WO2015092844A1 - 液採取装置及びその液採取装置を備えた自動分析装置 - Google Patents

液採取装置及びその液採取装置を備えた自動分析装置 Download PDF

Info

Publication number
WO2015092844A1
WO2015092844A1 PCT/JP2013/083555 JP2013083555W WO2015092844A1 WO 2015092844 A1 WO2015092844 A1 WO 2015092844A1 JP 2013083555 W JP2013083555 W JP 2013083555W WO 2015092844 A1 WO2015092844 A1 WO 2015092844A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid level
probe
threshold value
container
Prior art date
Application number
PCT/JP2013/083555
Other languages
English (en)
French (fr)
Inventor
清浩 杉山
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US15/103,504 priority Critical patent/US9671419B2/en
Priority to EP13899637.6A priority patent/EP3086127A4/en
Priority to PCT/JP2013/083555 priority patent/WO2015092844A1/ja
Publication of WO2015092844A1 publication Critical patent/WO2015092844A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N2035/00891Displaying information to the operator
    • G01N2035/009Displaying information to the operator alarms, e.g. audible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a liquid collection device for collecting a liquid contained in a container via a probe and an automatic analyzer equipped with the liquid collection device.
  • an automatic analyzer dispenses a predetermined amount of a sample into a reaction container, adds a predetermined amount of reagent to the sample, and then optically measures the reaction in the reaction container at a predetermined measurement unit. The action is automatically executed.
  • Various reagents added to the specimen are installed in a predetermined reagent storage unit of the apparatus by an operator, and information on the installed reagent and the installation position are associated with each other and registered on the apparatus side.
  • the work of collecting the sample from the sample container and dispensing it into the reaction container, or the work of collecting the reagent installed in the reagent container and dispensing it into the reaction container is performed by sucking and discharging the liquid.
  • this is performed using a probe to be performed. In that case, place the probe at a position on the container containing the target sample or reagent, lower it from the probe tip, enter the tip of the probe into the container, inhale the liquid, and then move the probe to the position of the reaction container Dispense the inhaled liquid into the reaction container.
  • the tip of the probe when the sample or reagent is inhaled by the probe, the tip of the probe is used to prevent the probe from being immersed in the sample or reagent more than necessary and contaminated.
  • a liquid level sensor that detects that the liquid is in contact with the liquid level is provided (for example, see Patent Document 1).
  • the probe is lowered from above the liquid to be inhaled and the position of the probe when the tip of the probe comes into contact with the liquid is detected based on the liquid level sensor, and the probe is lowered by a necessary distance from that position.
  • the liquid By inhaling the liquid, it is possible to prevent the outer surface of the probe from being unnecessarily contaminated with the specimen or reagent.
  • the liquid level in the container can be obtained, so the remaining amount of liquid to be inhaled is automatically determined.
  • the function of recognizing is also realized.
  • a sample of an automatic analyzer includes serum, but the reagent added to such a sample often contains a surfactant, and bubbles are generated on the liquid surface of such a reagent. Cheap.
  • the liquid level sensor provided in the apparatus even when the tip of the probe is in contact with the bubble, it is detected in the same manner as when the probe is in contact with the liquid level. It cannot be distinguished whether it was detected.
  • the reagent inhaling operation is executed based on the position, and a predetermined amount
  • the reagent is not inhaled, and the reliability of the analysis result for the sample to which the reagent is added becomes low. Furthermore, even if the reliability of the analysis result is reduced due to bubbles on the liquid level of the reagent, it is difficult for the operator to recognize it.
  • an object of the present invention is to make it possible to detect bubbles generated on a liquid surface to be inhaled using a liquid level sensor without adding a new sensor.
  • a liquid sampling apparatus includes a probe, a probe drive mechanism, a pump, a liquid level sensor, a probe operation control unit, a liquid level detection unit, a post-inhalation liquid level calculation unit, and a post-inhalation liquid level storage unit.
  • the liquid level sensor detects that the tip of the probe has come into contact with the liquid level.
  • the probe drive mechanism drives the probe at least in the vertical direction, and the probe operation control means is configured to control the probe drive mechanism and the pump so that the probe lowering operation and the suction operation are executed.
  • the liquid level detection means is configured to detect the level of the liquid before the suction operation by detecting the position of the probe when the probe tip contacts the liquid level during the probe lowering operation. is there.
  • the liquid level height calculating means after inhalation is based on the liquid level height before the inhaling operation detected by the liquid level detecting means and the amount of inhalation during the inhaling operation. It is configured to calculate a value, and the post-inhalation liquid level storage unit stores the theoretical value of the liquid level.
  • the first threshold value holding unit holds a preset first threshold value
  • the second threshold value holding unit holds a preset second threshold value.
  • the first threshold is an error that is allowed as a difference between the theoretical value of the liquid level after the suction operation calculated by the post-suction liquid level calculation means and the actual liquid level after the suction operation. Is the maximum value.
  • the second threshold value is set larger than the first threshold value.
  • the difference calculation means includes a liquid level height detected by the liquid level detection means and a post-inhalation liquid level height storage unit when performing the second and subsequent probe lowering operations on the same inhalation target container. Is calculated so as to calculate the difference from the theoretical value of the liquid level after the suction operation for the container.
  • the bubble detection means compares the difference value calculated by the difference calculation means with the first threshold value and the second threshold value, the difference value exceeds the first threshold value, and the second threshold value is detected. It is configured to detect the presence of foam when it is below the threshold value, and the warning display means informs that in a manner that the operator can recognize when the foam detection means detects the presence of foam. It is configured to output.
  • the liquid sampling device of the present invention has the liquid level after the suction operation obtained by calculation based on the liquid level detected during the previous probe lowering operation and the current probe lowering operation.
  • the difference with the actually detected liquid level is taken, and the difference exceeds the first threshold set as the maximum allowable error set in advance on the apparatus side. Is set to be greater than or equal to a second threshold value that is set to a large value, and the presence of bubbles is detected, and when the presence of bubbles is further detected, a warning is displayed to the operator.
  • the second threshold value is set smaller than the maximum value of the size of the bubble that can be generated on the liquid level in the container, the generation of the bubble is not detected even though the bubble is generated. Things happen. Further, if the second threshold value is set so as to greatly exceed the maximum value of the size of bubbles that can be generated on the liquid level in the container, for example, the reagent container to be inhaled is a new reagent container. Even when the reagent is exchanged or when the reagent is replenished by the operator, it may be recognized that bubbles are generated. Therefore, as the second threshold value, an extremely small value or a large value compared to the maximum value of the size of bubbles that can be generated is not a preferable value. Therefore, the second threshold value is preferably set based on the maximum value of the size of bubbles that can be generated on the liquid level in the container.
  • Threshold selection means for selecting a second threshold value is further provided, and the bubble detection means is configured to detect the presence of the bubble using the second threshold value selected by the threshold selection means. It is preferable. This is because the size of bubbles generated on the surface of the liquid to be inhaled may vary depending on the type (nature) of the liquid.
  • the apparatus further comprises threshold selection means for selecting the second threshold in accordance with the size or shape of the container containing the liquid to be inhaled, and the bubble detection means is configured to select the second threshold selected by the threshold selection means. It is preferable to be configured to detect the presence of bubbles using a threshold value. This is because the size of bubbles generated on the liquid surface of the liquid to be inhaled may vary depending on the size and shape of the container that stores the liquid.
  • the first threshold value is also set individually for each size or shape of the container that contains the liquid to be inhaled. Preferably it is. This is because the error in the liquid level after inhalation due to the accuracy of inhalation by the pump varies depending on the size and shape of the container.
  • the container that contains the liquid to be inhaled further includes threshold selection means that selects the first threshold according to the size or shape of the container that contains the liquid to be inhaled, the bubble detection means, The first threshold value selected by the threshold value selection means is used to detect the presence of bubbles.
  • the bubble detecting means detects that the container containing the liquid to be inhaled is a new container when the difference value calculated by the difference calculating means exceeds the second threshold value. It is preferable to be configured. Then, for example, when the reagent container is replaced with a new one or filled with a reagent, the apparatus can automatically recognize it.
  • An example of a preferred embodiment of the liquid sampling apparatus of the present invention is a probe operation control means, a liquid level detection means, a post-inhalation liquid level height calculation means, a post-inhalation liquid level height storage unit, a threshold holding unit, A calculation control device including a difference calculation unit and a bubble detection unit; and an information display unit that is connected to the calculation control device and displays information included in the calculation control device. When the presence of the image is detected, the fact is displayed on the information display unit.
  • An automatic analyzer includes a sample collection mechanism that collects a sample from a sample container containing the sample and dispenses the sample into a reaction container for reacting the sample, and the liquid collection device of the present invention.
  • the apparatus includes a reagent dispensing mechanism that sucks a reagent from a contained reagent container and dispenses the reagent into a reaction container, and a measurement unit that measures the inside of the reaction container containing the sample and the reagent.
  • An example of a preferred embodiment of the automatic analyzer of the present invention is provided with a plurality of analyzers each including a sample collection mechanism, a reagent dispensing mechanism, and a measurement unit, and each of the analyzers is held by a plurality of sample containers.
  • a belt conveyor that conveys the sample rack in one direction, and is arranged so that the end of one belt conveyor and the beginning of the other belt conveyor of the analyzers arranged adjacent to each other face each other.
  • the belt conveyors are connected by an inter-device transport device having a transport mechanism that holds the sample rack that has reached the end of one belt conveyor and transports the sample rack to the start end of the other belt conveyor.
  • the liquid sampling apparatus is configured so that the liquid level after the suction operation obtained by calculation based on the liquid level detected during the previous probe lowering operation and the actual probe lowering operation during the current probe lowering operation.
  • the difference with the detected liquid level is taken, and the difference exceeds the first threshold set as the maximum allowable error set in advance on the apparatus side, and is larger than the first threshold. Since it is configured to detect the presence of bubbles when it is below the set second threshold, it is possible to detect bubbles generated on the liquid level without providing a new sensor such as a pressure sensor. Can do. Furthermore, since it is configured to display a warning to the operator when the presence of bubbles is detected, the operator can easily recognize that bubbles are generated on the liquid surface.
  • the reagent dispensing mechanism is configured by the liquid sampling device of the present invention, when bubbles are generated on the liquid surface in the reagent container containing the reagent to be added to the specimen, Can be detected and the operator can recognize it.
  • Example 1 An embodiment of the liquid collection device will be described.
  • the liquid sampling apparatus includes a probe 2, a pump 4, a probe driving mechanism 5, a liquid level sensor 8, an arithmetic control device 10, and an information display unit 30.
  • the pump 4 is, for example, a syringe pump, and sucks and discharges liquid via the probe 2.
  • the probe drive mechanism 5 drives the probe 2 in the horizontal plane direction and the vertical direction.
  • the liquid level sensor 8 is a capacitance sensor that detects a change in capacitance when the tip of the probe 2 comes into contact with the liquid level, thereby detecting contact with the liquid level by the tip of the probe 2. is there.
  • the tip of the probe 2 is held at the tip of the arm 34 in a vertically downward state.
  • the base end portion of the arm 34 is supported by a support shaft 32 arranged in a vertical direction, and the tip end of the arm 34 extends in the horizontal direction.
