題解決手段では、測定した圧力変化を予め 設定した閾値と比較し、該閾値力 外れている圧力値に基づいているので、容易に かつ高い信頼性で指定された液量の液体の吸引状態を検知することができる。
[0019] 同上分注量検出方法に係る第 3の課題解決手段では、予め設定した閾値との比較 により、吸引された液量が不足している力 充足している力、さらには容器内の液体 が無くなって空になっているか等を検知することができる。
[0020] 同上分注量検出方法に係る第 4の課題解決手段では、ピペットチップ自体がノズル 部材に装着されていないことを、圧力の測定で容易かつ確実に検知することができる
[0021] 同上分注量検出方法に係る第 5の課題解決手段では、圧力変化の変化率を見るこ とで、詰まりを容易かつ確実に検出することができる。
[0022] 同上分注量検出方法に係る第 6の課題解決手段では、ピペットチップの先端が容 器の底力 一定間隔あけて位置するようにしたことにより、吸引状態が均一になり、液 量測定の信頼性が向上し、分注量を精度良く検出することができる。
[0023] 同上分注量検出方法に係る第 7の課題解決手段では、ピペットチップとして、細径 部及び太径部のあるものを用い、液体は細径部のみに接触するようにして 、るので、 液体への挿入の影響を最小限にし、微小量の液体にも、また種々の形状の容器に 対応することができる。
[0024] 本発明の吸液モニタ型分注装置に係る第 1の課題解決手段では、制御部が昇降 機構を作動して測定対象となる液体を収容する容器の最深部までピペットチップの 先端を挿入し、吸引吐出機構を作動して前記ピペットチップ内に液体を吸引し、吸引 時におけるピペットチップ内の圧力を圧力センサの測定値として入力して、測定した 圧力およびその変化を、前記ピペットチップの形状、前記所定吸引速度および吸引 時間を考慮して補正することにより、正常な指定した液量の吸引、吸引不足、あるい は空状態等を識別することができ、分注時の指定した液量の吸引状態を正確に把握 でさるよう〖こなる。
[0025] 同上の吸液モニタ型分注装置に係る第 2の課題解決手段では、測定した圧力変化 と予め定めた閾値とを比較し、閾値力 外れている圧力値に基づいて、精度良く吸 引状態の時系列的変化を求めることができる。これにより、得られた吸引状態の時系 列的変化から、正常な指定した液量の吸引、吸引不足等を判別することができ、分 注時の吸引状態を正確に把握することができる。
[0026] 同上の吸液モニタ型分注装置に係る第 3の課題解決手段では、ピペットチップとし て、細径部及び太径部のあるものを用いているので、液体への挿入の影響を最小限 にし、微小量の液体にも、また種々の形状の容器に対応することができる。
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態を具体的に説明する。
ただし、この実施の形態は、発明の趣旨をより良く理解させるため具体的に説明す るものであり、特に指定のない限り、発明内容を限定するものではない。
[0028] 〔構成〕
実施形態におけるピぺッタ 10は、図 1に示すように、容器 1の開口部 laの真上に略 垂直に支持して容器 1に収容されて!ヽる液体 2の中に先端部(下端部) 3aを挿入する ピペットチップ 3と、このピペットチップ 3の上端部 3bに嵌着したノズル部材 4と、このノ ズル部材 4に直結されたシリンダ型の吸引吐出機構 5と、ノズル部材 4の側壁からパイ プまたはエアホース 6を介して接続した圧力センサ 7とを設ける。なお、前記ピペット チップ 3の前記先端部 3aは容器 1への挿入が可能な太さを持つ細径部 3cに設けら れ、前記上端部 3bは、細径部 3cと連通し前記吸引吐出機構 5とノズル部材 4を介し て接続される太径部 3dに設けられている。また、該細径部 3cと太径部 3dとは漏斗状 の移行部 3eを介して接続されている。移行部 3eの形状としては、他に、段差を有す る場合や先細りの円錐形状の場合がある。
[0029] 圧力センサ 7による圧力測定結果は制御部 8に伝送され、制御部 8では圧力測定 結果に基づき吸引液量およびその時系列的変化ならびに正常な指定された液量の 吸引、吸引不足、あるいは空状態等の吸引状態を識別して監視し、吸引状態によつ て吸引吐出機構 5の動作を制御する。
[0030] 制御部 8は、液量検出の他に、図示しない昇降機構を (矢印方向 Aに)作動してピ ぺッタ 10を垂直方向へ移動し、ピペットチップ 3の先端部 3aを容器 1に収容されてい る液体 2の中に出し入れするとともに、挿入時にはピペットチップ 3の先端部 3aを容器 1の底部に近接した位置まで挿入して液の吸引をできるようにし、また、吸引吐出機 構 5を (矢印方向 Bに)作動してピペットチップ 3の中に空気を出し入れし、液体 2を吸 Iしあるいは吐出するように制御する。
[0031] この制御部 8では、分注量検出時には、ピペットチップ 3の先端部 3aを降下し、容 器 1の底から一定寸法 (例えば、 1mm)だけ上方の位置(以下、最深部という)に位置 した時点で下降を停止して、吸引位置を確定する。そして、吸引吐出機構 5を作動し て一定吸引量で吸引を行い、容器 1内の液体を吸引するとともに、正常な指定液量 の吸引か、吸引不足あるいは空状態になっている力、ピペットチップ 3の先端部 3aが 詰まってしまい吸引量が所定量にならないか、または吸引時間が正常に経過したか 等の吸引状態を監視しつつ、吸引を継続する。所定の吸引時間が異常なく経過した 場合には、指定液量の液体吸引が正常に行われたものとして、吸引吐出機構 5の作 動を停止して吸引を停止する。
[0032] 制御部 8では、圧力センサ 7により測定した結果を以下のように判定する。
(1) 液面の判定
ピぺッタ 10の下降中に吸引吐出機構 5を作動してピペットチップ 3を負圧にしてお いた場合には、図 2に示すように、大気圧力 短時間だけ上昇した後に急減少し、設 定値以上減少した場合に、ピペットチップ 3の先端部 3aが液面に達したものとする。 この場合の一例として、圧力設定値を- 0.12 atm (ゲージ圧力、以下同じ)に設定する (2) 空の判定
