WO2006068137A1 - 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 - Google Patents

密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 Download PDF

Info

Publication number
WO2006068137A1
WO2006068137A1 PCT/JP2005/023363 JP2005023363W WO2006068137A1 WO 2006068137 A1 WO2006068137 A1 WO 2006068137A1 JP 2005023363 W JP2005023363 W JP 2005023363W WO 2006068137 A1 WO2006068137 A1 WO 2006068137A1
Authority
WO
WIPO (PCT)
Prior art keywords
bifunctional
acrylate
resin
optical element
precursor composition
Prior art date
Application number
PCT/JP2005/023363
Other languages
English (en)
French (fr)
Inventor
Akiko Miyakawa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006548999A priority Critical patent/JP4760714B2/ja
Priority to EP05819856.5A priority patent/EP1830204B1/en
Priority to US11/793,308 priority patent/US20080094712A1/en
Publication of WO2006068137A1 publication Critical patent/WO2006068137A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods

Definitions

  • Adhesive multilayer diffractive optical element, optical material used therefor, resin precursor and resin precursor composition Adhesive multilayer diffractive optical element, optical material used therefor, resin precursor and resin precursor composition
  • the present invention relates to a close-contact multilayer diffractive optical element, a low refractive index and high dispersion ultraviolet curable resin suitable for the same, a precursor thereof, and a composition containing the precursor.
  • a close-contact multilayer diffractive optical element in which two optical members, which are optical material forces, are in close contact with each other to form a diffraction grating, can be used in a wider wavelength range. It is easy to align and has the advantages.
  • the optical characteristics of the two optical members sandwiching the diffractive optical surface are relatively high in refractive index.
  • Low dispersion and low refractive index and high dispersion are required.
  • glass can be used as a general existing high refractive index and low dispersion optical material.
  • one of the two optical members of the contact multilayer optical element is such a high refractive index and low dispersion glass, the other is made of an optical material having a relatively low refractive index and high dispersion relative to this glass. Must be used.
  • Patent Document 1 JP-A-9 127322
  • the optical material used for the optical member of this multi-layered diffractive optical element can be manufactured in a low-cost manner because the element can be reduced in weight, and mass productivity can be improved. Oil is suitable.
  • an ultraviolet curable resin is desirable because it has excellent transferability, requires a short time for curing, and does not require a heat source, so that the cost can be further reduced.
  • it has been difficult to achieve special optical properties such as low refractive index, high power, and high dispersion by using a conventional resin that has been used in the optical field.
  • the present invention provides a low bending resistance suitable for an optical material used in a contact multilayer diffractive optical element. It is an object of the present invention to provide an ultraviolet curable resin having a high refractive index, a precursor thereof, a composition containing the precursor, and a contact multilayer diffractive optical element using the same.
  • the resin containing fluorine atoms has a low refractive index.
  • the coconut resin having an aromatic ring has a high dispersion. Therefore, it is considered that an ultraviolet curable resin having both structures may be used.
  • a resin containing a fluorine atom has poor compatibility with other resins. Therefore, if a resin containing a fluorine atom is used, the refractive index is uneven in the resin and the optical fiber is not uniform. It may cause the characteristics to deteriorate.
  • a fluorene structure containing many aromatic rings is effective for realizing high dispersion characteristics, but generally has a very high viscosity and poor workability.
  • a bifunctional fluorine-containing (meth) acrylate having a low viscosity it is highly dispersed while having a low refractive index.
  • An excellent rosin precursor composition could be realized.
  • the bifunctional fluorine-containing (meth) atalylate and two fluorene structures are included.
  • a resin precursor composition (first resin precursor composition) containing an active (meth) acrylate and a photopolymerization initiator, and an ultraviolet curable resin obtained by curing this composition are in close contact with each other.
  • An adhesive multi-layered diffractive optical element comprising two optical members, wherein the interface between the optical members constitutes a diffraction grating, and one of the optical members is an adhesive made of this ultraviolet curable resin (first resin)
  • a multilayer diffractive optical element is provided.