  • the support shaft 32 is rotated in the horizontal plane and vertically moved in the vertical direction by the vertical drive unit 6 and the rotary drive unit 7 constituting the probe drive mechanism 5, thereby moving the probe 2 held by the arm 34 in the horizontal plane direction. Can be moved to draw an arc, and further moved up and down at a position on the trajectory.
  • Each of the vertical drive unit 6 and the rotary drive unit 7 includes a pulse motor as a component, and the position of the probe 2 can be controlled by the number of pulses applied to the pulse motor.
  • the proximal end of the probe 2 is connected to the syringe pump 4 via a tube 36.
  • the sensor substrate 8 (liquid level sensor) is provided inside the arm 34.
  • the sensor substrate 8 detects a change in electrostatic capacitance between the tip of the probe 2 and the liquid level when the tip of the probe 2 comes into contact with the liquid level.
  • the arithmetic and control unit 10 controls the operation of the pump 4 and the probe driving mechanism 5 and performs various arithmetic processes based on the detection signal from the liquid level sensor 8.
  • the information display unit 30 displays information that the arithmetic control device 10 has.
  • the arithmetic and control unit 10 is realized by, for example, a general-purpose personal computer (PC) or a dedicated computer.
  • the information display unit 30 is realized by, for example, a general-purpose PC monitor or a dedicated monitor.
  • the arithmetic and control unit 10 includes a probe operation control unit 12, a liquid level detection unit 14, a post-inhalation liquid level calculation unit 16, a difference calculation unit 18, a bubble detection unit 20, a warning display unit 22, and a liquid level storage unit. 24, a first threshold value holding unit 25 and a second threshold value holding unit 26 are provided.
  • the probe operation control means 12, the liquid level detection means 14, the post-inhalation liquid level height calculation means 16, the difference calculation means 18, the bubble detection means 20, and the warning display means 22 are incorporated in the arithmetic control device 10. This function is realized by a program and a calculation unit (CPU) that executes the program.
  • the liquid level storage unit 24, the first threshold value holding unit 25, and the second threshold value holding unit 26 are realized by a hard disk or a non-volatile memory provided in the arithmetic control device 10.
  • the probe operation control means 12 is a probe lowering operation for lowering the probe 2 from the position on the container containing the target liquid based on the dispensing conditions designated by the operator for the liquid to be inhaled, and the liquid in the container is assigned.
  • the pump 4 and the probe drive mechanism 5 are controlled to execute an inhaling operation for inhaling only a fixed amount and a dispensing operation for dispensing the inhaled liquid to a predetermined dispensing position.
  • the probe lowering operation is performed based on the detection signal of the liquid level sensor 8, and the probe 2 is stopped at a position where the tip is further lowered by a certain distance from the height at which the tip contacts the liquid level.
  • the inhalation operation is executed at that position.
  • the liquid level detection means 14 determines the height of the probe 2 when the tip of the probe 2 is in contact with the liquid level based on the detection signal of the liquid level sensor 8 during the probe lowering operation, for example, the probe driving mechanism 5. This is obtained from the number of pulses given to the pulse motor, and thereby the liquid level height H 1 in the container is detected.
  • the liquid level height H 1 detected here is the liquid level height before the suction operation is executed.
  • the detected liquid level height H 1 is stored in the liquid level height storage unit 24.
  • the post-inhalation liquid level calculation means 18 uses the liquid level height H 1 before execution of the suction operation detected by the liquid level detection means 14 and corresponds to the liquid suction amount from the liquid level height H 1.
  • the liquid level height H 0 after the suction operation after subtracting the height to be calculated is calculated.
  • the liquid level height H 0 calculated by the liquid level height calculation means 18 after inhalation is not the actual liquid level after inhalation but the theoretical value of the liquid level obtained by calculation based on the inhalation conditions. is there.
  • the calculated liquid level height theoretical value H 0 is also stored in the liquid level storage 24. This theoretical value H 0 is used for calculation of the difference ⁇ H by the difference calculation means 18 described later after the next probe lowering operation executed for the same container.
  • the difference calculating means 18 calculates the post-inhalation liquid level height calculating means 18 at the time of the previous liquid collection for the same container.
  • the bubble detection unit 20 uses the difference ⁇ H calculated by the difference calculation unit 18 and is held by the first threshold value holding unit 25 and the second threshold value holding unit 26. On the basis of the second threshold value, it is configured to detect whether or not bubbles are generated on the liquid level of the container to be inhaled.
  • the liquid level height H 1 detected by the liquid level detection means 14 is an actual measurement value of the liquid level after the previous suction of the liquid.
  • H 0 is a theoretical value obtained by calculation of the liquid level height after the previous suction operation. Therefore, if the liquid level in the container is normally detected by the liquid level sensor 8, H 1 ⁇ H 0. It should be.
  • the first threshold value is set in consideration of an intake amount error due to the intake accuracy of the pump 4.
  • the case where the liquid level in the container is not normally detected by the liquid level sensor 8 is a case where bubbles are generated on the liquid level and the liquid level sensor 8 detects the liquid level when the tip of the probe 2 comes into contact with the bubbles. It is. In that case, H 1 > H 0 is always satisfied, and ⁇ H exceeds the first threshold value.
  • the value may be set as - ⁇ to + ⁇ , but when the liquid level sensor 8 detects a bubble, H 1 > H 0 is always set, so the first threshold value is set only on the positive side. It only has to be done. In this embodiment, the first threshold value is set only on the plus side.
  • ⁇ H exceeds the first threshold
  • the container has been replaced with a new one (filled with liquid) after the previous collection of the liquid, or the liquid in the container has been replenished. It may be the case. Therefore, when ⁇ H exceeds the first threshold value, a threshold value for determining whether the cause is due to bubbles generated on the liquid surface or due to an increase in the liquid amount. Is the second threshold.
  • the second threshold value considers the maximum value of the size of bubbles that can be generated on the liquid level in the container. Therefore, when ⁇ H exceeds the second threshold value, it can be determined that the container has been replaced with a new one or the liquid has been replenished.
  • the bubble detecting means 20 When the liquid level height detecting means 16 detects the liquid level height H 1 in the container, the bubble detecting means 20 first compares the H 1 with the theoretical value H 0, and the difference ⁇ H is the first difference ⁇ H. It is configured to determine as follows depending on whether or not ⁇ H exceeds the second threshold and whether or not ⁇ H exceeds the second threshold. ⁇ H ⁇ 0 (H 1 ⁇ H 0) ⁇ normal first threshold ⁇ [Delta] H ⁇ second second threshold bubble is generated in the threshold ... liquid level ⁇ [Delta] H ... inhalation The target container has been replaced with a new one
  • the warning display means 22 is configured to output a message to the information display section 30 when the bubble detection means 20 detects that bubbles are generated on the liquid surface. The fact can be displayed on the information display unit 30 so that the operator can recognize it.
  • the liquid to be inhaled by this liquid collection device is, for example, a plurality of types of reagents installed in the automatic analyzer. There are a plurality of liquids that can be inhaled and each is housed and installed in a separate container. When conditions such as the type and amount of liquid to be collected are specified by the operator, the liquid (container) to be inhaled is specified based on the conditions, and the probe 2 is moved from the position above the container to the liquid level sensor 8. Is lowered until the liquid level is detected (probe lowering operation).
  • the probe 2 When the liquid level sensor 8 detects the liquid level, the probe 2 is stopped, and the liquid level height H 1 in the inhalation target container is obtained based on the position of the probe 2 at that time.
  • H 1 and H 0 are compared, and H 1 ⁇ H 0 If there is, the probe 2 is judged to be normal, and the probe 2 is further lowered by a certain distance, and the liquid suction operation is executed.
  • the liquid collecting operation for the container is performed for the first time. A predetermined amount of liquid is inhaled (inhalation operation) and dispensed into a predetermined container (dispensing position) (dispensing operation).
  • this liquid collection device When this liquid collection device is incorporated in the automatic analyzer, the result of analysis performed using the liquid collected by this inhalation operation is displayed on the container when the information display unit 30 displays the result. You may make it display the warning to the effect of the bubble having generate
  • a warning to that effect is displayed, and the subsequent suction operation and dispensing operation are interrupted until the operator confirms it. It may be configured.
  • the container When ⁇ H exceeds the second threshold value, the container is determined to be a new container, and the subsequent suction operation and dispensing operation are executed. Even when ⁇ H exceeds the second threshold, the information display unit 30 may display that the container is a new container.
  • H 0 is calculated after the liquid dispensing operation, but the timing of this calculation may be any timing as long as H 0 can be calculated.
  • Example 2 Another embodiment of the liquid sampling apparatus will be described with reference to FIG.
  • the function of the arithmetic control device 10a that controls the operation of the pump 4 and the probe drive mechanism 6 is the same as that of the arithmetic control device 10 of the first embodiment described with reference to FIGS. This is different from the function, and other configurations are the same as those of the first embodiment.
  • the arithmetic control device 10a of this embodiment includes a threshold selection means 19 and a liquid information storage unit 28 in addition to the functions of the arithmetic control device 10 of the first embodiment. Furthermore, the first threshold value holding unit 25 and the second threshold value holding unit 26 in the first embodiment hold a single value as the first threshold value and the second threshold value, respectively. The first threshold value holding unit 25a and the second threshold value holding unit 26a in this embodiment hold a plurality of values as the first threshold value and the second threshold value, respectively.
  • the size of bubbles generated on the liquid surface of the container to be inhaled may vary depending on the type of liquid and the size and shape of the container. Further, the range of allowable error in the liquid level after inhalation due to the inhalation accuracy of the pump 4 varies depending on the size and shape of the container. For this reason, the first threshold value holding unit 25a holds the first threshold value corresponding to the size and shape of the container that stores the liquid to be inhaled.
  • the second threshold value holding unit 26a holds, as the second threshold value, a value corresponding to the type of liquid to be inhaled or a value corresponding to the size or shape of the container.
  • the type of liquid and the size or shape of the container are registered in advance on the apparatus side as liquid information, and are registered in the liquid information holding unit 28.
  • the threshold selection means 19 reads the information on the inhalation target liquid specified based on the condition designated by the operator from the liquid information holding unit 28, and the first threshold value selection means 19 according to the size or shape of the container that stores the liquid.
  • the threshold value is selected from the first threshold value holding unit 25a, and the second threshold value is selected from the second threshold value holding unit 26a according to the type of liquid, the size or shape of the container. It is configured.
  • the bubble detection means 20 detects bubbles generated on the liquid surface using the first threshold value and the second threshold value selected by the threshold selection means 19.
  • the liquid (container) to be inhaled is specified based on the conditions, and information on the liquid is read from the liquid information holding unit 28.
  • the first threshold value and the second threshold value are selected based on the type of liquid read out, the size or shape of the container.
  • the first threshold value and the second threshold value selected here are used to detect bubbles in the inhalation target container. Since the subsequent flow from the probe lowering operation to the dispensing operation is the same as that in the first embodiment, detailed description thereof is omitted here.
  • Example 3 an embodiment of an automatic analyzer to which the liquid sampling apparatus is applied will be described with reference to FIGS.
  • the liquid sampling device applied in this embodiment may be any one of the first embodiment and the second embodiment.
  • the automatic analyzer 101 includes two automatic analyzers 102a and 102b and an inter-device transport device 112.
  • the automatic analyzers 102a and 102b are arranged side by side in the X direction, which is one direction in the horizontal plane, and the transport mechanisms 106a and 106b of the automatic analyzers 102a and 102b are connected by the inter-device transport device 112. .
  • the sample that has been sampled in the front-stage automatic analyzer 102a is introduced into the rear-stage automatic analyzer 102b via the inter-device transport apparatus 112, and the latter-stage automatic analyzer 102b also receives the sample. Sample sampling and analysis are performed.