ピペットチップ 3の先端部 3aが容器 1の最深部に位置している場合には、圧力が設 定した値よりも減少しない場合に容器内が空になっているものとする。
この場合の一例として、圧力設定値を- 0.2 atmに設定する。
[0033] (3) 詰りの判定
ピペットチップ 3の先端部 3aが容器 1の最深部に位置している場合には、圧力が急 減少して設定した値を越えた場合に詰りが発生したものとする。
この場合の一例として、圧力設定値を- 2 atmに設定する。
(4) 不足の判定
ピペットチップ 3の先端部 3aが容器 1の最深部に位置している場合には、吸引途中 で液が無くなると、空気が吸引されて圧力センサの値は若干低下する。このため、吸 引中に圧力減少した時、その圧力が設定した圧力分低下して、ある時間継続した場 合には、液量不足とする。
この場合の一例として、圧力低下分は- 0.4 atm,継続時間は 100 msecに設定する。
[0034] (5) タイムアウト
ピペットチップ 3の先端部 3aが容器 1の最深部に位置している場合には、吸引が設 定時間経過しても停止しな力つた場合には、すべての処理を中断して待機状態に復 帰する。
この場合における一例として、タイムアウト時間は所定容量の液体を吸引する時間
Aに超過時間として 1サンプリング周期の経過時間 a = 80msecをカ卩えた時間 T =A o
+ aを設定する。
[0035] 〔分注方法〕
1.適正分注の場合
図 3に示すように、まず、吸引吐出機構 5および昇降機構を原位置に復帰し、分注 すべき液体を収容した容器 1を分注装置の規定位置に設置して分注装置の準備状 態を完了する (ステップ 11)。
制御部 8は、 cpuを^ aみ込んだデータ処理部を初期状態にして、圧力センサ 7か ら伝送されたデータを lmsec (ミリ秒)当り 80回のサンプリングレートでデジタルデータ を取り込み、圧力測定の結果を解析できるようにする (ステップ 12)。
続いて、昇降機構を下降側に作動して、ピペットチップ 3を予め定められた寸法だ け下げ、ピペットチップ 3の先端部 3aが液体を収容した容器 1の最深部 (底から約 lm m上方)で停止するように下げ、その後、吸引吐出機構 5を吸引側に作動して、容器 1 内の液体をピペットチップ 3に吸引させる (ステップ 13)。
液体の吸引が開始されると吸引中の圧力が圧力センサ 7により測定され、その結果 を逐次圧力センサ 7から制御部 8に伝送される。
この伝送された圧力情報を制御部 8では AZD変換して所定のサンプリングレート でデジタルデータとして取り込み、データ解析して、吸引状況を分析し、各部の状態 を監視する (ステップ 14)。
[0036] 制御部 8では、規定のサンプリングレートで取り込んだデータを解析して、指定した 液量に基づ 、て定めた吸引の設定時間経過後も吸引が継続されて 、な 、こと (ステ ップ 15)、空吸引していないこと (ステップ 16)、詰りを起こしていないこと (ステップ 17 )、液が規定通り吸引されて 、て液量が充分にあり不足して ヽな 、こと (ステップ 18) を監視し、吸引の設定時間に達したか否かをチェック (ステップ 19)し、指定した液量 に基づいて定めた規定吸引時間に達していなければステップ 15に戻り吸引および その吸引状態の監視を続行し、前記規定吸引時間に達していれば吸引処理を正常 に終了する (ステップ 20)。
[0037] 吸引状態の監視時に、吸引の設定時間経過後にも吸引が継続されている場合 (ス テツプ 15)、空吸引している場合 (ステップ 16)、詰りが生じた場合 (ステップ 17)、ま たは液量不足となった場合 (ステップ 18)には、吸引を中止して (ステップ 21)、エラ 一処理を行い (ステップ 22)、この容器 1の吸引処理を中断した状態で終了する。
[0038] 正常に吸引され、前記規定吸引時間の吸引が終了して指定した液量である規定吸 引量が得られると、吸引吐出機構 5を停止して吸引圧力を一定に保ち、データのサン プリングを停止し、昇降機構を上昇側に作動して、ピペットチップ 3の先端が容器 1の 上部に抜け出るまで上昇させる。
ピペットチップ 3を容器 1から抜き出した後、吸引された液体を受容するために配置 されている図示しない検査容器の位置までピぺッタ 10を移動し、昇降機構を下降側 に作動して検査容器の開口の中に入る位置まで下げてから吸引吐出機構 5を吐出 側に作動してピペットチップ 3内の液体を検査容器内に吐出する。
液体を吐出した後、昇降機構を上昇側に作動してピペットチップ 3を検査容器の上 方へ移動し、その後、ピぺッタ 10を容器 1が配置された位置まで戻し、分注作業を繰 り返す。
[0039] 2.不適正分注の場合
分注が適切ではな 、場合にっ 、ては、以下のように処理される。
(空吸引'液面検出の場合)
図 4に示すように、制御部 8が吸引前に圧力センサ 7からのデータとして大気圧を取 り込み (ステップ 21)、吸引吐出機構 5を吸引側に作動して吸引圧を測定し (ステップ 22)、ノズル部材 4を、したがってピペットチップ 3を所定量下降する (ステップ 23)。 継続的に液体の吸引を行うには、正常に液体を吸引している場合には、以下の空 吸引および液面の検出の処理工程 (ステップ 25, 27)を通らずに吸引継続の処理工 程 (ステップ 26)へ移行する。
液体を吸引していない場合には、ピペットチップ 3を下降していく間に、液面に達す るときの一時的な圧力変化を監視して液体を吸引した力否かを検出する (ステップ 25 )。この時、設定された圧力変化があれば液面を検出したとする。液面を検出した場 合には、吸引継続の処理工程 (ステップ 26)へ移行する。
液面検出の圧力変化がなければ、継続して圧力変化を監視して、ピペットチップ 3 の降下量と測定圧力との両者の変化を分析して、空吸引しているか否かを判定する( ステップ 27)。
