JP2023542518A - ラジアルフラックス電気機械 - Google Patents

ラジアルフラックス電気機械 Download PDF

Info

Publication number
JP2023542518A
JP2023542518A JP2023518160A JP2023518160A JP2023542518A JP 2023542518 A JP2023542518 A JP 2023542518A JP 2023518160 A JP2023518160 A JP 2023518160A JP 2023518160 A JP2023518160 A JP 2023518160A JP 2023542518 A JP2023542518 A JP 2023542518A
Authority
JP
Japan
Prior art keywords
tooth
electric machine
core
coil
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023518160A
Other languages
English (en)
Inventor
キスレフ、ヴィクター
ガスパー、オレグ
シャビンスキー、ルスラン
ロジンスキー、エリヤフ
Original Assignee
イーヴィーアール モーターズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーヴィーアール モーターズ リミテッド filed Critical イーヴィーアール モーターズ リミテッド
Priority claimed from PCT/IB2021/058475 external-priority patent/WO2022058939A1/en
Publication of JP2023542518A publication Critical patent/JP2023542518A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/187Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to inner stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/279Magnets embedded in the magnetic core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/12Transversal flux machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/525Annular coils, e.g. for cores of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Abstract

電気機械は複数の台形状の歯を有し得る。各歯の断面の周長は、ラジアル方向において実質的に一定であり得、断面の面積はラジアル方向において変動し得る。各歯はまた、共に組み立てられたときに台形状の歯を形成する複数のピースから形成され得る。

