RU2338280C1 - Сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления - Google Patents

Сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления Download PDF

Info

Publication number
RU2338280C1
RU2338280C1 RU2007132906/09A RU2007132906A RU2338280C1 RU 2338280 C1 RU2338280 C1 RU 2338280C1 RU 2007132906/09 A RU2007132906/09 A RU 2007132906/09A RU 2007132906 A RU2007132906 A RU 2007132906A RU 2338280 C1 RU2338280 C1 RU 2338280C1
Authority
RU
Russia
Prior art keywords
thin film
superconducting thin
superconducting
substrate
film material
Prior art date
Application number
RU2007132906/09A
Other languages
English (en)
Inventor
Судзи ХАХАКУРА (JP)
Судзи ХАХАКУРА
Казу ОХМАЦУ (JP)
Казуя ОХМАЦУ
Original Assignee
Сумитомо Электрик Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сумитомо Электрик Индастриз, Лтд. filed Critical Сумитомо Электрик Индастриз, Лтд.
Application granted granted Critical
Publication of RU2338280C1 publication Critical patent/RU2338280C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Предложен сверхпроводящий тонкопленочный материал (1), включающий в себя первую сверхпроводящую тонкую пленку (1а), имеющую поверхность, подвергнутую выравниванию, и вторую сверхпроводящую тонкую пленку (1b), сформированную на подвергнутой выравниванию поверхности первой сверхпроводящей тонкой пленки (1а). Кроме того, предложен сверхпроводящий провод (10), включающий в себя подложку (2), промежуточный слой (3), сформированный на этой подложке (2), и сверхпроводящий слой (4), сформированный на промежуточном слое (3), при этом сверхпроводящий слой (4) выполнен из описанного выше сверхпроводящего тонкопленочного материала (1). Помимо этого, предложены способ изготовления сверхпроводящего тонкопленочного материала (1) и способ изготовления сверхпроводящего провода (10). Выравнивание поверхности осуществляют с помощью механической или химической полировки. Техническим результатом изобретения является получение высокого критического тока в сверхпроводящей тонкой пленке и повышение степени увеличения критического тока, связанного с увеличением толщины пленки. 4 н. и 5 з.п. ф-лы, 5 ил., 1 табл.