  • the other of the optical members is a second resin precursor composition comprising a terminal acrylate oligomer obtained by reacting a bifunctional thiol with an excess of bifunctional acrylate, and a photopolymerization initiator. It is desirable to consist of a second resin which is a cured product.
  • the present invention is a copolymer comprising a first repeating unit represented by the following general formula (Formula la) and a second repeating unit represented by the following general formula (Formula lb).
  • Acrylic resin is provided.
  • R 1 and R 2 are each a hydrogen atom or a methyl group, and R 3 and R 4 are each — ((CH 2) 0) m— or — (CH 2 CH (OH) CH 0) m—).
  • R 3 and R 4 are each — ((CH 2) 0) m— or — (CH 2 CH (OH) CH 0) m—).
  • R 5 to R 1C) are a hydrogen atom, a fluorine atom, a hydrocarbon group of 1 to 6 carbon atoms, a phenyl group, a fluoride group, respectively. A phenyl group and a hydrocarbon group having 1 to 6 carbon atoms are placed. Any of the substituted phenol groups, R 1 to R 5 are a hydrogen atom or a methyl group, X is an integer of 1 to 2 and Y is a perfluoroalkyl group having 2 to 12 carbon atoms or One (CF—
  • O—CF is one (where z is an integer of 1 to 4).
  • the refractive index n of the d-line at wavelengths 587 and 56 nm is 1.54 or less, and d
  • the refractive index n of the optical material for the element and the cured resin is 1.54 or less.
  • Coagulant precursor for adhesive multi-layer diffractive optical element having an average dispersion (n-n) of not less than 0.0145
  • a composition is provided.
  • a bifunctional fluorine-containing (meth) acrylate by using a bifunctional fluorine-containing (meth) acrylate, a low refractive index is realized by the presence of a fluorine atom in the molecule, and a bifunctional having a fluorene structure. It is possible to form a homogeneous low-refractive-index and high-dispersion resin layer while achieving high dispersion by using (meth) acrylate, and to provide an appropriate viscosity of the resin precursor composition. Therefore, a contact multilayer diffractive optical element having excellent optical characteristics can be manufactured with good workability.
  • FIG. 1 is an explanatory view showing a manufacturing process of a contact multilayer diffractive optical element in Example 1.
  • FIG. 2 is an IR spectrum of rosin precursor composition a.
  • FIG. 3 is an IR spectrum of rosin precursor composition b.
  • FIG. 4 is an IR spectrum of rosin precursor composition c.
  • FIG. 5 is an IR spectrum of a cured product of rosin precursor composition a.
  • FIG. 6 is an IR ⁇ vector of a cured product of the rosin precursor composition b.
  • FIG. 7 is an IR spectrum of a cured product of rosin precursor composition c.
  • the optical characteristics of the optical member sandwiching the diffractive optical surface are required to be relatively high refractive index low dispersion and low refractive index high dispersion.
  • a low melting glass is often used as an optical material having a high refractive index and low dispersion.
  • an adhesion multilayer diffractive optical element can be produced by forming a diffractive surface on glass by a glass mold method and laminating an ultraviolet curable resin thereon.
  • K-PSK60 Sudita Optical Glass Co., Ltd.
  • the grating height d which is optimized so that the m-th order diffraction efficiency is 100% at the wavelength, is expressed as ⁇ and ⁇ , respectively, for the refractive index at ⁇ of a material with high refractive index and low dispersion and low refractive index and high dispersion. Then, it is expressed as follows.
  • the grating height d is inversely proportional to the difference in refractive index between a high refractive index, low dispersion material and a low refractive index, high dispersion material.
  • the refractive index n of the first resin in the present invention is preferably 1.54 or less, and the average dispersion (n ⁇ n) of the first resin is preferably 0.0145 or more.
