WO2006100837A1 - リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法 - Google Patents

リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法 Download PDF

Info

Publication number
WO2006100837A1
WO2006100837A1 PCT/JP2006/301827 JP2006301827W WO2006100837A1 WO 2006100837 A1 WO2006100837 A1 WO 2006100837A1 JP 2006301827 W JP2006301827 W JP 2006301827W WO 2006100837 A1 WO2006100837 A1 WO 2006100837A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
metal
material particles
Prior art date
Application number
PCT/JP2006/301827
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kagawa
Tsutomu Sada
Kanae Hashimoto
Masakazu Moriyama
Original Assignee
Pionics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005082997A external-priority patent/JP5256403B2/ja
Application filed by Pionics Co., Ltd. filed Critical Pionics Co., Ltd.
Priority to EP06712970A priority Critical patent/EP1873846A4/en
Priority to KR1020077024368A priority patent/KR101281277B1/ko
Publication of WO2006100837A1 publication Critical patent/WO2006100837A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel high-capacity negative electrode active material particle for a lithium secondary battery, a negative electrode, and a method for producing the same, particularly for a lithium secondary battery that electrochemically occludes and releases lithium.
  • Negative electrode active material particles that react with the electrolyte and a first metal that has the property of inserting and extracting lithium, and a second metal that has the property of stabilizing the shape change during storage and release of lithium.
  • Negative electrode active material particles containing tin having the property of inserting and extracting lithium and cobalt having the property of stabilizing the shape change during storage and release of lithium.
  • Lithium secondary batteries are used in particular for portable devices. Batteries that are used with many functions added to mobile phones and personal computers represented by recent portable devices have a large output voltage according to the operating voltage of the device and a battery capacity that affects the usage time. There is a need to ask. In particular, with regard to the increase in battery capacity to extend the usage time, the battery space is limited! / Therefore, it is not possible to increase the battery capacity in addition to increasing the energy density of the active material that stores electrical energy. Can not.
  • the positive electrode active material of a typical lithium secondary battery used in the past is lithium cobaltate, and the negative electrode active material is graphite. It is difficult to achieve a volume energy efficiency of 400 WhZL or higher with such a battery material configuration.
  • the theoretical energy amount of graphite as the negative electrode active material is 372 mAhZg, so there is a limit to increasing the battery capacity, and the development of other types of negative electrode active materials with a large theoretical energy amount has been developed by each research institution or It is implemented by battery manufacturers.
  • silicon and tin are listed as negative electrode active materials that can occlude and release lithium in the same manner as graphite. When these metals are used alone, the volume of lithium is occluded (charged). It is explained that the volume shrinks when it expands and releases (discharges) lithium.
  • the negative electrode current collector surface is surface-treated using the improved negative electrode active material having a conventional silicon alloy or tin alloy power to form a coating layer, the occlusion and absorption of lithium are performed. Volume expansion and shrinkage ratio associated with release. Also, since particles are likely to become finer, the electrical connection between the particles is hindered, and the discharge performance deteriorates with the charge / discharge cycle. was there.
  • the present invention was developed for the purpose of solving the above problems, and its main The main purposes are (1) suppression of particle refinement due to lithium occlusion / release of negative electrode active material particles, and (2) case of particle refinement accompanying lithium occlusion / release of negative electrode active material particles.
  • the present invention provides a negative electrode active material particle for a lithium secondary battery, a negative electrode using the negative electrode active material particle, and a method for producing the same, capable of maintaining an electrical connection between the fine particles.
  • the shape of the negative electrode active material particles referred to herein includes various shapes such as a granular shape, a short fiber shape, and a flake shape.
  • Another object of the present invention is as follows: (4) For a lithium secondary battery in which cycle life and energy density are not decreased and internal resistance is not increased by charge / discharge with high charge / discharge efficiency.
  • An object of the present invention is to provide a negative electrode active material particle, a negative electrode using the negative electrode active material particle, and a production method thereof.
  • the negative electrode active material particles and the method for producing the same according to the present invention are mainly composed of one or more metals selected from silicon, tin or aluminum.
  • a metal having the property of stabilizing the shape change of silicon, tin or aluminum, and in some cases, a metal having a property that hardly reacts with the electrolyte and hardly absorbs and releases lithium, and reacts with the electrolyte It is characterized in that a metal having a property of being difficult to occlude and release lithium is deposited, bonded or fused to the grain boundary of the negative electrode active material particles and at least a part of Z or the outer surface.
  • the present invention is a negative electrode active material particle for a lithium secondary battery that electrochemically occludes and releases lithium, and has a property of inserting and extracting lithium.
  • a third metal having a property that it is difficult to occlude and release and the third metal is at least part of the grain boundary and Z or the outer surface of the negative electrode active material particles
  • Negative electrode active material particles comprising tin having the property of depositing, bonding or fusing, or lithium absorbing and releasing lithium, and cobalt having the property of stabilizing the shape change during lithium absorption and release And its composition is mainly CoSn force.
  • the anode active material particles for lithium secondary batteries and the production method thereof are provided.
  • the negative electrode active material particles according to the present invention are completely different from the form of the conventional negative electrode active material particles, and one of the characteristics is one or two types in which silicon, tin or aluminum force is also selected. At least a part of the grain boundary and Z or the outer surface of the negative electrode active material particles containing the above metal as a main component is deposited, and a third metal having a property of being difficult to react with the electrolyte and difficult to occlude and release lithium is deposited. As a result, the negative electrode active material particles are bonded to or fused with each other, so that the alloyed third metal does not contribute to the occlusion and release of lithium. Can maintain a strong connection ⁇ .
  • the negative electrode active material particles are finely pulverized, the particles are easily refined into individual particles especially at the grain boundaries where the third metal is precipitated, bonded or fused, and the negative electrode active material particles Since the third metal is exposed on a part of the surface of the individual particles that have been refined, the third metal is electrolyzed on the surface of the negative electrode active material particles. The formation of an inactive reaction product film due to the reaction with the liquid can be prevented, and the electrical connection between the particles can be maintained.
  • the third metal that does not easily react with the electrolytic solution and does not easily store and release lithium includes molybdenum, tungsten, tantalum, thallium, chromium, tellurium, beryllium, calcium, nickel, One or more metals selected from the group forces consisting of silver, copper and iron, or their alloys, including molybdenum, tungsten, tantalum, thallium, chromium, terium, beryllium and calcium. Even metals that are difficult to alloy with negative electrode active materials such as silicon can be used.
  • metals such as nickel, silver, copper and iron are metals that easily alloy with negative electrode active materials such as silicon, but these metals assist the improvement of voltage and electron transfer. This improves the high-rate property and suppresses the generation of reaction heat by promoting the efficiency of the REDOX reaction, making it suitable for use as a third metal.
  • the third metal is contained in the whole negative electrode active material particles in an amount of 1 wt% or more, more preferably 5 wt% or more, the precipitation effect is enhanced.
  • the deposited third metal is a negative electrode active material that is separated by a grain boundary, etc., if it is deposited, bonded or fused to at least a part of the grain boundary and Z or the outer surface of the negative electrode active material particles. It need not be analyzed, bonded or fused to cover the entire structure of the particles.
  • silicon, tin or aluminum force is also selected.
  • the above-mentioned first metal is alloyed by previously containing one or more metals selected from the group power consisting of iron, aluminum, chromium, magnesium, manganese, antimony, lead, zinc and silicon. Is effective, especially when these metals are added at a rate of 1 wt% or less with respect to silicon or the like. Moreover, such alloy particles are commercially available.
  • the negative electrode active material particles according to the present invention are based on the premise that the particles are refined to some extent by the volume change accompanying the insertion and extraction of lithium.
  • Silicon, tin or aluminum force was selected 1 Suppressing the miniaturization of negative electrode active material particles mainly composed of seeds or two or more kinds of metals also contributes to preventing the battery capacity from decreasing due to the charge / discharge cycle.
  • the first metals such as silicon, iron, cobalt, copper, nickel, chromium, magnesium, lead, tin, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and antimony It is also possible to add one or two or more kinds of second metals which are also selected.
  • the alloying of the second and third metals with the first metal mainly having the function of inserting and extracting lithium is performed after the second metal and the third metal are pre-alloyed.
  • the second and third metals and the first metal may be alloyed at the same time.
  • the compounding means of the first metal responsible for the occlusion and release function of lithium and the second and third metals is simply the first metal and either the second or third metal. Is less likely to react with the electrolyte and to absorb and release lithium than when the alloyed metal is alloyed with either the third or second metal.
  • a third metal having properties is positively deposited, bonded or melted on the grain boundaries and Z or the outer surface of the negative electrode active material particles. Makes it possible to combine.
  • the first, second and third metals are alloyed in an inert gas-filled atmosphere.
  • mechano-caloring method mecha-cal gliding method, melting method, gas atomizing method, water atomizing method, mechanofusion method, hybridizing method, plating method, sputtering method, vapor deposition method, gas phase method, liquid It is preferable to use one method selected from the quenching method or the gas quenching method.
  • the first, second and third methods are used. After alloying the metal, heat treatment is preferably performed at a temperature of 100 ° C or higher in an inert gas atmosphere or under vacuum.
  • the third metal is subjected to a surface treatment (deposition and adhesion) so that a matrix network can be formed on the surface of the negative electrode active material particles using microwave or plasma irradiation in an aromatic solvent (BTX) atmosphere.
  • BTX aromatic solvent
  • the conductivity of the surface can be improved.
  • a mixed powder of negative electrode active material particles produced by these different methods may be used.
  • the alloyed metal may be made into fine particles by pulverizing the solid metal particles once produced using a jet mill method or a dulling method.
  • alloy fine particles are produced using gas atomizing method or water atomizing method, etc., it is possible to directly obtain alloy particles composed of the first, second and third metals. In this case, the powdering process may be omitted.
  • the third metal is precipitated, bonded, or fused to the surface, inside, and grain boundaries of the negative electrode active material particles. Even if an electrochemical reaction occurs due to the third metal bonded to the negative electrode active material particles, an electron conduction network is constructed that is not easily affected by the reaction.
  • the total amount of the third metal having the above and the second metal having the property of stabilizing the shape change of the first metal is contained in an amount of 5 wt% or more with respect to the whole negative electrode active material particles.
  • the third metal is contained at least 1 wt% or more, preferably 5 wt% or more with respect to the entire negative electrode active material particles. It may not be possible to sufficiently deposit, bond or fuse the third metal to the grain boundaries and Z or the outer surface of the material particles.
  • Sarako another feature of the present invention is that about 75 wt% to about 90 wt% of tin, which is the first metal having the property of inserting and extracting lithium, changes in shape during insertion and extraction of lithium.
  • the content ratio power of tin and cobalt is maintained at a ratio of cobalt: about 20 Wt% with respect to tin: about 80 wt%. If this is done, an alloy mainly composed of CoSn crystals (cubic crystals) will be formed, and homogenization of the alloy composition will be enhanced.
  • the miniaturization and particle isolation associated with insertion and extraction of lithium during charging and discharging are suppressed, and the cycle characteristics as the negative electrode active material particles can be improved.
  • the negative electrode active material particle alloy contains boron or phosphorus of 5% or less as an additive, dropping from the electrode surface due to miniaturization when lithium is occluded and released is reduced. It was confirmed by SEM observation of the electrode surface after the charge / discharge test that the mechanical strength of the alloy particles was increased and the particle refinement was suppressed. However, conversely, there are cases where the formation of fine particles can be suppressed even if the mechanical strength of the alloy particles is weakened.
  • the negative electrode active material particles according to the present invention are fixed, coated and Z or coordinated on the outer surface with one or more conductive materials selected from conductive metal, metal carbide or carbon force. Be preferred to be! /.
  • These conductive materials have a volume change as the negative electrode active material particles absorb and release lithium. Even when particles are made finer, the particle boundaries between the particles and the third metal precipitated, bonded or fused on the outer surface are combined with each other and between the particles and the negative electrode. Therefore, the lithium secondary battery to which the negative electrode active material according to the present invention is applied has almost no discharge performance associated with the charge / discharge cycle of the battery. Do not deteriorate.
  • a conductive metal is preferably a metal that has a property that it is difficult to react with an electrolyte solution and lithium is not occluded electrochemically. More specifically, a group force consisting of nickel, iron, copper, chromium, niobium, silver, tantalum, nonadium, molybdenum, tungsten and titanium, or one or more metals selected from the group or alloys thereof. It is done.
  • the adhesion, coating and Z or coordination of the conductive metal to the surface of the negative electrode active material particles are at least a mechanofusion method, a hybridizing method, a plating method, a sputtering method, a vapor deposition method, a thermal spraying method, Spray method, coating method, dipping method, electrostatic method, firing method, sintering method, sol-gel method, gas phase method, planetary ball mill method, microwave method or plasma irradiation method preferable.
  • the conductive metal is fixed, coated and Z or coordinated on the surface of the negative electrode active material particles by the above-described manufacturing method, the conductive metal is further added in an inert gas atmosphere or under vacuum.
  • the interdiffusion layer may be formed at the contact interface with the negative electrode active material particles by heat treatment at a temperature of 100 ° C. or higher.
  • At least a part of the surface of the negative electrode active material particles may be formed of any one of zirconate oxide, titanate oxide, lithium titanate, sulfide, phosphate, nitride, and the like.
  • a negative electrode active material particle and a small amount of a zircouic acid solution are mixed, and a planetary mill, a planetary ball mill, a vibration mill, or the like is used so that the surface of the negative electrode active material particle is thinly coated.
  • the heat treatment is performed at several hundred degrees Celsius in an inert gas atmosphere furnace to sinter the zirconate oxide on the surface of the negative electrode active material particles.
  • lithium titanate is bonded onto the surface of the negative electrode active material particles using a coating and bonding method such as a mechanofusion method, it can be allowed to act as a negative electrode active material simultaneously with the surface modification. .
  • the anode active material particles having a metal alloy force are mixed in a weight ratio of 30 wt% or more with respect to the total weight of the mixture with carbon capable of inserting and extracting lithium, decomposition of the electrolyte accompanying charge / discharge
  • the carbon acts as a conductive material to prevent the electrical path from being blocked by isolation. it can.
  • the carbide having the same function as that of the conductive metal one or two or more kinds of carbides selected from the group force consisting of CoC, CrC, FeC, MoC, WC, TiC, TaC and ZrC are used. Is mentioned.
  • the carbide also forms a bond as a carbide on the surface of the negative electrode active material particles by the same manufacturing method and heat treatment as the conductive metal, and shows a strong bond as in the case of the conductive metal, thereby changing the volume of the particles. It will not drop out.
  • the carbon having the same function one selected from the group power consisting of low-temperature calcined carbon, amorphous carbon, ketjen black, acetylene black, fibrous carbon, nanotube, nanophone, and graphite or Two or more types of carbon are listed.
  • These carbons may be bonded, fixed or coated on the surface of the negative electrode active material particles by applying a pressing force or impact force such as a mechanofusion method or a hybridizing method, or an organic compound alone or an organic compound. It may be fixed, coated and Z or coordinated on the surface of the negative electrode active material particles by adding the carbon and calcined. Alternatively, it may be fixed, coated and Z or coordinated on the surface of the negative electrode active material particles using a noinder. May be. For example, when a negative electrode active material particle surface is fixed, coated and Z or coordinated using a binder, the negative electrode active material particle and the various carbons are added to and mixed with a binder such as PVdF, and the negative electrode current collector is mixed. Various carbons are bonded to the surface of the negative electrode active material particles through a binder by coating and covering the body surface.
  • a pressing force or impact force such as a mechanofusion method or a hybridizing method, or an organic compound alone or an organic compound. It may be fixed, coated and Z
  • the adhesion, coating, and Z or coordination of carbon to the negative electrode active material particle surface may be achieved by using, for example, an organic polymer material such as phenol resin, sugar, or pitch alone or carbon.
  • an organic polymer material such as phenol resin, sugar, or pitch alone or carbon.
  • the carbon coating is firmly formed on at least a part of the surface of the negative electrode active material particles.
  • the network is not destroyed as the battery charge / discharge cycle progresses, and high battery discharge performance can be maintained.
  • the negative electrode active material particles according to the present invention are characterized by the inter-particle and inter-particle and negative electrode collection even when the particles are refined due to the volume change accompanying the occlusion and release of lithium.
  • the electrical network between the electrical bodies can be maintained.
  • the negative electrode active material particles according to the present invention are applied to a negative electrode current collector to form a negative electrode for a lithium secondary battery.
  • the negative electrode active material particles may include a conductive auxiliary agent such as acetylene black, ketjen black, nanotube or nanophone, a binder such as PVdF or SBR, or CMC.
  • a conductive auxiliary agent such as acetylene black, ketjen black, nanotube or nanophone
  • a binder such as PVdF or SBR, or CMC.
  • the dried negative electrode is then pressed to smooth the surface of the negative electrode.
  • the negative electrode active material particles according to the present invention are used, as in the case of using the conventional negative electrode active material particles, it is only necessary to perform a minimum light press to smooth the negative electrode surface. It is not necessary to increase the electrode density by heavy pressing the negative electrode.
  • the reason why the light press is applied to the negative electrode according to the present invention is that the negative electrode according to the present invention is The primary purpose is not to increase the pole density, but conversely, the surface of the negative electrode active material particles is coated with a conductive material to form a porous layer or matrix network (such as a two-dimensional or three-dimensional network structure). ) Is formed.
  • the conductive auxiliaries such as the fine ketjen black, acetylene black, nanotubes, and nanophones described above are contained in the gaps between the negative electrode active material particles in a proportion of lwt% to 15wt%.
  • the main purpose is to distribute the small volume of space around the negative electrode active material particles in the negative electrode, and thereby absorb the volume increase generated when the negative electrode active material particles occlude lithium in the powerful micro space. Because it does.
  • the negative electrode according to the present invention suppresses the change in the electrode thickness as a whole by absorbing the volume change of the negative electrode active material particles in the minute space present in the negative electrode.
  • the shape (particularly the thickness) of the lithium secondary battery using the negative electrode according to the present invention shows almost no volume change due to charge / discharge, and the thickness of the battery even when the battery is stored in a limited space. Etc. does not change, so there is no adverse effect on the equipment.
  • the voids determined by measuring the density and weight of the negative electrode active material particles and the volume of the coating layer of the actually applied negative electrode active material particles. By changing the pressing pressure, the negative electrode having each porosity as shown in Table 1 was produced. Next, after the lithium was occluded in the negative electrode, lithium was subsequently released, and the thickness power of each negative electrode before and after the test was determined.
  • the porosity of the coating layer of the negative electrode according to the present invention is preferably in the range of 30% to 70%, more preferably in the range of 40% to 65%.
  • the porosity of the negative electrode coating layer of the lithium secondary battery in the state where it is shipped through the aging process must be within the range of 35% to 60% after subtracting the remaining volume of lithium. Is preferred.
  • a coating material fixed, coated and Z or coordinated to the outer surface of the coated negative electrode active material particles To make an appropriate void in the vicinity of the outer surface of the particle, and after coating, do not perform high-pressure molding to increase the electrode density using a roll press or the like on the negative electrode, that is, Low pressure molding (for example, linear pressure of about 5 kgZcm to about 250 kgZcm) to ensure the smoothness of the surface of the negative electrode that prevents the negative electrode from breaking through the separator when incorporated into a lithium secondary battery. By doing so, it is important to form an electrical connection between each particle and between the particle and the negative electrode current collector.
  • the structure inside the particles is passed through a charge / discharge state.
  • it has an almost pumice-like shape with continuous and Z or discontinuous fine pores, such as the particle structure of the above, and irregular shaped particles with numerous pores on the surface and inside. It is effective to change the particles into spongy network particles having cracks or agglomerated (aggregated) particles having a form in which these fine particles are aggregated and bonded.
  • the skeleton of the negative electrode active material particles suppresses volume expansion at the time of occlusion and release of lithium, thereby suppressing fine pulverization. Furthermore, the skeleton is used as an electron conduction path.
  • a heavy press instead of the light press described above, it is possible to increase the density of the electrodes and improve the contact between the particles. Note that the separator and electrolyte applied at this time can be used without any particular limitation on the material or configuration.
  • Table 2 shows battery capacity at the time of 30 cycles.
  • the battery capacity retention rate (%) at the time of 30 cycles which is a value indicating how much the initial battery capacity is maintained.
  • the test results of examining the influence of the difference in the average particle size of the negative electrode active material particles due to the above are shown.
  • the average particle size used here means that the particles to be measured are sieved by superposing the standard sieves with standardized meshes in order from the largest mesh size and remaining on each mesh.
  • the average particle diameter of the particles is represented by the opening of the sieve that passed last. However, when the average particle size is small, it may be more efficient to use an air classifier.
  • the average particle diameter of the negative electrode active material particles is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less. It is desirable.
  • powerful negative electrode active material particles are mixed in a weight ratio of 30 wt% or more, preferably 50 wt% or more with respect to a mixture with a carbon material as a negative electrode active material such as MCMB.
  • a conductive material such as acetylene black
  • the dispersibility between these particle materials and the binder is improved, and the particle material does not fall off the electrode even after repeated charge and discharge. It becomes possible to obtain strong binding that can maintain the sex semipermanently.
  • the mixing ratio is less than 30 wt%, the battery performance is improved by increasing the negative electrode active material particles of the present invention, for example, the improvement of volumetric energy efficiency is negligible, and the technical value is poor.
  • negative electrode active material particles having an average particle diameter of 5 ⁇ m for example, negative electrode active material particles having an average particle diameter of 15 ⁇ m to 20 ⁇ m are about 10 by weight. By adding%, irregularities can be positively formed on the negative electrode surface. Then, by lightly pressurizing the negative electrode surface with a gap-controlled roll press, only the negative electrode active material particles on the negative electrode surface mainly forming the convex portions extend in the lateral direction, and a flat particle shape. Thus, a negative electrode having a generally smooth surface can be formed.
  • the flat negative electrode active material particles deformed in the lateral direction mainly expand in the horizontal direction, and other negative electrode active material particles other than the above are Since it expands so as to fill in the recesses formed between the particles deformed into a flat shape, the volume expansion can be efficiently absorbed with almost no change in the thickness of the entire negative electrode.
  • the shape of the negative electrode active material particles according to the present invention is such that the finer shape of the particles is more difficult to progress in the elongated shape such as a flaky shape, a flat shape, and a fibrous shape. Or It has been found that the fibrous conductive portion is in contact with or intertwined with adjacent particles in the negative electrode, making it easier to form an electrical link between the particles.
  • the shape of the negative electrode active material particles is spherical, when the average particle size is as small as several meters or less, lithium can be occluded to the inside, and the overall volume strain is small and the utilization rate is high and the fineness is high. It turned out to be difficult to grind.
  • Such negative electrode active material particles and negative electrodes according to the present invention are produced by the method described below.
  • the negative electrode active material particles according to the present invention are a method for producing negative electrode active material particles for lithium secondary batteries that electrochemically occlude and release lithium, and have the property of inserting and extracting lithium.
  • the first metal is alloyed with the second metal and the third metal, and the third metal is at least part of the grain boundaries and Z or the outer surface of the negative electrode active material particles.
  • the alloying in the second step may be performed by previously alloying the second and third metals and then alloying with the first metal, or alternatively, the first, second and second metals may be alloyed.
  • the three metals may be alloyed at the same time.
  • Sarakuko in order to produce the negative electrode according to the present invention, following the above-described method for producing negative electrode active material particles, a coating material containing the negative electrode active material particles, another conductive material, and a binder is used. This is achieved by performing the steps of preparing and surface-treating the coating material on the negative electrode current collector to form a negative electrode.
  • the first step reacts with the first metal, which is the negative electrode active material responsible for the insertion and extraction functions of lithium, the second metal and the electrolyte for stabilizing the shape change of the first metal.
  • This is a step for preparing a third metal that is difficult to absorb and release lithium.
  • Main examples of the first metal include one or more metals selected from silicon, tin, or aluminum force.
  • one or more metals selected from the group consisting of iron, chromium, magnesium, manganese, antimony, lead and zinc are encapsulated in advance as the first metal. It may be used.