Description

Область техники
[0001] Данное изобретение относится к сверхпроводящему тонкопленочному материалу, сверхпроводящему проводу и способу их изготовления. В частности, данное изобретение относится к сверхпроводящему тонкопленочному материалу, сверхпроводящему проводу и способу их изготовления, способным повысить степень увеличения критического тока, связанного с увеличенной толщиной пленки.
Предшествующий уровень техники
[0002] Со времени открытия высокотемпературных сверхпроводников в научно-исследовательских институтах всего мира был проведен значительный объем работ в направлении совершенствования сверхпроводящих проводов с целью их использования в силовом электрооборудовании, таком как кабели, ограничители выброса тока или магниты.
[0003] Примеры традиционных сверхпроводящих проводов включают сверхпроводящий провод, в котором сверхпроводящая тонкая пленка сформирована непосредственно на подложке (см., например, выложенный патент Японии № 06-031604 (патентный документ 1), выложенный патент Японии № 06-068727 (патентный документ 2) и выложенный патент Японии № 06-068728 (патентный документ 3)), и сверхпроводящий провод, в котором сверхпроводящая тонкая пленка сформирована на подложке с размещенным между ними промежуточным слоем (см., например, Fujino et al., "Development of High-Temperature Superconducting Thin Film Tape Using the ISD Method", SEI Technical Review, September 1999, vol. 155, pp.131-135 (непатентный документ 1)).
[0004] Кроме того, было предложено при изготовлении такого сверхпроводящего провода предварительно полировать поверхность подложки и затем формировать сверхпроводящую тонкую пленку на поверхности такой подложки, чтобы получить высокий критический ток (см., например, патентные документы 1-3).
Патентный документ 1: Выложенный патент Японии № 06-031604.
Патентный документ 2: Выложенный патент Японии № 06-068727.
Патентный документ 3: Выложенный патент Японии № 06-068728.
Непатентный документ 1: Fujino et al., "Development of High-Temperature Superconducting Thin Film Tape Using the ISD Method", SEI Technical Review, September 1999, vol. 155, pp.131-135.
Раскрытие изобретения
Проблемы, решаемые изобретением
[0005] Для того чтобы получить высокий критический ток в сверхпроводящей тонкой пленке, гладкость поверхности этой сверхпроводящей тонкой пленки является критически важным фактором. Однако гладкость поверхности сверхпроводящей тонкой пленки ухудшается с увеличением толщины сверхпроводящей тонкой пленки.
[0006] Вследствие этого, даже в случае, когда изготавливают сверхпроводящую тонкую пленку увеличенной толщины для получения высокого критического тока, увеличение критического тока, связанное с увеличенной толщиной пленки, постепенно замедляется, приводя к невозможности достижения высокого критического тока.
[0007] Поэтому одна из задач данного изобретения состоит в том, чтобы предложить сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления, способные повысить степень увеличения критического тока, связанного с увеличенной толщиной пленки.
Средства для решения проблем
[0008] Данное изобретение представляет собой сверхпроводящий тонкопленочный материал, включающий в себя первую сверхпроводящую тонкую пленку, имеющую поверхность, подвергнутую выравниванию, и вторую сверхпроводящую тонкую пленку, сформированную на подвергнутой выравниванию поверхности первой сверхпроводящей тонкой пленки.
[0009] В сверхпроводящем тонкопленочном материале по данному изобретению указанное выравнивание может быть проведено с помощью по меньшей мере одной из механической полировки и химической полировки.
[0010] Кроме того, данное изобретение представляет собой сверхпроводящий провод, включающий в себя подложку, промежуточный слой, сформированный на этой подложке, и сверхпроводящий слой, сформированный на промежуточном слое, при этом сверхпроводящий слой выполнен из описанного выше сверхпроводящего тонкопленочного материала.
[0011] В сверхпроводящем проводе по данному изобретению подложка может быть выполнена из элементарного металла или сплава. Кроме того, в сверхпроводящем проводе по данному изобретению промежуточный слой может быть выполнен из оксида с кристаллической структурой типа каменной соли, типа флюорита, типа перовскита или типа пирохлора.
[0012] Кроме того, в сверхпроводящем проводе по данному изобретению сверхпроводящий слой может быть выполнен из сверхпроводника RE-123.
[0013] Помимо этого данное изобретение представляет собой способ изготовления сверхпроводящего тонкопленочного материала, включающий в себя следующие стадии: проведение выравнивания поверхности первой сверхпроводящей тонкой пленки; и формирование второй сверхпроводящей тонкой пленки на подвергнутой выравниванию поверхности первой сверхпроводящей тонкой пленки. В способе изготовления сверхпроводящего тонкопленочного материала по данному изобретению указанное выравнивание может быть проведено с помощью по меньшей мере одной из механической полировки и химической полировки.
[0014] Кроме того, данное изобретение представляет собой способ изготовления сверхпроводящего провода любого вида из описанных выше, включающий в себя следующие стадии: формирование промежуточного слоя на подложке; формирование первой сверхпроводящей тонкой пленки на промежуточном слое; проведение выравнивания поверхности первой сверхпроводящей тонкой пленки; и формирование второй сверхпроводящей тонкой пленки на подвергнутой выравниванию поверхности первой сверхпроводящей тонкой пленки.
Эффекты изобретения
[0015] В соответствии с данным изобретением могут быть предоставлены сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления, способные повысить степень увеличения критического тока, связанного с увеличенной толщиной пленки.