[0040] この判定には、空の容器 1を吸引すると、液体の吸引に必要とする吸引圧力になら ず、圧力変化が殆ど生じないまま時間が経過して略一定の圧力を示し、正常な吸引 の場合における吸引曲線を示すことがないから、規定吸引時間経過しても設定圧力 よりも減圧しない場合に空吸引であるとする(図 2参照)。時間経過が短ぐ空吸引とま では判定できない場合にはステップ 24へ戻り、空吸引および液面の検出を繰り返す 液吸引および液面が検出されて液の吸引をさらに続行する場合には (ステップ 24, 25)、吸引継続の処理工程 (ステップ 26)へ移行する。
液面検出がない場合または空吸引である場合には、ただちに吸引を停止する (ステ ップ 28)。
空吸引の場合、吸引に使用された空の容器 1に係る試料は、分注後に除外する。
[0041] (詰りの場合)
図 5に示すように、吸引が開始され、制御部 8が圧力センサ 7からのデータをサンプ リングして (ステップ 31)、圧力と経過時間から吸引流量および吸引量を算出し (ステ ップ 32)、吸引量と圧力との関係を分析する (ステップ 33)。
詰りが生じた場合には、正常に吸引している時よりも圧力勾配が急になり、吸引曲 線は立ち上がりが急で、時間と共に変化の程度が急になり、単位時間当りの圧力低 下が大きくなり、正常な吸引の場合における圧力低下が徐々に緩やかに小さくなる 方向に変化する傾向にあるのとは明らかに異なる(図 2参照)から、圧力低下を急激 に変化させる方向にあるか否か、その変化した圧力が圧力設定値 (-2 atm)を超えた か否かを検討して識別する (ステップ 34)。
この分析の結果、詰りが認められなカゝつた場合には、吸引を継続して、指定された 液量である規定量の吸引が行われると吸引を完了する (ステップ 35)。また、詰りが生 じたと認められた場合には、吸引量不足であるとして、吸引を中止する (ステップ 36) この場合、詰りが発生した容器 1に係る試料は、分注後に除外する。
[0042] 詰りの測定例としては、例えば、上記液体に代えて 500 μ 1のグリースを吸引した場 合の例を図 7に示す。この図のように、大気圧からグリースの吸引により、約 10msec 当たり、約- 2 atmまで圧力低下して詰り状態となる。すなわち、圧力変化率は、約- 0. 2atm/msecということになる。詰り状態になると吸引不能になって、この圧力値で吸引 時間が終了するまで推移する。
この結果によれば、詰りによる初期状態における圧力変化は、吸込不能になるまで 圧力の急低下を示すようになる。このため、初期の圧力急低下の時期に閾値を設定 するか、または変化率に閾値を設定して詰りを検出すれば、それ以降における無駄 な吸引処理を避けることができるようになる。 [0043] (液量不足の場合)
図 6に示すように、吸引が開始されると、制御部 8が圧力センサ 7からのデータをサ ンプリングして (ステップ 41)、時間経過に伴う圧力の変化を監視する (ステップ 42)。 圧力変化の監視結果として、圧力が急に下降するようになり、設定した範囲の圧力 低下が、設定した時間継続される力否か (ステップ 43)、その後、圧力が急上昇する ようになり、設定した範囲の圧力上昇が、設定した時間継続されるか否か (ステップ 4 4)、この急激な圧力変動の後に空吸引するようになったか否か (ステップ 45)を順に 検討し、空吸引になれば液量不足であるとして、直ちに吸引を停止する (ステップ 46 )と共にエラー処理を実行して (ステップ 47)、この液量不足を監視する処理工程を終 了する。
[0044] 圧力変化の監視時に、監視項目である圧力が急に下降し、その後に圧力の急上昇 と、空吸引とのいずれか一方でも該当しなければ、これらの事象が液量不足以外の 理由によって生じたものと考えられるので、ステップ 43に戻り、再度、新しいデータを 取り込んで圧力変化の監視をやり直す。
液量不足が発生した容器 1に係る試料は、分注後に除外する。
[0045] 液量不足の測定例としては、例えば、粘性の異なる 2種類の溶液 (Lysis溶液、 DW 溶液)を用い、 3種類の指定した液量である吸引量(100 1, 200 ^ 1, 400 /z l)を吸引 する場合に、容器の中の液体は (1)不足なし、(2)吸引量と同量、(3)50 1不足してい る場合について、分注作業を実施した結果を図 8にまとめて示す。
この結果によれば、吸引には粘性の大きな Lysis溶液の方が強い吸引圧を必要とし ているが、 Lysis溶液と DW溶液とはいずれも液量不足の場合を除き、詰まることなく吸 引曲線に従い変化している。
また、液量不足の場合には、液がなくなる直前に水頭圧の減少により吸引圧が急に 低くなつて、計測圧力が急減少し、液がなくなってしまうと空気を吸い込んで圧力が 上昇し、吸 、上げた液をピペットチップ 3内に維持しておくために必要な圧力になる まで上昇して平衡状態に達する。
[0046] このように、液量が不足している場合には、吸引曲線の終焉部で短時間の圧力急 低下とそれに続く圧力急上昇とが生じ、液量不足のない正常な分注時の吸引曲線の 場合とは異なる変化を示すようになり、その際立って異なる変化の様子により、正常 な分注の場合と明確に区別することができる。
このため、予めピペットチップ 3に対応する標準吸引曲線を得ていれば、その標準 吸引曲線からどのような点で逸脱しているか比較して評価することによって、例えば、 液量が 50 1程度不足しているような場合でも液量不足を検出することができるように なる。
また、図 8に示す圧力変化波形は、明らかに 3つの領域 (1、 II、 III)に分けられること がわかる。この第 1の領域 Iは、前記ピペットチップ 3の細径部 3cに対応するものであり 、第 2の領域 IIは、移行部に対応するものであり、第 3の領域 IIIは、太径部 3dに対応 するものである。このように圧力の変化は、ピペットチップの形状に依存することがわ かる。
[0047] 〔分注装置〕
図 9は、本実施形態による吸液モニタ型分注装置 50の全体を示す斜視図である。 その吸液モニタ型分注装置 50は、下側にベースプレート 51を有し、ベースプレート 5 1上には LMガイド 52が X軸方向(水平面内)に沿って取り付けられ、ステージ 53が 該 LMガイド 52によって X軸方向に移動可能に設けられて 、る。ベースプレート 51に は、前記 X軸方向を含む水平面内移動が不可となるように設けられた本体部分 54が 設けられている。