  • the front-stage automatic analyzer 102a includes an analysis operation unit 104a, a transport mechanism 106a, and a rack introduction mechanism 118a.
  • the transport mechanism 106a includes a belt conveyor 107a that transports the sample rack 120 holding the sample container to one side in the X direction (left side in FIGS. 6 and 7). The periphery of the belt conveyor 107a is covered with a cover.
  • a sample rack arrangement unit 108a is provided on the start end side (right side in FIGS. 6 and 7) of the transport mechanism 106a, and a sample rack collection unit 110a is provided on the end side (left side in FIG. 6).
  • the covers of the sample rack arranging unit 108a and the sample rack collecting unit 110a can be opened and closed. The user opens the cover of the sample rack arranging unit 108a and arranges the sample rack on the belt conveyor 107a, or covers the sample rack collecting unit 110a.
  • the sample rack that has been sampled can be taken out by opening.
  • the rack introduction mechanism 118a moves in the Y direction orthogonal to the X direction in the horizontal plane, holds the sample rack 120 on the belt conveyor 107a and introduces it to the analysis operation unit 104a side, or removes the sample rack 120 after sampling. It is arranged on the conveyor 107a.
  • the analysis operation unit 104a includes a reagent storage unit 122a, a sample storage unit 123a, a measurement unit 124a, a sampling arm 125a, and reagent arms 127a and 129a.
  • a reagent storage unit 122a a plurality of reagent containers 121a storing various reagents are installed on the same circumference.
  • the sample storage unit 123a can store a plurality of sample racks 120, and the sample rack 120 introduced by the rack introduction mechanism 118a is stored in the sample storage unit 123a.
  • the measurement unit 124a is provided with a plurality of measurement ports (not shown), and optically measures the reactions in the reaction vessels arranged at these measurement ports.
  • the reagent storage unit 122a, the sample storage unit 123a, and the measurement unit 124a are each a turntable that rotates in a horizontal plane, and the reagent container, the sample container, and the measurement port can be moved to arbitrary positions on the circumference thereof. .
  • the sampling arm 125a is disposed so as to extend in the horizontal direction between the sample storage unit 123a and the measurement unit 124a.
  • a probe 126a for collecting a sample is fixed to the distal end portion of the sampling arm 125a with the distal end thereof being vertically downward.
  • the base end portion of the sampling arm 125a is supported by a vertically arranged shaft, and can rotate about the shaft and move up and down along the shaft. Accordingly, the probe 126a moves so as to draw a circular orbit between the position on the sample container 123a and the position on the measurement unit 124a, and descends from the position on the sample container or the position on the reaction container. Can be inhaled or the sample can be dispensed into a reaction container.
  • the sampling arm 125a and the probe 126a constitute a sample collection mechanism 140a (see FIG. 12).
  • the reagent arms 127a and 129a are arranged so as to extend in the horizontal direction between the reagent storage unit 122a and the measurement unit 124a, respectively.
  • a probe 128a for collecting the reagent is fixed to the tip of the reagent arm 127a
  • a probe 130a for collecting the reagent is fixed to the tip of the reagent arm 128a with the tip vertically downward.
  • the base end portions of the reagent arms 127a and 129a are supported by shafts arranged vertically, and can rotate up and down along the shaft while rotating about the shaft.
  • the probes 127a and 129a move in a circular orbit between a position on the reagent storage unit 122a and a position on the measurement unit 124a, and descend from the position on the reagent container to remove the reagent.
  • the reagent can be dispensed into the reaction vessel by inhalation.
  • the reagent arm 127a and the probe 128a, and the reagent arm 129a and the probe 130a constitute independent reagent dispensing mechanisms 142a (see FIG. 12).
  • the reagent dispensing mechanism 142a is constituted by the two reagent arms 127a and 129a.
  • only one reagent arm may be provided.
  • the liquid sampling apparatus of Example 1 or Example 2 is applied to this reagent dispensing mechanism 142a (see FIG. 12). That is, the reagent arms 127a and 129a correspond to the arm 34 in FIG. 2, and the probes 128a and 130a correspond to the probe 2 in FIG.
  • a liquid level sensor 144a (see FIG. 12) that detects that the tips of the probe 128a and the probe 130a are in contact with the liquid level is a reagent dispensing mechanism 142a (see FIG. 12). )
  • the detection signal of the liquid level sensor 144a is taken into the arithmetic and control unit 134 (see FIG. 12) that manages the entire automatic analyzer.
  • the latter-stage automatic analyzer 102b has the same configuration as the former-stage automatic analyzer 102a.
  • the start end of the belt conveyor 107b provided in the transport mechanism 106b of the automatic analyzer 102b and the end of the front belt conveyor 107a are connected by an inter-device transport device 112.
  • the inter-device transport device 112 includes a transport mechanism that holds the sample rack 120 that comes to the end of the front-stage belt conveyor 107a and is disposed at the start end of the rear-stage belt conveyor 107b, and an openable / closable shielding cover 114 that covers the transport mechanism. I have. The transport mechanism will be described later.
  • the transport mechanism 1100 includes a table 1102 having a horizontal plane.
  • the table 1102 is supported by a base 1118.
  • the horizontal surface of the table 1102 is set to substantially the same height as the conveying surfaces of the belt conveyors 107a and 107b arranged at both ends.
  • a position in the vicinity of one end (right side in the figure) of the table 1102 in the X direction is a transport start position 1103a where the sample rack to be transported is held to start transport, and the transport start position 1103a is located on the upstream side. It arrange
  • the position in the vicinity of the end of the table 1102 on the other side (left side in the figure) in the X direction is the transport completion position 1103b of the sample rack, and the transport conveyor position 1073b is at the start of the belt conveyor 107b on the rear stage side. Has been placed.
  • An arm member 1104 and an arm member 1106 extending in the X direction are arranged to face both side edges on the table 1102.
  • the arm member 1104 and the arm member 1106 are driven in the X direction and the Y direction at the side edge of the table 1102.
  • the arm member 1104 and the arm member 1106 move simultaneously in the same direction in the X direction and move in a symmetrical direction around the table 1102 in the Y direction.
  • the arm member 1104 and a mechanism such as a motor for driving the arm member 1106 are housed inside the base 1118.
  • the arm member 1104 includes a protrusion 1104a at an end portion on the transportation start position 1103a side, and a protrusion 1104b at an end portion on the transportation completion position 1103b side.
  • the protrusion 1104a and the protrusion 1104b are fitted into a recess (not shown) provided on the side surface of the sample rack on the arm member 1104 side and engaged with the sample rack.
  • the movement of the arm member 1104 in the Y direction is performed between a position where the projections 1104a and 1104b are fitted in the recess of the sample rack and a position where the arm member 1104 does not contact the sample rack itself.
  • the arm member 1106 includes a protrusion 1106a at the end of the transportation start position 1103a and a protrusion 1106b at the transportation completion position 1103b.
  • the protrusion 1106a and the protrusion 1106b are engaged with the rear rear surface of the sample rack.
  • the movement of the arm member 1106 in the Y direction is performed between a position where the protrusions 1106a and 1106b engage with the back surface of the sample rack and a position where the protrusions 1106a and 1106b do not contact the sample rack.
  • Arm members 1104 and 1106 constitute a handler that holds the sample rack and slides the table 1102 from the transport start position 1103a to the transport completion position 1103b for transport.
  • This handler is provided with holding portions at two locations on the transportation start position 1103a side and the transportation completion position 1103b side.
  • the holding portion on the transport start position 1103a side is constituted by a projection 1104a of the arm member 1104 and the projection 1106a of the arm member 1106, and the holding portion on the transport completion position 1103b side is constituted by a projection 1104b of the arm member 1104 and a projection 1106b of the arm member 1106. Is done.
  • the arm member 1104 and the arm member 1106 are collectively referred to as “handlers 1104 and 1106”, the holding portions on the transportation start position 1103a side of the handlers 1104 and 1106 are referred to as “first holding portions 1104a and 1106a”, and the transportation completion position 1103b side.
  • the holding units are referred to as “second holding units 1104b and 1106b”.
  • the first holding portions 1104a and 1106a insert the projection 1104a into the concave portion on one side surface of the sample rack and insert the sample 1104a by sandwiching the sample rack from both sides at the ends of the arm members 1104 and 1106 on the transport start position 1103a side.
  • the rear rear side opposite to the rack is supported by the protrusion 1106a.
  • the second holding portions 1104b and 1106b sandwich the sample rack from both sides at the ends of the arm members 1104 and 1106 on the transport completion position 1103b side, thereby fitting the protrusion 1104b into the concave portion on one side of the sample rack and the sample rack.
  • the rear rear surface on the opposite side is supported by the protrusion 1106b.
  • the handlers 1104 and 1106 move in the X direction while holding the sample rack, and slide the sample rack on the table 1102 for transport.
  • a guide rail 1108 that is fitted in a groove provided on a side surface of the sample rack that slides on the table 1102 and prevents the sample rack from falling is provided on the side edge of the table 1102 on the arm member 1106 side.
  • a start sensor 1110 for detecting the arrival of the sample rack at the transport start position 1103a is provided on the side of the transport start position 1103a.
  • An end sensor 1112 for detecting the arrival of the sample rack at the transportation completion position 1103b is provided on the side of the transportation completion position 1103b.
  • a stopper 1114 is provided in the vicinity of the transport start position 1103a for temporarily stopping the sample rack that has been transported to the transport start position 1103a by the preceding belt conveyor 107a at the transport start position 1103a. .
  • a circuit board 1116 is provided on the side of the base 1118.
  • the circuit board 1116 constitutes a control unit (hereinafter also referred to as a control unit 1116) that controls the operations of the handlers 1104 and 1106.
  • the start sensor 1110 and the end sensor 1112 are connected to the circuit board 1116 via wiring. Signals from the start sensor 1110 and the end sensor 1112 are taken into the circuit board 1116 and are used to start the sample rack transport operation by the handlers 1104 and 1106 and to determine whether there is a sample rack transport error.
  • FIG. 10 and FIG. 12 illustration of wiring and modules mounted on the circuit board 1116 are omitted.
  • FIG. 11 some of the modules mounted on the circuit board 1116 are illustrated, but illustration of wiring is omitted.
  • the first automatic analyzer 102a is provided with a controller 132a that controls the operation of the analysis operation unit 104a, the transport mechanism 106a, and the rack introduction mechanism 118a
  • the second automatic analyzer 102b includes the analysis operation unit 104b, the transport mechanism 106b, and A controller 132b that controls the operation of the rack introduction mechanism 118b is provided.
  • the inter-device transport apparatus 112 is provided with a control unit 1116 that controls the operation of the transport mechanism 1100.
  • the control units 132a, 132b, and 1116 are connected to the arithmetic control device 134, respectively. Measurement data obtained by the analysis operation unit 104a of the first automatic analyzer 102a and measurement data obtained by the analysis operation unit 104b of the second automatic analysis device 102b are taken into the arithmetic control device 134 via the control unit 132a, The arithmetic and control unit 134 identifies and quantifies components in the specimen.
  • the analysis operation unit 104a of the first automatic analyzer 102a includes the sample collection mechanism 140a and the reagent dispensing mechanism 142a.
  • the reagent dispensing mechanism 142a applies the liquid sampling mechanism of Example 1 or Example 2, and the reagent dispensing mechanism 142a detects that the tips of the probes 128a and 130a are in contact with the liquid surface.
  • a liquid level sensor 144a is provided.
  • the analysis operation unit 104b of the second automatic analyzer 102b includes a sample collection mechanism 140b and a reagent dispensing mechanism 142b, and the tips of the probes 128b and 130b are in contact with the liquid level in the reagent dispensing mechanism 142b.
  • a liquid level sensor 144b is provided for detecting the above.
  • the detection signal of the liquid level sensor 144a is taken into the arithmetic control device 134 via the control unit 132a, and the detection signal of the liquid level sensor 144b is taken into the arithmetic control device 134 via the control unit 132b.
  • the arithmetic control device 134 realizes the arithmetic control device 10 of the first embodiment or the arithmetic control device 10a of the second embodiment, and the information display unit 138 realizes the information display unit 30 of the first or second embodiment. Is.
  • the arithmetic and control unit 134 detects the bubbles in the liquid level in the reagent container using the liquid level bubble detection function described in the first or second embodiment, and bubbles are formed on the liquid level of the reagent when the reagent is inhaled. Is detected, the fact is displayed on the information display unit 138.
  • a warning that bubbles may exist on the liquid surface of the reagent when the analysis result is displayed on the information display unit 138. To do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