Краткое описание чертежей
[0016] Фиг.1 представляет собой схематическое изображение в поперечном сечении, показывающее предпочтительный пример сверхпроводящего тонкопленочного материала по данному изобретению.
Фиг.2 представляет собой блок-схему, иллюстрирующую предпочтительный пример способа изготовления сверхпроводящего тонкопленочного материала по данному изобретению.
Фиг.3 представляет собой схематическое изображение в поперечном сечении, показывающее часть предпочтительного примера сверхпроводящего провода по данному изобретению.
Фиг.4 представляет собой блок-схему, иллюстрирующую предпочтительный пример способа изготовления сверхпроводящего провода по данному изобретению.
Фиг.5 представляет собой схематическое изображение в поперечном сечении, показывающее устройство, использованное в примере по данному изобретению.
Описание ссылочных обозначений
[0017] 1 - сверхпроводящий тонкопленочный материал, 1a - первая сверхпроводящая тонкая пленка, 1b - вторая сверхпроводящая тонкая пленка, 2 - подложка, 3 - промежуточный слой, 4 - сверхпроводящий слой, 5 - мишень, 6 - луч эксимерного лазера на KrF, 7 - плазма, 10 - сверхпроводящий провод.
Лучшие варианты осуществления изобретения
[0018] Данное изобретение представляет собой сверхпроводящий тонкопленочный материал, включающий в себя первую сверхпроводящую тонкую пленку, имеющую поверхность, подвергнутую выравниванию, и вторую сверхпроводящую тонкую пленку, сформированную на подвергнутой выравниванию поверхности первой сверхпроводящей тонкой пленки.
[0019] Обычно толстый сверхпроводящий тонкопленочный материал формировали за один раз посредством продления периода времени формирования при использовании такого способа, как импульсное лазерное осаждение. Однако, поскольку сверхпроводящие тонкие пленки формируются накапливающимся образом на поверхности, имеющей плохую гладкость, то имеет место тенденция к ухудшению гладкости поверхности с увеличением толщины пленки сверхпроводящего тонкопленочного материала.
[0020] Поэтому в данном изобретении для формирования более толстого сверхпроводящего тонкопленочного материала проводят выравнивание поверхности первой сверхпроводящей тонкой пленки во время формирования сверхпроводящего тонкопленочного материала, а затем на выровненной поверхности первой сверхпроводящей тонкой пленки продолжают формировать вторую сверхпроводящую тонкую пленку, вместо того, чтобы формировать весь сверхпроводящий тонкопленочный материал за один раз. Посредством этого в данном изобретении может быть получен сверхпроводящий тонкопленочный материал, обладающий превосходной гладкостью поверхности, может быть предотвращено замедление степени увеличения критического тока, связанного с увеличенной толщиной пленки, и тем самым может быть достигнут высокий критический ток. Следует заметить, что в данном изобретении выравнивание может быть также проведено на поверхности второй сверхпроводящей тонкой пленки, а затем на ней может быть сформирована дополнительная третья сверхпроводящая тонкая пленка. Такое выравнивание поверхности сверхпроводящей тонкой пленки и последующее формирование дополнительной сверхпроводящей тонкой пленки на выровненной поверхности сверхпроводящей тонкой пленки может быть повторено.
[0021] Фиг.1 представляет собой схематическое изображение в поперечном сечении, показывающее предпочтительный пример сверхпроводящего тонкопленочного материала по данному изобретению. Сверхпроводящий тонкопленочный материал 1 по данному изобретению включает в себя первую сверхпроводящую тонкую пленку 1a, сформированную на подложке 2, и вторую сверхпроводящую тонкую пленку 1b. Материал, образующий сверхпроводящий тонкопленочный материал 1 по данному изобретению (материал, образующий первую сверхпроводящую тонкую пленку 1a и вторую сверхпроводящую тонкую пленку 1b), особо не ограничивается, при условии, что он обладает сверхпроводящими свойствами, и, например, может быть использован сверхпроводник RE-123. Следует заметить, что сверхпроводник RE-123 является сверхпроводником, выраженным формулой REBa2Cu3Ox, где x составляет 6-7, а RE представляет собой редкоземельный элемент, такой как гольмий, гадолиний или самарий, или же иттрий. Кроме того, в качестве материала, образующего подложку 2, может быть использован элементарный металл или сплав, такой как никель или никелевый сплав.
[0022] Фиг.2 представляет собой блок-схему, иллюстрирующую предпочтительный пример способа изготовления сверхпроводящего тонкопленочного материала по данному изобретению. Сначала, как показано на стадии S11, на поверхности подложки формируют первую сверхпроводящую тонкую пленку. Первая сверхпроводящая тонкая пленка может быть сформирована таким способом, как импульсное лазерное осаждение.
[0023] Затем, как показано на стадии S12, поверхность первой сверхпроводящей тонкой пленки, сформированной на поверхности подложки, подвергают выравниванию. Выравнивание может быть проведено с помощью по меньшей мере одной из механической полировки и химической полировки, такой как ХМП (химико-механическая полировка), влажное травление или механическая полировка. Кроме того, выравнивание предпочтительно проводят до тех пор, пока поверхность первой сверхпроводящей тонкой пленки не будет иметь поверхностную шероховатость Ra (JIS B0601) не более 10 нм, а более предпочтительно, пока она не будет иметь поверхностную шероховатость Ra не более 6 нм.
[0024] После этого, как показано на стадии S13, на выровненной поверхности первой сверхпроводящей тонкой пленки формируют вторую сверхпроводящую тонкую пленку. Подобно первой сверхпроводящей тонкой пленке, вторую сверхпроводящую тонкую пленку формируют таким способом, как импульсное лазерное осаждение.
