WO2006080502A1 - 反射防止膜付き基体 - Google Patents

反射防止膜付き基体 Download PDF

Info

Publication number
WO2006080502A1
WO2006080502A1 PCT/JP2006/301471 JP2006301471W WO2006080502A1 WO 2006080502 A1 WO2006080502 A1 WO 2006080502A1 JP 2006301471 W JP2006301471 W JP 2006301471W WO 2006080502 A1 WO2006080502 A1 WO 2006080502A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
refractive index
substrate
titanium
Prior art date
Application number
PCT/JP2006/301471
Other languages
English (en)
French (fr)
Inventor
Kazuya Yaoita
Yoshihito Katayama
Yukio Kimura
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to CN2006800033827A priority Critical patent/CN101111783B/zh
Priority to EP06712614A priority patent/EP1845392A4/en
Priority to JP2007500632A priority patent/JP5262110B2/ja
Publication of WO2006080502A1 publication Critical patent/WO2006080502A1/ja
Priority to US11/830,999 priority patent/US20070279750A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to a substrate with an antireflection film.
  • Windshield glass (front glass) for automobiles is required to have a high visible light transmittance and a low reflectance.
  • As an antireflection film of low reflection glass that satisfies such characteristics a laminated film of a titanium nitride layer and an oxide layer is used.
  • it is also required not to shield the electromagnetic wave in consideration of the above characteristics.
  • the laminated film of the titanium nitride layer and the oxide layer has a low film resistivity and shields electromagnetic waves.
  • a laminated film of an acid titanium layer and an acid key layer is known as an antireflection film having a high visible light transmittance, a low reflectance, and a high film resistivity.
  • the visible light transmittance is high, the reflectance is low, the film resistivity is high, and cracks do not occur even when subjected to heat treatment!
  • An object is to provide a substrate with an antireflection film.
  • the gist of the present invention is as follows.
  • a substrate with an antireflection film having an antireflection film formed by laminating layers wherein at least one layer of the coating made of the high refractive index material is a single layer film (a) of a titanium oxynitride layer, an oxide layer Antireflection, characterized in that it is a laminated film (b) containing a titanium layer and an acid-dioxycomb layer or a laminated film (c) containing a titanium oxynitride layer and an acid-zirconium layer. Substrate with film.
  • a transparent substrate a coating made of a high refractive index material having a refractive index of 1.90 or more, and a coating made of a low refractive index material having a refractive index of 1.56 or less, in this order from the transparent substrate side.
  • a substrate with an antireflection film having an antireflection film formed by laminating layers wherein at least one layer of the coating made of the high refractive index material is a single layer film (a) of a titanium oxynitride layer, an oxide layer
  • a substrate with an antireflection film characterized in that it is a laminated film (bl) of a titanium layer and an acid-dibutyl-comb layer or a laminated film (cl) of a titanium oxynitride layer and an acid-zirconium layer.
  • a transparent substrate a coating made of a high refractive index material having a refractive index of 1.90 or more, and a coating having a low refractive index material force of a refractive index of 1.56 or less are laminated in this order from the transparent substrate side.
  • a substrate with an antireflective film comprising the antireflective film, wherein the antireflective film is a coating made of a high refractive index material having a refractive index of 1.90 or more from the transparent substrate side.
  • the substrate with an antireflection film of the present invention does not crack in the antireflection film even when it is subjected to a heat treatment with a high visible light transmittance, a low reflectance, and a high film resistivity.
  • the substrate with an antireflection film of the present invention comprises a transparent substrate, a coating made of a high refractive index material having a refractive index of 1.90 or more, and a coating made of a low refractive index material having a refractive index of 1.56 or less.
  • an antireflection film which is a layer film (a), a laminated film (b) containing an acid-titanium layer and an acid-zirconium layer, or a laminated film (c) containing a titanium oxynitride layer and an acid-zirconium layer It is an attached substrate.
  • the substrate with an antireflection film of the present invention comprises a transparent substrate, a film made of a high refractive index material having a refractive index of 1.90 or more, and a film made of a low refractive index material having a refractive index of 1.56 or less.
  • Anti-reflection which is a monolayer film (a), a laminated film (bl) of an acid-titanium layer and an acid-zirconium layer, or a laminated film (cl) of a titanium oxynitride layer and an acid-zirconium layer
  • a substrate with a film The substrate having the antireflection film having the antireflection film formed by laminating an even number of layers in this order, wherein at least one layer of the coating film having a high refractive index material force is a titanium oxynitride layer.
  • Anti-reflection which is a monolayer film (a), a laminated film (bl) of an acid-titanium layer and an acid-zirconium layer, or a
  • the reflection on the antireflection film surface of light incident from the side of the antireflection film at an incident angle of 60 ° is 6% or less as a visible light reflectance. preferable. When it is in the above range, the antireflection performance is sufficient.
  • the transparent substrate used in the present invention is not limited to a colorless and transparent material, and a colored material can be used as long as the transmittance does not impair the object of the present invention.
  • a colored material can be used as long as the transmittance does not impair the object of the present invention.
  • glass is preferred.
  • the glass is not particularly limited, and examples thereof include transparent or colored float glass (glass produced by a float process) and colored heat ray absorbing glass. Tempered glass can also be used. Specifically, heat ray absorbing glass in which coloring components such as iron ions are contained in soda lime glass is preferably used.
  • the substrate with an antireflection film of the present invention can be used in combination with any other substrate.
  • the laminated glass obtained by laminating a substrate with an antireflection film of the present invention produced using a glass plate as a transparent substrate and another glass plate with an intermediate film such as polybutyl petital interposed therebetween.
  • This laminated glass is suitable as an automobile windshield.
  • the substrate with an antireflection film of the present invention comprises a coating made of a high refractive index material having a refractive index of 1.90 or more and a low refractive index material having a refractive index of 1.56 or less on the transparent substrate described above.
  • An antireflection film is formed by laminating an even number of layers in this order from the transparent substrate side.
  • the high refractive index material means a material having a refractive index of 1.90 or more
  • the low refractive index material means a material having a refractive index of 1.56 or less.
  • the total film thickness of the high refractive index material layer and the low refractive index material layer is preferably 2 layers, 4 layers, 6 layers, or 8 layers. Or, it is more preferable to have 6 layers, and it is particularly preferable to have 4 layers.
  • At least one layer of the coating made of a high refractive index material is a monolayer film (a) of a titanium oxynitride layer, a laminated film (b) including a titanium oxide layer and an zirconium oxide layer, or This is a laminated film (c) including a titanium oxynitride layer and a zirconium oxide layer.
  • a monolayer film (a) of a titanium oxynitride layer a laminated film (b) including a titanium oxide layer and an zirconium oxide layer
  • This is a laminated film (c) including a titanium oxynitride layer and a zirconium oxide layer.
  • the monolayer film (a) of the titanium oxynitride layer is a film in which only the titanium oxynitride (TiO N) layer has a force.
  • the titanium oxynitride layer is less likely to crystallize during heat treatment than the titanium oxide layer. For this reason, generation
  • the amount of nitrogen relative to titanium is preferably 0.1 to 80 at%.
  • the amount of nitrogen relative to titanium is within the above range, the effect of suppressing the generation of cracks is further increased.
  • the amount of nitrogen with respect to titanium before heat treatment is 2 to 40 at%.
  • the amount of nitrogen relative to titanium after heat treatment is preferably 0.1 to 20 at%. Particularly preferred is L0 at%. Particularly preferred is 0.1 to 5 at%.
  • the formation of the titanium oxynitride layer (the amount of nitrogen relative to titanium) can be analyzed by X-ray photoelectron spectroscopy (XPS), ESCA, or the like.
  • XPS X-ray photoelectron spectroscopy
  • the ratio of oxygen and nitrogen (specifically, the values of X and y) in the titanium oxynitride layer is difficult to directly measure. However, the amount of nitrogen relative to titanium must be determined by measurement.
  • Table 1 shows values of X and y in a preferred composition of the titanium oxynitride layer. This value is described as a value calculated with the y value fixed based on the same premise as above.
  • the heat treatment can be performed according to the conditions employed in a normal bending force strengthening case, in a temperature range of 550 to 700 ° C, preferably in a temperature range of 600 to 700 ° C. It can be carried out. Specifically, for example, it is performed under the conditions of a set temperature of 650 ° C. and a heat treatment time of 15 minutes.
  • the titanium oxynitride layer preferably has a geometric thickness force of 5 to 160 nm, more preferably 40 to 140 nm. Within the above range, the antireflection effect of the antireflection film is increased, cracks are difficult to occur, and warping of the substrate can be reduced. Furthermore, it is particularly preferable that the geometric thickness of the titanium oxynitride layer is 80 to 120 nm, because the reflection color of the substrate with an antireflection film is almost the same as the reflection color of the transparent substrate.
  • the laminated film (b) including an acid / titanium layer and an acid / zirconium layer is a film including one or more titanium oxide layers and one or more acid / zirconium layers.
  • the titanium oxide layer contained in the laminated film (b) is preferably one or two layers.
  • the zirconium oxide layer contained in the laminated film (b) is preferably one or two layers. . Further, it is preferable that the titanium oxide layer and the zirconium oxide layer included in the laminated film (b) are laminated adjacent to each other.
  • the zirconium oxide layer is monoclinic during film formation.
  • the oxide-zirconium layer has the same crystal lattice size as the acid-oxide titanium layer, and lattice matching is easy to occur.
  • the adjacent zirconium oxide layer suppresses crystallization due to rearrangement of the lattice within the titanium oxide layer during the heat treatment, so that the shrinkage hardly occurs during the heat treatment. it is conceivable that.
  • the titanium oxide layer has a structure in which the titanium oxide layer is arranged to some extent at the time of film formation, so that the rearrangement of titanium oxide titanium hardly occurs (that is, it is difficult to crystallize). For this reason, generation
  • the structure of the laminated film (b) is not particularly limited as long as the acid-titanium layer and the acid-zirconium layer are laminated adjacently to each other as V, and examples thereof include the following structures.
  • Laminated film (bl) of acid-titanium layer and acid-zirconium layer Laminated film (bl) of acid-titanium layer and acid-zirconium layer
  • Laminated film of titanium oxide layer, zirconium oxide layer and titanium oxide layer Laminated film of zirconium oxide layer, titanium oxide layer and zirconium oxide layer, laminated film of titanium oxide layer, zirconium oxide layer, titanium oxide layer and zirconium oxide layer.
  • the laminated film (bl) is preferable.
  • the laminated film (bl) is oxidized with a titanium oxide (TiO) layer.
  • Three-layer structure consisting of TiO / ZrO / TiO from the transparent substrate side,
  • Three-layer structure consisting of ZrO / TiO / ZrO from the transparent substrate side,
  • a four-layer structure consisting of ZrO / TiO / ZrO / TiO force from the transparent substrate side is also preferred.
  • the acid-titanium layer is compared with the two-layer structure in which an acid-zitanium layer and an acid-zirconium layer are also used. The thickness of each layer can be reduced, and cracks are also suppressed from this point.
  • the laminated film (b) is made of another layer having a high refractive index material force as long as it does not impair the purpose of the present invention as long as it does not affect characteristics such as reflectance, transmittance, and film resistance. You may have.