  • the second metal suppresses the refinement of the negative electrode active material particles per se due to the volume change accompanying the insertion and extraction of lithium in order to prevent the battery capacity from being reduced due to the charge / discharge cycle.
  • Metal added for the purpose of stabilizing the shape change preferably iron, cobalt, copper, nickel, chromium, magnesium, lead, zinc, silver, germanium, manganese, titanium, vanadium, bismuth, indium and
  • One or more second metals selected from the group consisting of antimony are used.
  • the third metal has a property that it does not easily react with the electrolyte and does not occlude and release lithium, and molybdenum, tungsten, tantalum, thallium, chromium, tellurium, beryllium, calcium,
  • One or more metals selected from the group strength consisting of nickel, silver, copper and iron or their alloys are used, among which molybdenum, tungsten, tantalum, thallium, chromium, tellurium, beryllium and calcium
  • a metal that is difficult to alloy with a negative electrode active material such as silicon can be used.
  • the metal is easily alloyed with a negative electrode active material such as silicon, such as nickel, silver, copper, and iron, these metals help improve voltage and move electrons. It can be used as a third metal because it improves the silicate characteristics and promotes the efficiency of the REDOX reaction to suppress the generation of reaction heat.
  • the second step is a step of alloying the first, second and third metals in order to precipitate, bond or fuse the third metal to the grain boundaries and / or external surfaces of the negative electrode active material particles.
  • the precipitation, bonding or fusion by alloying of the above metals is performed in an atmosphere filled with an inert gas in order to enhance the effect of precipitation of the third metal.
  • an inert gas selected from: melting method, gas atomizing method, water atomizing method, mechano-fusion method, no, ibridizing method, plating method, sputtering method, vapor deposition method, gas phase method, liquid quenching method or gas quenching method
  • 100 ° C in an inert gas atmosphere or under vacuum As described above, it is more preferable to perform heat treatment at a temperature of 500 ° C. to 950 ° C.
  • the third metal may form a matrix network on the surface of the negative electrode active material particles by microwave plasma irradiation in an aromatic solvent (BTX) atmosphere by a vapor phase method.
  • the surface conductivity can be improved by surface treatment (including precipitation, adhesion, coating or coordination).
  • BTX aromatic solvent
  • a mixed powder of negative electrode active material particles prepared by these different methods may be used.
  • these alloy particles may be used as alloy particles having an average particle diameter of 20 ⁇ m or less directly using the above-described methods such as gas atomizing method and water atomizing method. Particles or agglomerates that have been alloyed by combining with the squeezing jet mill method, gliding method, or the like may be used after being ground and classified so that the average particle size is as follows.
  • the negative electrode active material particles are produced by combining the above-described steps and methods for alloying the first, second, and third metals, a normal alloying method is simply used. Compared to alloying the first, second, and third metals, it is more effective for precipitating, bonding, or fusing the third metal at the grain boundaries and Z or the external surface of the negative electrode active material particles. In addition, since the alloyed negative electrode active material particles can be partially amorphized and complicatedly formed at the same time, a negative electrode active material having high energy capacity and excellent charge / discharge cycle characteristics can be obtained. It ’s a bit of a problem.
  • the ratio of the metal oxide contained in the negative electrode active material particles is greater than lwt%, the utilization factor of the initial negative electrode active material particles is 90% or less in synergy with other effects. Therefore, the negative electrode active material particle manufacturing process particularly in a state where the temperature is high is performed in an inert gas atmosphere until it is kneaded with at least one binder or the like to become a coating liquid state (slurry state). It is preferable.
  • the negative electrode active material particles according to the present invention produced as described above are further subjected to surface modification treatment, whereby the negative electrode active material particles react with the electrolytic solution to form an SEI film.
  • the purpose is to suppress the formation of the negative electrode active material particles and to further strengthen the electrical network formed in the negative electrode to which the strong negative electrode active material particles are applied.
  • the purpose is achieved by fixing, coating and Z or coordinating the conductive material.
  • the conductive material fixed, coated and Z or coordinated on the surface of the negative electrode active material particles in this step is one or more conductive materials selected from conductive metals, metal carbides, and carbon fibers. Specifically, (1) Group power consisting of nickel, iron, copper, chromium, niobium, silver, tantalum, vanadium, molybdenum, tungsten and titanium.
  • the negative electrode is obtained by fixing, coating and Z or coordinating a carbide as a conductive material to the surface of the negative electrode active material particles by a mechano-fusion method, a hybridizing method, or the like, or firing together with a polymer material.
  • a strong electron conductive network is formed on the surface of the negative electrode active material particle.
  • the surface treatment was performed with such a conductive material.
  • the specific resistance of the negative electrode active material particles was 3 ⁇ cm to 5 ⁇ cm, whereas the conductivity was When the material is surface-modified, the specific resistance can be reduced from 0. Ol Q cm to 1. ⁇ ⁇ cm.
  • the adhesion, coating, and Z or coordination of the conductive metal on the surface of the negative electrode active material particles are at least the mechanofusion method, the nobbling method, the atomizing method, the plating method, the sputtering method, the vapor deposition method, the thermal spraying method, and the spraying.
  • Method, coating method, dipping method, electrostatic method, firing method, sintering method, sol-gel method, gas phase method or planetary ball mill method power It is preferable to be carried out by one method selected, and an inert gas atmosphere Heat treatment at a temperature of 100 ° C or higher in a medium or under vacuum to form an interdiffusion layer at the contact interface with the negative electrode active material particles, thereby increasing the bonding force between the conductive metal and the surface of the negative electrode active material particles Is preferred.
  • the adhesion, coating and Z or coordination of carbon to the surface of the negative electrode active material particles can be carried out by adhesion, coating and Z or coordination to the surface of the negative electrode active material particles using a noinder.
  • a noinder In order to obtain strong electrical contact and adhesion strength with the negative electrode active material particles, bind to the surface of the negative electrode active material particles by applying pressing force or impact force such as mechano-fusion method, no, and ibridizing method. More preferably, the organic compound is fixed or coated, or the organic compound is singly or added to the organic compound and calcined, and then fixed, coated and Z or coordinated on the surface of the negative electrode active material particles.
  • the proportion of the metal contained in the second, third, and conductive materials contained in the negative electrode active material particles is within the range of 5 wt% to 80 wt%. It is preferable to adjust, and it is desirable to adjust within the range of 10 wt% to 50 wt%.
  • the negative electrode active material particles to which the conductive material is fixed, coated and Z or coordinated are provided following the above-described method for producing negative electrode active material particles.
  • an additional conductive material such as carbon or graphite
  • a coating material containing a coating solution prepared by adjusting the viscosity of Noinda dispersant with water or solvent.
  • the prepared coating material is surface-treated on the negative electrode current collector by, for example, (1) coating directly using a thermal spraying method, or (2) coating using a coating method, After drying or heat treatment, the convex part on the negative electrode surface is smoothed by roll pressing at a low pressure to form a negative electrode having a predetermined thickness and electrode density.
  • the negative electrode according to the present invention produced in this way was (1) impregnated with an electrolyte containing an ionic liquid having a moisture content of lOppm or less after the production of the negative electrode when directly coated using a thermal spraying method. 2) When coating is performed using the coating method, the coating liquid must contain an ionic liquid alone or an electrolyte containing an ionic liquid in advance, or it must be forcibly contained by a vacuum impregnation method. Thus, a thin electrolyte layer containing an ionic liquid can be formed on the surface of the produced negative electrode.
  • ionic liquid suitable for use at this time it is particularly preferable to use an ammonia-based, pyridinium-based, or piberidinium-based ohm salt. Note that if the water content of the ionic liquid is not less than 10 ppm, lithium will be inactivated by the water.
  • the surface treatment method of the negative electrode active material particles to the negative electrode current collector by coating or the like is refined due to the structural breakdown accompanying the insertion and extraction of lithium in the negative electrode active material particles, and the cycle characteristics of the battery are remarkably increased.
  • Full-scale research and development is shrinking because of deterioration.
  • the surface treatment method by coating or the like is performed on the surface of the negative electrode current collector roughened by using a method such as ion sputtering, PVD, CVD, or plating.
  • the thickness of the surface treatment layer can be increased further, so it is extremely important to increase the electrode capacity and increase the volumetric efficiency. Is advantageous.
  • the surface treatment method suitable for forming a porous layer or a matrix network on the negative electrode current collector using the coating material containing the negative electrode active material particles according to the present invention is as described above ( 1) Surface treatment methods such as the plating method, sputtering method, vapor deposition method, thermal spraying method, spraying method, dipping method, electrostatic method, vapor phase method or sintering method, and (2) granular negative electrode active materials
  • a surface treatment method may be used in which a coating liquid in which a conductive material assistant such as carbon and a binder are mixed is prepared, and this is coated on the negative electrode current collector surface and dried.
  • a metal method such as nickel, copper, silver or iron is used for the plating method, sputtering method, vapor phase method or vapor deposition method.
  • the porous layer or matrix network is formed on the negative electrode surface so that lithium ions can move freely and do not inhibit the insertion and extraction of lithium in the negative electrode active material. It is advantageous.
  • the negative electrode active material particles and the electrical connection ⁇ between the negative electrode active material particles and the negative electrode current collector are deposited, bonded, or fused on the surface, Z, or interface of the negative electrode active material particles. This is reliably achieved by the metal or the conductive material fixed, coated and Z or coordinated on the particle surface, and the conductive additive surface-treated by mixing with these negative electrode active material particles.
  • the porosity of the coating layer formed on the negative electrode is 40% when the negative electrode active material particles are applied to the front and back surfaces of the negative electrode current collector and thermally dried.
  • the content within the range of ⁇ 65%, the volume expansion accompanying the occlusion of lithium ions of the negative electrode active material particles can be absorbed inside the coating layer, and an increase in the thickness of the negative electrode can be suppressed.
  • the negative electrode active material particles according to the present invention as a whole have a great effect to suppress the shape change of the lithium secondary battery, and the surface of the coating layer is nickel, silver, copper or Iron force
  • the surface of the coating layer is nickel, silver, copper or Iron force
  • the negative electrode active material particles according to the present invention are obtained by (1) suppression of particle refinement associated with insertion and extraction of lithium in the negative electrode active material particles, and (2) reaction with an electrolytic solution or the like.
  • An inactive film is prevented from being generated over the entire surface of the negative electrode active material particles, and as a result, a strong electronic conductive circuit is constructed, and an electric power that is not easily affected by volume changes during lithium insertion and extraction The formation of a global connection network.
  • the combination of the negative electrode active material particles and other metals in the present invention individual component ratios and raw material particle sizes, electrode thicknesses, densities, manufacturing conditions, current collector surface conditions, electrolysis
  • the technology of the present invention is not particularly limited to the examples regarding the type of quality. As long as the general idea is followed, it can be appropriately selected according to the use, capacity, form, etc. of the lithium secondary battery.
  • FIG. 1 shows a cross-sectional view of a coin cell using negative electrode active material particles according to the present invention.
  • FIG. 2 shows a cross-sectional view of negative electrode active material particles according to the present invention.
  • FIG. 3 is a cross-sectional view of the negative electrode active material particles according to the present invention when the negative electrode active material particles shown in FIG. 2 are further surface-modified.
  • FIG. 4 shows a cross-sectional view of a negative electrode coated with negative electrode active material particles according to the present invention.
  • FIG. 5 is an SEM photograph of negative electrode active material particles having an indefinite shape according to the present invention.
  • FIG. 6 is an SEM photograph of negative electrode active material particles exhibiting a spongy network according to the present invention.
  • FIG. 7 is an SEM photograph of negative electrode active material particles exhibiting aggregation (aggregation) according to the present invention.
  • FIG. 8 Aggregation (aggregation) according to the present invention! /, S of negative electrode active material particles having an irregular shape
  • FIG. 1 shows a cross section of a coin cell 1 using negative electrode active material particles according to the present invention.
  • a negative electrode 11 coated with the negative electrode active material particles according to the present invention, a positive electrode 2, and a force separator 12 are laminated on a copper foil 10 that is a negative electrode current collector.
  • FIG. 2 shows a cross section of the negative electrode active material particle 3 according to the present invention.
  • a third metal 4 having properties is deposited, bonded or fused.
  • FIG. 3 shows a cross section of the negative electrode active material particles 8 when the negative electrode active material particles 3 according to the present invention are further subjected to a surface modification treatment.
  • the third metal 4 is deposited, bonded, or fused on the surface and Z or interface of the negative electrode active material particle 8, and further, the surface of the negative electrode active material particle 8 has a conductive material VGCF conductive material 5 and Acetylene black 6 and phenolic resin carbon layer 7 are fixed, coated and Z or coordinated.
  • Example 1 As a positive electrode active material, a coating liquid in which lithium cobaltate, a conductive material, and a binder are mixed is applied to an aluminum foil as a positive electrode collector to a thickness of 130 m, dried, and then rolled. Made a positive electrode 2 with a thickness of 90 m and punched it into a disk shape with a diameter of 16 mm
  • Co-Mo alloy powder particles of about 100 ⁇ m were mixed by gas atomizing method by mixing 67 wt% of the second metal cobalt and 33 wt% of the third metal molybdenum. was made.
  • the Sn-CoZMo alloy powder particles 3 produced in this way have tin and cobalt alloyed, but molybdenum 4 which does not easily react with the electrolyte and does not absorb and release lithium is Sn Co alloy particles. Precipitates, bonds or fuses to at least part of the grain boundaries and Z or outer surface of 3 and the remaining molybdenum 4 forms an interdiffusion layer with the Sn-Co alloy and is the first metal. It plays a role in bonding a tin with a second metal, cobalt.
  • this Sn—Co / Mo alloy powder particle 3 is further pulverized to a fine powder particle having an average particle diameter of about 2 m using a pulverizer such as a jet mill, most of the alloy powder particles 3 is crushed at the grain boundary, while the alloy powder particle 3 having a relatively large average particle diameter (average particle diameter of about 15 ⁇ m) that remains without being sufficiently pulverized is contained in the interior thereof. There were many grain boundaries in which molybdenum 4 was deposited in a linear form.
  • a Sn-Co / Mo alloy powder particle 3 classified so as to have an average particle diameter of 2 m is sprayed with a mixed solution of 5% phenol resin solution, VGCF5 and acetylene black 6.
  • heat treatment is performed at about 830 ° C in an argon hydrogen gas atmosphere!
  • Sn—CoZMo alloy powder particles 8 see FIG. 3 having a complicated shape in which, for example, are fixed, coated and Z or coordinated are prepared.
  • the Sn—CoZMo alloy powder particles 8 were pulverized using a jet mill and classified so that the average particle diameter was 2 ⁇ m.
  • Sn-CoZM o alloy powder particles 9 pulverized using a jet mill and classified to an average particle size of 20 ⁇ m are added to 5 wt%, and further, 5 wt% of ketjen black as a conductive auxiliary agent, binder.
  • PVdF was dispersed and mixed in a planetary mixer with 5 wt% as a coating, and a coating solution was prepared by adjusting the viscosity with NMP.
  • this coating solution was applied on the surface of copper foil 10 as the negative electrode current collector so as to have a thickness of about 60 m, dried, and then heated at a linear pressure of about 150 kg / cm.
  • the electrode plate of negative electrode 11 was produced by pressing so that the protrusions on the coated surface were smooth.
  • the thickness of the negative electrode plate obtained at this time was about 52 ⁇ m.
  • FIG. 4 shows a partial cross section of the negative electrode 11 after the negative electrode 11 thus manufactured is punched out into a disk shape having a diameter of about 16.2 mm.
  • the negative electrode 11 is formed by coating and drying the coating material containing the negative electrode active material particles 8 and 9 according to the present invention on the surface of the copper foil 10 as the negative electrode current collector to form a coating layer.
  • Example 2 70 wt% of the first metal tin powder particles and 10 wt% of the silicon powder particles for voltage improvement, the same alloy as in Example 1 with the second and third metals Co—Mo alloy powder particles of 20 wt% were mixed, and Sn—Co—Si / Mo alloy powder particles 3 of about 20 ⁇ m to about 110 ⁇ m were prepared by gas atomizing method.
  • the alloy powder particles 3 were processed in the same manner as in Example 1 to produce a coin cell, and a battery charge / discharge cycle test was conducted. The results are shown in Table 3.
  • negative electrode active material particles according to the present invention were produced using silicon as negative electrode active material particles that occlude and release lithium as the first metal.
  • the second metal, nickel is mixed at 80 wt% and the third metal, tungsten, at 20 wt%, and the gas atomizing method is used to add approximately 100 ⁇ m to approximately 200 ⁇ m.
  • Ni—W alloy powder particles were prepared.
  • the alloy powder particles 3 thus produced were further pulverized and classified so as to have an average particle diameter of 2 m, and then the surface of each particle was subjected to nickel plating.
  • a nickel metal coating layer is formed on at least a part of the outer surface of the obtained alloy powder particles 8, and the nickel alloy powder is further heat treated in an argon hydrogen gas atmosphere at a temperature of 650 ° C. or higher.
  • Si—Ni—A1ZW alloy powder particles 8 having a coating layer in which the surface of the alloy powder particles and the nickel plating layer were firmly bonded were produced by diffusing into the surface layer of the powder particles.
  • Example 4 shows the results of the charge / discharge test of the fabricated battery.
  • Example 4 50 wt% of the first metal tin powder particles, 30 wt% of the silicon powder particles to increase the average voltage, and 20 wt% of the cobalt as the second metal were mixed to form a planetary ball mill.
  • An alloy powder was prepared using At this time, some of the powder particles had an alloy portion fixed to the planetary ball mill container wall surface, but in the next step, powder particles from which they were removed were used.
  • the alloy powder may be produced by using a gas atomizing method or a water atomizing method instead of using the planetary ball mill.
  • the fine powder particles of this Sn-Co-Si alloy were immersed in a nickel plating bath heated to about 85 ° C, the third metal, and the plating was applied for about 30 seconds while applying ultrasonic waves. After the treatment, it was washed and vacuum-dried by heating to produce Sn—Co—SiZNi alloy fine powder particles 3. Furthermore, in order to strongly bond between the plated nickel and the alloy, heat treatment is performed at about 600 ° C for 10 minutes under vacuum (vacuum level with a little inert gas)! I let you.
  • Example 5 shows the results of the charge / discharge test of the fabricated battery.
  • Example 4 a planetary ball mill was prepared by mixing 50 wt% of the first metal tin powder particles, 30 wt% of the silicon powder particles to increase the average voltage, and 20 wt% of nickel as the second metal.
  • An alloy powder was prepared using Although some of the powder particles had an alloy part fixed to the planetary ball mill vessel wall surface, the powder particles excluding them were used in the next step.
  • the alloy powder may be produced using a gas atomizing method or a water atomizing method.
  • Example 6 the alloy powder particles 3, the conductive auxiliary agent, and the binder are mixed at the same blending ratio as in Example 1, coated on the surface of the copper foil 10, dried, and lightly pressed at a linear pressure of about 50 kgZcm. After that, it was incorporated into a coin cell. Table 3 shows the results of the charge / discharge test of the fabricated battery.
  • Example 6
  • the main component is tin, which is a negative electrode active material, as the first metal, and 0.09% of phosphorus is added in advance to this.
  • the resulting mixture is mixed with a second metal, such as Conoret and bismuth (or indium), then melted and alloyed, and pulverized to classify into alloy particles of about 30 m or less. did.
  • the finely pulverized particles were classified by a classifier to obtain particles having an average particle diameter of 0.1 ⁇ m to 5 m (average particle diameter: 1. ⁇ ).
  • Tin alloy particles in which the peak corresponding to the crystal was remarkably detected were obtained.
  • mapping it was found that the cobalt component, tin component, and bismuth (or indium) component were uniformly dispersed in the alloy particles. Furthermore, when treated for a short time with a planetary ball mill, the maximum particle size of the tin alloy particles was crushed to about 3 ⁇ m.
  • the alloy particles obtained after melting were mixed compositions consisting of several types of alloy compositions, whereas in the temperature range where the particles were not melted or fused after cooling. By performing the heat treatment again, the target CoSn crystal particles could be obtained.
  • a negative electrode active material in which the above tin alloy powder particles were mixed at a rate of 20 wt% with 80 wt% of the above-mentioned MCMB (average particle size of 6 ⁇ m or less) as a lithium occluding and releasing carbon material.
  • Mixing solution with 91 wt% of mixed particles, 5 wt% of conductive material (for example, acetylene black), 1 wt% of PVd F as a binder, and 3 wt% of solvent-based SBR. was made.
  • This coating solution was applied onto the surface of copper foil 10 serving as the negative electrode current collector, dried, and then heated and rolled to obtain a negative electrode having a thickness of about 31 ⁇ m.
  • LiNi Co Al O or
  • LiNi Co Mn O LiNi Co Mn O
  • a separator film is placed and impregnated with 1M LiCIO + ECZDEC electrolyte.
  • a minimum laminate pack cell of 45 mAh was produced.
  • This aluminum laminate pack cell was subjected to a constant current charge / discharge cycle test in a constant temperature bath at 23 ° C at a rate of 5 hours. As a result, the discharge capacity after 30 cycles was about 43.8 mAh, and after 50 cycles, 43 It was 7mAh. In addition, as shown in Table 3, discharge after 30 cycles The capacity deterioration rate was 2.6%.
  • the main component of tin is negative electrode active material as the first metal, which in this Leto the number 0/0 of indium as the second metal in advance phosphorus have been added 0.09%, boron These were melted and alloyed, then cooled and reheated, and then crushed and classified into alloy particles of about 10 m or less. As a result of X-ray diffraction analysis, the above alloy particles are mainly CoSn crystals.
  • the main component of the alloy particles at this time is approximately 80 wt% tin and 20 wt% cobalt in weight ratio.
  • a metallic lithium ingot was melted in a stainless steel crucible in an argon gas atmosphere.
  • Lithium alloy particles alloyed by mutual diffusion were produced by reacting the molten metal lithium with the tin alloy particles. Further, the lithium alloy particles were subjected to a lithium component removal treatment in a lithium hydroxide lithium solution.
  • the obtained particles are mixed with particles such as those shown in Figs. 5, 6, 7, and 8, and fine particles obtained by pulverization of these particles, and further pulverized (agate mortar, jet mill, ball mill, When possible with a bead mill), large particles could easily be made finer and the particle size reduced to a particle size of 0.05 m to lm (average particle size was 0.3 m). In addition, agglomeration progresses when the particle size is reduced, and the particle size distribution may be measured larger.
  • the above alloy particles are mixed together with a conductive material (acetylene black, etc.) and a binder. Then, coat the copper foil surface to make a negative electrode (or the prepared negative electrode may be impregnated with an ionic conductive electrolyte containing an ammonium salt-based ionic liquid).
  • a conductive material acetylene black, etc.
  • the coin cell was subjected to a charge / discharge test of 0.2C and DOD 100% for 30 cycles, and then the coin cell was disassembled and the negative electrode was washed to observe the negative electrode active material particles on the negative electrode surface.
  • the positive electrode structure and the electrolyte composition are the same as those in Examples 1 to 5, and only the negative electrode is alloyed with only the first metal tin and the second metal cobalt. Experiments were carried out using Sn—Co alloy powder particles obtained by grinding.
  • Sn—Co alloy powder particles were produced by melting 80 wt% tin and 20 wt% cobalt as they were in an electric furnace and pulverizing them to about 100 ⁇ m with a stone mill. After pulverizing and classifying using a jet mill etc. under the same conditions as 5 above, prepare the coating liquid by removing the conductive additive and binder, and then apply this coating liquid on the surface of the copper foil 10 and dry it. Thus, the negative electrode 11 of the comparative example was completed. Finally, this negative electrode was assembled into a coin cell in the same manner as in Examples 1 to 5, and a battery charge / discharge cycle test was conducted. The results are shown in Table 3. [0161] [Table 3] Table 3
  • the negative electrode according to the present invention suppresses particle refinement due to charge / discharge mainly comprising CoSn containing tin as the first metal and cobalt as the second metal.
  • the negative electrode active material particles according to the present invention precipitate, bond, or fuse a third metal having a property that hardly reacts with the electrolyte solution and hardly absorbs and releases lithium on the surface and Z or grain boundaries. Therefore, when this particle is coated on the negative electrode surface, a strong surface electron conduction network is formed between the particles and between the particle and the negative electrode current collector in the negative electrode coating layer. It is done.
  • the negative electrode active material particles can be obtained as the electrode is produced using a means such as coating as the charge / discharge cycle passes.
  • the formation of an inactive film on the surface of the child and the breakage of the electronic conduction circuit are advanced, and a certain point of force causes the phenomenon to progress at an accelerated rate, which significantly deteriorates the battery capacity.
  • the third metal is precipitated, bonded or fused to the grain boundary and Z or at least part of the surface of the negative electrode active material particles.
  • an electronic conduction circuit that is not influenced by the electrochemical reaction is formed in the negative electrode, and the second metal is contained in the first metal, which is the negative electrode active material, while suppressing the refinement of the negative electrode active material.
  • the compatibility can strengthen the bond on the alloy particle surface with the third metal element.
  • Sarako is the surface modification of negative electrode active material particles with other conductive metals, carbides, and carbon materials that are conductive materials, the formation of an interface bonding layer by heat treatment, and the coating of porous metal on the negative electrode surface
  • the negative electrode active material particles and the electrical connection between the negative electrode active material particles and the negative electrode current collector can be strengthened by injecting the ionic liquid into the negative electrode coating layer and adjusting the porosity.
  • CoSn in which tin is selected as the first metal and cobalt is selected as the second metal has a main composition.
  • the homogeneity of the alloy composition of the alloy particles is increased, so that the miniaturization and the isolation of the particles accompanying the insertion and extraction of lithium during charging and discharging are suppressed,
  • the cycle characteristics of the negative electrode can be dramatically improved.
  • fine powder particles such as aluminum, magnesium or iron and their alloys are very active, and are therefore preferably handled in an inert gas atmosphere. In particular, when these metals are handled in air, they may ignite due to a rapid oxidation reaction. Therefore, it is necessary to reduce the amount used or adjust the blending ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子であって、主としてリチウムを吸蔵及び放出する性質を有する第1の金属と、リチウムの吸蔵及び放出時の前記第1の金属の形状変化を安定化させる性質を有する第2の金属とを含み、例えばCoSn2のような前記第1の金属と第2の金属からなる合金組成を主成分とすることを特徴とするリチウム二次電池用負極活物質粒子とそれが適用された負極及びそれらの製造方法を提供する。