[0048] 前記本体部分 54には、前記ピペットチップ 3が装着されるべき 6連の前記ノズル部 材 4および前記シリンダ型の吸引吐出機構 5が設けられたノズルヘッド 61を有して ヽ る。また、該ノズルヘッド 61に対して上下方向に移動可能で、各ノズル部材 4に対応 する位置にノズル部材 4の外径よりやや大きくピペットチップ 3の外径よりもやや小さ い内径をもつ 6個の貫通孔が穿設され、前記ノズル部材 4に装着されたピペットチッ プ 3を脱着するための角柱状のリムーバ 58が設けられている。
前記ステージ 53は、該本体部分 54の下側に潜るように X軸方向に移動可能である 。前記ステージ 53には、サンプルチューブ等の容器を、前記 6連のノズル部材 4の位 置に対応する位置に載置または収容するチューブ用孔 55a、ピペットチップ 3を前記 位置に対応する位置に載置または収容するチップ用孔 55b、カートリッジ状容器を前 記位置に対応する位置に載置または収容するカートリッジ用ラック 56が設けられてい る。
なお、ピペットチップ 3を前記ノズル部材 4に装着するには、前記ステージ 53の前記 チップ用孔 55bに収容されたピペットチップ 3に上側から前記ノズル部材 4を挿入す るように、前記ノズルヘッド 61を下降させることによって装着する。
[0049] 該ノズルヘッド 61の内部には、前記ノズル部材 4と細管を介して連通する圧力セン サ 7が組み込まれた圧力センサユニット(図 9には図示せず)が 6個、各ノズル部材 4 ごとに対応して設けられている。該ノズルヘッド 61の上側には、前記吸引吐出機構 5 のシリンダ内を摺動するプランジャ 57が設けられ、該プランジャ 57は、前記ノズルへ ッド 61に固定して設けられた P軸モータ 59によって駆動される。該ノズルヘッド 61、 プランジャ 57、 P軸モータ 59は、前記ベースプレート 51に設けた Z軸モータ 60によつ て、上下方向に駆動されることになる。これによつて、前記ノズル部材 4に装着したピ ペットチップ 3の先端を容器の最深部にまで下降することができる。
また、前記ノズル部材 4の下方には、マグネットユニット 62およびマグネットユニット 用モータ 63が設けられ、ノズル部材 4の軸線に対してマグネットユニット 62が接近お よび離間するように駆動される。なお、マグネットユニット 62は、 Z軸モータ 60によって は上下動せず、ベースプレート 51に対して上下方向には固定されて 、る。
なお、ステージ 53と本体部分 54とは相対的に移動可能であれば良ぐステージ 53 に対して本体部分 54が水平面内で移動可能であっても良い。また、ノズル部材 4等 の個数も 6に限られるものではない。
[0050] 〔効果〕
本実施形態による分注方法では、容器内に収容されている液体の液面を検出する ことなぐ圧力変化を測定するだけで、吸引された液量を求めることができる。また、 液面の検出も圧力測定の結果から求めることができる。空、詰り、容量不足等の正常 でない状態の吸引の状態を正常な吸引の状態と比較することにより容易に識別でき 、液体の吸引状態に対する圧力変化の解析力 指定液量の分注状態を把握するこ とがでさる。
また、予め設定した閾値との比較により、吸引された液量が不足している力、充足し ているか、さらには容器内の液体が無くなって空になっているか等を検知することが できる。
さらに、ピペットチップの先端が容器の底から一定間隔あけて位置するようにしたこ とにより、吸引状態が均一になり、指定液量測定の信頼性が向上し、分注量を精度 良く検出することができる。
[0051] 本実施形態の分注装置では、制御部が昇降機構を作動して測定対象となる液体を 収容する容器の最深部までピペットチップの先端を挿入し、吸引吐出機構を作動し て前記ピペットチップ内に液体を吸引し、吸引時におけるピペットチップ内の圧力を 圧力センサ力も入力して、測定圧力およびその変化と予め定めた閾値とに基づき、 閾値から外れている圧力値を、前記ピペットチップの形状、前記所定吸引速度およ び吸引時間を考慮して補正することにより、精度良く吸引液量およびその時系列的 変化を求めることができる。
これにより、得られた吸引液量およびその時系列的変化から、正常な指定された液 量の吸引、吸引不足あるいは空状態等を識別することができ、分注時の吸引状態を 正確に把握できるようになる。
図面の簡単な説明
[0052] [図 1]本発明の実施形態によるピぺッタを示す部分斜視説明図である。
[図 2]本発明の実施形態による吸引作業の圧力測定結果を示すグラフである。
[図 3]本発明の実施形態によるピぺッタを用いた吸引作業の流れ図である。
[図 4]同上ピぺッタを用いた液面検出および空吸引の監視処理の流れ図である。
[図 5]同上ピぺッタを用いた詰り監視処理の流れ図である。
[図 6]同上ピぺッタを用いた液量不足監視処理の流れ図である。
[図 7]本発明による吸引作業における詰り状態の測定結果を示すグラフである。
[図 8]本発明による吸引作業における液量不足状態の測定結果を示すグラフである。
[図 9]本発明の実施の形態による吸液モニタ型分注装置の全体斜視図である。
符号の説明
[0053] 1 容器
2 液体 ピペットチップa 先端部
b 上端部
ノズル部材
吸引吐出機構 パイプまたはエアホース 圧力センサ
制御部
0 ピぺッタ
0 吸液モニタ型分注装置

Claims

請求の範囲
[1] ピペットチップと、前記ピペットチップに対する液体の吸引吐出機構と、前記ピペット チップ内の圧力を検知する圧力センサと、前記ピペットチップの昇降機構とを有する 分注装置による吸引し吐出する液体の液量を検出する分注量検出方法において、 測定対象となる液体を収容する容器の最深部まで前記ピペットチップの先端を挿 入する挿入工程と、
前記ピペットチップを移動することなぐ前記ピペットチップ内に前記液体を所定吸 引速度で吸引しながら、その吸引中の圧力変化を測定する吸引圧力測定工程と、 測定した圧力変化、前記ピペットチップの形状、前記所定吸引速度および吸引時 間に基づいて、吸引状態を検知する吸引検出工程とを有することを特徴とする分注 量検出方法。