  • Examples of other layers that may be included in the laminated film (b) include a titanium oxide layer, a zinc oxide layer, a tantalum oxide layer, a zirconium oxide layer, a niobium oxide layer, and a silicon nitride layer.
  • a zirconium nitride layer, an aluminum nitride layer, or the like can be used.
  • the laminated film (b) preferably has a geometric thickness force of 40 to 160 nm, more preferably 50 to 140 nm.
  • the antireflection effect of the antireflection film is increased, Further, cracks are difficult to occur, and warping of the substrate can be reduced.
  • the geometrical thickness of the laminated film (b) is 80 to 130 nm, since the reflection color of the substrate with the antireflection film becomes equivalent to the reflection color of the transparent substrate.
  • the titanium oxide layer is formed of the laminated film (b).
  • the geometric thickness is preferably not exceeding 30 to 150 nm, particularly preferably 70 to 120 nm.
  • each titanium oxide layer is preferably 10 to 80 nm. Further, it is particularly preferable that the geometric thickness of each titanium oxide layer is 30 to 60 nm, because the reflection color of the substrate with the antireflection film becomes equivalent to the reflection color of the transparent substrate.
  • the zirconium oxide layer preferably has a geometric thickness force of 5 to 50 nm, more preferably 10 to 40 nm.
  • the geometric thickness of the acid-zirconium layer is 5 nm or more, the portion that crystallizes during film formation increases, and the generation of cracks in the titanium oxide layer is more effectively suppressed.
  • the refractive index of the acid-zirconium layer is smaller than the refractive index of the acid-zirconium layer. Therefore, the refractive index of the laminated film (b) is smaller than that of the single layer film of the titanium oxide layer. If the geometric thickness of the zirconium oxide layer is 50 nm or less, the refractive index of the laminated film (b) becomes sufficiently high.
  • the geometric thickness of the zirconium oxide layer is 50 nm or less, the possibility that the zirconium oxide layer itself has a large stress and causes cracks during heat treatment can be effectively suppressed.
  • the laminated film (b) includes a titanium oxide layer, a zirconium oxide layer, and, if necessary, other high-refractive-index material caps as long as they do not affect characteristics such as reflectance, transmittance, and film resistance. It can be obtained by stacking different layers.
  • the high refractive index layer includes a titanium oxide layer, an acid oxide zinc layer, an acid oxide tantalum layer, an acid oxide zirconium layer, a niobium oxide layer, a nitride nitride layer, and a zinc nitride layer. And an aluminum nitride layer. The manufacturing method of each layer will be described later.
  • the laminated film (c) including the titanium oxynitride layer and the zirconium oxide layer is a multilayer film including one or more titanium oxynitride layers and one or more zirconium oxide layers.
  • the titanium oxynitride layer contained in the laminated film (c) is preferably one or two layers.
  • the gallium oxide layer contained in the layer film (c) should be one or two layers. Is preferred. Further, it is preferable that the titanium oxynitride layer and the zirconium oxide layer included in the laminated film (c) are laminated adjacent to each other.
  • the laminated film (c) has both the effects of the single-layer film (a) and the laminated film (b) described above, the occurrence of cracks can be more effectively suppressed.
  • the amount of nitrogen relative to titanium in the titanium oxynitride (TiO N) layer of the laminated film (c) is
  • the laminated film (c) has a structure in which a titanium oxynitride layer and an oxyzirconium layer are stacked adjacent to each other! If it is, it will not specifically limit, For example, the following structure is mentioned.
  • a laminated film of an oxy-zirconium layer, a titanium oxynitride layer, and an oxy-zirconium layer and a laminated film of a titanium oxynitride layer, an oxy-zirconium layer, a titanium oxynitride layer, and an oxy-zirconium layer.
  • the laminated film (cl) of the titanium oxynitride layer and the acid-zirconium layer has a titanium oxynitride (TiO N) layer and an acid-zirconium (ZrO) layer adjacent to each other.
  • Three-layer structure consisting of TiO N / ZrO / TiO N from the transparent substrate side,
  • a structure having a zirconium oxide layer on the transparent substrate side of the titanium oxynitride layer for example, [transparent substrate side] ZrO 2 / TiO 2 [film surface side] two-layer structure), two-layer oxynitriding Between titanium layers
  • the 2 x y film side] two-layer structure (laminated film (c 1-1)) is particularly preferred.
  • the laminated film (c) preferably has a geometric thickness force of 40 to 160 nm, more preferably 50 to 140 nm. Within the above range, the antireflection effect of the antireflection film is increased, cracks are difficult to occur, and warping of the substrate can be reduced. Further, it is particularly preferred that the geometric thickness of the laminated film (c) is 80 to 130 nm, since the reflection color of the substrate with the antireflection film becomes equivalent to the reflection color of the transparent substrate.
  • the thickness of the titanium oxynitride layer is
  • 30 to 150 nm is preferable within a range not exceeding the geometric thickness of the laminated film (c), particularly preferably 70 to 120 nm! /.
  • each titanium oxynitride layer has a thickness of 10 to 80 nm. Also
  • each titanium oxynitride layer is 30 to 60 nm
  • the reflection color of the substrate with the antireflection film is equivalent to the reflection color of the transparent substrate, which is particularly preferable.
  • the zirconium oxide layer preferably has a geometric thickness force of 5 to 50 nm, more preferably 10 to 40 nm.
  • the geometric thickness of the zirconium oxide layer is 5 nm or more, the portion that crystallizes during film formation increases, and the generation of cracks in the titanium oxynitride layer can be more effectively suppressed. .
  • the refractive index of the zirconium oxide layer is smaller than the refractive index of the titanium oxynitride layer. Therefore, the refractive index of the laminated film (c) is smaller than that of the single layer film of the titanium oxynitride layer. If the geometric thickness of the oxide layer is 50 nm or less, the refractive index of the laminated film (c) becomes sufficiently high.
  • the geometric thickness of the zirconium oxide layer is 50 nm or less, the possibility that the zirconium oxide layer itself has a large stress and cracks during heat treatment can be effectively suppressed.
  • the geometric thickness of the TiO N layer is 70 to 120 nm.
  • force S preferably 90 to: L lOnm is particularly preferable.
  • the geometric thickness of the ZrO layer is 5
  • the wear resistance may be lowered, so that the thickness is particularly preferably 8 to 30 nm. If the geometric thickness of TiO N and the geometric thickness of the ZrO layer satisfy the above ranges,
  • the antireflection effect and cracking prevention effect are sufficient.
  • the geometry of the ZrO layer can be used to suppress warping of the substrate with an antireflection film during heat treatment.
  • the ratio of the geometric thickness to the geometric thickness of TiO N is preferably 1Z (4 to 14) as the ZrO layer ZTiO N layer in the range where the geometric thickness of each layer satisfies the above range.
  • the laminated film (c) may be another layer made of a material having a high refractive index as long as the object of the present invention is not impaired as long as it does not affect characteristics such as reflectance, transmittance, and film resistance. You may have.
  • layers made of a high refractive index material include a titanium oxide layer, a zinc oxide layer, a tantalum oxide layer, an oxide zirconium layer, a niobium oxide layer, a nitride nitride layer, a zirconium nitride layer, and an aluminum nitride layer. It is done. Of these, an acid titanium layer is preferable.
  • the structure of the laminated film (c) having a titanium oxide layer is, for example, TiO / ZrO / TiO N
  • the tan layer is preferably 10 to 80 nm.
  • the tantalum layer and the titanium oxide layer are preferably 10 to 80 nm. Further, it is particularly preferable that the geometric thickness of each titanium oxynitride layer and titanium oxide layer is 30 to 60 nm because the reflection color of the substrate with the antireflection film is equivalent to the reflection color of the transparent substrate.
  • a laminated film (c) including a titanium oxynitride layer and an acid-zirconium zirconium layer is preferable as the film having a high refractive index material force.
  • a laminated film (cl) of a titanium oxynitride layer and a zinc oxide layer is particularly preferred.
  • the layer structure (Cl-1) is particularly preferred.
  • at least one layer of the film having a high refractive index material force may be any one of (a) to (c) described above. That is, when there are two or more coating films that also have a high refractive index material force, they may have layers other than the above-mentioned (a) to (c). However, in this case, it is preferable that the coating film which is the farthest from the transparent substrate and also has a high refractive index material force is a shift as described above in (a) to (c).
  • Layers other than the above (a) to (c) are not particularly limited, and a conventionally known layer can be used.
  • a titanium oxide layer, a zinc oxide layer, an acid / tantalum layer, an acid / zirconium layer, a niobium oxide layer, a silicon nitride layer, a zirconium nitride layer, and an aluminum nitride layer can be given.
  • an acid titanium layer is preferable.
  • the total number of the coating film made of the high refractive index material and the coating film made of the low refractive index material laminated on the substrate is preferably four layers. It is preferable that the film having the refractive index material force is any one of the above (a) to (c), and the high refractive index material corresponding to the first layer is the layer having the above-described conventionally known high refractive index material force.
  • the geometric thickness of the coating film having a high refractive index material force other than the above (a) to (c) is such that the coating film is a titanium oxide layer, a zinc oxide layer, a tantalum oxide layer, a zirconium oxide layer, a niobium oxide layer.
  • the coating film is a titanium oxide layer, a zinc oxide layer, a tantalum oxide layer, a zirconium oxide layer, a niobium oxide layer.
  • it is preferably 5 to 200 nm. 5 to: It is particularly preferable to be 5 to 60 nm, more preferably LOOnm.
  • the coating is a silicon nitride layer, a zirconium nitride layer, or an aluminum nitride layer, 5 to 160 nm is preferable 5 to: LOOnm is more preferable 5 to 60 nm is particularly preferable.
  • the antireflection effect of the antireflection film is increased, cracks are hardly formed, and warping
  • the refractive index of a film made of a high refractive index material may be 1.90 or more, but preferably 2.00-2.60 2.20-2.60 Is more preferable.
  • the film made of a low refractive index material is not particularly limited, and a conventionally known layer can be used.
  • a silicon oxide (SiO 2) layer is preferable.
  • the geometric thickness of the film that also has a low refractive index material force is preferably from 5 to 220 nm, more preferably from 20 to 140 nm. When it is in the above range, the antireflection effect is increased, cracks are hardly generated, and warping of the substrate can be reduced.
  • the refractive index of the film made of the low refractive index material may be 1.56 or less, but is preferably 1.45 or more.
  • the geometry of the coating film made of a plurality of high refractive index materials exists.
  • the target thickness may be the same or different. The same applies to a coating film having a plurality of low refractive indexes.
  • FIG. 1060 An example of a case where there is a difference in the geometric thickness of a plurality of coatings is shown.
  • the geometrical properties of the coating consisting of the high refractive index material of the first layer are shown. Thickness 5 to 20 nm, second layer with low refractive index material force geometric thickness 20 to 60 nm, third layer with high refractive index material thickness geometric thickness 70
  • the geometric thickness of the film made of the low refractive index material of the fourth layer is 80 to 120 nm.
  • the base with an antireflection film of the present invention comprises the above-mentioned transparent base comprising the above-mentioned coating made of a high refractive index material and the above-mentioned coating made of a low refractive index material on the transparent base. By depositing an even number of layers in this order from the side, an antireflection film can be formed and obtained.
  • the production method for the titanium oxynitride layer, titanium oxide layer, zirconium oxide layer, and other layers made of a high refractive index material, and a layer constituting a film made of a low refractive index material are particularly limited. However, a conventionally known method can be used, but it is preferable to form a film by sputtering.