Description

明 細 書
リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法 技術分野
[0001] 本発明は、リチウム二次電池用の新規な高容量の負極活物質粒子と負極及びそれ らの製造方法に関し、特に、電気化学的にリチウムを吸蔵及び放出するリチウム二次 電池用の負極活物質粒子であって、リチウムを吸蔵及び放出する性質を有する第 1 の金属と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有する第 2 の金属と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3 の金属とを含み、第 3の金属は負極活物質粒子の粒界及び Z又は外部表面の少な くとも一部に析出、結合又は融合していること、または、リチウムを吸蔵及び放出する 性質を有する錫と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有 するコバルトを含む負極活物質粒子であって、その組成は主として CoSnからなるこ
2 とを特徴とするリチウム二次電池用負極活物質粒子と負極及びその製造方法に関す る。
背景技術
[0002] リチウム二次電池は、特に携帯用機器に使用される。昨今の携帯用機器に代表され る携帯電話および携帯用パソコンにおいて多くの機能が付加されて使用される電池 には、その機器の作動電圧に応じた出力電圧と使用時間に影響する電池容量を大 きくする要求がある。特に、使用時間を長くするための電池容量の増加については、 電池スペースが限られて!/、るため、電気エネルギーを蓄える活物質のエネルギー密 度を高める以外に電池の容量を増加させることはできない。
[0003] 従来力 使用されている代表的なリチウム二次電池の正極活物質はコバルト酸リチウ ムであり、負極活物質は黒鉛である。このような電池材料構成で容積エネルギー効率 を 400WhZL以上にするのは困難である。特に、負極活物質としての黒鉛の理論ェ ネルギー量は 372mAhZgであるため、電池容量を大きくするためには限界があり、 理論エネルギー量の大きい他の種類の負極活物質の開発が各研究機関や電池製 造メーカーで実施されて ヽる。 [0004] 特開平 8— 50922号公報、特開 2001— 332254号公報、特開 2002— 83594号公 報、特開 2003— 77529号公報、特開 2003— 109589号公報及び特開 2004— 11 202号公報の中では、黒鉛と同様にリチウムを吸蔵したり放出できる負極活物質とし てシリコン及び錫などが挙げられており、これらの金属は単独で使用するとリチウムの 吸蔵 (充電)時は体積が膨張し、リチウムの放出 (放電)時は逆に体積の収縮が起こる ことが説明されている。
[0005] また、このような体積の膨張'収縮は、金属の結晶構造を破壊したり粒子の微細化に よる孤立化などにより各粒子間の電気的な繋がりを遮断し、その結果、電池の放電容 量の利用率低下を招くなどの問題を生じさせることが指摘されている。
[0006] そこで、これらの問題を改善するため、負極活物質に他の金属を加えて合金化や非 晶質化を進めることで金属の体積変化率を低減させたり粒子の微細化を抑制させた り、または、金属に導電性材料を含有させて各粒子間の導電性を維持させたり、さら には、集電体表面に直接リチウムを吸蔵及び放出する金属を柱状に成長させること により、体積膨張を起こした場合であっても集電体と負極活物質との電気的な繋がり が阻害されないような構成にするなどの改良がなされている。
[0007] しかしながら、このような改良が施された負極活物質の場合であっても、従来の黒鉛 のような充放電サイクルに対する十分な電池容量の低減抑止効果が得られず、また 、合金粒子の微小な破壊や合金粒子表面での不活性な皮膜形成による放電性能の 劣化、さらには、スパッタリング法などによる活物質金属の形成において単位面積当 たりの電池容量をあまり大きくできないなど、電池のサイクル性能や容量の改善にお いて未だに解決すべき問題があった。
発明の開示
[0008] このように、従来の改良されたシリコン合金又は錫合金力 なる負極活物質を用いて 負極集電体面を表面処理し被覆層を形成させた場合であっても、リチウムの吸蔵及 び放出に伴う体積膨張 '収縮の比率が大きぐまた、粒子の微細化が起こり易いため に各粒子間の電気的な繋がりが阻害され、充放電サイクルと共に放電性能が悪ィ匕し てしまうといった問題があった。
[0009] 本発明は、以上のような問題を解決することを目的に開発されたものであり、その主 な目的は、(1)負極活物質粒子のリチウムの吸蔵 ·放出に伴う粒子の微細化の抑制と 、(2)負極活物質粒子のリチウムの吸蔵 ·放出に伴う粒子の微細化が起こった場合で も、微細化された各微粒子間の電気的な繋がりを保持させることができるリチウム二 次電池用の負極活物質粒子及びその負極活物質粒子を用いた負極、並びにそれら の製造方法を提供することにある。なお、ここでいうところの負極活物質粒子の形状 には、粒状、短繊維状、片状などの種々の形状が含まれる。
[0010] 本発明のさらなる目的としては、(3)リチウムの吸蔵及び放出時における体積変化を 低減できるリチウム二次電池用の負極活物質粒子及びその負極活物質粒子を用い た負極、並びにそれらの製造方法を提供することにある。
[0011] また、本発明の他の目的としては、(4)充放電効率が高ぐ充放電によってもサイクル 寿命及びエネルギー密度が低下せず、さらには内部抵抗が増大しないリチウム二次 電池用の負極活物質粒子及びその負極活物質粒子を用いた負極、並びにそれらの 製造方法を提供することにある。さらに、(5)ニッケルや銅といった特定の金属物質を 混入させることにより、電圧の向上や電子移動性の向上を促進する導電性物質を用 V、た負極、並びにそれらの製造方法を提供することも含まれる。
[0012] 本発明による負極活物質粒子及びその製造方法は、シリコン、錫又はアルミニウムか ら選ばれた 1種又は 2種以上の金属を主体として、この他に、リチウムの吸蔵及び放 出時のシリコン、錫又はアルミニウムの形状変化を安定化させる性質を有する金属と 、場合によっては電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有 する金属を含むこと、そして前記電解液に反応し難く且つリチウムを吸蔵及び放出し 難い性質を有する金属を負極活物質粒子の粒界及び Z又は外部表面の少なくとも 一部に析出、結合又は融合させていることに特徴がある。
[0013] すなわち、本発明は、電気化学的にリチウムを吸蔵及び放出するリチウム二次電池 用の負極活物質粒子であって、リチウムを吸蔵及び放出する性質を有するシリコン、 錫又はアルミニウム力 選ばれた 1種又は 2種以上の金属を主成分とする第 1の金属 と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有する第 2の金属と 、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の金属と を含み、第 3の金属は負極活物質粒子の粒界及び Z又は外部表面の少なくとも一部 に析出、結合又は融合していること、または、リチウムを吸蔵及び放出する性質を有 する錫と、リチウムの吸蔵及び放出時の形状変化を安定化させる性質を有するコバ ルトを含む負極活物質粒子であって、その組成は主として CoSn力らなること、を特
2
徴とするリチウム二次電池用負極活物質粒子及びその製造方法などを提供するもの である。
[0014] したがって、本発明による負極活物質粒子は従来の負極活物質粒子の形態とは全く 異なるもので、その特徴の一つとしては、シリコン、錫又はアルミニウム力も選ばれた 1 種又は 2種以上の金属を主成分とする負極活物質粒子の粒界及び Z又は外部表面 の少なくとも一部に電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有 する第 3の金属を析出、結合又は融合させ、その結果、この負極活物質粒子は、合 金化された第 3の金属がリチウムの吸蔵及び放出に寄与しないために粒子の微細化 を抑制して、各粒子間の電気的な繋力 ^を維持することができる。
[0015] また、この負極活物質粒子が微粉砕された場合は、特に第 3の金属が析出、結合又 は融合した粒界において個々の粒子に微細化され易くなり、また、負極活物質粒子 が微細化されてしまった場合であっても、微細化された個々の粒子表面の一部には 第 3の金属が露出されているため、かかる第 3の金属が負極活物質粒子表面に電解 液との反応による不活性な反応生成膜の形成を防止して各粒子間の電気的な繋が りを維持することができる。
[0016] このように、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の金属としては、モリブデン、タングステン、タンタル、タリウム、クロム、テリゥム、ベリ リウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群力も選ばれた 1種又は 2種以上 の金属またはそれらの合金が挙げられ、この中で、モリブデン、タングステン、タンタ ル、タリウム、クロム、テリゥム、ベリリウム及びカルシウムのようなシリコン等の負極活物 質と合金化し難い金属であっても使用することができる。
[0017] また、逆にニッケル、銀、銅及び鉄のような金属はシリコン等の負極活物質と容易に 合金化する金属ではあるが、これらの金属は、電圧の向上や電子移動を補助するこ とによってハイレート性を向上させ、 REDOX反応の効率ィ匕を促進することによる反 応熱発生の抑制を図ることから、第 3の金属として使用することに適して 、る。 [0018] さらに、第 3の金属は、負極活物質粒子全体に lwt%以上、さらに好ましくは 5wt% 以上含まれているとその析出効果は高くなる。ただし、析出された第 3の金属は、負 極活物質粒子の粒界及び Z又は外部表面の少なくとも一部に析出、結合又は融合 されていればよぐ粒界等で区分された負極活物質粒子の組織全部を覆うように析 出、結合又は融合されている必要はない。
[0019] また、負極活物質粒子の粒界及び Z又は外部表面に第 3の金属をより析出、結合又 は融合し易くするためには、シリコン、錫又はアルミニウム力も選ばれた 1種又は 2種 以上の第 1の金属に、鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチモン、 鉛、亜鉛及び珪素よりなる群力 選ばれた 1種又は 2種以上の金属を予め含ませて 合金化することが有効であり、特に、シリコン等に対して lwt%以下の割合でこれらの 金属を添加させた場合にその効果が大きくなる。また、このような合金粒子は商業的 に入手することができる。
[0020] また、本発明による負極活物質粒子は、リチウムの吸蔵及び放出に伴った体積変化 による粒子のある程度の微細化を前提としているものである力 シリコン、錫又はアル ミニゥム力 選ばれた 1種又は 2種以上の金属を主体とする負極活物質粒子自体の 微細化を抑制することも充放電サイクルに伴う電池容量の低下の防止などに寄与す ることから、負極活物質粒子の形状変化を安定させる目的でシリコン等の第 1の金属 に加えて、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、錫、亜鉛、銀、ゲル マニウム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる 群力も選ばれた 1種又は 2種以上の第 2の金属を添加してもよい。
[0021] 第 2及び第 3の金属と主にリチウムの吸蔵及び放出機能を担う第 1の金属との合金化 は、第 2の金属と第 3の金属とを予め合金化させた後に第 1の金属と合金化させても よぐまた、第 2及び第 3の金属と第 1の金属とを同時に合金化させてもよい。
[0022] このようなリチウムの吸蔵及び放出機能を担う第 1の金属と第 2及び第 3の金属との合 金化手段は、単に第 1の金属と第 2又は第 3のいずれかの金属とを合金化させた後、 その合金化された金属と第 3又は第 2のいずれかの金属とを合金化させる場合に比 ベて、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の 金属を負極活物質粒子の粒界及び Z又は外部表面に積極的に析出、結合又は融 合させることを可能にする。
[0023] また、第 3の金属を負極活物質粒子の粒界及び Z又は外部表面に析出、結合又は 融合させるため、第 1、第 2及び第 3の金属の合金化は不活性ガス封入雰囲気下で、 少なくともメカ-カルァロイング法、メカ-カルグライディング法、溶融法、ガスアトマイ ジング法、水アトマイジング法、メカノフュージョン法、ハイブリダイジング法、メツキ法 、スパッタリング法、蒸着法、気相法、液体急冷法又は気体急冷法から選ばれた 1の 方法を用いることが好ましぐさらに、析出、結合又は融合された第 3の金属の結合を 強化するためには、第 1、第 2及び第 3の金属の合金化後、不活性ガス雰囲気中又 は真空下で 100°C以上の温度で熱処理することが好ましい。
[0024] また、第 3の金属は、芳香族系溶剤 (BTX)雰囲気下でマイクロウェーブやプラズマ 照射を用いて負極活物質粒子の表面上にマトリックスネットワークを形成できるように 表面処理 (析出、固着、被覆又は配位を含む)し、表面の導電性向上を図ることもで きる。なお、負極への適用に際しては、これらの異なる方法により作製された負極活 物質粒子の混合粉を使用してもよい。
[0025] また、合金化された金属の微粒子化は、一度作製された固体金属粒子をジェットミル 法又はダライデイング法などを用いて粉砕により微粒子化してもよいが、溶融状態に ある合金から上記ガスアトマイジング法又は水アトマイジング法などを用いて合金微 粒子を作製する場合には、微粒子化された第 1、第 2及び第 3の金属からなる合金粒 子を直接得ることができるため、この場合は粉碎工程を省略してもよ 、。
[0026] このように、負極活物質粒子の表面、内部、粒界に第 3の金属を析出、結合又は融 合させることで、この負極活物質粒子が適用された負極被覆層では、個々の負極活 物質粒子に結合した第 3の金属により電気化学反応が起きてもその影響を受け難い 電子伝導ネットワークが構築される。
[0027] さらに、形状安定化による負極活物質粒子の膨張'収縮に対する耐久性を高めて粒 子の微細化を抑制するためには、電解液に反応し難く且つリチウムを吸蔵及び放出 し難い性質を有する第 3の金属と、第 1の金属の形状変化を安定させる性質を有する 第 2の金属との総量が負極活物質粒子全体に対して 5wt%以上含まれていることが 好ましい。 [0028] また、第 3の金属は、負極活物質粒子全体に対して少なくとも lwt%以上、好ましくは 5wt%以上含まれていることが望ましぐ lwt%以上含まれていない場合は、負極活 物質粒子の粒界及び Z又は外部表面に第 3の金属を十分に析出、結合又は融合で きなくなる場合がある。
[0029] さら〖こ、本発明の他の特徴としては、リチウムを吸蔵及び放出する性質を有する第 1 の金属である錫を約 75wt%〜約 90wt%、リチウムの吸蔵及び放出時の形状変化を 安定ィ匕させる性質を有する第 2の金属であるコバルトを約 10〜約 25wt%含む負極 活物質粒子であって、その組成を主として CoSn結晶を有する合金粒子にすること
2
により、リチウムを吸蔵及び放出する際の微粉砕ィ匕を抑制することができることである
[0030] し力し、このような組成が得られず、または上記のような重量比率が達成されて 、な!/ヽ 場合は、錫やコバルト及びその他の添加金属がフリーな状態となったり、錫とコノ レト の組成が異なる Co Snに相当するものが現れたりして粒子の微細化が進み易くなる
2 3
[0031] なお、他の第 2及び Z又は第 3の金属元素を添加する場合においても、錫とコバルト の含有比率力 錫:約 80wt%に対してコバルト:約 20Wt%の比率を維持しておけば 、 CoSn結晶(立方晶)を主成分とする合金が形成されて合金組成の均質化が高ま
2
り、充放電時のリチウムの吸蔵及び放出に伴う微細化と粒子の孤立化が抑制されて、 負極活物質粒子としてのサイクル特性を向上させることができる。
[0032] また、負極活物質粒子の合金に添加物として 5%以下のホウ素又はリンなどを含有さ せると、リチウムが吸蔵及び放出される際の微細化による電極面からの脱落が少なく なるり、合金粒子の機械的強度が高まって粒子の微細化が抑制されていることが、充 放電試験後の電極表面の SEM観察により確認された。ただし、これとは逆に合金粒 子の機械的強度を弱めても微粒子化を抑制できる場合もある。
[0033] さらに、本発明による負極活物質粒子は、その外表面に導電性金属、金属炭化物又 はカーボン力 選ばれた 1種又は 2種以上の導電性材料で固着、被覆及び Z又は 配位されて 、ることが好まし!/、。
[0034] これらの導電性材料は、負極活物質粒子がリチウムの吸蔵及び放出に伴って体積変 化して粒子の微細化を起こした場合であっても、上述された粒子の粒界及び z又は 外表面に析出、結合又は融合された第 3の金属と相まって、各粒子間及び粒子と負 極集電体との間で電気的ネットワークを維持するように機能し、このため、本発明によ る負極活物質が適用されたリチウム二次電池は、電池の充放電サイクルに伴う放電 性能を殆ど劣化させることがな 、。
[0035] 上記機能を果たすために有効な導電性材料としては、例えば、導電性金属について は電解液に反応し難く且つリチウムを電気化学的に吸蔵し難い性質を有する金属で あることが好ましぐ具体的には、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、ノ ナジゥム、モリブデン、タングステン及びチタンよりなる群力 選ばれた 1種又は 2種以 上の金属またはそれらの合金が挙げられる。
[0036] また、これらの導電性金属の負極活物質粒子表面への固着、被覆及び Z又は配位 は、少なくともメカノフュージョン法、ハイブリダイジング法、メツキ法、スパッタリング法 、蒸着法、溶射法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼結法、ゾルゲル法 、気相法、遊星ボールミル法、マイクロウエーブ法又はプラズマ照射法力 選ばれた 1の方法により実施されることが好ましい。
[0037] さら〖こ好ましくは、これらの導電性金属は、上述された製法により負極活物質粒子表 面に固着、被覆及び Z又は配位させた後、さらに、不活性ガス雰囲気中又は真空下 で 100°C以上の温度で熱処理することにより負極活物質粒子との接触界面において 相互拡散層が形成させてもよい。