[0025] Затем, как показано на стадии S14, изготавливают сверхпроводящий тонкопленочный материал по данному изобретению. Следует заметить, что в описанном выше способе изготовления поверхность второй сверхпроводящей тонкой пленки может быть также выровнена, и затем на выровненной поверхности второй сверхпроводящей тонкой пленки может быть сформирована дополнительная третья сверхпроводящая тонкая пленка. Такое выравнивание поверхности сверхпроводящей тонкой пленки и последующее формирование дополнительной сверхпроводящей тонкой пленки на выровненной поверхности сверхпроводящей тонкой пленки может быть повторено.
[0026] Фиг.3 представляет собой схематическое изображение в поперечном сечении, показывающее часть предпочтительного примера сверхпроводящего провода по данному изобретению. Сверхпроводящий провод 10 по данному изобретению включает в себя подложку 2, промежуточный слой 3, сформированный на подложке 2, и сверхпроводящий слой 4, сформированный на промежуточном слое 3.
[0027] Сверхпроводящий провод 10 по данному изобретению характеризуется использованием описанного выше сверхпроводящего тонкопленочного материала по данному изобретению в качестве сверхпроводящего слоя 4. А именно, сверхпроводящий слой 4 имеет гладкую поверхность даже в случае, когда он обладает увеличенной толщиной пленок, и, соответственно, высокий критический ток может быть также достигнут в сверхпроводящем проводе 10 по данному изобретению без вызывания замедления степени увеличения критического тока, связанного с увеличенной толщиной пленок сверхпроводящего слоя 4.
[0028] Кроме того, в качестве материала, образующего подложку 2, может быть использован, как и в приведенном выше описании, элементарный металл или сплав, такой как никель или никелевый сплав. В качестве материала, образующего промежуточный слой 3, может быть использован, например, оксид с кристаллическими структурами типа каменной соли, типа флюорита, типа перовскита или типа пирохлора. Примеры оксида с описанной выше кристаллической структурой включают в себя оксид редкоземельного элемента, такой как YSZ (стабилизированный оксидом иттрия диоксид циркония) или CeO2 (диоксид церия), BZO (BaZrO3), STO (SrTiO3) и Al2O3. Кроме того, промежуточный слой 3 может быть сформирован не только из одиночного слоя, но и из множества слоев, выполненных из разных материалов. Следует заметить, что в сверхпроводящем проводе по данному изобретению поверх сверхпроводящего слоя может быть сформирован покровный слой, выполненный, например, из серебра, для защиты этого сверхпроводящего слоя.
[0029] Фиг.4 представляет собой блок-схему, иллюстрирующую предпочтительный пример способа изготовления сверхпроводящего провода по данному изобретению. Сначала, как показано на стадии S21, на поверхности подложки формируют промежуточный слой. Промежуточный слой может быть сформирован таким способом, как импульсное лазерное осаждение.
[0030] Затем, как показано на стадии S22, на поверхности промежуточного слоя формируют первую сверхпроводящую тонкую пленку. Первая сверхпроводящая тонкая пленка может быть сформирована таким способом, как импульсное лазерное осаждение.
[0031] После этого, как показано на стадии S23, проводят выравнивание поверхности первой сверхпроводящей тонкой пленки, сформированной на поверхности промежуточного слоя. Выравнивание может быть проведено с помощью по меньшей мере одной из механической полировки и химической полировки, такой как ХМП (химико-механическая полировка), влажное травление или механическая полировка, как описано выше. Опять же, выравнивание предпочтительно проводят до тех пор, пока поверхность первой сверхпроводящей тонкой пленки не будет иметь поверхностную шероховатость Ra (JIS B0601) не более 10 нм, а более предпочтительно, пока она не будет иметь поверхностную шероховатость Ra не более 6 нм.
[0032] Затем, как показано на стадии S24, на выровненной поверхности первой сверхпроводящей тонкой пленки формируют вторую сверхпроводящую тонкую пленку. Подобно первой сверхпроводящей тонкой пленке, вторая сверхпроводящая тонкая пленка может быть сформирована таким способом, как импульсное лазерное осаждение.
[0033] Затем, как показано на стадии S25, на поверхности промежуточного слоя формируют сверхпроводящий тонкопленочный материал и таким образом изготавливают сверхпроводящий провод по данному изобретению. Следует заметить, что в описанном выше способе изготовления, выравнивание может быть также проведено на поверхности второй сверхпроводящей тонкой пленки, а затем на ней может быть сформирована дополнительная третья сверхпроводящая тонкая пленка. Такое выравнивание поверхности сверхпроводящей тонкой пленки и последующее формирование дополнительной сверхпроводящей тонкой пленки на выровненной поверхности сверхпроводящей тонкой пленки может быть повторено.
Примеры
Первый пример
[0034] Вначале подложку 2, выполненную из никелевого сплава, размещали внутри устройства, показанного на схематическом изображении в поперечном сечении на Фиг.5, и ниже подложки 2 также размещали мишень 5, выполненную из стабилизированного оксидом иттрия диоксида циркония. При этом подложку 2 и мишень 5 размещали таким образом, чтобы поверхность подложки 2 и поверхность мишени 5 были параллельны и обращены одна к другой. Далее, расстояние между поверхностью подложки 2 и поверхностью мишени 5 устанавливали равным 50 мм. Стабилизированный оксидом иттрия диоксид циркония был получен добавлением оксида иттрия (Y2O3) к диоксиду циркония (ZrO2) в количестве 8 процентов от массы диоксида циркония.
[0035] Затем устройство вакуумировали. После этого в устройство вводили газовую смесь, содержащую 90 процентов по объему аргона (Ar) и 10 процентов по объему кислорода (O2), и устанавливали давление внутри устройства, равное 1×107 торр.