[2] 前記吸引検出工程は、前記測定した圧力変化を、予め定めた閾値と比較し、前記 閾値力 外れている圧力値に基づいて、吸引状態を検知する請求の範囲第 1項に 記載の分注量検出方法。
[3] 前記吸引検出工程において、前記閾値力も外れている圧力値に基づいて、吸引不 足の有無または空であることを検知することを特徴とする請求の範囲第 1項または請 求の範囲第 2項のいずれかに記載の分注量検出方法。
[4] 前記吸引検出工程において、前記測定した圧力変化の有無に基づいて、前記ピ ペットチップの有無を検知することを特徴とする請求の範囲第 1項または請求の範囲 第 2項のいずれかに記載の分注量検出方法。
[5] 前記吸引検出工程において、前記圧力変化の変化率が、予め定めた値を越える 場合は、詰まりが発生したことを検知することを特徴とする請求の範囲第 1項または請 求の範囲第 2項のいずれかに記載の分注量検出方法。
[6] 前記挿入工程にお!、て、前記ピペットチップの先端は、前記容器の底から一定間 隔あけた位置で停止することを特徴とする請求の範囲第 1項ないし請求の範囲第 5 項のいずれかに記載の分注量検出方法。
[7] 前記ピペットチップは、前記先端が設けられた細径部と、該細径部と連通し前記吸 引吐出機構と接続可能な太径部とを有し、前記挿入工程においては、前記細径部 が液体に挿入される請求の範囲第 1項に記載の分注量検出方法。
[8] ピペットチップと、
このピペットチップの昇降機構と、
前記ピペットチップに対する液体の吸引吐出機構と、
前記ピペットチップ内の圧力を検知する圧力センサと、
測定対象となる液体を収容する容器の最深部まで前記ピペットチップの先端を挿 入するように前記昇降機構を作動し、前記ピペットチップ内に所定吸引速度で液体 を吸引するように前記吸引吐出機構を作動し、前記圧力センサの測定値を入力して 、測定した圧力変化、前記ピペットチップの形状、前記所定吸引速度および吸引時 間とに基づ ヽて、吸引状態を検知する制御部とを備えたことを特徴とする吸液モニタ 型分注装置。
[9] 前記制御部は、前記測定した圧力変化を、予め定めた閾値と比較し、前記閾値か ら外れている圧力値に基づいて、吸引状態を検知する請求の範囲第 8項に記載の 吸液モニタ型分注装置。
[10] 前記ピペットチップは、前記先端が設けられた細径部と、該細径部と連通し前記吸 引吐出機構と接続可能な太径部とを有する請求の範囲第 8項に記載の吸液モニタ 型分注装置。
PCT/JP2006/310004 2005-05-19 2006-05-19 分注量検出方法および吸液モニタ型分注装置 WO2006123771A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06756360.1A EP1882951B1 (en) 2005-05-19 2006-05-19 Method of detecting dispensed quantity, and liquid suction monitoring dispensing apparatus
US11/920,663 US8307722B2 (en) 2005-05-19 2006-05-19 Method of detecting dispensed quantity, and liquid suction monitoring dispensing apparatus
JP2007516347A JP5122949B2 (ja) 2005-05-19 2006-05-19 分注量検出方法および吸液モニタ型分注装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-147108 2005-05-19
JP2005147108 2005-05-19

Publications (1)

Publication Number Publication Date
WO2006123771A1 true WO2006123771A1 (ja) 2006-11-23

Family

ID=37431340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310004 WO2006123771A1 (ja) 2005-05-19 2006-05-19 分注量検出方法および吸液モニタ型分注装置

Country Status (5)

Country Link
US (1) US8307722B2 (ja)
EP (1) EP1882951B1 (ja)
JP (1) JP5122949B2 (ja)
TW (1) TWI422801B (ja)
WO (1) WO2006123771A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142155A1 (ja) * 2006-06-02 2007-12-13 Olympus Corporation サンプル分注装置
JP2010060542A (ja) * 2008-09-01 2010-03-18 Inoue Kiko Kk 気密部品の欠陥検査方法および装置
JP2010256200A (ja) * 2009-04-27 2010-11-11 Aloka Co Ltd 分注装置
JP2011505561A (ja) * 2007-11-30 2011-02-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド ピペットによる吸引中の不十分な試料の検出
JP2013178171A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 自動分析装置
JP2013217877A (ja) * 2012-04-12 2013-10-24 Hitachi Aloka Medical Ltd 検体処理装置
EP2006689A3 (en) * 2007-06-22 2016-01-20 Hitachi High-Technologies Corporation Sample dispensing apparatus and method