  • Examples of the sputtering method include a DC (direct current) sputtering method, an AC (alternating current) sputtering method, a high-frequency sputtering method, and a magnetron sputtering method.
  • DC magnetron sputtering method and AC magnetron sputtering method are preferred because of the advantages of stable process and easy deposition on a large area!
  • a titanium oxynitride layer for example, reactive sputtering is performed using TiO (1 ⁇ ⁇ 2) as a target and a gas containing a nitrogen atom as a sputtering gas.
  • the method to perform is mentioned suitably.
  • a titanium oxide layer for example, reactive sputtering is performed using TiO (1 ⁇ ⁇ 2) as a target and a gas containing a gas containing oxygen atoms as a sputtering gas.
  • a method for carrying out the engraving method is preferred.
  • a method of performing reactive sputtering using a gas containing oxygen atoms as a sputtering gas using zirconium as a target is preferably mentioned. It is done.
  • SiC silicon carbide
  • a preferable example is a method of performing a reactive sputtering method using a gas containing a gas containing oxygen atoms as a sputtering gas.
  • the target may be doped with a known dopant such as Al, Si, Zn and the like within a range not impairing the characteristics of the present invention.
  • the amount of dopant is preferably 20 at% or less with respect to all metal atoms contained in the target.
  • the gas containing a gas containing a nitrogen atom is not particularly limited as long as it contains a gas containing a nitrogen atom.
  • a gas containing a nitrogen atom, a gas containing a nitrogen atom, an inert gas, The mixed gas is mentioned.
  • Examples of the gas containing nitrogen atoms include nitrogen gas (N 2).
  • the inert gas examples include rare gases such as helium, neon, argon, krypton, and xenon. Among these, argon is preferable from the viewpoint of economy and discharge.
  • the gas containing a gas containing oxygen atoms is not particularly limited as long as it contains a gas containing oxygen atoms.
  • a gas containing oxygen atoms a mixed gas of a gas containing oxygen atoms and an inert gas, or the like. Is mentioned.
  • Examples of the gas containing oxygen atoms include oxygen gas (O 2) and carbon dioxide gas (CO 2).
  • the inert gas is the same as described above.
  • the sputtering conditions can be appropriately determined depending on the type and thickness of the film to be formed. Also, the total pressure of the sputtering gas should be such that the glow discharge is stable.
  • Preferred embodiments (1) to (4) of the substrate with an antireflection film of the present invention are listed below. Among them, the embodiment (2) in which the embodiments (1) to (3) are preferable is particularly preferable.
  • the transparent substrate is represented by G
  • the coating made of a high refractive index material is represented by H
  • the coating made of a low refractive index material is represented by a subscript.
  • a transparent substrate having an anti-reflection film having an anti-reflection film.
  • a transparent substrate having an antireflection film comprising:
  • a transparent substrate having a six-layer antireflection film having a six-layer antireflection film.
  • a transparent substrate having an antireflection film comprising 8 layers.
  • the use of the substrate with an antireflection film of the present invention is not particularly limited, and can be used for a wide range of uses.
  • it is suitably used for automobile windshield glass, roof glass, various display glasses, architectural glass, solar cell cover glass, and the like, and is particularly suitable for automobile windshields.
  • An article having a curved surface such as an automobile windshield, is provided with a heating process in which the base with an antireflection film of the present invention is carried into a heating furnace and heated to a bending molding temperature, and a bending molding process into a desired shape.
  • Can be obtained by doing Bending is about 600-700 ° C In the temperature range (preferably 650 to 700 ° C.).
  • Example 1 For example, in Example 1, a TiO layer is formed on the VFL, and then a SiO layer is formed on the TiO layer.
  • a ZrO layer is formed on the SiO layer, and a TiO layer is formed on the ZrO layer.
  • each layer is placed on the substrate in the order of left force.
  • Example 1 ⁇ ? 1 ⁇ (2! 11111) 710 (12nm) / SiO (41nm) / ZrO (20nm) / TiO (109
  • Example 2 VFL (2mm) ZTiO (12nm) / SiO (41nm) / ZrO (15nm) / TiO (45n
  • Example 3 VFL (2mm) ZTiO (12nm) / SiO (39nm) / TiO (45nm) / ZrO (20n
  • Example 4 VFL (2mm) ZTiO (13nm) / SiO (44nm) / TiON (120nm) / SiO (1
  • Example 5 VFL (2mm) ZTiO (10nm) / SiO (32nm) / ZrO (20nm) / TiO N (10
  • Example 6 VFL (2mm) ZTiO (12nm) / SiO (39nm) / TiON (113nm) / SiO (1
  • Example 7 VFL (2mm) ZTiO (llnm) / SiO (35nm) / ZrO (20nm) / TiO N (10
  • Example 8 VFL (2.3mm) / TiO (7.5nm) / SiO (30nm) / ZrO (lOnm) / TiO
  • Example 9 FL (2.3mm) / TiO (7nm) / SiO (29nm) / ZrO (19nm) / TiO N (1
  • Example 10 FL (2.3mm) / TiO (8nm) / SiO (32nm) / ZrO (16nm) / TiO N (
  • Example 11 FL (2.3mm) / TiO (8nm) / SiO (32nm) / ZrO (30nm) / TiO N (
  • Example 12 FL (2.3mm) / TiO (8nm) / SiO (32nm) / ZrO (8nm) / TiO N (9
  • Example 13 FL (2.3mm) / TiO (8nm) / SiO (32nm) / TiO N (98nm) / SiO (
  • Example 14 VFL (2.3mm) / TiO (8nm) / SiO (27nm) / ZrO (20nm) / TiO N
  • Example 15 VFL (2mm) ZTiO (13nm) / SiO (43nm) / TiO (120nm) / SiO (11
  • each layer was performed as follows.
  • the TiO (1 ⁇ ⁇ 2) target was placed on the force cathode as a sputtering target in a vacuum chamber, the vacuum chamber was evacuated to less 1.3 X 10- 3 Pa. Next, a mixed gas of 96 sccm of argon gas and 4 sccm of oxygen gas was introduced as a sputtering gas. At this time, the pressure was 5.7 ⁇ 10—. In this state, a reactive sputtering method was performed using a DC pulse power source, and a TiO layer was formed on the object to be processed installed in the vacuum chamber.
  • the Zr target was placed on the force cathode as a sputtering target in a vacuum chamber, the vacuum chamber was evacuated to less 1. 3 X 10- 3 Pa. Next, oxygen gas of 60 sccm was introduced as a sputtering gas. At this time, the pressure was 3.3 X 10— &. In this state, reactive sputtering is performed using a DC pulse power source, and ZrO is deposited on the workpiece to be processed in the vacuum chamber.
  • the TiO (1 ⁇ ⁇ 2) target was placed on the force cathode as a sputtering target in a vacuum chamber was evacuated to a vacuum chamber 1. less 3 X 10- 3 Pa. Next, a mixed gas of argon gas and nitrogen gas was introduced as a sputtering gas. At this time, the pressure was 5.7 X 10—. In this state, a reactive sputtering method was performed using a DC pulse power source, and a TiO N layer was formed on the object to be processed placed in the vacuum chamber.
  • the sputtering gas in Example 4 and Example 5 is a mixed gas of 90 sccm of argon gas and nitrogen gas lOsccm
  • the sputtering gas in Example 6 and Example 7 is a mixed gas of 80 sccm of argon gas and 20 sccm of nitrogen gas.
  • each layer was formed as follows.
  • a Ti target was placed on the force cathode as a sputtering target in a vacuum chamber, the vacuum chamber was evacuated to less 2. 7 X 10- 3 Pa. Subsequently, argon gas and oxygen gas were introduced as sputtering gases at a ratio of 50:50 (molar ratio) until the pressure reached 4.0 ⁇ 10 ⁇ . In this state, a reactive sputtering method was performed using a DC pulse power source, and a TiO layer was formed on the object to be processed installed in the vacuum chamber.
  • a polycrystalline Si target is placed on the force sword as a sputter target in a vacuum chamber and vacuum is applied.
  • the vessel 2. was evacuated to less 7 X 10- 3 Pa.
  • a reactive sputtering method was performed using an AC power source, and a SiO layer was formed on the object to be processed installed in the vacuum chamber.
  • each layer was performed as follows.
  • the TiO (1 ⁇ ⁇ 2) target was placed on the force cathode as a sputtering target in a vacuum chamber was evacuated to a vacuum chamber 2. than 0 X 10- 3 Pa.
  • argon gas and oxygen gas were introduced as sputtering gases at a ratio of 93: 7 (molar ratio) until the pressure reached 4.3 X 10-.
  • a reactive sputtering method was performed using an AC power source, and a TiO layer was formed on the object to be processed placed in the vacuum chamber.
  • reactive sputtering was performed using an AC power source, and an SiO layer was formed on the object to be processed installed in the vacuum chamber.
  • the TiO (1 ⁇ ⁇ 2) target was placed on the force cathode as a sputtering target in a vacuum chamber was evacuated to a vacuum chamber 2. than 0 X 10- 3 Pa.
  • the pressure was 4.2 X 10— & .
  • a reactive sputtering method was performed using an AC power source, and a TiO N layer was formed on the object to be processed installed in the vacuum chamber.
  • Table 2 shows the refractive indexes of the materials constituting each layer. This value is at a wavelength of 550 nm.
  • the glass substrates with antireflection films of Examples 1 to 15 obtained above and the VFL of Example 16 were each cut to a size of 100 mm ⁇ 100 mm and heat-treated in a small belt furnace.
  • the heat treatment conditions were a set temperature of 650 ° C and a heat treatment time of 15 minutes.
  • the amount of nitrogen relative to titanium was measured by CA.
  • the values of X and y were obtained based on the above assumptions.
  • the amount of nitrogen relative to titanium is expressed as NZTi (at%).
  • optical characteristics were determined for the glass substrates with antireflection films of Examples 1 to 15 and the VFL of Example 16 obtained above.
  • the results of the optical characteristics of Examples 1 to 7 are values obtained by simulation of the VFL and the thickness and refractive power of each layer. The results are shown in Table 4.
  • the visible light reflectivity Rv was used, and the light incident on the antireflection film surface was reflected at the antireflection film surface. That is, the reflectance of only the antireflection film was obtained.
  • the light source was a D65 light source and the incident angle was 60 °.
  • Example 16 the reflectance of VFL after heat treatment was obtained.
  • the luminous transmittance ⁇ was used as the transmittance.
  • the light source was an A light source and the incident angle was 0 °.
  • the film resistance value of the antireflection film was measured using a two-probe resistance meter (Hiresta IP, manufactured by Mitsubishi Oil Chemical Co., Ltd.).
  • the VFL after heat treatment was measured in the same manner as described above. The results are shown in Table 4.
  • the film surface was rubbed with a rotating wear ring using a Taber abrasion tester, and the film peeling state after the test was observed.
  • the haze ratio before and after the test was measured, and ⁇ H% (difference in haze ratio before and after the test) was obtained.
  • the results are shown in Table 4.
  • the condition of the Taber test was a load of 2.45N x 500 revolutions. It shows that it is excellent in abrasion resistance, so that a haze value is small. In practice, 5% or less is preferred, and 3% or less is particularly preferred.
  • Example 1 3.463 88.103> 1 ⁇ None ⁇ ⁇ Example 2 3.116 88.272> 1 ⁇ None ⁇ ⁇ Example 3 3.535 87.548 (0.305, 0.324)> 1 ⁇ None ⁇ ⁇ Example 4 3.352 86.858> 1 ⁇ None ⁇ ⁇ Example 5 3.404 87.458 (0.310, 0.329)> 1 ⁇ None ⁇ Example 6 3.324 88.284 (0.307, 0.325)> 1 ⁇ None ⁇ ⁇ Example 7 3.485 88.361> 1 ⁇ None ⁇ ⁇ Example 8 3.342 86.589 (0.309, 0.326)> 1 ⁇ None 0.5 + 1.0
  • Example 9 3.658 93.506 (0.311, 0.327)> 1 ⁇ None 0.5 ⁇ 1.0
  • Example 10 4.238 93.971> 1 ⁇ None 0.5 1.18
  • Example 11 4.630 94.426> 1 ⁇ None 1.0 0.98
  • Example 12 4.022 93.948 (0.316 ,
  • the glass substrate with antireflection film of the present invention (Examples 1 to 14) exhibited a high resistance value and was free from cracks due to heat treatment. Further, the optical characteristics were low reflectance and high transmittance, and the color was almost the same as that of the glass substrate itself on which no antireflection film was formed.
  • the glass plate When a glass plate is used as the transparent substrate of the substrate with an antireflection film of the present invention, the glass plate is bent and subjected to heat treatment to heat the glass plate to 630 to 700 ° C to prevent reflection. The effect that the film does not crack and is not colored is obtained. The same effect can be obtained when the glass plate is heated to 550 to 700 ° C in order to strengthen the glass plate.
  • the substrate with an antireflection film of the present invention is useful as a low reflection glass for automobile windshield glass, and as a low reflection glass for construction and various industries.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2005-0223769 filed on Jan. 31, 2005 are hereby incorporated herein by reference. And that is what we take in.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 可視光の透過率が高く、反射率が低く、膜抵抗率が高く、熱処理を受けてもクラックが発生しない反射防止膜付き基体の提供。  透明基体と、屈折率が1.90以上の高屈折率材料からなる被膜と屈折率が1.56以下の低屈折率材料からなる被膜とを前記透明基体側からこの順に偶数層積層してなる反射防止膜とを有する反射防止膜付き基体であって、前記高屈折率材料からなる被膜の少なくとも1層が、酸窒化チタン層の単層膜(a)、酸化チタン層と酸化ジルコニウム層とを含む積層膜(b)または酸窒化チタン層と酸化ジルコニウム層とを含む積層膜(c)である、反射防止膜付き基体。