[0036] Затем подложку 2 нагревали до температуры 700°C и после этого облучали поверхность мишени 5 лучом 6 эксимерного лазера на KrF с длиной волны 248 нм и энергией облучения 3,5 Дж/см2 в импульсном режиме с частотой следования импульсов 40 Гц. Посредством этого генерировали плазму 7 мишени 5 для формирования на поверхности подложки 2 промежуточного слоя из стабилизированного оксидом иттрия диоксида циркония толщиной 1 мкм.
[0037] Затем мишень 5 заменяли на другую мишень 5, выполненную из HoBa2Cu3Ox (сверхпроводник RE-123), и снова вакуумировали устройство. После этого в устройство вводили газ, содержащий 100 процентов по объему кислорода, и устанавливали давление внутри устройства, равное 2×108 торр.
[0038] Затем, после того как подложку 2 доводили до температуры 650°C, поверхность мишени 5 облучали лучом 6 эксимерного лазера на KrF с длиной волны 248 нм и энергией облучения 3,5 Дж/см2 в импульсном режиме с частотой следования импульсов 80 Гц. Посредством этого генерировали плазму 7 мишени 5 для формирования первой сверхпроводящей тонкой пленки из сверхпроводника RE-123 толщиной 1 мкм на поверхности промежуточного слоя.
[0039] Сверхпроводящий провод, полученный таким образом, назвали образцом A, и шероховатость поверхности Ra первой сверхпроводящей тонкой пленки образца A измерили с использованием атомно-силового микроскопа (АСМ), а величину его критического тока Iкр измерили четырехзондовым методом. Результаты представлены в таблице 1. Как показано в таблице 1, первая сверхпроводящая тонкая пленка образца A имела шероховатость поверхности Ra 55 нм и величину критического тока Iкр 110 А/см·ширину.
[0040] Поверхность первой сверхпроводящей тонкой пленки образца A подвергали выравниванию посредством ее полировки с удалением 0,1 мкм по толщине при использовании ХМП (т.е. первая сверхпроводящая тонкая пленка после полировки и удаления части материала имела толщину 0,9 мкм). Шероховатость поверхности Ra первой сверхпроводящей тонкой пленки, подвергнутой выравниванию, измерили при использовании АСМ, и была получена шероховатость поверхности Ra, составлявшая 6 нм.
[0041] После этого образец A, подвергнутый описанному выше выравниванию, размещали в позиции подложки 2 в устройстве, показанном на фиг.5, и на выровненной поверхности первой сверхпроводящей тонкой пленки образца A формировали вторую сверхпроводящую тонкую пленку из сверхпроводника RE-123 толщиной 1 мкм при тех же самых условиях, что и описанные выше условия формирования первой сверхпроводящей тонкой пленки в образце A. Посредством этого на промежуточном слое был сформирован сверхпроводящий слой, включающий в себя первую сверхпроводящую тонкую пленку и вторую сверхпроводящую тонкую пленку (сверхпроводящий слой имел толщину 1,9 мкм).
[0042] Сверхпроводящий провод, полученный таким образом, назвали образцом В, и измерили шероховатость поверхности Ra сверхпроводящего слоя образца В с использованием АСМ, а величину его критического тока Iкр измерили четырехзондовым методом, как и в случае образца A. Результаты представлены в таблице 1. Как показано в таблице 1, образец B имел шероховатость поверхности Ra 6 нм и величину критического тока Iкр 200 А/см·ширину.
Первый сравнительный пример
[0043] Подготавливали выполненную из никелевого сплава подложку со сформированными на ней в указанном порядке промежуточным слоем из стабилизированного оксидом иттрия диоксида циркония и промежуточным слоем из диоксида церия. После этого на поверхности промежуточного слоя из диоксида церия формировали сверхпроводящую тонкую пленку из сверхпроводника RE-123 толщиной 2 мкм.
[0044] Сверхпроводящий провод, полученный таким образом, назвали образцом C, и измерили шероховатость поверхности Ra сверхпроводящей тонкой пленки образца C с использованием АСМ, а величину его критического тока Iкр измерили четырехзондовым методом, как и в случае образцов A и В. Результаты представлены в таблице. Как показано в таблице, образец C имел шероховатость поверхности Ra 80 нм и величину критического тока Iкр 140 А/см·ширину.
[0045] Таблица
Образец A B C
Поверхность сверхпроводящей тонкой пленки подвергнута выравниванию Нет Да Нет
Толщина сверхпроводящей тонкой пленки (мкм) 1,0 1,9 2,0
Шероховатость поверхности Ra (нм) 55 6 80
Величина критического тока Iкр (А/см·ширину) 110 200 140
[0046] Как показано в таблице, когда было сделано сравнение образца A и образца C, которые оба не были подвергнуты выравниванию, то образец C, имеющий большую толщину сверхпроводящей тонкой пленки, имел более высокую величину критического тока Iкр. Однако было подтверждено, что образец B, в котором поверхность первой сверхпроводящей тонкой пленки была подвергнута выравниванию ХМП, а затем на ней была сформирована вторая сверхпроводящая тонкая пленка, имел величину критического тока Iкр более высокую, чем у образца C, хотя он имел почти такую же толщину пленки, что и образец C. В результате было подтверждено, что посредством данного изобретения может быть улучшена степень увеличения критического тока, связанного с увеличенной толщиной пленки.
[0047] Следует понимать, что описанные выше вариант осуществления и пример являются во всех отношениях лишь иллюстрацией и не должны рассматриваться в качестве ограничения. Объем данного изобретения определяется представленной ниже формулой изобретения, а не приведенным выше описанием, и предполагает охват всех модификаций в рамках сущности и объема, эквивалентных сущности и объему формулы изобретения.
Промышленная применимость
[0048] Сверхпроводящий тонкопленочный материал и сверхпроводящий провод по данному изобретению являются подходящим образом применимыми в силовом электрооборудовании, таком как кабели, ограничители выброса тока или магниты.