Description

[関連出願への相互参照]
本出願は、参照によって全体が本明細書に組み込まれる、2020年9月21日に出願された米国仮特許出願第63/081,043号に対する優先権を主張する。
本開示はラジアルフラックス電気機械に関する。
本開示は電気機械に関し、特に、ラジアルフラックス電気機械に関する。電気機械(electric machine又はelectrical machine)は一般的に、その動作を電磁力に依存する機械についての用語である。電気機械の2つの主な部品は、機械的又は電気的観点から記載できる。機械的観点では、ロータは回転する部品であり、ステータは電気機械の静止部品である。電気的観点では、アーマチャは、動力生成コンポーネントであり、分野は、電気機械の磁場生成コンポーネントである。アーマチャはロータ又はステータ上にあり得、磁場は、ロータ又はステータのいずれかに装着された電磁石又は永久磁石のいずれかによって提供され得る。電気機械は、電気機械的エネルギー変換器であり、とりわけ、電気モータ及び発電機を含む。電気モータは、電気を機械的動力に変換し、一方、発電機は、機械的動力を電気に変換する。電気機械の可動部品は、回転(回転電気機械)するもの又は線形(線形電気機械)に可動なものであり得る。電気機械は、電流が電磁フラックスを生成する、及び、その逆の原理で動作する。いくつかの電気機械において、永久磁石を含むロータは、電気が通過する複数の電磁石によって生成される電磁場における回転のために構成されている。
電気機械は、アキシャルフラックス電気機械及びラジアルフラックス電気機械として分類され得る。これらのタイプの機械の間の基本的な相違点は、これらの機械における磁場の向きである。ラジアルフラックス電気機械において、作動磁束は、ラジアル平面においてステータとロータとの間の空隙を横断し、一方、アキシャルフラックス電気機械において、磁束は、回転軸と平行に空隙を横断する。永久磁石及び電気機械の巻線の浮遊磁場を低減すること、及び、ステータ及びロータコアにおける磁束密度の集中を増大させることを目的として多数の解決法が知られており、コアのすべての部品における磁束密度の値が同一であることを確実にするように取り組まれている。また、永久磁石電気機械についての高いフィルファクタを提供することを目的とする多数の解決法がある。これらの解決法のいくつかは、複雑な歯の形状を使用して電気機械性能を改善する。これらの解決法のいくつかは、歯の体積を効果的に使用するが、電気機械の漏洩磁束を十分に低減しない。加えて、いくつかの場合において、複雑な歯の形状により、電気機械についての高い巻線フィルファクタを提供することが困難となる。本開示のラジアルフラックス電気機械は、上で言及した問題の一部又は全部を緩和する。本開示の電気機械の実施形態における漏洩磁束の減少及びフィルファクタの増加により、電気機械の動力及び効率を増加させることが可能となり得る。しかしながら、本開示の範囲は、任意の問題を解決する能力によってではなく、請求項によって定義される。
電気機械、及び、電気機械を製造及び使用する方法の複数の実施形態が開示される。上記の一般的記載及び以下の詳細な記載の両方は単なる例示及び説明であることが理解される。したがって、本開示の範囲は、開示される実施形態だけに限定されない。むしろ、開示される実施形態の趣旨及び範囲内の代替形態、修正形態、及び均等物を包含することを意図している。当業者であれば、本開示の趣旨及び範囲を逸脱することなく、様々な変更、置換、及び改変が、開示される実施形態に加えられ得ることを理解するであろう。
一実施形態において、複数の台形状の歯を有する電気機械が開示される。電気機械は複数の電磁コイルを含み得る。各コイルは、それを通る不均一台形空洞を含み得、その中に、複数の歯のうちの1つの歯を含むように構成され得る。各歯は、共に組み立てられたときに台形状の歯を形成する複数のピースから形成され得る。
いくつかの実施形態において、ロータに向かってラジアル方向に断面積が増加し、かつ、巻きコイルが空隙に可能な限り近くシフトされる多部品歯の台形形状は、電気機械の漏洩磁場を著しく低減し得る。ラジアル方向における一定の断面周長を有する歯を事前に形成することにより、電気機械のフィルファクタが増加し、電気機械の性能、効率トルク及び動力が改善する。
一実施形態において、ラジアルフラックス電気機械が開示される。電気機械は、回転軸の周りを回転するように構成されているロータ、及び、ステータを含み得る。ロータ又はステータのうちの少なくとも1つは、回転軸の周りに環状に配置された複数の歯を含み得る。電気機械はまた、複数の電磁コイルを含み得る。複数の電磁コイルの各コイルは、それを通る不均一台形空洞を有し得る。各空洞は、その中に複数の歯のうちの1つの歯を含むように構成され得る。複数の歯の各歯は、共に組み立てられたときに不均一台形空洞の形状に対応する複数のピースから形成され得る。
電気機械の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、各歯の複数のピースが共に組み立てられたときに、各歯の外周は、対応するコイルの空洞の内周に対応する;各歯は、コア歯部分、及び、少なくとも1つのウェッジ形状部分を含む;各歯は、コア部分の対向する両側に配設されたコア歯部分及び少なくとも2つのウェッジ形状部分を含む;回転軸に垂直な平面において、コア歯部分は実質的に矩形の断面形状を有し、少なくとも1つのウェッジ形状部分は実質的に三角形の断面形状を有する;ラジアル方向に垂直な平面において、コア歯部分、及び、少なくとも1つのウェッジ形状部分は、実質的に矩形の断面形状を有する;各歯のコア歯部分、及び、少なくとも1つのウェッジ形状部分は、接着材料を使用して共に連結される;各歯のコア歯部分は、回転軸を囲んで延在する環状リングと一体的に形成される;各歯の複数のピースが共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し、2組のうちの各組の対向する面は、互いに非平行である;隣接する歯の対向する面は互いに平行である;2組の対向する面の各面は、ラジアル方向において傾斜している;対向する面のうちの一方の組の対向する面は、ラジアル方向外向きにおいて互いに向かって近づき、対向する面のうちの他方の組の対向する面は、ラジアル方向外向きにおいて互いから離れる;回転軸に垂直な平面において、各歯の断面は台形形状を有し、ラジアル方向に垂直な平面における各歯の断面は、矩形形状を有する;ラジアル方向に垂直な断面の周長は、ラジアル方向において実質的に一定である;ラジアル方向に垂直な断面の面積は、ラジアル方向において変動する;ステータは複数の歯を含み、ラジアル方向に垂直な断面の面積は、ロータに向かってラジアル方向に増加する;アキシャル平面における各歯の断面は等脚台形形状を有する;各歯の複数のピースのうちの少なくとも1つのピースは軟磁性複合材料(SMC)から形成される;ステータは複数の歯を含み、各歯の複数のピースのうちの第1ピースは、回転軸を囲んで延在する環状ステータリングと一体であり、それからラジアル方向に延在し、各歯の複数のピースのうちの第2ピースは、第1ピースと非一体的に形成される;電気機械は電気モータ又は発電機の1つである、のうちの1又は複数を含み得る。
別の実施形態において、ラジアルフラックス電気機械が開示される。電気機械は、回転軸の周りを回転するように構成されているロータ、及び、ロータの近傍に固定されて位置するステータを含み得る。ロータ又はステータのうちの少なくとも1つは、回転軸の周りに環状に配置された複数の歯を含み得る。複数の歯のうちの各歯は、ラジアル方向に垂直な複数の平面における各歯の複数の断面積が変動し得るように、ラジアル方向に延在し得る。そして、複数の断面の周長は、複数の垂直平面にわたって実質的に同一であり得る。
電気機械の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、電気機械のアキシャル平面又はラジアル平面のうちの少なくとも1つにおける各歯の形状は台形である;電気機械のアキシャル平面又はラジアル平面のうちの少なくとも1つにおける各歯の形状は等脚台形である;複数の歯は、ステータ上に環状に配置されている;ロータは、ステータのラジアル方向外向きに配設され、ラジアル平面における各歯の幅は、ロータに向かってラジアル方向に増加し、アキシャル平面における各歯の長さは、ロータに向かってラジアル方向に減少する;各歯は、ラジアル方向に垂直な平面における各歯の断面積がロータに向かってラジアル方向に増加するように、ラジアル方向に延在する;ロータはステータのラジアル方向内向きに配設され、ラジアル方向に垂直な平面における複数の歯の各歯の断面積は、ロータに向かってラジアル方向に増加する;複数の歯は、ロータ上に環状に配置されている;電気機械は更に複数の電磁コイルを含み、複数の電磁コイルの各コイルは、複数の歯のうちの別個の歯を囲んで延在する;各コイルは、正方形、矩形、又は円形の断面形状のうち1つを有する銅線を含む;ワイヤはマルチストランドであり、各コイルは、歯に沿ってラジアル方向にらせん状の形態で巻かれている;各コイルは、箔の平坦側がラジアル方向において歯の全長にわたって延在するように、歯を囲んで巻かれた銅箔を含む;各コイルは、歯に沿ってラジアル方向にらせん状の形態で巻かれた銅箔のリブを含む;各歯は軟磁性複合材料(SMC)材料を含む;各歯は共に連結された複数のピースを含む;複数のピースは、回転軸を囲んで延在する環状リングと一体的に形成されるコア部分、及び、コア部分に連結された1又は複数のウェッジ部分を含む;1又は複数のウェッジ部分は、コア部分の対向する両側に配設された少なくとも2つのウェッジ部分を含む;電気機械は電気モータ又は発電機である;ステータ又はロータの1つは、外側部品及び内側部品を含み、ステータ及びロータは、二重の空隙によって隔離されている;外側部品及び内側部品は、磁気伝導性材料からできている接続部分によって共に接続されている、のうちの1又は複数を含み得る。
別の実施形態において、ラジアルフラックス電気機械が開示される。電気機械は、回転軸の周りを回転するように構成されているロータ、複数の電磁コイル、及びステータを含み得る。ステータは、回転軸の周りに延在する環状ステータリング、及び、ステータリング上に円周方向に配置された複数の多部品歯を含み得る。複数の多部品歯の各多部品歯は、ステータリングと一体的に形成されたコア歯部分、及び、ステータリングとは別個の少なくとも1つの追加歯部分を含み得る。複数の電磁コイルの各コイルは、各コイルがコイルとコア歯部分との間の間隙を伴って多部品歯の対応するコア歯部分を囲むように、複数の多部品歯の異なる多部品歯上に装着され得る。少なくとも1つの追加歯部分は間隙に配設され得る。
電気機械の様々な実施形態は、代替的に、又は追加的に、以下の態様、すなわち、各多部品歯のコア歯部分は、軟磁性複合材料(SMC)から形成される;環状ステータリングは軟磁性複合材料(SMC)から形成されている;環状ステータリングは、回転軸に垂直な対称面に沿って共に連結された2つの鏡面対称性の半分を含む;2つの鏡面対称性の半分は、接着材料を使用して、対称面に沿って共に取り付けられている;環状ステータリングは、複数のアキシャル方向に積み重ねられた環状リングを含み、積み重ねられた環状リングのうちの少なくとも2つは軟磁性複合材料(SMC)からできている;各多部品歯のコア歯部分は、環状ステータリングからラジアル方向外向きに延在している;ラジアル方向に垂直な平面に沿ったコア歯部分及び少なくとも1つの追加歯部分の各々の断面は実質的に矩形の形状を有する;回転軸に垂直な平面に沿ったコア歯部分の断面は実質的に矩形の形状を有する;回転軸に垂直な平面に沿った少なくとも1つの追加歯部分の断面は実質的に三角形の形状を有する;回転軸に垂直な平面に沿った複数の多部品歯の各歯の断面は実質的に台形の形状を有する;少なくとも1つの追加歯部分は、コア歯部分の対向する両側に対称に配置された追加歯部分の対を含む;複数の多部品歯の各歯のコア歯部分及び少なくとも1つの追加歯部分は、接着材料を使用して共に連結されている;コア歯部分、少なくとも1つの追加歯部分の材料、及び、接着材料の熱膨張の係数の間の差は約20%より小さい;各多部品歯の少なくとも1つの追加歯部分は、複数の電磁コイルのコイルの内面とコア歯部分の外面との間に押し込まれ;複数の電磁コイルのコイルは、少なくとも2つの間隙がコイルの内面とコア歯部分の対向する両側との間に形成されるように、各歯のコア歯部分を囲み、少なくとも1つの追加歯部分は、少なくとも2つの間隙の異なる間隙に配設された少なくとも2つの追加歯部分を含む;ラジアル方向に垂直な平面における複数の多部品歯の各多部品歯の断面は矩形形状を有する;断面の周長は、ラジアル方向において実質的に一定である;断面の面積はラジアル方向において変動する;電気機械は電気モータ又は発電機である、のうちの1又は複数を含み得る。
別の実施形態において、ラジアルフラックス電気機械が開示される。電気機械は、回転軸の周りを回転するように構成されているロータ、複数の電磁コイル、及びステータを含み得る。ステータは、環状ステータリング、及び、ラジアル方向に延在する複数のコア歯部分を有し得る。環状ステータリング及び複数のコア歯部分は、軟磁性複合材料(SMC)から一体的に形成され得る。SMCは、1又は複数の等方性強磁性材料、約1.6テスラ以上の飽和磁気誘導、及び、10マイクロオーム/mより高い電気抵抗率を含み得る。
電気機械の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、ステータは、環状ステータリング上に対称に配置された複数の多部品歯を含み、複数の多部品歯の各歯は、複数のコア歯部分の1つ、及び、複数のコア歯部分の1つと非一体的に形成された少なくとも1つの追加歯部分を含む;追加歯部分の対は、関連付けられたコア歯部分の対向する両側に配置されている;回転軸に垂直な平面に沿った各歯のコア歯部分の断面は実質的に矩形の形状を有し、回転軸に垂直な平面に沿った少なくとも1つの追加歯部分の各追加歯部分の断面は実質的に三角形の形状を有する;ラジアル方向に垂直な平面に沿ったコア歯部分及び少なくとも1つの追加歯部分の各々の断面は実質的に矩形の形状を有する;回転軸に垂直な平面における複数の多部品歯のうちの各歯の断面は台形形状を有する;ラジアル方向に垂直な平面における複数の多部品歯の各歯の断面は実質的に矩形の形状を有し、断面の周長はラジアル方向において実質的に一定であり、断面の面積はラジアル方向に変動する;ロータはステータのラジアル方向外向きに配設され、ロータとステータとの間の空隙を形成し、断面の面積は空隙に向かってラジアル方向に増加する;複数の多部品歯の各歯は、2組の対向する面を有する外面を画定し、2組のうちの各組の対向する面は互いに非平行であり、隣接する歯の隣接する側面は互いに平行である;2組の対向する面の各面は、ラジアル方向において傾斜している;一方の組の対向する面のうちの対向する面は、ラジアル方向外向きにおいて互いに向かって近づき、他方の組の対向する面のうちの対向する面は、ラジアル方向外向きに互いから離れる;少なくとも1つの追加歯部分は、SMCから形成されている;少なくとも1つの追加歯部分は、SMC以外の等方性材料から形成されている;環状ステータリングは、回転軸に垂直な対称面に沿って共に連結された2つの鏡面対称ボディを含む;2つの鏡面対称ボディは、接着材料を使用して対称面に沿って共に取り付けられ、SMC及び接着材料の熱膨張係数の間の差は約20%より小さい;SMCの飽和磁気誘導は、約2.4テスラ以上である;SMCの飽和磁気誘導は、約2.5テスラ以上である;SMCの抵抗率は、約100マイクロオーム/mより高い;電気機械は電気モータである;電気機械は発電機である、のうちの1又は複数を含み得る。
別の実施形態において、ラジアルフラックス電気機械が開示される。電気機械は、内側ステータ、及び、ステータの周りを回転するように構成されている外側ロータを含み得る。外側ロータは、ロータベース、及び、ロータの回転軸に平行にロータベースからアキシャル方向に延在する、複数の環状に配置された永久磁石を含み得る。円柱状コアは、複数の永久磁石を包囲するロータベースから延在し得る。コアは軟磁性複合材料(SMC)から形成され得る。スリーブはロータを包囲し得る。スリーブは円柱状コアを支持し得、円柱状コアは複数の永久磁石を支持し得る。円柱状コアは、スリーブと複数の永久磁石との間にラジアル方向に位置し得る。
電気機械の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、スリーブ又はロータベースのうちの少なくとも1つは非磁性材料からできている;非磁性材料は、炭素繊維、ガラスファイバ、又は、アラミド繊維のうちの少なくとも1つを含む複合材料である;非磁性材料は、ステンレス鋼又はアルミニウムのうちの少なくとも1つを含む;スリーブは磁性材料からできている;磁性材料は、積層電気鋼鉄シートを含む軟磁性材料を含む;磁性材料は、鋼鉄からできている中実ボディである;スリーブは、円柱状コアの外面上に形成された凹部上に配設された補強リブを含む;円柱状コアは、ロータベースに連結された第1端から第2端に延在し、スリーブは、円柱状コアの第2端に位置するバランシングリングを含み、バランシングリングは、ロータの動的バランシングを提供するように構成されている;スリーブはバランシングリングにわたって延在している;バランシングリングは非磁性材料から形成されている;複数の永久磁石は、回転軸を囲んで実質的に円形のパターンでロータベース上に配置されている;複数の永久磁石は、複数の永久磁石の各永久磁石の磁気軸が回転軸と交差するように、ロータベース上に配置されている;ロータベースはアルミニウム又は鋼鉄から形成されている;ロータベースは、ロータベースが回転するときに回転軸に沿って空気流を誘導するように構成されている通気口を含む;ロータベースはスリーブ及びバランシングリングと一体である;複数の永久磁石は、接着剤を使用して円柱状コアに取り付けられ、複数の永久磁石、円柱状コア、及び接着剤の材料の熱膨張係数の間の差は約20%より小さい;スリーブはロータベースと一体であり単一ピースを形成する;円柱状コア及びスリーブの両方は、回転軸の周りに不均一なラジアル方向の厚さを有し、スリーブのより厚い領域は各永久磁石の中央に隣接して位置する;電気機械は電気モータ又は発電機の1つである、のうちの1又は複数を含み得る。
いくつかの実施形態において、電気機械の不規則形状の多部品歯上のコイルを組み立てる方法が開示される。方法は、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける開口から外に延在するように、コイルの開口に多部品歯の少なくとも1つのウェッジ部分を挿入する段階を含み得る。方法はまた、少なくとも1つのウェッジ部分の幅の広い端がコイルの開口から外に延在したままであるように、多部品歯のコア歯部分上に、挿入された少なくとも1つのウェッジ部分を有するコイルを装着する段階、少なくとも1つのウェッジ部分の幅の広い端に力を加え、コイルを多部品歯上で締着する段階を含み得る。
開示された方法の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、少なくとも1つのウェッジ部分の幅の広い端に力を加えることは、少なくとも1つのウェッジ部分の幅の広い端をコイルにおける開口内に押すことを含む;コイルにおける開口は、第1端から第2端に延在し、少なくとも1つのウェッジ部分を挿入することは、幅の広い端が開口の第2端から外に延在するように、少なくとも1つのウェッジ部分を開口に挿入することを含み、力を加えることは、幅の広い端を開口の第1端に向かって押すことを含む;コイルにおける開口は、第1端から第2端に延在し、第1端における開口の幅は、第2端における開口の幅と異なり、第1端における開口の長さは、第2端における開口の高さと異なる;第1端及び第2端における開口の形状は矩形である;第1端における開口の周長は、第2端における開口の周長と実質的に同一である;第1端における開口の面積は、第2端における開口の面積から変動する;開口の面積は、第1端から第2端にかけて増加する;少なくとも1つのウェッジ部分をコイルの開口に挿入することは、少なくとも2つのウェッジ部分を開口に挿入することを含む;コイルを装着することは、コア歯部分が少なくとも2つのウェッジ部分間に配設されるように、コイルをコア歯部分上に装着することを含む;接着材料を使用して、多部品歯の少なくとも2つのウェッジ部分及びコア歯部分を共に取り付る;多部品歯は電気機械のステータの一部である;多部品歯のコア歯部分は、中心軸を囲んで延在する環状ステータリング上に対称的に配置された複数のコア歯部分の1つであり、コア歯部分は、環状ステータリングからラジアル方向外向きに延在する;複数のコア歯部分は、環状ステータリングと一体的に形成されている;中心軸に垂直な平面において、コア歯部分は実質的に矩形の断面形状を有し、少なくとも1つのウェッジ部分は実質的に三角形の断面形状を有する;ラジアル方向に垂直な平面において、コア歯部分及び少なくとも1つのウェッジ部分は実質的に矩形の断面形状を有する;コイルは、開口を囲んで銅線の巻線を含み、ワイヤは、正方形、矩形、又は円形の断面形状の1つを有する;コイルは、開口を囲んでらせん状の銅撚線の巻線を含む;電気機械は電気モータである;及び電気機械は発電機である、のうちの1又は複数を含み得る。
いくつかの実施形態において、電気機械のステータ又はロータの歯に装着するためのコイルを製造する方法が開示される。方法は、マンドレルの周りにワイヤを巻いて、マンドレルの形状に対応する第1形状を有するコイルを形成する段階、第1形状を有するコイルをマンドレルから除去する段階、及び、コイルに対して機械的な力を適用して、コイルの形状を第1形状から第2形状に変化させる段階を含み得る。第2形状は、歯の形状に対応し得る。方法はまた、歯に第2形状のコイルを装着する段階を含み得る。
開示された方法の様々な実施形態は、代替的に、又は追加的に、以下の態様、すなわち、ワイヤは導電体の複数のストランドから形成されている;ワイヤは、導電体を共に撚ることにより形成されるか、又は、リッツ線の形態で作られる;ワイヤは円形断面形状を有する;ワイヤは正方形又は矩形断面形状の1つを有する;第1形状は、円柱形状、又は、実質的に一定の周長を有する任意の形状であり得る;第2形状は台形形状である;ワイヤをマンドレルの周りに巻くことは、ワイヤをマンドレルの周りにらせん状のパターンで巻いて、第1端から第2端に延在する内部空洞を有するコイルを形成することを含む;コイルに対して機械的な力を適用することは、第1端又は第2端の1つにおける空洞のサイズを選択的に増加させることを含む;コイルに対して機械的な力を適用することは、内部空洞の形状を変化させることを含む;内部空洞の形状を変化させることは、内部空洞の中心軸に垂直な平面に沿った内部空洞の断面形状を円形形状から矩形形状に変化させることを含む;矩形形状の幅及び長さは両方とも第1端から第2端に変動する;矩形形状の周長は、第1端から第2端にかけて実質的に一定であり、矩形形状の面積は第1端から第2端にかけて変動する;矩形形状の面積は第1端から第2端にかけて増加する;内部空洞の形状を変化させることは、内側空洞の3次元形状を円柱形状から台形形状に変化させることを含む;コイルに対して機械的な力を適用することは、第2マンドレルをコイルの内部空洞に挿入して、内部空洞の第2端の形状と比較して、内部空洞の第1端の形状を変化させることを含む;コイルに対して機械的な力を適用することは、第1の機械的な力を適用して、第1端又は第2端の1つにおける内部空洞の寸法を増加させ、第2の機械的な力を適用して、第1端又は第2端の他方の内部空洞の寸法を減少させることを含む;第1の機械的な力は、内部空洞の中心軸に向かって作用し、第2の機械的な力は、中心軸から離れるように作用する;コイルに対して機械的な力を適用することは、内部空洞の第1端又は第2端のうちの少なくとも1つを画定するコイルのワイヤを伸ばすことを含む;ワイヤは銅からできている、のうちの1又は複数を含み得る。
一実施形態において、電気機械が開示されている。電気機械は、回転軸の周りを回転するように構成されているロータ、回転軸の周りのステータコアに環状に配置された複数の歯を有するステータ、複数の電磁コイル、及びベースプレートを含み得る。複数の電磁コイルの各コイルは、複数の歯の別個の歯に装着され得、ベースプレートは、複数の電磁コイル及びステータコアに隣接するように位置し得る。ベースプレートは、動作中に複数の電磁コイル及びステータコアが加熱するように、複数の電磁コイル及びステータコアと熱的に接触し得、ベースプレートは、複数の電磁コイル及びステータコアについての共通のヒートシンクとして機能するように構成されている。
開示された電気機械の様々な実施形態は、代替的に、又は追加的に、以下の態様、すなわち、複数の電磁コイルの各コイルは、直接的に、又は、それらの間に配設された熱伝導性材料を通じて、ベースプレートと接触する;ステータコアは、直接的に、又は、それらの間に配設された熱伝導性材料を通じてベースプレートに接触する;ベースプレートに熱的に接続されたモータハウジングを更に含み、複数の電磁コイル及びステータコアによって生成された熱がベースプレート及びモータハウジングを通じて放散することを可能にする;ベースプレートは、第1側及び第1側の反対の第2側を含み、複数の電磁コイル及びステータコアは、ベースプレートの第1側に熱的に接触し、モータハウジングは、ベースプレートの第2側に熱的に接触する;ベースプレートの第2側は、そこから延在する冷却フィンを含む;冷却フィンは、複数のピンを含む;ベースプレートは、回転軸を囲んで延在する円柱状ハブ部分を含む;ステータコアは、ベースプレートの円柱状ハブ部分を囲んで延在する環状ステータリングを含む;環状ステータリングの内側環状面は、直接的に、又は、それらの間に配設された熱伝導性材料を通じて、ベースプレートの円柱状ハブ部分の外側環状面に接触する;ステータコアは、回転軸を囲んで延在する環状ステータリングを含み、複数の歯の各歯は、環状ステータリングと一体のコア歯部分を含む;複数の歯の各歯は更に、コア歯部分と非一体的に形成される1又は複数の追加歯部分を含む;追加歯部分の対は、コア歯部分の対向する両側に配置された歯部分を含む;すべての歯部品が共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定する;2組のうちの各組の対向する面は互いに非平行であり、2組の対向する面の各面は、ラジアル方向に傾斜している隣接する歯の対向する面は、互いに実質的に平行である;ラジアル方向に垂直な平面における各歯の断面は矩形形状を有し、断面の周長は、ラジアル方向において実質的に一定であり、断面の面積はラジアル方向に変動する;ベースプレートは、アルミニウムから形成されている;ベースプレートは、ロータが回転するときに、空気を複数の電磁コイルへ誘導するように構成されている通気口を含む;電気機械は電気モータである;電気機械は発電機である、のうちの1又は複数を含み得る。
更に別の実施形態において、電気機械が開示される。電気機械は、回転軸の周りを回転するように構成されているロータ、ステータコア及び回転軸の周りにステータコア上に環状に配置された複数の歯を有するステータ、複数の電磁コイル、及びベースプレートを含み得る。複数の電磁コイルの各コイルは、複数の歯の別個の歯に装着され得る。ベースプレートは、複数の電磁コイル及びステータコアに隣接して位置し得る。ベースプレートは第1側及び反対の第2側を有し得る。第1側は、複数の電磁コイル及びステータコアと熱的に接触し得る。動作中にコイル及びステータコアが加熱につれて、ベースプレートが、熱をクーラント液チャネルにおけるクーラント液に伝達して、複数の電磁コイル及びステータコアから熱を放散するように構成されるように、クーラント液チャネルがベースプレートの第2側で画定され得る。
開示された電気機械の様々な実施形態は代替的に、又は追加的に、以下の態様、すなわち、複数の電磁コイルの各コイルは、直接的に、又は、それらの間に配設された熱伝導性材料を通じてベースプレートと接触する;ステータコアは、直接的に、又は、それらの間に配設された熱伝導性材料を通じてベースプレートに接触する;ベースプレートに熱的に接続されているモータハウジングを更に含み、複数の電磁コイル及びステータコアによって生成された熱がベースプレート及びモータハウジングを通じて放散されることを可能にする;ベースプレートは、第1側、及び、第1側と反対の第2側を含み、複数の電磁コイル及びステータコアは、ベースプレートの第1側に熱的に接触し、モータハウジングは、ベースプレートの第2側に熱的に接触する;クーラント液チャネルの壁は、複数の電磁コイルと熱的に接触するベースプレートの第1側の部分と直接的に反対のベースプレートの第2側の部分である;クーラント液チャネルは、回転軸を囲んで延在し、ベースプレートの第2側上の環状領域は、クーラント液チャネルの壁として機能する;ベースプレートの第2側上の環状領域は、クーラント液チャネル内に延在する複数のフィンを含む;複数のフィンは、回転軸の周りに配置されている;クーラントをクーラント液チャネル内に誘導するように構成されているクーラント吸入口、及び、クーラントをクーラント液チャネルから外に誘導するように構成されているクーラント排出口を更に含む;ベースプレートは、回転軸を囲んで延在する円柱状ハブ部分を含み、ステータコアは、ベースプレートの円柱状ハブ部分を囲んで延在する環状ステータリングを含み、クーラント液チャネルは、回転軸に沿って円柱状ハブ部分を通過する;環状ステータリングの内側環状面は、直接的に、又は、それらの間に配設された熱伝導性材料を通じて、ベースプレートの円柱状ハブ部分の外側環状面と接触している;複数の歯の各歯は、環状ステータリングと一体的に形成されるコア歯部分、及び、コア歯部分と非一体的に形成される少なくとも1つの追加歯部分を含む;環状ステータリング及びコア歯部分は、軟磁性複合材料(SMC)から形成されている;コア歯部分及び少なくとも1つの追加歯部分が共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し、2組の各組の対向する面は互いに非平行であり、2組の対向する面の各面は、ラジアル方向に傾斜している;隣接する歯の対向する面は、互いに平行である;ラジアル方向に垂直な平面における各歯の断面は台形形状を有し、断面の周長は、ラジアル方向において実質的に一定であり、断面の面積はラジアル方向において変動する;ベースプレートは、アルミニウムから形成されている;電気機械は電気モータである;電気機械は発電機である、のうちの1又は複数を含み得る。
本開示に組み込まれ、その一部を構成する添付図面は、例示的な実施形態を図示し、記載と共に、開示される原理を説明するために使用される。これらの図面において、適切な場合、異なる図における同様の構造、コンポーネント、材料、及び/又は要素を図示する参照番号は、同様に付番されている。具体的に示されるもの以外に、構造、コンポーネント、及び/又は要素の様々な組み合わせが想定され、本開示の範囲内にあると理解される。
図示の簡潔性及び明確性のために、図は、様々な記載されている実施形態の一般的な構造を描写する。周知のコンポーネント又は特徴の詳細は、他の特徴を不明瞭にすることを回避するために省略され得る。なぜなら、これらの省略された特徴は、当業者にとって周知であるからである。更に、図における要素は、必ずしも縮尺通りに描かれていない。例示的な実施形態の理解を改善するべく、いくつかの特徴の寸法は、他の特徴に対して誇張され得る。当業者であれば、図における特徴は、必ずしも縮尺通りに描かれているわけではなく、別段の定めが無い限り、図における異なる特徴の間の比例的関係を表すものとして見るべきでないことを理解するであろう。追加的に、具体的に言及されない場合でも、一実施形態又は図を参照して記載される態様は、他の実施形態又は図にも適用可能であり得る、それと共に使用され得る。
本開示による例示的な電気機械の一実施形態の透視図を図示する。
アキシャル平面における図1の電気機械の断面図である。
ラジアル平面における図1の電気機械の断面図を図示する。
図1の電気機械の例示的なステータの異なる透視図を図示する。 図1の電気機械の例示的なステータの異なる透視図を図示する。 図1の電気機械の例示的なステータの異なる透視図を図示する。
図1の電気機械のステータの例示的な概略電気表現である。
箔から形成される図1の電気機械の例示的なコイルを図示する。 箔から形成される図1の電気機械の例示的なコイルを図示する。 箔から形成される図1の電気機械の例示的なコイルを図示する。 箔から形成される図1の電気機械の例示的なコイルを図示する。
ワイヤから形成される図1の電気機械の例示的なコイルを図示する。 ワイヤから形成される図1の電気機械の例示的なコイルを図示する。 ワイヤから形成される図1の電気機械の例示的なコイルを図示する。 ワイヤから形成される図1の電気機械の例示的なコイルを図示する。 ワイヤから形成される図1の電気機械の例示的なコイルを図示する。
本開示による例示的な電気機械の概略図である。 本開示による例示的な電気機械の概略図である。 本開示による例示的な電気機械の概略図である。 本開示による例示的な電気機械の概略図である。 本開示による例示的な電気機械の概略図である。
本開示による他の例示的な電気機械を図示する。 本開示による他の例示的な電気機械を図示する。
本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。 本開示の更なる例示的な電気機械の概略図である。
本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。 本開示による電気機械の例示的な歯の異なる態様を図示する。
本開示による、電気機械の例示的なステータの組立体を図示する。 本開示による、電気機械の例示的なステータの組立体を図示する。 本開示による、電気機械の例示的なステータの組立体を図示する。 本開示による、電気機械の例示的なステータの組立体を図示する。
本開示による、電気機械の例示的なステータの異なる態様を図示する。 本開示による、電気機械の例示的なステータの異なる態様を図示する。
異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。
異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。 異なる平面における例示的な歯の断面図を図示する。
例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。 例示的な歯の幾何学的特徴を図示する。
本開示のステータコアの例示的な実施形態を図示する。 本開示のステータコアの例示的な実施形態を図示する。 本開示のステータコアの例示的な実施形態を図示する。 本開示のステータコアの例示的な実施形態を図示する。 本開示のステータコアの例示的な実施形態を図示する。
例示的なステータの異なる部分を図示する。 例示的なステータの異なる部分を図示する。 例示的なステータの異なる部分を図示する。
例示的な外側ロータを図示する。 例示的な外側ロータを図示する。
例示的なシャフトを図示する。
例示的な外側ロータを図示する。 例示的な外側ロータを図示する。
例示的な外側ロータの例示的な部分を図示する。 例示的な外側ロータの例示的な部分を図示する。 例示的な外側ロータの例示的な部分を図示する。 例示的な外側ロータの例示的な部分を図示する。
例示的な外側ロータ組立体を図示する。
例示的な外側ロータを図示する。
例示的な外側ロータの部分を図示する。
例示的な外側ロータの断面図を図示する。 例示的な外側ロータの断面図を図示する。
別の例示的な外側ロータを図示する。
例示的なロータコアを図示する。
本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の概略図である。
本開示の電気機械における多部品歯にコイルを設置する例示的な方法の簡略化された概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の簡略化された概略図である。 本開示の電気機械における多部品歯にコイルを設置する例示的な方法の簡略化された概略図である。
本開示の電気機械における多部品歯にコイルを設置する例示的な方法のフローチャートである。
本開示の電気機械のコイルを形成する例示的な方法の概略図である。 本開示の電気機械のコイルを形成する例示的な方法の概略図である。 本開示の電気機械のコイルを形成する例示的な方法の概略図である。 本開示の電気機械のコイルを形成する例示的な方法の概略図である。
本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。
本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。
本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。 本開示の電気機械のコイルを形成する例示的な方法の簡略化された概略図である。
本開示の電気機械のコイルを形成する例示的な方法のフローチャートである。
開示される実施形態による、アキシャル平面における電気機械の断面図を図示する。
開示される実施形態による、図53の電気機械のステータの透視図を図示する。
開示される実施形態による、アキシャル平面における図53の電気機械のステータの断面図を図示する。
開示される実施形態による、図53の電気機械のステータのベースプレート56及びその円柱状ハブ部分132の透視図を図示する。
開示される実施形態による、アキシャル平面における液体クーラントによって冷却された電気機械の断面図を図示する。
開示される実施形態による、図57の電気機械の異なる図を図示する。 開示される実施形態による、図57の電気機械の異なる図を図示する。 開示される実施形態による、図57の電気機械の異なる図を図示する。
「約」、「実質的に」、「凡そ」などのすべての相対的な用語は、(別段の定めが無い限り、又は、別の変形が指定されない限り)最大15%の変動の可能性を示すために使用されることに留意されたい。例えば、本開示において、第2領域の断面積と実質的に等しい、又は、実質的に同一であると記載される第1領域の断面積は、最大15%の断面積の変動をその範囲においてカバーする。同様に、「t」単位(幅、長さなど)に実質的に等しい寸法は、最大15%の変動をカバーする。追加的に、ある範囲(例えば、X-Y、XからYなど)の間にあると記載される寸法は、2つの境界を含む。すなわち、X-Yの間の寸法は、X-15(%)からX+15(%)の間の任意の寸法であり得る。別段の定めが無い限り、物体又はエリアの形状に関するすべての用語は、凡その形状を指す。例えば、正方形(矩形、台形など)であると記載される断面形状は、必ずしも厳密な正方形(そのように記載される場合を除く)を指すものではない。むしろ、記載される形状の(例えば、製造プロセス、許容誤差などの結果である)僅かな変動もカバーされる。例えば、正方形であると記載される断面積の角は、丸い(又は面取りされた)角を有し得、角の角度の変動は最大15%、対向する両側の間の平行度の変動は15%、などである。
別段の定めが無い限り、本明細書において使用される、すべての技術用語、表記、及び、他の科学用語又は専門用語は、本開示が属する当業者によって一般に理解されるものと同一の意味を有する。本明細書において記載又は参照されるコンポーネント、構造、及び/又はプロセスのいくつかは、当業者によって、よく理解され、従来の方法を使用することによって一般に利用される。したがって、これらのコンポーネント、構造、及びプロセスは、詳細に記載されない。本明細書において参照されるすべての特許、出願、出願公開、及び、他の公報は、参照によって全体が組み込まれる。本開示に記載される定義又は記載が、これらの文献における定義及び/又は記載と異なる、又はそうでない場合、整合性が無い場合、本開示において記載される定義及び/又は記載が、参照によって組み込まれる文献より優先される。本明細書において記載又は参照される文献のいずれも、本開示に対する先行技術として認められない。
本開示の様々な実施形態はラジアルフラックス電気機械を含む。本明細書において使用される場合、電気機械(electric machine又はelectrical machine)は、電磁力に基づいて動作するデバイスである。一般的に、電気で動作する、又は、電気を生成する任意のタイプの電気機械的エネルギー変換器が電気機械である。必要ではないが、いくつかの実施形態において、電気機械は、電気モータ又は発電機であり得る。動作中、電気機械は磁束を生成する。ラジアルフラックス電気機械において、生成された磁束の少なくともいくつかの部分は、機械の回転軸に垂直に延在する。電気機械は、空隙によって隔離されたステータ及びロータを含む。ラジアルフラックス電気機械において、作動(又は主な)磁束は、ラジアル平面における空隙を通じて、ロータとステータとの間に延在し得る。図1は本開示の例示的なラジアルフラックス電気機械10を図示する。電気機械10の内部の詳細が、図2及び図3を参照して記載される。図1に図示される電気機械10は、ハウジング50を有する空気冷却システムであり得る。外部リブ52は、端シールド54とステータベースプレート56との間のハウジング50の表面上に位置し得る。図1に図示されるように、ベースプレート56は、そこから延在する複数のピン58を含み得る。リブ52及びピン58は、動作中に電気機械10によって生成された熱を周辺の空気に伝達することを助け得る。下の論述において、電気モータの形態の電気機械10が記載される。しかしながら、当該記載は、例えば発電機などの他のタイプの電気機械に等しく適用可能である。電気機械10が動作するとき、そのシャフト20が回転する。
本開示の電気機械は、回転軸の周りを回転するように構成されているロータ、及びステータを含み得る。本明細書において使用される場合、ステータは、電気機械の任意の静的な又は固定された部品、コンポーネント、又は(コンポーネントの)組立体であり、ロータは、ステータに対して移動するように構成されている部品、コンポーネント、又は組立体である。いくつかの実施形態において、ロータは、ステータに対して、回転軸の周りを回転するように構成され得る。ロータは、ロータと共に回転するシャフト(ロータシャフト)に連結されている。ロータ(及びそのシャフト)がその周りを回転する軸は、「回転軸」と称される。図2は、機械10のアキシャル平面に沿って、(図1の)電気機械10の断面図を図示し、図3は、機械10のラジアル平面に沿った機械10の断面図を図示する。アキシャル平面は、機械の回転軸が存在する(又はその一部である)仮想的な平面を指す。換言すると、機械の回転軸のすべての点はアキシャル平面内に存在する。図2において、機械10の回転軸1000はアキシャル平面内に存在し、アキシャル平面は、機械10を2つの対称的な半分に二分する。ラジアル平面は、回転軸に垂直に延在する平面を指す。回転軸1000は、ラジアル平面に垂直に(例えば、本文書内に、及び、本文書から外に)延在する。
下の論述において、図2及び図3を参照する。電気機械10は、ロータ200及びステータ100を含む。ロータ200は、ステータ100に対して、回転軸1000の周りを回転するように構成されている。ステータ100は、複数の歯120を含むステータコア110を含み、ロータ200は、複数の永久磁石220を含むロータコア210を含む。電磁コイル300はステータ100の歯120に装着される。ロータ200は、回転軸1000の周りを回転するように構成されているシャフト20に接続されている。電力がコイル300に提供されるとき、磁場が生成される。生成された磁場に基づいて、磁束がロータ200とステータ100との間を流れ、それによって、回転力をロータに提供する。電気機械10は、任意の適用において、電源として使用され得る。例えば、電気自動車において、電気機械10は、電気自動車の車輪を駆動し得る。