Description

明 細 書
反射防止膜付き基体
技術分野
[0001] 本発明は、反射防止膜付き基体に関する。
背景技術
[0002] 自動車のウィンドシールドガラス(フロントガラス)は、可視光の透過率が高 、こと、 反射率が低いこと等が求められている。このような特性を満たす低反射ガラスの反射 防止膜として、窒化チタン層と酸ィ匕ケィ素層との積層膜が用いられている。また、近 年、ウィンドシールドガラスの上にアンテナを設置することを考慮して、上記特性にカロ えて、電磁波を遮蔽しないことも求められている。
しかしながら、窒化チタン層と酸ィ匕ケィ素層との積層膜は、膜抵抗率が低いため、 電磁波を遮蔽してしまう。
これに対して、可視光の透過率が高ぐ反射率が低ぐ膜抵抗率が高い反射防止 膜として、酸ィ匕チタン層と酸ィ匕ケィ素層との積層膜が知られている。
しかしながら、反射防止膜として酸化チタン層と酸化ケィ素層との積層膜を有する ガラス板は、曲げ加工や強化加工をする際、熱処理によって該積層膜にクラックが発 生すると!/ヽぅ問題を有して!/、た。
発明の開示
発明が解決しょうとする課題
[0003] したがって、本発明は、可視光の透過率が高ぐ反射率が低ぐ膜抵抗率が高ぐ 熱処理を受けてもクラックが発生しな!ヽ反射防止膜付き基体を提供することを目的と する。
課題を解決するための手段
[0004] 本発明者は、上記目的を達成すベぐ酸ィ匕チタン層と酸ィ匕ケィ素層との積層膜に っ 、て鋭意研究した結果、この積層膜が熱処理を受けた場合にクラックが発生する のは、熱処理時に酸ィ匕チタン層の結晶化が進行して収縮するためであることを見出 した。 本発明者は、更に、鋭意研究を続けた結果、酸ィ匕チタン層に窒素を含有させる手 法、もしくは酸ィ匕チタン層に隣接して酸ィ匕ジルコニウム層を設ける手法、またはこれら を併用する手法により、熱処理を受けてもクラックが発生しないようにすることができる ことを見出し、本発明を完成させた。
即ち、本発明の要旨は、以下のとおりである。
[1]透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56以下の低屈折率材料カゝらなる被膜とを前記透明基体側からこの順に偶数層積層 してなる反射防止膜とを有する反射防止膜付き基体であって、前記高屈折率材料か らなる被膜の少なくとも 1層が、酸窒化チタン層の単層膜 (a)、酸ィ匕チタン層と酸ィ匕ジ ルコ-ゥム層とを含む積層膜 (b)または酸窒化チタン層と酸ィ匕ジルコニウム層とを含 む積層膜 (c)である、ことを特徴とする反射防止膜付き基体。
[2]透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56以下の低屈折率材料カゝらなる被膜とを前記透明基体側からこの順に偶数層積層 してなる反射防止膜とを有する反射防止膜付き基体であって、前記高屈折率材料か らなる被膜の少なくとも 1層が、酸窒化チタン層の単層膜 (a)、酸ィ匕チタン層と酸ィ匕ジ ルコ -ゥム層との積層膜 (bl)または酸窒化チタン層と酸ィ匕ジルコニウム層との積層 膜 (cl)である、ことを特徴とする反射防止膜付き基体。
[3]前記高屈折率材料カゝらなる被膜の少なくとも 1層が、酸窒化チタン層と酸化ジ ルコ -ゥム層との積層膜 (cl)である、前記 [2]に記載の反射防止膜付き基体。
[4]透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56以下の低屈折率材料力 なる被膜とを前記透明基体側からこの順に 4層積層して なる反射防止膜とを有する反射防止膜付き基体であって、前記反射防止膜が、透明 基体側から、屈折率が 1. 90以上の高屈折率材料カゝらなる被膜、酸ィ匕ケィ素の単層 膜、酸窒化チタン層と酸ィ匕ジルコニウム層との積層膜 (cl)、酸ィ匕ケィ素の単層膜が この順に積層された反射防止膜であることを特徴とする反射防止膜付き基体。
[5]前記屈折率が 1. 90以上の高屈折率材料カゝらなる被膜が酸ィ匕チタン層の単層 膜である前記 [4]に記載の反射防止膜付き基体。
[6]入射角 60° で前記反射防止膜側から入射した光の前記反射防止膜面での反 射力 可視光反射率として 6%以下である前記 [1]〜 [5]の 、ずれかに記載の反射 防止膜付き基体。
[7]前記酸窒化チタン層におけるチタンに対する窒素の量力 0. l〜80at%であ る前記 [ 1]〜 [6]の 、ずれかに記載の反射防止膜付き基体。
[8]熱処理前における前記酸窒化チタン層におけるチタンに対する窒素の量力 2 〜40at%である前記 [1]〜 [7]の 、ずれかに記載の反射防止膜付き基体。
[9]熱処理後における前記酸窒化チタン層におけるチタンに対する窒素の量力 0 . l〜20at%である前記 [1]〜 [8]の 、ずれかに記載の反射防止膜付き基体。
[10]前記 [1]〜[9]のいずれかに記載の反射防止膜付き基体を加熱炉内に搬入 し曲げ成形温度まで加熱する加熱工程と、所望の形状に曲げ成形する工程とを有す る反射防止膜付き基体の加工方法。
発明の効果
[0006] 本発明の反射防止膜付き基体は、可視光の透過率が高ぐ反射率が低ぐ膜抵抗 率が高ぐ熱処理を受けても反射防止膜にクラックが発生しない。
発明を実施するための最良の形態
[0007] 以下、本発明を詳細に説明する。
本発明の反射防止膜付き基体は、透明基体と、屈折率が 1. 90以上の高屈折率材 料からなる被膜と屈折率が 1. 56以下の低屈折率材料カゝらなる被膜とを前記透明基 体側からこの順に偶数層積層してなる反射防止膜とを有する反射防止膜付き基体で あって、前記高屈折率材料カゝらなる被膜の少なくとも 1層が、酸窒化チタン層の単層 膜 (a)、酸ィ匕チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (b)または酸窒化チタン 層と酸ィ匕ジルコニウム層とを含む積層膜 (c)である、反射防止膜付き基体である。好 ましくは、本発明の反射防止膜付き基体は、透明基体と、屈折率が 1. 90以上の高 屈折率材料からなる被膜と屈折率が 1. 56以下の低屈折率材料からなる被膜とを前 記透明基体側力 この順に偶数層積層してなる反射防止膜とを有する反射防止膜 付き基体であって、前記高屈折率材料力もなる被膜の少なくとも 1層が、酸窒化チタ ン層の単層膜 (a)、酸ィ匕チタン層と酸ィ匕ジルコニウム層との積層膜 (bl)または酸窒 化チタン層と酸ィ匕ジルコニウム層との積層膜 (cl)である、反射防止膜付き基体であ る。
[0008] 本発明の反射防止膜付き基体は、入射角 60° で反射防止膜側カゝら入射した光の 反射防止膜面での反射が、可視光反射率として 6%以下であることが好ましい。上記 範囲であると、反射防止性能が十分となる。
[0009] 本発明に用いられる透明基体は、無色透明の材料に限られず、透過率が本発明の 目的を損なわない範囲で、着色している材料も用いることができる。特に、ガラスが好 ましい。
[0010] ガラスは、特に限定されず、例えば、透明または着色のフロートガラス(フロート法で 製造されたガラス)、着色させた熱線吸収ガラスが挙げられる。また、強化ガラスを用 いることもできる。具体的には、ソーダライムガラスに鉄イオン等の着色成分を含有さ せた熱線吸収ガラスが好適に用いられる。
[0011] 本発明の反射防止膜付き基体は、他の任意の基板と組み合わせても使用できる。
例えば、透明基体としてガラス板を用いて作製した本発明の反射防止膜付き基体と、 もう一枚のガラス板とをポリビュルプチラール等の中間膜を挟んで積層した合わせガ ラスとして使用できる。この合わせガラスは自動車のフロントガラスとして適当である。
[0012] 本発明の反射防止膜付き基体は、上述した透明基体上に、屈折率が 1. 90以上の 高屈折率材料からなる被膜と屈折率が 1. 56以下の低屈折率材料からなる被膜とを 透明基体側からこの順に偶数層積層してなる反射防止膜を有する。
[0013] 本発明において、高屈折率材料とは、屈折率が 1. 90以上の材料を意味し、低屈 折率材料とは、屈折率が 1. 56以下の材料を意味する。
積層される高屈折率材料カゝらなる被膜および低屈折率材料カゝらなる被膜は、合計 で、 2層、 4層、 6層または 8層であるのが好ましぐ 2層、 4層または 6層であるのがより 好ましぐ 4層であるのがとりわけ好ましい。
[0014] 高屈折率材料カゝらなる被膜は、その少なくとも 1層が、酸窒化チタン層の単層膜 (a) 、酸化チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (b)または酸窒化チタン層と酸 化ジルコニウム層とを含む積層膜 (c)である。このように、酸化チタン層に窒素を含有 させたり、酸ィ匕チタン層に隣接して酸ィ匕ジルコニウム層を設けたりすることによって、 熱処理時のクラックが防止される。以下、上記 (a)〜(c)の各膜について説明する。 [0015] <酸窒化チタン層の単層膜 (a) >
酸窒化チタン層の単層膜 (a)は、酸窒化チタン (TiO N )層のみ力もなる膜である。 酸窒化チタン層は、酸ィ匕チタン層に比べて、熱処理時に結晶化が進行しにくい。この ため、クラックの発生を抑制することができる。
酸窒化チタン (TiO N )層は、チタンに対する窒素の量が 0. l〜80at%であるの が好ましい。チタンに対する窒素の量が上記範囲であると、クラックの発生を抑制す る効果がより大きくなる。クラックの発生を抑制する効果をさらに大きくするためには、 熱処理前におけるチタンに対する窒素の量が 2〜40at%であることが好ましぐ 3〜4
Oat%であることが特に好まし 、。
[0016] また、反射率、透過率等の光学特性をより良好にするためには、熱処理後における チタンに対する窒素の量が 0. l〜20at%であるのが好ましぐ 0. 1〜: L0at%である のが特に好ましぐ 0. l〜5at%であるのがとりわけ好ましい。
なお、本発明においては、酸窒化チタン層の糸且成 (チタンに対する窒素の量)は、 X 線光電子分光法 (XPS)、 ESCA等により分析することができる。
[0017] 酸窒化チタン層における酸素と窒素との割合 (具体的には Xおよび yの値)は、直接 測定することが困難である。しかし、チタンに対する窒素の量が測定により求まること
、(x+y)の値がおおよそ 1. 8〜2. 1の値をとると考えられること、から、おおよその値 を推測できる。たとえば、チタンに対する窒素の量が 0. 1&%である場合、 yの値を 固定すると、 x = l . 799〜2. 099、 y=0. 001になると考えられる。
[0018] 例として、前記の酸窒化チタン層の好ましい組成における Xおよび yの値を表 1に示 す。この値は前記と同じ前提に基づき、 yの値を固定して算出した値として記載する。
[0019] [表 1] チタンに対する窒素 X y
の量 (a t % )
0 . 1 1 . 7 9 9 - 2 . 0 9 9 0 . 0 0 1
2 1 . 7 8 - 2 . 0 8 0 . 0 2
3 1 . 7 7 ~ 2 . 0 7 0 . 0 3
5 1 . 7 5〜2 . 0 5 0 . 0 5
1 0 1 . 7 0〜2 . 0 0 0 . 1 0
4 0 1 . 4 0 ~ 1 . 7 0 0 . 4 0
8 0 1 . 0 0 ~ 1 . 3 0 0 . 8 0 [0020] 熱処理は、通常の曲げ力卩ェゃ強化カ卩ェにおいて採用される条件によって行うこと ができ、 550〜700°Cの温度範囲で、好ましくは 600〜700°Cの温度範囲で、行うこ とができる。具体的には、例えば、設定温度 650°C、熱処理時間 15分間の条件で行 われる。
[0021] 酸窒化チタン層は、幾何学的厚さ力 5〜160nmであるのが好ましぐ 40〜140n mであるのがより好ましい。上記範囲であると、反射防止膜の反射防止効果が大きく なり、また、クラックが入りにくいうえ、基体の反りも低減できる。さらに、酸窒化チタン 層の幾何学的厚さが 80〜120nmであると、反射防止膜付き基体の反射色が透明基 体の反射色とほぼ同等となるため、とりわけ好ましい。
酸窒化チタン層の製造方法については、後述する。
[0022] く酸ィ匕チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (b) >
酸ィ匕チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (b)は、 1層以上の酸化チタン 層と 1層以上の酸ィ匕ジルコニウム層とを含む積層膜である。積層膜 (b)に含まれる酸 化チタン層は 1層または 2層であることが好ましぐ積層膜 (b)に含まれる酸化ジルコ -ゥム層は 1層また 2層であることが好ましい。また、積層膜 (b)に含まれる酸化チタン 層と酸ィ匕ジルコニウム層とは隣接して積層されていることが好ましい。
[0023] 酸ィ匕ジルコニウム層は、成膜時に大部分が単斜晶化する。また、酸ィ匕ジルコニウム 層は酸ィ匕チタン層と結晶格子の大きさが同程度であり、格子マッチングがおきやすい 。そして、このような酸ィ匕ジルコニウム層が隣接することによって、熱処理時に酸化チ タン層の内部で格子が再配列して結晶化することが抑制されるため、熱処理時に収 縮が起こりにくいのであると考えられる。または、成膜時に酸化チタン層がある程度配 列した構造を持つことにより、酸ィ匕チタンの再配列が起こりにくい (すなわち、結晶化 しにくい)ということも考えられる。このため、酸ィ匕チタン層のクラックの発生を抑制する ことができる。