Claims (9)

1. Сверхпроводящий тонкопленочный материал (1), содержащий: первую сверхпроводящую тонкую пленку (1а), имеющую поверхность, подвергнутую выравниванию; и
вторую сверхпроводящую тонкую пленку (1b), сформированную на подвергнутой упомянутому выравниванию поверхности первой сверхпроводящей тонкой пленки (1а).
2. Сверхпроводящий тонкопленочный материал (1) по п.1, в котором упомянутое выравнивание проведено с помощью по меньшей мере одной из механической полировки и химической полировки.
3. Сверхпроводящий провод (10), содержащий:
подложку (2);
промежуточный слой (3), сформированный на упомянутой подложке (2); и сверхпроводящий слой (4), сформированный на упомянутом промежуточном слое (3),
при этом упомянутый сверхпроводящий слой (4) выполнен из сверхпроводящего тонкопленочного материала (1) по п.1.
4. Сверхпроводящий провод (10) по п.3, в котором упомянутая подложка (2) выполнена из элементарного металла или сплава.
5. Сверхпроводящий провод (10) по п.3, в котором упомянутый промежуточный слой (3) выполнен из оксида с кристаллической структурой типа каменной соли, типа флюорита, типа перовскита или типа пирохлора.
6. Сверхпроводящий провод (10) по п.3, в котором упомянутый сверхпроводящий слой (4) выполнен из сверхпроводника RE-123.
7. Способ изготовления сверхпроводящего тонкопленочного материала (1), содержащий следующие стадии:
проведение выравнивания поверхности первой сверхпроводящей тонкой пленки (1а) и
формирование второй сверхпроводящей тонкой пленки (1b) на подвергнутой упомянутому выравниванию поверхности первой сверхпроводящей тонкой пленки (1а).
8. Способ изготовления сверхпроводящего тонкопленочного материала (1) по п.7, в котором упомянутое выравнивание проводят с помощью по меньшей мере одной из механической полировки и химической полировки.
9. Способ изготовления сверхпроводящего провода (10) по п.3, содержащий следующие стадии:
формирование упомянутого промежуточного слоя (3) на упомянутой подложке (2);
формирование первой сверхпроводящей тонкой пленки (1а) на упомянутом промежуточном слое (3);
проведение выравнивания поверхности первой сверхпроводящей тонкой пленки (1а) и
формирование второй сверхпроводящей тонкой пленки (1b) на подвергнутой упомянутому выравниванию поверхности первой сверхпроводящей тонкой пленки (1а).
RU2007132906/09A 2005-02-03 2006-01-26 Сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления RU2338280C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005027681A JP2006216365A (ja) 2005-02-03 2005-02-03 超電導薄膜材料、超電導線材およびこれらの製造方法
JP2005-027681 2005-02-03

Publications (1)

Publication Number Publication Date
RU2338280C1 true RU2338280C1 (ru) 2008-11-10

Family

ID=36777135

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007132906/09A RU2338280C1 (ru) 2005-02-03 2006-01-26 Сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления

Country Status (10)

Country Link
US (1) US20100160169A1 (ru)
EP (1) EP1852877A4 (ru)
JP (1) JP2006216365A (ru)
KR (2) KR100894806B1 (ru)
CN (1) CN101111906B (ru)
CA (1) CA2596546A1 (ru)
NO (1) NO20074426L (ru)
RU (1) RU2338280C1 (ru)
TW (1) TW200637043A (ru)
WO (1) WO2006082747A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477900C1 (ru) * 2012-03-01 2013-03-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Способ обработки высокотемпературного сверхпроводника

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5421561B2 (ja) * 2008-08-20 2014-02-19 住友電気工業株式会社 酸化物超電導薄膜の製造方法
ES2404655T3 (es) * 2008-11-29 2013-05-28 Alstom Technology Ltd. Limitador de corriente de falla con una pluralidad de elementos de superconducción conectados según una conformación a modo de anillo
CN102803546B (zh) * 2010-03-31 2014-12-31 日立金属株式会社 耐腐蚀性优异的被覆物品的制造方法及被覆物品
JP2012169062A (ja) * 2011-02-10 2012-09-06 Sumitomo Electric Ind Ltd 酸化物超電導膜の製造方法
JP2012204190A (ja) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The 酸化物超電導薄膜
JP5838596B2 (ja) 2011-05-30 2016-01-06 住友電気工業株式会社 超電導薄膜材料およびその製造方法
TWI458145B (zh) * 2011-12-20 2014-10-21 Ind Tech Res Inst 超導材料的接合方法
JP5701281B2 (ja) * 2012-12-18 2015-04-15 株式会社フジクラ 酸化物超電導線材
US9947441B2 (en) 2013-11-12 2018-04-17 Varian Semiconductor Equipment Associates, Inc. Integrated superconductor device and method of fabrication
US10158061B2 (en) * 2013-11-12 2018-12-18 Varian Semiconductor Equipment Associates, Inc Integrated superconductor device and method of fabrication

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814563B2 (ja) * 1989-05-29 1998-10-22 住友電気工業株式会社 酸化物超電導膜の製造方法
EP0478466B1 (en) * 1990-09-27 1995-11-08 Sumitomo Electric Industries, Ltd. A superconducting device and a method for manufacturing the same
JPH04275906A (ja) * 1991-03-01 1992-10-01 Sumitomo Electric Ind Ltd 超電導薄膜の作製方法
JPH05250931A (ja) * 1992-03-02 1993-09-28 Fujikura Ltd 酸化物超電導導体
JP2829221B2 (ja) * 1993-06-30 1998-11-25 財団法人国際超電導産業技術研究センター 熱プラズマ蒸発法による金属基板上への酸化物の成膜方法
JPH07169343A (ja) * 1993-10-21 1995-07-04 Sumitomo Electric Ind Ltd 超電導ケーブル導体
JPH09306256A (ja) * 1996-05-14 1997-11-28 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center バルク酸化物超電導体ならびにその線材及び板の作製方法
US6251835B1 (en) * 1997-05-08 2001-06-26 Epion Corporation Surface planarization of high temperature superconductors
US6541136B1 (en) * 1998-09-14 2003-04-01 The Regents Of The University Of California Superconducting structure
CA2344040A1 (en) * 1998-09-14 2000-04-20 William Larry Hults Superconducting structure including mixed rare earth barium-copper compositions
US6765151B2 (en) * 1999-07-23 2004-07-20 American Superconductor Corporation Enhanced high temperature coated superconductors
KR100683186B1 (ko) * 1999-07-23 2007-02-15 아메리칸 수퍼컨덕터 코포레이션 다층 제품 및 그의 제조방법
US6613463B1 (en) * 1999-09-06 2003-09-02 International Superconductivity Technology Center Superconducting laminated oxide substrate and superconducting integrated circuit
US20030036483A1 (en) * 2000-12-06 2003-02-20 Arendt Paul N. High temperature superconducting thick films
JP2003347610A (ja) * 2002-05-28 2003-12-05 Nec Corp 酸化物超電導薄膜の熱処理方法
JP4022620B2 (ja) * 2003-05-22 2007-12-19 独立行政法人産業技術総合研究所 チタン酸ストロンチウム薄膜積層体及びその作製方法
US7642222B1 (en) * 2004-11-30 2010-01-05 Los Alamos National Security, Llc Method for improving performance of high temperature superconductors within a magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477900C1 (ru) * 2012-03-01 2013-03-20 Федеральное государственное бюджетное учреждение науки Институт общей физики им. А.М. Прохорова Российской академии наук Способ обработки высокотемпературного сверхпроводника

Also Published As

Publication number Publication date
EP1852877A4 (en) 2011-03-02
TW200637043A (en) 2006-10-16
KR100979015B1 (ko) 2010-08-30
JP2006216365A (ja) 2006-08-17
WO2006082747A1 (ja) 2006-08-10
NO20074426L (no) 2007-08-30
KR100894806B1 (ko) 2009-04-24
KR20070100398A (ko) 2007-10-10
CN101111906A (zh) 2008-01-23
CA2596546A1 (en) 2006-08-10
CN101111906B (zh) 2013-03-13
EP1852877A1 (en) 2007-11-07
US20100160169A1 (en) 2010-06-24
KR20090009337A (ko) 2009-01-22

Similar Documents

Publication Publication Date Title
RU2338280C1 (ru) Сверхпроводящий тонкопленочный материал, сверхпроводящий провод и способ их изготовления
KR100815000B1 (ko) 나노도트 플럭스 피닝 센터가 있는 산화물 막
EP1198846B1 (en) Enhanced high temperature superconductor coated elements
US6730410B1 (en) Surface control alloy substrates and methods of manufacture therefor
US6828507B1 (en) Enhanced high temperature coated superconductors joined at a cap layer
KR20020025957A (ko) 개선된 고온 피복 초전도체
US20070238619A1 (en) Superconductor components
KR20090029216A (ko) 초전도 박막 재료 및 그 제조 방법
KR20120051688A (ko) 향상된 자속 고정을 위한 예비 제작된 나노 구조물을 구비한 초전도 물품
KR20080041665A (ko) 와이비씨오 코팅에 있어 고 임계전류밀도를 갖는 구조
WO2000016412A1 (en) Superconducting structure
KR20130008599A (ko) 단일 코팅에 의한 산화물 후막
KR20020069417A (ko) 광전자 소자용 실리콘 박막 구조체 및 그 제조방법
CN102598155A (zh) 超导线材用的带状基材及超导线材
KR101056227B1 (ko) 초전도체 및 그 제조방법
US9306147B2 (en) Method of producing substrate and superconducting wire
KR20080096828A (ko) 초전도 박막 재료의 제조 방법, 초전도 기기 및 초전도 박막 재료
KR100764527B1 (ko) 적층막 및 성막방법
JP2011096593A (ja) 酸化物超電導薄膜の製造方法
JP2023076209A (ja) 多芯薄膜超伝導線材、および、その製造方法
WO2013153651A1 (ja) 酸化物超電導薄膜線材とその製造方法
JPH0652742A (ja) 酸化物超電導膜の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110127