[0038] この場合は、上述された固着、被覆及び Z又は配位方法に比べて導電性金属と負 極活物質粒子との一層強固な結合を得ることができ、リチウムの吸蔵及び放出に伴う 負極活物質粒子の体積変化が起こった場合でも導電性金属が負極活物質粒子表 面力 脱落してしまうことを防止する。また、気相法により芳香族溶剤雰囲気下でマイ クロウェーブ、プラズマ照射を用いてマトリックスネットワークを負極活物質粒子の表 面に形成させることによつても、上記と同じ効果を得ることができる。
[0039] さらに、負極活物質粒子の表面の少なくとも一部に、ジルコ二ァ酸ィ匕物、チタン酸ィ匕 物、チタン酸リチウム、硫化物、リンィ匕物又は窒化物などのいずれか 1つの化合物を 結合させた場合は、充放電に伴う電解液の分解が抑制されて電極の界面抵抗の上 昇を抑制することができる。
[0040] 例えば、負極活物質粒子と少量のジルコユア酸ィ匕物溶液を混合し、前記負極活物 質粒子の表面上に薄く被覆されるように遊星ミル、遊星ボールミルや振動ミルなどを 用いて混鍊した後、不活性ガス雰囲気炉内で数百 °Cの熱処理を行うことにより、前記 負極活物質粒子の表面上にジルコユア酸ィ匕物を焼結させることができる。また、チタ ン酸リチウムをメカノフュージョン法などの被覆及び結合方法を用いて負極活物質粒 子の表面上に結合させた場合は、表面改質と同時に負極活物質として作用させるこ とちでさる。
[0041] また、金属合金力もなる負極活物質粒子をリチウムを吸蔵及び放出できるカーボンと の混合物の総重量に対して重量比で 30wt%以上混合させた場合は、充放電に伴う 電解液の分解を抑制することができると共に、例え充放電に伴う合金粒子の微細化 が生じた場合においても、前記カーボンが導電材としての役割を果たして孤立化に よる電気的な経路の遮断を抑制することができる。
[0042] また、前記導電性金属と同様の機能を果たす炭化物としては、 CoC、 CrC、 FeC、 M oC、 WC、 TiC、 TaC及び ZrCよりなる群力 選ばれた 1種又は 2種以上の炭化物が 挙げられる。この場合の炭化物も導電性金属と同様の製法及び熱処理により、負極 活物質粒子表面で炭化物としての結合を生じ、前記導電性金属の場合と同様に強 固な結合を示して粒子の体積変化に対しても脱落することがなくなる。
[0043] さらに、同様の機能を果たすカーボンとしては、低温焼成カーボン、非晶質カーボン 、ケッチェンブラック、アセチレンブラック、繊維状カーボン、ナノチューブ、ナノフォー ン及び黒鉛よりなる群力 選ばれた 1種又は 2種以上のカーボンが挙げられる。
[0044] これらのカーボンは、メカノフュージョン法、ハイブリダイジング法などの押圧力又は 衝撃力を加えて負極活物質粒子表面に結着、固着又は被覆させるか、有機化合物 を単独で又は有機化合物に前記カーボンを添加して焼成することにより負極活物質 粒子表面に固着、被覆及び Z又は配位させてもよぐまた、ノインダーを用いて負極 活物質粒子表面に固着、被覆及び Z又は配位させてもよい。例えば、バインダーを 用いて負極活物質粒子表面に固着、被覆及び Z又は配位させる場合は、 PVdFな どのバインダーに負極活物質粒子と前記各種カーボンを添加して混鍊し、負極集電 体表面に塗工して被覆することにより各種カーボンが負極活物質粒子表面にバイン ダーを介して結合される。
[0045] 具体的には、カーボンの負極活物質粒子表面への固着、被覆及び Z又は配位は、 例えばフエノール榭脂、砂糖、ピッチなどの有機高分子材料を単独で、またはカーボ ンなどの導電性材料を混合した状態で負極活物質粒子表面に被覆し、約 300°Cか ら約 1200°Cの還元雰囲気中で熱処理することにより、厚さ 1 m以下の低温焼成力 一ボン皮膜を負極活物質粒子表面の一部にマトリックスネットワークを形成させるよう に焼成したり、さらには、カーボン皮膜に他の導電性材料を含有させることで負極活 物質粒子の導電性を一層高めた皮膜層を形成させることができる。
[0046] この結果、負極活物質粒子がリチウムの吸蔵及び放出により微細化された場合でも、 カーボン被膜が少なくとも負極活物質粒子表面の一部に強固に形成されているため 、上述された電気的ネットワークが電池の充放電サイクルの進行に伴って破壊される ことがなくなり、高い電池の放電性能を維持することができる。
[0047] すなわち、本発明による負極活物質粒子の特徴は、リチウムの吸蔵及び放出に伴つ た体積変化による粒子の微細化が進行した場合であっても、各粒子間及び粒子と負 極集電体との間の電気的ネットワークが維持できることにある。
[0048] つぎに、本発明による負極活物質粒子は、負極集電体に適用されてリチウム二次電 池用の負極を形成する。
[0049] 本発明による負極を形成するためには、上記負極活物質粒子にアセチレンブラック、 ケッチェンブラック、ナノチューブ又はナノフォーンなどの導電性助剤と PVdF、 SBR などのバインダー又は CMCなどのような分散材を加えて混鍊した負極合剤を作製し 、この負極合剤を厚み 8 μ mから 15 mの電解銅箔又は圧延銅箔からなる負極集電 体の表裏面に塗工した後、塗工ラインの中で乾燥させる。
[0050] 乾燥された負極は、その後プレスに掛けられ負極表面が平滑ィ匕される。この時、本発 明による負極活物質粒子を用いた場合は、負極表面を平滑にするために必要最小 限の軽プレスを行うのみでよぐ従来の負極活物質粒子を用いた場合のように、負極 に重プレスを施して電極密度を高める必要はな 、。
[0051] このように、本発明による負極に軽プレスを適用する理由は、本発明による負極は電 極密度を高めることを一義的な目的とせず、逆に、負極活物質粒子表面に導電性材 料を被覆することで多孔質層又はマトリックスネットワーク(2次元的又は 3次元的な網 目構造など)を形成させることを目的とする。
[0052] また、負極活物質粒子間の空隙に先述の微小なケッチェンブラックやアセチレンブラ ック、ナノチューブ又はナノフォーンなどの導電性助剤を lwt%〜15wt%の割合で 含有させることで多くの微小空間を負極内の負極活物質粒子の周囲に分布させ、こ れにより、力かる微小空間に負極活物質粒子がリチウムを吸蔵した時に生じる体積増 加分を吸収させることを主な目的とするからである。
[0053] すなわち、本発明による負極は、負極内に存在する微小空間に負極活物質粒子の 体積変化を吸収させることにより、全体として電極厚みの変化を抑制している。この結 果、本発明による負極を用いたリチウム二次電池の形状 (特に厚み)は充放電に伴う 体積変化がほとんど見られず、限られたスペース内に電池が収納されても電池の厚 みなどが変化しないため、機器に悪影響を及ぼすことがない。
[0054] このようにして作製される負極に対して、負極活物質粒子の密度及び重量と、実際に 塗工された負極活物質粒子による塗工層の容積を測定することにより求められる空 隙率を、プレス圧力を変更することにより表 1に示されるような各空隙率を有する負極 を作製した。つぎに、この負極に対してリチウムを吸蔵させた後に続いてリチウムを放 出させ、試験前後のそれぞれの負極の厚み力 負極厚みの変化率を求めた。
[0055] [表 1] 表 1
Figure imgf000012_0001
[0056] 表 1に示す結果より、負極塗工層の空隙率が 30%より小さくなると充電時のリチウム 吸蔵による負極容積の増加に伴い、負極の厚みが大きく変化して規格から外れると 共に、負極に電解液が浸透し難くなつて真空含浸に多大な時間を要したり、含浸量 不足で電池性能を悪ィ匕させたりする。逆に、負極塗工層の空隙率が 70%より大きく なると、限られた容積内に所定量の負極活物質粒子を配置することができなくなり、 所望の電池容量を得ることができないなどの問題を生じることになる。
[0057] この結果、本発明による負極の塗工層の空隙率は、 30%以上 70%以下の範囲内に 、より好ましくは 40%以上 65%以下の範囲内にあることが好ましい。し力しながら、充 電した後に放電した場合の負極塗工層の空隙の中には約 5%程度の容積を占めるリ チウムが残存して 、るため、リチウム二次電池を^ aみ立てた後にエージング工程を経 て出荷される状態でのリチウム二次電池の負極塗工層の空隙率は、先述の残存して いるリチウムの容積を差し引いた 35%〜60%の範囲内にあることが好ましい。
[0058] したがって、このような適当な空隙率を有する塗工層を負極に形成させるためには、 塗工される負極活物質粒子の外表面に固着、被覆及び Z又は配位された被覆材料 を利用して粒子外表面近傍に適当な空隙を持たせること、および、塗工後、その負 極をロールプレスなどを用いて電極密度を高めるための高加圧成形をしないこと、す なわち、リチウム二次電池への組み込み時において、負極がセパレーターを突き破 ることがな ヽ程度の負極表面の平滑性を確保するための低加圧成形 (例えば、線圧 約 5kgZcm〜約 250kgZcm)を行うことにより、各粒子間及び粒子と負極集電体と の間の電気的な繋がりを形成させることが重要である。
[0059] また、予め負極にリチウムを吸蔵及び放出させてリチウムの放出率を最適化した上で リチウム吸蔵状態中の負極の電極面を押圧状態下で処理すると、負極厚みがすでに 変化し終えた負極を得ることができる。その結果、吸湿などに対してさらに十分な対 策を講じた上で、この負極を用いて正極と組み合わせると、充放電に伴う電池の厚み の変化を極めて小さくしたリチウム二次電池を作製することができる。
[0060] 本発明の他の特徴としては、上述された効果をさらに高めるために、予めリチウムを 吸蔵させた負極活物質粒子を用いることにより、粒子内部の構造を充放電状態が経 過した後の粒子構造のように、連続及び Z又は不連続な微細孔を有する略軽石状 の形状をした全体的には 、びつな形状の不定形粒子や、表面及び内部に無数の微 小孔ゃ空洞ゃヒビ割れを有する海綿状網目組織の粒子や、または、これらの微粒子 が集合し結合したような形態を有する凝集 (集合)粒子へ変化させておくことが有効 である。
[0061] その結果、前記負極活物質粒子を使って電極を作製したものは、リチウムが吸蔵す る際に生じる粒子の容積膨張が予め引き起こされているため、充放電を繰り返した場 合においても形状記憶合金のような形状回復効果を発揮してその容積変化を最小 限に抑制し、負極厚みの増加を抑えることができる。
[0062] また、当該粒子の孔内に負極活物質を充填しておくことにより、該負極活物質粒子の 骨格がリチウムの吸蔵及び放出時の体積膨張を抑制して微粉砕ィ匕を抑え、さらには 電子伝導径路として該骨格が使用される。また、上述された軽プレスに代わり重プレ スを適用することにより、電極の密度を高めて各粒子間の接触を向上させることも可 能となる。なお、この時適用されるセパレーター、電解質は、材質又は構成などを特 に限定されることなく使用することができる。
[0063] 表 2には、 30サイクル経過時の電池容量力 初期電池容量に対してどれだけ維持さ れているかを示す値である 30サイクル経過時の電池容量維持率(%)について、本 発明による負極活物質粒子の平均粒子径の違いがどのような影響を与えるかを調べ た試験結果を示す。
[0064] なお、ここで使用する平均粒子径とは、測定される粒子を網の目が規格化された標 準篩いを目開き径の大きいものから順に重ねて篩い分け、各網上に残った粒子の平 均粒子径を最後に通過した篩の目開きで表したものである。だだし、平均粒子径が 小さくなると、気流分級機を使用した方が効率的な場合がある。
[0065] [表 2] 表 2
Figure imgf000014_0001
[0066] 表 2より、負極活物質粒子の平均粒子径が 30 mより大きくなると、リチウムを吸蔵し 放出する際の体積変化が大きくなり過ぎて粒子内に生じた歪を吸収できずに粒子の 微細化が起こり、この結果、 30サイクル経過時の電池容量維持率(%)が著しく低下 することが判った。したがって、本発明による効果を維持又は高めるためには、負極 活物質粒子の平均粒子径を好ましくは 20 μ m以下、より好ましくは 5 μ m以下にする ことが望ましい。
[0067] 特に、平均粒径が 2 μ m以下であって、粒度分布の 90%以上の粒子が 0. 01 〜 1 0 mの範囲内にある負極活物質粒子を用いた場合は、平均粒子径が 2 mであつ ても 30サイクル経過後の電池容量維持率 100%を達成することができる。
[0068] また、力かる負極活物質粒子を MCMBなどの負極活物質としてのカーボン材との混 合物に対して重量割合で 30wt%以上、好ましくは 50wt%以上になるように混合し、 さらにアセチレンブラックなどの導電材とを混合させた場合は、これらの粒子材料とバ インダ一との分散性が改善されて、充放電を繰り返しても前記粒子材料が電極から 脱落することがなく電子伝導性を半永久的に維持できる強い結着を得ることができる ようになる。前記混合率が 30wt%より少ない場合は、本発明負極活物質粒子の増 加による電池性能の向上、例えば容積エネルギー効率の改善はごく僅かであり、ェ 業的価値が乏しくなる。
[0069] また、本発明による効果を一層高めるためには、複数の粒度分布を有する粉末粒子 を混合することにより、リチウムの吸蔵及び放出時に生じる粒子内の応力歪を各粒子 間に形成された空隙により一層効果的に吸収できることが見出された。
[0070] 具体的には、平均粒子径が 5 μ mである負極活物質粒子に対して、例えば、平均粒 径が 15 μ m〜20 μ mである負極活物質粒子を重量比で約 10 %添加することで、 負極表面に積極的に凹凸を形成させることができる。そして、この負極表面を隙間制 御されたロールプレスで軽加圧することにより、主に凸部を形成している負極表面上 の負極活物質粒子のみが横方向へと延びた偏平状の粒子形状に変形され、全体と しては平滑な表面を有する負極を形成することができる。
[0071] このような負極は、リチウムを吸蔵すると、横方向へ変形させられた偏平状の負極活 物質粒子が主に横方向に膨張し、また、それ以外の他の負極活物質粒子は、偏平 状に変形した各粒子間に形成された凹部を埋め尽くすように膨張するため、負極全 体としての厚みをほとんど変化させることなく体積膨張分を効率よく吸収することがで さるようになる。
[0072] なお、本発明による負極活物質粒子の形状は、球状よりは片状、扁平状、繊維状な ど細長い形状の方が粒子の微細化が進み難ぐこの結果、各粒子の突起部分又は 繊維状の導電部分は、負極内で隣接する粒子と相互に接触又は絡み合って各粒子 間の電気的な繋がりを形成させ易くすることが見出された。また、特に負極活物質粒 子の形状が球状の場合は、平均粒子径が数 m以下と小さい方がリチウムを内部ま で吸蔵でき、全体としての体積歪が小さく且つ利用率が高くなると共に微粉砕化され 難くなることが判った。
[0073] このような本発明による負極活物質粒子及び負極は、以下に説明する方法によって 作製される。
[0074] 本発明による負極活物質粒子は、電気化学的にリチウムを吸蔵及び放出するリチウ ムニ次電池用の負極活物質粒子を製造するための方法であって、リチウムを吸蔵及 び放出する性質を有する第 1の金属と第 1の金属の形状変化を安定化させる性質を 有する第 2の金属と電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を 有する第 3の金属とを準備する第 1のステップと、第 1の金属に第 2の金属と第 3の金 属とを合金化させて、第 3の金属が負極活物質粒子の粒界及び Z又は外部表面の 少なくとも一部に析出、結合又は融合した負極活物質粒子を作製する第 2のステップ と、そして導電性金属、金属炭化物及びカーボン力 選ばれた 1種又は 2種以上の 導電性材料を固着、被覆及び Z又は配位させる第 3のステップとを含む製造方法を 用いて作製される。
[0075] なお、前記第 2のステップにおける合金化は、予め第 2及び第 3の金属を合金化させ た後に第 1の金属と合金化させてもよぐまたは、第 1、第 2及び第 3の金属を同時に 合金化させてもよい。
[0076] さら〖こ、本発明による負極を作製するためには、上述された負極活物質粒子の製造 方法に続けて、前記負極活物質粒子と他の導電性材料及びバインダーを含む被覆 材料を準備するステップと、そして前記被覆材料を負極集電体上に表面処理し、負 極を形成させるステップを実施することにより達成される。
[0077] 第 1のステップは、リチウムの吸蔵及び放出機能を担う負極活物質である第 1の金属 と、第 1の金属の形状変化を安定化させるための第 2の金属および電解液に反応し 難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の金属を準備するためのス テツプである。 [0078] この第 1の金属の主なものとしては、シリコン、錫又はアルミニウム力 選ばれた 1種又 は 2種以上の金属が挙げられる。また、本ステップにおいては、第 1の金属に、鉄、ク ロム、マグネシウム、マンガン、アンチモン、鉛及び亜鉛よりなる群カゝら選ばれた 1種 又は 2種以上の金属をカ卩えて予め合金化したものを使用してもよい。
[0079] 第 2の金属は、充放電サイクルに伴う電池容量の低下を防止するために、リチウムの 吸蔵及び放出に伴う体積変化による負極活物質粒子自体の微細化を抑制し負極活 物質粒子の形状変化を安定化させることを目的として添加される金属であり、好ましく は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、ゲルマニウム、 マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよりなる群から選 ばれた 1種又は 2種以上の第 2の金属が使用される。
[0080] また、第 3金属は、電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有 するものであって、モリブデン、タングステン、タンタル、タリウム、クロム、テリゥム、ベリ リウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群力も選ばれた 1種又は 2種以上 の金属またはそれらの合金が使用され、この中で、モリブデン、タングステン、タンタ ル、タリウム、クロム、テリゥム、ベリリウム及びカルシウムのようにシリコン等の負極活 物質と合金化し難い金属であっても使用することができる。
[0081] また、ニッケル、銀、銅及び鉄のようなシリコン等の負極活物質と容易に合金化する 金属であっても、これらの金属は、電圧の向上や電子の移動を補助することによりノ、 ィレート特性を向上させ、 REDOX反応の効率ィ匕を促進して反応熱発生の抑制を図 ることから、第 3の金属として使用することができる。
[0082] 第 2ステップは、第 3の金属を負極活物質粒子の粒界及び/又は外部表面への析出 、結合又は融合させるために第 1、第 2及び第 3の金属を合金化させるステップである