液採取装置は、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知し、さらに泡の存在を検知したときはオペレータに警告を表示するように構成されている。

Description

液採取装置及びその液採取装置を備えた自動分析装置
 本発明は、プローブを介して容器内に収容されている液を採取する液採取装置及びその液採取装置を備えた自動分析装置に関するものである。
 例えば自動分析装置は、所定量の検体を反応容器に分注し、さらにその検体に所定量の試薬を添加した後、所定の測定部において反応容器内の反応を光学的に測定するという一連の動作が自動的に実行されるようになっている。検体に添加される種々の試薬は装置の所定の試薬収容部にオペレータによって設置され、その設置された試薬の情報と設置位置とが対応付けられて装置側に登録されている。
 かかる自動分析装置において、検体容器から検体を採取して反応容器に分注する作業や、試薬収容部に設置された試薬を採取して反応容器に分注する作業は、液の吸入と吐出を行なうプローブを利用して行なわれることが一般的である。その場合、プローブを目的の検体や試薬を収容した容器上の位置に配置し、そこから下降させてプローブ先端をその容器内に進入させて液を吸入した後、プローブを反応容器の位置へ移動させて吸入した液を反応容器に分注する。
 上記の自動分析装置では、プローブで検体や試薬の吸入を行なう際に、プローブが必要以上に検体や試薬内に浸漬されて汚染されることを防止することを目的の一つとして、プローブの先端が液面に接触したことを検知する液面センサが設けられることがある(例えば、特許文献1参照。)。この場合、吸入対象の液の上方からプローブを下降させてプローブ先端が液に接触したときのプローブの位置を液面センサに基づいて検出し、その位置から必要な距離だけプローブを下降させてから液の吸入を行なうことで、プローブの外面が必要以上に検体や試薬によって汚染されることを防止できる。
 また、液面センサによってプローブ先端が液に接触したときのプローブの高さを検出することで、その容器内の液面高さを求めることができるため、吸入対象の液の残量を自動的に認識するという機能も実現される。
特許第5093164号公報
 自動分析装置の検体としては血清などが挙げられるが、このような検体に添加される試薬には界面活性剤が含まれている場合が多く、そのような試薬の液面には泡が発生しやすい。しかし、装置に設けられた液面センサでは、プローブ先端が泡に接触した場合でも液面に接触した場合と同様に検知してしまうため、液面センサが試薬の液面を検知したのか泡を検知したのかを区別することはできない。そのため、試薬の液面に泡が発生している場合、プローブ先端が泡に接触してそれを液面センサが検知すると、その位置を基準に試薬の吸入動作が実行されてしまい、所定量の試薬が吸入されず、その試薬が添加された検体についての分析結果の信頼性が低くなる。さらには、試薬の液面の泡が原因で分析結果の信頼性が低下しても、オペレータはそれを認識することは困難であった。
 液面センサに加えて圧力センサを追加し、プローブにかかる圧力の微小変化を検出することで、プローブ先端が液面に接触したのか泡に接触したのかを判断することも考えられる。しかし、液面センサとは別に圧力センサを追加する必要があるため、装置コストが増大するほか、圧力の微小変化を高精度に検出する必要があるため、センサの調整が難しいという問題がある。
 そこで、本発明は、新たなセンサを追加することなく、液面センサを利用して吸入対象の液面に発生した泡を検知することができるようにすることを目的とするものである。
 本発明にかかる液採取装置は、プローブ、プローブ駆動機構、ポンプ、液面センサ、プローブ動作制御手段、液面高さ検出手段、吸入後液面高さ算出手段、吸入後液面高さ記憶部、第1しきい値保持部、第2しきい値保持部、差分算出手段、泡検知手段及び警告表示手段を備えている。
 液面センサはプローブの先端が液面に接触したことを検知するものである。プローブ駆動機構はプローブを少なくとも鉛直方向へ駆動するものであり、プローブ動作制御手段はプローブ下降動作と吸入動作が実行されるようにプローブ駆動機構及びポンプを制御するように構成されたものである。液面高さ検出手段はプローブ下降動作の際のプローブ先端が液面に接触したときのプローブの位置を検知することにより、吸入動作前の液面高さを検出するように構成されたものである。吸入後液面高さ算出手段は液面高さ検出手段により検出された吸入動作前の液面高さとその吸入動作の際の吸入量に基づいて、その吸入動作後の液面高さの理論値を算出するように構成されており、吸入後液面高さ記憶部はその液面高さの理論値を記憶するものである。
 第1しきい値保持部は予め設定された第1のしきい値を保持しており、第2しきい値保持部は予め設定された第2のしきい値を保持している。第1のしきい値とは、吸入後液面高さ算出手段により算出された吸入動作後の液面高さの理論値と吸入動作後の実際の液面高さとの相違として許容される誤差の最大値である。第2のしきい値は第1のしきい値よりも大きく設定されたものである。
 差分算出手段は、同一の吸入対象の容器に対して2回目以降のプローブ下降動作を実行する際に、液面高さ検出手段により検出された液面高さと、吸入後液面高さ記憶部に記憶されている当該容器についての吸入動作後の液面高さの理論値との差分を算出するように構成されたものである。泡検知手段は、差分算出手段により算出された差分値と第1のしきい値及び第2のしきい値とを比較し、差分値が第1のしきい値を超え、かつ第2のしきい値以下であるときに泡の存在を検知するように構成されたものであり、警告表示手段は、泡検知手段が泡の存在を検知したときに、オペレータの認識しうる方法でその旨を出力するように構成されたものである。
 すなわち、本発明の液採取装置は、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知し、さらに泡の存在を検知したときはオペレータに警告を表示するように構成されている。
 ところで、第2のしきい値が容器内の液面に発生しうる泡の大きさの最大値よりも小さく設定されていると、泡が発生しているにもかかわらず泡の発生が検知されないことが起こる。また、第2のしきい値が容器内の液面に発生しうる泡の大きさの最大値を大幅に超えて大きく設定されていると、例えば、吸入対象である試薬容器が新たな試薬容器に交換されていた場合やオペレータによって試薬が補充されていたような場合でも、泡が発生していると認識されてしまうことが起こりうる。したがって、第2のしきい値としては、発生しうる泡の大きさの最大値に比べて極端に小さい値や大きい値は、好ましい値とはいえない。そこで、第2のしきい値としては、容器内の液面に発生しうる泡の大きさの最大値に基づいて設定されたものであることが好ましい。
 プローブによる吸入対象となる液を収容した容器が複数設けられ、第2のしきい値が吸入対象の液の種類ごとに個別に設定されている場合には、吸入対象の液の種類に応じて第2のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第2のしきい値を用いて泡の存在を検知するように構成されていることが好ましい。吸入対象の液の液面に発生する泡の大きさは、液の種類(性質)によって変わることがあるからである。
 また、プローブによる吸入対象となる液を収容した容器が複数設けられ、第2のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されている場合には、吸入対象の液を収容した容器の大きさ又は形状に応じて第2のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第2のしきい値を用いて泡の存在を検知するように構成されていることが好ましい。吸入対象の液の液面に発生する泡の大きさは、液を収容する容器の大きさや形状によっても変わることがあるからである。
 プローブによる吸入対象となる液を収容した容器が複数設けられている場合には、第1のしきい値についても、吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されていることが好ましい。ポンプによる吸入精度による吸入後の液面高さの誤差は、容器の大きさや形状によっても異なってくるからである。その場合、吸入対象の液を収容した容器吸入対象の液を収容した容器の大きさ又は形状に応じて第1のしきい値を選択するしきい値選択手段をさらに備え、泡検知手段は、しきい値選択手段の選択した第1のしきい値を用いて泡の存在を検知するように構成されている。
 さらに、泡検知手段は、差分算出手段により算出された差分値が第2のしきい値を超えているときにその吸入対象の液を収容した容器が新たな容器であることを検知するように構成されていることが好ましい。そうすれば、例えば試薬容器が新たなものに交換されたり試薬が充填されたりした場合に、装置側がそれを自動で認識することができるようになる。
 本発明の液採取装置の好ましい実施態様の一例は、プローブ動作制御手段、液面高さ検出手段、吸入後液面高さ算出手段、吸入後液面高さ記憶部、しきい値保持部、差分算出手段及び泡検知手段を備えた演算制御装置と、演算制御装置に接続され、演算制御装置の有する情報を表示する情報表示部と、をさらに備え、警告表示手段は、泡検知手段が泡の存在を検知したときにその旨を情報表示部に表示するように構成されているものである。
 本発明にかかる自動分析装置は、検体を収容した検体容器から検体を採取し、検体を反応させるための反応容器に分注する検体採取機構と、本発明の液採取装置によって構成され、試薬を収容した試薬容器から試薬を吸入して反応容器に分注する試薬分注機構と、検体及び試薬を収容した反応容器内を測定する測定部と、を備えたものである。
 本発明の自動分析装置の好ましい実施態様の一例は、検体採取機構、試薬分注機構及び測定部をそれぞれ備えた分析装置が複数設けられており、分析装置の各々は、複数の検体容器が保持された検体ラックを一方向に搬送するベルトコンベアを備え、互いに隣接して配置された分析装置のうち一方のベルトコンベアの終端と他方のベルトコンベアの始端が対向するように配置されており、それらのベルトコンベアの間が、一方のベルトコンベアの終端に到達した検体ラックを保持して他方のベルトコンベアの始端へ輸送する輸送機構を有する装置間輸送装置によって連結されているものである。
 本発明の液採取装置は、前回のプローブ下降動作の際に検出された液面高さに基づいて計算により求められた吸入動作後の液面高さと、今回のプローブ下降動作の際に実際に検出された液面高さとの差分をとり、その差分が予め装置側に設定されている許容誤差の最大値として設定された第1のしきい値を超え、第1のしきい値よりも大きく設定された第2のしきい値以下であるときに泡の存在を検知するように構成されているので、圧力センサなどの新たなセンサを設けることなく、液面に発生した泡を検知することができる。さらに、泡の存在を検知したときはオペレータに警告を表示するように構成されているので、オペレータは液面に泡が発生していることを認識することが容易である。
 本発明の自動分析装置は、試薬分注機構が本発明の液採取装置によって構成されているので、検体に添加する試薬を収容した試薬容器内の液面に泡が発生している場合にそれを検知することができ、オペレータがそれを認識することができる。
液採取装置の一実施例を示す概略構成図である。 同実施例のプローブ周辺の機構を概略的に示す図である。 同実施例の液の採取及び分注動作を示すフローチャートである。 液採取装置の他の実施例を示す概略構成図である。 同実施例の液の採取及び分注動作を示すフローチャートである。 自動分析装置の一実施例を示す概略構成図である。 同実施例の構成を概略的に示す平面図である。 同実施例における装置間輸送装置の輸送機構を示す平面図である。 同輸送機構の正面図である。 同輸送機構の斜め上側からみた分解斜視図である。 同輸送機構の斜め下側からみた分解斜視図である。 同実施例の制御系統を示すブロック図である。
(実施例1)
 液採取装置の一実施例について説明する。
 図1に示されているように、この液採取装置は、プローブ2、ポンプ4、プローブ駆動機構5、液面センサ8、演算制御装置10及び情報表示部30を備えている。ポンプ4は例えばシリンジポンプであり、プローブ2を介して液の吸入と吐出を行なうものである。プローブ駆動機構5はプローブ2を水平面内方向と鉛直方向へ駆動するものである。液面センサ8は静電容量センサであり、プローブ2の先端が液面に接触したときにその静電容量変化を検出することで、プローブ2の先端による液面への接触を検知するものである。
 図2に示されているように、プローブ2の先端は鉛直下向きの状態でアーム34の先端部に保持されている。アーム34の基端部は鉛直向きに配置された支持軸32によって支持されており、アーム34の先端が水平方向へ延びている。支持軸32はプローブ駆動機構5を構成する上下動駆動部6と回転駆動部7によって水平面内での回転と鉛直方向における上下動を行ない、これによってアーム34に保持されたプローブ2を水平面内方向において円弧を描くように移動させ、さらにその軌道上の位置で上下動させることができる。上下動駆動部6と回転駆動部7はそれぞれパルスモータを構成として含み、パルスモータに与えるパルス数によってプローブ2の位置を制御することができる。プローブ2の基端はチューブ36を介してシリンジポンプ4と接続されている。
 アーム34の内部にセンサ基板8(液面センサ)が設けられている。センサ基板8は、プローブ2の先端が液面に接したときのプローブ2の先端と液面との間の静電容量の変化を検出するものである。