  • the refractive index n of the second resin is
  • the first resin precursor composition of the present invention includes a bifunctional fluorine-containing (meth) acrylate, a bifunctional (meth) acrylate having a fluorene structure, and a photopolymerization initiator.
  • a bifunctional fluorine-containing (meth) acrylate decreases the refractive index but decreases the dispersion.
  • the content of the bifunctional (meth) atalylate having a fluorene structure is increased, the dispersion increases, but the refractive index increases.
  • the content of the bifunctional fluorine-containing (meth) acrylate is 10 to 80 wt% and the bifunctional (meta) structure having a fluorene structure.
  • the content of talate is preferably 10-80 wt%.
  • Examples of the bifunctional fluorine-containing (meth) acrylate suitable for the present invention include compounds represented by the following structural formula (Formula 2).
  • R 1 and R 2 are each a hydrogen atom or a methyl group
  • X is an integer of 1 to 2
  • Y is a perfluoroalkyl group having 2 to 12 carbon atoms, or — (CF 2 —O -CF) 1
  • z is 1 to 4
  • 11-Icosafluorododecane can be used. Furthermore, ethylene oxide-modified bisphenol F di (meth) acrylate and propylene oxide modified bisphenol F di (meth) acrylate can also be used as the fluorine-containing (meth) acrylate.
  • bifunctional fluorine-containing (meth) acrylates may be a single compound, or two or more compounds may be used in combination.
  • Examples of the bifunctional (meth) acrylate having a fluorene structure include a compound represented by the following general formula (Formula 3). These bifunctional (meth) acrylates containing a fluorene structure may be a single compound, or two or more compounds may be used in combination.
  • R 3 and R 4 are each one ((CH 2) 0) m— or one (CH 2 CH (OH) CH 0) m
  • R 5 to R 1C are a hydrogen atom, a fluorine atom, and a hydrocarbon having 1 to 6 carbon atoms, respectively.
  • the first coconut resin precursor composition of the present invention contains, as necessary, a 1 to 4 functional (meth) acrylate which is copolymerizable with the two components as a third component separately from the above two acrylates. Can be included. Thereby, the viscosity can be adjusted and the transparency of the cured product can be improved.
  • the mono- to tetra-functional (meth) attalylate contained as the third component does not contain any sulfur, chlorine, bromine, iodine, or alicyclic structure in the molecule. This is because the dispersion becomes smaller when these atoms or structures are included.
  • the addition amount of 1 to 4 functional (meth) acrylate is 40% or less.
  • Examples of monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate.
  • Atarylate Polypropylene glycol (meth) acrylate, Atalyloxypolyethylene glycol (meth) acrylate, Stearoxy polyethylene glycol (meth) acrylate, Octoxy polyethylene glycol Polypropylene glycol (meth) acrylate, Poly (propylene) Glycol monotetramethylene glycol) (meth) acrylate, poly (ethylene glycol mono-tetramethylene glycol) (meth) acrylate, poly (ethylene glycol-propylene glycol) (meth) acrylate, polypropylene glycol (meth) acrylate , Methoxypolyethylene glycol (meth) acrylate, methoxy polypropylene glycol (meth) acrylate, benzyl (meth) acrylate, etc. .
  • Examples of the bifunctional (meth) acrylate include, for example, 2-ethyl, 2-butyl-propanedio (Meth) acrylate, 1, 3-butylene glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, 1, 9-nonanediol di (meth) acrylate, 1, 10 -Decanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, glycerol di (meth) acrylate, ethylenide modified neopentyl glycol di (meth) acrylate , Propylene oxide modified neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A di (meth) acrylate, propylene oxide modified bisphenol A di (meth) acrylate, ethylene oxide '
  • Examples of the trifunctional (meth) atalylate include, for example, tris (atari mouth kichetil) isocyanurate, tris (methacryloxychetyl) isocyanurate, epichlorohydrin-modified glycerol triacrylate, ethylene oxide-modified glycerol triatalyte.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra acrylate, dipenta erythritol hydroxy penta acrylate, ditrimethylol propane tetra acrylate and the like.