JP2016090526A (ja) * 2014-11-11 2016-05-23 株式会社東芝 自動分析装置
CN108956632A (zh) * 2018-05-31 2018-12-07 嘉兴懿铄精密模具有限公司 一种用于移液吸头的检测设备
JP2019536030A (ja) * 2016-11-15 2019-12-12 テカン シュヴァイツ アクチエンゲゼルシャフト 分注方法及び分注デバイス
WO2022029826A1 (ja) * 2020-08-03 2022-02-10 株式会社日立ハイテク 分注装置、及び方法
JP7516521B2 (ja) 2020-08-03 2024-07-16 株式会社日立ハイテク 分注装置、及び方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110283557A1 (en) * 2009-07-13 2011-11-24 Pellerin Milnor Corporation Modulated air flow clothes dryer and method
EP2302397A1 (en) * 2009-09-25 2011-03-30 bioMérieux S.A. Method, computer program, and apparatus for detecting pipetting errors
EP2317299A1 (de) * 2009-10-28 2011-05-04 Brand Gmbh + Co Kg Verfahren zur Dichtigkeitsprüfung von handgehaltenen Kolbenhubpipetten sowie Dichtigkeits-Prüfeinrichtung dafür
US8231842B2 (en) * 2010-01-22 2012-07-31 Tecan Trading Ag Positive displacement pump with pressure sensor
WO2015092844A1 (ja) * 2013-12-16 2015-06-25 株式会社島津製作所 液採取装置及びその液採取装置を備えた自動分析装置
WO2016025834A1 (en) * 2014-08-15 2016-02-18 Biomerieux, Inc. Methods, systems, and computer program products for detecting a surface using a pipette and/or positioning a pipette
BR112017006530B1 (pt) * 2014-10-07 2021-03-16 Foss Analytical A/S analisador de líquidos
US10379131B2 (en) * 2015-11-18 2019-08-13 Elbit Systems Of America/Kmc Systems, Inc. Systems and methods for detecting a liquid level
TWI604182B (zh) * 2016-04-26 2017-11-01 諾貝爾生物有限公司 取樣組件及其方法
CN110529355B (zh) * 2019-09-09 2021-05-28 英华达(上海)科技有限公司 液量控制装置及应用其的液量控制方法
US20240192098A1 (en) * 2021-04-13 2024-06-13 Curiox Biosystems Co., Ltd. Methods, devices, and apparatus for washing samples
CN113324620B (zh) * 2021-06-02 2022-08-30 成都瀚辰光翼科技有限责任公司 一种液面探测方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (ja) 1985-09-17 1987-03-24 Minoru Atake 分注方式
US5499545A (en) 1993-06-18 1996-03-19 Sony Corporation Pipetting device and method therefore
JPH09257805A (ja) * 1996-03-18 1997-10-03 Tosoh Corp 分注装置及びその良否の判定方法
JPH1194844A (ja) * 1997-09-25 1999-04-09 Aloka Co Ltd 自動分注機能を有した分析用装置
US5965828A (en) 1995-12-14 1999-10-12 Abbott Laboratories Fluid handler and method of handling a fluid
JP3065100B2 (ja) 1990-11-09 2000-07-12 アボット・ラボラトリーズ サンプルのピペッティング法
US6121049A (en) 1997-12-05 2000-09-19 Bayer Corporation Method of verifying aspirated volume in automatic diagnostic system
US6203759B1 (en) 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
US6370942B1 (en) 2000-05-15 2002-04-16 Dade Behring Inc. Method for verifying the integrity of a fluid transfer
JP2003149093A (ja) * 2001-11-15 2003-05-21 Olympus Optical Co Ltd 液体分注装置および液体分注方法
JP2004245715A (ja) * 2003-02-14 2004-09-02 Sutakku System:Kk 分注機及び分注装置