 図1に戻って、演算制御装置10はポンプ4及びプローブ駆動機構5の動作制御を行なうとともに、液面センサ8からの検知信号に基づいて種々の演算処理を行なうものである。情報表示部30は演算制御装置10の有する情報を表示するものである。演算制御装置10は、例えば汎用のパーソナルコンピュータ(PC)又は専用のコンピュータによって実現される。情報表示部30は、例えば汎用のPCモニタ又は専用のモニタによって実現される。
 演算制御装置10はプローブ動作制御手段12、液面高さ検出手段14、吸入後液面高さ算出手段16、差分算出手段18、泡検知手段20、警告表示手段22、液面高さ記憶部24、第1しきい値保持部25及び第2しきい値保持部26を備えている。プローブ動作制御手段12、液面高さ検出手段14、吸入後液面高さ算出手段16、差分算出手段18、泡検知手段20及び警告表示手段22の各手段は、この演算制御装置10に組み込まれたプログラムとそのプログラムを実行する演算部(CPU)によって実現される機能である。液面高さ記憶部24、第1しきい値保持部25及び第2しきい値保持部26は、この演算制御装置10に設けられたハードディスクや不揮発性メモリによって実現される。
 プローブ動作制御手段12は、吸入対象の液についてオペレータが指定した分注条件に基づいて、目的の液を収容した容器上の位置からプローブ2を下降させるプローブ下降動作、その容器内の液を所定量だけ吸入する吸入動作、及び吸入した液を所定の分注位置に分注する分注動作を実行するために、ポンプ4及びプローブ駆動機構5を制御するように構成されたものである。プローブ下降動作は、液面センサ8の検知信号に基づいて行なわれ、プローブ2は先端が液面に接触した高さからさらに一定の距離だけ下降した位置で停止するようになっている。吸入動作はその位置で実行されるようになっている。
 液面高さ検出手段14は、プローブ下降動作の際に、液面センサ8の検知信号に基づいてプローブ2の先端が液面に接したときのプローブ2の高さを、例えばプローブ駆動機構5のパルスモータに与えられたパルス数から求め、それによって容器内の液面高さH1を検出するように構成されている。ここで検出される液面高さH1は、吸入動作が実行される前の液面高さである。検出された液面高さH1は液面高さ記憶部24に記憶される。
 吸入後液面高さ算出手段18は、液面高さ検出手段14により検出された吸入動作実行前の液面高さH1を用い、その液面高さH1から液の吸入量に相当する高さを差し引いた吸入動作後の液面高さH0を算出するように構成されている。吸入後液面高さ算出手段18により算出された液面高さH0は、吸入後の実際の液面高さではなく、吸入条件に基づいて計算により求めた液面高さの理論値である。算出された液面高さの理論値H0も液面高さ記憶部24に記憶される。この理論値H0は、同じ容器に対して実行される次回のプローブ下降動作の後で、後述する差分算出手段18による差分ΔHの算出に用いられる。
 差分算出手段18は、液面高さ検出手段14によって容器内の液面高さH1が検出されたときに、同じ容器について前回の液採取の際に、吸入後液面高さ算出手段18により算出されている理論値H0と、今回検出された液面高さH1との差分ΔH(=H1-H0)を算出するように構成されている。
 泡検知手段20は、差分算出手段18によって算出された差分ΔHを用い、第1しきい値保持部25に保持されている第1のしきい値と第2しきい値保持部26に保持されている第2のしきい値に基づいて、吸入対象の容器の液面に泡が発生しているか否かを検知するように構成されている。
 液面高さ検出手段14により検出された液面高さH1は、前回の液の吸入後の液面高さの実測値であるといえる。H0は前回の吸入動作後の液面高さを計算で求めた理論値であるから、液面センサ8によって正常に容器内の液面が検知されていれば、H1≒H0となるはずである。H1≒H0となっているか否かを差分ΔH(=H1-H0)によって判断するためのしきい値が第1のしきい値である。第1のしきい値は、ポンプ4の吸入精度による吸入量の誤差を考慮して設定されたものである。
 液面センサ8によって正常に容器内の液面が検知されない場合とは、液面に泡が発生し、その泡にプローブ2の先端が接したときに液面センサ8が液面として検知した場合である。その場合は必ずH1>H0となり、ΔHは第1のしきい値を超える。液面センサ8によって正常に液面が検知されている場合、差分ΔH(=H1-H0)はプラスの値になることもマイナスの値になることもありうるため、第1のしきい値は-α~+αとして設定されていてもよいが、液面センサ8が泡を検知したときは必ずH1>H0となるのであるから、第1のしきい値はプラス側にのみ設定されていればよい。この実施例では、第1のしきい値はプラス側にのみ設定されている。差分算出手段18によって算出された差分ΔHが第1のしきい値を超えたときは、容器内の液面に泡が発生していることが疑われる。
 ただし、ΔHが第1のしきい値を超える場合として、前回の液の採取の後に、その容器が新たな(液が充填された)容器に交換されていた場合や容器内の液が補充されていた場合が考えられる。そこで、ΔHが第1のしきい値を超えたときに、その原因が液面に発生した泡によるものであるのか、又は液が増量したことによるものであるのかを判断するためのしきい値が第2のしきい値である。第2のしきい値は、その容器内の液面に発生しうる泡の大きさの最大値を考慮したものである。したがって、ΔHがこの第2のしきい値を超えている場合には、その容器が新たな容器に交換されているか、液が補充されていると判断することができる。
 気泡検知手段20は、液面高さ検出手段16によって容器内の液面高さH1が検出されたときに、まずそのH1と理論値H0とを比較し、その差分ΔHが第1のしきい値を超えているか否か、そのΔHが第2のしきい値を超えているか否かによって以下のように判断するように構成されている。
ΔH≦0(H1≦H0)・・正常
第1のしきい値<ΔH≦第2のしきい値・・液面に泡が発生している
第2のしきい値<ΔH・・吸入対象の容器が新たな容器に交換されている
 警告表示手段22は、気泡検知手段20によって液面に泡が発生していることが検知されたときに情報表示部30にその旨を出力するように構成されている。情報表示部30にその旨が表示されることで、オペレータがそれを認識することができる。
 次に、この実施例の液の採取動作について図1とともに図3のフローチャートを用いて説明する。
 この液採取装置が吸入対象とする液は、例えば自動分析装置に設置された複数種類の試薬などである。吸入対象となりうる液が複数存在し、それぞれが個別の容器に収容されて設置されている。オペレータによって採取すべき液の種類や量などの条件が指定されると、その条件に基づいて吸入対象の液(の容器)を特定し、プローブ2をその容器の上方の位置から液面センサ8が液面を検知するまで下降させる(プローブ下降動作)。
 液面センサ8が液面を検知するとプローブ2を停止させ、そのときのプローブ2の位置に基づいて吸入対象容器内の液面高さH1を求める。同じ容器についての前回の吸入動作後の液面高さの理論値H0が液面高さ記憶部24に記憶されている場合は、H1とH0を比較し、H1≦H0であれば正常と判断してプローブ2をさらに一定距離だけ下降させ、液の吸入動作を実行する。その容器についての理論値H0が液面高さ記憶部24に記憶されていない場合はその容器に対する液の採取動作は初めて行なわれたものであり、正常と判断し、プローブ2をさらに一定距離だけ下降させて所定量の液を吸入し(吸入動作)、所定の容器(分注位置)にその液を分注する(分注動作)。
 H1>H0の場合は、差分算出手段18が差分ΔH(=H1-H0)を算出し、ΔHが第1のしきい値以下であれば正常と判断し、プローブ2をさらに一定距離だけ下降させて液の吸入動作を実行する。ΔHが第1のしきい値を超えている場合は、ΔHを第2のしきい値と比較し、第2のしきい値以下であれば液面に泡が発生していると判断する。その場合、情報表示部30にその旨を出力してから以降の吸入動作及び分注動作を実行する。この液採取装置が自動分析装置に組み込まれたものである場合には、この吸入動作で採取された液を用いて実行された分析の結果が情報表示部30に表示される際に、容器に泡が発生していた可能性がある旨の警告を表示するようにしてもよい。そうすれば、オペレータは、その分析結果の信頼性が疑わしいものであることを認識することができる。
 また、別の実施態様としては、泡検知手段20によって液面の泡が検出された場合に、その旨の警告を表示し、オペレータが確認するまで以降の吸入動作及び分注動作を中断するように構成されていてもよい。
 ΔHが第2のしきい値を超えている場合は、その容器を新たな容器と判断し、以降の吸入動作及び分注動作を実行する。ΔHが第2のしきい値を超えている場合も、情報表示部30に容器が新たな容器である旨の表示がなされるようになっていてもよい。
 プローブ下降動作の際に検出された液面高さH1と吸入量条件に基づき、今回の吸入動作後の液面高さの理論値H0が算出される。図3では、液の分注動作の後にH0が算出されるようになっているが、この算出のタイミングはH0の算出が可能なタイミングであればいずれのタイミングであってもよい。
(実施例2)
 図4を用いて液採取装置の他の実施例を説明する。
 この実施例の液採取装置は、ポンプ4及びプローブ駆動機構6の動作制御を行なう演算制御装置10aの有する機能が、図1から図3を用いて説明した実施例1の演算制御装置10の有する機能と相違しており、他の構成は実施例1と同じである。
 この実施例の演算制御装置10aは、実施例1の演算制御装置10の機能に加え、しきい値選択手段19及び液情報記憶部28を備えている。さらに、実施例1における第1しきい値保持部25及び第2しきい値保持部26は第1のしきい値、第2のしきい値としてそれぞれ単一の値を保持するものであるが、この実施例における第1しきい値保持部25aと第2しきい値保持部26aは、第1のしきい値、第2のしきい値としてそれぞれ複数の値を保持している。
 吸入対象の容器の液面に発生する泡の大きさは液の種類、その容器の大きさや形状によってかわってくることがある。また、ポンプ4の吸入精度による吸入後の液面高さの許容誤差の範囲は、容器の大きさや形状によって異なる。そのため、第1しきい値保持部25aには、第1のしきい値として、吸入対象の液を収容した容器の大きさや形状に応じたものが保持されている。第2しきい値保持部26aには、第2のしきい値として、吸入対象の液の種類に応じたもの、又は容器の大きさ又は形状に応じたものが保持されている。液の種類や容器の大きさ又は形状は、予め液情報として装置側に登録されており、液情報保持部28に登録されている。
 しきい値選択手段19は、オペレータの指定した条件に基づいて特定された吸入対象液の情報を液情報保持部28から読み取り、その液を収容する容器の大きさ又は形状に応じた第1のしきい値を第1しきい値保持部25aから選択するとともに、その液の種類、容器の大きさ又は形状に応じた第2のしきい値を第2しきい値保持部26aから選択するように構成されている。泡検知手段20は、しきい値選択手段19が選択した第1のしきい値と第2のしきい値を用いて、液面に発生した泡の検知を行なうようになっている。
 この実施例の動作を図4とともに図5のフローチャートを用いて説明する。
 オペレータによって採取すべき液の種類や量などの条件が指定されると、その条件に基づいて吸入対象の液(の容器)を特定し、その液の情報が液情報保持部28から読み出される。読み出された液の種類、容器の大きさ又は形状に基づいて第1のしきい値及び第2のしきい値が選択される。ここで選択された第1のしきい値と第2のしきい値が、吸入対象容器内の泡の検知に用いられる。以降のプローブ下降動作から分注動作までの一連の流れについては実施例1と同じであるので、ここでは詳細な説明を省略する。
(実施例3)
 次に、上記の液採取装置を適用した自動分析装置の一実施例について図6及び図7を用いて説明する。この実施例で適用されている液採取装置は、実施例1及び実施例2のいずれのものであってもよい。
 この自動分析装置101は、2つの自動分析装置102a,102bと装置間輸送装置112により構成されている。自動分析装置102a,102bは水平面内の一方向であるX方向に並んで配置され、両自動分析装置102a,102bのそれぞれの搬送機構106aと106bの間が装置間輸送装置112によって連結されている。この自動分析装置101では、前段側の自動分析装置102aにおいてサンプリングの終了した検体が装置間輸送装置112を介して後段側の自動分析装置102bに導入され、後段側の自動分析装置102bにおいてもその検体のサンプリングと分析がなされる。
 前段側の自動分析装置102aは、分析動作部104a、搬送機構106a及びラック導入機構118aを備えている。搬送機構106aは検体容器を保持した検体ラック120をX方向の一方側(図6及び図7において左側)へ搬送するベルトコンベア107aを備えている。ベルトコンベア107aの周囲はカバーで覆われている。搬送機構106aの始端側(図6及び図7において右側)に検体ラック配置部108aが設けられ、終端側(同図において左側)に検体ラック回収部110aが設けられている。検体ラック配置部108aと検体ラック回収部110aのカバーは開閉可能であり、ユーザーが検体ラック配置部108aのカバーを開けて検体ラックをベルトコンベア107a上に配置したり、検体ラック回収部110aのカバーを開けてサンプリングの終了した検体ラックを取り出したりすることができる。
