WO2006092924A1 - 磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機 - Google Patents

磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機 Download PDF

Info

Publication number
WO2006092924A1
WO2006092924A1 PCT/JP2006/301770 JP2006301770W WO2006092924A1 WO 2006092924 A1 WO2006092924 A1 WO 2006092924A1 JP 2006301770 W JP2006301770 W JP 2006301770W WO 2006092924 A1 WO2006092924 A1 WO 2006092924A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
circumferential direction
electric motor
magnetic body
stator
Prior art date
Application number
PCT/JP2006/301770
Other languages
English (en)
French (fr)
Inventor
Shin Nakamasu
Yoshinari Asano
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06712913.0A priority Critical patent/EP1855371B1/en
Priority to JP2007505823A priority patent/JP4737193B2/ja
Priority to ES06712913.0T priority patent/ES2581980T3/es
Priority to CN200680004743XA priority patent/CN101120499B/zh
Priority to US11/885,160 priority patent/US7902712B2/en
Publication of WO2006092924A1 publication Critical patent/WO2006092924A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present invention relates to an electric motor, and more particularly to an embedded magnet type rotor.
  • the motor can be mounted as a drive source for a compressor or blower.
  • Non-Patent Document 1 listed below provides general indicators for permanent magnet excitation synchronous motors.
  • the motor constant Km can be expressed by equation (2).
  • equation (2) we introduced the number of pole pairs p, the maximum flux linkage ⁇ , the space factor fs, the total cross-sectional area St of the winding slot, the specific resistance p of the winding, and the average length 1 of the unit coil.
  • the current waveform is a sine wave, and it is assumed that the magnetic flux alternates in a sine wave shape.
  • the loss of the motor especially when the motor is small, is mostly copper loss, and can be considered by omitting iron loss.
  • Policy (Considering 0, a slot shape has been proposed in, for example, Patent Document 1 and Patent Document 2. Regarding Policy GO, a shift from the adoption of distributed winding to the adoption of concentrated winding is required. For policy Gii), the only material with a lower resistivity than copper is silver, which is not costly and industrially desirable.
  • the surface area of the magnetic pole surface per unit volume of the electric motor can be increased.
  • increasing the surface area of the pole face is desirable from two viewpoints.
  • One of them employs an armature in which a winding is wound as a stator, and it is desirable to employ a permanent magnet as a field magnet for the rotor. Further, the rotor is a stator. It is desirable to be surrounded by If an armature is used as the rotor, a mechanical commutator for rectifying the winding current is required, which is not desirable from the viewpoint of high durability, high reliability, dust resistance, etc. It is desirable to construct a rotor using a field magnet. Furthermore, from the viewpoint of inserting the electric motor into a compressor, for example, it is desirable that there is a stator that surrounds the rotor from the outside. Therefore, an increase in the surface area of the magnetic pole surface can be a factor that hinders downsizing of the motor.
  • Another aspect is also related to policy (vi). Increasing the surface area of the magnetic pole face while keeping the outer diameter of the stator surrounding the rotor in order to reduce the size of the electric motor will increase the inner diameter of the stator. This shortens the slot of the stator in the radial direction and reduces the total cross-sectional area St of the winding slot. This is the opposite of the policy desired in policy (vi).
  • Non-Patent Document 2 in an embedded magnet type rotor in which a field magnet is embedded in the rotor, not only magnet torque but also reluctance is provided. torque Can also be used. By making the rotation angle dependence of the magnetic resistance of the iron part relative to the stator of the rotor, the armature current phase during energization can be shifted to the advance side, and the reluctance that occurs due to the saliency of the magnetic resistance. Torque is increased by using torque.
  • torque T is expressed by equation (3).
  • T Pn (aIq + (Ld-Lq) ldlq) (3)
  • Patent Document 7 proposes a technique for performing field weakening without flowing field weakening current.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-324728
  • Patent Document 2 JP 2004-187370 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-335658
  • Patent Document 4 JP 2002-369467 A
  • Patent Document 5 JP 2002-84720 A
  • Patent Document 6 Japanese Patent Laid-Open No. 9-56126
  • Patent Document 7 Japanese Patent Laid-Open No. 09-233887
  • Non-Patent Document 1 Kazuo Onishi, “Torque Evaluation of Permanent Magnet Motor and Examination of Optimal Structure”, Journal of the Institute of Electrical Engineers, D Industrial Application Division, 1995, No. 115, No. 7, pp. 930- 93
  • Non-Patent Document 2 Special Committee on Performance Improvement of Specific Application-Oriented Reluctance Torque Applied Motor, “High Performance of Application-specific Reluctance Torque Applied Motor”, IEEJ Technical Report No. 920, March 2003
  • the embedded position of the permanent magnet can be brought closer to the central axis of the rotor. This increases the volume of the rotor core located outside the permanent magnet and increases the q-axis inductance Lq.
  • the present invention provides a technique for increasing the efficiency per volume of an electric motor.
  • the first aspect of the magnetic body (100) includes an annular outer periphery (100a) and an inner periphery (100b), and each of the first portions is alternately arranged in the circumferential direction. (11-14) and a second part (15-18), each of the first parts has holes (41-44) extending substantially in the circumferential direction, and the first part and The second portion is magnetically separated in the circumferential direction.
  • a second aspect of the magnetic body (100) that is useful in the present invention is the first aspect of the magnetic body, wherein between the outer periphery (100a) and the inner periphery (100b), It further includes gaps (21-28; 241, 251) provided at both ends in the circumferential direction of the holes (41-44).
  • the first portion (11-14) and the second portion (15-18) are magnetically separated by the gap.
  • a third aspect of the magnetic body (100) according to the present invention is the second aspect of the magnetic body, wherein the voids (21-28; 241, 251) are defined by the holes (41- 44) extends from the outer periphery (100a) side to the inner periphery (100b) side.
  • a fourth aspect of the magnetic body (100) according to the present invention is the first aspect to the third aspect of the magnetic body, wherein the holes (41 to 44) are formed in the first portion (11 to 11). 14) One is provided every time.
  • the fifth aspect of the magnetic body (100) according to the present invention is the first to fourth aspects of the magnetic body.
  • the second part (15-18) further includes holes (51-54).
  • a sixth aspect of the magnetic body (100) that is useful in the present invention is the fifth aspect of the magnetic body, wherein the holes (51 to 54) are circular.
  • the first aspect of the rotor (101) according to the present invention is the same as the first aspect of the magnetic body, and is inserted into the holes (41 to 44), and the outer periphery (100a) side and the inner periphery Field magnets (31 to 34) having different magnetic pole faces on the (100b) side.
  • a first aspect of the electric motor according to the present invention includes a first aspect of the rotor and an inner peripheral side fixed provided on the inner peripheral (100b) side with respect to the first aspect of the rotor.
  • the second aspect of the rotor (101) according to the present invention includes the second to sixth aspects of the magnetic body, and the outer periphery (100a) inserted through the holes (41 to 44). Field magnets (31 to 34) having different magnetic pole faces on the side and the inner circumference (100b) side.
  • a second aspect of the electric motor that is effective in the present invention is the second aspect of the rotor and the inner peripheral side provided on the inner peripheral (100b) side with respect to the second aspect of the rotor.
  • a third aspect of the electric motor that is useful in the present invention is the second aspect of the electric motor, wherein the gap is
  • the width ( ⁇ 1) of (21-28; 241, 251) is determined by the first interval ( ⁇ 2) between the inner circumference (100b) and the inner circumference side stator (200) and the outer circumference (100a ) And the outer circumferential side stator (300) is larger than twice the larger one of the second distances ( ⁇ 3).
  • a fourth aspect of the electric motor according to the present invention is the first aspect to the third aspect of the electric motor, wherein the tooth portion (201) of the inner peripheral side stator (200) has the circumferential direction.
  • the relative positional relationship in the circumferential direction between the center and the center in the circumferential direction of the tooth portion (301) of the outer stator (300) is variable.
  • the compressor according to the present invention is characterized in that the first to fourth aspects of the electric motor are mounted.
  • a blower according to the present invention is characterized in that the first to fourth aspects of the electric motor are mounted.
  • An air conditioner that can be used in the present invention is a compressor that can be used in the present invention and the present invention. At least one of the blowers is provided.
  • An in-vehicle air conditioner according to the present invention includes a compressor on which the fourth aspect of the electric motor is mounted.
  • the magnetic material alone or a plurality of the magnetic materials are stacked, and the field magnet is inserted into the hole, whereby the embedded magnet A mold rotor can be constructed. Since the second portion is alternately arranged with respect to the first portion while being magnetically separated in the circumferential direction, so-called q-axis inductance can be increased. Further, since the stators can be provided on the inner peripheral side and the outer peripheral side, respectively, the total area of the winding slot is increased, which can contribute to the configuration of the electric motor with high efficiency per volume.
  • the air gap since the air gap has a high magnetic resistance, it contributes to magnetic separation between the first portion and the second portion, and also to the hole. It is possible to prevent magnetic flux from being short-circuited between the pair of magnetic pole faces exhibited by the inserted field magnet, thereby increasing the flow of magnetic flux to and from the outside via the outer circumference and the inner circumference.
  • the magnetic body can be formed smaller without impairing the mechanical strength as compared with the structure in which a plurality of holes are provided for each first portion. This contributes to the miniaturization of electric motors that employ a rotor obtained by inserting a field magnet through a hole in a magnetic material. Also, compared to the case where a field magnet is inserted through each of the plurality of holes provided in each first portion, magnetization is easier and there are fewer problems of demagnetization.