JP2005037157A (ja) * 2003-07-15 2005-02-10 Sysmex Corp 液体吸引装置とそれを備えた分析装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577343B2 (ja) * 1985-06-21 1997-01-29 株式会社東芝 自動化学分析装置
JPH06174731A (ja) * 1992-12-01 1994-06-24 Toshiba Corp 自動分析装置
US6521187B1 (en) * 1996-05-31 2003-02-18 Packard Instrument Company Dispensing liquid drops onto porous brittle substrates
JP3339177B2 (ja) * 1994-04-27 2002-10-28 株式会社島津製作所 分注装置
US5503036A (en) * 1994-05-09 1996-04-02 Ciba Corning Diagnostics Corp. Obstruction detection circuit for sample probe
JPH08220106A (ja) * 1995-02-14 1996-08-30 Toshiba Corp 吸引吐出装置およびこの装置を用いた自動化学分析装置
US5537880A (en) * 1995-06-07 1996-07-23 Abbott Laboratories Automatic pipetting apparatus with leak detection and method of detecting a leak
JPH0915248A (ja) * 1995-06-29 1997-01-17 Nissho Corp 分注動作判別装置及びその方法
DE69638151D1 (de) * 1996-05-20 2010-04-29 Prec System Science Co Ltd Prozess und apparat zur kontrolle magnetischer teilchen mit hilfe einer pipettier-maschine
DE69727422T2 (de) * 1996-05-31 2004-07-01 Packard Instrument Co., Inc., Downers Grove Vorrichtung zur Handhabung von Mikroflüssigkeitsmengen
JP3451014B2 (ja) * 1998-06-05 2003-09-29 アロカ株式会社 ノズル装置
JP3700402B2 (ja) * 1998-07-24 2005-09-28 富士レビオ株式会社 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引装置、及び分注装置
JP2000121649A (ja) * 1998-10-09 2000-04-28 Furuno Electric Co Ltd 自動分注装置
JP3502588B2 (ja) * 2000-02-08 2004-03-02 アロカ株式会社 分注装置及び分注方法
US20040149015A1 (en) * 2002-02-13 2004-08-05 Hansen Timothy R. System and method for verifying the integrity of the condition and operation of a pipetter device for manipulating fluid samples

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264912A (ja) 1985-09-17 1987-03-24 Minoru Atake 分注方式
JP3065100B2 (ja) 1990-11-09 2000-07-12 アボット・ラボラトリーズ サンプルのピペッティング法
US5499545A (en) 1993-06-18 1996-03-19 Sony Corporation Pipetting device and method therefore
US5965828A (en) 1995-12-14 1999-10-12 Abbott Laboratories Fluid handler and method of handling a fluid
JPH09257805A (ja) * 1996-03-18 1997-10-03 Tosoh Corp 分注装置及びその良否の判定方法
US6203759B1 (en) 1996-05-31 2001-03-20 Packard Instrument Company Microvolume liquid handling system
JPH1194844A (ja) * 1997-09-25 1999-04-09 Aloka Co Ltd 自動分注機能を有した分析用装置
US6121049A (en) 1997-12-05 2000-09-19 Bayer Corporation Method of verifying aspirated volume in automatic diagnostic system
US6370942B1 (en) 2000-05-15 2002-04-16 Dade Behring Inc. Method for verifying the integrity of a fluid transfer
JP2003149093A (ja) * 2001-11-15 2003-05-21 Olympus Optical Co Ltd 液体分注装置および液体分注方法
JP2004245715A (ja) * 2003-02-14 2004-09-02 Sutakku System:Kk 分注機及び分注装置