[0083] 本ステップにおける上記金属の合金化による析出、結合又は融合は、第 3の金属の 析出効果を高めるために不活性ガス封入雰囲気下で、少なくともメカ-カルァロイン グ法、メカ-カルグライディング法、溶融法、ガスアトマイジング法、水アトマイジング 法、メカノフュージョン法、ノ、イブリダイジング法、メツキ法、スパッタリング法、蒸着法、 気相法、液体急冷法又は気体急冷法から選ばれた 1の方法により実施されること好 ましぐさらに析出、結合又は融合された第 3の金属の結合を強化するためには、第 1 、第 2及び第 3の金属を合金化後、不活性ガス雰囲気中又は真空下で 100°C以上、 さらに好ましくは 500°C〜950°Cの温度で熱処理することが望ましい。
[0084] また、第 3の金属は、気相法により、芳香族系溶剤 (BTX)雰囲気下でマイクロウエー ブゃプラズマ照射を用いて負極活物質粒子の表面上にマトリックスネットワークを形 成させるように表面処理 (析出、固着、被覆又は配位を含む)することで表面の導電 性向上を図ることもできる。なお、負極への適用に際しては、これらの異なる方法によ り作製された負極活物質粒子の混合粉を使用してもよい。
[0085] また、これらの合金粒子は次工程において、ガスアトマイジング法、水アトマイジング 法などの上記方法を用いて直接平均粒子径 20 μ m以下の合金粒子としたものを使 用してもよぐジェットミル法、グライディング法などと組み合わせることにより合金化さ れた粒子又は塊を平均粒子径が 以下となるように粉砕'分級したものを使用 してちよい。
[0086] このように、第 1、第 2及び第 3の金属の合金化のために上記のようなステップ及び製 法を組み合わせて負極活物質粒子を作製すると、単に通常の合金化方法を用いて 第 1、第 2及び第 3の金属を合金化する場合に比べて、第 3の金属を負極活物質粒 子の粒界及び Z又は外部表面に析出、結合又は融合させるために効果的であり、さ らに、合金化された負極活物質粒子の一部非晶質化や複雑形状化も同時に達成さ れることから、高エネルギー容量で充放電サイクル特性の優れた負極活物質を得る ことがでさるよう〖こなる。
[0087] 例えば、本発明による負極活物質粒子の好適な具体例として、負極活物質に錫を選 んだ場合の製造方法及びその特性にっ 、て説明する。
[0088] まず、リチウムの吸蔵及び放出時の錫の形状変化を安定化させる第 2の金属としてコ バルト粉末 75wt%と、電解液に反応し難く且つリチウムを吸蔵及び放出し難い第 3 の金属としてタングステン粉末 25wt%とを選び、これらを不活性ガス雰囲気中でカロ 熱処理して合金を作製し (その後、数十/ z mの大きさの合金粉末粒子となるように粉 砕 ·分級してもよい)、さらに、この合金粉末粒子 20wt%に錫粉末 80wt%を混合し、 再度、不活性ガスアトマイジング法により合金を作製した。そして作製された数十; z m 〜百 m程度の大きさの合金をジェットミルなどを用いて微粉砕した後分級し、本発 明による負極活物質粒子を作製した。
[0089] なお、負極活物質粒子中に含まれる金属酸ィ匕物の割合が lwt%より大きくなると、初 期負極活物質粒子の利用率が他の効果との相乗効果で 90%以下となってしまうた め、特に温度が高くなる状態での負極活物質粒子の製造処理は、少なくともバインダ 一などと混練されて塗液状態 (スラリー状態)になるまで不活性ガス雰囲気の下で実 施することが好ましい。
[0090] このようにして作製された負極活物質粒子を電子顕微鏡を用いて観察すると、負極 活物質粒子の粒界及び Z又は外部表面にタングステンが析出、結合又は融合して いることが観察された。
[0091] また、この負極活物質粒子を適用した負極を電解液中で対極である正極との間で電 気化学反応を起こさせた場合、負極活物質粒子の表面の一部に析出、結合又は融 合したタングステン部分には電解液と反応した SEI皮膜が形成されず、この結果、負 極内に充填されているカーボンなどの導電材との電気的接触が維持されることから、 リチウム二次コイン電池の充放電 30サイクル経過後の電池の容量減衰率を約 1Z20 まで改善することができた。
[0092] 第 3のステップは、上述のようにして作製された本発明による負極活物質粒子をさら に表面改質処理することにより、負極活物質粒子と電解液とが反応して SEI皮膜を形 成することを抑制すると共に、力かる負極活物質粒子が適用された負極内に形成さ れる電気的ネットワークのさらなる強化を図ることを目的とするものであって、負極活 物質粒子の表面に導電性材料を固着、被覆及び Z又は配位することによりその目的 が達成される。
[0093] 本ステップにおいて負極活物質粒子の表面に固着、被覆及び Z又は配位される導 電性材料は、導電性金属、金属炭化物及びカーボンカゝら選ばれた 1種又は 2種以上 の導電性材料であり、具体的には、(1)ニッケル、鉄、銅、クロム、ニオブ、銀、タンタ ル、バナジウム、モリブデン、タングステン及びチタンよりなる群力 選ばれた 1種又は 2種以上の金属またはそれらの合金である導電性金属、(2) CoC、 CrC、 FeC、 Mo C、 WC、 TiC、 TaC及び ZrCよりなる群力 選ばれた 1種又は 2種以上の炭化物、お よび Zまたは(3)低温焼成カーボン、非晶質カーボン、ケッチェンブラック、ァセチレ ンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛 (鱗片状、球状、 人造、天然)よりなる群力 選ばれた 1種又は 2種以上のカーボンが使用される。
[0094] 特に、導電性材料としての炭化物をメカノフュージョン法、ハイブリダイジング法など により負極活物質粒子の表面に固着、被覆及び Z又は配位させたり、高分子材料と 共に焼成することで負極活物質粒子の表面に固着、被覆及び Z又は配位させたり、 または、負極活物質粒子の表面を直接炭化することで形成させたりすると、負極活物 質粒子の表面に強固な電子伝導性ネットワークが構築され、この結果、このような導 電性材料で表面処理がなされて 、な 、場合の負極活物質粒子の比抵抗が 3 Ω cm 〜5 Ω cmであったのに対して、導電性材料で表面改質処理したものは 0. Ol Q cm 〜1. Ο Ω cmまで比抵抗を低減することができる。
[0095] 導電性金属の負極活物質粒子表面への固着、被覆及び Z又は配位は、少なくともメ カノフュージョン法、ノ、イブリダイジング法、メツキ法、スパッタリング法、蒸着法、溶射 法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼結法、ゾルゲル法、気相法又は 遊星ボールミル法力 選ばれた 1の方法により実施されることが好ましぐさらに、不 活性ガス雰囲気中又は真空下で 100°C以上の温度で熱処理することにより負極活 物質粒子との接触界面において相互拡散層を形成させて、導電性金属と負極活物 質粒子表面との結合力を高めることが好ましい。
[0096] また、カーボンの負極活物質粒子表面への固着、被覆及び Z又は配位は、ノインダ 一を用いて負極活物質粒子表面に固着、被覆及び Z又は配位させることも可能であ る力 負極活物質粒子との強い電気的接触度及び固着強度を得るためには、メカノ フュージョン法、ノ、イブリダイジング法などの押圧力又は衝撃力をカ卩えて負極活物質 粒子表面に結着、固着又は被覆させるか、有機化合物を単独で又は有機化合物に 前記カーボンを添加して焼成することにより負極活物質粒子表面に固着、被覆及び Z又は配位させることがより好まし 、。
[0097] 上述された第 2、第 3及び上記導電性材料に含まれる金属の負極活物質粒子全体 の重量に占める割合が 5wt%より少なくなると、リチウムの吸蔵及び放出時の体積膨 張 ·収縮に伴う構造変化による歪疲労力 負極活物質粒子の微細化が進み、その結 果、粒子の孤立化により電気的接触が乏しくなる傾向を示す。また、 80wt%より多い 場合は、リチウムの吸蔵及び放出に対して負極活物質合金粒子の体積膨張'収縮に よる微細化が抑制されることとなり、孤立化により電気的接触が乏しくなるといった問 題点は改善されるものの、負極活物質粒子としての電池容量が極めて小さくなるとい つた新たな問題点を生ずることになる。
[0098] したがって、本発明による目的を達成するためには、負極活物質粒子に含まれる第 2 、第 3及び上記導電性材料に含まれる金属の占める割合を 5wt%〜80wt%の範囲 内に調整することが好ましぐより好ましくは 10wt%〜50wt%範囲内に調整すること が望ましい。
[0099] つぎに、本発明による負極を作製するためには、上述された負極活物質粒子の製造 方法に続けて、導電性材料が固着、被覆及び Z又は配位された負極活物質粒子と カーボンやグラフアイトなどの追加の導電性材料、そしてノインダーゃ分散剤などを 水や溶剤で粘度調整した塗工液を含む被覆材料を準備する。
[0100] そして、準備された被覆材料を負極集電体上に、例えば(1)溶射法を用いて直接被 覆したり、(2)塗工法を使って塗工するなどして表面処理し、乾燥又は加熱処理を施 した後、低圧でロールプレスすることにより負極表面の凸部を平滑にし所定の厚みと 電極密度を有する負極を形成する。
[0101] このようにして作製された本発明による負極は、(1)溶射法を用いて直接被覆した場 合、負極の作製後に水分率 lOppm以下のイオン性液体を含む電解質を含浸させ、 (2)塗工法を使って塗工した場合は、塗工液に予めイオン性液体単体あるいはィォ ン性液体を含む電解質を含有させておくか、または真空含浸法で強制的に含有させ ることにより、作製された負極表面に薄くイオン性液体を含む電解質層を形成するこ とがでさる。
[0102] この結果、本発明による負極に機械的強度を有するイオン性液体を含むゲル状のィ オン性液体を用いた固体電解質を適用した場合は、負極と固体電解質とが接触する 界面において固体電解質の成分が負極活物質粒子より構成される負極表面処理層 内のイオン性液体と相溶して両者の密着性を向上させる。一方、電解液を用いた場 合は、イオン性液体が負極内の負極活物質粒子の表面を覆って不活性な皮膜の形 成を防止することから、電子伝導ネットワークの形成を促進することができる。
[0103] また、この時使用に適するイオン性液体の種類としては、特にアンモ-ゥム系、ピリジ ユウム系、ピベリジ-ゥム系のォ-ゥム塩であることが好ましい。なお、イオン性液体 の水分率は lOppm以下でなければ、水分によりリチウムが不活性ィ匕することになる ので注意を要する。
[0104] また、負極と固体電解質との密着性がさらに高まると、イオン伝導性が向上してより高 ぃ充放電容量が得られるようになると共に、充放電を繰り返した場合は、負極活物質 粒子の体積変化による固体電解質との接触性が低下してしまうことも一層抑制されて 、さらに優れた充放電サイクル特性が得られるようになる。
[0105] 塗工などによる負極活物質粒子の負極集電体への表面処理方法は、負極活物質粒 子のリチウムの吸蔵及び放出に伴う構造破壊により微細化されて電池のサイクル特 性を著しく劣化させるとの理由から、本格的な研究開発は縮小傾向にある。しかしな 力 本発明によれば、塗工などによる表面処理方法は、イオンスパッタリング、 PVD、 CVD又はメツキなどの方法を用いて粗面化された負極集電体表面に数 μ mの厚み 又は高さの柱状シリコンを形成させるような他の特許に説明されている表面処理方法 に比べて、表面処理層の厚みをより一層厚くできることから、電極容量を大きくして容 積効率を高めるために非常に有利となる。
[0106] また、本発明による負極活物質粒子を含む被覆材料を用いて負極集電体へ多孔質 層又はマトリックスネットワークを形成させるために適した表面処理方法としては、上 述されたような(1)メツキ法、スパッタリング法、蒸着法、溶射法、噴霧法、浸漬法、静 電法、気相法又は焼結法などの表面処理方法が挙げられ、また(2)粒状の負極活 物質にカーボンなどの導電性材助剤やバインダーを混合した塗液を作製し、これを 負極集電体面に塗工して乾燥するような表面処理方法であってもよい。
[0107] また、得られた負極に一層強力な電子伝導ネットワークを構築させることを望む場合 は、ニッケル、銅、銀又は鉄などの金属を用いてメツキ法、スパッタリング法、気相法 又は蒸着法などの方法により表面処理することにより、リチウムイオンが自由に移動 でき、且つ負極活物質内でリチウムの吸蔵及び放出を阻害することがないような多孔 質層又はマトリックスネットワークを負極表面にさらに形成させることが有利である。 [0108] この結果、負極活物質粒子同士及び負極活物質粒子と負極集電体との電気的な繋 力 ^は、負極活物質粒子の表面及び Z又は界面に析出、結合又は融合した第 3の 金属、または粒子表面に固着、被覆及び Z又は配位された導電性材料、並びにこれ らの負極活物質粒子と混合して表面処理された導電性助剤により確実に達成される
[0109] また、本発明による負極活物質粒子と混合して表面処理される導電性助剤にケツチ ェンブラック又はアセチレンブラック、ナノチューブ、ナノフォーンなどのカーボンを用 いる場合は、特に被覆層における重量換算で lwt%〜15wt%含有させると、各粒 子間などにおいて強い電気的な繋がりを得ることができ、また、リチウムの吸蔵 '放出 による負極の厚みの変化を抑えるためには、 6wt%〜15wt%含有させることでその 目的が達成される。
[0110] さらに、上述されたように負極に形成される被覆層の空隙率は、負極集電体の表裏 面に負極活物質粒子を塗工して熱乾燥した状態での空隙率を 40%〜65%の範囲 内に調整することにより、負極活物質粒子のリチウムイオンの吸蔵に伴う体積膨張を 被覆層内部で吸収させて負極の厚みの増大を抑えることができる。
[0111] このため、本発明による負極活物質粒子は、全体としてリチウム二次電池の形状変化 を抑制するために多大な効果があり、また、前記被覆層の表面にニッケル、銀、銅又 は鉄力 選ばれた 1種又は 2種以上の金属をメツキなどの方法を用いて被覆すること により、多孔質層又はマトリックスネットワークを形成させて電極抵抗を低減させること も可能になる。
[0112] 本発明による負極活物質粒子は、上述されたように(1)負極活物質粒子のリチウムの 吸蔵及び放出に伴う粒子の微細化の抑制、および(2)電解液などとの反応による不 活性な皮膜が負極活物質粒子の全表面を覆って生成されてしまうことを防止し、その 結果、強固な電子導電回路を構築し、リチウムの吸蔵及び放出時における体積変化 に影響され難い電気的接続ネットワークの形成を可能にする。
[0113] なお、本発明における負極活物質粒子と他の金属などとの組み合わせや、個々の成 分比率および原材料の粒度、電極の厚み、密度、製造条件、集電体の表面状態、電 解質の種類などについては、特に実施例に限定されるものではなぐ本発明の技術 的思想に従う限り、リチウム二次電池の用途、容量、形態などに応じて適宜選択でき る。
図面の簡単な説明
[0114] [図 1]本発明による負極活物質粒子を用いたコインセルの断面図を示す。
[図 2]本発明による負極活物質粒子の断面図を示す。
[図 3]図 2に示した負極活物質粒子をさらに表面改質処理した場合の本発明による負 極活物質粒子の断面図を示す。
[図 4]本発明による負極活物質粒子が塗工された負極の断面図を示す。
[図 5]本発明による不定形状を呈する負極活物質粒子の SEM写真である。
[図 6]本発明による海綿状網目組織を呈する負極活物質粒子の SEM写真である。
[図 7]本発明による凝集 (集合)を呈する負極活物質粒子の SEM写真である。
[図 8]本発明による凝集 (集合)を呈する!/、びつな形状を有する負極活物質粒子の S
EM写真である。
発明を実施するための最良の形態
[0115] 以下、本発明による負極活物質粒子を適用した負極およびその負極を適用したリチ ゥム二次電池について、実施例と比較例を用いて具体的に説明する。
[0116] 図 1には、本発明による負極活物質粒子を用いたコインセル 1の断面が示されている 。コインセル 1の中では、負極集電体である銅箔 10上に本発明による負極活物質粒 子が塗工された負極 11と正極 2と力 セパレーター 12を挟んで積層されている。
[0117] 図 2には、本発明による負極活物質粒子 3の断面が示されている。負極活物質粒子 3 の表面及び Z又は界面には電解液に反応し難く且つリチウムを吸蔵及び放出し難 V、性質を有する第 3の金属 4が析出、結合又は融合されて!、る。
[0118] 図 3には、本発明による負極活物質粒子 3をさらに表面改質処理した場合の負極活 物質粒子 8の断面が示されている。負極活物質粒子 8の表面及び Z又は界面には、 第 3の金属 4が析出、結合又は融合されており、さらに、負極活物質粒子 8の表面に は導電性材料である VGCF導電材 5やアセチレンブラック 6及びフエノール榭脂カー ボン層 7が固着、被覆及び Z又は配位されている。
実施例 1 [0119] 正極活物質として、コバルト酸リチウムと導電材及びバインダーを混鍊した塗液を正 極集電体であるアルミニウム箔上に厚み 130 mとなるように塗工して乾燥し、ロー ルプレスにより厚み 90 mの正極 2を作製し、直径 16mmの円板形状に打ち抜いた
[0120] 第 1の金属である負極活物質として、錫を主成分とする粒子に予めアンチモン 0. 09 %、亜鉛 0. 02%及びケィ素 0. 01%が添加されている錫粉末合金粒子を使用した。
[0121] つぎに、第 2の金属であるコバルトを 67wt%、第 3の金属であるモリブデンを 33wt% の割合で混合し、ガスアトマイジング法にて約 100 μ mの Co— Mo合金粉末粒子を 作製した。
[0122] さらに、錫粉末粒子を 75wt%、 Co— Mo合金粉末粒子を 25wt%の割合で混合して 溶解し、再度、ガスアトマイジング法にて約 10 μ m〜約 150 μ mの Sn— CoZMo合 金粉末粒子 3を作製した。
[0123] このようにして作製された Sn— CoZMo合金粉末粒子 3は、錫とコバルトが合金化し ているが、電解液に反応し難く且つリチウムを吸蔵及び放出し難いモリブデン 4は Sn Co合金粒子 3の粒界及び Z又は外表面の少なくとも一部に偏祈して析出、結合 又は融合しており、残りのモリブデン 4は Sn— Co合金と相互拡散層を形成して、第 1 の金属である錫と第 2の金属であるコバルトとを結合させる役目を果たしている。
[0124] したがって、この Sn— Co/Mo合金粉末粒子 3をさらにジェットミルなどの粉砕機を 用いて平均粒子径 2 m程度の微粉末粒子となるように粉砕した場合は、ほとんどの 合金粉末粒子 3がその粒界において破砕され、一方、十分に粉砕されずに残った比 較的大きな平均粒子径 (平均粒子径約 15 ^ m)を有する合金粉末粒子 3につ ヽては 、その内部に線状にモリブデン 4が析出された粒界が多数存在するものとなった。