  • a fastener such as a bolt or a rivet is inserted into the hole, and the magnetic materials or further end plates can be easily and inexpensively used.
  • a force is provided in the first part, even if a magnetic material is used for the fastener that penetrates the first part, it contributes not only to the magnetic flux in the q-axis direction, but also to the magnet torque, d axis that contributes to the reluctance torque.
  • the direction of magnetic flux is also hindered.
  • by providing a hole in the second part it is difficult to inhibit the flow of magnetic flux in the d-axis direction, even though it inhibits the flow of magnetic flux in the q-axis direction.
  • the sixth aspect of the magnetic body of the present invention since the size of the hole necessary for obtaining the desired mechanical strength is small, the inhibition of the flow of magnetic flux by the hole is small.
  • the second part a shape in which the magnetic material spreads toward the outer periphery or the inner periphery can be obtained.
  • the magnetic flux in the q-axis direction between the stator and the second part can easily flow.
  • the second portions are alternately provided in the circumferential direction while being magnetically separated from the first portion.
  • the so-called q-axis inductance can be increased.
  • the stator can be provided on each of the inner peripheral side and the outer peripheral side, it is possible to contribute to the configuration of the motor in which the total area of the winding slot is increased.
  • the magnetic flux flows more easily to the inner peripheral side stator and the outer peripheral side stator than to flow the magnetic flux force inside the rotor across the gap. Torque can be increased.
  • the rotor side of the tooth portion of the inner peripheral side stator or the tooth portion of the outer peripheral side stator Since the component flowing in the circumferential direction via the rotor side of the rotor can be increased, a field weakening can be equivalently realized without controlling the armature current of the stator. Therefore, there is no increase in copper loss due to the weak flux current or demagnetization of the field magnet due to the negative d-axis current. Since the adjustment of the relative positional relationship is easier to finely adjust than the adjustment of the number of times of winding of the winding line, it can be commonly used for electric motors having different rotational speeds to be set.
  • the efficiency of compression, blowing, and air conditioning is high.
  • the rotational speed can be easily finely adjusted even when operating at a low voltage.
  • FIG. 1 is a plan view showing a configuration of a magnetic body that is effective in the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a configuration of a rotor that is effective in the first embodiment.
  • FIG. 3 is a partial cross-sectional view illustrating gaps.
  • FIG. 4 is a cross-sectional view illustrating the configuration of the electric motor according to the present invention.
  • FIG. 5 is a sectional view partially showing the configuration of the electric motor.
  • FIG. 6 is a diagram conceptually showing how a d-axis magnetic flux flows through a rotor.
  • FIG. 7 is a diagram conceptually showing how q-axis magnetic flux flows through a rotor.
  • FIG. 8 is a cross-sectional view showing a configuration of an electric motor.
  • FIG. 9 is a circuit diagram showing an aspect in which armature windings are connected.
  • FIG. 10 is a circuit diagram showing an aspect in which armature windings are connected.
  • FIG. 11 is a circuit diagram showing a mode in which armature windings are connected.
  • FIG. 12 is a circuit diagram showing an aspect in which armature feeders are connected.
  • FIG. 13 is a plan view showing the configuration of a magnetic body according to a second embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a configuration of an electric motor that works according to a third embodiment of the present invention.
  • FIG. 1 is a plan view showing a configuration of a magnetic body 100 that is effective in the first embodiment of the present invention.
  • the magnetic body 100 can contribute to an embedded magnet type rotor, as will be described later.
  • the magnetic body 100 may extend in a direction perpendicular to the paper surface, or may be thin in a direction perpendicular to the paper surface.
  • it can be formed of a dust core and used as a rotor core.
  • steel plates can be used and laminated together to be used as a rotor core.
  • Fig. 1 can be grasped as a cross-sectional view of the core.
  • the magnetic body 100 includes an outer periphery 100a and an inner periphery 100b.
  • the force of the two concentric circles does not necessarily need to be a perfect circle. Design changes can be made as appropriate.
  • the magnetic body 100 Since it is possible to provide a stator on each of the inner circumference 100b side and the outer circumference 100a side, the magnetic body 100 contributes to the configuration of the electric motor in which the total cross-sectional area of the stator slot of the stator is increased. It is out. [0057]
  • the magnetic body 100 is alternately divided into first portions 11 to 14 and second portions 15 to 18 in the circumferential direction.
  • the first portions 11 to 14 and the second portions 15 to 18 are magnetically separated in the circumferential direction.
  • a mode in which the gaps 21 to 28 are magnetically separated is illustrated, and for example, a magnetic flux is prevented from flowing in the circumferential direction between the first portion 11 and the second portion 15.
  • the first portions 11 to 14 have holes 41 to 44 extending substantially in the circumferential direction, respectively.
  • the gaps 21 to 28 are provided at both ends in the circumferential direction of the holes 41 to 44 between the outer periphery 100a and the inner periphery 100b.
  • voids 21 and 22 are at the end of hole 41
  • voids 23 and 24 are at the end of hole 42
  • voids 25 and 26 are at the end of hole 43
  • voids 27 and 28 are at the end of hole 44. Each of them is provided.
  • the first portion 11 is divided into an outer peripheral portion 1la closer to the outer periphery 100a than the hole 41 and an inner peripheral portion ib closer to the inner periphery 100b and closer to the inner periphery 100b.
  • the first portion 12 is divided into an outer peripheral portion 12a closer to the outer periphery 100a than the hole 42 and an inner peripheral portion 12b closer to the inner periphery 100b.
  • the first portion 13 is more than the hole 43.
  • the first portion 14 has an outer peripheral portion 14a closer to the outer periphery 100a than the hole 44, It is divided into the inner periphery 14b on the side close to the periphery 10 Ob.
  • FIG. 2 is a cross-sectional view showing a cross section perpendicular to the rotation axis of the configuration of the rotor 101 that is effective in the first embodiment.
  • the rotor 101 is configured by inserting field magnets 31 to 34 having different magnetic pole surfaces on the outer circumference 100a side and the inner circumference 100b side into holes 41 to 44, respectively. Further, since the configuration in which the number of pole pairs is two is illustrated, adjacent ones of the field magnets 31 to 34 exhibit magnetic pole surfaces having different polarities toward the outer periphery 100a side.
  • the magnetic body 100 or a plurality of the magnetic bodies 100 are laminated, and the field magnets 31 to 34 are inserted into the holes 41 to 44, thereby forming the embedded magnet type rotor 101. can do.
  • the second portions 15 to 18 are alternately provided with respect to the first portions 11 to 14 while being magnetically separated in the circumferential direction, they pass through a stator (described later) provided inside the rotor 101. Magnetic flux flows through the second portions 15-18, and the circumferential width W of the second portions 15-18 can be increased. As a result, the q-axis inductance Lq can be increased.
  • FIG. 3 is a partial cross-sectional view illustrating the gaps 241, 251 as variations of the gaps 24, 25.
  • the gaps 241, 251 may be bent.
  • the gaps 21 to 28 have a thin portion between the outer circumference 100a and the inner circumference 100b, if the mechanical strength of the rotor 101 permits, the gaps 21 to 28 have an outer circumference 100a and an inner circumference. You may penetrate either 100b. Even if it penetrates both, it is only necessary to install an end plate and connect the first part 11 to 14 and the second part 15 to 18.
  • the gaps 21 to 28 are not necessarily provided continuously between the outer periphery 100a and the inner periphery 100b.
  • the air gaps 21 to 28 may be divided by leaving the second portions 15 to 18 thin enough to be magnetically separated from the first portions 11 to 14 in the circumferential direction.
  • the air gaps 21 to 28 have high magnetic resistance, it contributes to magnetic separation between the first portion 11 to 14 and the second portion 15 to 18, and the field magnet is inserted into the holes 41 to 44. Prevents short circuit of magnetic flux between a pair of magnetic pole faces exhibited by 31-34. Therefore, the inflow and outflow of the magnetic flux between the outer periphery 100a and the inner periphery 100b, that is, between the stator and the stator can be increased. For this reason, it is desirable that the gaps 21 to 28, 241, and 251 extend from the outer periphery lOOaftlJ force of the ridges 41 to 44 to the inner periphery lOObftlJ.
  • one hole 41 to 44 is provided for each of the first portions 11 to 14.
  • the magnetic body 100 can be made smaller without losing the mechanical strength, and the rotation obtained by inserting a field magnet into the hole Contributes to miniaturization of electric motors that employ children.
  • a plurality of holes are provided for each of the first portions 11 to 14, and there is less problem of demagnetization than when a field magnet is inserted into each of the holes. It is also possible to embed a magnet material in the hole and magnetize the force to obtain a field magnet. However, compared with a configuration in which a plurality of the holes are present in the first portions 11 to 14, the magnetizing is performed. Is easy.
  • FIG. 4 is a cross-sectional view illustrating the configuration of an electric motor using the rotor 101.
  • the rotor 101 has a configuration in which an inner peripheral side stator 200 is provided on the inner peripheral side 100b side, and an outer peripheral side stator 300 is provided on the outer peripheral side 100a side. As described above, by providing the stator inside and outside of the rotor 101, the total cross-sectional area of the winding slot can be increased.
  • the outer peripheral side stator 300 has a tooth portion 301 extending in the radial direction, and its tip (rotor 1). 01 side) extends in the circumferential direction to form a wide portion 302.
  • the inner peripheral side stator 200 has a tooth portion 201 extending in the radial direction, and the tip (rotor 201 side) extends in the circumferential direction to form a wide portion 202.
  • the armature winding is omitted.
  • the rotor 101 and the outer stator 300 mainly flow in and out of the magnetic flux through the teeth 301, and the rotor 101 and inner stator 200 mainly flow in and out of the magnetic flux through the teeth 201. To do.