  • the attalylate contained as the third component includes monofunctional (meth) acrylates such as phenoxyethylene glycol acrylate, methoxydiethylene glycol methacrylate, benzyl methacrylate. Methoxytripropylene glycol acrylate; Neopentyldaricol dialylate and tripropylene glycol diatalate which are bifunctional (meth) acrylates are preferred.
  • the photopolymerization initiator contained in the rosin precursor composition of the present invention is not particularly limited, and those usually used for ultraviolet curable rosin can be appropriately selected and used. wear.
  • the curing process during the molding of the resin can be performed in a vacuum in order to prevent air bubbles from entering.
  • the composition becomes uneven. Therefore, it is preferable that all the molecular weights of the above-mentioned rosin precursor compositions are 180 or more (excluding the photopolymerization initiator).
  • the resin obtained by curing the resin precursor composition a is a network-like random copolymer having two repeating units represented by the following structural formula (Formula 4). It is thought that.
  • the coconut resin obtained by curing the rosin precursor composition b has the following structural formula (Chemical Formula 5): It is considered to be a network-like random copolymer further comprising the repeating unit represented.
  • the resin obtained by curing the rosin precursor composition c is represented by the following structural formula (Chemical Formula 6). This is considered to be a network-like random copolymer having further repeating units.
  • Tricyclo [5. 2. 1. 0 2 ' 6 ] decandimethanol ditalylate, which is a bifunctional acrylate, and di (2-mercaptojetyl) sulfide, which is a bifunctional thiol, a bifunctional acrylate: 2 Functional thiols were mixed at a molar ratio of 3: 1 or 2.5: 1. When the mixture became uniform, 0.1 wt% triethylamine was added as a catalyst and stirring was continued at room temperature. The mixture gradually thickened.
  • the obtained rosin precursor composition was cured by irradiating with 8000 mjZcm 2 of ultraviolet rays.
  • the refractive index was measured, it was found that optical characteristics suitable as a high-refractive index low-dispersion optical member of a multi-contact diffractive optical element as shown in Table 2 were realized.
  • the cured product did not show any characteristic deterioration due to optical inhomogeneity.
  • the obtained oligomer is considered to be a terminal acrylate oligomer having a structure represented by the following structural formula (Formula 7).
  • this product contained about 20 mol% of a bifunctional atarylate represented by the structural formula (ii) (that is, unreacted raw material atarylate).
  • R 13 is a hydrocarbon group having a tricyclo [5. 2. 1. 0 2 ' 6 ] decane skeleton represented by the following structural formula (I ⁇ 8), and n is 1 to 3 )
  • the resin precursor composition a, b or c is used, and the high refractive index low dispersion resin composition is used as the high refractive index low dispersion resin composition.
  • the composition e a contact multilayer diffractive optical element having an outer diameter of 50 mm and a grating height of 20 m was prepared.
  • the lattice pitch of the element was 3.5 mm near the center and 0.17 mm near the outer periphery, and the pitch was made smaller as it was closer to the outer periphery (periphery).
  • FIG. 1 (a) the surface 2 of the glass base material 1 on which the resin layer was formed was subjected to silane coupling treatment.
  • FIG. 1 (b) the processing surface 2 and the mold 3 having the above-described lattice-shaped molding surface are opposed to each other, and the low refractive index and high dispersion resin precursor composition 4 is filled therebetween. Then, it was cured by irradiating with ultraviolet rays to form an optical member 5 made of a low refractive index and high dispersion resin, and then released (FIG. 1 (c)). Subsequently, as shown in FIG.
  • the optical member 5 and a mold 7 having a continuous molding surface without a diffraction grating are opposed to each other, and the high bending rate obtained by the above-described process therebetween.