[0125] そして、ー且平均粒子径 2 mとなるように分級された Sn— Co/Mo合金粉末粒子 3に、 5%のフエノール榭脂溶液と VGCF5とアセチレンブラック 6とを混合した溶液を 噴霧又はスピンコートなどにより付着させた後、アルゴン水素ガス雰囲気中、約 830 °Cで熱処理を行!ヽ、合金粉末粒子 3の外表面にフエノール榭脂をカーボン化させる ことにより、 VGCF5及びアセチレンブラック 6などを固着、被覆及び Z又は配位させ た複雑な形状を有する Sn— CoZMo合金粉末粒子 8 (図 3参照)を作製した。 [0126] つぎに、前記 Sn— CoZMo合金粉末粒子 8をジェットミルを用いて粉砕し、平均粒 子径が 2 μ mとなるように分級した Sn— CoZMo合金粉末粒子 8を 85wt%と、同じく ジェットミルを用いて粉砕し、平均粒子径が 20 μ mとなるように分級した Sn— CoZM o合金粉末粒子 9を 5wt%とに、さらに導電性助剤としてのケッチェンブラックを 5wt %、バインダーとしての PVdFを 5wt%とをカ卩えてプラネタリ一'ミキサーにて分散混 鍊し、 NMPで粘度調整した塗液を作製した。
[0127] 最後に、この塗液を負極集電体である銅箔 10の表面上に厚みが約 60 mになるよ うに塗工して乾燥した後、線圧約 150kg/cmの圧力で加熱ロールプレスして、塗工 面の突起状物が平滑になるようにした負極 11の電極板を作製した。このとき得られた 負極の電極板の厚みは、約 52 μ mであった。
[0128] 図 4には、このようにして作製された負極 11を約 16. 2mm直径を有する円板状に打 ち抜いた後の負極 11の一部断面が示されている。負極 11は、負極集電体である銅 箔 10表面上に本発明による負極活物質粒子 8、 9を含む被覆材料が塗工及び乾燥 されて被覆層を形成して ヽる。
[0129] この負極 11と上述された正極 2及びセパレーター 12とを、イオン性液体が添加され た 1 Mの LiPF6 + EC/DMCの電解液で真空含浸した後、それらをコインセル容器 内に配置することにより電池を作製した。 23°Cの恒温槽内にて 5時間率での電池の 定電流充放電サイクル試験を実施した結果を表 3に示す。
実施例 2
[0130] 実施例 2では、第 1の金属である錫粉末粒子を 70wt%、電圧改善のためにシリコン 粉末粒子を 10wt%、実施例 1の場合と同じ第 2及び第 3の金属との合金である Co— Mo合金粉末粒子を 20wt%の割合で混合し、ガスアトマイジング法にて約 20 μ m〜 約 110 μ mの Sn— Co— Si/Mo合金粉末粒子 3を作製した。この合金粉末粒子 3を 実施例 1と同じ方法で加工してコインセルを作製し、電池の充放電サイクル試験を行 つた。その結果を表 3に示す。
実施例 3
[0131] 実施例 3は、第 1の金属であるリチウムを吸蔵及び放出する負極活物質粒子として、 シリコンを用いて本発明による負極活物質粒子を作製したものである。 [0132] 具体的には、第 2の金属であるニッケルを 80wt%、第 3の金属であるタングステンを 20wt%の割合で混合し、ガスアトマイジング法にて約 100 μ m〜約 200 μ mの Ni— W合金粉末粒子を作製した。
[0133] つぎに、シリコン粉末粒子を 65wt%、 Ni— W合金粉末粒子を 30wt%に、さらに第 1 の金属としてアルミニウムを 5wt%の割合でカ卩えて混合し、ガスアトマイジング法にて 約 8 μ m〜約 60 μ mの Si—Ni—AlZW合金粉末粒子 3を作製した。
[0134] このようにして作製された合金粉末粒子 3をさらに平均粒子径 2 mとなるように粉砕 して分級した後、各粒子の表面にニッケルメツキを施した。得られた合金粉末粒子 8 の少なくとも外表面の一部にはニッケル金属被膜層が形成されており、さらに、アル ゴン水素ガス雰囲気下、 650°C以上の温度で熱処理することによりニッケルを合金粉 末粒子の表面層に拡散させて、合金粉末粒子の表面とニッケルメツキ層とが強固に 結合した被膜層を有する Si— Ni— A1ZW合金粉末粒子 8を作製した。
[0135] 最後に、この合金粉末粒子 3と導電性助剤及びバインダーを実施例 1と同じ配合比 率で混鍊し、銅箔 10の表面上に塗工して乾燥及び線圧約 50kgZcmで軽プレスし た後、コインセルに組み込んだ。作製された電池の充放電試験結果を表 3に示す。 実施例 4
[0136] 実施例 4では、第 1の金属である錫粉末粒子を 50wt%、平均電圧を高めるためにシ リコン粉末粒子を 30wt%、第 2の金属としてコバルトを 20wt%混合して遊星ボール ミルを用いて合金粉末を作製した。この時、粉末粒子の一部に遊星ボールミル容器 壁面に固着した合金部分が存在したが、次の工程ではそれらを除 ヽた粉末粒子を 使用した。なお、上記遊星ボールミルを用いる代わりに、ガスアトマイジング法又は水 アトマイジング法を用いて前記合金粉末を作製してもよ 、。
[0137] 次に、この Sn— Co— Si合金の微粉末粒子を第 3の金属である約 85°Cに加熱された ニッケルメツキ浴に浸漬し、超音波を付加しながら約 30秒間、メツキ処理をした後、洗 浄して真空加熱乾燥することで、 Sn— Co— SiZNi合金の微粉末粒子 3を作製した 。さらに、メツキされたニッケルと合金との間を強力に結合させるため、約 600°C、 10 分間の熱処理を真空下 (不活性ガスを少し入れた真空度)で行!ヽ相互拡散層を形成 させた。 [0138] このようにして作製された Sn— Co— Si合金粉末粒子 3の表面には、散点的に第 3の 金属であるニッケルの粒子が点在して析出、結合又は融合しており、力かるニッケル 粒子が合金粒子の表面力 容易に脱落しないことから、相互拡散により強力に結合 されて 、ることが確認された。
[0139] 次に、この合金粉末粒子 3と導電性助剤及びバインダーを実施例 1と同じ配合比率 で混鍊し、銅箔 10の表面上に塗工して乾燥及び線圧約 50kgZcmで軽プレスした 後、コインセルに組み込んだ。作製された電池の充放電試験結果を表 3に示す。 実施例 5
[0140] 実施例 4では、第 1の金属である錫粉末粒子を 50wt%、平均電圧を高めるためにシ リコン粉末粒子を 30wt%、第 2の金属としてニッケルを 20wt%混合して遊星ボール ミルを用いて合金粉末を作製した。粉末粒子の一部に遊星ボールミル容器壁面に固 着した合金部分が存在したが、次の工程ではそれらを除いた粉末粒子を使用した。 なお、遊星ボールミルを用いる代わりに、ガスアトマイジング法又は水アトマイジング 法を用いて前記合金粉末作製してもよ ヽ。
[0141] 次に、この Sn—Ni— Si合金の微粉末粒子と第 3の金属であるニッケル微粉末をメカ ノフュージョン法により約 45分間処理することで、 Sn— Ni— Si微粉末粒子表面の一 部に Ni微粉末粒子を点状に結合させた状態の負極活物質粒子 3を作製した。さらに 、ニッケルと合金との間を強力に結合させるために、約 600°C、 10分間の熱処理を真 空下 (不活性ガスを少し入れた真空度)で行 ヽ相互拡散層を形成させた。
[0142] このようにして作製された Sn—Ni— Si合金粉末粒子の表面には、散点的に第 3の金 属であるニッケルの粒子が点在して析出、結合又は融合しており、かかるニッケル粒 子が合金粒子の表面力 容易に脱落しないことから、相互拡散により強力に結合さ れて 、ることが確認された。
[0143] 次に、この合金粉末粒子 3と導電性助剤及びバインダーを実施例 1と同じ配合比率 で混鍊し、銅箔 10の表面上に塗工して乾燥及び線圧約 50kgZcmで軽プレスした 後、コインセルに組み込んだ。作製された電池の充放電試験結果を表 3に示す。 実施例 6
[0144] 第 1の金属として負極活物質である錫を主成分とし、これに予めリンを 0. 09%添加し たものに第 2の金属であるコノ レトとビスマス(又はインジウムであってもよい)を混合 し、これらを溶融し合金化したものを粉砕して篩い機により約 30 m以下の合金粒子 に分級した。次に、これらの粒子をさらに微粉砕したものを分級機により分級して、 0. 1 μ m〜5 m (平均粒径は 1. Ι μ ι)の粒子を得た。
[0145] このようにして得られた錫合金粒子を X線回折で分析すると、 Co Sn、 CoSn、 CoS
3 2
n、 Sn、 Bi (又は In)などのピークが検出された力 続いて不活性ガス (又は真空)雰
2
囲気下で約 500°C〜600°Cの熱処理を施すことにより、合金の主成分として CoSn
2 結晶に対応するピークが顕著に検出される錫合金粒子が得られた。また、マッピング の結果、コバルト成分、錫成分、ビスマス (又はインジウム)成分は均一に合金粒子中 に分散していることが判明した。また、さらに遊星ボールミルで短時間処理した場合 は、錫合金粒子の最大粒子径は 3 μ m程度にまで粉砕された。
[0146] このように、溶融後に得られた合金粒子は、数種類の合金組成カゝらなる混合組成物 であったのに対して、冷却後に、粒子同士が溶融したり融着しない温度域で再度熱 処理を行うことにより、目的とする CoSn結晶を主成分とする粒子を得ることができた
2
[0147] 次に、上記の錫合金粉末粒子を 80wt%、リチウムの吸蔵.放出可能なカーボン材と しての MCMB (平均粒径 6 μ m以下)を 20wt%の割合で混合した負極活物質混合 粒子を 91wt%、導電材(例えばアセチレンブラック)を 5wt%、バインダーとして PVd Fを lwt%、これに溶剤系 SBRを 3wt%加えた混合材を NMPで粘度調整しながら 混鍊して塗液を作製した。
[0148] この塗液を負極集電体である銅箔 10の表面上に塗工して乾燥した後、加熱ロール プレスして、約 31 μ mの負極を得た。次に、正極活物質として LiNi Co Al O (又は
X Y Z 2
LiNi Co Mn O )を用いて厚さ約 90 mの正極を作製し、負極と正極の間に多孔
X Y Z 2
質セパレーター膜を配置して 1Mの LiCIO +ECZDECの電解液を含浸させてアル
4
ミニゥムラミネートパックセル 45mAhを作製した。
[0149] このアルミニウムラミネートパックセルを 23°Cの恒温槽内において 5時間率で定電流 充放電サイクル試験を実施した結果、 30サイクル後の放電容量は約 43. 8mAhで、 50サイクル後では 43. 7mAhであった。また、表 3に示すように 30サイクル後の放電 容量劣化率は 2. 6%であった。
実施例 7
[0150] 第 1の金属として負極活物質である錫を主成分とし、これに予めリンを 0. 09%添加し たものに第 2の金属であるコノ レトと数0 /0のインジウム、ホウ素を混合し、これらを溶融 して合金化した後、冷却してさらに再熱処理したものを粉砕して約 10 m以下の合 金粒子に分級した。 X線回折分析の結果、上記の合金粒子は主として CoSn結晶の
2 合金力もなることが判明した。また、この時の上記合金粒子の主成分は、重量比率で おおよそ錫 80wt%、コバルト 20wt%程度になる。
[0151] 次に、金属リチウムのインゴットをアルゴンガス雰囲気中のステンレス坩堝内で溶融し た。この溶融状態の金属リチウムと上記錫合金粒子を反応させることで、相互拡散に よる合金化したリチウム合金粒子を作製した。さらに、前記リチウム合金粒子を水酸ィ匕 リチウム溶液中でリチウム成分除去処理を行った。
[0152] この処理した粉末を真空乾燥して SEM観察したところ、不連続な微細孔ゃ連続した 微細孔が無数に形成された形状 (軽石、珊瑚のような外観で、個々の突起部などの 表面は滑らかな形状)を有する不定形粒子(図 5参照)や、表面及び内部に達する無 数の微小な孔ゃ空洞を備えたヒビ割れ形状を有する海綿状網目組織の微粒子(図 6 参照)や、これらの粒子が集合して結合した凝集粒子 (あるいは集合体粒子、図 7、 図 8参照)が形成されていた。
[0153] これは錫合金粉末とリチウムとが相互に拡散して結合し、合金粒子の結晶構造が変 化することにより生じたものであると推察され、この結果、充放電を繰り返した後にでき る粒子内の構造的な歪が開放された状態に近い形状を有する負極活物質粒子を作 製当初力も得ることができるようになった。
[0154] 得られた粒子は、図 5、 6、 7、 8に示されるような粒子やこの粒子が砕けた微細粒子な どが混在しており、さらに粉砕(めのう乳鉢、ジェットミル、ボールミル、ビーズミルでも 可能)すると、大きな粒子は容易に細粒子化して粒子径 0. 05 m〜l m (平均粒 子径は 0. 3 m)にまで粒子径を小さくすることができた。なお、微粒子化すると凝集 が進み粒度分布も大きめに計測される場合がある。
[0155] 次に、上記の合金粒子を導電材 (アセチレンブラックなど)及びバインダーと共に混 鍊し、銅箔面に塗工して負極を作製し (または、作製された負極にアンモ-ゥム塩系 イオン性液体を含むイオン導電性電解質を含浸させてもよい)、対極には金属リチウ ム箔を設けて 1Mの LiCIO + EC/DEC電解液を含浸させ、 16 φコインセルを作製
4
した。このコインセルを 0. 2C、 DOD100%の充放電試験を 30サイクル実施した後、 コインセルを解体し、負極を洗浄して得られた負極表面の負極活物質粒子を観察し た。
[0156] この場合は、試験前に比べて粒子がさらに微細化している様子は殆ど見られず、僅 力に粒子が脱落した微小なクレーター跡が形成されて ヽただけで、粒子全体として は構造変化を吸収できる形状が維持されていることが判明した。
[0157] すなわち、 30サイクル後の放電容量劣化率が初期値に対して約 1%と極めて小さか つたことから、予めリチウムを吸蔵させることにより粒子内部の構造を変化させた状態 の粒子は、電極を作製した後、改めてリチウムを吸蔵及び放出した場合であっても、 合金粒子の構造的な変化が少なぐ微細化、脱離などによる電気的なネットワークの 欠損が発生し難 、ことが裏付けられた。
[0158] なお、上記の粒子のようにリチウムを吸蔵させた後にリチウムを除去したものではなく 、リチウムを吸蔵させた状態の粒子をそのまま使用する場合は、粒子を取り扱う雰囲 気、特に水分管理が十分なされたところで扱う必要がある。
比較例
[0159] 比較例としては、正極構造及び電解液組成などは実施例 1〜5と同一であり、負極の みを第 1の金属である錫と第 2の金属であるコバルトのみを合金化して粉砕することに より得られた Sn - Co合金粉末粒子に置き換えたものを用 、て実験を行つた。
[0160] 具体的には、錫 80wt%とコバルト 20wt%をそのまま電気炉で溶融して石臼で 100 μ m程度に粉砕することにより Sn— Co合金粉末粒子を作製し、これを実施例 1〜5と 同一条件でジェットミルなどを用いて粉砕して分級した後、導電助剤及びバインダー をカロえて塗液を作製し、さらに、この塗液を銅箔 10の表面上に塗工して乾燥すること により比較例の負極 11を完成させた。最後に、この負極を実施例 1〜5と同じ方法で コインセルに組み付け、電池の充放電サイクル試験を実施した。その結果を表 3に示 す。 [0161] [表 3] 表 3
Figure imgf000032_0001
[0162] 表 3から、本発明によるリチウム二次電池の電池容量の減少率は、充放電サイクル経 過によっても従来型の電池である比較例に対して 1Z20〜1Z67と小さいことが判る
[0163] この理由は、本発明による負極は、先述したように第 1の金属としての錫と第 2の金属 としてのコバルトを含む CoSnを主な組成とする充放電による粒子の微細化が抑制さ
2
れた負極活物質粒子を適用し、これに予めリチウム吸蔵履歴を与えているためである と考えられる。
[0164] また、本発明による負極活物質粒子は、その表面及び Z又は粒界に電解液に反応 し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の金属を析出,結合又は 融合させているため、この粒子を負極表面に被覆した時、負極被覆層内には各粒子 間及び粒子と負極集電体との間で強力な表面電子伝導ネットワークを形成している ためであると考えられる。
[0165] このように、比較例に示されるような従来型の負極活物質粒子を用いた場合は、塗工 などの手段を用いて電極を作製すると充放電サイクルを経るに従って負極活物質粒 子表面での不活性な皮膜の形成と電子伝導回路の寸断が進み、ある時点力 は、こ のような現象が加速度的に進行してしまうことから電池の容量を著しく劣化させること になる。
[0166] また、比較例のように第 1の金属、第 2の金属及び第 3の金属のすべてを相溶性をも つて完全に合金化してしまうと、本発明に示されるような効果を発揮することはなぐ 従来の引用例に見られるような効果を奏するに留まり、 50サイクル経過後の放電容 量は初期の 5. 6%程度 (放電容量劣化率 94. 4%)にまで劣化する。
[0167] これに対して、本発明による負極活物質粒子を負極へ適用した場合は、第 3の金属 を負極活物質粒子の粒界及び Z又は表面の少なくとも一部に析出、結合又は融合 させることにより負極内において電気化学反応に左右されない電子伝導回路が形成 され、また、第 2の金属を負極活物質である第 1の金属に含有させることにより負極活 物質の微細化を抑制しながらその相溶性により第 3の金属元素との合金粒子表面で の結合が強化することができる。
[0168] さら〖こは、導電性材料である他の導電性金属、炭化物及びカーボン材による負極活 物質粒子の表面改質、熱処理による界面結合層の形成、負極表面への多孔性金属 の被覆、負極被覆層へのイオン性液体の注入及び空隙率の調整などにより、負極活 物質粒子同士及び負極活物質粒子と負極集電体との電気的な繋がりも強化すること ができる。
[0169] この結果、本発明によれば、電池の充放電に伴う負極活物質粒子の膨張 ·収縮が起 こった場合でも、負極内の電気的接続ネットワークが破壊されずに充放電時の電子 の十分な移動を確保できるリチウム二次電池用の負極を提供することができる。
[0170] また、第 1の金属に錫を選択し第 2の金属にコバルトを選択した CoSnを主な組成と
2
する負極活物質粒子を負極へ適用した場合は、この合金粒子の合金組成の均質ィ匕 が高まることにより充放電時のリチウムの吸蔵及び放出に伴う微細化及び粒子の孤 立化が抑制され、負極のサイクル特性を飛躍的に向上させることができる。
[0171] なお、アルミニウム、マグネシウム又は鉄などの微粉末粒子およびそれらの合金は非 常に活性であるため、不活性ガス雰囲気中で取り扱われることが好ましい。特に、こ れらの金属は空気中で取り扱うと急激な酸化反応を起こして発火する場合があるた め、使用量を少なくしたり配合比率を調整したりする必要がある。
また、発火しないまでも酸化した微粉末粒子をそのまま電池に適用すると、リチウムが 酸ィ匕により不動態化して電池容量の低下を招くことになるので十分に注意を要する。 例えば、これらの微粉末粒子を空気中で取り扱った場合は、不活性ガス雰囲気中の 場合に比べて電池容量が約 25%程度減少してしまうことになる。