 ラック導入機構118aは水平面内においてX方向と直交するY方向へ移動し、ベルトコンベア107a上の検体ラック120を保持して分析動作部104a側へ導入したり、サンプリングの終了した検体ラック120をベルトコンベア107a上に配置したりするものである。
 分析動作部104aには、試薬収容部122a、検体収容部123a、測定部124a、サンプリングアーム125a、試薬アーム127a及び129aが設けられている。試薬収容部122aには種々の試薬を収容した複数の試薬容器121aが同一円周上に設置されている。検体収容部123aは複数の検体ラック120を収容することができ、ラック導入機構118aによって導入された検体ラック120がこの検体収容部123aに収容されるようになっている。測定部124aは複数の測定ポート(図示は省略)を備えており、それらの測定ポートに配置された反応容器内の反応を光学的に測定するようになっている。試薬収容部122a、検体収容部123a及び測定部124aはそれぞれ水平面内において回転するターンテーブルになっており、試薬容器、検体容器及び測定ポートをその円周上の任意の位置に移動させることができる。
 サンプリングアーム125aは検体収容部123aと測定部124aとの間において水平方向へ延びるように配置されている。サンプリングアーム125aの先端部に、検体を採取するためのプローブ126aがその先端を鉛直下向きにした状態で固定されている。サンプリングアーム125aの基端部は、鉛直向きに配置された軸によって支持されており、その軸を中心に回転するとともにその軸に沿って上下動を行なうことができる。これにより、プローブ126aは、検体収容部123a上の位置と測定部124a上の位置との間で円軌道を描くように移動し、検体容器上の位置又は反応容器上の位置から下降して検体を吸入したり反応容器に検体を分注したりすることができる。サンプリングアーム125a及びプローブ126aは検体採取機構140a(図12を参照。)を構成している。
 試薬アーム127a及び129aは、それぞれ試薬収容部122aと測定部124aとの間において水平方向へ延びるように配置されている。試薬アーム127aの先端部には試薬を採取するためのプローブ128aが、試薬アーム128aの先端部には試薬を採取するためのプローブ130aが、それぞれ先端を鉛直下向きにした状態で固定されている。試薬アーム127a及び129aの基端部は、それぞれが鉛直向きに配置された軸によって支持されており、その軸を中心に回転するとともにその軸に沿って上下動を行なうことができる。これにより、プローブ127aと129aは、試薬収容部122a上の位置と測定部124a上の位置との間で円軌道を描くように移動し、試薬容器上の位置上の位置から下降して試薬を吸入し反応容器に試薬を分注することができる。試薬アーム127aとプローブ128a、試薬アーム129aとプローブ130aはそれぞれ独立した試薬分注機構142a(図12を参照。)を構成している。
 なお、この実施例では、2つの試薬アーム127a及び129aによって試薬分注機構142aが構成されているが、試薬アームが1つだけであってもよい。2つの試薬アーム127a及び129aが設けられていることにより、2以上の試薬を使用する分析項目に対応することができる。
 この試薬分注機構142a(図12を参照。)には、実施例1又は実施例2の液採取装置が適用されている。すなわち、試薬アーム127a及び129aは図2におけるアーム34に対応し、プローブ128a及び130aは図2におけるプローブ2に対応する。図7には示されていないが、プローブ128aとプローブ130aの先端が液面に接触したことを検知する液面センサ144a(図12を参照。)がこの試薬分注機構142a(図12を参照。)に設けられており、液面センサ144aの検知信号はこの自動分析装置全体を管理する演算制御装置134(図12を参照。)に取り込まれるようになっている。
 後段側の自動分析装置102bは前段側の自動分析装置102aと同じ構成を有する。自動分析装置102bの搬送機構106bに設けられたベルトコンベア107bの始端と前段側のベルトコンベア107aの終端とは装置間輸送装置112によって連結されている。
 装置間輸送装置112は、前段側のベルトコンベア107aの終端にきた検体ラック120を保持して後段側のベルトコンベア107bの始端に配置する輸送機構とその輸送機構を覆う開閉式の遮蔽カバー114を備えている。輸送機構については後述する。
 装置間輸送装置112の輸送機構の一例について図8から図11を用いて説明する。
 輸送機構1100は水平面を有するテーブル1102を備えている。テーブル1102は基台1118によって支持されている。テーブル1102の水平面は両端に配置されるベルトコンベア107a,107bの搬送面とほぼ同じ高さに設定されている。テーブル1102のX方向における一方側(図において右側)の端部近傍の位置は輸送対象である検体ラックを保持して輸送を開始する輸送開始位置1103aであり、この輸送開始位置1103aに前段側のベルトコンベア107aの終端がくるように配置されている。テーブル1102のX方向における他方側(図において左側)の端部近傍の位置は検体ラックの輸送完了位置1103bとなっており、この輸送完了位置1103bに後段側のベルトコンベア107bの始端がくるように配置されている。
 テーブル1102上の両側縁部にX方向に延びた腕部材1104と腕部材1106が対向して配置されている。腕部材1104と腕部材1106はテーブル1102の側縁部においてX方向とY方向へ駆動される。腕部材1104と腕部材1106は、X方向に対しては同時に同方向へ連動して移動し、Y方向に対してテーブル1102を中心として対称な方向へ連動して移動する。図には示されていないが、腕部材1104と腕部材1106を駆動するモータ等の機構は基台1118の内部に収容されている。
 腕部材1104は、輸送開始位置1103a側端部に突起1104aを備え、輸送完了位置1103b側端部に突起1104bを備えている。突起1104aと突起1104bは検体ラックの腕部材1104側側面に設けられた凹部(図示は省略)に嵌め込まれて検体ラックと係合するものである。腕部材1104のY方向への移動は、突起1104a,1104bが検体ラックの凹部に嵌め込まれる位置と検体ラック自体に接触しない位置との間で行なわれる。
 腕部材1106は、輸送開始位置1103a側端部に突起1106aを備え、輸送完了位置1103b側に突起1106bを備えている。突起1106aと突起1106bは検体ラックの後背面と係合するものである。腕部材1106のY方向への移動は、突起1106a,1106bが検体ラックの背面に係合する位置と突起1106a,1106bが検体ラックに接触しない位置との間で行なわれる。
 腕部材1104と1106は、検体ラックを保持して輸送開始位置1103aから輸送完了位置1103bまでテーブル1102上をスライドさせて輸送するハンドラを構成している。このハンドラは、輸送開始位置1103a側と輸送完了位置1103b側の2箇所に保持部を備えている。輸送開始位置1103a側の保持部は腕部材1104の突起1104aと腕部材1106の突起1106aで構成され、輸送完了位置1103b側の保持部は腕部材1104の突起1104bと腕部材1106の突起1106bで構成される。
 以下において、腕部材1104と腕部材1106をまとめて「ハンドラ1104,1106」、ハンドラ1104,1106の輸送開始位置1103a側の保持部を「第1保持部1104a,1106a」、輸送完了位置1103b側の保持部を「第2保持部1104b,1106b」と称する。
 第1保持部1104a,1106aは、腕部材1104と1106の輸送開始位置1103a側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一方側の側面の凹部に突起1104aを嵌め込むとともに検体ラックの反対側後背面を突起1106aで支持する。第2保持部1104b,1106bは、腕部材1104と1106の輸送完了位置1103b側の端部で検体ラックを両側から挟み込むことによって、検体ラックの一側面の凹部に突起1104bを嵌め込むとともに検体ラックの反対側後背面を突起1106bで支持する。ハンドラ1104,1106は、検体ラックを保持した状態でX方向へ移動し、検体ラックをテーブル1102上でスライドさせて輸送する。テーブル1102の腕部材1106側の側縁部には、テーブル1102上をスライドする検体ラックの側面に設けられた溝に嵌め込まれて検体ラックの転倒を防止するガイドレール1108が設けられている。
 輸送開始位置1103aの側方には、輸送開始位置1103aへの検体ラックの到達を検知する開始センサ1110が設けられている。輸送完了位置1103bの側方には、輸送完了位置1103bへの検体ラックの到達を検知する終了センサ1112が設けられている。また、輸送開始位置1103aの近傍に、前段側のベルトコンベア107aによって輸送開始位置1103aまで搬送されてきた検体ラックを輸送開始位置1103aで一時的に停止させておくためのストッパ1114が設けられている。
 基台1118の側部に回路基板1116が設けられている。回路基板1116はハンドラ1104,1106の動作を制御する制御部(以下において、制御部1116とも記載)をなしている。開始センサ1110及び終了センサ1112は配線を介して回路基板1116に接続されている。開始センサ1110及び終了センサ1112の信号は回路基板1116に取り込まれ、ハンドラ1104,1106による検体ラックの輸送動作の開始や検体ラックの輸送エラーの有無の判定に利用される。
 なお、図10及び図12では、配線や回路基板1116に搭載されているモジュールの図示を省略している。図11では回路基板1116に搭載されているモジュールの一部は図示しているが、配線の図示を省略している。
 次に、この自動分析装置101全体の制御系統について図12を用いて説明する。
 第1自動分析装置102aには分析動作部104a、搬送機構106a及びラック導入機構118aの動作を制御する制御部132aが設けられ、第2自動分析装置102bには分析動作部104b、搬送機構106b及びラック導入機構118bの動作を制御する制御部132bが設けられている。装置間輸送装置112には輸送機構1100の動作を制御する制御部1116が設けられている。
 制御部132a,132b及び1116はそれぞれ演算制御装置134と接続されている。第1自動分析装置102aの分析動作部104aで得られた測定データや第2自動分析装置102bの分析動作部104bで得られた測定データは制御部132aを介して演算制御装置134に取り込まれ、演算制御装置134において検体中の成分の同定や定量が行なわれる。
 既述のように、第1自動分析装置102aの分析動作部104aは、検体採取機構140aと試薬分注機構142aを備えている。試薬分注機構142aは実施例1又は実施例2の液採取機構を適用したものであり、この試薬分注機構142aには、プローブ128a及び130aの先端が液面に接触したことをそれぞれ検知する液面センサ144aが設けられている。同様に、第2自動分析装置102bの分析動作部104bは、検体採取機構140bと試薬分注機構142bを備えており、試薬分注機構142bには、プローブ128b及び130bの先端が液面に接触したことをそれぞれ検知する液面センサ144bが設けられている。液面センサ144aの検知信号は制御部132aを介して演算制御装置134に取り込まれ、液面センサ144bの検知信号は制御部132bを介して演算制御装置134に取り込まれる。
 演算制御装置134は、実施例1の演算制御装置10又は実施例2の演算制御装置10aを実現するものであり、情報表示部138は実施例1又は実施例2の情報表示部30を実現するものである。演算制御装置134は、実施例1又は実施例2において説明した、液面の泡検知機能を用いて試薬容器内の液面の泡の検知を行ない、試薬吸入の際に試薬の液面に泡が検知された場合はその旨を情報表示部138に表示する。そして、泡の検知された試薬を用いて分析がなされた場合に、その分析結果を情報表示部138に表示する際に、試薬の液面に泡が存在していた可能性がある旨の警告を行なう。
   2,126a,126b,128a,128b,130a,130b   プローブ
   4   ポンプ
   5   プローブ駆動機構
   6   上下動駆動部
   7   回転駆動部
   8,144a,144b   液面センサ
   10,10a,134   演算制御装置
   12   プローブ動作制御手段
   14   液面高さ検出手段
   16   吸入後液面高さ算出手段
   18   差分算出手段
   19   しきい値選択手段
   20   泡検知手段
   22   警告表示手段
   24   液面高さ記憶部
   25   第1しきい値保持部
   26,26a   第2しきい値保持部
   28   液情報保持部
   30,138   情報表示部
   104a,104b   分析動作部
   106a,106b   搬送機構
   112   装置間輸送装置
   118a,118b   ラック導入機構
   120   検体ラック
   121a,121b   試薬容器
   122a,122b   試薬収容部
   123a,123b   検体収容部
   124a,124b   測定部
   125a,125b   サンプリングアーム
   132a,132b,1116   制御部
   136   情報入力部
   1100   輸送機構