[0024] 積層膜 (b)の構造は、酸ィ匕チタン層と酸ィ匕ジルコニウム層とが隣接して積層されて V、れば特に限定されず、例えば下記の構造が挙げられる。
酸ィ匕チタン層と酸ィ匕ジルコニウム層との積層膜 (bl)、
酸化チタン層と酸ィ匕ジルコニウム層と酸化チタン層との積層膜、 酸化ジルコニウム層と酸化チタン層と酸化ジルコニウム層との積層膜、 酸化チタン層と酸化ジルコニウム層と酸化チタン層と酸化ジルコニウム層との積層 膜。
[0025] これらのうち、積層膜 (bl)が好ましい。積層膜 (bl)は、酸ィ匕チタン (TiO )層と酸化
2 ジルコニウム (ZrO )層とが隣接して積層されている膜である。積層膜 (bl)は、少な
2
い層数でクラックの発生を抑制できるので、経済的に優れており、実用上有用である
[0026] より具体的には、下記構造が挙げられる。
透明基体側から ZrO /TiOからなる 2層構造、
2 2
透明基体側から TiO /ZrO /TiOからなる 3層構造、
2 2 2
透明基体側から ZrO /TiO /ZrOからなる 3層構造、
2 2 2
透明基体側から ZrO /TiO /ZrO /TiOからなる 4層構造。
2 2 2 2
[0027] 酸ィ匕チタン層の透明基体側に酸ィ匕ジルコニウム層を有する構造 (例えば、 [透明基 体側] ZrO /TiO [膜面側]の 2層構造)、 2層の酸ィ匕チタン層の間に酸ィ匕ジルコ-
2 2
ゥム層を有する構造 (例えば、 [透明基体側] ZrO /TiO /ZrO /TiO [膜面側]
2 2 2 2 力 なる 4層構造、 [透明基体側] TiO /ZrO /TiO [膜面側]からなる 3層構造)が
2 2 2
、クラック発生の抑制の点で、好ましい。
[0028] その他に、透明基体側から ZrO /TiO /ZrO /TiO力 なる 4層構造も好まし ヽ
2 2 2 2
。その 4層膜の合計厚さを高屈折率材料力 なる被膜の全体の厚さとすると、酸ィ匕チ タン層と酸ィ匕ジルコニウム層と力もなる 2層構造と比べて、酸ィ匕チタン層の 1層あたり の厚さを薄くすることができ、この点からもクラックの発生が抑制される。
[0029] 積層膜 (b)は、反射率、透過率、膜抵抗値等の特性に影響を及ぼさない限り、本発 明の目的を損なわない範囲で、高屈折率材料力もなる他の層を有していてもよい。 積層膜 (b)が有していてもよい高屈折率材料カゝらなる他の層としては、酸化チタン層 、酸化亜鉛層、酸化タンタル層、酸化ジルコニウム層、酸化ニオブ層、窒化ケィ素層 、窒化ジルコニウム層、窒化アルミニウム層等が使用できる。
[0030] 積層膜 (b)は、幾何学的厚さ力 40〜160nmであるのが好ましぐ 50〜140nmで あるのがより好ましい。上記範囲であると、反射防止膜の反射防止効果が大きくなり、 また、クラックが入りにくいうえ、基体の反りも低減できる。さらに、積層膜 (b)の幾何学 的厚さが 80〜130nmであると、反射防止膜付き基体の反射色が透明基体の反射色 と同等になるため、とりわけ好ましい。
[0031] 積層膜 (b)が ZrO /TiO力もなる 2層構造の場合、酸ィ匕チタン層は、積層膜 (b)の
2 2
幾何学的厚さを超えな 、範囲で 30〜 150nmであるのが好ましく、 70nm〜 120nm であることが特に好ましい。
[0032] また、 TiO /ZrO /TiO力 なる 3層構造および ZrO /TiO /ZrO /TiOから
2 2 2 2 2 2 2 なる 4層構造の場合、各酸ィ匕チタン層が 10〜80nmであるのが好ましい。また、各酸 化チタン層の幾何学的厚さが 30〜60nmであると、反射防止膜付き基体の反射色が 透明基体の反射色と同等になるため、とりわけ好ましい。
[0033] 酸化ジルコニウム層は、幾何学的厚さ力 5〜50nmであるのが好ましぐ 10〜40n mであるのがより好ましい。
[0034] 酸ィ匕ジルコニウム層の幾何学的厚さが 5nm以上であると、成膜時に結晶化する部 分がより多くなり、酸ィ匕チタン層のクラックの発生をより効果的に抑制することができる 酸ィ匕ジルコニウム層の屈折率は、酸ィ匕チタン層の屈折率に比べて小さい。そのた め、積層膜 (b)の屈折率は、酸ィ匕チタン層の単層膜に比べて小さくなる。酸化ジルコ ニゥム層の幾何学的厚さが 50nm以下であると、積層膜 (b)の屈折率が十分に高くな る。
[0035] また、酸化ジルコニウム層の幾何学的厚さが 50nm以下であると、酸化ジルコニウム 層自体が大きな応力を持って熱処理時にクラックを生じる可能性を、効果的に抑制 することができる。
[0036] 積層膜 (b)は、酸化チタン層、酸ィ匕ジルコニウム層、および、必要により反射率、透 過率、膜抵抗値等の特性に影響を及ぼさない限り他の高屈折率材料カゝらなる層を積 層して得ることができる。この高屈折率層からなる層としては、酸化チタン層、酸ィ匕亜 鉛層、酸ィ匕タンタル層、酸ィ匕ジルコニウム層、酸化ニオブ層、窒化ケィ素層、窒化ジ ルコ -ゥム層、窒化アルミニウム層等が挙げられる。各層の製造方法については、後 述する。 [0037] く酸窒化チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (c) >
酸窒化チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (c)は、 1層以上の酸窒化チ タン層と 1層以上の酸ィ匕ジルコニウム層とを含む積層膜である。積層膜 (c)に含まれ る酸窒化チタン層は 1層または 2層であることが好ましぐ層膜 (c)に含まれる酸化ジ ルコ-ゥム層は 1層または 2層であることが好ましい。また、積層膜 (c)に含まれる酸 窒化チタン層と酸ィ匕ジルコニウム層とは隣接して積層されていることが好ましい。
[0038] 積層膜 (c)は、上述した単層膜 (a)の効果と積層膜 (b)の効果とを併せ持つため、 クラックの発生をより効果的に抑制することができる。
積層膜 (c)の酸窒化チタン (TiO N )層におけるチタンに対する窒素の量は、前記
(a)の酸窒化チタン (TiO N )層の単層膜におけるチタンに対する窒素の量と同様で ある。 Xおよび yの値についても同様である。
積層膜 (c)の構造は、酸窒化チタン層と酸ィ匕ジルコニウム層とが隣接して積層され て!、れば特に限定されず、例えば下記の構造が挙げられる。
[0039] 酸窒化チタン層と酸ィ匕ジルコニウム層との積層膜 (cl)、
酸窒化チタン層と酸ィ匕ジルコニウム層と酸窒化チタン層との積層膜、
酸ィ匕ジルコニウム層と酸窒化チタン層と酸ィ匕ジルコニウム層との積層膜、 酸窒化チタン層と酸ィ匕ジルコニウム層と酸窒化チタン層と酸ィ匕ジルコニウム層の積 層膜。
これらのうち、積層膜 (cl)が好ましい。酸窒化チタン層と酸ィ匕ジルコニウム層との積 層膜 (cl)は、酸窒化チタン (TiO N )層と酸ィ匕ジルコニウム (ZrO )層とが隣接して
2
積層されている膜である。
[0040] より具体的には下記構造が挙げられる。
透明基体側から ZrO /TiO N力 なる 2層構造 (cl 1)、
2
透明基体側から TiO N /ZrO /TiO Nからなる 3層構造、
2
透明基体側から ZrO /TiO N /ZrOからなる 3層構造、
2 2
透明基体側から ZrO /TiO N /ZrO /TiO Nからなる 4層構造。
2 2
[0041] 中でも、酸窒化チタン層の透明基体側に酸ィ匕ジルコニウム層を有する構造 (例えば 、 [透明基体側] ZrO /TiO N [膜面側]の 2層構造)、 2層の酸窒化チタン層の間に
2 酸化ジルコニウム層を有する構造 [例えば、 ZrO /TiO N /ZrO /TiO N力もな
2 κ y 2 x y る 4層構造]が、クラック発生の抑制の点で好ましぐ [透明基体側] ZrO /TiO N [
2 x y 膜面側]の 2層構造 (積層膜 (c 1— 1) )がとりわけ好ま 、。
[0042] 積層膜 (c)は、幾何学的厚さ力 40〜160nmであるのが好ましぐ 50〜140nmで あるのがより好ましい。上記範囲であると、反射防止膜の反射防止効果が大きくなり、 また、クラックが入りにくいうえ、基体の反りも低減できる。さらに、積層膜 (c)の幾何学 的厚さが 80〜130nmであると、反射防止膜付き基体の反射色が透明基体の反射色 と同等になるため、とりわけ好ましい。
[0043] 積層膜 (c)が ZrO /TiO N力 なる 2層構造の場合、酸窒化チタン層の厚さは、
2 κ y
積層膜 (c)の幾何学的厚さを超えない範囲で 30〜150nmであるのが好ましぐ 70 〜 120nmであることが特に好まし!/、。
[0044] また、 TiO N /ZrO /TiO N力 なる 3層構造の場合、 ZrO /TiO N /ZrO /
X y 2 x y 2 x y 2
TiO N力もなる 4層構造、各酸窒化チタン層が 10〜80nmであるのが好ましい。また
X y
、各酸窒化チタン層の幾何学的厚さが 30〜60nmであると、反射防止膜付き基体の 反射色が透明基体の反射色と同等になるため、とりわけ好ましい。
[0045] 酸化ジルコニウム層は、幾何学的厚さ力 5〜50nmであるのが好ましぐ 10〜40n mであるのがより好ましい。
酸ィ匕ジルコニウム層の幾何学的厚さが 5nm以上であると、成膜時に結晶化する部 分がより多くなり、酸窒化チタン層のクラックの発生をより効果的に抑制することができ る。
[0046] 酸ィ匕ジルコニウム層の屈折率は、酸窒化チタン層の屈折率に比べて小さい。その ため、積層膜 (c)の屈折率は、酸窒化チタン層の単層膜に比べて小さくなる。酸ィ匕ジ ルコニゥム層の幾何学的厚さが 50nm以下であると、積層膜 (c)の屈折率が十分に 高くなる。
[0047] また、酸化ジルコニウム層の幾何学的厚さが 50nm以下であると、酸化ジルコニウム 層自体が大きな応力を持って熱処理時にクラックを生じる可能性を、効果的に抑制 することができる。
[0048] 積層膜(cl— l)においては、 TiO N層の幾何学的厚さは、 70〜120nmであるこ と力 S好ましく、 90〜: L lOnmであることが特に好ましい。 ZrO層の幾何学的厚さは、 5
2
〜50nmであることが好ましい。 ZrO層の幾何学的厚さが小さすぎると、反射防止膜
2
の耐摩耗性が低下する場合があるため、 8〜30nmであることが特に好ましい。 TiO Nの幾何学的厚さおよび ZrO層の幾何学的厚さが前記の範囲を満たしていれば、
2
反射防止効果やクラック発生防止効果は充分なものとなる。これらの効果に加えて、 熱処理時における反射防止膜付き基体の反りを抑制するためには、 ZrO層の幾何
2
学的厚さと TiO Nの幾何学的厚さとの比は、各々の層の幾何学的厚さが前記範囲 を満たす範囲において、 ZrO層 ZTiO N層として 1Z (4〜14)であることが好まし
2
い。
[0049] また、積層膜 (c)は、反射率、透過率、膜抵抗値等の特性に影響を及ぼさない限り 、本発明の目的を損なわない範囲で、高屈折率材料からなる他の層を有していても よい。高屈折率材料からなる他の層としては、酸化チタン層、酸化亜鉛層、酸化タン タル層、酸ィ匕ジルコニウム層、酸化ニオブ層、窒化ケィ素層、窒化ジルコニウム層、 窒化アルミニウム層等が挙げられる。中でも、酸ィ匕チタン層が好ましい。
[0050] 酸化チタン層を有する積層膜 (c)の構造としては、例えば、 TiO /ZrO /TiO N
2 2 力 なる 3層構造、 ZrO /TiO /ZrO /TiO N力 なる 4層構造、 ZrO /TiO N
2 2 2 x y 2 x y
/ZrO /TiO力 なる 4層構造が挙げられる。
2 2
[0051] TiO /ZrO /TiO Nカゝらなる 3層構造の場合、各酸窒化チタン層および酸化チ
2 2
タン層が 10〜80nmであるのが好ましい。 ZrO /TiO /ZrO /TiO Nからなる 4
2 2 2 x y 層構造および ZrO /TiO N /ZrO /TiOカゝらなる 4層構造の場合も、各酸窒化チ
2 2 2
タン層および酸化チタン層が 10〜80nmであるのが好ましい。また、各酸窒化チタン 層および酸ィ匕チタン層の幾何学的厚さが 30〜60nmであると、反射防止膜付き基体 の反射色が透明基体の反射色と同等になるため、とりわけ好ましい。
なお、各層の製造方法については後述する。
[0052] 本発明では、高屈折率材料力もなる被膜としては、前記 (a)〜 (c)のうち、酸窒化チ タン層と酸ィ匕ジルコニウム層とを含む積層膜 (c)が好ましぐ酸窒化チタン層と酸化ジ ルコ -ゥム層との積層膜 (cl)が特に好ましぐ基体側から ZrO層 ZTiO N層なる 2
2
層構造 (C l— 1)がとりわけ好ま 、。 [0053] 本発明においては、高屈折率材料力もなる被膜は、少なくとも 1層が上述した (a)〜 (c)のいずれかであればよい。即ち、高屈折率材料力もなる被膜が 2層以上ある場合 、上述した (a)〜(c)以外の層を有していてもよい。ただし、この場合は、透明基体か ら最も遠 、高屈折率材料力もなる被膜が上述した (a)〜 (c)の 、ずれかであることが 好ましい。