  • the refractive index low-dispersed resin precursor composition 6 After filling the refractive index low-dispersed resin precursor composition 6 and irradiating it with ultraviolet rays to form an optical member 8 made of a high-refractive index low-dispersion resin, it was released (FIG. 1 (e)).
  • the obtained multi-contact diffractive optical element obtained had good optical characteristics even when a V-shifted resin precursor composition was used.
  • the resin constituting the optical member 8 formed in this example is a network copolymer having a repeating unit force represented by the following structural formula (Formula 9). It is conceivable that.
  • FIG. 2 shows the IR ⁇ vector of rosin precursor composition a.
  • FIG. 3 is an IR spectrum of rosin precursor composition b.
  • FIG. 4 shows the IR ⁇ vector of rosin precursor composition c.
  • FIG. 5 shows the IR ⁇ vector of the cured product of rosin precursor composition a.
  • FIG. 6 shows the IR ⁇ vector of the cured product of rosin precursor composition b.
  • FIG. 7 shows the IR ⁇ vector of the cured product of rosin precursor composition c.
  • an adhesive multilayer type comprising an optically homogeneous low refractive index and high dispersion resin layer.
  • a diffractive optical element can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 均質な低屈折率高分散の樹脂層を備える密着複層型回折光学素子を作業性よく製造する。回折面を構成する二つの光学部材のうちの低屈折率高分散の部材を、2官能含フッ素(メタ)アクリレートとフルオレン構造を有する2官能(メタ)アクリレートとを含む樹脂前駆体組成物を用いて形成する。

Description

明 細 書
密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及 び樹脂前駆体組成物
技術分野
[0001] 本発明は、密着複層型回折光学素子と、それに好適な低屈折率高分散の紫外線 硬化樹脂と、その前駆体と、該前駆体を含む組成物とに関する。
背景技術
[0002] 光学材料力 なる 2つの光学部材が密着し、その界面が回折格子を構成している 密着複層型回折光学素子は、使用波長の広帯域化が可能であり、さらに格子と格子 との位置合わせが容易であると 、う長所を備えて 、る。
[0003] この密着複層型回折光学素子では、たとえば特開平 9— 127322号公報に記載さ れているように、回折光学面を挟む 2つ光学部材の光学特性が、相対的に高屈折率 低分散及び低屈折率高分散であることが求められる。なお、一般的な既存の高屈折 率低分散の光学材料としては、例えば、ガラスを用いることができる。密着複層型回 折光学素子の 2つの光学部材は、一方をこのような高屈折率低分散ガラスとした場合 、他方にはこのガラスに対して相対的に低屈折率高分散な光学材料を用いる必要が ある。
[0004] 特許文献 1 :特開平 9 127322号公報
発明の開示
発明が解決しょうとする課題