Claims (9)

  1.  液を収容した容器に上方から挿入され該容器内の液を吸入するプローブと、
     前記プローブを少なくとも鉛直方向へ駆動するプローブ駆動機構と、
     前記プローブを介して液の吸入と吐出を行なうポンプと、
     前記プローブの先端が液面に接触したことを検知する液面センサと、
     吸入対象の液を収容した容器上の位置から前記プローブを下降させて該容器内に進入させるプローブ下降動作及びその容器内の液を予め設定された量だけ吸入する吸入動作が実行されるように前記プローブ駆動機構と前記ポンプを制御するプローブ動作制御手段と、
     前記液面センサの検知信号に基づき、前記プローブ下降動作の際の前記プローブ先端が液面に接触したときの前記プローブの位置を検知することにより、前記吸入動作前の液面高さを検出するように構成された液面高さ検出手段と、
     前記液面高さ検出手段により検出された前記吸入動作前の液面高さとその吸入動作の際の吸入量に基づいて、その吸入動作後の液面高さの理論値を算出するように構成された吸入後液面高さ算出手段と、
     前記吸入後液面高さ算出手段により算出された液面高さの理論値を記憶する吸入後液面高さ記憶部と、
     前記吸入後液面高さ算出手段により算出された前記吸入動作後の液面高さの理論値と前記吸入動作後の実際の液面高さとの相違として許容される誤差の最大値として設定された第1のしきい値を保持する第1しきい値保持部と、
     前記第1のしきい値よりも大きく設定された第2のしきい値を保持する第2しきい値保持部と、
     同一の吸入対象の容器に対して2回目以降の前記プローブ下降動作を実行する際に前記液面高さ検出手段により検出された液面高さと、前記吸入後液面高さ記憶部に記憶されている当該容器についての前記吸入動作後の液面高さの理論値との差分を算出するように構成された差分算出手段と、
     前記差分算出手段により算出された差分値と前記第1のしきい値及び前記第2のしきい値とを比較し、前記差分値が前記第1のしきい値を超え、かつ前記第2のしきい値以下であるときに泡の存在を検知するように構成された泡検知手段と、
     前記泡検知手段が泡の存在を検知したときに、オペレータの認識しうる方法でその旨を出力するように構成された警告表示手段と、を備えた液採取装置。
  2.  前記第2のしきい値は、容器内の液面に発生しうる泡の大きさの最大値に基づいて設定されたものである請求項1に記載の液採取装置。
  3.  前記プローブによる吸入対象となる液であって互いに異なる種類の液を収容した容器が複数設けられ、前記第2のしきい値は吸入対象の液の種類ごとに個別に設定されており、
     吸入対象の液の種類に応じて前記第2のしきい値を選択するしきい値選択手段をさらに備え、
     前記泡検知手段は、前記しきい値選択手段の選択した前記第2のしきい値を用いて泡の存在を検知するように構成されている請求項2に記載の液採取装置。
  4.  前記プローブによる吸入対象となる液を収容した容器が複数設けられ、前記第1のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されており、
     吸入対象の液を収容した容器の大きさ又は形状に応じて前記第1のしきい値を選択するしきい値選択手段をさらに備え、
     前記泡検知手段は、前記しきい値選択手段の選択した前記第1のしきい値を用いて泡の存在を検知するように構成されている請求項2に記載の液採取装置。
  5.  前記プローブによる吸入対象となる液を収容した容器が複数設けられ、前記第2のしきい値は吸入対象の液を収容した容器の大きさ又は形状ごとに個別に設定されており、
     吸入対象の液を収容した容器の大きさ又は形状に応じて前記第2のしきい値を選択するしきい値選択手段をさらに備え、
     前記泡検知手段は、前記しきい値選択手段の選択した前記第2のしきい値を用いて泡の存在を検知するように構成されている請求項2に記載の液採取装置。
  6.  前記泡検知手段は、前記差分算出手段により算出された差分値が前記第2のしきい値を超えているときにその吸入対象の液を収容した容器が新たな容器であることを検知するように構成されている請求項1から5のいずれか一項に記載の液採取装置。
  7.  前記プローブ動作制御手段、前記液面高さ検出手段、前記吸入後液面高さ算出手段、前記吸入後液面高さ記憶部、前記しきい値保持部、前記差分算出手段及び前記泡検知手段を備えた演算制御装置と、
     前記演算制御装置に接続され、前記演算制御装置の有する情報を表示する情報表示部と、をさらに備え、
     前記警告表示手段は、前記泡検知手段が泡の存在を検知したときにその旨を前記情報表示部に表示するように構成されている請求項1から6のいずれか一項に記載の液採取装置。
  8.  検体を収容した検体容器から検体を採取し、検体を反応させるための反応容器に分注する検体採取機構と、
     請求項1から7のいずれか一項に記載の液採取装置によって構成され、試薬を収容した試薬容器から試薬を吸入して反応容器に分注する試薬分注機構と、
     検体及び試薬を収容した反応容器内を測定する測定部と、を備えた自動分析装置。
  9.  前記検体採取機構、前記試薬分注機構及び前記測定部をそれぞれ備えた分析装置が複数設けられており、
     前記分析装置の各々は、複数の検体容器が保持された検体ラックを一方向に搬送するベルトコンベアを備え、互いに隣接して配置された分析装置のうち一方のベルトコンベアの終端と他方のベルトコンベアの始端が対向するように配置されており、それらの前記ベルトコンベアの間が、前記一方のベルトコンベアの終端に到達した前記検体ラックを保持して前記他方のベルトコンベアの始端へ輸送する輸送機構を有する装置間輸送装置によって連結されている請求項8に記載の自動分析装置。
PCT/JP2013/083555 2013-12-16 2013-12-16 液採取装置及びその液採取装置を備えた自動分析装置 WO2015092844A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/103,504 US9671419B2 (en) 2013-12-16 2013-12-16 Liquid collection device and automated analyzer provided therewith
EP13899637.6A EP3086127A4 (en) 2013-12-16 2013-12-16 Liquid collection device and automated analyzer provided therewith
PCT/JP2013/083555 WO2015092844A1 (ja) 2013-12-16 2013-12-16 液採取装置及びその液採取装置を備えた自動分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083555 WO2015092844A1 (ja) 2013-12-16 2013-12-16 液採取装置及びその液採取装置を備えた自動分析装置