本開示の電気機械において、ロータ及び/又はステータのうちの少なくとも1つは、回転軸の周りに環状に配置された複数の歯を含み得る。本明細書において使用される場合、歯は、ボディから突出する突起を指す。歯は、ボディから突出する一連の実質的に同様の突起を含み得る。例えば、ロータが歯を含む実施形態において、ボディ又はロータのコアから突出する一連の実質的に同様の突起は、歯を含む。そして、ステータが歯を含む実施形態において、ボディ又はステータのコアから突出する一連の実質的に同様の突起は、歯を含む。ラジアルフラックス電気機械において、歯はラジアル平面において突出している。換言すると、歯はラジアル平面に存在し、ラジアル方向において(内向き又は外向きに)突出している。各突起は歯を形成する。典型的には、突起(又は歯)は、ステータとロータとの間で磁束の大部分を誘導するよう構成され、又はそのような形状である。図2及び図3を参照すると、電気機械10において、ステータ100は、ステータ100のコア110上に、回転軸1000の周りに環状かつ対称に配置された複数の歯120を含む。後により詳細に説明されるように、各歯120は、共に配置されて複合体又は多部品歯120を形成する複数のピース又は部品を含む。3個の歯120の外形が、図3における破線を使用して示される。後により詳細に記載されるように、各歯120は、アキシャル平面(図2を参照)及びラジアル平面(図3を参照)の両方において台形断面形状を有し得る。
図3から分かるように、ロータ200は、空隙250によってステータ100から隔離されている。いくつかの実施形態において、以前に記載されたように、ロータ200及びステータ100の構成に応じて、複数の空隙がロータ200及びステータ100を隔離し得る。図2及び図3に図示される例示的な実施形態において、ステータ100は、9個の歯120を含み、ロータ200は、10個の永久磁石220(図3において破線を使用して識別される)を含む。しかしながら、これは単なる例である。一般的に、任意の数の歯120及び永久磁石220が設けられ得る。図3において最も良く分かるように、各永久磁石220は、回転軸1000の周りに円弧の形態で共に連結された複数の永久磁石セグメント222を含み得る。任意の数のセグメント222が各永久磁石220に含まれ得る。いくつかの実施形態において、すべての永久磁石220は、同一の数のセグメント222を含み得る。いくつかの実施形態において、複数のセグメント222は、(例えば接着材料によって)共に取り付けられ、永久磁石220を形成し得る。任意のタイプの永久磁石が使用され得る。いくつかの実施形態において、永久磁石220は、フェライト、アルニコ、サマリウムコバルト、又はネオジム合金のうちの1又は複数を含み得る。いくつかの実施形態において、各永久磁石220は非導電性材料で被覆され得る。いくつかの実施形態において、隣接する永久磁石220は、スペーサ224によって互いから隔離され得る。スペーサ224は非導電性材料からできていることがあり得、接着材料(例えば接着剤)によって隣接する永久磁石220に取り付られ得る。いくつかの実施形態において、スペーサ224は除去され得、隣接する永久磁石220は、空間又は間隙によって互いから隔離され得る。
本開示の電気機械は複数の電磁コイルを含み得る。電磁コイル(又は電気コイル)は、電流が(例えば電気モータにおける)導体を通過するときに磁場を生成する、又は、磁場がコイルの上を通過するときに、導体の電圧を生成する導電体の1又は複数の巻いたものを含み得る。いくつかの実施形態において、導電体の巻いたものは、コイル、ループ、撚線、カール、又はらせん状に構成され、又は、そのような形状であり得る。いくつかの実施形態において、電磁コイルは、強磁性コアを囲んで掛けられるように構成されている一連の伝導性ワイヤを含む導電体であり得る。一般的に、本開示の電磁コイルは、電気機械のステータ又はロータに関連付けられ得る。すなわち、いくつかの実施形態において、複数のコイルがロータに連結され得(例えば、装着される、設置される、巻かれる、など)、他の実施形態において、複数のコイルはステータに連結され得る。図2及び図3に図示される電気機械10の例示的な実施形態において、複数の電磁コイル300はステータ100に連結されている。図2及び図3に図示される電気機械10の構成は単なる例であることも留意されるべきである。
図2及び図3の電気機械10において、単一ロータ200が、単一ステータ100のラジアル方向外向きに位置する。しかしながら、この構成は単なる例であり、本開示の電気機械は他の構成を有し得る。図8A~図8Eは、ロータ200に対するステータ100のレイアウトを示す本開示の電気機械の例示的な構成の概略図である。各場合において、ロータ200は、回転軸1000の周りを回転するシャフト20に接続され、回転軸1000の周りに環状に配置された複数の永久磁石セグメント220を含む。そして、ステータは、回転軸1000の周りに環状に配置された複数の歯120を含む。各歯120は、複数の部品を含み、(図2、図3のように)アキシャル及びラジアル平面の両方において台形断面形状を有する。そして、コイル300が、歯120のうちの1又は複数に装着されている。
図8Aは、ロータ200がステータ100の外側に位置する、図2及び図3の電気機械10を概略的に図示する。そのような一実施形態において、ラジアル平面における各歯120の幅は、空隙250(及びロータ200)に向かってラジアル方向(図3を参照)に増加し、アキシャル平面における各歯120の長さは、空隙250(図2を参照)に向かってラジアル方向に減少する。すなわち、図2及び図3を参照すると、l>l、w<wである。図8Bの電気機械10Aにおいて、ロータ200は、ステータ100のラジアル方向内向きに位置する。すなわち、図8Aの電気機械10とは対照的に、機械10Aのロータ200は、そのステータ100より回転軸1000の近くに位置する。図8Cは、ラジアル平面において、(図8Bの)電気機械10Aの断面図を図示する。図8B及び図8Cの電気機械10Aにおいて、ラジアル平面(図8Cを参照)におけるステータ歯120の幅は、ロータ200及び空隙250に向かってラジアル方向内向きに減少し、アキシャル平面(図8Bに図示される図)におけるその長さは、ロータ200に向かってラジアル方向内向きに増加する。
図8Dの電気機械10Bは、ロータ200の対向する両側に位置する2つのステータ100A、100Bを含む。内側及び外側ステータ100A、100Bの両方は、回転軸1000の周りに環状に配置された複数の多部品歯120を含む。電気機械10Bにおいて、内側ステータ100Aの(ラジアル平面における)各歯120の幅は、ロータ200(及び空隙250)に向かってラジアル方向外向きに増加し、外側ステータ100Bの各歯120の幅は、ロータ200(及び空隙250)に向かってラジアル方向内向きに減少する。反対に、図8Dに示すように、内側ステータ100Aの(アキシャル平面における)各歯120の長さは、ロータ200に向かってラジアル方向外向きに減少し、外側ステータ100Bの(アキシャル平面における)歯120の長さは、ロータ200に向かってラジアル方向内向きに増加する。換言すると、歯120の幅が一方向において減少する場合、その同一方向において、その長さが増加し、逆も同様である。
図8Eの電気機械10Cは、ステータ100の対向する両側に位置する2つのロータ200A、200Bを含む。そのような構成において、(ラジアル平面における)ステータ歯120の幅は、外側ロータ200Bに向かってラジアル方向外向きに増加し、内側ロータ200Aに向かってラジアル方向内向きに減少する。反対に、図8Eから自明なように、(アキシャル平面における)ステータ歯120の長さは、外側ロータ200Bに向かってラジアル方向外向きに減少し、内側ロータ200Aに向かってラジアル方向内向きに増加する。各歯120の断面積はラジアル方向外向きに増加し得る。(図8A~図8Eの)電気機械10~10Cにおいて、コイル300は、ステータとロータとの間の空隙250の近くに位置するように、各歯120に装着される。
図9は、ロータ200のラジアル方向における対向する両側に位置する内側ステータ100A及び外側ステータ100Bを含む例示的な電気機械10Fを図示する。内側及び外側ステータ100A、100Bの各々は、空隙250(図9において表示されない)によってロータ200から隔離されている。すなわち、電気機械10Fは、二重空隙電気機械である。コイル300が内側ステータ100Aに装着されている。図8Dの二重ステータ電気機械10Bと異なり、図9の電気機械10Fにおいて、コイル300は外側ステータ100Bに装着されていない。その代わり、コイル300は内側ステータ100Aの歯120だけに装着されている。
図10は、内側及び外側ステータ100A、100Bが磁気伝導ブリッジ140によって接続されている点で電気機械10F(図9)と異なる例示的な二重ステータ電気機械10Gを図示する。ブリッジ140は、例えば、積層鋼鉄、SMCなどの任意の好適な材料から作られ得る。SMCは、等方的な磁気特性(すなわち、すべての方向において等しい磁束を伝導する能力)をブリッジ140に提供し得る。上で論じられた電気機械の構成は単なる例であることに留意されたい。多くの他の変形が可能である。後により詳細に論じられるように、電気機械のこれらの変形の各々は、1又は複数の歯120にコイル300が装着された、ラジアル及びアキシャル平面において台形断面形状を有する多部品歯120を含む。
図11~図22は、ラジアル及びアキシャル平面において台形断面形状を有する多部品歯120を有する本開示のラジアルフラックス電気機械のいくつかの例示的な変形の概略図である。これらの図において、アキシャル平面における電気機械の断面図が左側に示されており、ラジアル平面における電気機械の断面図が右側に示されている。簡潔にする目的で、他の記載された実施形態と異なる各電気機械の態様のみが下に記載される。図11の電気機械において、ロータ200はステータ100のラジアル方向外側に装着されている。複数の多部品歯120が組み立てられ、ステータ100上にリングの形態で配置されている。コイル300は、各歯120を囲んで延在している。ロータ200において、永久磁石220は、ロータ200のドラム230上に形成されたスロットに環状に配置され、ステータ100とロータ200との間の空隙250を形成する。
図12の電気機械において、ロータ200は、ラジアル方向における内側及び外側ステータ100A、100Bの間に設置されている。内側ステータ100Aは、リングの形態で作られ、台形状の歯120を含む。後に(図23A~図23Kを参照して)説明されるように、図11及び図12の電気機械において、各歯120は、共に組み立てられて台形状の歯120を形成する、ステータコア110の環状部品130と一体的に形成されるコア歯部分122、及び、1又は複数の追加のウェッジ形状歯部分124A~124Fから形成される。ロータ200は、内側及び外側ステータ100A、100Bの各々とロータ200との間に形成された空隙250を有する内側及び外側ステータ100A、100Bの間で回転するように構成されている。2個の空隙(例えば、図12、図13など)を有する電気機械は、二重空隙電気機械と称される。
図13の電気機械において、図12の実施形態のように、ロータ200は内側及び外側ステータ100A、100Bの間に設置され、内側ステータ100Aは、リングの形態で作られ、複数の多部品歯120を含む。内側及び外側ステータ100A、100Bは、磁気伝導性ブリッジ140によって接続されている。図14の電気機械は、図11の電気機械と同様であるが、その歯120が、ステータ100上で組み立てられた別個の部品から形成されていることを除く(例えば、図23L~図23N、図24A~図24Dを参照)。すなわち、図14の実施形態において、図23L~図23Nを参照して記載されるように、各歯120が、ステータコア110とは別個の複数の部品から形成され得る。
図15は、ロータ200が内側ステータ100A及び外側ステータ100Bの間に設置され、(図14を参照して説明されるように)歯120がステータ100とは別個である電気機械を図示する。図16の電気機械は、図15の電気機械と同様であるが、ブリッジ140が内側ステータ100A及び外側ステータ100Bを接続することを除く。図17の電気機械において、ロータ200は、ブリッジ140によって共に接続された内側ステータ100A及び外側ステータ100Bの間に設置されている。内側ステータ100Aは、図12の電気機械と同様の多部品台形状の歯120を含み、外側ステータ100Aは、リングに配置された別個の円弧形状セグメントから作られる。図18の電気機械は、図17の電気機械と同様であるが、内側ステータ100A上の歯120が図14の電気機械のものと同様であることを除く。
図19の電気機械において、ロータ200はステータ100内に装着され、ステータ歯120は、リングの形態で作られた外側ステータ100上で組み立てられている。図20の電気機械において、ロータ200は、ブリッジ140によって共に接続された内側ステータ100A及び外側ステータ100Bの間に設置される。外側ステータ100Bは、リングの形態で作られ、コイル300が装着された歯120を含む。図21の電気機械において、ロータ200は、内側ステータ100A及び外側ステータ100Bの間に設置されている。内側ステータ100A及び外側ステータ100Bの両方は、リングの形態で作られ、コイル300が装着された台形状の歯120を含む。図22の電気機械は、図21の電気機械と同様であるが、内側ステータ100A及び外側ステータ100Bがブリッジ140によって接続されていることを除く。
上に記載された電気機械の実施形態は単なる例である。上に記載された実施形態に対する多くの変形があり得る。当業者であれば、上の開示に基づいてこれらの変形を認識できるので、これらの変形は本明細書において更に論じない。更に、歯120は、上に記載された電気機械の実施形態において、ステータ100の一部として記載されているが、これは限定ではない。すなわち、いくつかの実施形態において、歯120は代替的に、又は追加的に、ロータ200の一部であり得る。簡潔にする目的で、下の論述において、本開示の例示的な態様が、図2及び図3に図示される電気機械10の構成を参照して論じられる。この論述は、電気機械の他の構成(例えば、上で論じた構成など)に等しく適用されることが強調されるべきである。
図4A~図4Cは、図2及び図3の電気機械10の他のコンポーネントから隔離されたステータ100の異なる図を図示する。図4A及び図4Bは、ステータ100の透視図を図示し、図4Cは、アキシャル平面におけるステータ100の断面図を図示する。各コイル300は、歯120に装着又は設置されている。いくつかの実施形態において、コイル300の内面が歯120の外面に対して緊密に篏合するように、コイルが歯に設置され得る。いくつかのそのような実施形態において、コイル300の外部形状(又は輪郭)は、それが装着されている歯120の外部形状と実質的に同一であり得る。図5は、電気機械10の例示的な3相巻線140の電気接続図を図示する。図4A~図4Bにおいて最も良く分かるように、ステータ100の各歯120は、隣接する歯120に装着されたコイル300を収容するスロット160によって隣接する歯120から隔離されている。図5に図示されるように、電気機械10の歯120に装着されたコイル300はまとめて3相巻線310を形成する。ステータ100は歯120を含むものとして記載されているが、いくつかの実施形態において、ロータ200は代替的に、又は追加的に歯120を含み得ることに留意されたい。
図6A~図6D及び図7A~図7Eは、歯120に装着され得る電磁コイル300の異なる態様を図示する。図6A~図6Dに図示される実施形態において、コイル300は、導電性材料の箔312から作られ、又は形成され、図7A~図7Eに図示される実施形態において、コイル300は、導電性ワイヤ314から作られている。当業者によって認識されるように、箔は、厚さ及び幅を有する導電体のストリップである。箔の幅は典型的には、その厚さより大きい。すなわち、箔は、導電性材料の薄いストリップである。一般的に、任意のタイプの導電性材料が、コイル300を形成するために使用され得る。いくつかの実施形態において、銅が使用され得る。いくつかの実施形態において、箔312は、電気絶縁性材料で被覆され得る。
図6A及び図6Bに図示されたコイル300の例示的な実施形態において、コイル300は、コイル300の第1端322から第2端324に延在する中央空洞320を囲む箔312の複数の巻いたものを含む。図6Bに図示されるように、歯120が空洞320を通じて延在するように、コイル300は歯120に装着されている。いくつかの実施形態において、図6A及び図6Bに示されるように、箔312の幅(すなわち、箔の平坦側に沿った幅)は、歯のラジアル方向において、歯120の幅全体に(すなわち、ラジアル軸2000に沿って)延在し得る。いくつかの実施形態において、図6C及び図6Dに図示されるように、箔312のリブ(すなわち、歯120の幅より小さい幅を有する箔312のストリップ)が、歯120に沿ってラジアル方向に、例えば、らせん状の形態で巻かれ、コイル300を形成し得る(例えば、図6C、図6Dを参照)。
いくつかの実施形態において、図7A~図7Eに図示されるように、コイル300は、導電性(例えば銅の)ワイヤ314の1又は複数のストランドを使用して作られ得る。いくつかの実施形態において、ワイヤ314は、電気絶縁性材料を用いて被覆され得る。いくつかの実施形態において、図7A~図7Cに示されるように、ワイヤ314は、らせん状の形態で巻かれ、コイル300の中央空洞320を画定し得る。らせん状に巻かれたワイヤ314は、コイル300の第1端322から第2端324に延在し得る。ワイヤ314は任意の断面形状を有し得る。いくつかの実施形態において、図7Dに図示されるように、ワイヤ314は円形断面形状を有し得る。いくつかの実施形態において、図7Eに図示されるように、ワイヤ314は、正方形又は矩形断面形状を有し得る。これらの図示された断面形状は単なる例であることに留意されたい。一般的には、ワイヤ314は任意の断面形状を有し得る。いくつかの実施形態において、渦電流損を低減するべく、複数のワイヤ314が、リッツ線の形態で共に撚られ得る。当業者によって認識されるように、リッツ線は、個々に絶縁され、共に撚られ、又は織られ、複数のパターンの1つで配置された複数のワイヤストランドから成る。これらのパターンは、各ストランドが導体の外側にある全体の長さの比率を等しくするように機能し得る。撚線又はリッツ線の使用は、渦電流損を低減し、電気機械の効率を増加させるのに有益であり得る。箔312又はワイヤ314を使用してコイル300を形成する例示的な方法は、図45A~図47を参照して後に記載される。
様々な実施形態において、開示された電気機械の各コイルは、それを通る不均一台形空洞を有し得る。不均一台形空洞とは、その長さの一部に沿って不均一な断面形状を有する空洞を指す。不均一な空洞において、空洞の断面寸法に関するパラメータは、少なくとも、空洞の長さの一部にわたって変動する。寸法に関する任意のパラメータ(例えば、幅、高さ、長さ、面積、周長、又は、寸法に関する別の測定結果)は、空洞の長さの一部を通じて変動し得る(すなわち、一定でない)。いくつかの実施形態において、不均一な空洞において、空洞の面積(又は、別の寸法に関する測定結果)は、空洞の長さの一部に沿って均一でないことがあり得る。いくつかの実施形態において、空洞の面積(又は、別の寸法の測定結果)は、空洞の全長(すなわち、空洞の一端から他端まで)にわたって均一でないことがあり得る。いくつかの実施形態において、不均一な空洞において、空洞の一部又は空洞全体にわたって、1つのパラメータ(例えば、周長)は均一であり得、一方、別のパラメータ(例えば、面積)は不均一であり得る。
以前に説明したように(図6A~図7Eを参照)、箔312から作られているか、又はワイヤ314から作られているかに関わらず、コイル300は、第1端322から第2端324に延在する空洞320を含み得る。様々な実施形態において、空洞320は不均一台形空洞であり得る。すなわち、空洞のパラメータに関する断面寸法は、第1端322及び第2端324の間の長さの少なくとも一部にわたって変動し得る。図6Bを参照すると、空洞320の内部表面が歯120の外部表面に密接に合う、又はそれに対して緊密となるように、コイル300が歯120に装着されている。そのような装着の結果、コイル300の空洞320の内部形状は、歯120の外部形状と実質的に同一(又は同様)であり得る。図2及び図3を参照すると、ラジアル及びアキシャル平面における各歯120の断面形状は台形であり得る。換言すると、歯120は台形形状であり得る。各歯120の幅及び長さはラジアル方向において変動する。すなわち、図2に図示されるように、歯120の長さlは、歯120のラジアル方向外向きに(ラジアル軸2000に沿って)lからlに変動し、図3に図示されるように、歯120の幅wは、歯120のラジアル方向外向きにwからwに変動する。後に説明されるように(図26A~図26Dを参照)、ラジアル方向に垂直な平面における歯120の断面の周長は、そのラジアル方向において実質的に一定であり得、一方、断面の面積はラジアル方向において変動する。いくつかの実施形態において、各歯120は、ラジアル方向において不均一である台形断面形状を有し得る。コイル300の空洞320はまた、ラジアル方向において不均一である同様の台形断面形状を有し得る。
様々な実施形態において、コイルの各空洞は、その中に、複数の歯のうちの1つの歯を含むように構成され得る。一般的に、歯は、任意の方式でコイル空洞内に含まれ得る、又は配設され得る。すなわち、いくつかの実施形態において、各歯は、コイル空洞内に緊密に受けられ得、一方、他の実施形態において、歯は空洞内に緩く受け入れられ得る。いくつかの実施形態において、歯の外面の一部は、歯を含む空洞の内面の接触部分であり得る。いくつかの実施形態において、界面材料が、空洞の合わせ面とコイルとの間に配設され得る。図6Bを参照すると、いくつかの実施形態において、歯の外面の少なくともいくつかの部分が空洞320の内面の部分に接触するように、歯120は、コイル300の空洞320に緊密に含まれている。しかしながら、これは必要ではなく、歯120は、任意の方式で空洞320に含まれ得る。すなわち、いくつかの実施形態において、空洞320における歯120の外面は、空洞320の内面と物理的に接触しないことがあり得る。いくつかの実施形態において、歯120の外面及び空洞320の内面は、別の材料によって隔離され得る。
様々な実施形態において、各歯は、共に組み立てられたときに、コイルの不均一台形空洞の形状に対応する複数のピースから形成され得る。本明細書において使用されるように、ピースは、全体の部分又は一部を指す。ピースは任意のサイズ及び形状を有し得る。歯は、任意の数のピース又は部品から形成され得、これらの複数の部品は、任意の形状を有し得、任意の方式で共に組み立てられ得る。例えばいくつかの実施形態において、複数の部品は、別の方式で共に接着又は固定され得る。いくつかの実施形態において、複数の部品は単に、共に緩く又は密に配置され得る。図2及び図3の電気機械10の実施形態において、コイル300の不均一台形空洞320は、多ピース歯120を形成する複数の部品を含むように構成されている。空洞320のサイズ及び形状は、多部品歯120を中に受けるように構成されている。いくつかの実施形態において、コイル300の空洞320のサイズは、歯120のサイズと実質的に同一であり得る。いくつかの実施形態において、空洞320は、歯120より僅かに小さいサイズであり得、(図45A~図47を参照して後に記載されるように)多部品歯120が組み立てられるとき、コイル300は広がって歯120を空洞320内に緊密に受ける。
図23A~図23Kは、そのステータ100のコア110に配置された電気機械10の歯120の異なる例示的な実施形態を図示する。これらの実施形態において、各歯120は、共に配置されて完全な多部品歯120を形成する複数のピース又は部品を含む。図23A~図23Dは、多部品歯120の例示的な一実施形態を図示し、図23D~図23Hは、歯120の他の例示的な実施形態を図示し、図23I~図23Kは、多部品歯120の更なる例示的な実施形態を図示する。これらの図示された実施形態は単なる例であり、本開示の電気機械は、ステータ及び/又はロータにおける他のタイプの多部品歯を含み得ることに留意するべきである。
図23Aは、透視図を図示し、図23Bは、図23Aの拡大された部分を図示し、単一の歯120の構造を示す。図23C及び図23Dは、それぞれ、ラジアル及びアキシャル平面における図23Aの断面図を図示する。ステータコア110は、リング形状又は環状部品130を含む。ステータ100の各多部品歯120は、環状部品130からラジアル方向外向きに延在する。ステータ100及びロータ200が組み立てられて電気機械10を形成するとき、各歯120は、空隙250に向かってラジアル方向外向きに延在する(図2及び図3を参照)。以前に説明されたように、歯120は多部品構造を有する。図23A~図23Dに図示される歯120の例示的な実施形態において、各歯120は、共に組み立てられて歯120を形成するコア歯部分122及び2つの追加歯部分124A、124Bを有する。
コア歯部分122は、ステータコア110の環状部品130と一体であり、各追加歯部分124A、124Bは、コア歯部分122の対向する両側面に設置される。「…と一体」及び「一体的に形成」という用語は、2つの部品が接続されて、部品の完全性を破壊することなく取り外すことが事実上できない単一部品を形成することを示すために使用される。いくつかの場合、2つの一体的に形成された部品は、単一部品として形成され得る。いくつかの実施形態において、追加歯部分のうちの1又は複数は、ウェッジのような形状であり得る。本明細書において使用される場合、ウェッジ形状部分は、幅の狭い端及び幅の広い端を有する部品である。図23Bを参照すると、各追加歯部分124A、124Bは、幅の狭い第1端126から幅の広い第2端128に延在するウェッジ形状のコンポーネントである。第1追加歯部分124A及び第2追加歯部分124Bは、本実施形態において同一のコンポーネントとして図示されているが、これは必須ではない。
図23E~図23Hは、組み立てられて歯120を形成するコア歯部分122及び1個の追加歯部分124C又は124Dを有する歯120の例示的な実施形態を図示する。これらの実施形態において、コア歯部分122は、コア110の環状部品130と一体であり、追加歯部分124C、124Dはウェッジ形状である。追加歯部分124C又は124Dは、コア歯部分122の一側面に設置されて歯120を形成する。図23E(及び図23A)の(歯120の)コア歯部分122は、ラジアル軸2000に沿って環状部品130からラジアル方向外向きに延在するが、図23Gの歯のコア歯部分122は、(ラジアル軸2000に対して)ある角度だけ傾斜してその環状部品130からラジアル方向外向きに延在する。コア歯部分122は、任意の角度γだけ傾斜し得る。いくつかの実施形態において、傾斜の角度γは、図28A及び図28Bを参照して記載されるものと同様である。いくつかの実施形態において(例えば、図23Eの実施形態)、傾斜の角度γは0であり得ることに留意されたい。すなわち、コア歯部分122は、ラジアル軸2000に沿ってラジアル方向外向きに延在し得、単一の追加歯部分が、コア歯部分122の一側面に設置されて歯120を形成し得る。図23I~図23Kの実施形態において、各歯120は、組み立てられて歯120を形成するコア歯部分122及び4つの追加歯部分112a、124A、112e及び112fを有する。コア歯部分122はコア110の環状部品130と一体であり、第1の対の追加歯部分124A及び124Bは、コア歯部分122の対向する両側面に位置し、第2の対の追加歯部分112e及び112fは、コア歯部分12aの上部及び底面に配置されている。上で論じられる歯120の実施形態は単なる例であり、本開示の電気機械は、歯120の他の構成(例えば、追加歯部分の異なる数及び他の形状を有する)を含み得ることに留意されたい。歯120の異なる部品の図示された形状(すなわち、コア歯部分及び追加歯部分)も例示的なものであることも留意されるべきである。一般的に、歯120の構成部品は、組み立てられたときに歯120の外部形状がコイル300の不均一台形空洞320の形状に対応するように、任意の好適な形状を有し得る。
図23A~図23Kを参照して上で記載した多部品歯の実施形態において、各歯120の1つの部品(すなわちコア歯部分122)は、ステータコア110の環状部品130と一体に形成され、少なくとも1つの追加歯部分は、コア110とは別個に形成される(すなわち、統合されない)。しかしながら、そのような構成は、要求はされない。いくつかの実施形態において、歯のすべての部品は、ステータコア110とは別個であり得る。これらの別個の部品は組み立てられて歯120を形成し得る。図23L及び図23Mは、ハブ132(図23Nを参照)上で組み立てられてステータ100を形成する、別個のコンポーネントとして形成された歯120の例示的な実施形態を図示する。図23Lの実施形態において、コア歯部分122のベース134は、ステータ100を組み立てるときにハブ132内の対応する形状の溝に挿入されるように構成されるリブ136を含む。図23Mの実施形態において、コア歯部分122のベース134は、ステータ100を組み立てるときにハブ132上の対応する形状のリブに篏合する溝138を含む(図24Bを参照)。すべての歯120がハブ132上で組み立てられるとき、歯120のベース134はまとめてステータ100の環状部品130を形成し得る(図24Dを参照)。
図24A~図24Dは、ハブ132上で(図23Mに図示されるタイプの)例示的な歯120を設置してステータ100を形成することを図示する。図24Aに図示されるように、コイル300はまず多部品歯120上に装着される。コイル300を歯120に装着する例示的な方法は後に記載される。図24Bに図示されるように、コイル300が装着された歯120は、コア歯部分122のベース134上の溝138を、ハブ132上の対応する形状のリブに挿入することによって、ハブ132上に設置される。追加の歯120が次に、図24C及び図24Dに図示されるようにハブ132上に装着され、ステータ100の組立体が完成する。
いくつかの実施形態において、歯120(コア歯部分122及び追加歯部分124A~124F)の複数の部品及びコイル300は、接着材料(例えば、高温接着剤)を使用して共に連結され得る。いくつかの実施形態において、接着材料は、(例えば、望ましい特性を接着剤に与えるために)フィラー材料で充填され得る。任意のタイプの接着材料が使用され得る。いくつかの実施形態において、接着材料の熱膨張係数(CTE)は、電気機械の動作中に歯120が加熱するとき、歯120及びコイル300において誘導される(CTEミスマッチに起因して誘導される)熱機械的応力は許容可能限度内である(すなわち、応力は、障害を引き起こし得る値の下である)というものであり得る。いくつかの実施形態において、接着材料のCTEは、歯コンポーネント(例えば、鋼鉄ラミネーション、SMCなど)のCTEの約20%内であり得る。いくつかの実施形態において、接着材料のCTEは、歯コンポーネント及びコイル300のCTEの約20%内であり得る。
いくつかの実施形態において、図25A及び図25Bに図示するように、ケージ142(又は円周方向に掛けられたバンデージ)がステータ100上に設置され得る。ケージ142(又はバンデージ)は、動作中に歯120の部品(及び/又はコイル300)がステータ100とロータ200(図3を参照)との間の空隙250に突出しないように保持することを助け得る。いくつかの実施形態において、ウィンドウが、ロータ200に面するケージ142の表面上に設けられ得る。いくつかの実施形態において、ケージ142はまた、接着材料を使用して歯120に取り付けられ得る。コア歯部分122がステータコア110の環状部品130(例えば、図23A~図23Kを参照)と一体である歯120の実施形態において、コイル300及び追加歯部分124A~124Fは、後に記載されるように、コア110と統合されたコア歯部分122上に設置される。すべての歯120及びコイル300が設置された後に、いくつかの実施形態において、ケージ142はステータ100上に設置され得る。ケージ142は、低い導電率の非磁性材料、又は、低い導電率を有し約10以上の比透磁率を有する軟磁性材料から作られ得る。ケージ142を軟磁性材料から作る結果、振動磁場の高次高調波を抑制し、振動及びノイズの減少につながる。
コア歯部分122及び追加歯部分の構成に起因して、各歯120は、ラジアル平面(例えば図3、図23Cを参照)及びアキシャル平面(例えば図2、図23Dを参照)の両方において台形断面形状を有し得る。いくつかの実施形態において、図23Bに図示するように、各歯120の対向する両側面C及びDは、互いに平行でなく、歯120の対向する上面A及び底面Bも、互いに平行でない(例えば、図23Dを参照)。しかしながら、隣接する歯120の間に形成されるスロット160がラジアル方向において一定幅を有するように、隣接する歯120の対向する両側面C、Dは、互いに平行であり得る(例えば、図23Cを参照)。すなわち、1個の歯120の側面Cは隣接する歯120の側面Dに平行であり得る。
ロータ200がステータ100の外向きに位置する(図2及び図3を参照)一実施形態において、各歯120の対向する両側面C及びDは、ラジアル方向外向きに互いから離れ得(例えば、図23Cを参照)、上面A及び底面Bは、ラジアル方向外向きに互いに向かって近づき得る(例えば、図23Dを参照)。外側ロータ200及び内側ステータ100(図2、図3)を有する電気機械の一実施形態において、ラジアル平面(図3)における各歯120の幅は、ラジアル方向においてロータ200に向かって増加し得(例えば、図3においてwからwに増加し)、アキシャル平面(図2)における各歯120の長さは、ラジアル方向においてロータ200に向かって減少し得る(例えば、図2においてlからlに減少する)。コイル300は、ステータ100の各多部品歯120上に装着され得、その内面は、歯120の外面(すなわち、図23C及び図23Dの面A、B、C及びD)に対して緊密であり、コイル300の外面は、歯120の下にある表面と実質的に同一の形状を有する。いくつかの実施形態において、コイル300は、歯120に装着され得、そのラジアル方向外向きの端は、空隙250及びロータ200の(永久磁石の)極の近くに位置する(例えば、図3を参照)。上の論述は、特に、図23A~図23Dの歯120において識別される特徴(面A、B、C、Dなど)を特に参照しているが、上の論述は、(ステータ及び/又はロータにおける)歯120のすべての実施形態に等しく適用可能であることに留意されたい。
本開示の電気機械10は、ステータ100、及び、回転軸1000の周りをステータ100に対して回転するように構成されているロータ200を含み得る。ステータ100又はロータ200のうちの少なくとも1つは、回転軸1000の周りに環状に配置されている複数の歯120を含み得る。電磁コイル300が各歯120に装着され得る。各コイル300は不均一台形空洞320を有し得、各歯120は複数のピースから形成され得る。複数のピースが組み立てられるとき、歯120の外部形状は、歯120を受けるコイル空洞320の形状に対応し得る。いくつかの実施形態において、図26A~図26Dを参照して後に記載されるように、各歯120の外周は、空洞320の内周に対応し得る。いくつかの実施形態において、コイル300が多部品歯120に装着された後に、歯120の外周は、歯120のラジアル方向の各点において空洞320の内周に対応し得る。
いくつかの実施形態において、各歯120の複数のピースは、コア歯部分122、及び、少なくとも1つの追加歯部分124A~124Fを含み得る(例えば、図23A~図23Mを参照)。いくつかの実施形態において、各歯120は、コア歯部分122、及び、コア歯部分122の対向する両側に配設された2つの追加歯部分124A、124Bを含み得る(例えば、図23A、図23K~図23Mを参照)。いくつかの実施形態において、追加歯部分1124A、124Bは、ウェッジ形状であり得る。すなわち、これらの歯部分は、幅の狭い第1端126から幅の広い第2端128に延在し得る。
いくつかの実施形態において、各歯120は、コア歯部分122、及び、コア歯部分122の一側面に位置する単一の追加歯部分124Cのみを含み得る(例えば、図23Hを参照)。いくつかの実施形態において、各歯120aは、コア歯部分122、及び、コア歯部分122の対向する両側に配設されたウェッジ形状の追加歯部分124A、124Bの対、及び、コア歯部分122の上面及び底面に配設された追加歯部分112e、112fの別の対を含み得る(例えば、図23Kを参照)。対の各追加歯部分は、実質的に同一であり得る。いくつかの実施形態において、歯120が組み立てられた後、回転軸100に垂直な平面において、多部品歯120の全体は、台形断面形状を有し得、コア歯部分122(又は歯120)は実質的に矩形の断面形状を有し得、各追加歯部分124A、124B、124Cは、実質的に三角形の断面形状を有し得る(例えば、図23C、23Hを参照)。そして、ラジアル方向に垂直な平面において、多部品歯、コア歯部分122、及び追加歯部分124A、124B、124Cは各々、実質的に矩形の断面形状を有し得る(例えば、図23A、23Fを参照)。
多部品歯120がいくつの部品から作られるか、及び、これらの部品の具体的形状に関わらず、歯120が組み立てられた後、ラジアル平面(例えば、図3、図23C、図23Hを参照)及びアキシャル平面(例えば、図2、図23Dを参照)における各歯120の断面は、台形形状(いくつかの実施形態において、等脚台形形状)を有し得る。いくつかの実施形態において、図26A~図26Dを参照して後に説明されるように、歯120のラジアル方向に垂直な平面における歯120の断面の周長は、ラジアル方向において実質的に一定であり、断面の面積はラジアル方向に変動する。内側ステータ100及び外側ロータ200(図2、図3を参照)、又は、外部ステータ100及び内部ロータ200(図8B、図8Cを参照)を有する電気機械の一実施形態において、断面積は、ラジアル方向においてロータ200に向かって増加する。いくつかの実施形態において、回転軸1000に垂直な平面における歯120の断面積は、アキシャル方向において歯120の中央から側面にかけて減少し得る(例えば、図27A~図27Dを参照)。
各歯120の複数のピースが組み立てられるとき、各歯120は、2組の対向する面を有する外面を画定し得る。例えば、図23Bに図示される歯120の実施形態において、対向する両側面C及びDは、一方の組の対向する面を形成し、対向する上面A及び底面Bは、別の組の対向する面を形成する。各組の対向する面C、D(及びA、B)は、互いに非平行である。2組の各面は、歯120のラジアル方向において傾斜している(図23C、図23Dを参照)。いくつかの実施形態において(例えば、外側ロータ200及び内側ステータ100を有する一実施形態において)、一方の組の対向する面(A、B)は、空隙250に向かってラジアル方向外向き(例えば図23Dを参照)において互いに向かって近づき得(図2を参照)、他方の組の対向する面(C、D)は、ラジアル方向外向きに空隙250に向かって互いから離れ得る(図3、図23Cを参照)。いくつかの実施形態において(例えば、内側ロータ200及び外側ステータ100を有する一実施形態において)、対向する上面及び底面は、空隙250に向かって互いから離れ得(図6Bを参照)、対向する両側面は、空隙250に向かって互いに向かって近づき得る(図6Cを参照)。
歯120の異なる部品(すなわち、コア歯部分及び追加歯部分)は、任意の好適な材料(例えば、鋼鉄ラミネーション、軟磁性複合材料(SMC)など)から作られ得る。いくつかの実施形態において、各歯120のコア歯部分122及び追加歯部分124A~124Fの両方は、同一の材料(例えばSMC)から作られ得る。いくつかの実施形態において、コア歯部分122は、第1材料から作られ得、追加歯部分124A~124Fは、第2材料から作られ得る。例えば、いくつかの実施形態において、コア歯部分122は、SMCから作られ得、追加歯部分124A~124Fは、別の等方性材料、例えば、別のSMCから作られ得る。これは、平面内に無く3方向に変化する磁束がコア歯部分122及び追加歯部分124A~124Fを通過することに起因する。コア歯部分122がステータコア110の環状部品130と一体的に形成される(例えば、図23A、図23Gを参照)実施形態において、コア歯部分122及び環状部品130の両方は、同一の材料(例えばSMC)から作られ得る。
本開示の様々な実施形態において、電気機械の複数の歯の各歯は、ラジアル方向に延在し、ラジアル方向に垂直な複数の平面における各歯の複数の断面積は変動し、複数の断面の周長は、複数の垂直平面にわたって実質的に同一である。電気機械の回転軸に垂直(又は実質的に垂直)に延在する任意の方向は、電気機械のラジアル方向である。例えば、図1及び図2に図示される実施形態において、概して回転軸1000に垂直に延在する任意の方向は、ラジアル方向である。いくつかの実施形態において、ラジアル方向は、電気機械の歯のラジアル軸に沿って延在し得る、又は、一致し得る。以前に説明されたように、いくつかの実施形態において、(ステータ100及び/又はロータ200の)各歯120は、ラジアル平面(図3を参照)及びアキシャル平面(図2を参照)の両方において台形断面形状を有し、ラジアル平面(図3を参照)における歯120の幅は、ラジアル方向外向きに(すなわち、ロータ200に向かって)増加し、一方、アキシャル平面(図2を参照)における歯120の長さは、その同一方向において減少する。
図26A~図26Dは、異なる平面に沿った歯120の断面画像である。図26Aは、アキシャル平面における単一歯120の断面画像を図示する(図2と比較)。歯120は、図26Aにおいて、斜線で示す。図26Aから自明であるように、アキシャル平面における歯120の断面形状は台形である(すなわち、1対の対向する平行の辺、及び、別の対の対向する非平行の辺を有する四辺形)。いくつかの実施形態において、図31A及び図31Bを参照して説明されるように、アキシャル及び/又はラジアル平面における歯120の断面形状は、等脚台形(すなわち、対向する両側の長さが等しい台形)である。また、図26Aから自明であるように、歯120の長さは、本実施形態においてラジアル軸2000と一致するラジアル方向における距離の増加と共に減少する。図26B~26Dは、ラジアル方向に垂直な異なる平面(A-A、B-B、及びC-C)における歯120の断面を図示する。図26Bは、平面A-Aに沿った歯120の断面図であり、図26Cは、平面B-Bに沿った歯120の断面図であり、図26Dは、平面C-Cに沿った歯120の断面図である。図26B~図26Dから分かるように、歯120のラジアル方向に垂直な平面において、歯120は矩形断面形状を有する。
図26B~図26Dには、正方形の角(すなわち、90°の角)を有する完全な矩形が図示されているが、これは単なる例であることが留意されるべきである。以前に説明したように、いくつかの実施形態において、これらの断面形状は、完全な矩形でないことがあり得る。当業者によって認識されるように、いくつかの実施形態において、矩形の対向する両側は、完全に平行でないことがあり得、隣接する側は、完全に垂直でないことがあり得、角は丸みを帯びていても、及び/又は、面取りされていてもよい。図26B~図26Dに図示されるように、内側ステータ100及び外側ロータ200を有する電気機械(図2~図3を参照)の実施形態において、ラジアル方向における距離が増加するほど、矩形形状は短く、かつ、幅広くなる。すなわち、回転軸1000からのラジアル方向の距離が増加するほど、歯120の長さが減少し(すなわち、a>b>c、a>b>c)、歯120の幅は増加する(すなわち、a<b<c、a<b<c)。必要ではないが、いくつかの実施形態において、断面形状の対向する両側は等しいことがあり得る。すなわち、(a=a)>(b=b)>(c=c)、及び、(a=a)<(b=b)<(c=c)である。換言すると、歯120は、回転軸1000からラジアル方向外向きに、徐々に短く、かつ幅広くなる。歯120の断面積(すなわち、ラジアル方向に垂直な平面における断面積)も、ラジアル方向外向きにおいて変動する。ロータ200がステータ100外側にある(例えば、図2、図3)一実施形態において、断面積は、ラジアル方向外向きにおいて増加し得る(すなわち、S<S<S)。電気機械の他の実施形態において、面積は、ラジアル方向に沿って異なる方式で変動し得る。例えば、内側ロータ及び外側ステータを有する電気機械(図8B~図8Cを参照)において、断面積は、ラジアル方向内向きに増加し得る。
図26A~図26Dを参照すると、ラジアル方向における各歯120の周長は実質的に一定であり得、一方、ラジアル方向における各歯120の断面積は変動し得る。すなわち、平面A-A、B-B、及びC-C(図26B~26Dを参照)に沿った歯120の断面の周長は、実質的に同一であり得、一方、これらの平面の断面積は、一定でないことがあり得る(又は変動し得る)。すなわち、(a+a+a+a)≒(b+b+b+b)≒(c+c+c+c)であり、S≠S≠Sである。電気機械の構成に関わらず、すべての実施形態において、(ラジアル方向に垂直な断面における)各歯の周長は、ラジアル方向に沿って実質的に一定のままであり得、一方、その断面積はこの方向において変動し得る。
図27A~図27Dは、異なる平面に沿った歯120の断面図である。図24Aのように、図27Aは、アキシャル平面における歯120の断面画像を図示する。図27B~図27Dは、歯120のアキシャル方向に沿った(すなわち、回転軸1000に沿った)回転軸1000に垂直な(又はラジアル方向に平行な)異なる平面(D-D、E-E、及びF-F)における歯120の断面を図示する。図27Bは、平面D-Dに沿った歯120の断面図であり、図27Cは、平面E-Eに沿った歯120の断面図であり、図27Dは、平面F-Fに沿った歯120の断面図である。これらの図に図示されるように、歯120の中央から端へのアキシャル方向において、歯120の断面積は減少する。すなわち、S/S/Sである。換言すると、ラジアル方向(いくつかの実施形態において、ラジアル軸2000)に垂直な平面における歯120の断面積は、ラジアル方向において変動し(図26B~図26Dを参照)、回転軸1000に垂直な(又はラジアル方向に平行な)平面における歯の断面積は、アキシャル方向において変動する(図27B~図27Dを参照)。ロータ200がステータ100の外側にある電気機械100(図2、図3)の一実施形態において、各歯120の断面積は、ラジアル方向に増加し(図26B~図26Dを参照)、アキシャル方向に減少する(図27B~図27Dを参照)。
図28A及び図28Bは、(図2、図3の電気機械10の)例示的な歯120の幾何学的詳細を図示する。図28Aは、ラジアル平面における歯120の断面図であり、図28Bは、歯120の(歯を見下ろす)透視図である。以前に説明されたように、内側ステータ100及び外側ロータ200を有する電気機械の実施形態において、各歯120は、ラジアル方向外向きに延在するほど、ラジアル平面において幅広くなる(図3を参照)。図28Aに示すように、歯120の対向する両側面C、Dは、歯120のラジアル方向(いくつかの実施形態において、ラジアル軸2000)との間に角度γを形成する。角度γの値は、電気機械100における歯120の数によって決定され得る。一般的に、角度2γ(歯120の対向する両側面C、Dの間の角度)は、約360度を歯120の数で割った値に凡そ等しい。すなわち、2γ≒360°/nであり、nは歯の数である。例えば、9個の歯120を有する電気機械10(図3を参照)について、角度2γ≒360/9=40°である。したがって、歯120の各側面C、Dは、ラジアル軸2000から約20°傾斜している。図28Bを参照すると、歯120の前面及び背面は、歯120のアキシャル平面において角度βを成す。角度βはまた、電気機械(100)の歯の数によって決定される。ラジアル方向において実質的に一定の周長を有する歯120は、h=d;d=r*Sin(γ);h=r*Tan(β);r*Sin(γ)=r*Tan(β);Sin(γ)=Tan(β);β=Arctan(Sin(γ))、又は、β=1/Tan(Sin(γ))という対応関係をもたらす(図28Bを参照)。
図29A及び図29Bは、ラジアル平面における例示的な歯120の断面図を図示する。図29Bの歯120は、ポールピース又はシュー(shoe)112を含むが、図29Aの歯120は含まない。これらの図に示されるように、歯120の幅は、ラジアル方向において(ラジアル軸2000に沿って)(すなわち、空隙250に向かって、図2、3を参照)増加する。図26A~図26Dを参照して説明されるように、歯120の幾何学的寸法は、歯120の断面積がラジアル方向に増加するというものである。シュー112を有する(図29B)及び有しない(図29A)歯120の一実施形態の両方において、ラジアル方向に沿った断面積の増加(S<S<S)は、滑らかであり得る。いくつかの実施形態において、断面積の増加は、単調であり得る。いくつかの実施形態において、断面積の変動(増加又は減少)の割合は一定であり得る。空隙250に向かう断面積の滑らかな変動(増加又は減少)は、大きい電流が歯120上に装着されたコイル300を流れているときでも、歯120のラジアル方向最外端114(又は先端)及びシュー112(シューが使用される場合)を磁気導体(又は、磁場コンセントレータ)として使用することを可能にする。
図30は、図2及び図3の電気機械10の歯120及びロータ200の部分の概略図である。図30から分かるように、空隙250は、ステータ100とロータ200との間に存在し、歯120のラジアル方向最外端114とロータ200(ロータの永久磁石)との間に形成される。図30に図示されるように、いくつかの実施形態において、コイル300のラジアル方向最外端316が空隙250に可能な限り近くに位置するように、コイル300が歯120上に装着され得る。コイル300のラジアル方向最外端316と歯120のラジアル方向最外端114との間のラジアル方向距離γは、使用される適用及び製造方法に依存し得る。いくつかの実施形態において、距離γは、空隙250の約20%以下であり得る。いくつかの実施形態において、距離γは、空隙250の0~20%の間であり得る。いくつかの実施形態において、コイル300のラジアル方向最外端316は、歯120のラジアル方向最外端114と実質的に一致し得る(すなわち、γ≒0)。換言すると、コイル300のラジアル方向最外端316は、ラジアル方向における歯120の最外端114を超えて突出しないことがあり得る。
図30にも図示されるように、いくつかの実施形態において、すべての歯120のラジアル方向最外端114が実質的に円形の輪郭を有するように、歯120のラジアル方向最外端114は、丸められる、又は湾曲していることがあり得る。アキシャル平面及びラジアル平面における歯120の断面形状は、等脚台形又は非等脚台形であり得る。図31A及び図31Bは、等脚台形形状を有する歯120及び非等脚台形形状を有する歯120Aの(ラジアル平面又はアキシャル平面における)概略図である。本開示の電気機械の歯は、ラジアル平面(図3を参照)、及び/又は、アキシャル平面(図2を参照)において、等脚又は非等脚台形形状を有し得ることに留意されたい。歯120の台形形状、並びに、ラジアル方向における歯の断面積の滑らかな増加、及び、間隙に近い歯のコイルの場所は、電気機械の漏洩磁束を低減することを助け、それによって、その効率及び動力出力を増加することを助け得る。
上で説明されたように、いくつかの実施形態において、本開示の電気機械は、ステータ100、及び、回転軸1000の周りをステータ100に対して回転するように構成されているロータ200を含み得る(例えば、図2、図3、図8A~図22を参照)。ステータ100又はロータ200のうちの少なくとも1つは、回転軸1000の周りに環状に配置された複数の歯120を含み得る。複数の歯120は、ステータ100又はロータ200上に環状に配置され得る。各歯120は、ラジアル方向に垂直な複数の平面(例えば、A-A、B-B、C-C)における各歯120の断面積(例えば、S、S、S)が変動するように、ラジアル方向に延在し得る(例えば、図26A~図26Dを参照)。複数の断面の周長は、複数の垂直平面にわたって実質的に一定であり得る。すなわち、ラジアル方向に垂直な平面における各歯の断面積は、ラジアル方向に沿って変動し得、一方、断面の周長は、この方向において実質的に一定のままである(例えば、図26A~図26Dを参照)。
いくつかの実施形態において、回転軸1000に垂直な平面における各歯120の断面積は、アキシャル方向に沿って変動する(例えば、図27A~図27Dを参照)。以前に説明されたように、ロータ200及びステータ100の構成に基づいて、複数の歯がステータ上に位置するとき、断面積は、ロータ200に向かって増加又は減少し得る。ラジアル平面及びアキシャル平面の両方における各歯120の断面形状は、台形であり得る(例えば、図2、図3、図6A~図22を参照)。いくつかの実施形態において、ラジアル方向及び/又はアキシャル平面における各歯120の断面形状は非等脚台形である(例えば、図31Aを参照)。一方、いくつかの実施形態において、ラジアル方向及び/又はアキシャル平面における各歯120の断面形状は、等脚台形である(例えば、図31Bを参照)。ロータ200がステータ100のラジアル方向外向きに配設される(例えば、図2、図3を参照)実施形態において、ラジアル平面における各歯の幅(図3を参照)は、ロータ200に向かってラジアル方向に増加し、アキシャル平面における各歯の長さ(図2を参照)は、ロータ200に向かってラジアル方向に減少する。
以前に説明されたように、電気機械はまた、複数の電磁コイル300を含み得る。コイル300を形成する方法は、図48A~図52を参照して後に記載される。各コイル300は、電気機械の別個の歯120上に装着され、それを囲んで延在し得る(例えば、図8A~図22を参照)。多部品歯120上にコイル300を装着する方法は、図45A~図47を参照して後に記載される。各コイル300は、任意の断面形状又は平坦な箔312を有するワイヤ314の形態で導電体(例えば銅線)を含み得る。いくつかの実施形態において、ワイヤ314は、正方形、矩形、又は円形の断面形状の1つを有し得る(例えば、図7D、図7Eを参照)。任意のタイプのワイヤ314が、コイル300を形成するために使用され得る。ワイヤは、単一のストランド又は(例えば、共に撚られる)複数のストランドを含み得る。いくつかの実施形態において、ワイヤは、マルチストランドワイヤであり得る(例えば、図7A、図7Bを参照)。いくつかの実施形態において、各コイル300は、歯120に沿ってラジアル方向においてらせん状の形態で巻かれ得る(例えば、図7Bを参照)。いくつかの実施形態において、ワイヤの代わりに箔312(例えば銅箔)が使用され、コイル300を形成し得る(例えば図6A~図6Dを参照)。箔312は、箔の幅がラジアル方向に歯120の全長にわたって延在するように、歯120を囲んで巻かれ得る(例えば、図6Aを参照)。代替的に、いくつかの実施形態において、より薄い箔(例えば、ラジアル方向において歯120の長さより小さい幅を有する箔)は、歯120に沿ってラジアル方向にらせん状の形態で(例えばリブ上で)巻かれ得る(例えば、図6C、図6Dを参照)。
以前に説明されたように、歯120は、共に連結された複数の部品(コア歯部分122及び1又は複数の追加歯部分124A~124F)を含み得る(例えば、図23A~図23Mを参照)。また、以前に説明されたように、これらの複数の部品は、同一の材料から、又は、異なる材料(SMCなど)から作られ得る。いくつかの実施形態において、コア歯部分122は、回転軸1000を囲んで延在するステータコア110の環状リング130と一体的に形成され得る。いくつかの実施形態において、追加歯部分のうちの1又は複数(例えば、124A、124B、124E、124F)は、ウェッジ形状であり、コア歯部分122の対向する両側に配設され得る。各歯120は、ラジアル方向に垂直な平面における歯120の断面積がラジアル方向においてロータに向かって変動し得るように、ラジアル方向に延在する。ロータ200がステータ100のラジアル方向外向きに位置する実施形態において、歯120の断面積は、ラジアル方向においてロータ200に向かって増加する。
本開示の電気機械の様々な実施形態において、ステータは、回転軸の周りに延在する環状ステータリングを含み得る。本明細書において使用されるように、環状ステータリングは、ステータに関連付けられたリング形状構造である。リング形状構造は、電気機械の回転軸の周りに配設され得る。図23A~図23Kを参照すると、例えば、電気機械10のステータ100は、回転軸1000を囲んで延在する環状部品130を含む。本開示の電気機械の様々な実施形態はまた、ステータリング上に円周方向に配置された複数の多部品歯を含み得る。換言すると、複数の歯は各々、複数の部品を含み得、それらは、環状ステータリングの円周上に、又は、その近くに位置し得る。図23A及び図23Cにおいて最も良く分かるように、本開示の実施形態において、複数の多部品歯120は、ステータ100の環状部品130上に円周方向に配置されている。
様々な実施形態において、複数の多部品歯の各多部品歯は、ステータリングと一体的に形成されたコア歯部分、及び、ステータリングとは別個の少なくとも1つの追加歯部分を含み得る。すなわち、コア歯部分は、それらが単一のコンポーネントを形成するようにステータリングに接続され得、少なくとも1つの追加歯部分が1又は複数の追加のコンポーネントを形成する。いくつかの実施形態において、コア歯部分及びステータリングは、単一部品として形成され得、追加歯部分は、別個の部品として形成され得る。いくつかの実施形態において、コア歯部分及びステータリングは別個の部品として形成され得るが、共に取り付けられ得(例えば、融着、又はそうでない場合、取り外しできないように取り付られて)、部品の完全性を破壊することなく容易に分解され得ない単一部品を形成し、一方、追加歯部分は、ステータリングから容易に分離され得るような方式で共に取り付けられ得る。
図23A~図23Mを参照して以前に説明されたように、電気機械10の各歯120は、共に配置された複数の部品(例えばコア歯部分122及び追加歯部分124A~124F)を含み得る。図23A~図23Kを参照して論じられた歯120の例示的な実施形態において、各歯120のコア歯部分122は、回転軸1000を囲んで延在する(ステータコア110の)環状部品130と一体的に形成され、1又は複数の追加歯部分124~124Kは、コア歯部分120の側面及び/又は上面及び底面に位置されて歯120を形成する。
図32Aは、環状部品130上に環状に配置された複数のコア歯部分122を有するステータコア110の環状部品130の例示的な実施形態を図示する。各コア歯部分122は、環状部品130からラジアル方向外向きに延在し、多部品歯112の一部を含む(図23Aを参照)。図32Aに図示される環状部品130の実施形態において、各コア歯部分122は、ラジアル軸2000に沿って環状部品130からラジアル方向外向きに延在する。しかしながら、図23Gを参照して説明されるように、これは必須ではない。すなわち、いくつかの実施形態において、コア歯部分122は、環状部品130からラジアル方向外向きに延在し得るが、ラジアル軸2000に対して傾斜し得る。
環状部品130を形成するステータコア110は、図32Aに図示されるように単一部品(すなわち、共に連結された複数の部品でない)として形成され得る。いくつかの実施形態において(例えば、ステータコア110がSMC又は別の脆い材料から作られているとき)、ステータコア110を単一部品として製造することは困難である、及び/又は、高価であり得る。ステータコア110の製造、及び、電気機械の動作中に、コア110の部品は、著しい応力(例えば、製造中などの圧縮、交互に振動する荷重、及び動作中の熱機械的な力など)を受け得る。これらの大きな応力は、単一部品として製造され得るステータコア110のサイズを限定し得る。例えばいくつかの実施形態において、高い信頼性で単一部品として製造され得るステータコア110の厚さ(例えば、コア歯部分122の厚さ)と、アキシャル方向の長さ(すなわち、回転軸1000に沿った高さ)との比率は、約1:6以下であり得る。いくつかの実施形態において、より大きいサイズのステータコア110が複数の部品として製造され得る。
図32B~図32Eに図示されるように、ステータコア110は、複数の部品から作られており、次に共に取り付けられ得る。図32B及び図32Cは、対称面に沿って共に取り付けられてステータコア110を形成する2つの鏡面対称の半分110A、110Bから作られた例示的なステータコア110を図示する。これらの図において図示されるように、コア110A、110Bの各半分は、コア歯部分122の半分122A、122Bを含む。2つの半分110A、110Bは、任意のタイプの接着材料を使用して共に取り付けられ得る。いくつかの実施形態において、永久接着剤(例えば、部品の完全性を破壊することなく容易に除去できない接着剤)が、コア110の2つの半分110A、110Bを共に取り付けるために使用され得る。コア110の2つの半分110A、110Bを取り付けるために使用される接着材料のCTEは、CTEミスマッチにより誘導される熱機械的応力を低減するべく、コア110を形成する材料のCTEの約20%内であり得る。一般的に、ステータコア110は、共に連結された任意の数の部品によって形成され得る。図32D及び図32Eは、(例えば、上で論じた接着材料を使用して)共に連結された3つの部品110A、110B、110Cから作られた例示的なステータコア110を図示する。
ステータ100の強度を増加させるべく、ステータコア110の1又は複数の部品は、共に組み立てられた積層電気鋼鉄シートから作られ得る。いくつかの実施形態において、例えば約0.014インチ~0.018インチ(0.36~0.46ミリメートル)(29~26ゲージ)の間の厚さを有し、非常に薄い絶縁層(例えば、約0.001インチ(0.26ミリメートル)の厚さの絶縁層)で被覆された複数の積層鋼鉄シート(例えば、シリカ鋼鉄シート)が共に取り付けられてステータの積層鋼鉄部品を形成し得る。いくつかのそのような実施形態において、図23Kを参照して記載されるタイプの多部品歯120が使用され得る。環状部品130及びコア歯部分122は、積層された鋼鉄又は等方性材料(SMC)から作られ得、追加の部分124A~124Fは、SMCなどの等方性材料から作られ得る。磁場の3次元性に起因して、コア歯部分122の対向する両側面上の追加歯部分124A、124Bの対、及び、コア歯部分122の対向する上面及び底面上の追加歯部分124E、124Fの別の対を使用することにより、好適な磁気性能を提供し得る。
図33A~図33Cは、複数の材料から作られる例示的なステータコア110を図示する。これらの図を参照すると、ステータコア110は、中央環状部品130Bに取り付けられてコア111の環状部品130を形成する、上方環状部品130A及び下方環状部品130Cを含む。図33Cに示すように、上方環状部品130A及び下方環状部品130Cは同一コンポーネントであり得る。一般的に、環状部品130A、130B及び130Cは、任意の材料(例えば、SMC積層鋼鉄など)から作られ得る。上方環状部品130A及び下方環状部品130Cは、積層された鋼鉄から作られたリングを共に取り付けることによって作られ得る。中央環状部品130BはSMCから作られ得る。いくつかの実施形態において、図33Bにおいて最も良く分かるように、コア歯部分122は、ラジアル方向外向きに中央環状部品130Bから延在し得、上方追加歯部分124E及び下方の追加歯部分124Fは、上方環状部品130A及び下方の環状部品130C、及び、コア歯部分122の上面及び底面に取り付けられ得る。追加の歯部分124A、124B、124E及び124Fは、等方性材料(SMC)から作られ得、上方環状部分130A及び下方環状部分130C、中央環状部分130B、及びコア歯部分122は、積層された鋼鉄又は等方性材料(SMC)から作られ得る。
本開示の様々な実施形態において、複数の電磁コイルの各コイルは、各コイルがコイルとコア歯部分との間の間隙を伴って多部品歯の対応するコア歯部分を囲むように複数の多部品歯の異なる多部品歯上に装着され、少なくとも1つの追加歯部分は間隙に配設される。各多部品歯は、別個の電磁コイルに関連付けられ得る。コイルは、コイルとコア歯部分との間に1又は複数の空間又は間隙が形成されるように、多部品歯のコア歯部分を囲んで延在し得る。そして、追加歯部分は、これらの空間又は間隙内に位置する。いくつかの実施形態において、(例えば)図4A、図23F、図23H、図23J、図23Kに図示されるように、各多部品歯120のコア歯部分124は、コイル300上に装着され、コア歯部分124の外面とコイル300の内面との間に形成される1又は複数の間隙を伴ってコア歯部分124を囲んでコイル300が延在する。多部品歯120がコア歯部分122から形成され、追加歯部分124A、124Bの対がコア歯部分122の対向する両側面に位置する図4A~図4C及び図23Aの実施形態において、コイル300がコア歯部分122上に装着されるとき、コア歯部分124の対向する両側面とコイル300の内面との間に2つの間隙が形成される。追加歯部分124A、124Bの一方は、一方の間隙内に位置し、他方の追加歯部分124Bは、他方の間隙内に位置する。多部品歯120がコア歯部分122及び単一の追加歯部分124Cから形成される図23Fの実施形態において、この追加歯部分124Cは、コア歯部分122の側面とコイル300との間に形成される間隙内に位置する。そして、図23Kの実施形態において、コア歯部分122の外面とコイル300の内面との間に4つの間隙が形成され、各追加の歯部分124A、124B、124E、124Fは、別個の間隙に位置する。
いくつかの実施形態において、本開示の電気機械(電気モータ又は発電機)は、ステータ100、及び、回転軸1000の周りでステータ100に対して回転するように構成されているロータ200を含み得る(例えば、図2、図3、図8A~図22を参照)。ステータ100又はロータ200のうちの少なくとも1つは、回転軸1000の周りに配置された複数の多部品歯120を含み得る。ステータ100は、回転軸1000の周りに延在する環状ステータリング又は部品130を含み得る(例えば、図23A、図23G、図23Kなどを参照)。いくつかの実施形態において、複数の多部品歯120は、ステータリング130上に円周方向に配置され得る。各多部品歯120は、ステータリング130と一体的に形成されたコア歯部分122、及び、ステータリング130とは別個に形成された少なくとも1つの追加歯部分(例えば、追加歯部分124A、124B、124E、124F)を含み得る。電気機械はまた、複数の電磁コイル300を含み得る。そして、各コイル300は、別個の歯120上に装着され得、コイル300は、コイル300とコア歯部分122との間に形成された間隙を伴って、多部品歯120のコア歯部分122を囲み(例えば、図23E~図23F、図23I~図23K、図24Aなどを参照)、追加歯部分は間隙内に配設され得る。
いくつかの実施形態において、環状部品(又はリング)130はSMCから形成され得る。いくつかの実施形態において、環状部品130は積層鋼鉄から形成され得る。いくつかの実施形態において、環状部品130の一部分は、一材料(例えば積層鋼鉄)から形成され得、一方、別の部分は別の材料から作られる。いくつかの実施形態において、環状部品130は、単一部品として形成され得る(例えば図32Aを参照)。他の実施形態において、環状部品130は、複数の部品から作られ得る(例えば、図32B~図32Eを参照)。いくつかの実施形態において、ステータ100の環状部品130は、回転軸1000に垂直な対称面に沿って共に連結された2つの鏡面対称の半分を含み得る(例えば、図32B~図32Cを参照)。環状部品130は、共に取り付けられた2又はより多くの実質的に同一の部品を含み得る(例えば、図32B~図32Eを参照)。任意のタイプの接着材料が、ステータリング114の部品を共に取り付けるために使用され得る。接着材料のCTEは、取り付けられたコンポーネントのCTEの約20%内であり得る。
環状ステータリング130は、複数(2、3、4など)のアキシャル方向に積み重ねられた環状部品を含み得る(例えば図32B~図33Cを参照)。いくつかの実施形態において、積み重ねられた環状部品の各々は、同一の材料(例えば、SMC、積層鋼鉄)から作られ得、一方、他の実施形態において、積み重ねられた環状部品は、異なる材料から作られ得る。例えば、図33Bの環状部品130を参照すると、上部及び下部の環状部品130A、130Cは、積層鋼鉄又はSMCの一方から作られ得、中央環状部品130Bは、積層鋼鉄又はSMCの他方から作られ得る。
各多部品歯120のコア歯部分122は、環状ステータリング114からラジアル方向に外向きに延在し得る(例えば、図23C、図23Gを参照)。いくつかの実施形態において、コア歯部分122は、ステータリング130のラジアル軸2000に沿って環状ステータリング130からラジアル方向外向きに延在する(例えば、図23Cを参照)。いくつかの実施形態において、コア歯部分122は、ラジアル軸2000から傾斜して環状ステータリング130からラジアル方向外向きに延在する(例えば図23Gを参照)。
ラジアル方向に垂直な平面に沿ったコア歯部分122及び少なくとも1つの追加歯部分124A~124Fの各々の断面は、実質的に矩形の形状を有する(例えば、図23A、図23F、図23Kを参照)。いくつかの実施形態において、回転軸に垂直な平面に沿ったコア歯部分112aの断面は実質的に矩形の形状を有し、回転軸に垂直な平面に沿った少なくとも1つの追加歯部分の断面は、実質的に三角形の形状を有する(例えば、図23C、図23Hを参照)。いくつかの実施形態において、ラジアル平面における各多部品歯120の断面は台形形状を有する(例えば図3、図23C、図23Hを参照)。いくつかの実施形態において、アキシャル平面における各多部品歯112の断面形状も台形である(例えば、図2、図23Dを参照)。いくつかの実施形態において、ラジアル方向及び/又はアキシャル平面における歯120の断面形状は、等脚台形である(例えば、図31A、図31Bを参照)。いくつかの実施形態において、歯のラジアル方向に垂直な平面における各多部品歯120の断面積の周長は、ラジアル方向において実質的に一定であり、一方、断面の面積はラジアル方向において変動する(例えば、図26A~図26Dを参照)。各歯120は、コア歯部分124の対向する両側に対称に配置された追加歯部分124A、124B、124E、124Fの対を含み得る(例えば、図23C、図23Kを参照)。いくつかの実施形態において、各歯120は、コア歯部分122の対向する両側(例えば、対向する両側面)の第1の対に対称に配置された追加歯部分124A、124Bの第1の対、及び、コア歯部分122の対向する両側(例えば上面及び底面)の第2の対に対称に配置される追加歯部分124E、124Fの第2の対を含む(例えば、図23Kを参照)。
各多部品歯120のコア歯部分122及び追加歯部分は、接着材料を使用して共に連結され得る。いくつかの実施形態において、多部品歯120の複数の部品及びコイル300は、接着材料によって共に取り付けられ得る。任意の好適なタイプの接着材料(例えば接着剤)が使用され得る。いくつかの実施形態において、接着材料は、接着材料の特性を修正するためにフィラー材料を含み得る。いくつかの実施形態において、接着材料のCTEは、歯120の材料のCTEの約20%内にあり得る。いくつかの実施形態において、接着材料のCTEは、コイル300の歯120の材料のCTEの約20%内であり得る。
各多部品歯120の少なくとも1つの追加歯部分は、コイル300の内面とコア歯部分122の外面との間に押し込まれ得る(例えば、図23F、図23K、図24Aを参照)。いくつかの実施形態において、コイル300は、各歯120のコア歯部分122を囲み、少なくとも2つの間隙が、コイル300の内面とコア歯部分122の対向する両側との間に形成され、各追加歯部分は、異なる間隙内に配設される(例えば、図23K、図24Aを参照)。いくつかの実施形態において、各歯120は、コイル300とコア歯部分122との間の間隙内に配設された単一のウェッジ形状の追加歯部分を含む(例えば図23Fを参照)。
本開示の電気機械の様々な実施形態は、環状ステータリングを有するステータ、及び、ラジアル方向に延在する複数のコア歯部分を含み得る。本明細書において使用される場合、環状ステータリングは、ステータのリング形状のコンポーネントである。更に、歯は、環状ステータリングから突出する一連の突起である。各突起は歯を形成する。コア歯部分は、ステータコアに取り付けられた歯の部分である。以前に説明されたように、図23A~図23K及び図32A~図32Eを参照すると、いくつかの実施形態において、電気機械10のステータ100は、回転軸1000を囲んで延在する環状部品130を有するステータコア110を含む。これらの図からも分かるように、コア歯部分124は、ステータコア110の環状部品130からラジアル方向に延在する。コア歯部分124は、ステータ100の多部品歯120の一部を形成する。
様々な実施形態において、環状ステータリング及び複数のコア歯部分は、軟磁性複合材料(SMC)から一体的に形成されている。本明細書において使用されるように、「一体的に形成」という用語は、ステータリング及びコア歯部分が接続されて、部品の完全性を破壊することなく取り外すことが事実上できない単一部品を形成することを示す。いくつかの場合において、ステータリング及びコア歯部分は単一部品として形成される。いくつかの実施形態において、コア歯部分及びステータリングは、別個の部品として形成され得るが、共に取り付けられて(例えば、融着されて又はそうでない場合取り外しできないように取り付けられて)、部品の完全性を破壊することなく容易に分解され得ない単一部品を形成し得る。軟磁性複合材料(SMC)は、いくつかの実施形態において、電気絶縁膜の層で被覆される強磁性粉末粒子を含み得る。いくつかの実施形態において、SMCは、電気絶縁膜によって囲まれた強磁性粉末粒子を含み得る。SMCから作られたコンポーネントは、従来の粉末金属圧縮技法によって製造され得る。いくつかの場合において、一体的に形成されたSMCステータコアは、従来の積層鋼鉄コアを上回る複数の利点を提供し得る。例えば、これらのステータコアは、3次元(3D)等方性強磁性挙動、非常に低い渦電流損、中及び高周波数における相対的に低い総コア損失、熱特性の改善、及び、重量の低減のうちの1又は複数を示し得る。任意の現在知られている又は後に開発されるSMCが本開示の実施形態において使用され得る。いくつかの実施形態において、市販のSMC(例えば、Sintex(登録商標)SMC、Somaloy130i、Somaloy500、Somaloy700 IP、Somaloy700 3P、Somaloy700 5P、又は別の好適なSMC)が使用され得る。
以前に説明されたように、図23A~図23Mを参照すると、電気機械10の各歯120は、共に配置された複数の部品(例えば、コア歯部分122及び追加歯部分124A~124F)を含む。図23A~図23K(及び図32A~図32E)を参照して論じられる歯120の例示的な実施形態において、ステータコア110の環状部品130からラジアル方向外向きに延在する各歯120のコア歯部分122は、環状部品130と一体的に形成されている。1又は複数の追加歯部分124~124Kは、コア歯部分122の側面及び/又は上面及び底面に位置して多部品歯120を形成する。図23A(及び図21A~図32E)に図示される歯120の実施形態において、各コア歯部分124は、歯120のラジアル軸2000に沿って環状部品130からラジアル方向外向きに延在する。しかしながら、図23Gを参照して説明されるように、これは必須ではない。すなわち、いくつかの実施形態において、コア歯部分122は、ラジアル軸2000に対して傾斜して環状部品130からラジアル方向外向きに延在し得る。
一体的に形成された(歯120の)コア歯部分122及び環状部品130は同一の材料から作られ得る。いくつかの実施形態において、一体的に形成された環状部品130及びコア歯部分122はSMCから形成され得る。コア歯部分122とともに組み立てられて完全な歯120を形成する追加歯部分124A~124Fは、SMC又は別の等方性材料から形成され得る。いくつかの実施形態において、コア歯部分122及び追加歯部分124A~124Fの両方はSMCから形成され得る。いくつかの実施形態において、コア歯部分122(及び環状部品130)は、SMCから作られ得る。また、いくつかの実施形態において、コア歯部分122(及び環状部品130)は鋼鉄ラミネーションから作られ得、一方、追加歯部分124A~124Fの一部又は全部はSMCから形成されると想定される。
いくつかの実施形態において、図33A~図33Cを参照して記載されるように、ステータコア110は、中央環状部品130Bに取り付けられてコア110の環状部品130を形成する上方及び下方環状部品130A、130Cを含み得る。そのようないくつかの実施形態において、図33Bにおいて最も良く分かるように、コア歯部分122は、中央環状部品130Bと一体的に形成され、ラジアル方向において中央環状部品130Bから外向きに延在し得る。一般的に、環状部品130A、130B及び130Cは、任意の材料(例えば、SMC、積層鋼鉄など)から作られ得る。いくつかの実施形態において、中央環状部品130B及びコア歯部分122は、SMCから形成され得、上方及び下方環状部品130A、130Cは積層鋼鉄から形成され得る。
以前に説明されたように、任意の好適なSMCが、一体形成された環状ステータリング130及び複数のコア歯部分122を作るために使用され得る。本開示の様々な実施形態において、SMCは、1又は複数の等方性強磁性材料、少なくとも1.6テスラの飽和磁気誘導、及び、10マイクロオーム/mを超える電気抵抗率を含み得る。強磁性材料は、磁場をよく伝導する物質である。強磁性材料の例は、鉄、コバルト、ニッケル、ガドリニウム、二酸化クロム(CrO)及びその他を含む。本開示のいくつかの実施形態において、強磁性材料は、鉄ベースの材料であり得る。等方性材料は、異なる方向において同一の値である1又は複数の特性を有する。材料の任意の特性は、異なる方向において同一であり得る。いくつかの実施形態において、等方性強磁性材料の1又は複数の磁気特性は、異なる方向において同一であり得る。いくつかの実施形態において、材料の飽和磁気誘導及び/又は電気抵抗率は、すべての方向において同一であり得る。飽和磁気誘導は、材料又は当該材料から作られているコンポーネントにおいて、どれ程の磁性が誘導され得るかの指標である。磁気飽和に起因して、増加した磁場を適用することにより最小限の追加の磁気誘導が生じる収穫逓減点がある。飽和磁気誘導は、磁場強度の更なる増加と共に誘導が増加しない状態に軟磁性材料が飽和することを特徴とする。電気抵抗率は、電流に対して材料がどれ程強く抵抗するかを示す、材料の基本的特性である。それは、材料がどれ程よく電気を伝導するかを数値化した導電性の逆数である。電気抵抗率の低い値は、材料が電流を容易に通過させることを示す。
いくつかの実施形態において、一体形成された環状ステータリング130及び複数のコア歯部分122を作るために使用されるSMC材料は、約1.6テスラ以上(≧)の飽和磁気誘導及び約10マイクロオーム/mより高い電気抵抗率を有する等方性強磁性材料であり得る。いくつかの実施形態において、SMCは、約2.4テスラ以上の飽和磁気誘導を有し得る。いくつかの実施形態において、SMCの飽和磁気誘導は、約2.5テスラ以上であり得る。いくつかの実施形態において、SMCの飽和磁気誘導は、約2.4~2.6テスラの間であり得る。SMCの電気抵抗率は、約10マイクロオーム/m(μΩ/m)以上であり得る。いくつかの実施形態において、SMCの電気抵抗率は、約100μΩ/m以上(約150μΩ/m以上、約300μΩ/m以上、約400μΩ/m以上、又は、約500μΩ/m以上)であり得る。いくつかの実施形態において、SMCの電気抵抗率は、約10~600μΩ/m内であり得る。SMCの特性の等方性は、歯120の体積における3次元磁場を生成することを助け得る。SMCの約1.6テスラ以上の飽和磁気誘導は、磁気導体又は磁場コンセントレータの特性を維持することを助け、従って、漏洩磁束を低減し、電気機械10のトルク値及び動力を増加させ得る。SMCの約100μΩ/m以上の電気抵抗率は、電気機械10の動作の幅広い範囲の速度及び周波数における渦電流損を低減することを助け得る。したがって、SMCの一体形成された環状ステータリング130及び複数のコア歯部分122を作ることは、磁束密度を増加させ磁気損失を低減することによって、結果として電気機械の効率の増加をもたらし得る。
いくつかの実施形態において、本開示のラジアルフラックス電気機械は電気モータ又は発電機であり得る。電気機械は、回転軸1000、複数の電磁コイル200、及びステータ100の周りを回転するように構成されているロータ200を含み得る(例えば、図8A~図22を参照)。いくつかの実施形態において、ステータ100は、環状ステータリング130、及び、ラジアル方向においてステータリング130から延在する複数のコア歯部分122を有し得る(例えば、図23A~図23Kを参照)。環状ステータリング130及び複数のコア歯部分122は、軟磁性複合材料(SMC)から一体的に形成され得る。いくつかの実施形態において、SMCは、1又は複数の等方性強磁性材料を含み、約1.6テスラ以上の飽和磁気誘導、及び、約10μΩ/m以上の電気抵抗率を有し得る。ステータ100は、環状ステータリング130上に対称に配置された複数の多部品歯120を含み得、各歯120は、複数のコア歯部分122の1つ、及び、コア歯部分122と非一体的に形成される少なくとも1つの追加歯部分124A、124B、124E、124Fを含み得る(例えば、図23A、図23B、図23I~23Kを参照)。一対の追加歯部分124A、124Bは、コア歯部分122の対向する両側面上に位置し、歯120を形成し得る(例えば、図23A~図23Cを参照)。一対の追加歯部分124A、124Bは、コア歯部分122の対向する両側面上に位置し得、別の対の追加歯部分124E、124Fは、対向する位置のコア歯部分122の上面及び底面上に位置し得る(例えば、図23I~図23Kを参照)。いくつかの実施形態において、単一のウェッジ形状部分のみが追加の歯部分として使用され得る。
いくつかの実施形態において、電気機械の回転軸1000に垂直な平面に沿った各歯120のコア歯部分122の断面は実質的に矩形の形状を有し得、各追加歯部分の断面は、実質的に三角形の形状を有し得る(例えば図23Aから図23N、特に図23H、図23Iを参照)。いくつかの実施形態において、ラジアル方向に垂直な平面に沿ったコア歯部分122の各々、及び、少なくとも1対の追加歯部分124A~124Fの断面は、実質的に矩形の形状を有し得る。ラジアル平面又は回転軸1000に垂直な平面における各多部品歯120の断面は台形形状を有し得る。歯120のラジアル方向に垂直な平面における各歯120の断面積は、ラジアル方向において変動し得、一方、断面積の周長は、ラジアル方向において実質的に一定のままである(例えば、図26A~図26Dを参照)。ロータ200がステータ100のラジアル方向外向きに配設されて、ロータ200とステータ100との間に空隙250を形成する実施形態において(例えば図2、図3を参照)、断面積は、ラジアル方向において空隙250に向かって増加し得る。回転軸1000に垂直な平面における歯120の断面積は、アキシャル方向において歯120の中央からその側面に向かって減少し得る(例えば、図27A~図27Dを参照)。
いくつかの実施形態において、各多部品歯120は、2組の対向する面(例えば、図23Bの面A、B、及び、面C、D)を有する外面を画定する。2組のうち各組の対向する面は、互いに非平行であり得る。すなわち、面A及びBは、互いに非平行であり得、面C、Dは、互いに非平行であり得る。いくつかの実施形態において、2組の対向する面の各面は、ラジアル方向において傾斜し得る。一方の組の対向する面の対向する面は、ラジアル方向外向きに互いに向かって近づき得(例えば、図23Dの面A、B)、他方の組の対向する面の対向する面は、ラジアル方向外向きに互いから離れる(例えば、図23Cの面C、D)。隣接する歯の隣接する側面は、互いに平行であり得る。すなわち、1個の歯120の側面Cは、隣接する歯120の側面Dに平行であり得る(例えば、図23A~図23Cを参照)。
いくつかの実施形態において、電気機械の環状ステータリング130は、回転軸1000に垂直な対称面に沿って共に連結された2つの鏡面対称ボディ130A、130Bを含み得る(例えば、図32B、図32Cを参照)。環状ステータリング130は、共に取り付けられた複数の実質的に環状のコンポーネントを含み得る。2つの鏡面対称ボディ130A、130Bは、接着材料を使用して、対称面に沿って共に取り付けられ得る。いくつかの実施形態において、2つの鏡面対称ボディの材料(又はSMC)と接着材料との間の熱膨張係数の差は、約20%より小さいことが得る。
任意の周知又は後に開発されるSMCが、一体形成された環状ステータリング130及び複数のコア歯部分122を作るために使用され得る。いくつかの実施形態において、市販のSMC(例えば、Sintex(登録商標)SMC、Somaloy130i、Somaloy500、Somaloy700 IP、Somaloy700 3P、Somaloy700 5P、又は別の好適なSMC)が使用され得る。SMCの飽和磁気誘導は、約2.4テスラ以上、又は、約2.5テスラ以上であり得る。いくつかの実施形態において、SMCの抵抗率は、約100μΩ/m以上、又は、約150μΩ/m以上であり得る。
本開示の電気機械の様々な実施形態は、内側ステータの周りを回転するように構成されている内側ステータ及び外側ロータを含み得る。以前に説明されたように、本開示の電気機械は、異なる構成を有し得る(例えば、図8A~図22を参照)。いくつかの実施形態において、電気機械は、ステータ100に対して回転軸1000を中心に回転する内側ステータ100及び外側ロータ200(例えば図2、図3を参照)を含み得る。本開示の電気機械はロータベースを含み得る。ロータベースはロータの部品であり得る。ロータベースは、ロータの永久磁石を電気機械のシャフト(例えばシャフト20)に連結することを可能にするロータの任意のコンポーネントを指す。電気機械はまた、ロータの回転軸に平行にロータベースからアキシャル方向に延在する、複数の環状に配置された永久磁石を含み得る。永久磁石は、磁場又は電流の誘導無しで、磁気特性を保持する磁石であり得る。永久磁石は、磁化され、かつ、それ自体の永続的な磁場を生成する材料からできている物体であり得る。永久磁石の材料は、硬磁性と呼ばれる。それは、増加したヒステリシスループにより軟磁性材料とは異なる。一般的に、当技術分野で知られている(現在知られている、又は後に開発される)任意のタイプの永久磁石が、永久磁石を形成するために使用され得る。いくつかの実施形態において、永久磁石は、例えば、ネオジム鉄ボロン(NdFeB)、サマリウムコバルト(SmCo)などのレアアース(RE)材料からできていることがあり得る。RE材料の高いコスト及び相対的な希少性を考慮すると、いくつかの実施形態において、永久磁石は、非RE磁石(例えば、フェライト磁石)であり得る。また、いくつかの実施形態において、永久磁石はハイブリッド磁石であり得、RE磁石及びフェライト磁石の組み合わせが使用されることが想定される。
いくつかの実施形態において、電気機械は、ロータベースから延在する円柱状コアも含み得る。いくつかの実施形態において、コアは、磁束を伝導するように構成され得る。コアはまた、ロータの永久磁石を固定するための構造を提供し得る。いくつかの実施形態において、コアは、複数の永久磁石を包囲するように、ロータベースから延在し得る。必須ではないが、いくつかの実施形態において、コアはSMCから形成され得る。SMC円柱状コアは、3次元(3D)等方性強磁性の挙動のうちの1又は複数を示し得る。それはまた、中及び高周波数において、非常に低い渦電流損、及び、相対的に低い全体的なコア損失を示し得る。追加的に、SMCコアはまた、改善された熱特性及び低減された重量を示し得る。したがって、いくつかの開示された電気機械においてSMCコアを使用するための明確な利点があり得る。
電気機械はまた、ロータを包囲するスリーブを含み得る。スリーブは、ロータを保護する、及び/又は、ロータの強度を増加させる構造であり得る。いくつかの実施形態において、スリーブはバンデージであり得る。スリーブは、一部又は全部のロータコンポーネントを囲んで延在するリング、ベルト、又は別の環状構造の形態であり得る。いくつかの実施形態において、スリーブは、ロータが回転するときの遠心(又は求心)力の影響からロータコンポーネントを保護し得る。いくつかの実施形態において、スリーブは、円柱状コアを支持し得、円柱状コアは、複数の永久磁石を支持し得る。例えば、スリーブは、構造支持体をコアに提供し得、コアは、構造支持体を複数の永久磁石に提供し得る。いくつかの実施形態において、円柱状コアは、ラジアル方向にスリーブと複数の磁石との間に位置し得る。
図34Aは、電気機械10のシャフト20に連結された例示的なロータ200の図示である(図2~図3も参照)。以前に説明したように、図1~図3を参照すると、電気機械10の動作中、ロータ200は、ステータ100のラジアル方向外向きに位置し、ステータ100に対して回転軸1000の周りを回転する。ロータ200はロータベース904を含み得る。図34Aに図示されるように、いくつかの実施形態において、ロータベース904は、円盤状構造を有し得る。しかしながら、円盤状構造は必須ではなく、ロータベース904は、任意の好適な形状及び構成を有し得る。ロータベース904は、一体として回転するように、シャフト20に固定(又は連結)され得る。すなわち、電気機械10が動作するとき、ロータベース904及びシャフト20の両方が回転する。
以前に(例えば図1~図3を参照して)説明したように、1又は複数の永久磁石がロータベース904から懸架され得る(例えば、図2の永久磁石220を参照)。図34Bは、図34Aのロータ200の断面図である。これらの図から分かるように、永久磁石220は、回転軸1000を囲んで環状リングを形成するように配置され得る。ロータ200はまた、両方とも回転軸1000を囲んで延在するロータコア910及びスリーブ908を含み得る。コア910は、永久磁石220を囲んで延在し得、スリーブ908は、コア910を囲んで延在し得る。したがって、複数の永久磁石220、コア910、及びスリーブ908は、回転軸1000を囲んで3個の同心環状リングを形成し得る。コア910は、その内側円柱状壁上に装着された永久磁石200を有する円柱状コンポーネントであり得る。スリーブ908は、その内側円柱状壁にコアが当接している円柱状コンポーネントであり得る。いくつかの実施形態において、コア910は、スリーブ908の内側円柱状壁上に装着され得る。図34B及び図36から最も良く分かるように、コア910は、複数の永久磁石220とスリーブ908との間に挟まれ得る。
ロータ200はまた、1又は複数のバランシングリングを含み得る。「バランシングリング」という用語は、ロータのバランシングを助ける構造を指す。いくつかの実施形態において、バランシングリングは、ロータの重量を再配分することによってロータの動的バランシングを可能にする。例えばいくつかの実施形態において、バランシングリングは、ロータの重量を再配分するために、操作できる(例えば、ネジを入れる、又は出す)重荷(例えば、ネジ)を支持し得る。いくつかの実施形態において、バランシングリング922は、スリーブ908の一端(例えば上端)に設けられ得る(図36を参照)。代替的に又は追加的に、いくつかの実施形態において、バランシングリング926がスリーブ908の下端に設けられ得る(図37を参照)。いくつかの実施形態において、バランシングリング922、926の1つのみが設けられ得るが、他の実施形態において、バランシングリング922、926の両方が設けられ得る。バランシングリング922、926の両方を提供することにより、2平面バランシング又はロータ200を可能にし得る。これらの図に図示されるバランシングリング922、926の構造及び場所は単なる例であることに留意されたい。一般的に、1又は複数のバランシングリングが、ロータ200の任意の場所に設けられ得る。
図34Bを特に参照すると、いくつかの実施形態において、複数の永久磁石220は、ロータベース904上に環状に配置され得、ロータ200の回転軸1000に平行にロータベース904からアキシャル方向に延在する。永久磁石220は、ラジアル方向に磁化及びセグメント化され、渦電流損を低減し得る。「磁気軸」という用語は、永久磁石の永久磁石磁化の軸を示す。磁石が磁化されるとき、磁区は、この軸に対して向けられる。結果として、永久磁石220の2つの反対の極(例えば、N極及びS極)が、この磁気軸に沿って形成される。永久磁石において、磁気軸は、そのN極とS極との間に延在する。いくつかの実施形態において、永久磁石220が、図36及び図37(及び図3)に示されるように、円柱状パターンで配置されているとき、個別の永久磁石220の磁気軸は、ラジアル方向に延在し得る。いくつかの実施形態において、複数の永久磁石220の磁気軸は、回転軸1000において(又はその近くで)互いに交差し得る。
図38A及び図38Bは、コア910及びロータ200の永久磁石220を図示する。いくつかの実施形態において、例えば、接着剤(例えば、図3も参照)を使用して、ラジアル方向磁化及び交番極性を有する永久磁石220が、円柱状コア910の内面に固定又は装着されている。永久磁石220は、永久磁石220のN極がラジアル方向内向き(すなわち、回転軸1000に向かう方)を向き、一方、隣接する磁石220のS極がラジアル方向内向きを向くように位置付けられ得る。いくつかの実施形態において、(図2~図3を参照して)以前に説明されたように、各永久磁石220は、共に取り付けられた複数の永久磁石セグメント222からできていることがあり得る。すなわち、永久磁石220は、回転軸1000の周りでセグメント化され得る。いくつかの実施形態において、図38A及び図38Bにおいて最も良く分かるように、永久磁石220はまた、回転軸に沿って(すなわち、回転軸1000に沿って長さ方向に)セグメント化され得る。複数の永久磁石220は、回転軸1000の周りに環状に配置され得、隣接する永久磁石220は、スペーサ224(又は間隙)によって互いから間隔を空けられている。図38Cは、例示的なスペーサ224を図示する。スペーサ224は、隣接する永久磁石セグメント220を隔離する中実又は中空のコンポーネントであり得る。いくつかの実施形態において、スペーサ224は、非導電材料からできていることがあり得る。必須ではないが、いくつかの実施形態において、スペーサ224は、コア910の全長にわたって延在し得る。永久磁石220のセグメント化は、渦電流損の低減を助け得る。以前に説明されたように、永久磁石220は、レアアース(RE)磁石(例えば、NdFeB、SmCoなど)、フェライト磁石、又は、他の知られたタイプの磁石であり得る。
外側ロータ200は円柱状コア910も含み得る。円柱状コア910は、ロータベース904から延在し、複数の永久磁石220を包囲し得る。いくつかの実施形態において、円柱状コア910は、SMCから形成され得る。円柱状コア910は、複数の永久磁石220の片側(例えば、ラジアル方向外側)を支持し得る。いくつかの実施形態において、永久磁石220は、円柱状コア910上(例えば、円柱状コア910のラジアル方向内側)に装着され得る。永久磁石220は、例えば接着材料を使用してコア910に取り付けられ得る。例えば、接着剤層は、永久磁石220のラジアル方向外側をコア910のラジアル方向内側に結合し得る。
スリーブ908は円柱状コア910を包囲し得る。いくつかの実施形態において、図36及び図37に図示されるように、スリーブ908は、円柱状コア910のラジアル方向外側を囲んで延在し得る。スリーブ908は、円柱状コア910に物理的に接触して支持し得る。いくつかの実施形態において、接着材料がスリーブ908のラジアル方向内側をコア910のラジアル方向外面上に取り付け得る。スリーブ908は(コア910を介して)複数の永久磁石220を支持し得る。スリーブ908は、コア910のラジアル方向外面を支持するので、ロータ200の回転中の遠心力に起因してコア910が割れないように保護し得る。コア910は、ラジアル方向にスリーブ908と複数の永久磁石220との間に位置し得る。いくつかの実施形態において、スリーブ908は、接着材料を使用してロータベース904に取り付けられ得る。いくつかの実施形態において、スリーブ908は、ロータベース904に統合され、又は、それと一体に作られ得る(例えば、スリーブ908及びロータベース904は、同一の材料の単一部品として形成され得る)。
いくつかの実施形態において、スリーブ908及び/又はロータベース904は、アルミニウム、又は、炭素繊維、ガラスファイバ、及び/又は、ケブラーのようなアラミド繊維などの非磁性複合材料からできていることがあり得る。非磁性複合材料は、多成分材料であり、磁束について非伝導性であり、著しく異なる物理的及び/又は化学的特性を有する2又はより多くのコンポーネントからできている。一般的に、スリーブ908及びロータベース904は、磁性材料又は非磁性材料からできていることがあり得る。(スリーブ908及び/又はロータベース904の)非磁性材料は複合材料であり得る。いくつかの実施形態において、複合非磁性材料は、炭素繊維、ガラスファイバ、アラミド繊維、ケブラー、又は別の好適なファイバのうちの少なくとも1つを含み得る。例えば、ファイバ(炭素、ガラス、アラミド、ケブラーなど)は、共に織られてスリーブ908を形成し得る。そのようないくつかの実施形態において、スリーブ908は、バンデージの形態であり得る。バンデージは、可撓性、半可撓性、又は剛性であり得る。いくつかの実施形態において、ファイバは、別の材料(例えば、エポキシなど)のマトリクスに組み込まれ、複合非磁性材料を形成し得る。いくつかの実施形態において、(スリーブ908及び/又はロータベース904の)非磁性材料は、ステンレス鋼又はアルミニウムのうちの少なくとも1つを含み得る(又は、である)。いくつかの実施形態において、スリーブ908及び/又はロータベース904は、磁性材料からできていることがあり得る。磁性材料は、例えば積層電気鋼鉄シートなどの軟磁性材料を含み得る。いくつかの実施形態において、磁性材料は鋼鉄であり得る。いくつかの実施形態において、スリーブ908及びロータベース904は、例えば鋼鉄からできている、単一の統合された部品であり得る。
いくつかの実施形態において、スリーブ908は、コア910及び永久磁石220を有するパッケージとして組み立てられ得る。いくつかの実施形態において、スリーブ908は、円柱状コア910の外面上に形成された凹部上に配設された補強リブを含み得る。「補強リブ」という用語は、ロータ構造の強度を増加するように構成されている要素又は特徴を示す。いくつかの実施形態において、スリーブ908は、バランシングリング926、及び、複数の永久磁石220の自由端にわたって延在し得る。いくつかの実施形態において、スリーブ908は、バランシングリング922にわたって延在し得る。いくつかの実施形態において、円柱状コア910は、ロータベース904に連結された第1端から第2端まで延在し得る。例えば、図34A~図34Bを参照されたい。いくつかの実施形態において、バランシングリング922、926は、円柱状コア910の自由端を囲んで延在し得る。
図35は、図2、図3の回転軸1000の周りを回転するように構成されている例示的なシャフト20を図示する。図36~図37は、例示的な外側ロータ200の部分図を図示する。外側ロータ200は、第1バランシングリング922及び第2バランシングリング926を含む。第1バランシングリング922は、ロータベース904に連結された円柱状コア910の第1端に配設され得る。第2バランシングリング926は、ロータベース904の反対の円柱状コア910の第2端に配設され得る。いくつかの実施形態において、第2バランシングリング926は、ロータ200の動的バランシングを提供し得、第1バランシングリング922は、静的バランシングを提供し得る。第1バランシングリング922及び第2バランシングリング926は、スリーブ908及び/又は円柱状コア910に取り付けられるように構成され得る。バランシングリング922、926の一方又は両方は、穴924を含み得る。
円柱状コア910は、永久磁石220と共に、ロータ200をシャフト20に連結するロータベース904に取り付けられ得る。いくつかの実施形態において、スリーブ908は、円柱状コア910の端及び永久磁石220を囲んで折り曲げられ、それらを外側ロータ200の両端側でクランプし得る(例えば、図36を参照)。いくつかの実施形態において、スリーブ908は、非導電材料、又は、低い導電率の材料、又は、非磁性非導電性複合材料からできていることがあり得る。いくつかの実施形態において、高精度の静的及び動的バランシングの間に、これらの重荷に空洞又は穴が開けられ得る。いくつかの実施形態において、必要な重荷変更は、2つの平面で(例えば、2つのバランシングリング922及び926を使用して)行われ得る。重荷は、バランシングリング穴924内に設置され得る。いくつかの実施形態において、第2バランシングリング926は、円柱状コア910の第1端(ロータベース904に連結されている端)に位置し得る。いくつかの実施形態において、第1バランシングリング922及び/又は第2バランシングリング926は、非磁性複合材料から形成され得る。いくつかの実施形態において、第1バランシングリング922及び/又は第2バランシングリング926は、非磁性材料から形成され得る。いくつかの実施形態において、第1バランシングリング922及び/又は第2バランシングリング926は、外側ロータ200をバランシングするための1又は複数のネジを含み得る。
いくつかの実施形態において、複数の永久磁石220は、回転軸1000を囲んで実質的に円形パターンでロータベース904上に配置され得る(例えば、図3、図36~図38Bを参照)。隣接する磁石220は、非磁性材料、又は、SMCのような任意の軟磁性材料からできているスペーサ224によって隔離されている。いくつかの実施形態において、複数の永久磁石220がロータベース904上に配置され、複数の永久磁石220の各永久磁石の磁気軸は、回転軸(例えば回転軸1000)に向かって延在する。いくつかの実施形態において、複数の永久磁石220は、ロータベース904上に配置され、複数の永久磁石220の各永久磁石の磁気軸は、回転軸において(又はその近傍で)交差する。
いくつかの実施形態において、ロータベース904は、アルミニウム又は鋼鉄から形成され得る。いくつかの実施形態において、ロータベース904は、スリーブ908及び1又は複数のバランシングリング(例えば922、926)と一体であり得る。複数の永久磁石220は、接着剤を使用して円柱状コア910に取り付けられ得る。いくつかの実施形態において、熱サイクルの間のCTEミスマッチにより誘導される熱機械的応力を低減するべく、複数の永久磁石220、円柱状コア910、及び接着剤の材料の熱膨張係数(CTE)の間の差は、約20%より小さいことがあり得る。円柱状コア910は、接着剤を使用してロータベース904に取り付けられ得る。電気機械は電気モータ又は発電機であり得る。いくつかの実施形態において、円柱状スリーブ910は、電気鋼鉄の積層シートから組み立てられたパッケージの形態で作られ得る。
図38Dは、例示的な円柱状ロータコア910の図を図示する。以前に説明されたように、ロータ200において、スペーサ224は、円柱状コア910の内面上に装着された複数の永久磁石200における隣接する永久磁石220を隔離する(図38A~図38Cを参照)。スペーサ224の代替として(又はそれに加えて)、いくつかの実施形態において、円柱状コア910は、統合されたスペーサ928を含み得る。これらのスペーサ928は、ラジアル方向に、コア910の円柱状内表面から内向きに突出し得る。統合されたスペーサ928は、永久磁石220を格納するために、それらの間のスロット929を画定し得る。永久磁石220がこれらのスロット929上に装着されているとき、スペーサ928は、円柱状コア910の内面上に装着された複数の永久磁石200における隣接する永久磁石220を隔離する。図42A~図42Bは、ラジアル平面における例示的な外側ロータ200の断面図を図示する。これらの図に図示されるように、永久磁石220が、ロータコア910の内面上のスペーサ928の間のスロット929(図38Dを参照)内に配設されているとき、スペーサ928は、円周方向において、隣接する永久磁石220を互いから隔離する。スペーサ928はラジアル方向において任意の厚さを有し得る。いくつかの実施形態において、スペーサ928の厚さは、永久磁石220の(ラジアル方向の)厚さを超えないことがあり得、その結果、スペーサ928は、外側ロータ200と内側ステータ100との間の空隙250内に突出しない(図3を参照)。いくつかの実施形態において、振動するモーメントを制限するべく、各スペーサ928は、永久磁石220の厚さの約半分以下である厚さを有し得る。
図39は、ロータ200の断面図を図示する。スリーブ908は、任意の方法によってロータ200内に設置され得る。いくつかの実施形態において、スリーブ908を設置するべく、(例えば、スリーブ908のいずれかの側の)ロータ200の2つの端(例えば、上端及び下端)に止め具930が設けられ得る。スリーブ908がバンデージの形態である実施形態において、スリーブ908は、ロータコア910の外面を囲んでスリーブ材料を巻く(又は掛ける)ことによってロータ200上に設置され得る(図40を参照)。巻くことは、コア910の表面(又はロータの外面)上の各突出部及び各凹部が1つの動作において満たされるように実行され得る。このように巻くことは、動作中のロータ200の強度及び剛性を増加させ、振動及びノイズを低減するように機能し得る。巻くこと(図40に示す)は、複合体テープ、複合体スレッド(示されていない)、又は、その両方の組み合わせを用いて行われ得る。スリーブ908を形成するために止め具930を使用することが記載されているが、これは単なる例である。巻くことは、止め具930無しでも達成され得る。
いくつかの実施形態において、ロータベース904、スリーブ908は、統合されたコンポーネントであり得る。そのような場合、ロータベース904及びスリーブ908は、例えば複合材料の1つの統合された部品として共に形成され得る。いくつかの実施形態において、接着材料は、円柱状コア910、ロータベース904、スリーブ908、及びバランシングリング922、926上に永久磁石220及び/又はスペーサ224を固定するために使用され得る。結合される要素の加熱中の応力を低減するべく、接着材料は、熱膨張係数(CTE)が、結合される材料のCTEに近い(例えば、約20%)ように選択され得る。
図40において最も良く分かるように、ロータベース904は1又は複数の通気孔932を含み得る。通気孔932は、回転軸1000に沿って(すなわち、回転軸1000に平行に)空気流を誘導するように構成され得る。いくつかの実施形態において、この空気は、ロータ200が回転するときにロータに(ロータ内に位置するステータに向かって)誘導される(例えば図2を参照)。いくつかの実施形態において、通気孔932は、ロータ200が回転するときに、ファンブレードとして動作して、電気機械の1又は複数のコンポーネントを冷却するように構成され得る。いくつかの実施形態において、ブレード、ベーン、又は他の空気を移動させる特徴が、通気孔932を囲んで(又はその近傍に)設けられ、回転軸1000に沿って(ロータ回転中に、穴932内へ、又は、ステータに向かって)空気を誘導し得る。
図41は、例示的な外側ロータ200の図を図示する。いくつかの実施形態において、ロータ200の許容可能な最大回転速度を増加させるべく、1又は複数のスロット934が円柱状コア910の外面(例えば、ラジアル方向外面)上に設けられ得る。図41から理解できるように、各スロット934は、永久磁石220の各々の中央と反対に位置し得る(1個の永久磁石220が図41において破線を使用して示される)。いくつかの実施形態において、スリーブ908の内側合わせ面は、コア910がスリーブ908内に装着されているときにスロット934内に受けられる対応するリブ936を含む。スリーブ908が、(図40を参照して記載されるように)コア910を囲んで掛けられているバンデージである実施形態において、スロット934は、スリーブ908の材料を受け、補強リブ936を形成するように構成され得る。すなわち、スリーブ908がコア910を囲んで装着されている、又は、掛けられているときにスロット934内に受けられるスリーブ908の部分は、補強リブ936を形成する。補強リブ936は、そのサイズ(例えば厚さ)を増加させることなくロータコア910の強度を増加させる。各永久磁石220の中央は、最も低い磁束密度の場所に対応する。したがって、永久磁石220の中央の反対にスロット934を位置付けることは、そのサイズを増加させることなく、漏洩磁束を低減すること、及び、コア910の強度を増加させることを助ける。いくつかの実施形態において、ロータ200は、スリーブ908無しで作られ得る。
図43は、ロータベース904、円柱状コア910、複数の永久磁石220、及びスリーブ908を有する例示的な外側ロータ200の図を図示する。図43に図示されるように、円柱状コア910は、回転軸1000の周りにおいて(ラジアル平面における)不均一な厚さを有し得る。図示された実施形態において、円柱状コア910の外面は、起伏性表面を形成し(その半径は、回転軸1000の周りにおいて変動、又は増加、及び減少する)、コア910の外面は、円柱状の表面である。コア910の不均一な厚さは、異なるタイプの内側及び外面の結果として生じる。図示された実施形態において、スリーブ908の外面は、円柱状であり、その内面(コア910の起伏ある外面と合う)は、起伏性表面に対応する。したがって、スリーブ908はまた、その内側と外面との間の差の結果として、回転軸1000の周りにおいて不均一な厚さな(すなわち変動する)厚さを有する。
図43から分かるように、円柱状コア910のより厚い領域X(又は、より大きい厚さの場所)は、スリーブ908のより薄い領域(又は、より小さい厚さの場所)に対応し、コア910のより薄い領域Yは、スリーブ908のより厚い領域に対応する。図43から分かるように、コア910のより厚い領域Xは、隣接する永久磁石220の間に位置し、コア910のより薄い領域Yは、各永久磁石220の中央に隣接するように位置する。また、スリーブ908のより厚い領域は、各永久磁石220の中央に隣接するように位置し、そのより薄い領域は、2つの永久磁石220の間に位置する。永久磁石220の中央は、最も磁束密度が低い場所に対応する。スリーブ908のより厚い領域が、各永久磁石220の中央に隣接するように(又はその近傍に)位置することにより、そのサイズを増加させることなくロータ200の強度を増加させる。図43を参照して論じられるロータ200の例示的な実施形態におけるコア910の起伏性外面及びスリーブ908の内面は、単なる例であることに留意されたい。一般的に、コア910及び/又はスリーブ908の不均一な厚さは、任意の方式で提供され得る。いくつかの実施形態において、コア910及び/又はスリーブ908の厚さは、例えば、円周方向に(すなわち、回転軸1000の周りに)段階的な方式で変動し得る。
図44は、ロータ200の例示的なコア910を図示する。図示された実施形態において、永久磁石220は、コア910内に配設される(又は組み込まれる)。いくつかの実施形態において、永久磁石220は、コア910において星形パターンで配設され得る。コア910は、永久磁石220を受けるために、対応する星形パターンのスロットを含み得る。星形パターンは単なる例であり、一般的に、永久磁石220は、コア910において任意のパターン(例えば、円形など)で配設され得ることに留意されたい。いくつかの実施形態において、コア910は、永久磁石セグメントを受けるために、円周方向に間隔を空けたスロットを含み得る。
図4A~図4C及び図6A~図7Cを参照すると、電気機械の効率的動作のために、多部品歯120上に装着された電磁コイル300の内面が、歯120の外面(図23Bの表面A、B、C、D)に接触する、又は、それに対して緊密であることが好ましい。歯120の台形形状(又はラジアル方向における歯120の変動する断面積)に起因して、コイル300の空洞320の合わせ面(例えば、図6A~図7Cを参照)、及び、歯120の外面が歯のラジアル方向全体に沿って接触するように、事前に製造されたコイル300を歯120に装着することは困難である。ワイヤ(又は箔)を歯120(又は歯112を有する、事前に組み立てられたコア110)に直接巻いてコイル300を形成することは可能であり得るが、そのようなプロセスは、製造コストを増加させる。また、ワイヤを歯120に巻くことにより、歯120の間のスロット160の充填密度が減少し(例えば、図4A~図4Bを参照)、結果として、電気機械のフィルファクタが低くなる。歯120を(上で論じたように)複数の部品から形成することにより、事前に製造されたコイル300を歯120に設置又は装着する一方で、高いフィルファクタ値を維持することが可能となる。多部品歯120の部品は、コイル300内で組み立てられて、コイル300の空洞320(又は開口)内で歯120の台形形状を形成する。
図45A~図45Fは、コイル300を例示的な多部品歯120に装着(又は設置)する例示的な方法を図示する。図46A~図46Cは、コイル300を歯120に装着する異なるステージを描写する簡略化された概略図である。下の論述において、図46A~図46Cも参照する。下の論述において、図24Aを参照して記載された歯120の実施形態上にコイル300を設置する方法が記載される。コイル300はまた、同様の方式で、歯120の他の実施形態において設置され得る。図示された実施形態において、多部品歯120は、そのベース134に溝138を有する別個のコア歯部分122(すなわち、図23Aの実施形態におけるコア110の環状部品130と統合されていないコア歯部分122)、及び、2つの追加歯部分124A及び124Bを含む。事前に製造された(又は事前に形成された、事前に巻かれた、など)コイル300が、これらの複数の歯部分122、124A、124Bから形成された多部品歯120上に設置され得る。必須ではないが、図示された実施形態において、2つの追加歯部分124A、124Bは同一である。
歯120は、複数の部品からできており、歯120の複数の部品がコイル300の空洞320内に篏合するように、以前に形成されたコイル300が歯120に装着され得る。図45Aを参照すると、事前に形成されたコイル300は、コイル300の中央空洞320(又は開口)を囲んで延在する導電体(ワイヤ、箔など)を含む。空洞320は、第1端322からコイル300の第2端324に延在する。いくつかの実施形態において、各追加歯部分124A、124Bは、構造が同一であり得、ウェッジ形状であり得る。各追加歯部分124A、124Bは、幅の広い端128から、幅の狭い端126に延在し得る。組立ての後に、コイル300の第1端322は、ステータコア110の近傍に位置し、その第2端324は、空隙250の近傍に位置する(図2を参照)。
いくつかの実施形態において、コイル300を多部品歯120に設置する方法は、挿入された追加歯部分124A、124Bの幅の広い第2端128が空洞320から外に延在するように、多部品歯120の少なくとも1つの追加歯部分124A、124Bをコイル300の空洞320に挿入する段階を含む。例えば、図46Aにおいて最も良く分かるように、2つの追加歯部分124A、124Bの幅の広い第2端128が空洞320からその第2端324を通じて延在(又は突出)するように、2つの追加歯部分124A、124Bがコイル300の空洞320に挿入される。歯120が単一の追加歯部分(例えば、図23E及び図23Hの歯部分124C、124D)のみを含む実施形態において、この単一の歯部分は、幅の広い端が空洞320の一端から外に突出するように、コイル300の空洞320に挿入される。歯120が複数の追加歯部分を含む実施形態において(図23A、図23I~図23Kを参照)、これらの複数の追加歯部分のうちの1又は複数は、空洞320に挿入される。
いくつかの実施形態において、図45A~図46Cに図示されるように、追加歯部分124A、124Bの両方は空洞320に挿入される。2つの追加歯部分124A、124Bの間の空洞320内に間隙が形成されるように、2つの追加歯部分124A、124Bは、空洞320の対向する両側壁に対して(すなわち、コイル300の内壁に対して)圧迫され得る。すなわち、図45D及び図46Aから分かるように、各追加歯部分124A、124Bの側面が、空洞320の内側上の反対の表面に接触して(又は、それに対して圧迫されて)2つの追加歯部分124A、124Bの間に間隙を形成するように、2つの追加歯部分124A及び124Bは、空洞320内に配置される。
図45D及び図46Aから最も良く分かるように、挿入された歯部分124A、124Bの幅の広い第2端128がその第2端324において空洞320から外に延在する(又は突出する)ように、追加歯部分124A、124Bは、空洞320に挿入される。図46Bにおいて最も良く分かるように、挿入された追加歯部分124A、124Bの幅の広い第2端128がコイル300の空洞320から外に延在したままとなるように、(挿入された追加歯部分124A、124Bを有する)コイル300は次に、多部品歯120のコア歯部分122上に装着される。図46Cに図示されるように、追加歯部分124A、124Bの突出する第2端128に力Fが適用され、追加歯部分を空洞320内に(すなわち、空洞320の第1端322に向かって)更に押す。追加歯部分124A、124Bが空洞320内に更に入るにつれて、それらはコア歯部分122の側方及び空洞320の内壁を圧迫し、コイルを多部品歯120上に締着する(例えば、図45E、図46Cを参照)。いくつかの実施形態において、図45Fに図示されるように、次に、接着材料(又は接着剤)が塗布され、多部品歯120の複数の部品を共に、及びコイル空洞320の内壁に連結し得る。
上で論じた実施形態は単なる例であることに留意されたい。コイル及び歯の構成に基づいて、記載された方法には多くの変形があり得る。図23E~図23F及び図23Hはまた、多部品歯120のいくつかの他の構成にコイル300を設置する例示的な方法を描写する。以前に説明されたように、追加歯部分124C又は124Dの幅の広い端が開口320から外に延在するように、(図23Eの)追加歯部分124C又は(図23Hの)124Dはまず、コイル300の空洞320内に挿入され得る。次に、追加歯部分124C又は124Dの幅の広い端が空洞320から外に延在したままとなるように、追加歯部分124C又は124Dを有するコイル300はコア歯部分122の上に位置し得る。次に、力が追加歯部分124C又は124Dの幅の広い端に加えられ、それを空洞320内へ更に押し、それによって、多部品歯120を囲んでコイル300を緊密に篏合し得る。力を加えることにより、追加歯部分124C又は124Dの幅の広い端を、コア110の環状部品130に向かってコイル300内に更に駆動し、コイル300を多部品歯120上に締め付け得る(例えば図23Fを参照)。いくつかの実施形態において、次に接着材料が塗布され、多部品歯120の複数の部品を共に連結し得る。
図23I~図23Jは、コイル300を多部品歯120上に設置する別の例示的な方法を図示する。図45A~図46Cを参照して記載される実施形態において、追加歯部分124A及び124Bの対がまずコイル300の空洞320内に位置付けられ得る(図23Jを参照)。この構成において、2つの追加歯部分124A及び124Bの幅の広い端は、空洞320から外に突出又は延在し得る(図23Jを参照)。次に、対向する両側(例えば、上側及び下側、図23Jを参照)に位置する追加歯部分124E、124Fを有するコア歯部分122は、2つの追加歯部分124A、124Bの間の空間を通じてコイル300の空洞320に挿入され得る。コア歯部分122が空洞320に挿入されるとき、追加歯部分124A、124Bの一方又は両方の幅の広い端は、空洞320から外に突出したままであり得る。次に、少なくとも、突出した幅の広い端の部分を空洞320内に押し込むために力が加えられ得る。追加歯部分124A、124Bが空洞320内に更に入るとき、それらはコア歯部分122の側方、追加歯部分124E、124F、及び、空洞320の内壁を圧迫して、コイル300を多部品歯120上で締着し得る(例えば図23Kを参照する)。いくつかの実施形態において、次に、接着材料が塗布されて、部品を共にコイルに連結し得る。多部品歯120の部品を共に連結するために任意のタイプの接着材料が使用され得る。いくつかの実施形態において、接着材料は、歯及び/又はコイル材料の熱膨張係数に近い熱膨張係数を有し、動作中に部品が加熱されるときに、CTEミスマッチ誘導熱機械的応力を低減し得る。いくつかの実施形態において、接着材料と多部品歯120の異なる部品との間のCTEミスマッチは、約20%を下回り得る。
コイル300を多部品歯120に装着する記載された方法は、コア歯部分122がコア110とは別個である歯120の実施形態(例えば、図23L及び図23Mの実施形態)、及び、コア歯部分122がコア110と統合されている歯120の実施形態(例えば、図23A~図23Kの実施形態)に適用可能である。一般的に、電気機械の不規則形状の多部品歯上でコイルを組み立てる方法は、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける空洞(又は開口)から外に延在するように、多部品歯の少なくとも1個の追加歯部分(例えば、ウェッジ形状歯部分又はウェッジ部分)をコイルの開口内に挿入する段階を含み得る。本明細書において使用される場合、「不規則な形状」という用語は、長さに沿って変動する断面を指す。いくつかの実施形態において、不規則な形状の体積は、規則的又は単純な図(円、円柱、立方体、平行六面体など)以外の幾何学的な図によって最も良く記載され得る。「ウェッジ部分」という用語は、幅の広い端及び幅の狭い端を有する部品を示す。いくつかの実施形態において、ウェッジ部分は、ウェッジの形態であり得る。「空洞」又は「開口」という用語は、コイルの内側の中空部品を指す。挿入された少なくとも1つのウェッジ部分を有するコイルは、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける空洞から外に延在したままとなるように、多部品歯のコア歯部分上に位置する。方法はまた、少なくとも1つのウェッジ部分の幅の広い端に力を加え、多部品歯上にコイルを締め付ける段階を含み得る。
いくつかの実施形態において、少なくとも1つのウェッジ部分の幅の広い端に力を加えることは、少なくとも1つのウェッジ部分の幅の広い端をコイルの空洞(すなわちコイル開口)内へ押すことを含み得る。いくつかの実施形態において、コイルにおける開口は、第1端から第2端に延在し得る。そして、少なくとも1つのウェッジ部分を挿入することは、幅の広い端が開口の第2端から外に延在するように、少なくとも1つのウェッジ部分を開口内に挿入することを含み得る。いくつかの実施形態において、力を加えることは、幅の広い端を開口の第1端に向かって押すことを含み得る。コイルにおける開口又は空洞は、第1端から第2端に延在し得る。いくつかの実施形態において、第1端における開口の幅は、第2端における開口の幅と異なり得、第1端における開口の長さは、第2端における開口の高さと異なり得る。いくつかの実施形態において、第1端における開口の形状、及び、第2端における開口の形状は、矩形であり得る(例えば、図7Bを参照)。電磁コイルは歯の表面に緊密に篏合するので、いくつかの実施形態において、コイル空洞又は開口の形状は、歯の形状に対応し得る(又は実質的に同様であり得る)。したがって、コイル空洞の第1端における開口の周長は、コイル空洞の第2端における開口の周長と実質的に同一であり得る(例えば、図26A~図26Bを参照して歯120の形状の論述を参照)。いくつかの実施形態において、第1端におけるコイル開口の面積は、第2端における開口の面積から変動し得る。いくつかの実施形態において、コイル開口の面積は第1端から第2端にかけて増加し得る。いくつかの実施形態において、少なくとも1つのウェッジ部分をコイル開口に挿入することは、少なくとも2つのウェッジ部分を開口内に挿入することを含み得る。
コイルを歯に装着することは、コア歯部分が少なくとも2つのウェッジ部分の間に配設されるように、コイルをコア歯部分に装着することを含み得る。いくつかの実施形態において、接着材料は、多部品歯の少なくとも2つのウェッジ部分及びコア歯部分を共に取り付けるために使用され得る。多部品歯は、電気機械のステータの一部であり得る。いくつかの実施形態において、多部品歯のコア歯部分は、電気機械の中心軸を囲んで延在する環状ステータリング上に対称的に配置された複数のコア歯部分のうちの1つであり得る。コア歯部分は、ラジアル方向において環状ステータリングから外向きに延在し得る。いくつかの実施形態において、複数のコア歯部分は、環状ステータリングと一体的に形成される。いくつかの実施形態において、中心軸に垂直な平面において、コア歯部分は、実質的に矩形の断面形状を有し得、少なくとも1つのウェッジ部分は、実質的に三角形の断面形状を有し得る(例えば、図23B、図23F、図23Kを参照)。いくつかの実施形態において、ラジアル方向に垂直な平面において、コア歯部分及び少なくとも1つのウェッジ部分は実質的に矩形の断面形状を有し得る。いくつかの実施形態において、コイルは、コイル開口又は空洞を囲んで銅線の巻線を含み得る(例えば、図7A~図7Cを参照)。ワイヤは、正方形、矩形、又は円形の断面形状のうち1つを有し得る(例えば、図7D、図7Eを参照)。いくつかの実施形態において、コイルは、開口を囲んでらせん状構成の銅撚線の巻線を含み得る。いくつかの実施形態において、電気機械は電気モータであり得る。いくつかの実施形態において、電気機械が発電機であり得る方法。
電気機械の不規則形状の多部品歯上でコイルを組み立てる例示的な方法は、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける開口から外に延在するように、多部品歯の少なくとも1つのウェッジ部分をコイルの開口内に挿入する段階を含み得る。方法は、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける開口から外に延在したままとなるように、挿入された少なくとも1つのウェッジ部分を有するコイルを多部品歯のコア歯部分上に装着する段階を含み得る。方法は、少なくとも1つのウェッジ部分の幅の広い端に力を加えて多部品歯上でコイルを締め付ける段階を含み得る。
図47は、コイルを多部品歯上に設置する例示的な方法のフローチャートを図示する。図45A~図46Cを追加的に参照すると、方法は、少なくとも1つのウェッジ部分の幅の広い端(第2端128)がコイルにおける開口から外に延在するように、多部品歯120の少なくとも1つのウェッジ部分(例えば、追加歯部分124A、124B)を開口(例えば、コイル300の空洞320)内に挿入する段階を含み得る(段階810)。方法はまた、少なくとも1つのウェッジ部分の幅の広い端がコイルにおける開口から外に延在したままであるように、挿入された少なくとも1つのウェッジ部分124A、124Bを有するコイル300を多部品歯120のコア歯部分122上に装着する段階を含み得る(段階820)。方法は更に、少なくとも1つのウェッジ部分124A、124Bに力(例えば、図46Cの力F)に加えて、幅の広い端128をコイルにおける開口内に押し込む段階を含み得る。外側ロータ組立体を組み立てる方法において、コイルにおける開口は、第1端から第2端に延在し得、少なくとも1つのウェッジ部分の挿入は、幅の広い端が開口の第2端から外に延在するように、少なくとも1つのウェッジ部分を開口内に挿入することを含み、力を加える段階は、開口の第1端に向かって幅の広い端を押し込む段階(段階830)を含む。
本開示の電気機械についてのコイル300を形成する例示的な方法は下に記載される。いくつかの実施形態において、コイルは不規則形状のコイルであり得る。本明細書において使用される場合、不規則形状のコイルという用語は、コイルの断面がその長さに沿って変動することを示す。図6A~図7Cを参照して以前に説明されたように、本開示のコイル300は、第1端322から第2端324に延在する空洞320を含み得る。いくつかの実施形態において、不規則形状のコイルの空洞320の断面に関する寸法は、第1端322及び第2端324の間の距離(例えば長さ)の少なくとも一部に沿って変動する。いくつかの実施形態において、断面積は第1端322から第2端324に変動する。本開示の不規則形状のコイルを形成する様々な実施形態は、コイルを形成すること、マンドレルを囲んでワイヤを巻いてマンドレルの形状にコイルを形成すること、コイルをマンドレルから除去すること、及び、機械的な力をコイルに加えて歯の形状に対応するようにコイルの形状を変化させることを含み得る。歯は電気機械のステータ又はロータの部品であり得る。いくつかの実施形態において、コイルは次に歯に装着され得る。
本明細書において使用される場合、「マンドレル」という用語は、第1形状のコイルを形成するように、コイルを形成するワイヤ又は箔が支持され、又は巻かれるデバイス(シャフト、スピンドル、又はワークピース)を指す。いくつかの実施形態において、マンドレルは、シャフト又はロッド(例えば円柱状シャフト)であり得る。任意のタイプの機械的な力(圧縮力、張力、引く、押す、など)がコイルに加えられ、その形状を変化させ得る。いくつかの実施形態において、機械的な力は、結果としてコイルの変形をもたらし得る。図6A~図7Eを参照して以前に説明されたように、本開示のコイル300は、ワイヤ又は箔からできていることがあり得る。コイルがワイヤからできているいくつかの実施形態において、ワイヤは、シングルストランドワイヤ又はマルチストランドワイヤを含み得る。「ストランド」という用語は、ワイヤの他の電流導体から絶縁された電流伝導体又は導電体を指す。電流又は「導電体」という用語は、1又は複数の方向に電荷又は電流が流れることを可能にする材料又は物体を指す。いくつかの実施形態において、コイルを形成するワイヤは共に撚られ得る。すなわち、ワイヤのストランドは共に撚られ得る。いくつかの場合において、ストランドを共に撚ることは、渦電流損を低減することを助け得る。
図48A~図48Dは、例示的な実施形態におけるコイル300を製造する段階を図示する。図48Aに示すように、コイル300はワイヤ314からできていることがあり得る。ワイヤ314は、シングルストランドワイヤ又はマルチストランドワイヤ314であり得る。コイル300は、ラジアル方向においてらせん状の形態で巻かれ得る。いくつかの実施形態において、コイル300は、円柱状マンドレルを囲んで巻かれ、らせん状の形状の巻線を形成し得る。したがって、円柱状マンドレル上に巻いた後のコイル300の第1形状は、マンドレルの形状に対応し得る。円柱状マンドレル上に巻いた後に結果として生じるコイル300の円柱状の空洞は、空洞の長さに沿って一定の周長及び一定の断面積を有し得る。円柱状マンドレル及び結果として生じる円柱形状は単なる例であることに留意されたい。一般的に、マンドレルは、任意の形状(すなわち、任意の断面形状のロッド)を有し得、マンドレル上で巻いた結果生じるコイルは、対応する断面形状を有し得る。例えば、ワイヤを巻くために使用されるマンドレルが矩形断面形状を有する場合、巻く動作の結果として生じるコイルの空洞も、実質的に同様の矩形断面形状を有する。
図48Bに示されるように、コイル300は、1又は複数の隔離マンドレル956を使用して、製造ステーション952上に配置され得る。隔離マンドレル956は、第1形状から第2形状にコイル空洞の形状を変更するために機械的な力を加える間にコイルを支持し得る。いくつかの実施形態において、製造中にコイル300が移動し得ないように、マウント954がコイル300の一部をステーション952に固定し得る。図48Cに示されるように、コイル300の形状を変化させるために、ウェッジマンドレル958が隔離マンドレル956の間で駆動され得る。内部空洞の壁の直径方向に反対の端を外向きに押すために、ウェッジマンドレル958は、2つの隔離マンドレル956の間の間隙を通じて、コイルの空洞内に押し込まれ得る(図48B及び図48Cを参照)。ウェッジマンドレル958を隔離マンドレル956の間の空間内に押し込むために、例えば図48Cにおいて示される下向き方向960において、力がウェッジマンドレル958に加えられ得る。ウェッジマンドレル958がコイル空洞内に下向きに移動するとき、隔離マンドレル956は、ウェッジマンドレル958のウェッジ面によって外向き(図48Cにおいて矢印を使用して示される)に駆動され得る。隔離マンドレル956が外向きに移動するとき、コイル空洞の内壁も外向きに押され得る。コイル空洞の直径方向に反対の端に対する、ラジアル方向外向きにおけるこの力の結果として、図48Dに示すように、コイル300の第2形状が形成され得る。第2形状は、歯120の形状に対応し得る。すなわち、(図48A~図49Dを参照して説明される)歯120の外部形状と同様に、(図48B~図49Dに示される)力を加えた後、歯120の表面に緊密に篏合するコイル300の空洞320は、第1端322から第2端324までの長さに沿って実質的に一定の周長を有し得、一方、長さに沿ったその断面積は変動する。第2形状は、矩形又は台形であり得る。いくつかの実施形態において、空洞320は、コイル300の第1端322及び第2端324の間に延在する軸に垂直な平面において矩形断面積を有する3次元台形形状を有し得る(例えば、図6C、図7A、図48B~図48Dを参照)。いくつかの実施形態において、コイル300の内部空洞の少なくとも一端は、ウェッジマンドレル958によって加えられた力の結果として、拡張(又は可塑的に変形)し得る。空洞320が第2形状であるコイル300の例示的な実施形態が、図6A~図6D及び図7A~図7Bに示されている。以前に説明されたように、ワイヤ314は、上に記載した方法においてコイル300を形成するために使用されるが、コイル300も、箔312を使用して同様に形成され得る。
図49A~図49Dは、コイルを製造する別の例示的な方法を図示する。図49Aに示されるように、1又は複数のガイド隔離マンドレル962を使用して、コイル300が製造ステーション952上に配置され得る。コイル300が製造中に移動し得ないように、マウント954は、コイル300の部分を固定し得る。図49Bに示すように、隔離マンドレル962は、下部分964及び上部分966を含み得る。下部分964は、コイル内に駆動されてコイルを形成し得、上部分966は、隔離マンドレル962を装着954に保持するなどのために、隔離マンドレル962の移動を制限するように構成され得る。図49Cに示すように、ウェッジマンドレル958は、ガイド隔離マンドレル962の間で駆動されて、コイル300の形状を変化させ得る。力は、製造ステーション952の反対のマンドレル958に(例えば、示される下向きの方向958に)加えられ得、隔離マンドレル962は、ウェッジマンドレル958のウェッジ面によって駆動され得る。図49Dに示すように、コイル300の第2形状が形成され得る。第2形状は、歯120の形状に対応し得る。第2形状は上で記載したものと同様であり得る。いくつかの実施形態において、コイル300の内部空洞の少なくとも一端は、ウェッジマンドレル958によって加えられる力の結果として拡張し得る。コイル300の結果として生じる第2形状は、図6A~図6D及び図7A~図7Bに示されるコイル300に対して示されるものと同様であり得る。
(図45A~図46Cを参照して)以前に説明されたように、コイル300の空洞320が歯120に緊密に篏合するように、コイル300はロータ又はステータの歯120に装着される。いくつかの実施形態において、(例えば図48A~図48D又は図49A~図49Dを参照して)コイル300が上に記載されたように形成された後に、その空洞320の形状は、歯120の形状に十分対応しないことがあり得る。そのようないくつかの実施形態において、コイル300が上に記載されたように形成された後に、コイル300の外面及び/又は空洞320の内壁に力が加えられ、空洞320の形状を歯120の形状に仕上げ(又は微調整し)得る。図50A~図50Dは、コイルを製造する例示的な方法の図を図示する。図50A~図50Bに示されるように、(図48A~図48D及び図49A~図49Dを参照して記載された第2形状に空洞の形状を変化させた後の)コイル300は、その空洞が突出部を囲んだ状態で突出部576上に配置され得る。コイル300が突出部576上に位置されると、ブロック572、574の形成により、コイル300の外面に接触し、機械的な力(例えば圧縮力)を加え、コイル300の形状を変化させ得る。図50C~図50Dに示されるように、ブロック572、574を形成することは、突出部576に向かって(例えば力578で)内向きに駆動され、コイル空洞の形状が最終的な所望の形状に変化し得る。結果として生じるコイル300の形状は台形であり、(図48A~図49Dを参照して記載される)多部品歯120の形状に対応し得る。いくつかの実施形態において、ブロック574(又は572)の反対に位置される1対のみが、突出部576に装着されたコイル300に対して圧縮力を加え得る。いくつかの実施形態において、反対に位置するブロック574の第1の対は、圧縮力をコイル300に加え得、反対に位置するブロック572の第2の対は、コイル表面上に単に置かれ、例えば、力を加える結果としてブロック572の方向に膨張することを防止し得る。
いくつかの実施形態において、コイル空洞の形状を最終的な所望の形状に仕上げるためにウェッジピースが使用され得る。図51A~図51Bは、コイルを製造する方法の図を図示する。図51A~図51Bに示されるように、ウェッジマンドレル582及びベース584は、コイル300の空洞320の形状を仕上げるために使用され得る。いくつかの実施形態において、ウェッジマンドレル582は、コイル300の空洞320において(例えば、図51Aにおける上方及び下方に)移動させられ、空洞320の内壁を最終的な所望の形状に仕上げ(又は微調整し)得る。いくつかの実施形態において、図51Bに図示されるように、ウェッジマンドレル582は、ベース584に対してコイル300の片側に対して圧迫され、コイル空洞の片側の形状を最終的な所望の形状に仕上げ得る。いくつかの実施形態において、コイル300は反転され、プロセスが反復され、他の側を形成又は仕上げ得る。マンドレル582は、コイル300内に台形を形成するようにウェッジ形状であり得る。いくつかの実施形態において、他の端(例えばクランプ)において内部空洞のサイズを減少するために機械的な力が使用され得る一方で、マンドレル582がベース584に対して圧迫される。そのような実施形態において、マンドレル582は、コイル300の中心軸(例えば、図6Dに示す軸2000)から離れる方向に作用し得、他の端において内部空洞のサイズを減少させる機械的な力は、コイル300の中心軸に向かう方向に作用し得る。
図52は、電気機械のステータ又はロータの歯120に装着するためのコイルを製造する方法940を図示する。方法940の段階は、マンドレルの周りにワイヤ(又は箔)を巻いて、マンドレルの形状に対応する第1形状を有するコイルを形成する段階942を含み得る。例えば、いくつかの実施形態において、ワイヤ314(又は箔312)は、円形ロッド又はシャフトを囲んで巻かれ得、それを通る円柱状空洞を有するワイヤ314の円柱状の巻線を形成する(又は変形する)。方法940の段階は、第1形状を有するコイルをマンドレルから除去する段階944を含み得る。例えば、円形シャフトにワイヤが巻かれて円形コイルを形成する一実施形態において、コイルはシャフトから除去され得る。段階946において、段階944でコイルがマンドレルから除去されるときに円形形状を保持するように、ワイヤの材料は可塑的に変形され得る。方法の段階は、コイルに機械的な力を加えて、コイルの形状を第1形状から歯に対応する形状に変化させる段階946を含み得る。例えば、歯が矩形形状を有する場合、この段階において、ワイヤの円形コイルに機械的な力が加えられ、その結果、円柱状の空洞の形状が矩形断面形状を有する空洞に変化する。方法の段階は、第2形状のコイルを歯に装着する段階948を含み得る。
いくつかの実施形態において、ワイヤのコイルは、複数のストランドの導電体から形成され得る。ワイヤは任意の数(例えば、2~3000)のストランドを有し得る。いくつかの実施形態において、ワイヤ314は、導電体を共に撚ることによって形成されるか、又は、リッツ線の形態できていることがあり得る。リッツ線は、個別に絶縁及び撚られ、又は共に織られ得る多くのワイヤストランドからできている。いくつかの場合において、リッツ線は、複数のワイヤストランドの間で電流を等しく分配することを助け得、それによって、その抵抗を低減する。
ワイヤ314は円形断面形状又は矩形断面形状を有し得る。以前に説明されたように、本開示のコイル300は、ワイヤ314又は箔312を使用して作られ得る。上で記載されたコイル製造方法810は、ワイヤ314を使用して記載されているが、これは単なる例であることに留意されたい。方法910はまた、箔312を使用して実行され得る。簡潔にする目的で、コイル300を製造する方法がワイヤ314を参照して記載される。コイル300はまた、同様の方式で箔312を使用して形成され得る。
段階920を参照すると、ワイヤ314がマンドレルに巻かれ、任意の形状(すなわち任意の第1形状)を有するコイルを形成し得る。いくつかの実施形態において、コイルの第1形状は円柱形状又は台形形状であり得る。すなわち、ワイヤ314をマンドレルに巻いた結果として形成されたコイルは、その長さに沿って延在する円柱状(又は台形)の空洞320を有し得る。いくつかの実施形態において、マンドレルの周りにワイヤ314を巻く段階(すなわち段階920)は、第1端322から第2端324に延在する内部空洞320を有するコイルを形成することを含む。いくつかの実施形態において、コイルに機械的な力を加える段階(すなわち段階940)は、第1端322又は第2端324の1つにおいて内部空洞320のサイズを選択的に増加させることを含む。いくつかの実施形態において、コイルに機械的な力を加える段階(すなわち段階940)は、内部空洞320の形状を変化させることを含み得る。例えば、内部空洞320の断面形状は、1つの形状(例えば、円形断面形状)から異なる形状(例えば、矩形断面形状)に変更され得る。いくつかの実施形態において、内部空洞の形状を変化させることは、内部空洞の中心軸に垂直な平面に沿った内部空洞の断面形状を円形形状(例えば図49Aを参照)から台形形状(例えば図50C~図50Dを参照)に変化させることを含み得る。
いくつかの実施形態において、台形形状の幅及び高さの両方は、第1端から第2端に変動し得る(例えば、図7B、図48A~図48Dを参照)。いくつかの実施形態において、台形形状の周長は、第1端から第2端にかけて実質的に一定であり得、台形形状の面積は第1端から第2端に変動する。いくつかの実施形態において、台形形状の面積は第1端から第2端に増加する。いくつかの実施形態において、コイルに機械的な力930を加える段階は、コイルの内部空洞に第2マンドレルを挿入して、内部空洞の第2端の形状と比較して、内部空洞の第1端の形状を変化させることを含み得る。「第2マンドレル」という用語は、コイルの形状を円柱状から台形に変化させるように構成されている中実材料を示す。
コイルに機械的な力930を加える段階は、第1の機械的な力(例えば方向960の機械的な力)を加えて、第1端又は第2端の一方において内部空洞の寸法を増加させ、第2の機械的な力を加えて、第1端又は第2端の他方において内部空洞の寸法を減少させることを含み得る。いくつかの実施形態において、第1の機械的な力は、内部空洞の中心軸に向かって作用し得、第2の機械的な力は、中心軸から離れるように作用する。いくつかの実施形態において、機械的な力930をコイルに加える段階は、内部空洞の第1端又は第2端のうちの少なくとも1つを画定するコイルのワイヤを伸ばすことを含む。いくつかの実施形態において、ワイヤは銅からできていることがあり得る。
本開示の様々な実施形態は電気機械を含む。本明細書において使用される場合、電気機械(electric machine又はelectrical machine)は、電磁力に基づいて動作するデバイスであり得る。一般的に、電気で動作する、又は、電気を生成する任意のタイプの電気機械的エネルギー変換器が電気機械であり得る。必要ではないが、いくつかの実施形態において、電気機械は、電気モータ又は発電機であり得る。動作中、電気機械は磁束を生成する。ラジアルフラックス電気機械において、生成された磁束の少なくともいくつかの部分は、機械の回転軸に垂直に延在し得る。電気機械は、空隙によって隔離されたステータ及びロータを含み得る。ラジアルフラックス電気機械において、動作(又は主な)磁束は、ラジアル平面における空隙を通じて、ロータとステータとの間に延在し得る。
図53、図54及び図55は、例示的な電気機械10の異なる図を描写する。例示的な電気機械10は、ステータ100、ロータ200、ベースプレート56、複数の歯120、及び電磁コイル300を含み得る。電気機械10は、ハウジング50を有する空気冷却システムであり得る。外部リブ52は、端シールド54とステータベースプレート56との間のハウジング50の表面上に位置し得る。図53に図示されるように、ステータベースプレート56は、そこから延在する複数のピン58を含み得る。外部リブ52及びピン58は、動作中に電気機械10によって生成された熱を周辺の空気に伝達することを助け得る。下の論述において、電気モータの形態の電気機械10が記載される。しかしながら、当該記載は、例えば発電機などの他のタイプの電気機械に等しく適用可能である。電気機械10が動作するとき、そのシャフト20は回転し得る。電気機械10のコンポーネントは、下でより詳細に記載される。
本開示の電気機械は、回転軸の周りを回転するように構成されているロータ、及び、回転軸の周りにステータコア上に環状に配置された複数の歯を有するステータを含み得る。一般的に、ステータは、電気機械の任意の静止コンポーネント(又はコンポーネントの組立体)であり得、ロータは、ステータに対して移動するように構成されている任意の電気機械コンポーネント(又はコンポーネントの組立体)であり得る。いくつかの実施形態において、ステータは、ロータに対して固定されて位置付けられ得る。いくつかの実施形態において、ロータは、ステータに対して回転軸の周りを回転するように構成され得る。ロータは、ロータと共に回転するシャフト(ロータシャフト)に連結され得る。ロータ(及びシャフト)がその周りを回転する軸は、「回転軸」と称され得る。本明細書において使用される場合、複数の歯は、ボディから突出する突起を指し得る。歯は、ボディから突出する一連の実質的に同様の突起を含み得る。例えば、ステータが歯を含む実施形態において、ステータのボディ又はコアから突出する一連の実質的に同様の突起は歯を含み得る。追加的に、又は代替的に、ロータが歯を含む実施形態において、ロータのボディ又はコアから突出する一連実質的に同様の突起は、歯を含み得る。ラジアルフラックス電気機械において、歯はラジアル平面において突出し得る。換言すると、ラジアル平面における歯は、ラジアル方向において(内向き又は外向きに)突出し得る。各突起は歯を形成し得る。典型的には、突起(又は歯)は、ステータとロータとの間で磁束の大部分を誘導するよう構成され、又はそのような形状であり得る。
ステータコアは、単一又は複数の部品からできていることがあり得るステータのメインボディを指し得、回転する磁場を支持及び保護し得る。ステータコアは、電気機械の磁束を伝導するために軟磁性材料からできていることがあり得る。回転軸の周りに、ステータコア上に環状に配置された複数の歯は、回転電気機械のロータシャフトの軸の周りに、ラジアル平面においてコアから突出する歯を指し得る。いくつかの実施形態において、ステータコアは、回転軸を囲んで延在する環状ステータリングを含み得、複数の歯の各歯は、環状ステータリングと一体のコア歯部分を含み得る。環状ステータリングはリング形状構造を指し得る。リング形状構造は、電気機械の回転軸を囲んで配設され得る。コア歯部分は、ラジアル平面におけるステータリングの環状ステータリングから突出する部品を指し得る。「一体」という用語は、本明細書において、2つの部品が接続されて、部品の完全性を破壊することなく事実上取り外すことができない単一部品を形成することを示すために使用され得る。いくつかの場合において、2つの一体的に形成された部品は単一部品として形成され得る。追加的に、又は代替的に、複数の歯の各歯は、コア歯部分と非一体的に形成された1又は複数の追加歯部分を含み得る。1又は複数の追加歯部分がコア歯部分と非一体的に形成されるとは、環状ステータリングから容易に分離され得る方式で、1又は複数の追加歯部分が共に取り付けられることを指し得る。いくつかの実施形態において、追加歯部分はウェッジ形状であり得る。いくつかの実施形態において、追加歯部分の対は、コア歯部分の対向する両側に配置された歯部分を含み得る。別の例として、追加歯部分の対はまた、コア歯部分の上面及び底面上に配置された歯部分を含み得る。
特定の実施形態において、すべての歯部品が共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し得、2組の各組の対向する面は互いに非平行であり、2組の対向する面の各面はラジアル方向に傾斜し得る。すなわち、例えば、面A~面Dを有する歯については、面A及び面Bの対は互いに非平行であり得、面C及び面Dの別の対は、互いに非平行であり得る。追加的に、又は代替的に、隣接する歯の対向する面は互いに実質的に平行であり得る。すなわち、例えば、1つの歯の面Cは、隣接する歯の面Dに平行であり得る。隣接する歯の間に形成されるスロットがラジアル方向において一定の幅を有するように、対向する両側面は、互いに平行であり得る。いくつかの実施形態において、ラジアル方向に垂直な平面における各歯の断面は矩形形状を有し得、断面の周長は、ラジアル方向に実質的に一定であり得、断面の面積はラジアル方向において変動し得る。
図53は、電気機械10のアキシャル平面に沿った電気機械10の断面図を図示する。図53において、電気機械10の回転軸1000はアキシャル平面内に存在し、アキシャル平面は、電気機械10を2つの対称的な半分に二分する。ラジアル平面は、回転軸に垂直に延在し、回転軸1000は、ラジアル平面に垂直に(例えば、本文書に入る、及び、本文書から外に出る方向に)延在する。電気機械10はステータ100及びロータ200を含み得る。ロータ200は、回転軸1000の周りをステータ100に対して回転するように構成され得る。ステータ100は、複数の歯120を含むステータコア110を含み得、ロータ200は、複数の永久磁石220を設置されたロータコア210を含み得る。電磁コイル300は、ステータ100の歯120に環状に装着され得る。ロータ200は、回転軸1000の周りを回転するように構成され得るシャフト20に接続され得る。電力が電磁コイル300に提供されるとき、磁場が生成され得る。生成された磁場に基づいて、磁束がロータ200とステータ100との間を流れ得、それによって、回転力をロータ200に提供する。電気機械10は、任意の適切な適用において、電源として使用され得る。例えば、自動車において、電気機械10は、自動車の車輪を駆動し得る。
電気機械10のステータ100は、ステータ100のステータコア110上に、回転軸1000の周りに環状かつ対称に配置された複数の歯120を含み得る。各歯120は、共に配置されて複合体又は多部品歯120を形成し得る複数のピース又は部品を含み得る。各歯120は、アキシャル平面及びラジアル平面の両方において矩形又は台形断面形状を有し得る。各歯120の幅及び長さはラジアル方向において変動し得る。すなわち、図53に図示されるように、歯120の長さは、歯120のラジアル方向外向きにおいて(ラジアル軸2000に沿って)lからlに変動し得、歯120の幅は、歯120のラジアル方向外向きに変動し得る(示されない)。図54に描写される電気機械10など、いくつかの実施形態において、歯は、コア歯部分122、及び、コア歯部分122の対向する両側面に位置する追加歯部分124A及び124Bの対を含み得る。
本開示の電気機械は複数の電磁コイルを含み得る。電磁コイル(又は電気コイル)は、電流が(例えば電気モータにおける)導体を通過するときに磁場を生成し得る、又は、磁場がコイルを通過するときに導体に電圧を生成し得る導電体の1又は複数の巻いたもの(又は巻線)を含み得る。いくつかの実施形態において、導電体を巻いたものは、コイルのような構成又は形状であり得る。いくつかの実施形態において、電磁コイルは、強磁性コアを囲んで掛けられるように構成され得る一連の伝導性ワイヤを含む導電体であり得る。一般的に、本開示の電磁コイルは、電気機械のステータ又はロータと関連付けられ得る。すなわち、いくつかの実施形態において、複数のコイルはロータに連結され得(例えば、装着され、設置され、巻かれ)、他の実施形態において、複数のコイルはステータに連結され得る。いくつかの実施形態において、複数の電磁コイルの各コイルは、複数の歯の別個の歯に装着され得る。これらの実施形態において、ステータコアから突出する複数の歯の各歯は、導電体の1又は複数の巻いたものを含む電磁コイルを含み得る。
図54は、図53の例示的な電気機械10のステータ100の透視図を描写し、図55は、アキシャル平面におけるステータ100の断面図を描写する。各電磁コイル300は、歯120に装着又は設置され得る。いくつかの実施形態において、電磁コイル300の内面が歯120の外面に対して緊密に篏合するように電磁コイル300が歯120に設置され得る。いくつかのそのような実施形態において、電磁コイル300の外部形状(又は輪郭)は、それが装着された歯120の外部形状と実質的に同一であり得る。ステータ100の各歯120は、隣接する歯120に装着された電磁コイル300を収容し得るスロット160によって、隣接する歯120から隔離され得る。歯がコア歯部分122及び追加歯部分124A及び124Bを含む実施形態において、コア歯部分122の外面と電磁コイル300の内面との間に1又は複数の間隙が形成された状態で、電磁コイル300がコア歯部分122を囲んで延在するように、各多部品歯120のコア歯部分122は、電磁コイル300に装着され得る。そのような実施形態において、コア歯部分122の対向する両側面と電磁コイル300の内面との間に2つの間隙が形成され得、追加歯部分124A又は124Bの1つは、一方の間隙内に位置し得、他方の追加歯部分124B又は124Aは、他方の間隙内に位置し得る。ステータ100は歯120を含むように記載されているが、いくつかの実施形態において、ロータ200は代替的に、又は追加的に、歯120を含み得ることにも留意されたい。
本開示の電気機械は、複数の電磁コイル及びステータコアに隣接するように位置するベースプレートを含み得る。ベースプレートとは、ステータコア及び電磁コイルをその上で組み立て得るようにステータに取り付けられたピース又は部品の組み合わせを指し得る。ベースプレートは、熱をそのソースから伝導及び除去するために熱伝導性材料からできていることがあり得る。例えば、ベースプレートはアルミニウムから形成されることがあり得る。複数の電磁コイル及びステータコアが動作中に加熱するときにベースプレートが複数の電磁コイル及びステータコアについての共通のヒートシンクとして機能するように構成され得るように、ベースプレートは、複数の電磁コイル及びステータコアと熱的に接触し得る。熱的に接触(又は熱的に接続)とは、それらの間に良好な熱交換が生じるようなベースプレートと複数の電磁コイルとの間の近接性を指す。いくつかの実施形態において、2つのボディが熱的に接触し、又は、熱的に接続されているとき、2つのボディの間の熱交換が、伝導伝熱機構によって生じ得る。すなわち、2つのボディは物理的に接触し得る。2つのボディは熱的に接続される(又は熱的に接触する)ときに物理的に直接接触し得るが、これは必須ではない。例えば、熱的に接触している2つのボディは、2つのボディ間に配設されたサーマルインタフェースマテリアル(例えば、熱伝導性グリースなど)を介して互いに物理的に接触し得る。サーマルインタフェースマテリアルがこのように配設される場合、伝導伝熱が、その間のサーマルインタフェースマテリアルを通じて、(熱的に接触する)2つのボディの間で発生する。共通のヒートシンクとは、複数の電磁コイル及びステータコアによって生成された熱を、電気機械から熱を放散して電気機械の温度の制御を可能にし得る流体媒体、例えば、空気又はクーラント液に伝達し得る受動熱交換器を指し得る。
いくつかの実施形態において、複数の電磁コイルの各コイル及び/又はステータコアは、直接的に、又は、それらの間に配設された熱伝導性材料を通じて、ベースプレートに接触し得る。熱伝導性材料とは、システム間の熱エネルギーの交換及び伝達を改善する材料を指し得る。上に記載したサーマルインタフェースマテリアルは熱伝導性材料であり得る。熱伝導性材料の厚さ及びその熱伝導性は、熱エネルギーの交換及び伝達に影響を与え得る。したがって、いくつかの実施形態において、複数の電磁コイルとステータコアとの間に配設された熱伝導性材料及びベースプレートは、その熱抵抗を低減するために、熱伝導性材料の薄い層であり得る。熱伝導性材料の厚さは適用に依存する。熱伝導性材料の熱伝導性が高い適用では、熱伝導性材料の厚さはより高いことがあり得る。
いくつかの実施形態において、電気機械は更に、ベースプレートに熱的に接続されたモータハウジングを含み得、複数の電磁コイル及びステータコアによって生成された熱がベースプレート及びモータハウジングを通じて放散することを可能にする。モータハウジングとは、電気機械のステータ及びロータを内部に収容するように構成され得るケーシングを指し得る。モータハウジングは、熱伝導性材料からできていることがあり、伝熱表面を増加させるためのリブを含み得る。いくつかの実施形態において、ベースプレートは、第1側、及び、第1側の反対の第2側を含み得、複数の電磁コイル及びステータコアは、ベースプレートの第1側と熱的に接触し得、モータハウジングは、ベースプレートの第2側と熱的に接触し得る。側とは、ベースプレートの縦、上、下、前、又は裏であり得る、ベースプレートの表面を指し得る。特定の実施形態において、ベースプレートの第2側は、そこから延在する冷却フィンを含み得る。冷却フィンは、対流を増加させることによって、環境への、又は環境からの伝熱の速度を増加させる物体から延在する表面を指し得る。冷却フィンは、物体の表面積を増加させ、その結果、伝熱の問題に対する経済的かつ十分な解決法をもたらし得る。冷却フィンは、伝熱表面を増加させるために、熱伝導性材料からできていることがあり得る。冷却フィンは、任意の形状及び構成を有し得る。いくつかの実施形態において、冷却フィンは、ベースプレートから突出するプレート状構造を含み得る。いくつかの実施形態において、冷却フィンは複数のピンを含み得る。ピンは、任意の断面形状(例えば、円形、正方形、矩形など)を有し得、熱を除去できる面積を増加させることによって、表面からの伝熱を強化し得る。いくつかの実施形態において、ピンは、他のヒートシンクの方法と比べて、大きい表面積を有し得るので、効率的な冷却の解決法を呈し得る。加えて、ピンの間の空間は、空気がこれらの空間を流れて表面に乱流を形成することを可能にし得る。乱流は、フィンの表面に存在し得る任意の境界層を崩すこと(及び、表面の対流伝熱係数を増加させること)を助け得る。ピンのヒートシンクは、ベース、及び、組み込まれたピンのアレイから成り得、その寸法(例えば、長さ、厚さ、密度、材料)は、関連する熱負荷、利用可能な空間、及び空気流に応じて、様々な適用に合うようにカスタマイズされ得る。
いくつかの実施形態において、ベースプレートは、回転軸を囲んで延在する円柱状ハブ部分を含み得る。本明細書において使用される場合、円柱状ハブ部分は、ステータコアを固定するように機能する円柱状構成を有するベースプレートの部分を指し得る。円柱状ハブ部分は、熱をそのソースから伝導及び除去するために熱伝導性材料からできていることがあり得る。追加的に、ステータコアは、ベースプレートの円柱状ハブ部分を囲んで延在する環状ステータリングを含み得る。本明細書において使用される場合、環状ステータリングはリング形状構造であり得る。リング形状構造は、電気機械の回転軸を囲んで配設され得る。円柱状ハブ部分を囲んで延在する環状ステータリングは、円柱状ハブ部分の側方を囲むような方式で円柱状ハブ部分を完全又は部分的にカバーする環状ステータリングを指し得る。いくつかの実施形態において、環状ステータリングの内側環状面は、直接的に、又は、間に配設された熱伝導性材料を通じて、ベースプレートの円柱状ハブ部分の外側環状面と接触し得る。いくつかの実施形態において、ベースプレートは、ロータが回転するとき、空気を複数の電磁コイルへ誘導するように構成されている通気口を含み得る。通気口とは、それを通る空気の流入を可能にする経路、開口、空洞、又は排出口を指し得る。いくつかの実施形態において、通気口は、通気口を通じて空気を出すために、ファンブレードと同様に動作するベーンに関連付けられ得る。通気口(及び、ある場合はベーン)は、電気機械を冷却するために空気流を誘導するように設計及び構成され得る。
図54、図55及び図56において、電磁コイル300は、ベースプレート56とステータ100の歯120との間に密に篏合することが示されている。電磁コイル300は、ベースプレート56の第1側602及び歯120と直接接触し得、又は、熱伝導性フィラー材料を介して、ベースプレート56の第1側602及び歯120と熱的に接触し得る。ステータコア110は、ステータ100の円柱状ハブ部分132に対して緊密に篏合し得る。ハブ部分132はステータベースプレート56に接続され得る。ベースプレート56及びその円柱状ハブ部分132は、1つの単一ピース、又は、2つの別個の部品の形態で作られ、熱伝導性材料、例えばアルミニウムからできていることがあり得る。ステータベースプレート56の第2側604は、ピン58の形態でできている冷却フィンを備え得、それにより、ステータベースプレート56の第2側604の冷却表面を著しく増加させ得る。電磁コイル300はまた、熱伝導性フィラーの助けによりその上に装着されるステータコア110の歯120に密に篏合する、又は、接触し得る。電気機械の動作中、図53に概略的に図示されるように、(例えば、コイルを通過する電流に起因して)電磁コイル300において生成される熱の一部は、歯120及び円柱状ハブ部分132を通じてベースプレート56に伝導し得る。
図53にも図示されるように、コイル300において生成される熱の一部は、熱的に接触しているベースプレート56に直接伝導し得る。(コイル300とベースプレート56との間の)直接的な物理的接触に起因して、コイル300がベースプレート56に熱的に接触する実施形態において、コイル300からの熱は、ベースプレート56へ直接伝導し得る。熱伝導性材料(又は熱伝導性フィラー)がコイル300とベースプレート56との間に設けられる実施形態において、コイル300からの熱は、熱伝導性材料を通じてベースプレート56に伝導し得る。したがって、コイル300とベースプレート56との間の熱的接触は、熱がコイル300から外に伝導するための追加の短い経路を提供する。コイル300はベースプレート56と熱的に接触するので、この経路を通じて、熱がコイル300からベースプレート56に容易に通過し得る。すなわち、歯120及び円柱状ハブ部分132を介して熱がコイル300からベースプレート56に通過することとは対照的に、コイル300とベースプレート56との間の熱的接触は、ベースプレート56へのより直接的な熱伝導経路を提供する。次に、ベースプレート56の第2側604上のピン58を越える空気流が、ベースプレート56からの熱を除去し得る。
したがって、上の論述から、電磁コイル300及び歯120を有するステータコア110によって生成された熱は、ステータベースプレート56及びその円柱状ハブ部分132を通じて伝導され、環境内に放出され得ることが理解され得る。加えて、図53に図示されるように、ステータベースプレート56からの熱の一部は、それに接続されたハウジング50を通じて通過し得、また、その外側リブ52を通じて環境内に放出され得る。ハウジング50は、熱導電性材料からできていることがあり得る。ステータベースプレート56は、電気機械10のための空気冷却ラジエータとして作用し得る。加えて、図53は、コイル300からベースプレート56への例示的な熱伝導経路600を描写する。
ハウジング50の内面、及び/又は、ロータ200の外面はまた、内部リブ又はフィン(示されない)を有し得る。電気機械10のためのこれらのフィンは、通気孔と同様に、ロータ200が回転するときに空気を撹拌することを意図するものであり得る。これにより、熱が、磁石及びロータコアの形態の熱源から除去され、ハウジング50へ、更には環境内へ伝達されることが可能となり得る。
上の論述において、電気機械10は、空気冷却機械として記載されている。しかしながら、これは単なる例である。いくつかの実施形態において、電気機械10は液体冷却され得る。本開示の電気機械は、冷却液体を誘導するように構成されているクーラント液チャネルを含み得る。冷却液体(又はクーラント)は、コイル300によって生成された熱を電気機械から除去し得る。いくつかの実施形態において、動作中にコイル及びステータコアが加熱につれて、ベースプレートが、熱をクーラント液チャネルにおけるクーラント液に伝達して、複数の電磁コイル及びステータコアから熱を放散するように構成されるように、クーラント液チャネルがベースプレートの第2側で画定され得る。いくつかの実施形態において、クーラント液チャネルは、ベースプレートを通じて画定され得る。クーラント液チャネルとは、液体の流れを可能にするように構成されている空洞又は経路を指す。液体は、チャネルの壁から熱を除去するように構成され得る。クーラント液チャネルを流れるように構成されている任意の液体はクーラントとして機能し得る。チャネルを流れる液体の温度が、冷却される部品より低いとき、液体は、部品から熱を除去し、それによって、部品を冷却する。任意の知られたクーラント液(例えば、水、油、グリコール混合物、誘電流体;など)が、クーラント液チャネルを通じて誘導され得る。
いくつかの実施形態において、クーラント液チャネルの壁は、複数の電磁コイルに熱的に接触しているベースプレートの第1側の部分の直接反対にあるベースプレートの第2側の部分であり得る。ベースプレートの第2側の環状領域がクーラント液チャネルの壁として機能し得るように、クーラント液チャネルは、回転軸を囲んで延在し得る。追加的に、又は代替的に、ベースプレートの第2側の環状領域は、クーラント液チャネル内に延在する複数のフィンを含み得る。複数のフィンは回転軸の周りに配置され得る。フィンは、クーラント液チャネルを流れるクーラント液によって熱を除去できる表面積を増加させ得る。いくつかの実施形態において、フィンはピンの形態であり得る。以前に説明されたように、ピンは、ベースプレートの第2側からクーラント液チャネル内に突出する(任意の断面形状の)円柱状の突起であり得る。いくつかの実施形態において、クーラント液チャネルは、クーラント吸入口及びクーラント排出口を有し得る。クーラント吸入口は、クーラントをクーラント液チャネル内に誘導するように構成され得、クーラント排出口は、クーラントをクーラント液チャネルから外に誘導するように構成され得る。クーラントを(例えば、チャネルに入るように、又は、それから外に出るように)誘導するように構成されている任意の開口は、クーラント吸入口及びクーラント排出口として機能し得る。
いくつかの実施形態において、クーラント吸入口及びクーラント排出口は、流体フィッティング(カップリングなど)を有し得、又は、そうでない場合、密封方式でクーラントをチャネル内に、又はチャネルから外に誘導するように構成され得る。いくつかの実施形態において、クーラント吸入口及び/又はクーラント排出口は、ラジエータ又は熱交換器に流体的に接続され得る。熱交換器は、クーラントから熱を除去するように構成され得る。いくつかの実施形態において、クーラント排出口からの加熱されたクーラントが熱交換器において冷却され、クーラント吸入口を通じて電気機械内に再び誘導されるように、クーラント吸入口、熱交換器、及びクーラント排出口は、閉ループを形成し得る。任意のタイプの熱交換器が使用され得る。いくつかの実施形態において、クーラント排出口は、電気機械を一部として有するシステムの共通の熱交換器(又はラジエータ)に流体的に接続され得る。例えば、電気機械が電気自動車の部品である(例えば、電気自動車の車輪に動力を提供するために使用される)実施形態において、クーラント排出口は、電気自動車の共通のラジエータに接続され得る。そのようないくつかの実施形態において、電気機械を冷却するために使用されるクーラント液は、電気自動車(又は、電気機械を一部として有する他のシステム)の他のコンポーネントを冷却するために使用されるクーラントであり得る。クーラント液が上で記載されているが、一般的に、任意の流体クーラント(液体又は気体)が電気機械を冷却するために使用され得ることに留意されたい。気体クーラントが電気機械を冷却するために使用される実施形態において、クーラント気体は、ベースプレートにおけるクーラントチャネルを通じて誘導され得る。
図57~図60は、液体冷却される、本開示の例示的な電気機械700の異なる図を図示する。図57は、ステータベースプレート56の第2側604で画定される例示的なクーラント液チャネル702を描写する。クーラント液チャネル702は、ステータベースプレート56の第2側604とハウジング50のケーシングカバー712との間で画定される空洞であり得る。チャネル702は、電気機械700の回転軸1000を囲んで延在し、電気機械を囲んで延在する環状経路を形成し得る(例えば、図60を参照)。いくつかの実施形態において、図57及び図60において最も良く分かるように、チャネル702は、多部品歯120に装着されたコイル300の直接下に(又は隣接して)位置し得る。チャネル702のラジアル方向位置(又は、回転軸1000からのラジアル方向距離)は、コイル300と実質的に同一であり得る。図57に図示されるように、チャネル702のラジアル方向寸法(例えば、ラジアル方向幅r)も、コイル300のラジアル方向寸法(例えば、ラジアル方向幅r)と実質的に同一であり得る(又は対応し得る)。すなわち、環状チャネル702は、回転軸1000を囲むコイル300と実質的に同一のラジアル方向サイズを有する経路をたどり得る(例えば、図60を参照)。単一チャネル702が図示及び記載されているが、これは単なる例である。いくつかの実施形態において、複数のクーラントチャネル(例えば、複数のラジアル方向に空間を空けたチャネル)が設けられ得る。また、図57のチャネル702がベースプレート56の第2側604とケーシングカバー712との間に画定されているが、これは単なる例であることに留意されたい。多くの変形例が可能である。いくつかの実施形態において、チャネル702は、ベースプレート56を通じて延在し得る。
図57に示すように、チャネル702を密封して漏洩を防止するために、ベースプレート56とケーシングカバー712との間にガスケット706が設けられ得る。図57に示されるように、ベースプレート56の伝熱表面を増加させるべく、フィン716は、ベースプレート56の第2側604からチャネル702内に延在し得る。フィン716は、回転軸1000を囲んで延在し、ベースプレート56からチャネル702内に突出する環状プレートからラジアル方向に空間を空けて形成し得る。以前に説明されたように、フィン716の図示されたパターンは単なる例である。多くの他のパターンが可能である。いくつかの実施形態において、フィン716はピンとして構成され得る。すなわち、複数の柱状の突起がベースプレート56からチャネル702内に突出し得る。図57には表示されていないが、ベースプレート56(及び/又はケーシングカバー712)はまた、クーラントをチャネル702内に誘導するように構成されているクーラント吸入口、及び、クーラントをチャネル702から外に誘導するように構成されているクーラント排出口を含み得る。いくつかの実施形態において、複数のクーラント吸入口及び/又は排出口が設けられ得る。
いくつかの実施形態において、クーラント液チャネルはまた、電気機械700の他のコンポーネントを通じて延在し得る。図58~図60は、ステータ100の円柱状ハブ部分132を通じた例示的なクーラント液チャネル704を図示する。いくつかの実施形態において、液体の通過のためのチャネルはまた、ステータコア110及び/又はハウジング50を通じて延在し得る。電磁コイル300及びステータコア110(及び/又は他のコンポーネント)によって生成される熱は、(例えば伝導によって)ステータベースプレート56及びその円柱状ハブ部分132を通じて、クーラント液チャネル702及び704内に通過し得る。チャネル702、704を流れる液体は次に、冷却のために熱をラジエータ(示されていない)に伝達し得る。ラジエータからの冷却された液体は、チャネル702及び/又は704へ再び誘導され得る。いくつかの実施形態において、液体は、圧力を受けてチャネル702及び/又は704を流れ得る。内部ロータ200を有する電気機械のいくつかの実施形態において、熱を除去するためのクーラントチャネルが、ハウジング50の中央部品及びそのベアリング部品内に位置し得る。
コイル300をロータベースと熱的に接触した状態に維持することによって電気機械のコイル300を直接冷却することは、コイル300を冷却するための、追加のより容易な経路を提供する。すなわち、コイル300からの熱を、歯120、ハブ部分132、及びベースプレート56を介して外部環境に伝達することに依存するのではなく、コイル300をベースプレート56に熱的に接触した状態に維持することにより、より容易、より効果的なコイル300の冷却を可能にする。電気機械の冷却の改善は、結果として、電気機械の効率及び動力の改善をもたらす。
電気機械及びその関連する方法の上に記載した実施形態は単なる例である。多くの変形例が可能である。いくつかの可能な変形が、参照によって全体が本明細書において組み込まれる、米国特許第9,502,951号及び第10,056,813号に記載されている。上に記載された方法は、論じられる、又は示される順序で実行される必要はない。更に、複数の段階が省略され、組み合わされ、及び/又は、いくつかの段階が追加され得る。更に、電気機械のいくつかの態様が、特定の構成の電気機械を参照して記載されているが、記載される態様は、任意の構成を有する電気機械において使用され得る。電気機械及び関連する方法の他の実施形態は、本明細書の開示を考慮することにより、当業者にとって明らかとなるであろう。