  • the field magnets 31 and 33 present the south pole magnetic pole surface
  • the field magnets 32 and 34 represent the north pole magnetic pole surface toward the outer stator 300, respectively.
  • the flow of magnetic flux by the field magnets 31 to 34 is illustrated as an example.
  • FIG. 5 is an enlarged cross-sectional view partially showing the space between the rotor 101, the inner peripheral side stator 200, and the outer peripheral side stator 300.
  • a first interval ⁇ 2 is provided between the inner periphery 100b and a second interval ⁇ 3 is provided between the inner periphery 100b and the outer periphery 100a.
  • a side stator 300 is provided.
  • the width ⁇ 1 of the gaps 21 to 28, 241, 251 is preferably larger than twice the larger one of the first interval ⁇ 2 and the second interval ⁇ 3.
  • the magnetic resistance in the circumferential direction between the first part 11-14 and the second part 15-18 is higher than the magnetic resistance between the rotor 101, the inner peripheral side stator 200, and the outer peripheral side stator 300. This is to promote the inflow and outflow of magnetic flux between the rotor and the stator.
  • Fig. 6 is a diagram conceptually showing the d-axis magnetic flux flowing through the rotor 101
  • Fig. 7 conceptually shows the q-axis magnetic flux ( ⁇ a, ⁇ ) flowing through the rotor 101.
  • the d-axis magnetic flux ⁇ c flows between the field magnets 31 and 33 and the field magnets 32 and 34. Hence d-axis magnetic flux. Will flow only in the first part 11-14.
  • the q-axis magnetic flux ⁇ & flows through the first portions 11 to 14, more specifically, the outer peripheral portions 11a, 12a, 13a, and 14a. However, q-axis magnetic flux ⁇ ⁇ ) also flows through the second parts 15-18. Therefore, widening the width W in the circumferential direction of the second parts 15-18 is desirable from the viewpoint of increasing the q-axis inductance Lq.
  • the second parts 15 to 18 are magnetic in the circumferential direction relative to the first parts 11 to 14.
  • the second portions 15 to 18 together with the first portions 11 to 14 serve as field magnets 31 to 34 for the outer stator 300. This will reduce the number of flux linkages to the inner stator 200.
  • This can increase the q-axis inductance L q by increasing the circumferential width W of the second part 15-18, and even if the reluctance torque can be increased, the magnet torque can be reduced. become.
  • the second portions 15 to 18 are alternately provided while being magnetically separated in the circumferential direction with respect to the first portions 11 to 14, so that even if this width W is increased, FIG.
  • the magnetic flux generated by the field magnets 31 to 34 is prevented from being short-circuited inside the rotor 101 as shown in FIG.
  • the total cross-sectional area of the winding slot may be further increased with the device of the slot shape introduced in Patent Document 1 and Patent Document 2.
  • the inner peripheral side stator 200 is not a rotor, which is an armature around which a winding (not shown) is wound. If the inner armature of the rotor 101 is a rotor, a mechanical commutator is required as described above, and the outer armature 300, which is an outer armature, rotates relative to the outer armature. .
  • This relative rotation reduces the relative rotational speed of any armature with respect to the field of the rotor 101, leading to a reduction in the efficiency of the motor. In addition, this relative rotation disturbs the path of the q-axis magnetic flux ⁇ b and increases the fluctuation of the reluctance torque, making its use difficult.
  • FIG. 8 is a cross-sectional view of an electric motor including the rotor 101, the inner peripheral side stator 200, and the outer peripheral side stator 300, and conceptually shows a cross section including the rotation center.
  • the rotor 101 is connected to a rotating shaft 103 via an end plate 102, and the rotating shaft 103 is supported by bearings 104 and 105.
  • the inner peripheral side stator 200 and the outer peripheral side stator 300 are supported by support portions 204 and 304, respectively.
  • armature winding wires 203 and 303 are wound around the inner peripheral side stator 200 and the outer peripheral side stator 300, respectively.
  • FIG. 4 corresponds to a cross-sectional view in which the support portions 204 and 304 and the armature winding wires 203 and 303 are omitted at a position IV-IV in FIG.
  • FIG. 9 and FIG. 10 are circuit diagrams illustrating an aspect in which the armature feeder wires 203 and 303 (FIG. 8) are connected.
  • the coils 203U, 203V, and 203W shown in FIGS. 9 and 10 are the U-phase, V-phase, and W-phase coils of the armature winding wire 203, respectively.
  • the coils 303U, 303V, and 303W are the armatures, respectively. It is a U-phase, V-phase, and W-phase coil of ⁇ wire 303.
  • FIGS. 9 and 10 show the case where the armature winding wires 203 and 303 are connected in series and in parallel in each phase. In the present embodiment, it is possible to adopt such a shift mode between the series connection and the parallel connection.
  • FIGS. 9 and 10 show the case where the star connection is adopted and the armature winding wires 203 and 303 are connected in series and in parallel in each phase.
  • any of such serial connection and parallel connection can be employed.
  • a delta connection may be adopted, and the armature winding wires 203 and 303 may be connected in series and in parallel in each phase.
  • the star connection is used and the armature windings 203 and 303 are connected in series for each phase. It is desirable.
  • FIG. 13 is a plan view showing the configuration of the magnetic body 100 according to the second embodiment of the present invention. With respect to the magnetic body 100 shown in FIG. 1, holes 51 to 54 are further provided in the second portions 15 to 18, respectively.
  • Fasteners such as bolts and rivets are inserted into the holes 51 to 54, and the magnetic bodies 100 or even the end plates 102 (see Fig. 8) can be fastened easily and inexpensively using them.
  • the second portions 15 to 18 are alternately provided while being magnetically separated in the circumferential direction with respect to the first portions 11 to 14, this width W is easily increased. Therefore, there is a sufficient area for providing the holes 51 to 54, and the holes 51 to 54 can be enlarged. Even if the holes 51 to 54 are provided, the flow of the q-axis magnetic flux ⁇ ⁇ ) is obstructed, but it is easy to secure to some extent.
  • the holes 51-54 are circular. In this case, the corners where stress is concentrated and the part that functions as a rib other than the hole can be made thicker. Therefore, the dimensions of the holes 51 to 54 necessary for obtaining the desired mechanical strength are reduced, and the q due to the holes 51 to 54 is reduced. The inhibition of axial flux ⁇ b can be reduced.
  • the stator 200, 300 (see Fig. 4) and the second part Make q-axis magnetic flux ⁇ b between 15 and 18 easier to flow.
  • the fastener inserted through the holes 51 to 54 is made of a magnetic material.
  • FIG. 14 is a cross-sectional view illustrating the configuration of an electric motor that works according to the third embodiment of the invention.
  • the circumferential center of the tooth portion 201 of the inner stator 200 and the circumferential center of the tooth portion 301 of the outer stator 230 are relatively relative to the circumferential direction.
  • the correct position is shifted!
  • Fig. 14 illustrates the case where the mechanical angle is shifted by 30 degrees, which corresponds to a shift of 60 degrees as the electrical angle.
  • the armature winding wires 203 and 303 are wound around some of the tooth portions 201 and 301! /, And only the ones are drawn.
  • Such positional deviation can be mechanically performed before or during use of the electric motor.
  • the displacement may be caused manually before using the electric motor, or the displacement may be caused by an actuator such as a servo motor during use.
  • This actuator can be provided, for example, in the support portion 204 shown in FIG.
  • the magnetic flux ⁇ a is the magnetic flux generated from the magnetic pole surface (here, N pole) of the magnet 32
  • the magnetic flux ⁇ b is the magnetic flux generated from the magnetic pole surface (here, S pole) of the magnet 33.
  • the magnetic flux ⁇ a returns to the magnetic pole surface on the inner peripheral side of the magnet 32.
  • the yoke of the outer peripheral side stator 300 is linked to the armature winding 303 via the tooth portion 301, but the tooth portion 201 of the inner peripheral side stator 200 is linked to the armature winding 203.
  • the magnetic flux ⁇ b returns to the magnetic pole surface on the inner peripheral side of the magnet 33, the force interlinked with the armature winding 203 via the teeth 201 of the inner peripheral stator 200.
  • the outer stator 300 In the tooth portion 301, there is a path that passes through the wide portion 302 without interlinking with the armature winding wire 303.
  • FIG. 14 shows a positional shift equivalent to 60 degrees as the electrical angle, and illustrates the case where the flux weakening is utilized to the maximum extent.
  • the magnetic flux density of the wide portions 202 and 302 of the tooth portion increases during the flux weakening control, so that the iron loss in the wide portions 202 and 302 increases.
  • the magnetic flux density passing through the tooth portions 202 and 302 other than the wide portions 202 and 302 is reduced, the iron loss in the longer magnetic path can be reduced, so that the total iron loss of the motor is reduced.
  • Patent Document 7 uses permeability anisotropy depending on the rolling direction of grain-oriented electrical steel sheets and embeds adjustment plugs in the stator. However, since this impairs the magnetic flux density of the stator itself, it is desirable to reduce the size of the motor.
  • the electric motor according to the present embodiment is suitable when the electric motor is used to operate at a low pressure because it is easy to finely adjust the rotational speed even when the same current is used.
  • the number of times of winding is small, so it is not easy to change the number of turns and make fine adjustments. Changing the number of wrinkles is also a force that is a discrete numerical control.
  • the rotational speed can be finely adjusted without depending on the number of strokes. Therefore, for example, an in-vehicle air conditioner that operates at a low voltage such as 42 V or less. Compressor [This; 0
  • the electric motor according to the present invention can be mounted on the compressor or blower of a normal air conditioner to improve the efficiency of compression or blowing. So at least the compressor and blower
  • the air conditioner provided with either one of them can improve the air conditioning efficiency.
  • the magnetic body 100 may have holes 51 to 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 磁性体(100)は環状の外周(100a)と内周(100b)とを備え、その周方向において交互に、第1部分(11~14)及び第2部分(15~18)に区分される。第1部分(11~14)と第2部分(15~18)とは周方向において磁気的に分離されている。ここでは空隙(21~28)によって磁気的に分離されている態様が例示されており、例えば第1部分(11)と第2部分(15)との間で周方向に磁束が流れることが阻害される。第1部分(11~14)は、それぞれ略周方向に延在する孔(41~44)を有している。上記の空隙(21~28)は、外周(100a)と内周(100b)との間で、孔(41~44)の周方向の両端に設けられている。孔(41~44)に界磁用磁石を貫挿し、埋込磁石型の回転子を構成できる。