Publications (1)

Publication Number Publication Date
WO2015092844A1 true WO2015092844A1 (ja) 2015-06-25

Family

ID=53402240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083555 WO2015092844A1 (ja) 2013-12-16 2013-12-16 液採取装置及びその液採取装置を備えた自動分析装置

Country Status (3)

Country Link
US (1) US9671419B2 (ja)
EP (1) EP3086127A4 (ja)
WO (1) WO2015092844A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021030A (ja) * 2015-07-13 2017-01-26 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動分析装置で液体をピペッティングする方法
JP2019100909A (ja) * 2017-12-05 2019-06-24 株式会社島津製作所 分注装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818873A1 (fr) * 2013-06-24 2014-12-31 Seyonic SA Méthode de contrôle d'opérations de pipetage
JP6280777B2 (ja) * 2014-03-24 2018-02-14 シスメックス株式会社 分析装置、及び分析装置における液面検出方法
EP3455596B1 (en) * 2016-05-11 2020-12-09 Siemens Healthcare Diagnostics Inc. Quick connection for liquid level sense-enabled metering probe
CH712735A1 (de) * 2016-07-22 2018-01-31 Tecan Trading Ag Pipettiervorrichtung mit einem Flüssigkeitsvolumensensor und Flüssigkeitsbearbeitungssystem.
EP3501654B1 (en) * 2017-12-22 2021-08-25 Tecan Trading Ag Pipetting apparatus with a pipette tube and method for detecting a liquid within an intermediate section of pipette tube
CN112074744A (zh) * 2018-03-16 2020-12-11 株式会社日立高新技术 自动分析装置
CN113188840B (zh) * 2021-03-31 2024-07-09 深圳普门科技股份有限公司 取样方法、装置、检测设备和存储介质
CN113552377A (zh) * 2021-07-09 2021-10-26 上海科华实验系统有限公司 一种加样臂运行检测方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306973A (ja) * 1992-04-30 1993-11-19 Olympus Optical Co Ltd 液体の分注方法及び液体の分注装置
JP2564628Y2 (ja) * 1991-08-01 1998-03-09 東亞医用電子株式会社 試薬分取装置における泡検知装置
JP2007322285A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2010216956A (ja) * 2009-03-16 2010-09-30 Shimadzu Corp サンプリング機構

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228831A (en) * 1978-12-11 1980-10-21 Abbott Laboratories Probe and syringe drive apparatus
JPH0833320B2 (ja) * 1986-03-20 1996-03-29 株式会社東芝 自動化学分析装置
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
CA2177658A1 (en) * 1995-07-10 1997-01-11 Kurukundi Ramesh Murthy Volume detection apparatus and method
US5866426A (en) * 1996-12-17 1999-02-02 Akzo Nobel N.V. Device and method for determining liquid-probe contact
FR2777086B3 (fr) * 1998-04-01 2000-06-09 Bio Merieux Procede de prelevement et de detection de surface d'un echantillon biologique par l'intermediaire d'un appareil d'aspiration-refoulement
US6227053B1 (en) * 1998-07-14 2001-05-08 Bayer Corporation Dynamic noninvasive detection of analytical container feature using ultrasound
DE19919305A1 (de) * 1999-04-28 2000-11-02 Roche Diagnostics Gmbh Verfahren und Vorrichtung zum Flüssigkeitstransfer mit einem Analysegerät
US6322752B1 (en) * 1999-09-08 2001-11-27 Coulter International Corp. Method and apparatus for aspirating and dispensing liquids
US6270726B1 (en) * 1999-09-30 2001-08-07 Dpc Cirrus, Inc. Tube bottom sensing for small fluid samples
CN1193234C (zh) * 2000-06-30 2005-03-16 株式会社日立制作所 液体分注方法及装置
JP3665257B2 (ja) * 2000-07-11 2005-06-29 株式会社日立製作所 分注装置
DE10052819B4 (de) * 2000-10-24 2004-02-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pipettensystem und Pipettenarray sowie Verfahren zum Befüllen eines Pipettensystems
US7027935B2 (en) * 2002-08-07 2006-04-11 Hitachi High Technologies Corp. Sample dispensing apparatus and automatic analyzer using the same
JP4117181B2 (ja) * 2002-11-21 2008-07-16 株式会社日立ハイテクノロジーズ 自動分析装置
US6908226B2 (en) * 2003-02-07 2005-06-21 Beckman Coulter, Inc. Method and apparatus for aspirating liquid from a container
CA2532790C (en) * 2003-07-18 2017-01-17 Bio-Rad Laboratories, Inc. System and method for multi-analyte detection
JP4095968B2 (ja) * 2004-02-06 2008-06-04 株式会社日立ハイテクノロジーズ 液体分注装置、それを用いた自動分析装置、及び液面検出装置
EP1596169B1 (en) * 2004-05-14 2012-05-30 F. Hoffmann-La Roche AG Level sensor apparatus for detecting contact of a pipetting needle with a liquid in a vessel
US7150190B2 (en) * 2005-03-21 2006-12-19 Dade Behring Inc. Method and apparatus for capacitively determining the uppermost level of a liquid in a container
US7998751B2 (en) * 2005-04-26 2011-08-16 Siemens Healthcare Diagnostics Inc. Method and apparatus for aspirating and dispensing small liquid samples in an automated clinical analyzer
TWI422801B (zh) * 2005-05-19 2014-01-11 Universal Bio Research Co Ltd 分注量檢測方法及吸液監測器型分注裝置
EP1745851B1 (de) * 2005-07-22 2015-02-25 Tecan Trading AG Verfahren, Vorrichtung und Computerprogrammprodukt zum Klassifizieren einer Flüssigkeit
DE602005009194D1 (de) * 2005-09-21 2008-10-02 Roche Diagnostics Gmbh Verfahren und Vorrichtung zur präzisen Positionierung einer Pipettiervorrichtung
JP2008076275A (ja) * 2006-09-22 2008-04-03 Fujifilm Corp 分注装置
JP4538478B2 (ja) * 2007-08-31 2010-09-08 株式会社日立ハイテクノロジーズ 自動分析装置
US7867769B2 (en) * 2007-09-19 2011-01-11 Siemens Healthcare Diagnostics Inc. Clog detection in a clinical sampling pipette
US7926325B2 (en) * 2008-04-23 2011-04-19 Siemens Healthcare Diagnostics Inc. Differentiating between abnormal sample viscosities and pipette clogging during aspiration
US9086396B2 (en) * 2008-11-28 2015-07-21 Roche Molecular Systems, Inc. System and method for the automated processing of fluids, method for determining the matching of objects
JP5517467B2 (ja) * 2009-02-20 2014-06-11 株式会社日立ハイテクノロジーズ 自動分析装置
JP5097737B2 (ja) * 2009-03-27 2012-12-12 株式会社日立ハイテクノロジーズ 自動分析装置及びサンプル分注ノズル
JP5277214B2 (ja) * 2010-07-27 2013-08-28 株式会社日立ハイテクノロジーズ 自動分析装置
JP5761753B2 (ja) * 2011-09-20 2015-08-12 株式会社日立ハイテクノロジーズ 自動分析装置及びその動作不良判定方法
JP5899075B2 (ja) * 2012-07-20 2016-04-06 株式会社日立ハイテクノロジーズ 自動分析装置
JP5984584B2 (ja) * 2012-08-28 2016-09-06 株式会社日立ハイテクノロジーズ 自動分析装置
JP6280777B2 (ja) * 2014-03-24 2018-02-14 シスメックス株式会社 分析装置、及び分析装置における液面検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564628Y2 (ja) * 1991-08-01 1998-03-09 東亞医用電子株式会社 試薬分取装置における泡検知装置
JPH05306973A (ja) * 1992-04-30 1993-11-19 Olympus Optical Co Ltd 液体の分注方法及び液体の分注装置
JP2007322285A (ja) * 2006-06-01 2007-12-13 Olympus Corp 分注装置
JP2010216956A (ja) * 2009-03-16 2010-09-30 Shimadzu Corp サンプリング機構
JP5093164B2 (ja) 2009-03-16 2012-12-05 株式会社島津製作所 サンプリング機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086127A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021030A (ja) * 2015-07-13 2017-01-26 シーメンス ヘルスケア ダイアグノスティクス プロダクツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自動分析装置で液体をピペッティングする方法
JP2019100909A (ja) * 2017-12-05 2019-06-24 株式会社島津製作所 分注装置

Also Published As

Publication number Publication date
EP3086127A4 (en) 2017-08-02
US9671419B2 (en) 2017-06-06
US20160313362A1 (en) 2016-10-27
EP3086127A1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6274081B2 (ja) 液採取装置及びその液採取装置を備えた自動分析装置
WO2015092844A1 (ja) 液採取装置及びその液採取装置を備えた自動分析装置
EP2703819B1 (en) Sample processing apparatus and sample processing method
US7824915B2 (en) Sample dispensing apparatus and automatic analyzer including the same
JP5372678B2 (ja) 検体処理装置
EP3270168B1 (en) Automated analysis device
JP5975434B2 (ja) 自動分析装置
JP5244062B2 (ja) 検体処理装置
US20110316713A1 (en) Sample processing apparatus, sample container transporting apparatus, sample processing method and sample container transporting method
US20140186234A1 (en) Automatic analysis apparatus
JP2011242264A (ja) 自動分析装置
EP2853900A1 (en) Analyzer and analyzing method using a tip container with cover
JP5258615B2 (ja) 自動分析装置
CN113049800A (zh) 一种免疫分析仪及其检测方法、计算机可读存储介质
JP2010286324A (ja) 分注装置、自動分析装置、および分注方法
JP2013148360A (ja) 自動分析装置、分注機構および分注方法
JP6121743B2 (ja) 自動分析装置
EP4089417A1 (en) Automatic analysis device, display system of automatic analysis device, and method for carrying out display in automatic analysis device
JP4110082B2 (ja) 自動分析装置
JP2017083269A (ja) 自動分析装置
JP6338898B2 (ja) 自動分析装置
WO2015083236A1 (ja) 複数の分析装置を連結してなる自動分析システム
JP5875875B2 (ja) 自動分析装置
US10908174B2 (en) Automatic analyzing apparatus
JP7270039B2 (ja) 自動分析装置、および異常検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15103504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP