WO2006082747A1 - 超電導薄膜材料、超電導線材およびこれらの製造方法 - Google Patents

超電導薄膜材料、超電導線材およびこれらの製造方法 Download PDF

Info

Publication number
WO2006082747A1
WO2006082747A1 PCT/JP2006/301216 JP2006301216W WO2006082747A1 WO 2006082747 A1 WO2006082747 A1 WO 2006082747A1 JP 2006301216 W JP2006301216 W JP 2006301216W WO 2006082747 A1 WO2006082747 A1 WO 2006082747A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
superconducting
superconducting thin
film material
substrate
Prior art date
Application number
PCT/JP2006/301216
Other languages
English (en)
French (fr)
Inventor
Shuji Hahakura
Kazuya Ohmatsu
Original Assignee
Sumitomo Electric Industries, Ltd.
International Superconductivity Technology Center, The Juridical Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center, The Juridical Foundation filed Critical Sumitomo Electric Industries, Ltd.
Priority to CN2006800034158A priority Critical patent/CN101111906B/zh
Priority to CA002596546A priority patent/CA2596546A1/en
Priority to EP06712398A priority patent/EP1852877A4/en
Publication of WO2006082747A1 publication Critical patent/WO2006082747A1/ja
Priority to NO20074426A priority patent/NO20074426L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials

Definitions

  • the present invention relates to a superconducting thin film material, a superconducting wire, and a method for manufacturing the same, and more particularly to a superconducting thin film material, a superconducting wire, and a method for manufacturing the same.
  • Conventional superconducting wires include superconducting wires in which a superconducting thin film is formed directly on a substrate (for example, JP-A-6-31604 (Patent Document 1), JP-A-6-68727 (Patent Document 2). And JP-A-6-68728 (Patent Document 3)) and superconducting wires with a superconducting thin film formed on the substrate via an intermediate layer (for example, Fujino, et al., 6 people, "High temperature superconducting wire by ISD method Development ", SEI Technical Review, September 1999, No. 155, P.131-135 (Non-Patent Document 1)) is known!
  • Patent Document 1 JP-A-6-31604
  • Patent Document 2 JP-A-6-68727
  • Patent Document 3 Japanese Patent Laid-Open No. 6-68728
  • Non-Patent Document 1 Fujino et al., 6 others, “Development of high-temperature superconducting wire by ISD method”, SEI Technical Review, September 1999, No. 155, p.131-135
  • an object of the present invention is to provide a superconducting thin film material, a superconducting wire, and a method for manufacturing them, which can improve the amount of increase in critical current associated with the thick film.
  • the present invention provides a superconducting thin film comprising: a first superconducting thin film whose surface is smoothed; and a second superconducting thin film formed on the surface of the smoothed first superconducting thin film. Material.
  • the smoothing treatment can be performed by at least one of mechanical polishing and chemical polishing.
  • the present invention also includes a substrate, an intermediate layer formed on the substrate, and a superconducting layer formed on the intermediate layer, and the superconducting layer is a superconducting wire made of the above-described superconducting thin film material. is there.
  • the substrate can be a single metal or an alloy.
  • the intermediate layer can be made of an oxide having a rock salt type, fluorite type, perovskite type or pyrochlore type crystal structure.
  • the superconducting layer may be made of a RE-123 superconductor.
  • the present invention also includes a step of smoothing the surface of the first superconducting thin film, and a smoothing-treated first step. Forming a second superconducting thin film on the surface of the superconducting thin film. 1. A method for producing a superconducting thin film material.
  • the smooth polishing treatment can be performed by at least one of mechanical polishing and mechanical polishing.
  • the present invention is a method for producing a superconducting wire according to any one of the above, wherein a step of forming an intermediate layer on a substrate and a step of forming a first superconducting thin film on the intermediate layer Smoothing the surface of the first superconducting thin film; and smoothing the first superconductor Forming a second superconducting thin film on the surface of the conductive thin film.
  • FIG. 1 is a schematic cross-sectional view of a preferred example of a superconducting thin film material of the present invention.
  • FIG. 2 is a flowchart of a preferred example of a method for producing a superconducting thin film material of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a part of a preferred example of the superconducting wire of the present invention.
  • FIG. 4 is a flowchart of a preferred example of a method for producing a superconducting wire according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of an apparatus used in an example of the present invention.
  • the present invention provides a superconducting thin film material comprising: a first superconducting thin film having a smoothed surface; and a second superconducting thin film formed on the surface of the smoothed first superconducting thin film. It is.
  • a thick superconducting thin film material has been formed at a time by, for example, increasing the formation time by a pulse laser deposition method.
  • the superconducting thin film is gradually formed on the surface having poor smoothness, the smoothness of the surface tends to deteriorate as the thickness of the superconducting thin film material increases.
  • the surface of the first superconducting thin film is smoothed during the formation of the superconducting thin film material rather than forming all the superconducting thin film materials at the same time when increasing the thickness of the superconducting thin film material. Then, a second superconducting thin film is continuously formed on the smoothed surface of the first superconducting thin film.
  • the surface smoothness Therefore, a superconducting thin film material having excellent properties can be obtained, and since it is possible to suppress a decrease in the increase in critical current accompanying the thick film, a high critical current can be obtained.
  • the surface of the second superconducting thin film may be formed after the surface of the second superconducting thin film is further smoothed.
  • the formation of a new superconducting thin film on the surface of the treated superconducting thin film may be repeated.
  • FIG. 1 shows a schematic cross-sectional view of a preferred example of the superconducting thin film material of the present invention.
  • the superconducting thin film material 1 of the present invention comprises a first superconducting thin film la and a second superconducting film lb formed on the substrate 2.
  • the material constituting the superconducting thin film material 1 of the present invention is not particularly limited as long as it has superconducting properties.
  • RE-123 Superconductors can be used. Note that RE-123 superconductor is REBa Cu O (x is 6-7, RE is Holmi
  • a material constituting the substrate 2 for example, a simple substance such as nickel or a nickel alloy or an alloy can be used.
  • FIG. 2 shows a flowchart of a preferred example of the method for producing a superconducting thin film material of the present invention.
  • a first superconducting thin film is formed on the surface of the substrate.
  • the first superconducting thin film can be formed by a method such as a pulse laser deposition method.
  • the smoothing treatment can be performed by at least one of mechanical polishing and chemical polishing such as CMP (Chemical Mechanical Polishing) method, wet etching method or mechanical polishing method. Further, the smoothing treatment is preferably performed until the surface roughness Ra FIS B0601) of the surface of the first superconducting thin film is 10 nm or less, more preferably 6 nm or less.
  • a second superconducting thin film is formed on the surface of the smoothed first superconducting thin film.
  • the second superconducting thin film is formed by a method such as a pulsed laser deposition method as in the case of the first superconducting thin film.
  • the superconducting thin film material of the present invention is manufactured.
  • the surface of the second superconducting thin film is further smoothed, and a new third superconducting thin film is formed on the surface of the second superconducting thin film after the smoothing treatment.
  • the smoothing treatment of the surface of the superconducting thin film and the formation of a new superconducting thin film on the surface of the smoothed superconducting thin film may be repeated.
  • FIG. 3 shows a schematic sectional view of a part of a preferred example of the superconducting wire of the present invention.
  • the superconducting wire 10 of the present invention includes a substrate 2, an intermediate layer 3 formed on the substrate 2, and a superconducting layer 4 formed on the intermediate layer 3.
  • the superconducting wire 10 of the present invention is characterized by using the above-described superconducting thin film material of the present invention as the superconducting layer 4. That is, since the surface of the superconducting layer 4 becomes smooth even when it is thickened, the increase in the field current accompanying the thickening of the superconducting layer 4 is not reduced even in the superconducting wire 10 of the present invention. A high critical current can be obtained.
  • a material constituting the substrate 2 for example, a single metal or an alloy such as a simple nickel or a nickel alloy can be used as described above.
  • an oxide having one crystal structure of any of rock salt type, fluorite type, perovskite type or pyrochlore type can be used as the material constituting the intermediate layer 3. Examples of the oxide having the above-mentioned crystal structure include YSZ (yttria stable zirconia) or CeO (diacid).
  • rare earth oxides such as BZO (BaZrO), STO (SrTiO), AlO
  • the intermediate layer 3 may be composed of a plurality of layers made of different materials, not just a single layer.
  • a covering layer made of, for example, silver or the like covering the superconducting layer may be formed.
  • FIG. 4 shows a flowchart of a preferred example of the method for producing a superconducting wire of the present invention.
  • an intermediate layer is formed on the surface of the substrate.
  • the intermediate layer can be formed by a method such as a pulse laser deposition method.
  • a first superconducting thin film is formed on the surface of the intermediate layer.
  • the first superconducting thin film can be formed by a method such as a pulse laser deposition method.
  • a table of the first superconducting thin film formed on the surface of the intermediate layer is provided.
  • the surface is smoothed.
  • the smooth polishing treatment can be performed by at least one of mechanical polishing and mechanical polishing such as the CMP method, wet etching method, or mechanical polishing method described above.
  • it is more preferable that the smoothing treatment is performed until the surface roughness Ra FIS B0601) of the surface of the first superconducting thin film is lOnm or less, more preferably 6 nm or less. .
  • the second superconducting thin film is formed on the surface of the first superconducting thin film after the smoothing process.
  • the second superconducting thin film can be formed by a method such as a pulsed laser deposition method in the same manner as the first superconducting thin film.
  • the superconducting thin film material of the present invention is formed on the surface of the intermediate layer, and the superconducting wire of the present invention is manufactured.
  • the surface of such a superconducting thin film may be formed after the surface of the second superconducting thin film is further smoothed, and a new third superconducting thin film may be formed. The formation of a new superconducting thin film on the surface of the smoothed superconducting thin film may be repeated.
  • a substrate 2 having a nickel alloy force was installed in the apparatus shown in the schematic cross-sectional view of FIG. 5, and a target 5 having an yttria-stable zirconia force was also installed below the substrate 2.
  • the surface of the substrate 2 and the surface of the target 5 were installed so that these surfaces were parallel to each other.
  • the distance between the surface of the substrate 2 and the surface of the target 5 was set to 50 mm.
  • yttria stable Zirco-Yure is converted to acid Zirconium (ZrO).
  • the surface of the target 5 is irradiated with KrF excimer laser light 6 having a wavelength of 248 nm and an energy illuminance of 3.5 jZcm 2 at 40 Hz. Irradiated in the form of pulses at a repetition frequency of As a result, the plasma 7 of the target 5 is generated, and an intermediate layer that also has yttria stable Zirconia force is formed on the surface of the substrate 2 by 1 ⁇ m. It was formed with a thickness.
  • a KrF excimer laser beam 6 having a wavelength of 248 nm and an energy illuminance of 3.5 jZcm 2 is applied to the surface of the target 5 in a Nors state at a repetition frequency of 80 Hz Irradiated.
  • plasma 7 of the target 5 was generated, and a first superconducting thin film having a RE-123 superconducting force was formed to a thickness of 1 ⁇ m on the surface of the intermediate layer.
  • the superconducting wire thus obtained was used as sample A, and the surface roughness Ra of the first superconducting thin film of sample A was measured using an atomic force microscope (AFM), and The critical current value Ic was measured by the four probe method.
  • the results are shown in Table 1.
  • the surface roughness Ra of the first superconducting thin film of Sample A was 55 nm, and the critical current value Ic was 1 10 AZcm width.
  • the surface of the first superconducting thin film of Sample A was smoothed by polishing and removing a 0.1 m thickness by CMP (that is, the first superconducting thin film after polishing removal).
  • the film thickness was 0.9 m).
  • the surface roughness Ra of the first superconducting thin film after this smoothing treatment was measured using AFM, the surface roughness Ra was 6 nm.
  • the sample A after the smoothing treatment is placed at the position of the substrate 2 in the apparatus shown in FIG. 5, and the smoothing treatment is performed on the surface of the first superconducting thin film of the sample A.
  • the first superconducting thin film is formed on the intermediate layer.
  • a superconducting layer consisting of one superconducting thin film and a second superconducting thin film was formed (the thickness of the superconducting layer is 1.9 ⁇ m, 7 pieces).
  • An intermediate layer made of yttria stable zirconia and an intermediate layer made of cerium dioxide were also formed in this order on a substrate made of nickel alloy, and a substrate was prepared. Then, under the same conditions as in Example 1, a superconducting thin film made of RE-123 superconductor was formed to a thickness of 2 ⁇ m on the surface of the intermediate layer also having oxycerium power.
  • the superconducting thin film material and superconducting wire of the present invention are suitably used for power devices such as cables, current limiters or magnets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 表面が平滑化処理された第1の超電導薄膜(1a)と平滑化処理された第1の超電導薄膜(1a)の表面上に形成された第2の超電導薄膜(1b)とを含む超電導薄膜材料(1)である。また、基板(2)と基板(2)上に形成された中間層(3)と中間層(3)上に形成された超電導層(4)とを含み、超電導層(4)は上記の超電導薄膜材料(1)からなる超電導線材(10)である。さらに、上記の超電導薄膜材料(1)の製造方法および超電導線材(10)の製造方法である。

Description

明 細 書
超電導薄膜材料、超電導線材およびこれらの製造方法
技術分野
[0001] 本発明は超電導薄膜材料、超電導線材およびこれらの製造方法に関し、特に厚膜 化に伴う臨界電流の増加量を向上させることができる超電導薄膜材料、超電導線材 およびこれらの製造方法に関する。
背景技術
[0002] 高温超電導体の発見以来、ケーブル、限流器またはマグネットなどの電力機器へ の応用を目指した超電導線材の開発が世界中の研究機関で精力的に行なわれて!/、 る。
[0003] 従来の超電導線材としては、基板上に直接、超電導薄膜を形成した超電導線材 ( たとえば、特開平 6— 31604号公報 (特許文献 1)、特開平 6— 68727号公報 (特許 文献 2)および特開平 6— 68728号公報 (特許文献 3)参照)や、基板上に中間層を 介して超電導薄膜を形成した超電導線材 (たとえば、藤野、他 6名, 「ISD法による高 温超電導線材の開発」, SEIテク-カルレビュー, 1999年 9月、第 155号、 P.131— 135 (非特許文献 1)参照)などが知られて!/ヽる。
[0004] また、このような超電導線材の製造にぉ 、ては、高い臨界電流を得るために基板の 表面に対して予め研磨処理を行なった後に基板の表面上に超電導薄膜を形成する ことが提案されて 、る (たとえば、特許文献 1〜3参照)。
特許文献 1:特開平 6 - 31604号公報
特許文献 2:特開平 6— 68727号公報
特許文献 3:特開平 6— 68728号公報
非特許文献 1 :藤野、他 6名, 「ISD法による高温超電導線材の開発」, SEIテク-力 ルレビュー, 1999年 9月、第 155号、 p.131 - 135
発明の開示
発明が解決しょうとする課題
[0005] 超電導薄膜にお!、て高い臨界電流を得るためには超電導薄膜の表面の平滑性が 非常に重要な要因となるが、超電導薄膜の膜厚が厚くなるにしたがって超電導薄膜 の表面の平滑性は悪ィ匕する。
[0006] したがって、高い臨界電流を得るために超電導薄膜の厚膜ィ匕を進めた場合でも膜 厚の増加に伴う臨界電流の増加が徐々に鈍くなり、高い臨界電流を得ることができな かった。
[0007] そこで、本発明の目的は、厚膜ィ匕に伴う臨界電流の増加量を向上させることができ る超電導薄膜材料、超電導線材およびこれらの製造方法を提供することにある。 課題を解決するための手段
[0008] 本発明は、表面が平滑化処理された第 1の超電導薄膜と、平滑化処理された第 1 の超電導薄膜の表面上に形成された第 2の超電導薄膜と、を含む、超電導薄膜材料 である。
[0009] ここで、本発明の超電導薄膜材料にお!、て、平滑化処理は、機械的研磨およびィ匕 学的研磨の少なくとも一方によって行なわれ得る。
[0010] また、本発明は、基板と、基板上に形成された中間層と、中間層上に形成された超 電導層と、を含み、超電導層は上記の超電導薄膜材料からなる超電導線材である。
[0011] ここで、本発明の超電導線材において、基板は金属単体または合金力もなり得る。
また、本発明の超電導線材において、中間層は岩塩型、蛍石型、ぺロブスカイト型 またはパイロクロア型の結晶構造を有する酸ィ匕物からなり得る。
[0012] また、本発明の超電導線材において、超電導層は RE— 123超電導体からなり得る また、本発明は、第 1の超電導薄膜の表面を平滑化処理する工程と、平滑化処理 された第 1の超電導薄膜の表面上に第 2の超電導薄膜を形成する工程と、を含む、 超電導薄膜材料の製造方法である。
[0013] ここで、本発明の超電導薄膜材料の製造方法において、平滑ィ匕処理は、機械的研 磨およびィ匕学的研磨の少なくとも一方によって行なわれ得る。
[0014] さらに、本発明は、上記のいずれかに記載の超電導線材を製造する方法であって 、基板上に中間層を形成する工程と、中間層上に第 1の超電導薄膜を形成する工程 と、第 1の超電導薄膜の表面を平滑化処理する工程と、平滑化処理された第 1の超 電導薄膜の表面上に第 2の超電導薄膜を形成する工程と、を含む、超電導線材の製 造方法である。
発明の効果
[0015] 本発明によれば、厚膜ィ匕に伴う臨界電流の増加量を向上させることができる超電導 薄膜材料、超電導線材およびこれらの製造方法を提供することができる。
図面の簡単な説明
[0016] [図 1]本発明の超電導薄膜材料の好ましい一例の模式的な断面図である。
[図 2]本発明の超電導薄膜材料の製造方法の好ましい一例のフローチャートである。
[図 3]本発明の超電導線材の好ましい一例の一部の模式的な断面図である。
[図 4]本発明の超電導線材の製造方法の好ましい一例のフローチャートである。
[図 5]本発明の実施例で用いられた装置の模式的な断面図である。
符号の説明
[0017] 1 超電導薄膜材料、 la 第 1の超電導薄膜、 lb 第 2の超電導薄膜、 2 基板、 3 中間層、 4 超電導層、 5 ターゲット、 6 KrFエキシマレーザ光、 7 プラズマ、 10 超電導線材。
発明を実施するための最良の形態
[0018] 本発明は表面が平滑化処理された第 1の超電導薄膜と、平滑化処理された第 1の 超電導薄膜の表面上に形成された第 2の超電導薄膜と、を含む、超電導薄膜材料で ある。
[0019] 従来においては、たとえばパルスレーザ蒸着法による形成時間を長くするなどの方 法によって厚膜の超電導薄膜材料を一度に形成していた。し力しながら、平滑性の 悪い表面上に超電導薄膜がどんどん形成されていくため、超電導薄膜材料を厚膜 にするにつれて表面の平滑性が悪くなる傾向にあった。
[0020] そこで、本発明では、超電導薄膜材料の厚膜化に際してすべての超電導薄膜材料 を一度に形成するのではなぐ超電導薄膜材料の形成途中における第 1の超電導薄 膜の表面について平滑化処理を行ない、平滑化された第 1の超電導薄膜の表面に 第 2の超電導薄膜を引き続き形成する。これにより、本発明においては、表面の平滑 性に優れた超電導薄膜材料を得ることができ、厚膜ィ匕に伴う臨界電流の増加量が鈍 るのを抑制することができることから高い臨界電流を得ることができるのである。なお、 本発明においては、さらに第 2の超電導薄膜の表面が平滑ィ匕処理された後に新たな 第 3の超電導薄膜が形成されてもよぐこのような超電導薄膜の表面の平滑化処理と 平滑化処理された超電導薄膜の表面上への新たな超電導薄膜の形成とが繰り返さ れてもよい。
[0021] 図 1に、本発明の超電導薄膜材料の好ましい一例の模式的な断面図を示す。ここ で、本発明の超電導薄膜材料 1は基板 2上に形成されている第 1の超電導薄膜 laと 第 2の超電導膜 lbとからなる。本発明の超電導薄膜材料 1を構成する材質 (第 1の超 電導薄膜 laおよび第 2の超電導膜 lbを構成する材質)は超電導の性質を有するも のであれば特に限定されないが、たとえば RE— 123超電導体などを用いることがで きる。なお、 RE— 123超電導体とは、 REBa Cu O (xは 6〜7であり、 REは、ホルミ
2 3
ゥム、ガドリニウム若しくはサマリウムなどの希土類元素、またはイットリウムを示す)の 式で表される超電導体を意味する。また、基板 2を構成する材質としてはたとえば-ッ ケル単体やニッケル合金などの金属単体または合金などを用いることができる。
[0022] 図 2に、本発明の超電導薄膜材料の製造方法の好ましい一例のフローチャートを 示す。まず、 S11に示すように、基板の表面上に第 1の超電導薄膜が形成される。こ こで、第 1の超電導薄膜はたとえばパルスレーザ蒸着法などの方法によって形成する ことができる。
[0023] 次に、 S12に示すように、基板の表面上に形成された第 1の超電導薄膜の表面が 平滑化処理される。ここで、平滑化処理は、たとえば CMP (Chemical Mechanical Poli shing)法、ウエットエッチング法または機械研磨法などの、機械的研磨および化学的 研磨の少なくとも一方によって行なうことができる。また、平滑化処理は、第 1の超電 導薄膜の表面の表面粗さ Ra FIS B0601)が 10nm以下になるまで行なわれること が好ましぐ 6nm以下になるまで行なわれることがより好ましい。
[0024] 続いて、 S13に示すように、平滑化処理された第 1の超電導薄膜の表面上に第 2の 超電導薄膜が形成される。ここで、第 2の超電導薄膜は第 1の超電導薄膜と同様にた とえばパルスレーザ蒸着法などの方法によって形成される。 [0025] そして、 S14に示すように、本発明の超電導薄膜材料が製造される。なお、上述の 製造方法においては、さらに第 2の超電導薄膜の表面が平滑ィ匕処理され、平滑化処 理された後の第 2の超電導薄膜の表面上に新たな第 3の超電導薄膜が形成されても よぐこのような超電導薄膜の表面の平滑化処理と平滑化処理された超電導薄膜の 表面上への新たな超電導薄膜の形成とが繰り返されてもよい。
[0026] 図 3に、本発明の超電導線材の好ましい一例の一部の模式的な断面図を示す。こ こで、本発明の超電導線材 10は、基板 2と、基板 2上に形成された中間層 3と、中間 層 3上に形成された超電導層 4とを含んでいる。
[0027] ここで、本発明の超電導線材 10は、超電導層 4として上述した本発明の超電導薄 膜材料を用いることを特徴としている。すなわち、この超電導層 4は厚膜化しても表面 が平滑となるため、本発明の超電導線材 10にお ヽても超電導層 4の厚膜化に伴う臨 界電流の増加量を鈍らせることなく高い臨界電流を得ることができる。
[0028] また、基板 2を構成する材質としては上述と同様にたとえばニッケル単体やニッケル 合金などの金属単体または合金などを用いることができる。また、中間層 3を構成す る材質としてはたとえば岩塩型、蛍石型、ぺロブスカイト型またはパイロクロア型のい ずれ力 1つの結晶構造を有する酸ィ匕物を用いることができる。上述の結晶構造を有 する酸化物としては、たとえば YSZ (イットリア安定ィ匕ジルコユア)若しくは CeO (二酸
2 ィ匕セリウム)などの希土類元素の酸化物、 BZO (BaZrO )、 STO (SrTiO )、 Al Oな
3 3 2 3 どが挙げられる。また、中間層 3は単層だけでなぐ材質の異なる複数の層からなって いてもよい。なお、本発明の超電導線材においては、超電導層を保護するために、 超電導層を被覆するたとえば銀などからなる被覆層を形成してもよ ヽ。
[0029] 図 4に、本発明の超電導線材の製造方法の好ましい一例のフローチャートを示す。
まず、 S21に示すように、基板の表面上に中間層が形成される。ここで、中間層はた とえばパルスレーザ蒸着法などの方法によって形成することができる。
[0030] 次に、 S22に示すように、中間層の表面上に第 1の超電導薄膜が形成される。ここ で、第 1の超電導薄膜はたとえばパルスレーザ蒸着法などの方法によって形成するこ とがでさる。
[0031] 続いて、 S23に示すように、中間層の表面上に形成された第 1の超電導薄膜の表 面が平滑ィ匕処理される。平滑ィ匕処理は、たとえば上述した CMP法、ウエットエツチン グ法または機械研磨法などの、機械的研磨およびィ匕学的研磨の少なくとも一方によ つて行なうことができる。ここでも、平滑ィ匕処理は、第 1の超電導薄膜の表面の表面粗 さ Ra FIS B0601)が lOnm以下になるまで行なわれることが好ましぐ 6nm以下に なるまで行なわれることがより好まし 、。
[0032] 次 、で、 S24に示すように、平滑化処理された後の第 1の超電導薄膜の表面上に 第 2の超電導薄膜が形成される。ここで、第 2の超電導薄膜は第 1の超電導薄膜と同 様にたとえばパルスレーザ蒸着法などの方法によって形成することができる。
[0033] そして、 S25に示すように、中間層の表面上に本発明の超電導薄膜材料が形成さ れ、本発明の超電導線材が製造される。なお、上述の製造方法においては、さらに 第 2の超電導薄膜の表面が平滑化処理された後に新たな第 3の超電導薄膜が形成 されてもよぐこのような超電導薄膜の表面の平滑化処理と平滑化処理された超電導 薄膜の表面上への新たな超電導薄膜の形成とが繰り返されてもよい。
実施例
[0034] (実施例 1)
まず、図 5の模式的断面図に示す装置内にニッケル合金力 なる基板 2を設置し、 さらにこの基板 2の下方にイットリア安定ィ匕ジルコユア力もなるターゲット 5を設置した 。ここで、基板 2の表面とターゲット 5の表面とが互いに向き合うようにこれらの表面が 平行になるように設置した。そして、基板 2の表面とターゲット 5の表面との間の距離を 50mmに設定した。また、イットリア安定ィ匕ジルコユアは、酸ィ匕ジルコニウム (ZrO )に
2 対して酸ィ匕ジルコニウムの 8質量0 /0のイットリア (Y O )が添加されたものであった。
2 3
[0035] 次に、この装置内を真空引きした後に、 90体積0 /0のアルゴン (Ar)と 10体積0 /0の酸 素(O )とからなる混合ガスをこの装置内に導入し、装置内の圧力を 1 X 107torrとし
2
た。
[0036] 次いで、基板 2を加熱して基板 2の温度を 700°Cにした後に、ターゲット 5の表面に 波長が 248nmであってエネルギ照度が 3. 5jZcm2である KrFエキシマレーザ光 6 を 40Hzの繰返し周波数でパルス状に照射した。これによりターゲット 5のプラズマ 7 が生成して、基板 2の表面上にイットリア安定ィ匕ジルコユア力もなる中間層を 1 μ mの 厚みで形成した。
[0037] 続いて、ターゲット 5の材質を HoBa Cu O (RE— 123超電導体)に変更し、この装
2 3
置内を再度真空引きした後、 100体積%の酸素力もなるガスをこの装置内に導入し て装置内の圧力を 2 X 108torrとした。
[0038] そして、基板 2の温度を 650°Cにした後に、ターゲット 5の表面に波長が 248nmで あってエネルギ照度が 3. 5jZcm2である KrFエキシマレーザ光 6を 80Hzの繰返し 周波数でノルス状に照射した。これによりターゲット 5のプラズマ 7が生成して、中間 層の表面上に RE— 123超電導体力もなる第 1の超電導薄膜を 1 μ mの膜厚で形成 した。
[0039] このようにして得られた超電導線材を試料 Aとし、この試料 Aの第 1の超電導薄膜の 表面粗さ Raを原子間力顕微鏡 (AFM ; Atomic Force Microscope)を用いて測定し、 また臨界電流値 Icを四端子法により測定した。その結果を表 1に示す。表 1に示すよ うに、試料 Aの第 1の超電導薄膜の表面粗さ Raは 55nmであって、臨界電流値 Icは 1 10 AZcm幅であつた。
[0040] この試料 Aの第 1の超電導薄膜の表面を CMP法を用いて 0. 1 mの厚さを研磨 除去することによって平滑ィ匕処理した (すなわち、研磨除去後の第 1の超電導薄膜の 膜厚は 0. 9 mとなった)。この平滑ィ匕処理後の第 1の超電導薄膜の表面粗さ Raを AFMを用いて測定したところ、その表面粗さ Raは 6nmであった。
[0041] そして、上記の平滑ィヒ処理後の試料 Aを図 5に示す装置内の基板 2の位置に設置 し、平滑化処理された試料 Aの第 1の超電導薄膜の表面上に上記の試料 Aの場合に おける第 1の超電導薄膜の形成条件と同一の条件で、 RE— 123超電導体からなる 第 2の超電導薄膜を 1 μ mの膜厚で形成することによって、中間層上に第 1の超電導 薄膜および第 2の超電導薄膜からなる超電導層を形成した (超電導層の厚みは 1. 9 μ mとなつ 7こ)。
[0042] このようにして得られた超電導線材を試料 Bとし、この試料 Bの超電導層の表面粗さ Raを試料 Aの場合と同様にして AFMを用いて測定し、臨界電流値 Icを四端子法に より測定した。その結果を表 1に示す。表 1に示すように試料 Bの表面粗さ Raは 6nm であって、臨界電流値 Icは 200 AZcm幅であった。 [0043] (比較例 1)
ニッケル合金カゝらなる基板上にイットリア安定ィ匕ジルコユアカゝらなる中間層と二酸ィ匕 セリウム力もなる中間層がこの順序で基板側力も形成されて 、る基板を準備した。そ して、実施例 1と同一の条件で、酸ィ匕セリウム力もなる中間層の表面上に RE— 123 超電導体からなる超電導薄膜を 2 μ mの膜厚で形成した。
[0044] このようにして得られた超電導線材を試料 Cとし、この試料 Cの超電導薄膜の表面 粗さ Raを試料 Aおよび試料 Bの場合と同様にして AFMを用いて測定し、臨界電流 値 Icを四端子法により測定した。その結果を表 1に示す。表 1に示すように試料じの 表面粗さ Raは 80nmであって、臨界電流値 Icは 140AZcm幅であった。
[0045] [表 1]
Figure imgf000010_0001
[0046] 表 1に示すように、平滑化処理がされて!/ヽな!ヽ試料 Aと試料 Cとを比較すると、超電 導薄膜の膜厚の大きい試料 Cの方が臨界電流値 Icが大きくなつていた。しかしながら 、CMP法により第 1の超電導薄膜の表面が平滑化処理された後に第 2の超電導薄 膜が形成された試料 Bは試料 Cと膜厚がほとんど変わらないにも関わらず、試料じょ りも臨界電流値 Icが大きくなることが確認された。したがって、本発明においては、超 電導層の厚膜ィ匕に伴う臨界電流の増加量を向上できることが確認された。
[0047] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。 産業上の利用可能性
本発明の超電導薄膜材料および超電導線材は、ケーブル、限流器またはマグネッ トなどの電力機器に好適に利用される。

Claims

請求の範囲
[1] 表面が平滑ィヒ処理された第 1の超電導薄膜 (la)と、前記平滑化処理された第 1の 超電導薄膜 (la)の表面上に形成された第 2の超電導薄膜 (lb)と、を含む、超電導 薄膜材料 (1)。
[2] 前記平滑ィ匕処理は、機械的研磨およびィ匕学的研磨の少なくとも一方によって行な われることを特徴とする、請求項 1に記載の超電導薄膜材料 (D o
[3] 基板 (2)と、前記基板 (2)上に形成された中間層(3)と、前記中間層(3)上に形成 された超電導層 (4)と、を含み、前記超電導層 (4)は請求項 1に記載の超電導薄膜 材料 (1)からなることを特徴とする、超電導線材( 10)。
[4] 前記基板 (2)は金属単体または合金力もなることを特徴とする、請求項 3に記載の 超電導線材(10)。
[5] 前記中間層(3)は岩塩型、蛍石型、ぺロブスカイト型またはパイロクロア型の結晶 構造を有する酸化物からなることを特徴とする、請求項 3に記載の超電導線材(10)。
[6] 前記超電導層(4)は RE— 123超電導体力もなることを特徴とする、請求項 3に記 載の超電導線材(10)。
[7] 第 1の超電導薄膜 (la)の表面を平滑ィヒ処理する工程と、前記平滑化処理された 第 1の超電導薄膜 (la)の表面上に第 2の超電導薄膜 (lb)を形成する工程と、を含 む、超電導薄膜材料 (1)の製造方法。
[8] 前記平滑ィ匕処理は、機械的研磨およびィ匕学的研磨の少なくとも一方によって行な われることを特徴とする、請求項 7に記載の超電導薄膜材料(1)の製造方法。
[9] 請求項 3に記載の超電導線材(10)を製造する方法であって、前記基板 (2)上に前 記中間層(3)を形成する工程と、前記中間層(3)上に第 1の超電導薄膜 (la)を形成 する工程と、前記第 1の超電導薄膜(la)の表面を平滑化処理する工程と、前記平滑 化処理された第 1の超電導薄膜 (la)の表面上に第 2の超電導薄膜 (lb)を形成する 工程と、を含む、超電導線材(10)の製造方法。
PCT/JP2006/301216 2005-02-03 2006-01-26 超電導薄膜材料、超電導線材およびこれらの製造方法 WO2006082747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800034158A CN101111906B (zh) 2005-02-03 2006-01-26 超导薄膜材料、超导导线及其制造方法
CA002596546A CA2596546A1 (en) 2005-02-03 2006-01-26 Superconducting thin film material, superconducting wire rod and methods for manufacturing such superconducting thin film material and superconducting wire rod
EP06712398A EP1852877A4 (en) 2005-02-03 2006-01-26 SUPERCONDUCTING THIN FILM MATERIAL, SUPERCONDUCTING METAL ROD AND METHODS OF MANUFACTURING SUCH SUPERCONDUCTING THIN FILM MATERIAL AND SUPERCONDUCTING METAL ROD
NO20074426A NO20074426L (no) 2005-02-03 2007-08-30 Superledende tynnfilm materiale, superledende lederstav, og fremstilling av slike

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005027681A JP2006216365A (ja) 2005-02-03 2005-02-03 超電導薄膜材料、超電導線材およびこれらの製造方法
JP2005-027681 2005-02-03

Publications (1)

Publication Number Publication Date
WO2006082747A1 true WO2006082747A1 (ja) 2006-08-10

Family

ID=36777135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301216 WO2006082747A1 (ja) 2005-02-03 2006-01-26 超電導薄膜材料、超電導線材およびこれらの製造方法

Country Status (10)

Country Link
US (1) US20100160169A1 (ja)
EP (1) EP1852877A4 (ja)
JP (1) JP2006216365A (ja)
KR (2) KR100894806B1 (ja)
CN (1) CN101111906B (ja)
CA (1) CA2596546A1 (ja)
NO (1) NO20074426L (ja)
RU (1) RU2338280C1 (ja)
TW (1) TW200637043A (ja)
WO (1) WO2006082747A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421561B2 (ja) * 2008-08-20 2014-02-19 住友電気工業株式会社 酸化物超電導薄膜の製造方法
ES2404655T3 (es) * 2008-11-29 2013-05-28 Alstom Technology Ltd. Limitador de corriente de falla con una pluralidad de elementos de superconducción conectados según una conformación a modo de anillo
CN102803546B (zh) * 2010-03-31 2014-12-31 日立金属株式会社 耐腐蚀性优异的被覆物品的制造方法及被覆物品
JP2012169062A (ja) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd 酸化物超電導膜の製造方法
JP2012204190A (ja) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The 酸化物超電導薄膜
JP5838596B2 (ja) 2011-05-30 2016-01-06 住友電気工業株式会社 超電導薄膜材料およびその製造方法
TWI458145B (zh) * 2011-12-20 2014-10-21 Ind Tech Res Inst 超導材料的接合方法
RU2477900C1 (ru) * 2012-03-01 2013-03-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Способ обработки высокотемпературного сверхпроводника
JP5701281B2 (ja) * 2012-12-18 2015-04-15 株式会社フジクラ 酸化物超電導線材
US9947441B2 (en) 2013-11-12 2018-04-17 Varian Semiconductor Equipment Associates, Inc. Integrated superconductor device and method of fabrication
US10158061B2 (en) * 2013-11-12 2018-12-18 Varian Semiconductor Equipment Associates, Inc Integrated superconductor device and method of fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311398A (ja) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd 酸化物超電導膜の製造方法
JPH04275906A (ja) * 1991-03-01 1992-10-01 Sumitomo Electric Ind Ltd 超電導薄膜の作製方法
JPH05250931A (ja) * 1992-03-02 1993-09-28 Fujikura Ltd 酸化物超電導導体
JP2003347610A (ja) * 2002-05-28 2003-12-05 Nec Corp 酸化物超電導薄膜の熱処理方法
JP2004349481A (ja) * 2003-05-22 2004-12-09 National Institute Of Advanced Industrial & Technology チタン酸ストロンチウム薄膜積層体及びその作製方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478466B1 (en) * 1990-09-27 1995-11-08 Sumitomo Electric Industries, Ltd. A superconducting device and a method for manufacturing the same
JP2829221B2 (ja) * 1993-06-30 1998-11-25 財団法人国際超電導産業技術研究センター 熱プラズマ蒸発法による金属基板上への酸化物の成膜方法
JPH07169343A (ja) * 1993-10-21 1995-07-04 Sumitomo Electric Ind Ltd 超電導ケーブル導体
JPH09306256A (ja) * 1996-05-14 1997-11-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center バルク酸化物超電導体ならびにその線材及び板の作製方法
US6251835B1 (en) * 1997-05-08 2001-06-26 Epion Corporation Surface planarization of high temperature superconductors
US6541136B1 (en) * 1998-09-14 2003-04-01 The Regents Of The University Of California Superconducting structure
CA2344040A1 (en) * 1998-09-14 2000-04-20 William Larry Hults Superconducting structure including mixed rare earth barium-copper compositions
US6765151B2 (en) * 1999-07-23 2004-07-20 American Superconductor Corporation Enhanced high temperature coated superconductors
KR100683186B1 (ko) * 1999-07-23 2007-02-15 아메리칸 수퍼컨덕터 코포레이션 다층 제품 및 그의 제조방법
US6613463B1 (en) * 1999-09-06 2003-09-02 International Superconductivity Technology Center Superconducting laminated oxide substrate and superconducting integrated circuit
US20030036483A1 (en) * 2000-12-06 2003-02-20 Arendt Paul N. High temperature superconducting thick films
US7642222B1 (en) * 2004-11-30 2010-01-05 Los Alamos National Security, Llc Method for improving performance of high temperature superconductors within a magnetic field

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311398A (ja) * 1989-05-29 1990-12-26 Sumitomo Electric Ind Ltd 酸化物超電導膜の製造方法
JPH04275906A (ja) * 1991-03-01 1992-10-01 Sumitomo Electric Ind Ltd 超電導薄膜の作製方法
JPH05250931A (ja) * 1992-03-02 1993-09-28 Fujikura Ltd 酸化物超電導導体
JP2003347610A (ja) * 2002-05-28 2003-12-05 Nec Corp 酸化物超電導薄膜の熱処理方法
JP2004349481A (ja) * 2003-05-22 2004-12-09 National Institute Of Advanced Industrial & Technology チタン酸ストロンチウム薄膜積層体及びその作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1852877A4 *

Also Published As

Publication number Publication date
EP1852877A4 (en) 2011-03-02
TW200637043A (en) 2006-10-16
RU2338280C1 (ru) 2008-11-10
KR100979015B1 (ko) 2010-08-30
JP2006216365A (ja) 2006-08-17
NO20074426L (no) 2007-08-30
KR100894806B1 (ko) 2009-04-24
KR20070100398A (ko) 2007-10-10
CN101111906A (zh) 2008-01-23
CA2596546A1 (en) 2006-08-10
CN101111906B (zh) 2013-03-13
EP1852877A1 (en) 2007-11-07
US20100160169A1 (en) 2010-06-24
KR20090009337A (ko) 2009-01-22

Similar Documents

Publication Publication Date Title
WO2006082747A1 (ja) 超電導薄膜材料、超電導線材およびこれらの製造方法
JP4216803B2 (ja) 金属膜の酸化によってナノポーラス基板上に形成されたサブミクロン電解質薄膜
EP2031606B1 (en) Superconducting thin film material and method for producing the same
US20120040100A1 (en) Solution deposition planarization method
JP2005056754A (ja) 超電導線材およびその製造方法
JP6219278B2 (ja) 超電導線
CN102598155A (zh) 超导线材用的带状基材及超导线材
JP5498019B2 (ja) 超伝導性の物品
US20090087567A1 (en) Method of fabricating one-dimensional metallic nanostructure
JP5096422B2 (ja) 基板および超電導線材の製造方法
Li et al. Fast growth processes of buffer layers for YBCO coated conductors on biaxially-textured Ni tapes
JP5881107B2 (ja) 高温超電導酸化物薄膜にナノスケールの結晶欠陥を導入する方法
JP4852693B2 (ja) 高臨界電流密度を有する超伝導酸化物薄膜の作製方法
Develos-Bagarinao et al. Enhanced flux pinning in MOD YBa2Cu3O7− δ films by ion milling through anodic alumina templates
WO2013153651A1 (ja) 酸化物超電導薄膜線材とその製造方法
US20150105261A1 (en) Oxide superconducting thin film and method of manufacturing the same
Chow et al. The partial pressure effect on the growth of YSZ film and YSZ buffered multilayers on silicon
JP2005001935A (ja) 酸化物薄膜の製造方法
JP3017886B2 (ja) 酸化物超電導膜の製造方法
JP2011096593A (ja) 酸化物超電導薄膜の製造方法
JP2012113860A (ja) 酸化物超電導薄膜線材とその製造方法
CN108140457A (zh) 氧化物超导线材
JP2023076209A (ja) 多芯薄膜超伝導線材、および、その製造方法
JP2005005089A (ja) 酸化物薄膜の製造方法
JPS63269413A (ja) 超電導部材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680003415.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2596546

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077019823

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007132906

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006712398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097000510

Country of ref document: KR