Description

磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気 調和機
技術分野
[0001] 本発明は電動機、中でも埋込磁石型の回転子に関する。当該電動機は圧縮機や 送風機の駆動源として搭載することができる。
背景技術
[0002] 小型で高効率な電動機を実現するにあたっては、永久磁石を用いた永久磁石励 磁電動機が最有力である。永久磁石励磁の同期系電動機の一般的な指標は、下掲 の非特許文献 1に紹介されて 、る。
[0003] 冷却条件が揃えられ、寸法が同一の電動機であれば、温度上昇と放熱の関係から 許容損失 Wcがほぼ同一と考えることができる。トルク Tと許容損失 Wcは式(1)の関 係にあり、係数 Kmはモータコンスタントと呼ばれる。
[0004] T=Wc '^Knr " (l)
[0005] よって、許容損失 Wcが一定である場合には、モータコンスタント Kmが大きいほどト ルク Tが大きくなる。よってモータコンスタント Kmを、許容トルク(通常は連続定格トル ク)の指標値として用いることができる。
[0006] モータコンスタント Kmは式(2)で表すことができる。ここで極対数 p、巻き線最大鎖 交磁束 Φ、占積率 fs、卷線スロットの全断面積 St、卷線の固有抵抗 p、単位コイルの 平均長 1を導入した。また電流波形は正弦波であり、磁束が正弦波状に交番すると仮 定した。また電動機の損失は、特に電動機が小型の場合には銅損が大部分であり、 鉄損を省略して考慮して ヽる。
[0007] Km= (1/2) ρ Φ (fsSt/ 1) · ·· (2)
[0008] 従って、電動機の体積当たりの電動機効率を高めるためにはモータコンスタント Κ mを高める必要があり、式 (2)から以下の諸方針が有効である。
(0巻き線の占積率 fsを大きくする
(ii)単位コイルの平均長 1を短くする (m)卷線の固有抵抗 を小さくする
(iv)卷線最大鎖交磁束 Φを大きくする
(V)極対数 Pを大きくする
(vi)卷線スロットの全断面積 stを大きくする。
[0009] 方針 (0につ 、てはスロット形状の工夫が、例えば特許文献 1及び特許文献 2に提案 されている。方針 GOについては、分布巻きの採用から集中巻きの採用へと移行する ことで、実現されている。方針 Gii)については、固有抵抗が銅よりも低い材料は銀しか 現存せず、コスト的、工業的に望ましくない。
[0010] 方針 (iv)につ ヽては、永久磁石に希土類磁石を採用する他、電動機の単位体積当 たりでの磁極面の表面積の増大が挙げられる。し力しながら、磁極面の表面積の増 大は二つの観点から望ましくな 、。
[0011] その一つは、固定子として卷線が卷回された電機子を採用し、回転子には永久磁 石を界磁用磁石として採用することが望ましぐ更に回転子は固定子に囲まれている ことが望ましい点にある。電機子を回転子として採用すれば、巻き線電流の整流のた めの機械的整流子が必要となり、高耐久性、高信頼性、耐塵性等の観点から望まし くないため、永久磁石を界磁用磁石に用いて回転子を構成することが望ましい。更に 電動機を、例えば圧縮機等の内部へと挿入する観点から、回転子を外側から囲む固 定子が存在することが望ましい。してみれば、磁極面の表面積の増大は電動機の小 型化を阻害する要因となり得る。
[0012] もう一つの観点は、方針 (vi)とも関連する。電動機を小型化にするために回転子を 囲む固定子の外径をそのままにしておきながら、磁極面の表面積を増大させると、当 該固定子の内径も大きくなつてしまう。これでは当該固定子のスロットが径方向に短く なってしまい、卷線スロットの全断面積 Stが小さくなつてしまう。これは方針 (vi)で望ま れる方針とは逆である。
[0013] また方針 (V)に基づいて極対数 pを増大させた場合にも卷線スロットの全断面積 St 力 S小さくなつてしまう。
[0014] 一方、下掲の非特許文献 2に紹介されるように、界磁用磁石を回転子の内部に埋 め込んだ、埋込磁石型の回転子では、マグネットトルクのみならず、リラクタンストルク をも利用することができる。回転子の固定子に対する鉄部の磁気抵抗の回転角度依 存性を持たせることにより、通電時の電機子電流位相を進角側にずらすことができ、 磁気抵抗の突極性カゝら生じるリラクタンストルクを利用することでトルクを増大するの である。
[0015] 即ち極対数 Pn、鎖交磁束 0>a、 d軸電流 Id、 q軸電流 Iq、 d軸インダクタンス Ld、 q軸 インダクタンス Lqを導入すると、トルク Tは式(3)で表される。
[0016] T=Pn( aIq+ (Ld-Lq) ldlq) · ·· (3)
[0017] 方針 (ivXv)と同様に、鎖交磁束 0> a、極対数 Pnを増大させることも望ましい。しかし 更に、 q軸インダクタンス Lqを増大させることがトルクの増大に寄与する。電機子電流 位相を進角側にずらすことで d軸電流 Idは負となるからである。
[0018] 一方、回転子に流れる磁束はその周辺近傍に多く流れるため、回転子の内側にも 電機子を設ければ卷線スロットの全断面積 Stを増大させることができる。回転子の内 外に電機子を設ける技術は、例えば特許文献 3乃至特許文献 6に紹介されて 、る。
[0019] 但し特許文献 3乃至特許文献 5に示された構造では磁気抵抗の突極性を利用でき な ヽと考えられ、また特許文献 6に示された構造では界磁用磁石を有する回転子の 内側の電機子も回転子であり、界磁用磁石を有する回転子のリラクタンストルクを有 効に利用することは困難であると考えられる。
[0020] なお特許文献 7には弱め界磁電流を流すことなく弱め界磁を行う技術が提案されて いる。
[0021] 特許文献 1:特開 2000— 324728号公報
特許文献 2 :特開 2004— 187370号公報
特許文献 3:特開 2002— 335658号公報
特許文献 4:特開 2002— 369467号公報
特許文献 5 :特開 2002— 84720号公報
特許文献 6:特開平 9 - 56126号公報
特許文献 7:特開平 09 - 233887号公報
非特許文献 1 :大西和夫、「永久磁石モータのトルク評価と最適構造の検討」、電気 学会論文誌 D産業応用部門部門誌、平成 7年、第 115卷、第 7号、第 930頁〜第 93 非特許文献 2 :特定用途指向型リラクタンストルク応用電動機の高性能化調査専門委 員会、「特定用途指向型リラクタンストルク応用電動機の高性能化」、電気学会技術 報告第 920号、 2003年 3月 q軸インダクタンス Lqを増大させるために、永久磁石の 埋設位置を回転子の中心軸に近づけることも可能である。これにより永久磁石よりも 外側に位置する回転子コアの体積が増大し、 q軸インダクタンス Lqが増大するのであ る。
[0022] し力し永久磁石の埋設位置を回転子の中心軸に近づけると、回転子の外径を一定 とした場合、磁極の表面積が小さくなつてしまい、方針 (iv)と反してしまう。また回転子 の内側にも固定子を設けることで電動機の体積当たりの効率を高める工夫も採用し にくい。
発明の開示
[0023] 本発明は、電動機の体積当たりの効率を高める技術を提供する。
[0024] この発明にかかる磁性体(100)の第 1の態様は、いずれも環状の外周(100a)及 び内周(100b)を備え、周方向にお 1、て交互に、第 1部分(11〜14)及び第 2部分( 15〜18)とに区分され、前記第 1部分の各々は、略前記周方向に延在する孔 (41〜 44)を有し、前記第 1部分と前記第 2部分とは前記周方向において磁気的に分離さ れる。
[0025] この発明に力かる磁性体(100)の第 2の態様は、磁性体の第 1の態様であって、前 記外周 (100a)と前記内周(100b)との間で、前記孔 (41〜44)の前記周方向の両 端に設けられた空隙(21〜28 ; 241, 251)を更に備える。そして、前記空隙によって 前記第 1部分(11〜14)と前記第 2部分(15〜18)とが磁気的に分離される。
[0026] この発明に力かる磁性体(100)の第 3の態様は、磁性体の第 2の態様であって、前 記空隙(21〜28 ; 241, 251)は、前記孔 (41〜44)の前記外周(100a)側から前記 内周(100b)側へと延在する。
[0027] この発明にかかる磁性体(100)の第 4の態様は、磁性体の第 1の態様乃至第 3の 態様であって、前記孔 (41〜44)は前記第 1部分(11〜14)毎に一つ設けられる。
[0028] この発明にかかる磁性体(100)の第 5の態様は、磁性体の第 1の態様乃至第 4の 態様であって、前記第 2部分(15〜18)に穴(51〜54)を更に有する。
[0029] この発明に力かる磁性体(100)の第 6の態様は、磁性体の第 5の態様であって、前 記穴(51〜54)は円形である。
[0030] この発明にかかる回転子(101)の第 1の態様は、磁性体の第 1の態様と、前記孔( 41〜44)に貫挿され、前記外周(100a)側と前記内周(100b)側とにそれぞれ異な る磁極面を呈する界磁用磁石(31〜34)とを備える。
[0031] この発明にかかる電動機の第 1の態様は、回転子の第 1の態様と、前記回転子の 第 1の態様に対して前記内周(100b)側に設けられた内周側固定子(200)と、前記 回転子に対して前記外周(100a)側に設けられた外周側固定子(300)とを備える。
[0032] この発明にかかる回転子(101)の第 2の態様は、磁性体の第 2の態様乃至第 6の 態様と、前記孔 (41〜44)に貫挿され、前記外周(100a)側と前記内周(100b)側と にそれぞれ異なる磁極面を呈する界磁用磁石(31〜34)とを備える。
[0033] この発明に力かる電動機の第 2の態様は、回転子の第 2の態様と、前記回転子の 第 2の態様に対して前記内周(100b)側に設けられた内周側固定子(200)と、前記 回転子に対して前記外周(100a)側に設けられた外周側固定子(300)とを備える。
[0034] この発明に力かる電動機の第 3の態様は、電動機の第 2の態様であって、前記空隙
(21〜28 ; 241, 251)の幅(δ 1)は、前記内周(100b)と前記内周側固定子(200) との間の第 1の間隔( δ 2)及び前記外周(100a)と前記外周側固定子 (300)との間 の第 2の間隔( δ 3)の大きい方の 2倍よりも大きい。
[0035] この発明にかかる電動機の第 4の態様は、電動機の第 1の態様乃至第 3の態様で あって、前記内周側固定子(200)が有する歯部(201)の前記周方向についての中 心と、前記外周側固定子(300)が有する歯部(301)の前記周方向についての中心 とは、前記周方向についての相対的な位置関係が可変である。
[0036] この発明にかかる圧縮機は、電動機の第 1の態様乃至第 4の態様を搭載したことを 特徴とする。
[0037] この発明にかかる送風機は、電動機の第 1の態様乃至第 4の態様を搭載したことを 特徴とする。
[0038] この発明に力かる空気調和機は、この発明に力かる圧縮機及びこの発明にかかる 送風機の、少なくともいずれか一方を備える。
[0039] この発明に力かる車載用空気調和機は、電動機の第 4の態様を搭載した圧縮機を 備える。
[0040] この発明に力かる磁性体の第 1の態様によれば、当該磁性体単体で、ある 、は複 数を積層して、孔に界磁用磁石を貫挿し、以て埋込磁石型の回転子を構成すること ができる。第 2部分は第 1部分に対して、周方向に磁気的に分離されつつ交互に設 けられるので、いわゆる q軸インダクタンスを大きくすることができる。また内周側及び 外周側にそれぞれ固定子を設けることができるので、卷線スロットの全面積が増大し 、体積当たりの効率が高い電動機の構成に資することができる。
[0041] この発明にかかる磁性体の第 2の態様又は第 3の態様によれば、空隙は磁気抵抗 が高いため、第 1部分と第 2部分との磁気的な分離に資すると共に、孔に貫挿される 界磁用磁石が呈する一対の磁極面の間での磁束の短絡を防止し、以て外周及び内 周を経由した外部との磁束の流入出を増大できる。