[0054] 上述した (a)〜(c)以外の層は、特に限定されず、従来公知の層を用いることがで きる。例えば、酸化チタン層、酸化亜鉛層、酸ィ匕タンタル層、酸ィ匕ジルコニウム層、酸 化ニオブ層、窒化ケィ素層、窒化ジルコニウム層、窒化アルミニウム層が挙げられる。 中でも、酸ィ匕チタン層が好ましい。
[0055] 本発明では、基体に積層される高屈折率材料からなる被膜および低屈折率材料か らなる被膜の合計の総数は 4層であることが好ましいことから、 3層目に相当する高屈 折率材料力もなる被膜が前記 (a)〜(c)のいずれかであり、 1層目に相当する高屈折 率材料が前記従来公知の高屈折率材料力もなる層であることが好ましい。
[0056] 上述した (a)〜 (c)以外の高屈折率材料力もなる被膜の幾何学的厚さは、該被膜 が酸化チタン層、酸化亜鉛層、酸化タンタル層、酸化ジルコニウム層、酸化ニオブ層 である場合は 5〜200nmであるのが好ましぐ 5〜: LOOnmであるのがより好ましぐ 5 〜60nmであるのがとりわけ好ましい。また、該被膜が窒化ケィ素層、窒化ジルコユウ ム層、窒化アルミニウム層である場合は 5〜160nmが好ましぐ 5〜: LOOnmがより好 ましぐ 5〜60nmがとりわけ好ましい。上記範囲であると、反射防止膜の反射防止効 果が大きくなり、また、クラックが入りにくいうえ、基体の反りも低減できる。
[0057] 高屈折率材料からなる被膜の屈折率は、 1. 90以上であればよいが、 2. 00-2. 6 0であるのが好ましぐ 2. 20-2. 60であるのがより好ましい。
低屈折率材料からなる被膜は、特に限定されず、従来公知の層を用いることができ る。
例えば、酸化ケィ素(SiO )層が好ましい。
2
[0058] 低屈折率材料力もなる被膜の幾何学的厚さは、 5〜220nmであるのが好ましぐ 2 0〜140nmであるのがより好ましい。上記範囲であると、反射防止効果が大きくなり、 また、クラックが入りにくいうえ、基体の反りも低減できる。 低屈折率材料からなる被膜の屈折率は、 1. 56以下であればよいが、 1. 45以上で あるのが好ましい。
[0059] 本発明にお 、て、高屈折率材料力もなる被膜と低屈折率力もなる被膜との合計の 総数が 4層以上である場合、複数存在する高屈折率材料からなる被膜の幾何学的 厚さは同等の厚さとしてもよぐ差があってもよい。これは、複数存在する低屈折率か らなる被膜にっ ヽても同様である。
[0060] 複数存在する被膜の幾何学的厚さに差がある場合の例を示すと、合計総数が 4層 である場合、 1層目の高屈折率材料カゝらなる被膜の幾何学的厚さを 5〜20nm、 2層 目の低屈折率材料力もなる被膜の幾何学的厚さを 20〜60nm、 3層目の高屈折率 材料カゝらなる被膜の幾何学的厚さを 70〜130nm、 4層目の低屈折率材料からなる 被膜の幾何学的厚さを 80〜120nmとする例が挙げられる。
[0061] 本発明の反射防止膜付き基体は、上述した透明基体上に、上述した高屈折率材 料カゝらなる被膜と上述した低屈折率材料カゝらなる被膜とを、前記透明基体側からこの 順に偶数層積層することにより反射防止膜を形成させて、得ることができる。
[0062] 以下、各層の製造方法について説明する。
酸窒化チタン層、酸化チタン層、酸ィ匕ジルコニウム層および必要により積層される 他の高屈折率材料からなる層、ならびに、低屈折率材料からなる被膜を構成する層 の製造方法は、特に限定されず、従来公知の方法を用いることができるが、いずれも スパッタリング法で成膜するのが好まし 、。
[0063] スパッタリング法は、例えば、 DC (直流)スパッタリング方式、 AC (交流)スパッタリン グ方式、高周波スパッタリング方式、マグネトロンスパッタリング方式が挙げられる。中 でも、プロセスが安定しており、大面積への成膜が容易であるという利点があるので、 DCマグネトロンスパッタリング法、 ACマグネトロンスパッタリング法が好まし!/、。
[0064] 酸窒化チタン層の製造においては、例えば、ターゲットとして TiO (1 < χ< 2)を用 い、スパッタガスとして窒素原子を含むガスを含有するガスを用いて、反応性スパッタ リング法を行う方法が好適に挙げられる。
酸ィ匕チタン層の製造においては、例えば、ターゲットとして TiO (1 < χ< 2)を用い 、スパッタガスとして酸素原子を含むガスを含有するガスを用いて、反応性スパッタリ ング法を行う方法が好適に挙げられる。
[0065] 酸ィ匕ジルコニウム層の製造においては、例えば、ターゲットとしてジルコニウムを用 い、スパッタガスとして酸素原子を含むガスを含有するガスを用いて、反応性スパッタ リング法を行う方法が好適に挙げられる。
[0066] 酸ィ匕ケィ素層の製造においては、例えば、ターゲットとして炭化ケィ素(SiC)を用い
、スパッタガスとして酸素原子を含むガスを含有するガスを用いて、反応性スパッタリ ング法を行う方法が好適に挙げられる。
[0067] ターゲットには、 Al、 Si、 Zn等公知のドーパントを本発明の特徴を損なわない範囲 でドープしてもよい。この場合、ドーパントの量は、ターゲットに含まれる全金属原子 に対して 20at%以下とすることが好まし 、。
[0068] 窒素原子を含むガスを含有するガスは、窒素原子を含むガスを含有するものであ れば特に限定されず、例えば、窒素原子を含むガス、窒素原子を含むガスと不活性 ガスとの混合ガスが挙げられる。
[0069] 窒素原子を含むガスとしては、例えば、窒素ガス(N )
2、 N 0
2 、 NO、 NO
2、 NHが挙 3 げられる。
不活性ガスとしては、例えば、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等の 希ガスが挙げられる。中でも、経済性および放電のしゃすさの点から、アルゴンが好 ましい。
[0070] これらは、単独でまたは 2種以上を混合して用いられる。
酸素原子を含むガスを含有するガスは、酸素原子を含むガスを含有するものであ れば特に限定されず、例えば、酸素原子を含むガス、酸素原子を含むガスと不活性 ガスとの混合ガスが挙げられる。
[0071] 酸素原子を含むガスとしては、例えば、酸素ガス (O )、二酸化炭素ガス (CO )が挙
2 2 げられる。
不活性ガスについては、上記と同様である。
これらは、単独でまたは 2種以上を混合して用いられる。
スパッタリングの条件は、成膜する膜の種類、厚さ等により適宜決定されうる。また、 スパッタガスの全圧は、グロ一放電が安定に行われる圧力であればょ 、。 [0072] 本発明の反射防止膜付き基体の好適な実施態様(1)〜 (4)を以下に列挙する。中 でも、実施態様(1)〜(3)が好ましぐ実施態様 (2)がとりわけ好ましい。以下、透明 基体を Gで表し、高屈折率材料カゝらなる被膜を H、低屈折率材料からなる被膜を と し、それぞれの透明基体側力 の積層順序を添え字で表す。
[0073] (1) G/H /Lで表され、 Hが上述した (a)、(b)または(c)である、 2層からなる反
1 1 1
射防止膜を有する透明基体。
(2) G/H /L /H /Lで表され、 Hが上述した(a)、(b)または(c)である、 4層
1 1 2 2 2
からなる反射防止膜を有する透明基体。
(3) G/H /L /H /L /H /Lで表され、 Hが上述した(a)、 (b)または(c)で
1 1 2 2 3 3 3
ある、 6層からなる反射防止膜を有する透明基体。
(4) G/H /L /H /L /H /L /H /Lで表され、 Hが上述した (a)、(b)ま
1 1 2 2 3 3 4 4 4 たは (c)である、 8層からなる反射防止膜を有する透明基体。
[0074] 実施態様(2)にっき、より具体的に好適な例を以下に列挙する。 (2- 1)において は ZrO /TiO /ZrO /TiO力 (2- 2)においては TiO /ZrO /TiO力 (2—
2 2 2 2 2 2 2
3)においては ZrO /TiOが、 (2-4)においては ZrO /TiO Nが、 (2— 5)にお
2 2 2
いては TiO N力 前記の Hに相当する。
Figure imgf000016_0001
本発明の反射防止膜付き基体は、用途を特に限定されず、広範な用途に用いるこ とができる。例えば、自動車のウィンドシールドガラスやルーフガラス、各種ディスプレ ィ用ガラス、建築用ガラス、太陽電池用カバーガラス等に好適に用いられ、自動車の ウィンドシールドに特に好適である。
[0075] 自動車のウィンドシールド等の曲面を有する物品は、本発明の反射防止膜付き基 体を加熱炉内に搬入し、曲げ成形温度まで加熱する加熱工程と所望の形状に曲げ 成形する工程とを行うことによって得ることができる。曲げ成形は、 600〜700°C程度 の温度範囲(好ましくは 650〜700°C)で行うことができる。
実施例
[0076] 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限ら れるものではない。以下に示す例のうち、例 1〜14は実施例であり、例 15および例 1 6は比較例である。
[0077] (反射防止膜付きガラス基体の製造)
ガラス基体として、熱線吸収ガラス (サングリーン、旭硝子社製、厚さ 2mm、 2.3m m。以下「VFL」という。)および無色透明ガラス (旭硝子社製、厚さ 2.3mm。以下「F L」という。)を使用し、その上に後述するようにして各層を形成させ、以下に示される 構成を有する例 1〜 15の反射防止膜付きガラス基体を得た。
なお、以下に示される構成中、各層の形成は、左から順に行った。また、各層の幾 何学的厚さを力つこ内に示した。
[0078] たとえば、例 1では、 VFL上に TiO層を形成させ、つぎに TiO層の上に SiO層を
2 2 2 形成させ、つぎに SiO層の上に ZrO層を形成させ、 ZrO層の上に TiO層を形成さ
2 2 2 2 せ、 TiO層の上に SiO層を形成させた。このように、基体の上に、各層を左力 順に
2 2
連続して形成させた。また、 VFL自体を例 16とした。
[0079] 例1:¥?1^(2!11111)710 (12nm)/SiO (41nm)/ZrO (20nm)/TiO (109
2 2 2 2 nm)/SiO (lllnm)
2
例 2:VFL(2mm)ZTiO (12nm)/SiO (41nm)/ZrO (15nm)/TiO (45n
2 2 2 2 m)/ZrO (15nm)/TiO (40nm)/SiO (119nm)
2 2 2
例 3:VFL(2mm)ZTiO (12nm)/SiO (39nm) /TiO (45nm) /ZrO (20n
2 2 2 2 m)/TiO (40nm)/SiO (94nm)
2 2
例 4:VFL(2mm)ZTiO (13nm)/SiO (44nm)/TiON (120nm)/SiO (1
2 2 x y 2
12nm)
例 5:VFL(2mm)ZTiO (10nm)/SiO (32nm) /ZrO (20nm)/TiO N (10
2 2 2 x y
0nm)/SiO (107nm)
2
例 6:VFL(2mm)ZTiO (12nm)/SiO (39nm)/TiON (113nm)/SiO (1
2 2 x y 2
06nm) 例 7:VFL(2mm)ZTiO (llnm)/SiO (35nm)/ZrO (20nm)/TiO N (10
2 2 2 x y
6nm)/SiO (108nm)
2
例 8: VFL (2.3mm) /TiO (7.5nm) /SiO (30nm) /ZrO (lOnm) /TiO
2 2 2 x
N (97nm)/SiO (97nm)
y 2
例 9:FL(2.3mm) /TiO (7nm)/SiO (29nm)/ZrO (19nm)/TiO N (1
2 2 2 x y
03nm)/SiO (99nm)
2
例 10:FL(2.3mm) /TiO (8nm)/SiO (32nm)/ZrO (16nm)/TiO N (
2 2 2 x y
98nm)/SiO (lOOnm)
2
例 11:FL(2.3mm) /TiO (8nm)/SiO (32nm)/ZrO (30nm)/TiO N (
2 2 2 x y
98nm)/SiO (lOOnm)
2
例 12:FL(2.3mm) /TiO (8nm) /SiO (32nm) /ZrO (8nm) /TiO N (9
2 2 2 x y
8nm)/SiO (lOOnm)
2
例 13:FL(2.3mm) /TiO (8nm)/SiO (32nm)/TiO N (98nm)/SiO (
2 2 x y 2 lOOnm)
例 14: VFL (2.3mm) /TiO (8nm) /SiO (27nm) /ZrO (20nm)/TiO N
2 2 2 x y
(97nm)/SiO (91nm)
2
例 15:VFL(2mm)ZTiO (13nm)/SiO (43nm)/TiO (120nm)/SiO (11
2 2 2 2
2nm)
例 16: VFL (2mm)
例 1〜7および例 15に関して、各層の形成は、以下のようにして行った。
く TiO層 >
2
真空槽内に TiO (1<χ< 2)ターゲットをスパッタターゲットとして力ソード上に設置 し、真空槽を 1.3 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアル ゴンガス 96sccmと酸素ガス 4sccmとの混合ガスを導入した。このとき、圧力は 5.7X 10— となった。この状態で、 DCパルス電源を用いて反応性スパッタリング法を行い 、真空槽内に設置した被処理体の上に、 TiO層を形成させた。
2
<SiO層〉
2
真空槽内に SiCターゲットをスパッタターゲットとして力ソード上に設置し、真空槽を 1. 3 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとして酸素ガス lOOscc mを導入した。このとき、圧力は 5. 1 X 10— となった。この状態で、 DCパルス電源 を用いて反応性スパッタリング法を行い、真空槽内に設置した被処理体の上に、 SiO 層を形成させた。
2
<ZrO層〉
2
真空槽内に Zrターゲットをスパッタターゲットとして力ソード上に設置し、真空槽を 1 . 3 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとして酸素ガス 60sccm を導入した。このとき、圧力は 3. 3 X 10— &となった。この状態で、 DCパルス電源を 用いて反応性スパッタリング法を行い、真空槽内に設置した被処理体の上に、 ZrO
2 層を形成させた。
<TiO N層 >
真空槽内に TiO (1 <χ< 2)ターゲットをスパッタターゲットとして力ソード上に設置 し、真空槽を 1. 3 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアル ゴンガスと窒素ガスとの混合ガスを導入した。このとき、圧力は 5. 7 X 10— となった 。この状態で、 DCパルス電源を用いて反応性スパッタリング法を行い、真空槽内に 設置した被処理体の上に、 TiO N層を形成させた。なお、例 4および例 5におけるス パッタガスとしては、アルゴンガス 90sccmと窒素ガス lOsccmとの混合ガスを用い、 例 6および例 7におけるスパッタガスとしては、アルゴンガス 80sccmと窒素ガス 20sc cmとの混合ガスを用いた。
例 8〜13に関して、各層の形成は、以下のようにして行った。
く TiO層 >
2
真空槽内に Tiターゲットをスパッタターゲットとして力ソード上に設置し、真空槽を 2 . 7 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアルゴンガスと酸素 ガスを 50 : 50 (モル比)の割合で、圧力が 4. 0 X 10— となるまで導入した。この状 態で、 DCパルス電源を用いて反応性スパッタリング法を行い、真空槽内に設置した 被処理体の上に、 TiO層を形成させた。
2
< SiO層〉
2
真空槽内に多結晶 Siターゲットをスパッタターゲットとして力ソード上に設置し、真空 槽を 2. 7 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアルゴンガス と酸素ガスとの混合ガス [混合比 = 60 :40 (モル比)]を、圧力が 4. 0 X 10_1Paとなる まで導入した。この状態で、 AC電源を用いて反応性スパッタリング法を行い、真空槽 内に設置した被処理体の上に、 SiO層を形成させた。
2
<ZrO層〉
2
真空槽内に Zrターゲットをスパッタターゲットとして力ソード上に設置し、真空槽を 2 . 7 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアルゴンガスと酸素 ガスとの混合ガス [混合比 = 70: 30 (モル比) ]を、 6. 7 X 10— となるまで導入した 。この状態で、 DCパルス電源を用いて反応性スパッタリング法を行い、真空槽内に 設置した被処理体の上に、 ZrO層を形成させた。
2
<TiO N層〉
真空槽内に TiO (1 < χ< 2)ターゲットをスパッタターゲットとして力ソード上に設置 し、真空槽を 2. 7 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアル ゴンガスと酸素ガスと窒素ガスとの混合ガス [混合比 = 75 : 10 : 15 (モル比) ]の割合 で導入した。このとき、圧力は 6. 7 X 10— &となった。この状態で、 DCパルス電源を 用いて反応性スパッタリング法を行い、真空槽内に設置した被処理体の上に、 TiO N層を形成させた。
例 14に関して、各層の形成は、以下のようにして行った。
く TiO層 >
2
真空槽内に TiO (1 < χ< 2)ターゲットをスパッタターゲットとして力ソード上に設置 し、真空槽を 2. 0 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアル ゴンガスと酸素ガスを 93: 7 (モル比)の割合で、圧力が 4. 3 X 10— となるまで導入 した。この状態で、 AC電源を用いて反応性スパッタリング法を行い、真空槽内に設 置した被処理体の上に、 TiO層を形成させた。
2
< SiO層〉
2
真空槽内に多結晶 SiAl (Si: Al= 90: 10 (wt%) )ターゲットをスパッタターゲットと して力ソード上に設置し、真空槽を 2. 0 X 10—3Pa以下となるまで排気した。ついで、 スパッタガスとしてアルゴンガスと酸素ガスとの混合ガス [混合比 = 52: 48 (モル比) ] を、圧力が 4. 3 X 10— となるまで導入した。この状態で、 AC電源を用いて反応性 スパッタリング法を行い、真空槽内に設置した被処理体の上に、 SiO層を形成させた
2
<ZrO層〉
2
真空槽内に Zrターゲットをスパッタターゲットとして力ソード上に設置し、真空槽を 2 . 0 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアルゴンガスと酸素 ガスとの混合ガス [混合比 = 70: 30 (モル比) ]を、 3. 0 X 10— となるまで導入した 。この状態で、 DCパルス電源を用いて反応性スパッタリング法を行い、真空槽内に 設置した被処理体の上に、 ZrO層を形成させた。
2
<TiO N層〉
真空槽内に TiO (1 < χ< 2)ターゲットをスパッタターゲットとして力ソード上に設置 し、真空槽を 2. 0 X 10— 3Pa以下となるまで排気した。ついで、スパッタガスとしてアル ゴンガスと酸素ガスと窒素ガスとの混合ガス [混合比 = 93 : 3. 5 : 3. 5 (モル比)]の割 合で導入した。このとき、圧力は 4. 2 X 10— &となった。この状態で、 AC電源を用い て反応性スパッタリング法を行い、真空槽内に設置した被処理体の上に、 TiO N層 を形成させた。
[0083] 以下、各層を構成する材料の屈折率を表 2に示す。この値は波長 550nmにおける 値である。
[0084] [表 2]
Figure imgf000021_0001
(反射防止膜付きガラス基体の熱処理)
上記で得られた例 1〜 15の反射防止膜付きガラス基体ならびに例 16の VFLを、そ れぞれ 100mm X 100mmの大きさに切断し、小型のベルト炉で熱処理を行った。熱 処理の条件は、設定温度 650°C、熱処理時間 15分間であった。
(反射防止膜付きガラス基体の性状) (l)TiO N層の組成
x y
上記で得られた例 4〜 14の反射防止膜付きガラス基体の TiO N層について、 ES
CAにより、チタンに対する窒素の量を測定した。また、 Xと yの値を前記の前提により 求めた。表中ではチタンに対する窒素の量を NZTi (at%)と表記する。
[0086] なお、例 4〜7については、ガラス基体上に TiO N層のみを形成したサンプルにつ いて測定した。 TiO N層のみを形成した構成であっても、チタンに対する窒素の量 は、反射防止膜付き基体にお!、て測定する場合と変わらな 、と考えられる。
[0087] [表 3]
Figure imgf000022_0001
[0088] (2)光学特性
上記で得られた例 1〜 15の反射防止膜付きガラス基体ならびに例 16の VFLにつ いて、以下の各光学特性を求めた。なお、例 1〜7の光学特性の結果は、 VFLおよ び各層の厚さおよび屈折率力もシミュレーションにより求めた値である。結果を表 4に 示す。
[0089] (i)反射防止膜の反射率 (Rv)
反射率としては、可視光反射率 Rvを用い、反射防止膜面側力 入射した光が反射 防止膜面で反射する値とした。即ち、反射防止膜のみの反射率を求めた。 JIS R 3 106に準じ、光源は D65光源とし、入射角は 60° とした。
なお、例 16においては、熱処理後の VFLの反射率を求めた。
(ii)透過率 (Tv)
透過率としては、視感透過率 Τνを用いた。 JIS R 3106に準じ、光源は A光源とし 、入射角は 0° とした。
(iii)色味 (反射色)
色味としては、ガラス面側からの値 (X, y)とした。光源は D65光源とし、入射角は 6 0° とした。 [0090] (3)膜抵抗値
熱処理後の反射防止膜付きガラス基体について、 2探針抵抗計 (ハイレスタ IP、三 菱油化社製)を用いて、反射防止膜の膜抵抗値を測定した。例 16においては、上記 と同様に、熱処理後の VFLについて測定した。結果を表 4に示す。
[0091] (4)クラック
熱処理後の反射防止膜付きガラス基体について、光学顕微鏡により、反射防止膜 のクラックの発生の有無を目視により観察した。結果を表 4に示す。
[0092] (5)基体の反り
熱処理後の反射防止膜付きガラス基体について、デジタルノギスを用い、膜面を内 側とした反りの凹み量を、ガラス基体の対角線の交点において測定した。結果を表 4 に示す。
[0093] (6)耐摩耗性
熱処理後の反射防止膜付きガラス基体について、テーバー磨耗試験機を用い、膜 面を回転磨耗輪で擦り、試験後の膜剥離の状態を観察した。膜剥離がないものにつ V、ては、試験前後のヘイズ率を測定し、 Δ H% (試験前後のヘイズ率の差)を求めた 。結果を表 4に示す。なお、テーバー試験の条件は、荷重 2. 45N X 500回転とした 。ヘイズ値が小さいほど耐磨耗性に優れることを示す。実用上、 5%以下が好ましぐ 3 %以下であるのが特に好まし 、。
[0094] [表 4]
R T 色味 膜抵抗値 クラック 反り 耐摩耗性
(%) (%) (x, y) (mm) (厶 H ) 例 1 3.463 88.103 >1ΤΩ なし ― ― 例 2 3.116 88.272 >1ΤΩ なし ― ― 例 3 3.535 87.548 (0.305, 0.324) >1ΤΩ なし ― ― 例 4 3.352 86.858 >1ΤΩ なし ― ― 例 5 3.404 87.458 (0.310, 0.329) >1ΤΩ なし ― 一 例 6 3.324 88.284 (0.307, 0.325) >1ΤΩ なし ― ― 例 7 3.485 88.361 >1ΤΩ なし ― ― 例 8 3.342 86.589 (0.309, 0.326) >1ΤΩ なし 0.5 く 1.0 例 9 3.658 93.506 (0.311, 0.327) >1ΤΩ なし 0.5 <1.0 例 10 4.238 93.971 >1ΤΩ なし 0.5 1.18 例 11 4.630 94.426 >1ΤΩ なし 1.0 0.98 例 12 4.022 93.948 (0.316, 0.322) 〉1ΤΩ なし 0.5 1.41 例 13 3.925 94.064 (0.31 , 0.322) >1ΤΩ なし 1.0 6.23 例 14 4.328 87.695 (0.310, 0.330)一 >1ΤΩ なし 0.5 ― 例 15 3.363 88.136 >1ΤΩ あり 一 - 例 16 9.232 85.746 >1ΤΩ ― - -
[0095] 第 4表力も明らかなように、本発明の反射防止膜付きガラス基体 (例 1〜14)は、高 抵抗値を示し、また、熱処理によるクラックの発生がな力 た。また、光学特性は、低 反射率かつ高透過率であり、色味は、反射防止膜を形成していないガラス基体自体 とほぼ同じであった。
これに対し、高屈折率材料カゝらなる被膜がすべて酸ィ匕チタン層の単層である場合 ( 例 15)は、熱処理によるクラックの発生があった。
産業上の利用可能性
[0096] 本発明の反射防止膜付基体の透明基体としてガラス板を用いれば、ガラス板を曲 げカロェするために、ガラス板を 630〜700°Cに加熱するという熱処理を行っても反射 防止膜にクラックが発生せず、着色もしないという効果が得られる。また、ガラス板を 強化カ卩ェするために、ガラス板を 550〜700°Cに加熱した際にも同様な効果が得ら れる。
本発明の反射防止膜付き基体は、自動車のウィンドシールド用ガラス用の低反射 ガラスとして、また、建築用、各種産業用の低反射ガラスとして有用である。 なお、 2005年 1月 31曰に出願された曰本特許出願 2005— 023769号の明細書 、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示と して、取り入れるものである。

Claims

請求の範囲
[1] 透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56 以下の低屈折率材料力 なる被膜とを前記透明基体側力 この順に偶数層積層して なる反射防止膜とを有する反射防止膜付き基体であって、
前記高屈折率材料からなる被膜の少なくとも 1層が、
酸窒化チタン層の単層膜 (a)、
酸化チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (b)または
酸窒化チタン層と酸ィ匕ジルコニウム層とを含む積層膜 (c)
である、ことを特徴とする反射防止膜付き基体。
[2] 透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56 以下の低屈折率材料力 なる被膜とを前記透明基体側力 この順に偶数層積層して なる反射防止膜とを有する反射防止膜付き基体であって、
前記高屈折率材料からなる被膜の少なくとも 1層が、
酸窒化チタン層の単層膜 (a)、
酸化チタン層と酸ィ匕ジルコニウム層との積層膜 (b 1)または
酸窒化チタン層と酸ィ匕ジルコニウム層との積層膜 (c 1)
である、ことを特徴とする反射防止膜付き基体。
[3] 前記高屈折率材料カゝらなる被膜の少なくとも 1層が、酸窒化チタン層と酸ィ匕ジルコ
-ゥム層との積層膜 (cl)である、請求項 2に記載の反射防止膜付き基体。
[4] 透明基体と、屈折率が 1. 90以上の高屈折率材料からなる被膜と屈折率が 1. 56 以下の低屈折率材料力 なる被膜とを前記透明基体側力 この順に 4層積層してな る反射防止膜とを有する反射防止膜付き基体であって、
前記反射防止膜が、透明基体側から、屈折率が 1. 90以上の高屈折率材料からな る被膜、酸化ケィ素の単層膜、酸窒化チタン層と酸ィ匕ジルコニウム層との積層膜 (cl )、酸ィ匕ケィ素の単層膜がこの順に積層された反射防止膜であることを特徴とする反 射防止膜付き基体。
[5] 前記屈折率が 1. 90以上の高屈折率材料からなる被膜が酸化チタン層の単層膜で ある請求項 4に記載の反射防止膜付き基体。
[6] 入射角 60° で前記反射防止膜側から入射した光の前記反射防止膜面での反射 力 可視光反射率として 6%以下である請求項 1〜5のいずれかに記載の反射防止 膜付き基体。
[7] 前記酸窒化チタン層におけるチタンに対する窒素の量力 0. l〜80at%である、 請求項 1〜6のいずれかに記載の反射防止膜付き基体。
[8] 熱処理前における前記酸窒化チタン層におけるチタンに対する窒素の量力 2〜4
Oat%である請求項 1〜7のいずれかに記載の反射防止膜付き基体。
[9] 熱処理後における前記酸窒化チタン層におけるチタンに対する窒素の量力 0. 1
〜20at%である請求項 1〜8のいずれかに記載の反射防止膜付き基体。
[10] 請求項 1〜9のいずれかに記載の反射防止膜付き基体を加熱炉内に搬入し曲げ 成形温度まで加熱する加熱工程と、所望の形状に曲げ成形する工程とを有する反射 防止膜付き基体の加工方法。
PCT/JP2006/301471 2005-01-31 2006-01-30 反射防止膜付き基体 WO2006080502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800033827A CN101111783B (zh) 2005-01-31 2006-01-30 带防反射膜的基体
EP06712614A EP1845392A4 (en) 2005-01-31 2006-01-30 SUBSTRATE HAVING ANTIREFLECTION COATING
JP2007500632A JP5262110B2 (ja) 2005-01-31 2006-01-30 反射防止膜付き基体
US11/830,999 US20070279750A1 (en) 2005-01-31 2007-07-31 Substrate with antireflection film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-023769 2005-01-31
JP2005023769 2005-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/830,999 Continuation US20070279750A1 (en) 2005-01-31 2007-07-31 Substrate with antireflection film

Publications (1)

Publication Number Publication Date
WO2006080502A1 true WO2006080502A1 (ja) 2006-08-03

Family

ID=36740519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301471 WO2006080502A1 (ja) 2005-01-31 2006-01-30 反射防止膜付き基体

Country Status (5)

Country Link
US (1) US20070279750A1 (ja)
EP (1) EP1845392A4 (ja)
JP (1) JP5262110B2 (ja)
CN (1) CN101111783B (ja)
WO (1) WO2006080502A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962109A2 (en) 2007-02-21 2008-08-27 Asahi Glass Company, Limited Glass sheet with antireflection film and laminated glass for windows
JP2011198812A (ja) * 2010-03-17 2011-10-06 Showa Denko Kk 半導体発光素子およびその製造方法、ランプ、電子機器、機械装置
WO2017094725A1 (ja) 2015-12-03 2017-06-08 旭硝子株式会社 反射防止膜付きガラス板
JP2019515352A (ja) * 2016-05-04 2019-06-06 エシロール アンテルナショナルEssilor International 近赤外領域(nir)において高反射率を有する反射防止膜を含む光学物品
JP2019197202A (ja) * 2018-05-08 2019-11-14 北京漢能太陽光投資有限公司 曲面コーティングパネル及びその製造方法、ソーラーモジュール

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692855B2 (en) * 2006-06-28 2010-04-06 Essilor International Compagnie Generale D'optique Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers
CN101393276B (zh) * 2007-09-21 2010-06-16 鸿富锦精密工业(深圳)有限公司 宽频带抗反射膜及具有该宽频带抗反射膜的光学元件
CN102016652B (zh) * 2008-04-24 2012-12-26 旭硝子株式会社 低反射玻璃及显示器用保护板
JP2010231171A (ja) * 2009-03-04 2010-10-14 Seiko Epson Corp 光学物品およびその製造方法
JP2010231172A (ja) * 2009-03-04 2010-10-14 Seiko Epson Corp 光学物品およびその製造方法
JP5588135B2 (ja) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク 光学物品の製造方法
JP2012032690A (ja) 2010-08-02 2012-02-16 Seiko Epson Corp 光学物品およびその製造方法
JP2012128135A (ja) * 2010-12-15 2012-07-05 Seiko Epson Corp 光学物品およびその製造方法
TWI457615B (zh) * 2011-04-25 2014-10-21 E Ink Holdings Inc 彩色濾光片、光柵結構及顯示模組
WO2015093322A1 (ja) * 2013-12-16 2015-06-25 旭硝子株式会社 反射防止膜付きガラスおよびその製造方法
JP2017105643A (ja) 2014-04-24 2017-06-15 旭硝子株式会社 被膜付きガラス基板および被膜付きガラス基板の製造方法
WO2016010009A1 (ja) * 2014-07-16 2016-01-21 旭硝子株式会社 カバーガラス
CN105047080A (zh) * 2015-08-14 2015-11-11 河南镀邦光电股份有限公司 一种消反光防眩光显示屏面板
CN105549257A (zh) * 2015-12-28 2016-05-04 信利半导体有限公司 一种滤色片基板及其制造方法
CN111683910A (zh) 2018-01-31 2020-09-18 Agc株式会社 带防反射膜的玻璃基板和光学部件
BR112022004019A2 (pt) * 2019-10-08 2022-05-31 Guardian Glass Llc Artigos revestidos de e-baixa compatíveis com filme absorvente e métodos correspondentes
CN111925129A (zh) * 2020-09-04 2020-11-13 安徽天柱绿色能源科技有限公司 防蓝光、高透过率镀膜前板及防蓝光太阳能电池组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634802A (ja) * 1992-07-20 1994-02-10 Fuji Photo Optical Co Ltd 導電性反射防止膜
JP2002116303A (ja) * 2000-07-27 2002-04-19 Asahi Glass Co Ltd 反射防止膜付き基体とその製造方法
JP2003002691A (ja) * 2001-06-19 2003-01-08 Central Glass Co Ltd 低反射基板およびその製造方法
JP2003215304A (ja) * 2002-01-21 2003-07-30 Asahi Glass Co Ltd 表示装置用反射防止機能付フィルターの製造方法
JP2004255635A (ja) * 2003-02-25 2004-09-16 Dainippon Printing Co Ltd 透明積層フィルム、反射防止フィルム及びそれを用いた偏光板、液晶表示装置
JP2005003707A (ja) * 2003-06-09 2005-01-06 Asahi Glass Co Ltd 反射防止体およびこれを用いたディスプレイ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105310A (en) * 1990-10-11 1992-04-14 Viratec Thin Films, Inc. Dc reactively sputtered antireflection coatings
JPH07119845B2 (ja) * 1990-11-27 1995-12-20 ホーヤ株式会社 光学部品
JPH0553002A (ja) * 1991-08-22 1993-03-05 Canon Inc 低温真空蒸着による多層膜の製造方法、及びその製造装置
JP3039721B2 (ja) * 1992-03-24 2000-05-08 キヤノン株式会社 蒸着材料及び該蒸着材料を用いた光学薄膜の製造方法
US5728456A (en) * 1996-02-01 1998-03-17 Optical Coating Laboratory, Inc. Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
TW415922B (en) * 1996-06-11 2000-12-21 Asahi Glass Co Ltd Light absorptive anti-reflector and method for manufacturing the same
US5986815A (en) * 1998-05-15 1999-11-16 Optical Coating Laboratory, Inc. Systems, methods and apparatus for improving the contrast ratio in reflective imaging systems utilizing color splitters
FR2793889B1 (fr) * 1999-05-20 2002-06-28 Saint Gobain Vitrage Substrat transparent a revetement anti-reflets
JP2002286872A (ja) * 2001-03-26 2002-10-03 Citizen Watch Co Ltd 時計用風防ガラスおよび時計
JP2003114302A (ja) * 2001-10-04 2003-04-18 Sony Corp 反射防止フィルム及び反射防止偏光板の製造方法
JP4145612B2 (ja) * 2002-08-30 2008-09-03 ユーディナデバイス株式会社 光学多層膜及びそれを有する光半導体装置
WO2005059602A1 (ja) * 2003-12-18 2005-06-30 Asahi Glass Company, Limited 光吸収性反射防止体
JP2005250124A (ja) * 2004-03-04 2005-09-15 Asahi Glass Co Ltd 透過型スクリーン
EP1923365B1 (en) * 2005-08-16 2011-10-19 Asahi Glass Company, Limited Laminated glass for vehicle window
EP1923362B1 (en) * 2005-08-16 2015-09-16 Asahi Glass Company, Limited Infrared reflective glass plate and laminated glass for vehicle window

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634802A (ja) * 1992-07-20 1994-02-10 Fuji Photo Optical Co Ltd 導電性反射防止膜
JP2002116303A (ja) * 2000-07-27 2002-04-19 Asahi Glass Co Ltd 反射防止膜付き基体とその製造方法
JP2003002691A (ja) * 2001-06-19 2003-01-08 Central Glass Co Ltd 低反射基板およびその製造方法
JP2003215304A (ja) * 2002-01-21 2003-07-30 Asahi Glass Co Ltd 表示装置用反射防止機能付フィルターの製造方法
JP2004255635A (ja) * 2003-02-25 2004-09-16 Dainippon Printing Co Ltd 透明積層フィルム、反射防止フィルム及びそれを用いた偏光板、液晶表示装置
JP2005003707A (ja) * 2003-06-09 2005-01-06 Asahi Glass Co Ltd 反射防止体およびこれを用いたディスプレイ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1845392A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962109A2 (en) 2007-02-21 2008-08-27 Asahi Glass Company, Limited Glass sheet with antireflection film and laminated glass for windows
JP2011198812A (ja) * 2010-03-17 2011-10-06 Showa Denko Kk 半導体発光素子およびその製造方法、ランプ、電子機器、機械装置
WO2017094725A1 (ja) 2015-12-03 2017-06-08 旭硝子株式会社 反射防止膜付きガラス板
US10654746B2 (en) 2015-12-03 2020-05-19 AGC Inc. Glass plate with antireflection film
JP2019515352A (ja) * 2016-05-04 2019-06-06 エシロール アンテルナショナルEssilor International 近赤外領域(nir)において高反射率を有する反射防止膜を含む光学物品
JP2019197202A (ja) * 2018-05-08 2019-11-14 北京漢能太陽光投資有限公司 曲面コーティングパネル及びその製造方法、ソーラーモジュール

Also Published As

Publication number Publication date
CN101111783A (zh) 2008-01-23
JP5262110B2 (ja) 2013-08-14
US20070279750A1 (en) 2007-12-06
EP1845392A4 (en) 2009-06-03
CN101111783B (zh) 2010-12-08
JPWO2006080502A1 (ja) 2008-06-19
EP1845392A1 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
WO2006080502A1 (ja) 反射防止膜付き基体
JP4532826B2 (ja) 被覆済み物品の製法及びそれにより製造された被覆済み物品
US7632572B2 (en) Double silver low-emissivity and solar control coatings
JP6196980B2 (ja) 太陽光制御板ガラスユニット
EP3004015B1 (en) Low-emissivity glazing
JP6066929B2 (ja) 熱処理可能な被覆ガラス板
JP4031760B2 (ja) 低放射率コーティングを備えた基材
TW201223905A (en) Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same
WO2007013269A1 (ja) 反射膜用積層体
JP2008201633A (ja) 反射防止膜付きガラス板および窓用合わせガラス
JP2003500249A (ja) 反射防止、低放射率もしくは太陽光保護被覆を有する透明基体
WO2007020792A1 (ja) 赤外線反射ガラス板および車両窓用合わせガラス
JP2007531644A (ja) 障壁被覆の層を含む被覆積層体
JP2008037667A (ja) 窓用合わせガラス
JP2001523358A (ja) 熱放射線を反射する積層体を具備した透明基材
JP2015519275A (ja) 太陽光制御グレージング
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
WO2019187416A1 (ja) 反射防止膜および光学部材
WO2016199676A1 (ja) 膜積層体および合わせガラス
KR20200118069A (ko) 4중 금속층을 갖는 태양광 제어 코팅
JPH10139491A (ja) 低反射濃色グレ−ガラス
KR20110018069A (ko) 반사방지용 다층코팅을 갖는 투명 기판 및 그 제조방법
EP3296275A1 (en) Insulated glass unit for vehicles
JP7380708B2 (ja) 扉または壁
CN114391005A (zh) 包含基于铬的薄层的隔热窗玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500632

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006712614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680003382.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11830999

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006712614

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11830999

Country of ref document: US