Claims

請求の範囲
[1] 電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子 であって、主としてリチウムを吸蔵及び放出する性質を有する第 1の金属と、 リチウムの吸蔵及び放出時の前記第 1の金属の形状変化を安定化させる性質を有す る第 2の金属とを含み、
前記第 1の金属と第 2の金属からなる合金組成を主成分とすることを特徴とするリチウ ムニ次電池用負極活物質粒子。
[2] 前記第 1の金属は、シリコン、錫又はアルミニウム力も選ばれた 1種又は 2種以上の金 属を含むことを特徴とする請求項 1に記載のリチウム二次電池用負極活物質粒子。
[3] 前記第 1の金属は、さらに鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチ モン、鉛、亜鉛及び珪素よりなる群力も選ばれた 1種又は 2種以上の金属を含むこと を特徴とする請求項 2に記載のリチウム二次電池用負極活物質粒子。
[4] 前記第 2の金属は、鉄、コノ レト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀
、ゲノレマ-ゥム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモン よりなる群力 選ばれた 1種又は 2種以上の金属を含むことを特徴とする請求項 1に 記載のリチウム二次電池用負極活物質粒子。
[5] 前記第 1の金属は錫を含み、前記第 2の金属はコバルトを含む前記負極活物質粒 子であって、その組成は主として CoSn力もなることを特徴とする請求項 1に記載のリ
2
チウムニ次電池用負極活物質粒子。
[6] 電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子で あって、
リチウムを吸蔵及び放出する性質を有する第 1の金属と、
リチウムの吸蔵及び放出時の前記第 1の金属の形状変化を安定化させる性質を有す る第 2の金属と、
電解液に反応し難く且つリチウムを吸蔵及び放出し難い性質を有する第 3の金属と を含み、
前記第 3の金属は負極活物質粒子の粒界及び Z又は外部表面の少なくとも一部に 析出、結合又は融合していることを特徴とするリチウム二次電池用負極活物質粒子。
[7] 前記第 1の金属は、シリコン、錫又はアルミニウム力も選ばれた 1種又は 2種以上の金 属を含むことを特徴とする請求項 6に記載のリチウム二次電池用負極活物質粒子。
[8] 前記第 1の金属は、さらに鉄、アルミニウム、クロム、マグネシウム、マンガン、アンチ モン、鉛、亜鉛及び珪素よりなる群力も選ばれた 1種又は 2種以上の金属を含むこと を特徴とする請求項 7に記載のリチウム二次電池用負極活物質粒子。
[9] 前記第 2の金属は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、 ゲノレマ-ゥム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよ りなる群力 選ばれた 1種又は 2種以上の金属を含むことを特徴とする請求項 6に記 載のリチウム二次電池用負極活物質粒子。
[10] 前記第 3の金属は、ニッケル、銀、銅及び鉄よりなる群力 選ばれた 1種又は 2種以 上の金属またはそれらの合金を含むことを特徴とする請求項 6に記載のリチウム二次 電池用負極活物質粒子。
[11] 前記第 3の金属は、さらに前記第 1の金属と合金化し難い性質を有する金属を含むこ とを特徴とする請求項 10に記載のリチウム二次電池用負極活物質粒子。
[12] 前記第 1の金属と合金化し難い性質を有する金属は、モリブデン、タングステン、タン タル、タリウム、クロム、テリゥム、ベリリウム及びカルシウムよりなる群力も選ばれた 1種 又は 2種以上の金属またはそれらの合金を含むことを特徴とする請求項 11に記載の リチウム二次電池用負極活物質粒子。
[13] 前記第 3の金属は、負極活物質粒子全体に lwt%以上含まれていることを特徴とす る請求項 6に記載のリチウム二次電池用負極活物質粒子。
[14] 前記第 3の金属は、負極活物質粒子全体に 5wt%〜80wt%含まれていることを特 徴とする請求項 6に記載のリチウム二次電池用負極活物質粒子。
[15] 前記第 2及び第 3の金属は、それらの総量で負極活物質粒子全体に 5wt%以上含 まれていることを特徴とする請求項 6に記載のリチウム二次電池用負極活物質粒子。
[16] 前記第 1の金属は錫を含み、前記第 2の金属はコバルトを含む前記負極活物質粒 子であって、その組成は主として CoSn力もなることを特徴とする請求項 6に記載のリ
2
チウムニ次電池用負極活物質粒子。
[17] 前記負極活物質粒子は、その平均粒子径が 20 μ m以下であることを特徴とする請求 項 1又は 6に記載のリチウム二次電池用負極活物質粒子。
[18] 前記負極活物質粒子は、その平均粒子径が 2 μ m以下であって、粒度分布の 90% 以上が 0. 01 μ m〜10 mの範囲内にあることを特徴とする請求項 1又は 6に記載の リチウム二次電池用負極活物質粒子。
[19] 前記負極活物質粒子は、その外表面の少なくとも一部にジルコユア酸ィ匕物、チタン 酸化物、チタン酸リチウム、硫化物、リンィ匕物又は窒化物のいずれか 1つの化合物が 結合されていることを特徴とする請求項 1又は 6に記載のリチウム二次電池用負極活 物質粒子。
[20] 前記負極活物質粒子は、負極活物質としてのカーボンとの混合物に対して重量割合 で 30wt%以上になるように混合されていることを特徴とする請求項 1又は 6に記載の リチウム二次電池用負極活物質粒子。
[21] 前記負極活物質粒子は、連続及び Z又は不連続な微細孔を有する海綿状網目組 織の粒子及び Z又はこれらの粒子が集合して結合した凝集粒子力 なることを特徴 とする請求項 1又は 6に記載のリチウム二次電池用負極活物質粒子。
[22] 前記負極活物質粒子の表面は、導電性金属、金属炭化物又はカーボン力 選ば れた 1種又は 2種以上の導電性材料で固着、被覆及び Z又は配位されて ヽることを 特徴とする請求項 1又は 6に記載のリチウム二次電池用負極活物質粒子。
[23] 前記導電性金属は、電解液に反応し難く且つリチウムを電気化学的に吸蔵し難い 性質を有する金属であることを特徴とする請求項 22に記載のリチウム二次電池用負 極活物質粒子。
[24] 前記導電性金属は、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、 モリブデン、タングステン及びチタンよりなる群力 選ばれた 1種又は 2種以上の金属 またはそれらの合金を含むことを特徴とする請求項 23に記載のリチウム二次電池用 負極活物質粒子。
[25] 前記炭化物は、 CoC、 CrC、 FeC、 MoC、 WC、 TiC、 TaC及び ZrCよりなる群から 選ばれた 1種又は 2種以上の炭化物を含むことを特徴とする請求項 22に記載のリチ ゥム二次電池用負極活物質粒子。
[26] 前記カーボンは、低温焼成カーボン、非晶質カーボン、ケッチェンブラック、ァセチ レンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛よりなる群から選 ばれた 1種又は 2種以上のカーボンを含むことを特徴とする請求項 22に記載のリチウ ムニ次電池用負極活物質粒子。
[27] 負極集電体表面は、請求項 1又は 6に記載のリチウム二次電池用負極活物質を含 む被覆材料を用いて表面処理することにより被覆層が形成されていることを特徴とす るリチウム二次電池用の負極。
[28] 前記被覆層は、多孔質層又はマトリックスネットワークを形成していることを特徴とする 請求項 27に記載のリチウム二次電池用の負極。
[29] 前記被覆層は、その空隙率が 40%〜65%の範囲内であることを特徴とする請求 項 27に記載のリチウム二次電池用の負極。
[30] 前記被覆層は、さらにケッチェンブラック、アセチレンブラック、ナノチューブ又はナノ フォーンカもなる導電性助剤であって、前記被覆層における重量換算で lwt%〜15 wt%含有されていることを特徴とする請求項 27に記載のリチウム二次電池用の負極
[31] 前記被覆層は、さらにその表面にニッケル、銀、銅又は鉄力 選ばれた 1種又は 2種 以上の金属力もなる多孔質層又はマトリックスネットワークが形成されていることを特 徴とする請求項 27に記載のリチウム二次電池用の負極。
[32] 前記負極の内部には、イオン性液体が含まれていることを特徴とする請求項 27〖こ 記載のリチウム二次電池用の負極。
[33] 電気化学的にリチウムを吸蔵及び放出するリチウム二次電池用の負極活物質粒子を 製造するための方法であって、
リチウムを吸蔵及び放出する性質を有する第 1の金属と、前記第 1の金属の形状変 化を安定化させる性質を有する第 2の金属と、電解液に反応し難く且つリチウムを吸 蔵及び放出し難い性質を有する第 3の金属とを準備する第 1のステップと、 前記第 1の金属に前記第 2の金属と前記第 3の金属とを合金化させて、前記第 3の金 属が合金粒子の粒界及び Z又は外部表面の少なくとも一部に析出、結合又は融合 した負極活物質粒子を作製する第 2のステップと、そして
導電性金属、金属炭化物及びカーボン力 選ばれた 1種又は 2種以上の導電性材 料を準備して、前記導電性材料を前記負極活物質粒子表面の少なくとも一部に固着
、被覆及び/又は配位させる第 3のステップと、
を含むことを特徴とするリチウム二次電池用負極活物質粒子の製造方法。
[34] 前記第 2のステップは、予め前記第 2及び第 3の金属を合金化させた後に前記第 1の 金属と合金化させることを特徴とする請求項 33に記載のリチウム二次電池用負極活 物質粒子の製造方法。
[35] 前記第 2のステップは、前記第 1、第 2及び第 3の金属を同時に合金化させることを 特徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子の製造方法。
[36] 前記第 2のステップは、少なくともメカ-カルァロイング法、メカ-カルグライディング法 、溶融法、ガスアトマイジング法、水アトマイジング法、メカノフュージョン法、ハイブリ ダイジング法、メツキ法、スパッタリング法、蒸着法、気相法、液体急冷法又は気体急 冷法力 選ばれた 1の方法による合金化により、析出、結合又は融合させていること を特徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子の製造方法。
[37] 前記第 2のステップは、合金化された粒子を粉砕して微粒子化するステップをさらに 含んでいることを特徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子 の製造方法。
[38] 前記第 2のステップは、第 1、第 2及び第 3の金属の合金化後、不活性ガス雰囲気中 又は真空下で 100°C以上の温度で熱処理するステップをさらに含んでいることを特 徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子の製造方法。
[39] 前記第 1の金属は、シリコン、錫又はアルミニウム力 選ばれた 1種又は 2種以上の 金属を含んでいることを特徴とする請求項 33に記載のリチウム二次電池用負極活物 質粒子の製造方法。
[40] 前記第 1の金属は、さらに鉄、クロム、マグネシウム、マンガン、アンチモン、鉛及び亜 鉛よりなる群力 選ばれた 1種又は 2種以上の金属を含んでいることを特徴とする請 求項 39に記載のリチウム二次電池用負極活物質粒子の製造方法。
[41] 前記第 2の金属は、鉄、コバルト、銅、ニッケル、クロム、マグネシウム、鉛、亜鉛、銀、 ゲノレマ-ゥム、マンガン、チタン、バナジウム、ビスマス、インジウム及びアンチモンよ りなる群力 選ばれた 1種又は 2種以上の金属を含んでいることを特徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子の製造方法。
[42] 前記第 3の金属は、モリブデン、タングステン、タンタル、タリウム、クロム、テリゥム、ベ リリウム、カルシウム、ニッケル、銀、銅及び鉄よりなる群から選ばれた 1種又は 2種以 上の金属またはそれらの合金を含んでいることを特徴とする請求項 33に記載のリチ ゥム二次電池用負極活物質粒子の製造方法。
[43] 前記導電性金属は、電解液に反応し難く且つリチウムを電気化学的に吸蔵及び放 出し難い性質を有する金属を含んでいることを特徴とする請求項 33に記載のリチウ ムニ次電池用負極活物質粒子の製造方法。
[44] 前記導電性金属は、ニッケル、鉄、銅、クロム、ニオブ、銀、タンタル、バナジウム、モ リブデン、タングステン及びチタンよりなる群力も選ばれた 1種又は 2種以上の金属ま たはそれらの合金を含んでいることを特徴とする請求項 43に記載のリチウム二次電 池用負極活物質粒子の製造方法。
[45] 前記導電性金属は、少なくともメカノフュージョン法、ハイブリダイジング法、メツキ法、 スパッタリング法、蒸着法、溶射法、噴霧法、塗工法、浸漬法、静電法、焼成法、焼 結法、ゾルゲル法、気相法、遊星ボールミル法、マイクロウェーブ法又はプラズマ照 射法から選ばれた 1の方法により、負極活物質粒子表面へ固着、被覆及び Z又は配 位させていることを特徴とする請求項 44に記載のリチウム二次電池用負極活物質粒 子の製造方法。
[46] 前記マイクロウェーブ法又はプラズマ照射法は、芳香族溶媒 (ベンゼン、トルエン、 ザィレン =BTX)気流中で照射して負極活物質粒子表面に直接スパッタリングするこ とにより実施されることを特徴とする請求項 45に記載のリチウム二次電池用負極活物 質粒子の製造方法。
[47] 前記導電性金属は、負極活物質粒子表面への固着、被覆及び Z又は配位後、さら に不活性ガス雰囲気中又は真空下で 100°C以上の温度で熱処理されていることを 特徴とする請求項 33に記載のリチウム二次電池用負極活物質粒子の製造方法。
[48] 前記炭化物は、 CoC、 CrC、 FeC、 MoC、 WC、 TiC、 TaC及び ZrCよりなる群から 選ばれた 1種又は 2種以上の炭化物を含んでいることを特徴とする請求項 33に記載 のリチウム二次電池用負極活物質粒子の製造方法。
[49] 前記カーボンは、低温焼成カーボン、非晶質カーボン、ケッチェンブラック、ァセチ レンブラック、ナノチューブ、ナノフォーン、繊維状カーボン及び黒鉛よりなる群から選 ばれた 1種又は 2種以上のカーボンを含んでいることを特徴とする請求項 33に記載 のリチウム二次電池用負極活物質粒子の製造方法。
[50] 前記カーボンは、メカノフュージョン法、ハイブリダイジング法などの押圧力又は衝 撃力を加えて負極活物質粒子表面に結着、固着又は被覆させるか、有機化合物を 単独で又は有機化合物に前記カーボンを添加したものを負極活物質粒子表面に被 覆して焼成することにより、負極活物質粒子表面へ固着、被覆及び Z又は配位させ ていることを特徴とする請求項 49に記載のリチウム二次電池用負極活物質粒子の製 造方法。
[51] 前記カーボンは、バインダーを用いて負極活物質粒子表面への固着、被覆及び Z 又は配位させていることを特徴とする請求項 49に記載のリチウム二次電池用負極活 物質粒子の製造方法。
[52] 前記バインダーは、 PVdF又は SBRを含んでいることを特徴とする請求項 51に記 載のリチウム二次電池用負極活物質粒子の製造方法。
[53] 請求項 33に記載の二次電池用負極活物質粒子の製造方法により前記負極活物 質粒子を作製後、前記負極活物質粒子と導電性助剤及びバインダーを含む被覆材 料を準備するステップと、そして
前記被覆材料を負極集電体上に表面処理することにより被覆層を形成させるステツ プと、
をさらに含んでいることを特徴とするリチウム二次電池用負極の製造方法。
[54] 前記被覆材料は、少なくともメツキ法、スパッタリング法、蒸着法、溶射法、噴霧法、塗 工法、浸漬法、気相法又は静電法から選ばれた 1の方法で負極集電体上へ表面処 理することにより、被覆層を形成させている特徴とする請求項 53に記載のリチウム二 次電池用負極の製造方法。
[55] 前記負極を作製後、前記負極表面にニッケル、銅、銀又は鉄から選ばれた 1種又は 2種以上の金属が多孔質層又はマトリックスネットワークを形成するように表面処理す るステップをさらに含んでいることを特徴とする請求項 53に記載のリチウム二次電池 用負極の製造方法。
[56] 前記多孔質層又はマトリックスネットワークは、少なくともメツキ法、スパッタリング法、 気相法又は蒸着法から選ばれた 1の方法により形成させていることを特徴とする請求 項 55に記載のリチウム二次電池用負極の製造方法。
[57] 前記負極内部に、イオン性液体を注入するステップをさらに含んでいることを特徴と する請求項 53に記載のリチウム二次電池用負極の製造方法。
PCT/JP2006/301827 2005-03-23 2006-02-03 リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法 WO2006100837A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06712970A EP1873846A4 (en) 2005-03-23 2006-02-03 MATERIAL PARTICLES ACTING AS A NEGATIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY, NEGATIVE ELECTRODE AND METHOD OF MANUFACTURING SAME
KR1020077024368A KR101281277B1 (ko) 2005-03-23 2006-02-03 리튬이차전지용 음극 활물질 입자 및 음극의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-082997 2005-03-23
JP2005082997A JP5256403B2 (ja) 2004-09-06 2005-03-23 リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2006100837A1 true WO2006100837A1 (ja) 2006-09-28