Claims (180)

  1. 回転軸の周りを回転するように構成されているロータ;
    ステータ;
    ここで、前記ロータ又は前記ステータのうちの少なくとも1つは、前記回転軸の周りに環状に配置された複数の歯を含む;及び、
    複数の電磁コイル、ここで、前記複数の電磁コイルの各コイルは、それを通る不均一台形空洞を有し、それぞれの空洞は、前記複数の歯のうちの1つの歯を中に含むように構成されており、前記複数の歯の各歯は、共に組み立てられたときに前記不均一台形空洞の形状に対応する複数のピースから形成されている、
    を備えるラジアルフラックス電気機械。
  2. 各歯の前記複数のピースが共に組み立てられるとき、各歯の外周は、対応するコイルの前記空洞の内周に対応する、請求項1に記載の電気機械。
  3. 各歯がコア歯部分及び少なくとも1つのウェッジ形状部分を含む、請求項1または2に記載の電気機械。
  4. 各歯は、コア歯部分、及び、前記コア歯部分の対向する両側に配設された少なくとも2つのウェッジ形状部分を含む、請求項3に記載の電気機械。
  5. 前記回転軸に垂直な平面において、前記コア歯部分は、実質的に矩形の断面形状を有し、前記少なくとも1つのウェッジ形状部分は、実質的に三角形の断面形状を有する、請求項3または4に記載の電気機械。
  6. ラジアル方向に垂直な平面において、前記コア歯部分及び前記少なくとも1つのウェッジ形状部分は、実質的に矩形の断面形状を有する、請求項3から5のいずれか一項に記載の電気機械。
  7. 各歯の前記コア歯部分及び前記少なくとも1つのウェッジ形状部分は、接着材料を使用して共に連結されている、請求項3から6のいずれか一項に記載の電気機械。
  8. 各歯の前記コア歯部分は、前記回転軸を囲んで延在する環状リングと一体的に形成されている、請求項7に記載の電気機械。
  9. 各歯の前記複数のピースが共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し、前記2組の各組の前記対向する面は互いに非平行である、請求項1から8のいずれか一項に記載の電気機械。
  10. 隣接する歯の対向する面は互いに平行である、請求項9に記載の電気機械。
  11. 前記2組の対向する面の各面は、ラジアル方向において傾斜している、請求項9に記載の電気機械。
  12. 一方の組の対向する面の前記対向する面は、ラジアル方向外向きに互いに向かって近づき、他方の組の対向する面の前記対向する面は、前記ラジアル方向外向きに互いから離れる、請求項11に記載の電気機械。
  13. 前記回転軸に垂直な平面における各歯の断面は、台形形状を有し、ラジアル方向に垂直な平面における各歯の断面は矩形形状を有する、請求項1から12のいずれか一項に記載の電気機械。
  14. ラジアル方向に垂直な前記断面の周長は、前記ラジアル方向において実質的に一定である、請求項13に記載の電気機械。
  15. 前記ラジアル方向に垂直な前記断面の面積は、前記ラジアル方向において変動する、請求項14に記載の電気機械。
  16. 前記ステータは、前記複数の歯を含み、前記ラジアル方向に垂直な前記断面の面積は、前記ラジアル方向において前記ロータに向かって増加する、請求項15に記載の電気機械。
  17. アキシャル平面における各歯の断面は等脚台形形状を有する、請求項13から16のいずれか一項に記載の電気機械。
  18. 各歯の前記複数のピースのうちの少なくとも1つのピースは、軟磁性複合材料(SMC)から形成されている、請求項1から17のいずれか一項に記載の電気機械。
  19. 前記ステータは前記複数の歯を含み、各歯の前記複数のピースのうちの第1ピースは、前記回転軸を囲んで延在する環状ステータリングと一体であり、前記環状ステータリングからラジアル方向に延在し、各歯の前記複数のピースのうちの第2ピースは、前記第1ピースと非一体的に形成されている、請求項1から18のいずれか一項に記載の電気機械。
  20. 前記電気機械は、電気モータ又は発電機の1つである、請求項1から19のいずれか一項に記載の電気機械。
  21. 回転軸の周りを回転するように構成されているロータ;及び
    前記ロータの近傍に固定されて位置付けられているステータ
    を備え、前記ロータ又は前記ステータのうちの少なくとも1つは、前記回転軸の周りに環状に配置された複数の歯を含み、前記複数の歯のうちの各歯はラジアル方向に延在し、前記ラジアル方向に垂直な複数の平面における各歯の複数の断面の面積は変動し、前記複数の断面の周長は、前記垂直な複数の平面にわたって実質的に同一である、ラジアルフラックス電気機械。
  22. 前記電気機械のアキシャル平面又はラジアル平面のうちの少なくとも1つにおける各歯の形状は台形である、請求項21に記載の電気機械。
  23. 前記電気機械のアキシャル平面又はラジアル平面のうちの少なくとも1つにおける各歯の前記形状は等脚台形である、請求項22に記載の電気機械。
  24. 前記複数の歯は、前記ステータ上に環状に配置されている、請求項21から23のいずれか一項に記載の電気機械。
  25. 前記ロータは、前記ステータのラジアル方向外向きに配設され、ラジアル平面における各歯の幅は前記ラジアル方向において前記ロータに向かって増加し、アキシャル平面における各歯の長さは、前記ラジアル方向において前記ロータに向かって減少する、請求項24に記載の電気機械。
  26. 各歯は前記ラジアル方向に延在し、前記ラジアル方向に垂直な平面における各歯の断面積は、前記ラジアル方向において前記ロータに向かって増加する、請求項25に記載の電気機械。
  27. 前記ロータは、前記ステータのラジアル方向内向きに配設され、前記ラジアル方向に垂直な平面における前記複数の歯の各歯の断面積は、前記ラジアル方向において前記ロータに向かって増加する、請求項24から26のいずれか一項に記載の電気機械。
  28. 前記複数の歯は前記ロータ上に環状に配置されている、請求項21から27のいずれか一項に記載の電気機械。
  29. 前記電気機械は更に複数の電磁コイルを含み、前記複数の電磁コイルの各コイルは、前記複数の歯の別個の歯を囲んで延在する、請求項21から28のいずれか一項に記載の電気機械。
  30. 各コイルは、正方形、矩形、又は円形の断面形状のうちの1つを有する銅線を含む、請求項29に記載の電気機械。
  31. 前記銅線はマルチストランドであり、各コイルは、歯に沿って前記ラジアル方向においてらせん状の形態で巻かれている、請求項30に記載の電気機械。
  32. 各コイルは、歯を囲んで巻かれた銅箔を含み、前記銅箔の平坦側は、前記ラジアル方向において前記歯の全長にわたって延在している、請求項29から31のいずれか一項に記載の電気機械。
  33. 各コイルは、歯に沿って前記ラジアル方向においてらせん状の形態で巻かれた銅箔のリブを含む、請求項29から31のいずれか一項に記載の電気機械。
  34. 各歯は、軟磁性複合材料(SMC)材料を含む、請求項21から33のいずれか一項に記載の電気機械。
  35. 各歯は、共に連結された複数のピースを含む、請求項21から34のいずれか一項に記載の電気機械。
  36. 前記複数のピースは、前記回転軸を囲んで延在する環状リングと一体的に形成されるコア部分、及び、前記コア部分に連結される1又は複数のウェッジ部分を含む、請求項35に記載の電気機械。
  37. 前記1又は複数のウェッジ部分は、前記コア部分の対向する両側に配設された少なくとも2つのウェッジ部分を含む、請求項36に記載の電気機械。
  38. 前記電気機械は電気モータ又は発電機である、請求項21から37のいずれか一項に記載の電気機械。
  39. 前記ステータ又は前記ロータの1つは、外側部品及び内側部品を含み、前記ステータ及び前記ロータは、二重の空隙によって隔離される、請求項21から38のいずれか一項に記載の電気機械。
  40. 前記外側部品及び前記内側部品は、磁気伝導性材料からできている接続部分によって共に接続されている、請求項39に記載の電気機械。
  41. 回転軸の周りを回転するように構成されているロータ;
    複数の電磁コイル;及び
    前記回転軸の周りに延在する環状ステータリング、及び、前記環状ステータリング上に円周方向に配置された複数の多部品歯を含むステータ、前記複数の多部品歯の各多部品歯は、前記環状ステータリングと一体的に形成されたコア歯部分を含み、少なくとも1つの追加歯部分は、前記環状ステータリングから隔離されている、
    を備え、ここで、前記複数の電磁コイルの各コイルは、前記複数の多部品歯の異なる多部品歯に装着され、それぞれのコイルは、前記コイルと前記コア歯部分との間の間隙を伴って、前記多部品歯の対応するコア歯部分を囲み、前記少なくとも1つの追加歯部分は、前記間隙に配設されている、ラジアルフラックス電気機械。
  42. 各多部品歯の前記コア歯部分は、軟磁性複合材料(SMC)から形成されている、請求項41に記載の電気機械。
  43. 前記環状ステータリングは軟磁性複合材料(SMC)から形成されている、請求項41または42に記載の電気機械。
  44. 前記環状ステータリングは、前記回転軸に垂直な対称面に沿って共に連結される2つの鏡面対称の半分を含む、請求項41から43のいずれか一項に記載の電気機械。
  45. 前記2つの鏡面対称の半分は、接着材料を使用して、前記対称面に沿って共に取り付けられている、請求項44に記載の電気機械。
  46. 前記環状ステータリングは、複数のアキシャル方向に積み重ねられた環状リングを含み、前記積み重ねられた環状リングのうちの少なくとも2つは軟磁性複合材料(SMC)からできている、請求項41から45のいずれか一項に記載の電気機械。
  47. 各多部品歯の前記コア歯部分は、前記環状ステータリングからラジアル方向に外向きに延在している、請求項41から46のいずれか一項に記載の電気機械。
  48. 前記ラジアル方向に垂直な平面に沿った、前記コア歯部分及び前記少なくとも1つの追加歯部分の各々の断面は、実質的に矩形の形状を有する、請求項47に記載の電気機械。
  49. 前記回転軸に垂直な平面に沿った、前記コア歯部分の断面は、実質的に矩形の形状を有する、請求項41から48のいずれか一項に記載の電気機械。
  50. 前記回転軸に垂直な前記平面に沿った、前記少なくとも1つの追加歯部分の断面は、実質的に三角形の形状を有する、請求項49に記載の電気機械。
  51. 前記回転軸に垂直な前記平面に沿った、前記複数の多部品歯の各歯の断面は、実質的に台形の形状を有する、請求項50に記載の電気機械。
  52. 前記少なくとも1つの追加歯部分は、前記コア歯部分の対向する両側に対称に配置された追加歯部分の対を含む、請求項41から51のいずれか一項に記載の電気機械。
  53. 前記複数の多部品歯の各歯の前記コア歯部分及び前記少なくとも1つの追加歯部分は、接着材料を使用して共に連結されている、請求項41から52のいずれか一項に記載の電気機械。
  54. 前記コア歯部分、前記少なくとも1つの追加歯部分、及び、前記接着材料の材料の熱膨張係数の間の差は約20%より小さい、請求項53に記載の電気機械。
  55. 各多部品歯の前記少なくとも1つの追加歯部分は、前記複数の電磁コイルのコイルの内面と前記コア歯部分の外面との間に押し込まれている、請求項41から54のいずれか一項に記載の電気機械。
  56. 前記複数の電磁コイルのコイルは、各歯の前記コア歯部分を囲んでおり、少なくとも2つの間隙が、前記コイルの内面と前記コア歯部分の対向する両側との間に形成され、前記少なくとも1つの追加歯部分は、前記少なくとも2つの間隙の異なる間隙に配設されている少なくとも2つの追加歯部分を含む、請求項41から55のいずれか一項に記載の電気機械。
  57. ラジアル方向に垂直な平面における前記複数の多部品歯の各多部品歯の断面は、矩形形状を有する、請求項41から56のいずれか一項に記載の電気機械。
  58. 前記断面の周長は、前記ラジアル方向において実質的に一定である、請求項57に記載の電気機械。
  59. 前記断面の面積は、前記ラジアル方向において変動する、請求項58に記載の電気機械。
  60. 前記電気機械は、電気モータ又は発電機である、請求項41から59のいずれか一項に記載の電気機械。
  61. 回転軸の周りを回転するように構成されているロータ;
    複数の電磁コイル;及び
    環状ステータリング、及び、ラジアル方向に延在する複数のコア歯部分を有するステータ、ここで、前記環状ステータリング及び前記複数のコア歯部分は、一体的に軟磁性複合材料(SMC)から形成されており、前記SMCは、1又は複数の等方性強磁性材料、約1.6テスラ以上の飽和磁気誘導、及び、10マイクロオーム/mより大きい電気抵抗率を含む、
    を備えるラジアルフラックス電気機械。
  62. 前記ステータは、前記環状ステータリング上に対称に配置された複数の多部品歯を含み、ここで、前記複数の多部品歯の各歯は、前記複数のコア歯部分の1つ、及び、前記複数のコア歯部分の前記1つと非一体的に形成される少なくとも1つの追加歯部分を含む、請求項61に記載の電気機械。
  63. 追加歯部分の対が、関連付けられたコア歯部分の対向する両側に配置されている、請求項62に記載の電気機械。
  64. 前記回転軸に垂直な平面に沿った、各歯のコア歯部分の断面は、実質的に矩形の形状を有し、前記回転軸に垂直な前記平面に沿った、前記少なくとも1つの追加歯部分の各追加歯部分の断面は、実質的に三角形の形状を有する、請求項62または63に記載の電気機械。
  65. 前記ラジアル方向に垂直な平面に沿った、コア歯部分及び前記少なくとも1つの追加歯部分の各々の断面は、実質的に矩形の形状を有する、請求項62から64のいずれか一項に記載の電気機械。
  66. 前記回転軸に垂直な平面における、前記複数の多部品歯の各歯の断面は台形形状を有する、請求項62から65のいずれか一項に記載の電気機械。
  67. 前記ラジアル方向に垂直な平面における前記複数の多部品歯の各歯の断面は、実質的に矩形の形状を有し、前記断面の周長は、前記ラジアル方向において実質的に一定であり、前記断面の面積は前記ラジアル方向において変動する、請求項62から66のいずれか一項に記載の電気機械。
  68. 前記ロータは、前記ステータのラジアル方向外向きに配設されて前記ロータと前記ステータとの間に空隙を形成し、前記断面の前記面積は、前記ラジアル方向において前記空隙に向かって増加する、請求項67に記載の電気機械。
  69. 前記複数の多部品歯の各歯は、2組の対向する面を有する外面を画定し、前記2組の各組の前記対向する面は互いに非平行であり、隣接する歯の隣接する側面は互いに平行である、請求項62から68のいずれか一項に記載の電気機械。
  70. 前記2組の対向する面の各面はラジアル方向において傾斜している、請求項69に記載の電気機械。
  71. 一方の組の対向する面の前記対向する面は、ラジアル方向外向きに互いに向かって近づき、他方の組の対向する面の前記対向する面は、前記ラジアル方向外向きに互いから離れる、請求項70に記載の電気機械。
  72. 前記少なくとも1つの追加歯部分は前記SMCから形成される、請求項62から71のいずれか一項に記載の電気機械。
  73. 少なくとも1つの追加歯部分は、SMC以外の等方性材料から形成されている、請求項62から71のいずれか一項に記載の電気機械。
  74. 前記環状ステータリングは、前記回転軸に垂直な対称面に沿って共に連結される2つの鏡面対称ボディを含む、請求項61から73のいずれか一項に記載の電気機械。
  75. 前記2つの鏡面対称ボディは、接着材料を使用して、前記対称面に沿って共に取り付けられ、前記SMCと前記接着材料との間の熱膨張係数の差は、約20%より小さい、請求項74に記載の電気機械。
  76. 前記SMCの前記飽和磁気誘導は、約2.4テスラ以上である、請求項61から75のいずれか一項に記載の電気機械。
  77. 前記SMCの前記飽和磁気誘導は、約2.5テスラ以上である、請求項61から75のいずれか一項に記載の電気機械。
  78. 前記SMCの抵抗率は、約100マイクロオーム/mより大きい、請求項61から77のいずれか一項に記載の電気機械。
  79. 前記電気機械は電気モータである、請求項61から78のいずれか一項に記載の電気機械。
  80. 前記電気機械は発電機である、請求項61から78のいずれか一項に記載の電気機械。
  81. 内側ステータ;及び
    前記内側ステータの周りを回転するように構成されている外側ロータ
    を備え、ここで、前記外側ロータは、
    ロータベース;
    前記外側ロータの回転軸に平行に前記ロータベースからアキシャル方向に延在する環状に配置された複数の永久磁石;
    前記複数の永久磁石を包囲する前記ロータベースから延在する円柱状コア、ここで、前記円柱状コアは、軟磁性複合材料(SMC)から形成されている;及び、
    前記外側ロータを包囲するスリーブ、ここで、前記スリーブは、前記円柱状コアを支持し、前記円柱状コアは、前記複数の永久磁石を支持し、前記円柱状コアは、ラジアル方向において前記スリーブと前記複数の永久磁石との間に位置する、
    を含む、
    ラジアルフラックス電気機械。
  82. 前記スリーブ又は前記ロータベースのうちの少なくとも1つは、非磁性材料からできている、請求項81に記載の電気機械。
  83. 前記非磁性材料は、炭素繊維、ガラスファイバ、又はアラミド繊維のうちの少なくとも1つを含む複合材料である、請求項82に記載の電気機械。
  84. 前記非磁性材料は、ステンレス鋼又はアルミニウムのうちの少なくとも1つを含む、請求項82または83に記載の電気機械。
  85. 前記スリーブは磁性材料からできている、請求項81から84のいずれか一項に記載の電気機械。
  86. 前記磁性材料は、積層された電気鋼鉄シートを含む軟磁性材料を含む、請求項85に記載の電気機械。
  87. 前記磁性材料は、鋼鉄からできている中実ボディである、請求項85または86に記載の電気機械。
  88. 前記スリーブは、前記円柱状コアの外面上に形成される凹部に配設される補強リブを含む、請求項81から87のいずれか一項に記載の電気機械。
  89. 前記円柱状コアは、前記ロータベースに連結された第1端から第2端に延在し、前記スリーブは、前記円柱状コアの前記第2端に位置するバランシングリングを含み、前記バランシングリングは、前記外側ロータの動的バランシングを提供するように構成されている、請求項81から88のいずれか一項に記載の電気機械。
  90. 前記スリーブは、前記バランシングリングにわたって延在する、請求項89に記載の電気機械。
  91. 前記バランシングリングは非磁性材料から形成されている、請求項89または90に記載の電気機械。
  92. 前記複数の永久磁石は、前記回転軸を囲んで実質的に円形のパターンで前記ロータベース上に配置されている、請求項81から91のいずれか一項に記載の電気機械。
  93. 前記複数の永久磁石は、前記ロータベース上に配置され、前記複数の永久磁石の各永久磁石の磁気軸は、前記回転軸で交差する、請求項92に記載の電気機械。
  94. 前記ロータベースはアルミニウム又は鋼鉄から形成されている、請求項81から93のいずれか一項に記載の電気機械。
  95. 前記ロータベースは、前記ロータベースが回転するときに前記回転軸に沿って空気流を誘導するように構成されている通気口を含む、請求項81から94のいずれか一項に記載の電気機械。
  96. 前記ロータベースは、前記スリーブ及び前記バランシングリングと一体である、請求項89から91のいずれか一項に記載の電気機械。
  97. 前記複数の永久磁石は、接着剤を使用して前記円柱状コアに取り付けられ、前記複数の永久磁石、前記円柱状コア、及び、前記接着剤の材料の熱膨張係数の間の差は、約20%より小さい、請求項81から96のいずれか一項に記載の電気機械。
  98. 前記スリーブは、前記ロータベースと一体であり、単一ピースを形成する、請求項81から97のいずれか一項に記載の電気機械。
  99. 前記円柱状コア及び前記スリーブの両方は、前記回転軸の周りにおいて不均一なラジアル方向の厚さを有し、前記スリーブのより厚い領域は、各永久磁石の中央に隣接して位置する、請求項81から98のいずれか一項に記載の電気機械。
  100. 前記電気機械は、電気モータ又は発電機の1つである、請求項81から99のいずれか一項に記載の電気機械。
  101. 電気機械の不規則形状の多部品歯上でコイルを組み立てる方法であって、
    前記多部品歯の少なくとも1つのウェッジ部分の幅の広い端が前記コイルの開口から外に延在するように、前記少なくとも1つのウェッジ部分を前記コイルの前記開口内に挿入する段階;
    前記少なくとも1つのウェッジ部分の前記幅の広い端が、前記コイルの前記開口から外に延在したまま、挿入された前記少なくとも1つのウェッジ部分を有する前記コイルを前記多部品歯のコア歯部分に装着する段階; 及び、
    前記多部品歯上に前記コイルを締め付けるために、前記少なくとも1つのウェッジ部分の前記幅の広い端に力を加える段階
    を備える方法。
  102. 前記少なくとも1つのウェッジ部分の前記幅の広い端に力を加える段階は、前記少なくとも1つのウェッジ部分の前記幅の広い端を前記コイルにおける前記開口内へ押す段階を含む、請求項101に記載の方法。
  103. 前記コイルにおける前記開口は第1端から第2端に延在し、前記少なくとも1つのウェッジ部分を挿入する段階は、前記幅の広い端が前記開口の前記第2端から外に延在するように、前記少なくとも1つのウェッジ部分を前記開口内に挿入する段階を含み、前記力を加える段階は、前記幅の広い端を前記開口の前記第1端に向かって押す段階を含む、請求項101または102に記載の方法。
  104. 前記コイルにおける前記開口は、第1端から第2端に延在し、前記第1端における前記開口の幅は、前記第2端における前記開口の前記幅と異なり、前記第1端における前記開口の長さは、前記第2端における前記開口の高さと異なる、請求項101から103のいずれか一項に記載の方法。
  105. 前記第1端及び前記第2端における前記開口の形状は矩形である、請求項104に記載の方法。
  106. 前記第1端における前記開口の周長は、前記第2端における前記開口の周長と実質的に同一である、請求項104または105に記載の方法。
  107. 前記第1端における前記開口の面積は、前記第2端における前記開口の前記面積から変動する、請求項106に記載の方法。
  108. 前記開口の面積は前記第1端から前記第2端にかけて増加する、請求項106または107に記載の方法。
  109. 前記少なくとも1つのウェッジ部分を前記コイルの前記開口に挿入する段階は、少なくとも2つのウェッジ部分を前記開口内に挿入する段階を含む、請求項101から108のいずれか一項に記載の方法。
  110. 前記コイルを装着する段階は、前記コア歯部分が前記少なくとも2つのウェッジ部分の間に配設されるように、前記コイルを前記コア歯部分に装着する段階を含む、請求項109に記載の方法。
  111. 接着材料を使用して、前記多部品歯の前記コア歯部分及び前記少なくとも2つのウェッジ部分を共に取り付ける段階を更に備える、請求項110に記載の方法。
  112. 前記多部品歯は、前記電気機械のステータの一部である、請求項101から111のいずれか一項に記載の方法。
  113. 前記多部品歯の前記コア歯部分は、中心軸を囲んで延在する環状ステータリング上に対称に配置された複数のコア歯部分の1つであり、前記コア歯部分は、前記環状ステータリングからラジアル方向に外向きに延在する、請求項112に記載の方法。
  114. 前記複数のコア歯部分は前記環状ステータリングと一体的に形成されている、請求項113に記載の方法。
  115. 前記中心軸に垂直な平面において、前記コア歯部分は、実質的に矩形の断面形状を有し、前記少なくとも1つのウェッジ部分は、実質的に三角形の断面形状を有する、請求項113または114に記載の方法。
  116. 前記ラジアル方向に垂直な平面において、前記コア歯部分及び前記少なくとも1つのウェッジ部分は実質的に矩形の断面形状を有する、請求項113または114に記載の方法。
  117. 前記コイルは、前記開口を囲む銅線の巻線を含み、前記銅線は、正方形、矩形、又は円形の断面形状の1つを有する、請求項101から116のいずれか一項に記載の方法。
  118. 前記コイルは、前記開口を囲むらせん状の銅撚線の巻線を含む、請求項101から116のいずれか一項に記載の方法。
  119. 前記電気機械は電気モータである、請求項101から118のいずれか一項に記載の方法。
  120. 前記電気機械は発電機である、請求項101から118のいずれか一項に記載の方法。
  121. 電気機械のステータ又はロータの歯に装着するためのコイルを製造する方法であって、
    ワイヤをマンドレルの周りに巻いて、前記マンドレルの形状に対応する第1形状を有するコイルを形成する段階;
    前記第1形状を有する前記コイルを前記マンドレルから除去する段階;
    機械的な力を前記コイルに加え、前記コイルの形状を前記第1形状から第2形状に変化させる段階、ここで、前記第2形状は前記歯の形状に対応する;及び、
    前記第2形状の前記コイルを前記歯に装着する段階
    を備える方法。
  122. 前記ワイヤは、導電体の複数のストランドから形成されている、請求項121に記載の方法。
  123. 前記ワイヤは、導電体を共に撚ることによって形成される、又は、リッツ線の形態で作られる、請求項121または122に記載の方法。
  124. 前記ワイヤは円形断面形状を有する、請求項121から123のいずれか一項に記載の方法。
  125. 前記ワイヤは、正方形又は矩形断面形状の1つを有する、請求項121から123のいずれか一項に記載の方法。
  126. 前記第1形状は、円柱形状である、又は、実質的に一定の周長を有する任意の形状である、請求項121から125のいずれか一項に記載の方法。
  127. 前記第2形状は台形形状である、請求項121から126のいずれか一項に記載の方法。
  128. 前記マンドレルの周りに前記ワイヤを巻く段階は、らせん状のパターンで前記マンドレルの周りに前記ワイヤを巻いて、第1端から第2端に延在する内部空洞を有するコイルを形成する段階を含む、請求項121から127のいずれか一項に記載の方法。
  129. 機械的な力を前記コイルに加える段階は、前記第1端又は前記第2端の1つにおける前記内部空洞のサイズを選択的に増加させる段階を含む、請求項128に記載の方法。
  130. 前記コイルに機械的な力を加える段階は、前記内部空洞の形状を変化させる段階を含む、請求項129に記載の方法。
  131. 前記内部空洞の形状を変化させる段階は、前記内部空洞の中心軸に垂直な平面に沿った前記内部空洞の断面形状を円形形状から矩形形状に変化させる段階を含む、請求項130に記載の方法。
  132. 前記矩形形状の幅及び長さの両方は、前記第1端から前記第2端にかけて変動する、請求項131に記載の方法。
  133. 前記矩形形状の周長は、前記第1端から前記第2端にかけて実質的に一定であり、前記矩形形状の面積は、前記第1端から前記第2端にかけて変動する、請求項131または132に記載の方法。
  134. 前記矩形形状の面積は、前記第1端から前記第2端にかけて増加する、請求項133に記載の方法。
  135. 前記内部空洞の形状を変化させる段階は、前記内部空洞の3次元形状を円柱形状から台形形状に変化させる段階を含む、請求項130から134のいずれか一項に記載の方法。
  136. 機械的な力を前記コイルに加える段階は、第2マンドレルを前記コイルの前記内部空洞に挿入して、前記内部空洞の前記第1端の形状を、前記内部空洞の前記第2端の形状と比較して変化させる段階を含む、請求項129から135のいずれか一項に記載の方法。
  137. 機械的な力を前記コイルに加える段階は、第1の機械的な力を加えて、前記第1端又は前記第2端の一方における前記内部空洞の寸法を増加させる段階、及び、第2の機械的な力を加えて、前記第1端又は前記第2端の他方における前記内部空洞の寸法を減少せる段階を含む、請求項129から135のいずれか一項に記載の方法。
  138. 前記第1の機械的な力は、前記内部空洞の中心軸に向かって作用し、前記第2の機械的な力は、前記中心軸から離れるように作用する、請求項137に記載の方法。
  139. 機械的な力を前記コイルに加える段階は、前記内部空洞の前記第1端又は前記第2端のうちの少なくとも1つを画定する前記コイルの前記ワイヤを伸ばす段階を含む、請求項129から138のいずれか一項に記載の方法。
  140. 前記ワイヤは銅からできている、請求項121から139のいずれか一項に記載の方法。
  141. 回転軸の周りを回転するように構成されているロータ;
    前記回転軸の周りに、ステータコア上に環状に配置された複数の歯を有するステータ、
    複数の電磁コイル、ここで、前記複数の電磁コイルの各コイルは、前記複数の歯の別個の歯に装着されている;及び、
    前記複数の電磁コイル及び前記ステータコアに隣接して位置し、前記複数の電磁コイル及び前記ステータコアに熱的に接触しているベースプレート、ここで、前記複数の電磁コイル及び前記ステータコアが動作中に加熱するときに、前記ベースプレートは、前記複数の電磁コイル及び前記ステータコアのための共通のヒートシンクとして機能するように構成されている、
    を備える電気機械。
  142. 前記複数の電磁コイルの各コイルは、直接的に、又は、間に配設された熱伝導性材料を通じて前記ベースプレートに接触している、請求項141に記載の電気機械。
  143. 前記ステータコアは、直接的に、又は、間に配設された熱伝導性材料を通じて前記ベースプレートに接触している、請求項142に記載の電気機械。
  144. 前記複数の電磁コイル及び前記ステータコアによって生成された熱が、前記ベースプレート及びモータハウジングを通じて放散されることを可能にするべく、前記ベースプレートに熱的に接続されたモータハウジングを更に備える、請求項141から143のいずれか一項に記載の電気機械。
  145. 前記ベースプレートは、第1側、及び、前記第1側の反対の第2側を含み、前記複数の電磁コイル及び前記ステータコアは、前記ベースプレートの前記第1側に熱的に接触し、前記モータハウジングは、前記ベースプレートの前記第2側に熱的に接触している、請求項144に記載の電気機械。
  146. 前記ベースプレートの前記第2側は、そこから延在する冷却フィンを含む、請求項145に記載の電気機械。
  147. 前記冷却フィンは複数のピンを含む、請求項146に記載の電気機械。
  148. 前記ベースプレートは、前記回転軸を囲んで延在する円柱状ハブ部分を含む、請求項141から147のいずれか一項に記載の電気機械。
  149. 前記ステータコアは、前記ベースプレートの前記円柱状ハブ部分を囲んで延在する環状ステータリングを含む、請求項148に記載の電気機械。
  150. 前記環状ステータリングの内側環状面は、直接的に、又は、間に配設された熱伝導性材料を通じて、前記ベースプレートの前記円柱状ハブ部分の外側環状面に接触している、請求項149に記載の電気機械。
  151. 前記ステータコアは、前記回転軸を囲んで延在する環状ステータリングを含み、前記複数の歯の各歯は、前記環状ステータリングと一体のコア歯部分を含む、請求項141から150のいずれか一項に記載の電気機械。
  152. 前記複数の歯の各歯は更に、前記コア歯部分と非一体的に形成された1又は複数の追加歯部分を含む、請求項151に記載の電気機械。
  153. 追加歯部分の対は、前記コア歯部分の対向する両側に配置された歯部分を含む、請求項152に記載の電気機械。
  154. 歯部品のすべてが共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し、前記2組の各組の前記対向する面は互いに非平行であり、前記2組の対向する面の各面は、ラジアル方向において傾斜している、請求項152または153に記載の電気機械。
  155. 隣接する歯の対向する面は、互いに実質的に平行である、請求項154に記載の電気機械。
  156. 前記ラジアル方向に垂直な平面における各歯の断面は矩形形状を有し、前記断面の周長は、前記ラジアル方向において実質的に一定であり、前記断面の面積は前記ラジアル方向において変動する、請求項154または155に記載の電気機械。
  157. 前記ベースプレートはアルミニウムから形成されている、請求項141から156のいずれか一項に記載の電気機械。
  158. 前記ベースプレートは、前記ロータが回転するときに前記複数の電磁コイルへ空気を誘導するように構成されている通気口を含む、請求項141から157のいずれか一項に記載の電気機械。
  159. 前記電気機械は電気モータである、請求項141から158のいずれか一項に記載の電気機械。
  160. 前記電気機械は発電機である、請求項141から158のいずれか一項に記載の電気機械。
  161. 回転軸の周りを回転するように構成されているロータ;
    ステータコア、及び、前記回転軸の周りに、前記ステータコア上に環状に配置された複数の歯を有するステータ;
    複数の電磁コイル、ここで、前記複数の電磁コイルの各コイルは、前記複数の歯の別個の歯に装着される;
    前記複数の電磁コイル及び前記ステータコアに隣接して位置するベースプレート、前記ベースプレートは第1側及び反対の第2側を有し、前記第1側は、前記複数の電磁コイル及び前記ステータコアに熱的に接触している;及び、
    前記ベースプレートの前記第2側上で画定されているクーラント液チャネル、ここで、前記複数の電磁コイル及び前記ステータコアが動作中に加熱するときに、前記ベースプレートは、熱を前記クーラント液チャネルにおけるクーラント液に伝達して、前記熱を前記複数の電磁コイル及び前記ステータコアから放散するように構成されている、
    を備える電気機械。
  162. 前記複数の電磁コイルの各コイルは、直接的に、又は、間に配設された熱伝導性材料を通じて前記ベースプレートに接触している、請求項161に記載の電気機械。
  163. 前記ステータコアは、直接的に、又は、間に配設された熱伝導性材料を通じて前記ベースプレートに接触している、請求項162に記載の電気機械。
  164. 前記複数の電磁コイル及び前記ステータコアによって生成された熱が、前記ベースプレート及びモータハウジングを通じて放散されることを可能にするべく、前記ベースプレートに熱的に接続されたモータハウジングを更に備える、請求項161から163のいずれか一項に記載の電気機械。
  165. 前記ベースプレートは、第1側、及び、前記第1側の反対の第2側を含み、前記複数の電磁コイル及び前記ステータコアは、前記ベースプレートの前記第1側に熱的に接触し、前記モータハウジングは、前記ベースプレートの前記第2側に熱的に接触している、請求項164に記載の電気機械。
  166. 前記クーラント液チャネルの壁は、前記複数の電磁コイルに熱的に接触している前記ベースプレートの前記第1側の部分の直接反対にある前記ベースプレートの前記第2側の部分である、請求項165に記載の電気機械。
  167. 前記クーラント液チャネルは前記回転軸を囲んで延在し、前記ベースプレートの前記第2側の環状領域は、前記クーラント液チャネルの壁として機能する、請求項165または166に記載の電気機械。
  168. 前記ベースプレートの前記第2側の前記環状領域は、前記クーラント液チャネル内に延在する複数のフィンを含む、請求項167に記載の電気機械。
  169. 前記複数のフィンは前記回転軸の周りに配置されている、請求項168に記載の電気機械。
  170. 前記クーラント液を前記クーラント液チャネル内に誘導するように構成されているクーラント吸入口、及び、前記クーラント液を前記クーラント液チャネルから外に誘導するように構成されているクーラント排出口を更に備える、請求項161から169のいずれか一項に記載の電気機械。
  171. 前記ベースプレートは、前記回転軸を囲んで延在する円柱状ハブ部分を含み、前記ステータコアは、前記ベースプレートの前記円柱状ハブ部分を囲んで延在する環状ステータリングを含み、前記クーラント液チャネルは、前記回転軸に沿って前記円柱状ハブ部分を通過する、請求項161から170のいずれか一項に記載の電気機械。
  172. 前記環状ステータリングの内側環状面は、直接的に、又は、間に配設された熱伝導性材料を通じて、前記ベースプレートの前記円柱状ハブ部分の外側環状面に接触している、請求項171に記載の電気機械。
  173. 前記複数の歯の各歯は、前記環状ステータリングと一体的に形成されたコア歯部分、及び、前記コア歯部分と非一体的に形成された少なくとも1つの追加歯部分を含む、請求項171または172に記載の電気機械。
  174. 前記環状ステータリング及び前記コア歯部分は、軟磁性複合材料(SMC)から形成されている、請求項173に記載の電気機械。
  175. 前記コア歯部分及び少なくとも1つの追加歯部分が共に組み立てられるとき、各歯は、2組の対向する面を有する外面を画定し、前記2組の各組の前記対向する面は互いに非平行であり、前記2組の対向する面の各面は、ラジアル方向において傾斜している、請求項173または174に記載の電気機械。
  176. 隣接する歯の対向する面は、互いに平行である、請求項175に記載の電気機械。
  177. 前記ラジアル方向に垂直な平面における各歯の断面は台形形状を有し、前記断面の周長は、前記ラジアル方向において実質的に一定であり、前記断面の面積は前記ラジアル方向において変動する、請求項175または176に記載の電気機械。
  178. 前記ベースプレートはアルミニウムから形成されている、請求項161から177のいずれか一項に記載の電気機械。
  179. 前記電気機械は電気モータである、請求項161から178のいずれか一項に記載の電気機械。
  180. 前記電気機械は発電機である、請求項161から178のいずれか一項に記載の電気機械。
JP2023518160A 2020-09-21 2021-09-17 ラジアルフラックス電気機械 Pending JP2023542518A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063081043P 2020-09-21 2020-09-21
US63/081,043 2020-09-21
PCT/IB2021/058475 WO2022058939A1 (en) 2020-09-21 2021-09-17 Radial flux electric machine