[0042] この発明にかかる磁性体の第 4の態様によれば、第 1部分毎に孔を複数設けた構 造と比較して、機械的強度を損なわずに磁性体を小さく形成でき、当該磁性体の孔 に界磁用磁石を貫挿して得られる回転子を採用した電動機の小型化に資する。また 第 1部分毎に複数設けられた孔のそれぞれに界磁用磁石を貫挿する場合と比較して 、着磁が容易であり、減磁の問題も少ない。
[0043] この発明に力かる磁性体の第 5の態様によれば、穴に例えばボルトやリベットなどの 締結具を貫挿し、これらを用いて簡易且つ安価に磁性体同士あるいは更に端板をも 締結することができる。し力も第 1部分に穴を設けてしまうと、これに貫挿する締結具 に磁性体を用いたとしても、リラクタンストルクに寄与する q軸方向の磁束のみならず、 マグネットトルクに寄与する d軸方向の磁束についても、その流れを阻害する。これに 対し、第 2部分に穴を設けることにより、 q軸方向の磁束の流れを阻害することはあつ ても、 d軸方向の磁束の流れを阻害しにくい。
[0044] この発明にかかる磁性体の第 6の態様によれば、所望の機械強度を得るために必 要な穴の寸法が小さいため、当該穴による磁束の流れの阻害が小さい。また第 2部 分において外周及び内周のいずれに向かっても磁性体が広がる形状が得られるの で、固定子と第 2部分との間での q軸方向の磁束を流れやすくする。
[0045] この発明にかかる回転子の第 1の態様又は第 2の態様によれば、第 2部分は第 1部 分に対して、磁気的に分離されつつ周方向に交互に設けられるので、いわゆる q軸ィ ンダクタンスを大きくすることができる。また内周側及び外周側にそれぞれ固定子を 設けることができるので、卷線スロットの全面積が増大した電動機の構成に資すること ができる。
[0046] この発明に力かる電動機の第 1の態様又は第 2の態様によれば、 q軸インダクタンス を大きぐかつ卷線スロットの全断面積を増大させることができる。
[0047] この発明にかかる電動機の第 3の態様によれば、空隙を渡って回転子内部で磁束 力流れるよりも、内周側固定子や外周側固定子へと磁束が流れやすいため、マグネ ットトルクを増大させることができる。
[0048] この発明にかかる電動機の第 4の態様によれば、界磁用磁石から得られる磁束のう ち、内周側固定子の歯部の回転子側、あるいは外周側固定子の歯部の回転子側を 経由して周方向に流れる成分を増大させることができるので、固定子の電機子電流 を制御することなぐ弱め界磁を等価的に実現することができる。従って弱め磁束電 流による銅損の上昇や、負の d軸電流による界磁用磁石の減磁も発生しない。当該 相対的な位置関係の調整は卷線の卷回数の調整と比較すると微調整がし易いので 、設定されるべき回転数が異なる電動機に共通して採用できる。
[0049] この発明に力かる圧縮機、送風機、空気調和機によれば、それぞれ圧縮、送風、空 調の効率が高い。
[0050] この発明にかかる車載用空気調和機によれば、低電圧で動作する場合でも、回転 数を容易に微調整できる。
[0051] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。
図面の簡単な説明
[0052] [図 1]本発明の第 1の実施の形態に力かる磁性体の構成を示す平面図である。
[図 2]第 1の実施の形態に力かる回転子の構成を示す断面図である。
[図 3]空隙を例示する部分的な断面図である。 [図 4]本発明にかかる電動機の構成を例示する断面図である。
[図 5]電動機の構成を部分的に示す断面図である。
[図 6]回転子に d軸磁束が流れる様子を概念的に示す図である。
[図 7]回転子に q軸磁束が流れる様子を概念的に示す図である。
[図 8]電動機の構成を示す断面図である。
[図 9]電機子卷線が接続される態様を示す回路図である。
[図 10]電機子卷線が接続される態様を示す回路図である。
[図 11]電機子卷線が接続される態様を示す回路図である。
[図 12]電機子卷線が接続される態様を示す回路図である。
[図 13]本発明の第 2の実施の形態にカゝかる磁性体の構成を示す平面図である。
[図 14]本発明の第 3の実施の形態に力かる電動機の構成を示す断面図である。 発明を実施するための最良の形態
[0053] 第 1の実施の形態.
以下では簡単のため、回転子の極対数が 2であり、固定子の相数が 3である場合を 例にとって説明するが、その他の極対数や相数にも本発明を適用することができる。
[0054] 図 1は本発明の第 1の実施の形態に力かる磁性体 100の構成を示す平面図である 。但し、当該磁性体 100は、後述のように、埋込磁石型の回転子に資することができ る。また磁性体 100は紙面に垂直な方向に延在してもよいし、紙面に垂直な方向に 薄くてもよい。前者の場合は、例えば圧粉鉄心で形成して回転子のコアとして採用す ることができる。後者の場合には、例えば鋼板を採用して形成し、相互に積層して回 転子のコアとして採用することができる。その場合、図 1は当該コアの断面図として把 握できる。
[0055] 磁性体 100は外周 100a及び内周 100bを備え、これらは ヽずれも環状を呈する。
ここでは両者は同心円を呈している力 必ずしも真円である必要はなぐ設計上の変 更は適宜に可能である。
[0056] 内周 100b側及び外周 100a側にそれぞれ固定子を設けることが可能であるので、 磁性体 100は、固定子の卷線スロットの全断面積を増大させた電動機の構成に資す ることがでさる。 [0057] 磁性体 100はその周方向において交互に、第 1部分 11〜14及び第 2部分 15〜1 8に区分される。第 1部分 11〜14と第 2部分 15〜18とは周方向において磁気的に 分離されている。ここでは空隙 21〜28によって磁気的に分離されている態様が例示 されており、例えば第 1部分 11と第 2部分 15との間で周方向に磁束が流れることが阻 害される。
[0058] 第 1部分 11〜14は、それぞれ略周方向に延在する孔 41〜44を有している。上記 の空隙 21〜28は、外周 100aと内周 100bとの間で、孔 41〜44の周方向の両端に 設けられている。具体的には空隙 21, 22が孔 41の端部に、空隙 23, 24が孔 42の 端部に、空隙 25, 26が孔 43の端部に、空隙 27, 28が孔 44の端部に、それぞれ設 けられている。
[0059] 第 1部分 11は孔 41よりも外周 100aに近 、側の外周部 1 laと、内周 100bに近 、側 の内周部 l ibとに区分される。同様にして、第 1部分 12は孔 42よりも外周 100aに近 い側の外周部 12aと、内周 100bに近い側の内周部 12bとに区分され、第 1部分 13 は孔 43よりも外周 100aに近 、側の外周部 13aと、内周 100bに近 、側の内周部 13b とに区分され、第 1部分 14は孔 44よりも外周 100aに近い側の外周部 14aと、内周 10 Obに近い側の内周部 14bとに区分される。
[0060] 図 2は第 1の実施の形態に力かる回転子 101の構成の、回転軸に垂直な断面を示 す断面図である。回転子 101は、外周 100a側と内周 100b側とにそれぞれ異なる磁 極面を呈する界磁用磁石 31〜34を孔 41〜44に貫挿して構成されている。また、極 対数が 2である構成が例示されているので、界磁用磁石 31〜34のうち、隣接するも の同士は、外周 100a側に向けて異なる極性の磁極面を呈している。
[0061] 以上のようにして、磁性体 100で、あるいはその複数を積層して、孔 41〜44に界磁 用磁石 31〜34を貫挿し、以て埋込磁石型の回転子 101を構成することができる。第 2部分 15〜18は第 1部分 11〜14に対して、周方向において磁気的に分離されつつ 交互に設けられるので、回転子 101の内側に設けられる固定子 (後述する)を経由し て第 2部分 15〜18に磁束が流れ、また第 2部分 15〜18の周方向の幅 Wを大きくす ることができる。これにより q軸インダクタンス Lqを大きくすることができる。
[0062] 図 1及び図 2では、空隙 21〜28の周方向の幅が内周 100b側よりも外周 100a側で 拡がる態様が示されている力 必ずしも拡げる必要はない。図 3は空隙 24, 25の変 形として空隙 241, 251を例示する、部分的な断面図である。空隙 241, 251は屈曲 してちよい。
[0063] 空隙 21〜28は外周 100a、内周 100bのいずれの間にも薄肉部を有しているが、 回転子 101の機械的強度が許せば、空隙 21〜28は外周 100a、内周 100bのいず れに貫通してもよい。たとえ両方に貫通しても、別途に端板を設けて第 1部分 11〜1 4及び第 2部分 15〜 18を連結すればょ ヽ。
[0064] 逆に、空隙 21〜28は必ずしも外周 100aと内周 100bとの間で連続して設けられる 必要はな 、。第 2部分 15〜18が第 1部分 11〜14に対して周方向にぉ 、て磁気的 に分離される程度の薄肉を残して、空隙 21〜28が分断されていてもよい。
[0065] 空隙 21〜28は磁気抵抗が高いため、第 1部分 11〜14と第 2部分 15〜18との磁 気的な分離に資すると共に、孔 41〜44に貫挿される界磁用磁石 31〜34が呈する 一対の磁極面の間での磁束の短絡を防止する。よって外周 100a及び内周 100bを 経由した外部、即ち固定子との間での磁束の流入出を増大できる。このため、空隙 2 1〜28, 241, 251は、孑し 41〜44の外周 lOOaftlJ力ら内周 lOObftlJへと延在すること が望ましい。
[0066] 孔 41〜44は第 1部分 11〜14毎に一つ設けられることが望ましい。第 1部分 11〜1 4毎に孔を複数設けた構造と比較して、機械的強度を損なわずに磁性体 100を小さ く形成でき、当該孔に界磁用磁石を貫挿して得られる回転子を採用した電動機の小 型化に資する。また第 1部分 11〜14毎に孔が複数設けられ、当該孔のそれぞれに 界磁用磁石を貫挿する場合と比較して減磁の問題も少な ヽ。また当該孔に磁石材料 を埋め込んで力もこれを着磁して界磁用磁石を得ることも可能であるが、当該孔が第 1部分 11〜14に複数存在する構成と比較して、着磁が容易である。
[0067] 図 4は回転子 101を用いた電動機の構成を例示する断面図である。回転子 101の 内周 100b側には内周側固定子 200が、外周 100a側には外周側固定子 300が、そ れぞれ設けられた構成を有している。上述の通り、回転子 101の内外に固定子を設 けることにより、卷線スロットの全断面積を増大させることができる。
[0068] 外周側固定子 300は径方向に延在する歯部 301を有しており、その先端(回転子 1 01側)は周方向に広がって幅広部 302を形成している。同様に、内周側固定子 200 は径方向に延在する歯部 201を有しており、その先端(回転子 201側)は周方向に 広がって幅広部 202を形成して 、る。
[0069] 図 4では簡単のため、電機子卷線は省略して描画している。回転子 101と外周側 固定子 300とは主としてその歯部 301を介して、磁束が流入出し、回転子 101と内周 側固定子 200とは主としてその歯部 201を介して、磁束が流入出する。
[0070] 図 4では界磁用磁石 31, 33が S極の磁極面を、界磁用磁石 32, 34が N極の磁極 面を、それぞれ外周側固定子 300に向けて呈している場合の、界磁用磁石 31〜34 による磁束の流れを例示して 、る。
[0071] 図 5は回転子 101、内周側固定子 200、外周側固定子 300の間を拡大して部分的 に示す断面図である。内周 100bとの間には第 1の間隔 δ 2を空けて、外周 100aとの 間には第 2の間隔 δ 3を空けて、それぞれ回転子 100に対して内周側固定子 200、 外周側固定子 300が設けられている。