Family

ID=37023523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301827 WO2006100837A1 (ja) 2005-03-23 2006-02-03 リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法

Country Status (4)

Country Link
EP (1) EP1873846A4 (ja)
KR (1) KR101281277B1 (ja)
CN (1) CN101180753A (ja)
WO (1) WO2006100837A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577332A (zh) * 2008-05-06 2009-11-11 安泰科技股份有限公司 一种锂离子电池负极材料及其制备方法
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
EP3220452A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2021166185A (ja) * 2013-02-14 2021-10-14 シャイレシュ ウプレティ ケイ素複合体又はスズ複合体粒子
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
CN116024470A (zh) * 2022-12-05 2023-04-28 太原理工大学 一种镁银合金及其制备方法和应用
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2394324B1 (de) 2009-02-09 2015-06-10 VARTA Microbattery GmbH Knopfzellen und verfahren zu ihrer herstellung
EP2436070A4 (en) 2009-05-28 2014-01-22 Univ Texas NOVEL COMPOUND ANODE MATERIALS FOR LITHIUM ION BATTERIES
DE102009060800A1 (de) 2009-06-18 2011-06-09 Varta Microbattery Gmbh Knopfzelle mit Wickelelektrode und Verfahren zu ihrer Herstellung
KR101073223B1 (ko) * 2009-11-18 2011-10-12 주식회사 엘지화학 리튬 이차전지용 음극 합제 및 이를 사용한 리튬 이차전지
FR2957542B1 (fr) 2010-03-16 2012-05-11 Commissariat Energie Atomique Procede d'assemblage de pieces en materiaux a base de sic par brasage non-reactif, compositions de brasure, et joint et assemblage obtenus par ce procede.
JP5271967B2 (ja) * 2010-05-28 2013-08-21 株式会社日立製作所 非水系二次電池用負極および非水系二次電池
KR101263265B1 (ko) * 2010-07-30 2013-05-10 일진전기 주식회사 음극 활물질
KR101858282B1 (ko) 2010-10-22 2018-05-15 암프리우스, 인코포레이티드 껍질에 제한된 고용량 활물질을 함유하는 복합 구조물
JP5450478B2 (ja) * 2011-02-28 2014-03-26 株式会社日立製作所 非水系二次電池用負極、および、非水系二次電池
CN102324508A (zh) * 2011-09-14 2012-01-18 耿世达 一种内部含有三维导电结构的合金包覆负极材料及其制备方法
CN102534338B (zh) * 2011-12-27 2013-11-20 彩虹集团公司 一种储氢用炭化钴材料及其制备方法
CN103540822A (zh) * 2012-07-17 2014-01-29 北汽福田汽车股份有限公司 储氢用炭化钴材料及其制备方法和由该材料制备的储氢电极及电池
CN103682332B (zh) * 2012-09-26 2016-03-02 华为技术有限公司 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
WO2014054792A1 (ja) * 2012-10-05 2014-04-10 ソニー株式会社 活物質、活物質の製造方法、電極および二次電池
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
US9806335B2 (en) 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same
KR101622808B1 (ko) * 2012-11-30 2016-05-19 주식회사 엘지화학 복합체 및 이를 포함하는 음극 슬러리의 제조방법
KR101492973B1 (ko) * 2012-12-12 2015-02-13 일진전기 주식회사 리튬 이차 전지용 음극활물질 및 이를 이용한 이차전지
KR20140080579A (ko) * 2012-12-12 2014-07-01 일진전기 주식회사 리튬 이차 전지용 음극활물질
CN103247792A (zh) * 2013-03-22 2013-08-14 济南大学 一类纳米多孔硅合金材料及其制备方法
US20150372290A1 (en) 2013-05-30 2015-12-24 Applejack 199 L,P., A California Limited Partnership Hybrid silicon-metal anode using microparticles for lithium-ion batteries
JP6276573B2 (ja) 2013-12-10 2018-02-07 エルジー・ケム・リミテッド 二次電池用負極材及びそれを用いた二次電池
JP6329888B2 (ja) * 2013-12-13 2018-05-23 エルジー・ケム・リミテッド 二次電池用負極材及びこれを用いた二次電池
JP7182758B2 (ja) 2014-05-12 2022-12-05 アンプリウス テクノロジーズ インコーポレイテッド リチウムバッテリのためのアノードおよびその製造方法
JP6318859B2 (ja) * 2014-05-29 2018-05-09 株式会社豊田自動織機 銅含有シリコン材料及びその製造方法と負極活物質及び二次電池
JP2016100047A (ja) * 2014-11-18 2016-05-30 信越化学工業株式会社 非水電解質二次電池用負極材の製造方法、非水電解質二次電池用負極材、非水電解質二次電池用負極、及びリチウムイオン二次電池
US10497929B2 (en) * 2015-08-25 2019-12-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery including the same
CN106876688B (zh) * 2015-12-10 2020-12-01 中国科学院大连化学物理研究所 一种锂离子电池锡基合金负极材料及其制备方法
JP6869706B2 (ja) * 2015-12-11 2021-05-12 株式会社半導体エネルギー研究所 蓄電装置用負極、蓄電装置、および電気機器
CN107093738B (zh) * 2017-04-24 2019-12-24 广东烛光新能源科技有限公司 一种纳米硅基材料的制备方法
WO2019022318A1 (ko) * 2017-07-24 2019-01-31 엠케이전자 주식회사 이차 전지용 음극 활물질 및 그 제조 방법
JP6981285B2 (ja) * 2018-02-05 2021-12-15 トヨタ自動車株式会社 金属二次電池用の負極、金属二次電池、および金属二次電池の製造方法
CN108682822A (zh) * 2018-05-30 2018-10-19 陕西煤业化工技术研究院有限责任公司 一种长循环寿命的高镍三元材料及其制备方法
CN109626974B (zh) * 2018-12-12 2021-08-27 苏州研资工业技术有限公司 一种低温共烧陶瓷材料及其制备方法
CN109638266B (zh) * 2018-12-26 2021-04-13 山东大学 一种碳包覆硒铟锂材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (ja) * 1998-09-18 2000-11-07 Canon Inc 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
JP2002075332A (ja) * 2000-09-01 2002-03-15 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2004178922A (ja) * 2002-11-26 2004-06-24 Showa Denko Kk 負極材料及びそれを用いた二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69836514T2 (de) * 1997-01-28 2007-09-13 Canon K.K. Elektrodenkörper, mit diesem versehener Akkumulator, sowie Herstellung des Elektrodenkörpers und des Akkumulators
US6664004B2 (en) * 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
JP2003017038A (ja) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd リチウム電池用負極及びリチウム電池
KR100382767B1 (ko) * 2001-08-25 2003-05-09 삼성에스디아이 주식회사 리튬 2차 전지용 음극 박막 및 그의 제조방법
KR100416140B1 (ko) * 2001-09-27 2004-01-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그 제조 방법
KR100721500B1 (ko) * 2003-03-26 2007-05-23 캐논 가부시끼가이샤 리튬2차전지용의 전극재료 및 이 전극재료를 가진전극구조체
JP3786273B2 (ja) * 2003-06-23 2006-06-14 ソニー株式会社 負極材料およびそれを用いた電池
US7498100B2 (en) * 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (ja) * 1998-09-18 2000-11-07 Canon Inc 二次電池用負極電極材、電極構造体、二次電池、及びこれらの製造方法
JP2002075332A (ja) * 2000-09-01 2002-03-15 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
JP2004178922A (ja) * 2002-11-26 2004-06-24 Showa Denko Kk 負極材料及びそれを用いた二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1873846A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577332A (zh) * 2008-05-06 2009-11-11 安泰科技股份有限公司 一种锂离子电池负极材料及其制备方法
JP7337880B2 (ja) 2013-02-14 2023-09-04 シャイレシュ ウプレティ 粒子、粒子の製造方法及び電気化学セル
JP2021166185A (ja) * 2013-02-14 2021-10-14 シャイレシュ ウプレティ ケイ素複合体又はスズ複合体粒子
US9768467B2 (en) 2013-04-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11923499B2 (en) 2013-04-19 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11005123B2 (en) 2013-04-19 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11594752B2 (en) 2013-04-19 2023-02-28 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and a method for fabricating the same
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
CN107204483A (zh) * 2016-03-16 2017-09-26 株式会社东芝 非水电解质电池、电池包及车辆
EP3220452A1 (en) * 2016-03-16 2017-09-20 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN116024470A (zh) * 2022-12-05 2023-04-28 太原理工大学 一种镁银合金及其制备方法和应用

Also Published As

Publication number Publication date
CN101180753A (zh) 2008-05-14
EP1873846A1 (en) 2008-01-02
EP1873846A4 (en) 2013-04-03
KR101281277B1 (ko) 2013-07-03
KR20080009269A (ko) 2008-01-28

Similar Documents

Publication Publication Date Title
JP5256403B2 (ja) リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
WO2006100837A1 (ja) リチウム二次電池用負極活物質粒子と負極及びそれらの製造方法
CN103035892B (zh) 锂离子电池负极活性材料和使用该锂离子电池负极活性材料的锂离子电池负极
KR101126425B1 (ko) 리튬이온 이차전지용 음극재료, 그 제조방법, 리튬이온 이차전지용 음극 및 리튬이온 이차전지
JP4992128B2 (ja) リチウム二次電池用負極活物質粒子および負極の製造方法
JP5450478B2 (ja) 非水系二次電池用負極、および、非水系二次電池
JP5448555B2 (ja) リチウムイオン二次電池用負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極作製用のスラリー、リチウムイオン二次電池用負極の製造方法
JP6808988B2 (ja) リチウムイオン電池用負極活物質およびリチウムイオン電池
JP3664253B2 (ja) 二次電池用負極およびそれを用いた二次電池
JP7375569B2 (ja) リチウムイオン電池用負極活物質
Lu et al. Cu nanowire wrapped and Cu3Si anchored Si@ Cu quasi core-shell composite microsized particles as anode materials for Li-ion batteries
WO2007055007A1 (ja) リチウム二次電池用の負極活物質粒子、それを用いた負極及びそれらの製造方法
JP4752996B2 (ja) リチウム二次電池用負極活物質粒子の製造方法
JP4789032B2 (ja) リチウム二次電池用負極活物質粒子および負極の製造方法
JP2015133320A (ja) 二次電池用負極材及びこれを用いた二次電池
JP2002075332A (ja) リチウム二次電池用負極及びその製造方法
KR101018659B1 (ko) 리튬 이차전지용 실리콘계 음극 활물질
JP2005071655A (ja) 非水電解液二次電池用負極材料及びその製造方法並びにこれを用いた非水電解液二次電池
JP5894760B2 (ja) 非水系二次電池用負極材料、および、非水系二次電池
JPH0969362A (ja) 二次電池及び二次電池を用いた電源
TW201607125A (zh) 鋰離子二次電池用負極材料及其製造方法、鋰離子二次電池負極及鋰離子二次電池
JP7337580B2 (ja) 多元系シリサイドおよびケイ素を含むリチウムイオン電池用負極材料
JP7443851B2 (ja) リチウムイオン電池の負極用粉末材料およびその製造方法
JP4029265B2 (ja) リチウム電池用負極材料及びその製造方法
JP2020077615A (ja) ナトリウムイオン二次電池用負極活物質及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712970

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020077024368

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 200680017853.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006712970

Country of ref document: EP