Publications (1)

Publication Number Publication Date
JP2023542518A true JP2023542518A (ja) 2023-10-10

Family

ID=80740957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023518160A Pending JP2023542518A (ja) 2020-09-21 2021-09-17 ラジアルフラックス電気機械

Country Status (7)

Country Link
US (12) US11489378B2 (ja)
EP (1) EP4214820A1 (ja)
JP (1) JP2023542518A (ja)
KR (1) KR20230072486A (ja)
CA (1) CA3170195A1 (ja)
IL (1) IL301491A (ja)
TW (1) TW202230933A (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571107A (en) * 2018-02-16 2019-08-21 Rolls Royce Plc Metal coil fabrication
WO2020042912A1 (zh) * 2018-08-31 2020-03-05 浙江盘毂动力科技有限公司 一种分段铁芯以及盘式电机
WO2020129866A1 (ja) * 2018-12-18 2020-06-25 住友電気工業株式会社 コア、ステータ、及び回転電機
US11522427B2 (en) * 2020-08-28 2022-12-06 Emerson Electric Co. Single phase induction motors including aluminum windings and high permeability low coreloss steel
CA3170195A1 (en) 2020-09-21 2022-03-24 Evr Motors Ltd. Radial flux electric machine
DE102020127930A1 (de) * 2020-10-23 2022-04-28 Valeo Siemens Eautomotive Germany Gmbh Rotor für eine elektrische Maschine, elektrische Maschine zum Antreiben eines Fahrzeugs und Fahrzeug
US20230327531A1 (en) * 2022-04-12 2023-10-12 Hamilton Sundstrand Corporation Aircraft electric motor

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2451633A (en) 1947-05-31 1948-10-19 Frost And Company Ltd H Slot closer for dynamoelectric machines
FR1394963A (fr) 1964-02-21 1965-04-09 Julien & Mege Perfectionnement aux moteurs électriques asynchrones
US3330975A (en) 1964-10-15 1967-07-11 Vega Prec Lab Inc Self-starting synchronous motor
GB1343413A (en) 1970-07-18 1974-01-10 Lucas Industries Ltd Stator assemblies for dynamo electric machines
JPS5367015U (ja) 1976-11-10 1978-06-06
JPS5612827A (en) 1979-07-10 1981-02-07 Shibaura Eng Works Co Ltd Electric motor
US4441043A (en) 1980-11-24 1984-04-03 Decesare Dominic Compound interaction/induction electric rotating machine
US5089730A (en) 1990-05-18 1992-02-18 North American Philips Corporation Low noise DC electric motor
GB2258765B (en) 1991-06-27 1996-01-10 Dana Corp Variable reluctance motor having foil wire wound coils
WO1993015547A1 (en) 1992-01-29 1993-08-05 Stridsberg Innovation Ab Brushless dc motors/generators
JP3152405B2 (ja) 1992-06-10 2001-04-03 オークマ株式会社 電動機
US5689147A (en) * 1994-02-07 1997-11-18 Nidec Corporation Brushless motor
FR2726948B1 (fr) 1994-11-16 1996-12-20 Wavre Nicolas Moteur synchrone a aimants permanents
US5659217A (en) 1995-02-10 1997-08-19 Petersen; Christian C. Permanent magnet d.c. motor having a radially-disposed working flux gap
US5874796A (en) 1995-02-10 1999-02-23 Petersen; Christian C. Permanent magnet D.C. motor having a radially-disposed working flux gap
US6011339A (en) 1996-01-18 2000-01-04 Shibaura Engineering Works Co., Ltd. Motor mounted in a vehicle
JP3568364B2 (ja) 1996-09-30 2004-09-22 松下電器産業株式会社 回転電機のコア
JP3632394B2 (ja) 1997-09-09 2005-03-23 トヨタ自動車株式会社 コイル用素材、コイル用素材の製造装置及びコイル形成方法
DE19809966C1 (de) 1998-03-07 1999-09-16 Daimler Chrysler Ag Flüssigkeitsgekühlter Generator
JP2000041365A (ja) 1998-07-21 2000-02-08 Hitachi Ltd 電動機並びに電動機用ステータの製造方法
JP2000050540A (ja) 1998-07-31 2000-02-18 Denso Corp 回転電機の組み立てティース式固定子コア
US6211587B1 (en) 1998-11-12 2001-04-03 Hitachi, Ltd. Electric rotating machine
US6072253A (en) 1998-12-07 2000-06-06 Ford Motor Company Liquid-cooled electrical machine
US6137202A (en) 1999-04-27 2000-10-24 General Electric Company Insulated coil and coiled frame and method for making same
SE519302C2 (sv) 1999-05-11 2003-02-11 Hoeganaes Ab Statorkärna med tänder gjorda av mjukmagnetiskt pulvermateriel samt statoraggregat
DE10022071A1 (de) 2000-05-06 2001-11-15 Bosch Gmbh Robert Stator
JP2001339924A (ja) 2000-05-30 2001-12-07 Honda Motor Co Ltd アウターロータ型モータ・ジェネレータ
WO2002009256A1 (de) 2000-07-21 2002-01-31 Robert Bosch Gmbh Stator mit hohem füllfaktor
JP2002176761A (ja) 2000-12-08 2002-06-21 Canon Inc リニアモータ及び該リニアモータを用いた露光装置
DE10106172A1 (de) * 2001-02-10 2002-08-29 Bosch Gmbh Robert Verfahren zur Herstellung eines Formteils aus einem weichmagnetischen Verbundwerkstoff
JP2002315247A (ja) 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd 電動機
JP2002369418A (ja) 2001-06-04 2002-12-20 Nissan Motor Co Ltd 電動機のステータ構造
SI1416619T1 (sl) 2001-07-09 2011-10-28 Harmonic Drive Systems Hibridni sinhroni elektriäśni stroj
JP2003153509A (ja) 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd モータ
DE10229333A1 (de) 2002-06-29 2004-01-29 Robert Bosch Gmbh Elektrische Maschine, insbesondere bürstenlose Maschine mit permanentmagnetisch erregtem Läufer
US20040007933A1 (en) 2002-07-12 2004-01-15 Chun-Pu Hsu Assembly type stator structure having flat wire wound coils
DE10236941A1 (de) 2002-08-12 2004-03-04 Siemens Ag Stator für eine Synchronmaschine
JP2004201483A (ja) 2002-10-25 2004-07-15 Toyoda Mach Works Ltd コア、電機子コア及びモータ
GB0228642D0 (en) 2002-12-07 2003-01-15 Rolls Royce Plc An electrical machine
CA2417405A1 (en) 2003-01-27 2004-07-27 Teleflex Canada Incorporated Electrical machine having centrally disposed stator
US6924574B2 (en) 2003-05-30 2005-08-02 Wisconsin Alumni Research Foundation Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
DE102004026453A1 (de) 2003-06-04 2004-12-30 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Eletrische Maschine, Verfahren zu deren Herstellung sowie Vorrichtung zur Herstellung eines Sekundärteils für eine elektrische Maschine
US7596856B2 (en) 2003-06-11 2009-10-06 Light Engineering, Inc. Method for manufacturing a soft magnetic metal electromagnetic component
DE10336780A1 (de) 2003-08-08 2005-03-03 Rheinisch-Westfälisch-Technische Hochschule Aachen Wicklungsspule für eine elektrische Antriebseinrichtung
GB0400737D0 (en) 2004-01-14 2004-02-18 Rolls Royce Plc Electrical machine
US6956307B2 (en) 2004-03-08 2005-10-18 Amsted Industries Incorporated Soft magnetic composite powder metal cores
JP2005310566A (ja) 2004-04-22 2005-11-04 Sumitomo Electric Ind Ltd 線材、線材製造方法及びコイルの製造方法、プレス材及びプレス材製造方法
JP4517715B2 (ja) 2004-05-07 2010-08-04 住友電気工業株式会社 異形断面コイルの製造方法
US7723888B2 (en) 2004-05-25 2010-05-25 Marko Petek Synchronous electromechanical transformer
US7173353B2 (en) 2004-07-07 2007-02-06 Industrial Design Laboratories Inc. Integrated blower for cooling device
DE102004034611A1 (de) 2004-07-16 2006-02-09 Bobzin, Jörg, Dipl.-Ing. Herstellungsverfahren von hocheffizienten elektrischen Spulen und Wicklungen einer elektrischen Maschine und deren Montage innerhalb der elektrischen Maschine
US7737598B2 (en) 2004-08-09 2010-06-15 A. O. Smith Corporation Electric motor having a stator
JP4887656B2 (ja) 2004-10-29 2012-02-29 トヨタ自動車株式会社 回転電機およびそれを搭載した自動車
JP2006166610A (ja) 2004-12-08 2006-06-22 Sumitomo Electric Ind Ltd ステータ、ステータの製造方法、及びロータ
US20060190922A1 (en) 2005-02-24 2006-08-24 Franz Chen Method and system for managing and tracking software development lifecycles
EP1855371B1 (en) 2005-02-28 2016-04-13 Daikin Industries, Ltd. Magnetic body, rotor, motor, compressor, fan, air conditioner, and on-vehicle air conditioner
JP4878183B2 (ja) * 2005-03-18 2012-02-15 株式会社日立産機システム 多相クローポール型モータ
US7598649B2 (en) 2005-04-29 2009-10-06 Petersen Technology Corporation Vertical stator double gas D.C. PM motors
DE102005022548A1 (de) 2005-05-17 2006-11-23 Siemens Ag Elektrische Maschine mit einem Wicklungssystem mit Spulengruppen
CA2616066A1 (en) 2005-08-10 2007-02-15 Tm4 Inc. Electric machine provided with an internal stator
JP2007074847A (ja) 2005-09-08 2007-03-22 Toyota Motor Corp ステータコアの製造装置および圧粉磁心の製造装置
DE102005045348A1 (de) 2005-09-22 2007-04-05 Siemens Ag Zahnmodul für ein permanentmagneterregtes Primärteil einer elektrischen Maschine
DE102006049420A1 (de) 2005-10-28 2007-05-03 Temic Automotive Electric Motors Gmbh Elektrische Maschine
JP4851807B2 (ja) 2006-02-16 2012-01-11 澤藤電機株式会社 回転電機用電機子及び電機子の製造方法
NO324241B1 (no) 2006-02-28 2007-09-17 Smartmotor As Anordning ved elektrisk maskin
DE102006014343A1 (de) 2006-03-28 2007-10-11 Siemens Ag Verfahren zum Aufbauen einer elektrischen Maschine und Zahnhälften für einen Zahn einer elektrischen Maschine
JP2007295740A (ja) 2006-04-26 2007-11-08 Toyota Motor Corp ステータコアおよびその製造方法と電動機およびその製造方法
ES2302621B1 (es) 2006-07-18 2009-05-21 GAMESA INNOVATION & TECHNOLOGY, S.L. Generador electrico refrigerado con tubos embebidos en su cubierta.
KR100847481B1 (ko) 2006-11-15 2008-07-22 엘지전자 주식회사 공기조화기용 실외기의 밀폐형 외전모터
JP4735529B2 (ja) 2006-12-21 2011-07-27 トヨタ自動車株式会社 モータの固定子
JP4715776B2 (ja) 2007-03-06 2011-07-06 トヨタ自動車株式会社 モータ固定子の製造方法及びモータ固定子
US7990015B2 (en) 2007-04-06 2011-08-02 Vestas Wind Systems A/S Pole tip attachment for a magnetic structure
JP4730367B2 (ja) 2007-08-21 2011-07-20 トヨタ自動車株式会社 分割固定子製造方法
JP5112219B2 (ja) 2007-11-05 2013-01-09 株式会社東芝 永久磁石モータ、洗濯機、および、制御装置
JP4404145B2 (ja) 2008-01-16 2010-01-27 トヨタ自動車株式会社 分割固定子製造方法
US7847443B2 (en) 2008-04-10 2010-12-07 Burgess-Norton Mfg. Co., Inc. Manufacture of electric motor component
US10038349B2 (en) 2008-08-15 2018-07-31 Millennial Research Corporation Multi-phase modular coil element for electric motor and generator
EP2340598A2 (en) 2008-09-23 2011-07-06 AeroVironment, Inc. Compressed motor winding
EP2384534B1 (en) 2009-01-13 2020-08-05 DANA TM4 Inc. Liquid cooling arrangement for electric machines
EP3751704A1 (en) 2009-02-05 2020-12-16 Evr Motors Ltd. Electrical machine
DE102009008405A1 (de) 2009-02-11 2010-08-19 Keiper Gmbh & Co. Kg Stellantrieb
WO2010099975A2 (de) 2009-03-05 2010-09-10 Cpm Compact Power Motors Gmbh Doppelrotormotor
US20100244603A1 (en) 2009-03-31 2010-09-30 General Electric Company Electric machine
US8082654B2 (en) 2009-07-21 2011-12-27 Tempel Steel Company Production method for large rotor/stator laminations
DE102010002696A1 (de) 2009-09-03 2011-03-10 Robert Bosch Gmbh Stator mit separat gefertigten Zahnköpfen
JP5507967B2 (ja) 2009-11-09 2014-05-28 株式会社日立製作所 回転電機
US8212438B2 (en) 2010-01-19 2012-07-03 U.S. Alternate Energy, LLC Coolant system for electric motorcycle
EP2390676B1 (en) 2010-05-28 2015-11-11 Tyco Electronics Belgium EC BVBA Electromagnetic coil structure having a flat conductive track, magnetic core and magneto electronic angle sensor
WO2011155038A1 (ja) 2010-06-10 2011-12-15 トヨタ自動車株式会社 ステータ製造方法、及びステータ
US8344568B2 (en) 2010-08-17 2013-01-01 Nidec Motor Corporation Direct drive rotor with metal coupler
GB201013881D0 (en) 2010-08-19 2010-10-06 Oxford Yasa Motors Ltd Electric machine - construction
JP5270640B2 (ja) 2010-11-05 2013-08-21 トヨタ自動車株式会社 ステータコア
KR101217223B1 (ko) 2011-03-25 2012-12-31 주식회사 아모텍 비정질 분할코어 스테이터 및 이를 이용한 액시얼 갭형 모터
EP2528069B1 (en) 2011-05-26 2013-12-18 Franc Zajc Multi gap inductor core, multi gap inductor, transformer and corresponding manufacturing method
US9479036B2 (en) 2011-08-31 2016-10-25 Akribis Systems Pte Ltd High torque, low inertia direct drive motor
DE102011111667A1 (de) 2011-09-01 2013-03-07 Cpm Compact Power Motors Gmbh Drehfeldmaschine mit Außenläufer
US20130187485A1 (en) 2011-12-06 2013-07-25 Nippon Piston Ring Co., Ltd. Rotaring electrical machine
RU2494520C2 (ru) 2011-12-26 2013-09-27 Сергей Михайлович Есаков Магнитоэлектрический генератор
US8479378B1 (en) 2012-02-09 2013-07-09 John Pairaktaridis Methods of manufacturing a stator core for a brushless motor
NO333881B1 (no) 2012-03-26 2013-10-07 Rolls Royce Marine As Rotor omfattende segmentert åk
DE102012206442A1 (de) 2012-04-19 2013-10-24 Robert Bosch Gmbh Stator für eine Elektromaschine mit in ein Gehäuse verpressten Wickelköpfen
EP2657520B1 (en) * 2012-04-26 2016-03-30 Siemens Aktiengesellschaft Cooling and supporting a stator segment of an electro-mechanical machine, especially for wind turbine application
WO2013184961A1 (en) 2012-06-06 2013-12-12 Nidec Motor Corporation Motor having spoked outer rotor with spaced apart pole segments
WO2014048464A1 (de) 2012-09-26 2014-04-03 Siemens Aktiengesellschaft Aktivteil einer elektrischen maschine, radialmagnetlager und verfahren zur herstellung eines radialmagnetlagers
GB2507072B (en) 2012-10-17 2015-06-10 Protean Electric Ltd A stator or rotor
JP5936990B2 (ja) 2012-10-31 2016-06-22 日本ピストンリング株式会社 回転電機
US9379585B2 (en) 2012-11-06 2016-06-28 Lcdrives Corp. Winding construction for high efficiency machine
ITBO20120681A1 (it) 2012-12-18 2014-06-19 Ferrari Spa Macchina elettrica rotante per autotrazione con raffreddamento a liquido
KR101492172B1 (ko) * 2013-03-20 2015-02-11 전자부품연구원 일체형 권선을 활용한 반경 방향 및 축 방향 자속 일체형 모터
DE102013205594A1 (de) 2013-03-28 2014-10-02 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zu seiner Herstellung
US9960650B2 (en) 2013-04-26 2018-05-01 Mitsubishi Electric Corporation Armature coil and method of manufacturing the same
ITBO20130272A1 (it) 2013-05-29 2014-11-30 Spal Automotive Srl Macchina elettrica, ventola, ventilatore.
ITBO20130432A1 (it) 2013-08-01 2015-02-02 Spal Automotive Srl Macchina elettrica.
CN105981262B (zh) 2013-09-18 2019-01-11 Evr电动机有限公司 多极电机
CN103560633B (zh) 2013-11-20 2018-09-18 戴珊珊 交流永磁增效磁阻电动机
KR20160087882A (ko) 2013-11-20 2016-07-22 산산 다이 교류 영구자석 스위치드 릴럭턴스 전동모터
DE102014000636A1 (de) 2014-01-20 2015-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Herstellen einer elektrotechnischen Spule
JP6142826B2 (ja) 2014-03-03 2017-06-07 トヨタ紡織株式会社 回転電機のコア及び回転電機のコアの製造方法
WO2015140970A1 (ja) 2014-03-19 2015-09-24 株式会社安川電機 回転電機及び回転電機の製造方法
KR101597965B1 (ko) 2014-07-02 2016-02-29 전자부품연구원 복합 자속을 이용한 모터
FR3024608B1 (fr) * 2014-07-31 2018-03-02 Valeo Equipements Electriques Moteur Induit de machine electrique tournante a performances magnetiques ameliorees
US9748822B2 (en) 2014-11-21 2017-08-29 Hamilton Sundstrand Corporation Cooling for electrical machines
GB2533154B (en) * 2014-12-12 2017-06-07 Protean Electric Ltd A coil winding arrangement
US10170946B2 (en) * 2015-02-02 2019-01-01 Persimmon Technologies Corporation Motor having non-circular stator
JP6319130B2 (ja) 2015-02-13 2018-05-09 マツダ株式会社 回転電機のステータおよびその製造方法
WO2016199486A1 (ja) 2015-06-09 2016-12-15 三菱電機株式会社 回転電機
US10433561B2 (en) 2015-08-05 2019-10-08 Todd N. Allison Taco-funnel apparatus and method of use
WO2017036353A1 (zh) 2015-08-28 2017-03-09 戴珊珊 交变复合励磁组件及其在电机和变压器中应用
CN106340368B (zh) 2015-08-28 2021-04-23 戴珊珊 交变复合励磁组件及其在电机和变压器中应用
US10326323B2 (en) 2015-12-11 2019-06-18 Whirlpool Corporation Multi-component rotor for an electric motor of an appliance
US20180337572A1 (en) 2016-02-03 2018-11-22 Mitsubishi Electric Corporation Rotary electric machine
JP2017147780A (ja) 2016-02-15 2017-08-24 マツダ株式会社 スイッチトリラクタンスモータ及びその組み付け方法
US10536055B2 (en) * 2016-03-17 2020-01-14 Ford Global Technologies, Llc Thermal management assembly for an electrified vehicle
WO2017177321A1 (en) * 2016-04-12 2017-10-19 Tm4 Inc. Liquid cooled electric machine with enclosed stator
DE102016211833A1 (de) 2016-06-30 2018-01-04 Robert Bosch Gmbh Wicklungsträger
RU2696853C2 (ru) 2016-08-09 2019-08-07 Рябых Виктор Владимирович Электродвигатель
DE102016218822A1 (de) 2016-09-29 2018-03-29 Audi Ag Stator für eine elektrische Maschine, elektrische Maschine für ein Kraftfahrzeug und Kraftfahrzeug
DE102016119822A1 (de) 2016-10-06 2018-04-12 Lsp Innovative Automotive Systems Gmbh Hochleistungsgenerator Niedervolt mit Starter-Unterstützungsfunktion und Drehmoment-Kompensation
EP3331140A1 (de) * 2016-12-02 2018-06-06 Miba Sinter Austria GmbH Scheibenläufermotor
KR102506925B1 (ko) * 2016-12-13 2023-03-07 현대자동차 주식회사 계자권선형 구동모터의 회전자
JP2018133850A (ja) * 2017-02-13 2018-08-23 株式会社デンソー 回転電機
JP2018143043A (ja) 2017-02-28 2018-09-13 日本電産株式会社 モータ
US10574099B2 (en) 2017-03-30 2020-02-25 Ford Global Technologies, Llc Optimized stator tooth for electric motor/generator
JP6856446B2 (ja) 2017-05-23 2021-04-07 澤藤電機株式会社 アウターロータ型電動機におけるロータ構造
JP6517878B2 (ja) 2017-06-06 2019-05-22 ファナック株式会社 固定子枠、固定子及び回転電機
JP7025175B2 (ja) 2017-10-17 2022-02-24 Ntn株式会社 車両用動力装置
JP6723475B2 (ja) 2017-11-02 2020-07-15 三菱電機株式会社 回転電機の電機子鉄心、及び回転電機の電機子鉄心の製造方法
US10680476B2 (en) * 2018-01-25 2020-06-09 Baker Hughes, A Ge Company, Llc Systems and methods for constructing permanent magnet motors having increased power density
GB2571107A (en) 2018-02-16 2019-08-21 Rolls Royce Plc Metal coil fabrication
EP3528372A1 (en) 2018-02-19 2019-08-21 Siemens Gamesa Renewable Energy A/S Formation of stator coils for use in concentrated winding electrical machine
DE102018214525A1 (de) 2018-08-28 2020-03-05 Mahle International Gmbh Ringförmiger Stator eines Elektromotors
DE102018222625A1 (de) 2018-09-18 2020-03-19 Ziehl-Abegg Automotive Gmbh & Co. Kg Kühlkörper für einen elektrischen Motor, elektrischer Motor und Verfahren zum Kühlen des Motors
JPWO2020066208A1 (ja) 2018-09-28 2021-08-30 本田技研工業株式会社 鞍乗型電動車両
CN208862675U (zh) 2018-10-10 2019-05-14 湖北同发机电有限公司 一种无刷同步发电机
WO2020077339A1 (en) 2018-10-12 2020-04-16 Software Motor Company Shaped stator windings for a switched reluctance machine and method of making the same
EP3648305B1 (en) * 2018-10-30 2021-06-30 Siemens Gamesa Renewable Energy A/S Electrical machine with hybrid tooth design
CN109245346B (zh) 2018-11-07 2023-08-22 合普动力股份有限公司 一种分瓣组合定子
JP7092646B2 (ja) 2018-11-14 2022-06-28 トヨタ自動車株式会社 モータコア
DE102019202049A1 (de) 2019-02-15 2020-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur herstellung eines wendelförmigen körpers mit kompression der wendel
US11522426B2 (en) 2019-02-26 2022-12-06 Petersen Technology Corporation Double/twin radial air gap permanent magnet brushless motor
CN209994171U (zh) 2019-04-15 2020-01-24 无锡欣吉力电机技术有限公司 一种紧凑型励磁电机定子
FR3096522B1 (fr) 2019-05-21 2021-04-30 Renault Sas Stator de machine électrique à flux axial et procédé d’assemblage d’un tel stator
EP3820025A1 (en) 2019-11-08 2021-05-12 Hamilton Sundstrand Corporation Spacer for a stator winding
CN111224502A (zh) 2020-03-03 2020-06-02 山东高崎电机有限公司 一种高速电机自抽热冷却结构
CN111404290B (zh) 2020-03-12 2021-08-03 华中科技大学 一种集中绕组横向磁通永磁同步电机
TWI738296B (zh) 2020-04-15 2021-09-01 國立成功大學 馬達及其具有扭轉式螺旋冷卻流道的冷卻裝置
CN111864990A (zh) 2020-07-24 2020-10-30 珠海格力电器股份有限公司 具有双重冷却效果的电机及离心空压机
CA3170195A1 (en) 2020-09-21 2022-03-24 Evr Motors Ltd. Radial flux electric machine
WO2022058939A1 (en) 2020-09-21 2022-03-24 Evr Motors Ltd. Radial flux electric machine
CN112186915A (zh) 2020-10-22 2021-01-05 江苏金丰机电有限公司 一种定子组件

Also Published As

Publication number Publication date
IL301491A (en) 2023-05-01
EP4214820A1 (en) 2023-07-26
US20220094215A1 (en) 2022-03-24
US20220094232A1 (en) 2022-03-24
US20220094221A1 (en) 2022-03-24
US11322994B2 (en) 2022-05-03
US11594920B2 (en) 2023-02-28
US20220385141A1 (en) 2022-12-01
US11451099B2 (en) 2022-09-20
US11489379B2 (en) 2022-11-01
US20230187985A1 (en) 2023-06-15
US11296572B1 (en) 2022-04-05
US11831202B2 (en) 2023-11-28
KR20230072486A (ko) 2023-05-24
TW202230933A (zh) 2022-08-01
US20240048008A1 (en) 2024-02-08
US20220094243A1 (en) 2022-03-24
US11374444B2 (en) 2022-06-28
US20220094216A1 (en) 2022-03-24
US11349359B2 (en) 2022-05-31
US20220094217A1 (en) 2022-03-24
US20220094226A1 (en) 2022-03-24
US11489378B2 (en) 2022-11-01
US11336132B2 (en) 2022-05-17
CA3170195A1 (en) 2022-03-24
US20220094231A1 (en) 2022-03-24
US20220094222A1 (en) 2022-03-24
US11355985B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US11349359B2 (en) Electric machine with SMC rotor core sandwiched between bandage and magnets
JP6848050B2 (ja) 電気機械装置
US20180013336A1 (en) Stators and coils for axial-flux dynamoelectric machines
US7777391B2 (en) Armature, motor and compressor and methods of manufacturing the same
KR20120085721A (ko) 터보 압축기 시스템
JP2007520188A (ja) 電磁カプラー
AU2008209912A1 (en) Ring motor
WO2020137549A1 (ja) コア、ステータ、及び回転電機
JP2006518180A (ja) モータ/ジェネレータのための拡張コア
WO2022058939A1 (en) Radial flux electric machine
WO2008068503A2 (en) Axial flux electrical machines
CN212412856U (zh) 用于轴向磁通旋转电机的转子
KR101918069B1 (ko) 영구자석 분할모듈을 포함하는 모터 및 이의 제조 방법
JP2008187863A (ja) アキシャルギャップ型回転電機及び圧縮機
TWI385899B (zh) 永磁式電機之轉子結構及其製造方法
KR102538380B1 (ko) 전기기기
CN112821591A (zh) 一种模块化爪极永磁电机的核心部件
JP2012244641A (ja) 永久磁石モータ