JP2005037157A (ja) * 2003-07-15 2005-02-10 Sysmex Corp 液体吸引装置とそれを備えた分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1882951A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142155A1 (ja) * 2006-06-02 2007-12-13 Olympus Corporation サンプル分注装置
EP2006689A3 (en) * 2007-06-22 2016-01-20 Hitachi High-Technologies Corporation Sample dispensing apparatus and method
JP2011505561A (ja) * 2007-11-30 2011-02-24 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド ピペットによる吸引中の不十分な試料の検出
JP2010060542A (ja) * 2008-09-01 2010-03-18 Inoue Kiko Kk 気密部品の欠陥検査方法および装置
JP2010256200A (ja) * 2009-04-27 2010-11-11 Aloka Co Ltd 分注装置
JP2013178171A (ja) * 2012-02-28 2013-09-09 Toshiba Corp 自動分析装置
JP2013217877A (ja) * 2012-04-12 2013-10-24 Hitachi Aloka Medical Ltd 検体処理装置
US10036691B2 (en) 2012-04-12 2018-07-31 Hitachi, Ltd. Specimen processor
JP2016090526A (ja) * 2014-11-11 2016-05-23 株式会社東芝 自動分析装置
JP2019536030A (ja) * 2016-11-15 2019-12-12 テカン シュヴァイツ アクチエンゲゼルシャフト 分注方法及び分注デバイス
JP7221864B2 (ja) 2016-11-15 2023-02-14 テカン トレイディング アクチエンゲゼルシャフト 分注方法及び分注デバイス
CN108956632A (zh) * 2018-05-31 2018-12-07 嘉兴懿铄精密模具有限公司 一种用于移液吸头的检测设备
WO2022029826A1 (ja) * 2020-08-03 2022-02-10 株式会社日立ハイテク 分注装置、及び方法
JP7516521B2 (ja) 2020-08-03 2024-07-16 株式会社日立ハイテク 分注装置、及び方法

Also Published As

Publication number Publication date
EP1882951A1 (en) 2008-01-30
JP5122949B2 (ja) 2013-01-16
TWI422801B (zh) 2014-01-11
US8307722B2 (en) 2012-11-13
TW200702638A (en) 2007-01-16
EP1882951B1 (en) 2017-09-27
US20090211380A1 (en) 2009-08-27
EP1882951A4 (en) 2011-09-07
JPWO2006123771A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5122949B2 (ja) 分注量検出方法および吸液モニタ型分注装置
JP5686744B2 (ja) 自動分析装置
JPH087222B2 (ja) 自動分注希釈装置
JP3700402B2 (ja) 吸引流路の詰まりまたは吸引量不足の検出方法、試料液吸引装置、及び分注装置
JPH0217448A (ja) 空気式検出方式
US9052300B2 (en) Methods, systems, and apparatus to determine a clot carryout condition upon probe retraction during sample aspiration and dispensing
JP3868102B2 (ja) 分注装置及びこの分注装置を構成要素とする分析装置
JP3907819B2 (ja) 液面検知装置
JP5111328B2 (ja) 自動分析装置
JP2010096643A (ja) 分注装置、及びそれを用いた検体処理装置,自動分析装置
JP3120180U (ja) 自動分析装置
JPH04296655A (ja) 液体の計量方法およびこれを用いた自動分注方法およびその装置
JP2549325B2 (ja) 自動分析装置の検体サンプリング方法及びその装置
JP3401504B2 (ja) 分注装置
JP3694755B2 (ja) ピペッティング方法、ピペッティング装置、および記憶媒体
JPH02243960A (ja) 分析装置の分注器操作方式
CN114746759A (zh) 自动分析装置
JPH1048220A (ja) 分注装置
JP2688163B2 (ja) 分注装置
US20230314455A1 (en) Dispensing device and method
JP2000046624A (ja) 液体残量検出機能を備えた分析装置
JP7516521B2 (ja) 分注装置、及び方法
JP2009210351A (ja) 液体試料分注装置
JPH0324461A (ja) 自動分析装置
JP4363964B2 (ja) 分注装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007516347

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006756360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006756360

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920663

Country of ref document: US