[0072] 空隙 21〜28, 241, 251の幅 δ 1は第 1の間隔 δ 2と第 2の間隔 δ 3との大きい方 の 2倍よりも大きいことが望ましい。回転子 101と内周側固定子 200、外周側固定子 3 00の間での磁気抵抗よりも、第 1部分 11〜14と第 2部分 15〜18との間の周方向の 磁気抵抗を高め、以て回転子と固定子との間での磁束の流入出を促進するためであ る。
[0073] 図 6は回転子 101に d軸磁束 が流れる様子を概念的に示す図であり、図 7は回 転子 101に q軸磁束 φ a, φ ΐ)が流れる様子を概念的に示す図であり、いずれも図 2 の断面図に対応している。
[0074] d軸磁束 φ cは界磁用磁石 31, 33と、界磁用磁石 32, 34との間を流れる。よって d 軸磁束 。はほぼ第 1部分 11〜14のみを流れることになる。
[0075] q軸磁束 φ &は第 1部分 11〜14、より具体的には外周部 11a, 12a, 13a, 14aを流 れる。しかし更に q軸磁束 φ ΐ)が第 2部分 15〜18をも流れる。よって第 2部分 15〜18 の周方向の幅 Wを拡げることが、 q軸インダクタンス Lqを増大させる観点力も望ましい
[0076] ここでもし、第 2部分 15〜18は第 1部分 11〜14に対して、周方向において磁気的 に分離されていなければ、例えば内周 100b側での分離がなければ、第 2部分 15〜 18は第 1部分 11〜14と共に外周側固定子 300に対する界磁用磁石 31〜34のョー クとして機能してしまい、内周側固定子 200への鎖交磁束数を減少させてしまうこと になる。これでは第 2部分 15〜 18の周方向の幅 Wを大きくとって q軸インダクタンス L qを増大させることができ、リラクタンストルクを大きくすることができても、マグネットトル クを減少させてしまうことになる。
[0077] しかし本発明では第 2部分 15〜18は第 1部分 11〜14に対して、周方向において 磁気的に分離されつつ交互に設けられるので、この幅 Wを増大させても、図 4に示さ れるように界磁用磁石 31〜34が発生する磁束が回転子 101内部で短絡することが 回避される。つまり内周側固定子 200や外周側固定子 300へ鎖交する磁束を低減さ せることなく、第 2部分 15〜18の周方向の幅 Wを大きくとって q軸インダクタンス Lqを 増大させることができる。
[0078] もちろん、本実施の形態において、特許文献 1や特許文献 2に紹介されたようなスロ ット形状の工夫を伴って、更に卷線スロットの全断面積を増大させてもよい。
[0079] なお、上記内周側固定子 200は卷線(図示省略)が卷回される電機子である力 こ れを回転子としない方が望ましい。もし回転子 101の内側の電機子を回転子とすると 、上述のように機械的整流子が必要となる他、外側の電機子である外周側固定子 30 0と相対的に回転することになる。この相対的な回転はいずれかの電機子の、回転子 101の界磁に対する相対回転数を減少させ、電動機の効率の低下を招来してしまう 。またこの相対的な回転は q軸磁束 φ bの経路を乱し、リラクタンストルクの変動を増 大させ、その利用が困難となる。
[0080] 図 8は回転子 101、内周側固定子 200、外周側固定子 300を備えた電動機の断面 図であり、回転中心を含む断面を概念的に示している。回転子 101は端板 102を介 して回転軸 103に連結されており、回転軸 103は軸受け 104, 105によって支持され ている。内周側固定子 200、外周側固定子 300はそれぞれ支持部 204, 304によつ て支持されている。また内周側固定子 200、外周側固定子 300には、それぞれ電機 子卷線 203, 303が卷回されている。図 4は、図 8中の位置 IV— IVにおいて、支持部 204, 304及び電機子卷線 203, 303を省略した断面図に相当する。 [0081] 図 9及び図 10は電機子卷線 203, 303 (図 8)が接続される態様を例示する回路図 である。図 9及び図 10に示されたコイル 203U, 203V, 203Wは、それぞれ電機子 卷線 203の U相、 V相、 W相のコイルであり、コイル 303U, 303V, 303Wは、それぞ れ電機子卷線 303の U相、 V相、 W相のコイルである。
[0082] 図 9及び図 10は、各相において電機子卷線 203, 303がそれぞれ直列及び並列 に接続されて ヽる場合を示した。本実施の形態ではこのような直列結線及び並列結 線の 、ずれの態様をも採用できる。
[0083] 図 9及び図 10は、スター結線を採用し、各相において電機子卷線 203, 303がそ れぞれ直列及び並列に接続されて 、る場合を示した。本実施の形態ではこのような 直列結線及び並列結線のいずれの態様をも採用できる。もちろん、図 11及び図 12 のように、デルタ結線を採用し、各相において電機子卷線 203, 303がそれぞれ直 列及び並列に接続してもよい。但し、デルタ結線を採用すると誘起電圧の不均衡に よる環状電流は銅損を大きくするので、スター結線を採用して電機子巻き線 203, 30 3は各相毎に直列に接続されて 、ることが望ま 、。
[0084] 第 2の実施の形態.
図 13は本発明の第 2の実施の形態にカゝかる磁性体 100の構成を示す平面図であ る。図 1に示された磁性体 100に対して、第 2部分 15〜18にそれぞれ穴 51〜54が 更に設けられている。
[0085] 穴 51〜54に例えばボルトやリベットなどの締結具を貫挿し、これらを用いて簡易且 つ安価に磁性体 100同士あるいは更に端板 102 (図 8参照)をも締結することができ る。もし接着剤を用いて磁性体 100同士を連結しょうとすると、接着硬化時間を必要 とし、電動機の使用環境、特に温度環境が制約される。しかし本実施の形態ではそ のような問題は回避される。
[0086] もし第 1部分 11〜14に穴を設けてしまうと、これに貫挿する締結具に磁性体を用い たとしても、リラクタンストルクに寄与する q軸磁束 φ a (図 7)のみならず、マグネットト ルクに寄与する d軸磁束 (図 6)についても、その流れを阻害する。これに対し、第 2部分 15〜18に穴 51〜54を設けることにより、 q軸磁束 φ bの流れを阻害することは あっても、 d軸磁束 φ cの流れを阻害しにくい。 [0087] 既述のように、第 2部分 15〜18は第 1部分 11〜14に対して、周方向において磁気 的に分離されつつ交互に設けられるので、この幅 Wを増大させ易い。よって穴 51〜5 4を設けるための面積に余裕があり、穴 51〜54を大きくすることができる。また穴 51 〜54を設けても、 q軸磁束 φ ΐ)の流れは阻害されるものの、ある程度は確保し易い。
[0088] 望ましくは、穴 51〜54は円形である。この場合、応力が集中する角がなぐまた穴 以外のリブとして機能する部分も太くできるので、所望の機械強度を得るために必要 な穴 51〜54の寸法が小さくなり、穴 51〜54による q軸磁束 φ bの阻害を小さくできる
[0089] また第 2部分 15〜18においては、外周 100a及び内周 100bのいずれに向力つて も磁性体が広がる形状が得られるので、固定子 200, 300 (図 4参照)と第 2部分 15 〜18との間での q軸磁束 φ bを流れ易くする。
[0090] もちろん、上記磁束の阻害を低減するためには、穴 51〜54に貫挿する締結具は、 磁性材料を採用することが望まし ヽ。
[0091] 第 3の実施の形態.
図 14は本発明の第 3の実施の形態に力かる電動機の構成を例示する断面図であ る。図 4に示された構成と比較して、内周側固定子 200の歯部 201の周方向の中心 と、外周側固定子 230の歯部 301の周方向の中心と力 周方向についての相対的な 位置がずれて!/ヽる。図 14では機械角として 30度ずれて ヽる場合が例示されており、 電気角として 60度のずれに相当する。なお、簡単のため、電機子卷線 203, 303は 一部の歯部 201, 301に卷回されて!/、るもののみを描 ヽて 、る。
[0092] このような位置ずれは、電動機の使用前に、もしくは使用中において、機械的に行 うことができる。例えば電動機の使用前にマニュアルで位置ずれを起こさせてもよい し、使用中にはサーボモータ等のァクチユエータで位置ずれを起こさせてもよい。こ のァクチユエータは、例えば図 8に示された支持部 204において設けることができる。
[0093] 磁束 ¥aは磁石 32の外周側の磁極面(ここでは N極)から発生する磁束を、磁束 Ψ bは磁石 33の外周側の磁極面 (ここでは S極)から発生する磁束を、それぞれ示して いる。
[0094] 上記の位置ずれが生じているので、磁束 ¥aが磁石 32の内周側の磁極面へ戻るに 際して、外周側固定子 300のヨークまで歯部 301を経由して電機子卷線 303に鎖交 するが、内周側固定子 200の歯部 201においては、電機子卷線 203に鎖交すること なぐその幅広部 202を経由する経路が存在する。同様にして、磁束 ¥bが磁石 33 の内周側の磁極面へ戻るに際して、内周側固定子 200の歯部 201を経由して電機 子卷線 203に鎖交する力 外周側固定子 300の歯部 301においては、電機子卷線 3 03に鎖交することなぐその幅広部 302を経由する経路が存在する。
[0095] これらの経路は実質的には磁石 32, 33の界磁を弱めることとなる。つまり上述の位 置ずれは、実質的な弱め界磁制御である弱め磁束制御を機械的に実現している。こ のようにして、弱め磁束電流を流すことなく弱め磁束制御が実現でき、高出力領域で の効率向上が達成できる。図 14では電気角として 60度に相当する位置ずれが示さ れており、弱め磁束を最大限利用している場合が例示されている。
[0096] この実施の形態によれば、弱め磁束電流による銅損の上昇や、負の d軸電流による 界磁用磁石の減磁も発生しな!、。し力も相対的な位置関係の調整は卷線の卷回数 の調整と比較すると微調整がし易いので、設定されるべき回転数が異なる電動機に 共通して採用できる。
[0097] なお、弱め磁束制御の際には歯部の幅広部 202, 302の磁束密度が上昇するの で、幅広部 202, 302での鉄損は上昇する。しかし幅広部 202, 302以外の歯部 20 2, 302を通過する磁束密度は減少するので、より長い磁路における鉄損を低減でき るため、電動機の総鉄損は低減する。
[0098] このように、内外の電機子の相互の位置関係を調整することで弱め磁束制御を行う ことは、特に電動機を小型化する場合に好適である。例えば特許文献 7には方向性 電磁鋼板の圧延方向による透磁率異方性を利用し、固定子に調整用のプラグを埋 め込んでいる。し力しこれは固定子自体の磁束密度を損なってしまうため、電動機の 小型化の観点力 は望ましくな 、。
[0099] また本実施の形態に力かる電動機では、同一の電流を用いても回転数を微調整す ることが容易であるので、電動機が低圧で動作する使用である場合に好適である。低 圧で動作する電動機では卷線の卷回数が小さくなるため、卷回数を変更して微調整 を行うことは容易ではな 、。卷回数の変更は離散的な数値の制御である力もである。 [0100] 本実施の形態に力かる電動機では卷回数に依存せずに、回転数の微調整を行うこ とができるので、例えば 42V以下等の、低電圧で動作する車載用の空調機の圧縮機 【こ; して 0
[0101] もちろん、通常の空調機の圧縮機や送風機に、本発明にかかる電動機を搭載し、 圧縮や送風の効率を向上させることができる。よって当該圧縮機や送風機の少なくと
¾ 、ずれか一方を備えた空気調和機は、空調効率を高めることができる。
[0102] なお、弱め磁束制御を行う場合、誘起電圧の不均衡による環状電流による損失を 誘発するため、図 9に示されるような直列結線の方が望ま 、。
[0103] また、第 2の実施の形態に示されたように磁性体 100が穴 51〜54を有していてもよ い。
[0104] この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 この発明の範囲力 外れることなく想定され得るものと解される。

Claims

請求の範囲
いずれも環状の外周(100a)及び内周(100b)を備え、
周方向において交互に、第 1部分(11〜14)及び第 2部分(15〜18)とに区分され 前記第 1部分の各々は、略前記周方向に延在する孔 (41〜44)を有し、 前記第 1部分と前記第 2部分とは前記周方向において磁気的に分離された磁性体 (100)。
前記外周 (100a)と前記内周(100b)との間で、前記孔 (41〜44)の前記周方向の 両端に設けられた空隙(21〜28; 241, 251)
を更に備え、
前記空隙によって前記第 1部分(11〜14)と前記第 2部分(15〜18)とが磁気的に 分離された請求項 1記載の磁性体( 100)。
前記空隙(21〜28 ; 241, 251)は、前記孔 (41〜44)の前記外周(100a)側から 前記内周(100b)側へと延在する、請求項 2記載の磁性体(100)。
前記孔 (41〜44)は前記第 1部分( 11〜 14)毎に一つ設けられる、請求項 1記載の 磁性体(100)。
前記第 2部分(15〜18)に穴(51〜54)を更に有する、請求項 1記載の磁性体(10 0)。
前記穴(51〜54)は円形である、請求項 5記載の磁性体(100)。
請求項 1乃至請求項 6のいずれか一つに記載の記載の磁性体(100)と、 前記孔 (41〜44)に貫挿され、前記外周(100a)側と前記内周(100b)側とにそれ ぞれ異なる磁極面を呈する界磁用磁石(31〜34)と
を備える回転子(101)。
請求項 7記載の回転子(101)と、
前記回転子に対して前記内周(100b)側に設けられた内周側固定子(200)と、 前記回転子に対して前記外周(100a)側に設けられた外周側固定子(300)と を備える電動機。
前記磁性体(100)は、前記外周 (100a)と前記内周(100b)との間で、前記孔 (41 〜44)の前記周方向の両端に設けられた空隙(21〜28 ; 241, 251)を更に備え、 前記空隙によって前記第 1部分(11〜14)と前記第 2部分(15〜18)とが磁気的に 分離され、
前記空隙(21〜28 ; 241, 251)の幅(δ 1)は、前記内周(100b)と前記内周側固 定子 (200)との間の第 1の間隔( δ 2)及び前記外周(100a)と前記外周側固定子 (3 00)との間の第 2の間隔( δ 3)の大きい方の 2倍よりも大きい、請求項 8記載の電動機
[10] 前記内周側固定子(200)が有する歯部(201)の前記周方向についての中心と、 前記外周側固定子(300)が有する歯部(301)の前記周方向についての中心とは、 前記周方向にっ 、ての相対的な位置関係が可変である、請求項 8記載の電動機。
[11] 前記内周側固定子(200)が有する歯部(201)の前記周方向についての中心と、 前記外周側固定子(300)が有する歯部(301)の前記周方向についての中心とは、 前記周方向にっ 、ての相対的な位置関係が可変である、請求項 9記載の電動機。
[12] 請求項 8記載の電動機を搭載したことを特徴とする圧縮機。
[13] 請求項 9記載の電動機を搭載したことを特徴とする圧縮機。
[14] 請求項 8記載の電動機を搭載したことを特徴とする送風機。
[15] 請求項 9記載の電動機を搭載したことを特徴とする送風機。
[16] 請求項 12記載の圧縮機を備えた空気調和機。
[17] 請求項 13記載の圧縮機を備えた空気調和機。
[18] 請求項 14記載の送風機を備えた空気調和機。
[19] 請求項 15記載の送風機を備えた空気調和機。
[20] 請求項 10記載の電動機を搭載した圧縮機を備える、車載用空気調和機。
PCT/JP2006/301770 2005-02-28 2006-02-02 磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機 WO2006092924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06712913.0A EP1855371B1 (en) 2005-02-28 2006-02-02 Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner
JP2007505823A JP4737193B2 (ja) 2005-02-28 2006-02-02 回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機
ES06712913.0T ES2581980T3 (es) 2005-02-28 2006-02-02 Cuerpo magnético, rotor, motor, compresor, ventilador, climatizador y climatizador a bordo de un vehículo
CN200680004743XA CN101120499B (zh) 2005-02-28 2006-02-02 磁性体、转子、电动机、压缩机、鼓风机、空调机及车载用空调机
US11/885,160 US7902712B2 (en) 2005-02-28 2006-02-02 Magnetic member, rotor, motor, compressor, blower, air conditioner and vehicle-mounted air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-053206 2005-02-28
JP2005053206 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006092924A1 true WO2006092924A1 (ja) 2006-09-08

Family

ID=36940965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301770 WO2006092924A1 (ja) 2005-02-28 2006-02-02 磁性体、回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機

Country Status (6)

Country Link
US (1) US7902712B2 (ja)
EP (1) EP1855371B1 (ja)
JP (1) JP4737193B2 (ja)
CN (1) CN101120499B (ja)
ES (1) ES2581980T3 (ja)
WO (1) WO2006092924A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059923A1 (fr) * 2006-11-16 2008-05-22 Daikin Industries, Ltd. Machine électrique rotative, compresseur, ventilateur et climatiseur
JP2009136075A (ja) * 2007-11-29 2009-06-18 Hiroshi Shimizu アウターロータモータ
JP2009247095A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp リラクタンスモータの回転子およびリラクタンスモータの回転子用鋼板の成形方法
US20100117479A1 (en) * 2006-10-10 2010-05-13 Force Engineering Limited Electromotive machines
JP2011244643A (ja) * 2010-05-20 2011-12-01 Denso Corp ダブルステータ型モータ
WO2022145035A1 (ja) * 2020-12-29 2022-07-07 ヤマハ発動機株式会社 電気機械

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083503A3 (en) * 2008-01-22 2017-03-29 LG Electronics Inc. Brushless direct current motor
DE102012011445A1 (de) * 2011-06-21 2012-12-27 Asmo, Ltd. Motor mit einem Rotor und Verfahren zur Herstellung des Rotors
US9479036B2 (en) * 2011-08-31 2016-10-25 Akribis Systems Pte Ltd High torque, low inertia direct drive motor
US10153671B2 (en) 2011-12-29 2018-12-11 Philip Totaro Permanent magnet rotor with intrusion
US20130169101A1 (en) * 2011-12-29 2013-07-04 Danotek Motion Technologies, Inc. Permanent Magnet Rotor With Intrusion
WO2013114542A1 (ja) * 2012-01-30 2013-08-08 三菱電機株式会社 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
US9035520B2 (en) * 2012-05-24 2015-05-19 Kollmorgen Corporation Rotor lamination stress relief
JP5418651B1 (ja) * 2012-09-26 2014-02-19 ダイキン工業株式会社 ラジアルギャップ型回転電機、送風機、圧縮機、空気調和機
JP5872605B2 (ja) * 2014-03-04 2016-03-01 ダイキン工業株式会社 ロータ
JP6241668B2 (ja) * 2014-07-22 2017-12-06 株式会社デンソー ダブルステータ型回転電機
US10333362B2 (en) 2014-10-15 2019-06-25 Accelerated Systmes Inc. Internal permanent magnet motor with an outer rotor
CN106712420A (zh) * 2016-11-30 2017-05-24 上海电机学院 一种永磁同步电机
JP2020522225A (ja) * 2017-05-31 2020-07-27 広東美芝制冷設備有限公司 圧縮機用モータ固定子、永久磁石モータ及び圧縮機
CN108768023B (zh) * 2018-08-13 2020-01-07 珠海格力电器股份有限公司 转子组件及交替极电机
US11218062B2 (en) * 2018-11-16 2022-01-04 Enedym Inc. Double-stator single-winding switched reluctance machine
JP2023542518A (ja) 2020-09-21 2023-10-10 イーヴィーアール モーターズ リミテッド ラジアルフラックス電気機械

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956126A (ja) 1995-06-09 1997-02-25 Denso Corp 車両用駆動装置
JPH09233887A (ja) 1996-02-22 1997-09-05 Toyota Motor Corp モータ
JP2000050585A (ja) * 1998-07-28 2000-02-18 Denso Corp 車両用駆動装置
JP2000324728A (ja) 1999-05-14 2000-11-24 Mitsubishi Electric Corp 固定子鉄心、固定子、電動機、圧縮機および固定子鉄心製造方法
JP2002084720A (ja) 2000-09-01 2002-03-22 Nippon Densan Corp スピンドルモータおよびこれを備えたディスク駆動装置
JP2002335658A (ja) 2001-05-08 2002-11-22 Nsk Ltd モータ
JP2002369467A (ja) 2001-06-01 2002-12-20 Mitsubishi Electric Corp 回転電機及びこの回転電機を用いた滑車駆動装置
JP2003061283A (ja) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp 回転電機の回転子、固定子、電動機、圧縮機、冷凍サイクル、回転電機の回転子製造方法
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2004135375A (ja) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd 同軸モータのロータ構造
JP2004187370A (ja) 2002-12-02 2004-07-02 Mitsuba Corp ステータコア
JP2004222467A (ja) * 2003-01-17 2004-08-05 Asmo Co Ltd 埋込磁石型モータ
JP2004260970A (ja) * 2003-02-27 2004-09-16 Toyota Motor Corp 電動機および電動機システム
JP2004304958A (ja) * 2003-03-31 2004-10-28 Fujitsu General Ltd 永久磁石電動機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629626A (en) * 1969-09-22 1971-12-21 Frank R Abbott Low-inertia, high-torque motors
JP3152405B2 (ja) * 1992-06-10 2001-04-03 オークマ株式会社 電動機
DE59604144D1 (de) * 1995-02-21 2000-02-17 Siemens Ag Hybriderregte elektrische Maschine
DE19838378A1 (de) * 1998-08-24 2000-03-02 Magnet Motor Gmbh Elektrische Maschine mit Dauermagneten
US6274960B1 (en) * 1998-09-29 2001-08-14 Kabushiki Kaisha Toshiba Reluctance type rotating machine with permanent magnets
DE60141308D1 (de) * 2000-03-31 2010-04-01 Sanyo Electric Co Synchronmotor mit internem Dauermagnet
JP3801477B2 (ja) * 2001-10-11 2006-07-26 三菱電機株式会社 同期誘導電動機のロータ及び同期誘導電動機及びファンモータ及び圧縮機及び空気調和機及び冷蔵庫
DE50301733D1 (de) * 2002-03-22 2005-12-29 Ebm Papst St Georgen Gmbh & Co Innenläufermotor
DE10316831A1 (de) * 2002-04-15 2003-11-27 Denso Corp Permanentmagnetrotor für eine rotierende elektrische Maschine mit Innenrotor und magnetsparender Rotor für einen Synchronmotor
JP4303579B2 (ja) * 2002-12-24 2009-07-29 新日本製鐵株式会社 三次元ステーター構造の回転機
JP2004301038A (ja) * 2003-03-31 2004-10-28 Fujitsu General Ltd 密閉型電動圧縮機
US7042127B2 (en) * 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
TW200509515A (en) * 2003-07-04 2005-03-01 Daikin Ind Ltd Motor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956126A (ja) 1995-06-09 1997-02-25 Denso Corp 車両用駆動装置
JPH09233887A (ja) 1996-02-22 1997-09-05 Toyota Motor Corp モータ
JP2000050585A (ja) * 1998-07-28 2000-02-18 Denso Corp 車両用駆動装置
JP2000324728A (ja) 1999-05-14 2000-11-24 Mitsubishi Electric Corp 固定子鉄心、固定子、電動機、圧縮機および固定子鉄心製造方法
JP2002084720A (ja) 2000-09-01 2002-03-22 Nippon Densan Corp スピンドルモータおよびこれを備えたディスク駆動装置
JP2002335658A (ja) 2001-05-08 2002-11-22 Nsk Ltd モータ
JP2002369467A (ja) 2001-06-01 2002-12-20 Mitsubishi Electric Corp 回転電機及びこの回転電機を用いた滑車駆動装置
JP2003061283A (ja) * 2001-08-17 2003-02-28 Mitsubishi Electric Corp 回転電機の回転子、固定子、電動機、圧縮機、冷凍サイクル、回転電機の回転子製造方法
JP2004072978A (ja) * 2002-08-09 2004-03-04 Equos Research Co Ltd 電動機
JP2004135375A (ja) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd 同軸モータのロータ構造
JP2004187370A (ja) 2002-12-02 2004-07-02 Mitsuba Corp ステータコア
JP2004222467A (ja) * 2003-01-17 2004-08-05 Asmo Co Ltd 埋込磁石型モータ
JP2004260970A (ja) * 2003-02-27 2004-09-16 Toyota Motor Corp 電動機および電動機システム
JP2004304958A (ja) * 2003-03-31 2004-10-28 Fujitsu General Ltd 永久磁石電動機

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Higher Performance of Special-purpose-oriented Reluctance Torque Applied Motor", IEEJ TECHNICAL REPORT, vol. 920, March 2003 (2003-03-01)
KAZUO ONISHI: "Investigation on Torque Evaluation and Optimum Structure of Permanent Magnet Motors", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERING OF JAPAN ON INDUSTRY APPLICATIONS, vol. 115-D, no. 7, 1995, pages 930 - 935
See also references of EP1855371A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100117479A1 (en) * 2006-10-10 2010-05-13 Force Engineering Limited Electromotive machines
US8400044B2 (en) * 2006-10-10 2013-03-19 Force Engineering Limited Electromotive machines
WO2008059923A1 (fr) * 2006-11-16 2008-05-22 Daikin Industries, Ltd. Machine électrique rotative, compresseur, ventilateur et climatiseur
JP2008131663A (ja) * 2006-11-16 2008-06-05 Daikin Ind Ltd 回転電機、圧縮機、送風機、空気調和機
JP2009136075A (ja) * 2007-11-29 2009-06-18 Hiroshi Shimizu アウターロータモータ
JP2009247095A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp リラクタンスモータの回転子およびリラクタンスモータの回転子用鋼板の成形方法
JP2011244643A (ja) * 2010-05-20 2011-12-01 Denso Corp ダブルステータ型モータ
US8860274B2 (en) 2010-05-20 2014-10-14 Denso Corporation Motor provided with two stators arranged radially inside and outside rotor
WO2022145035A1 (ja) * 2020-12-29 2022-07-07 ヤマハ発動機株式会社 電気機械

Also Published As

Publication number Publication date
CN101120499A (zh) 2008-02-06
EP1855371B1 (en) 2016-04-13
EP1855371A4 (en) 2015-04-15
US20090212652A1 (en) 2009-08-27
EP1855371A1 (en) 2007-11-14
US7902712B2 (en) 2011-03-08
JPWO2006092924A1 (ja) 2008-08-07
CN101120499B (zh) 2012-01-11
JP4737193B2 (ja) 2011-07-27
ES2581980T3 (es) 2016-09-08

Similar Documents

Publication Publication Date Title
JP4737193B2 (ja) 回転子、電動機、圧縮機、送風機、空気調和機及び車載用空気調和機
US20200227961A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP6422595B2 (ja) 電動機および空気調和機
JP5659031B2 (ja) 永久磁石式回転電機
JP4793249B2 (ja) 永久磁石埋設型回転電機及びカーエアコン用モータ並びに密閉型電動圧縮機
CN112838693B (zh) 旋转电机
JP5260563B2 (ja) 永久磁石式発電機またはモータ
US8618709B2 (en) Rotary electric machine with improved energy efficiency
JP5502571B2 (ja) 永久磁石式回転電機
JP6048191B2 (ja) マルチギャップ型回転電機
JP5088587B2 (ja) 永久磁石形同期回転電機、それを備える車両、昇降機、流体機械および加工機
KR20160061834A (ko) 계자권선형 구동모터의 회전자
US6936945B2 (en) Permanent magnet synchronous motor
JP4848670B2 (ja) 回転子、電動機、圧縮機、送風機、及び空気調和機
CN113273057B (zh) 具有磁通分配空隙的内置永磁体电机
JP5011719B2 (ja) 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
JP6782000B2 (ja) モータ
JP5471653B2 (ja) 永久磁石式電動モータ
JP4080273B2 (ja) 永久磁石埋め込み型電動機
JP5194436B2 (ja) 回転電機、圧縮機、送風機、空気調和機
WO2020146309A1 (en) Interior permanent magnet electric machine with tapered bridge structure
JP2007166798A (ja) 回転電機、圧縮機、送風機、及び空気調和機
JP2007288838A (ja) 埋込磁石型電動機
JP7424539B2 (ja) 界磁子
JP2006352953A (ja) 電動機及びその制御方法、圧縮機、送風機、空気調和機並びに車載用空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680004743.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712913

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885160

Country of ref document: US