[0005] この密着複層型回折光学素子の光学部材に用いられる光学材料には、素子を軽 量ィ匕できる上に、量産性が向上し低コストでの製造を実現することができるため、榭 脂が適している。特に紫外線硬化榭脂は、転写性に優れ、硬化に要する時間が短く 、熱源が不要であるなどの理由により、更にコストを低減することができるため望まし い。しかし、光学分野において従来力も用いられてきた榭脂では、低屈折率でありな 力 高分散であるという特殊な光学特性を実現することが困難である。
[0006] そこで本発明は、密着複層型回折光学素子に用いられる光学材料に好適な、低屈 折率高分散の紫外線硬化樹脂と、その前駆体と、該前駆体を含む組成物と、それを 用いた密着複層型回折光学素子とを提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するため、種々の構造の榭脂について、化学構造及び組成と、屈 折率及び分散との関係を調査した結果、フッ素原子を含む榭脂は屈折率が小さ 、こ とが分力 た。また芳香環を有する榭脂は分散が高いことが分力つた。そこで、双方 の構造を有する紫外線硬化榭脂を用いればよいと考えられる。しかし一般にフッ素原 子を含む榭脂は他の樹脂との相溶性が悪いため、フッ素原子を含む榭脂を用いると 榭脂内に屈折率のむらができ、光学的に均一にならないことから、光学特性を悪化さ せる原因になる。例えば、本発明者らは、入手容易な 1官能含フッ素アタリレートであ る、トリフルォロェチル (メタ)アタリレート(CH =CR— COO— CH -CF; R = H o
2 2 3 r CH )や、パーフルォロォクチルェチル (メタ)アタリレート(CH =CR— COO— C
3 2
H CH (CF ) F ;R=H or CH )を使用して光学素子の製造を試みた力 所望の
2 2 2 8 3
光学特性を有するものは得られな力つた。さらに、前記硬化物は所望の強度を有して いなかった。
[0008] これを解決するために、鋭意検討した結果、本発明者らはフッ素原子を含有する 2 官能のアタリレート及び Z又はメタアタリレート(以下、単に (メタ)アタリレートと呼ぶ)と 、フルオレン構造を有する 2官能の (メタ)アタリレートとを用いることで、均質な低屈折 率高分散の榭脂層を形成することができるとの新たな知見を得、本発明に至った。
[0009] 2官能含フッ素 (メタ)アタリレートを用いることにより相溶性が向上する作用機序は 明らかではないが、分子中に π電子に富む極性基であるアタリロイル基又はメタクリロ ィル基を 2つ備えることが、分子間力に何らかの影響を与えていると考えられる。
[0010] また芳香環を多く含むフルオレン構造は、高分散特性の実現に有効であるが、一 般に粘性が非常に高ぐ作業性が悪い。しかし、本発明では、粘性の低い 2官能含フ ッ素 (メタ)アタリレートを併用することにより、低屈折率でありながら高分散であり、しか も適度な粘性のため作業性の高 ヽ、優れた榭脂前駆体組成物を実現することができ た。
[0011] そこで本発明では、 2官能含フッ素 (メタ)アタリレート、フルオレン構造を有する 2官 能 (メタ)アタリレート、及び、光重合開始剤を含む榭脂前駆体組成物 (第 1の榭脂前 駆体組成物)と、これを硬化させて得られる紫外線硬化樹脂と、互いに密接した 2つ の光学部材を備え、該光学部材の界面が回折格子を構成する密着複層型回折光学 素子であって、光学部材の一方がこの紫外線硬化榭脂 (第 1の榭脂)からなる密着複 層型回折光学素子とが提供される。
[0012] なお、光学部材の他方は、 2官能チオールに過剰の 2官能アタリレートを反応させ て得られる末端アタリレートオリゴマーと光重合開始剤とを含む第 2の榭脂前駆体組 成物の硬化物である第 2の榭脂からなることが望ましい。
[0013] さらに本発明では、下記一般式 (化 la)で表される第 1の繰り返し単位と、下記一般 式 (化 lb)で表される第 2の繰り返し単位とを備える共重合体であるアクリル榭脂が提 供される。
[0014] [化 1]
(化 1 b )
Figure imgf000005_0001
(ここで R1及び R2は、それぞれ水素原子又はメチル基であり、 R3及び R4はそれぞれ — ( (CH ) 0) m—又は—(CH CH (OH) CH 0) m—であり(ただし mは 1
2 p 2 2 〜3の整 数、 pは 2〜4の整数)、 R5〜R1C)はそれぞれ、水素原子、フッ素原子、炭素数 1〜6の 炭化水素基、フ ニル基、フッ化フ ニル基、及び、炭素数 1〜6の炭化水素基が置 換されたフエ-ル基のいずれかであり、 R 〜R は水素原子又はメチル基であり、 X は 1〜2の整数であり、 Yは炭素数 2〜 12のパーフルォロアルキル基又は一(CF—
2
O— CF ) 一である(ただし zは 1〜4の整数)。 )
2 z
また、本発明では、 d線の波長 587, 56nmにおける屈折率 nが 1. 54以下であり、 d
平均分散すなわち F線の波長 486· 13nmにおける屈折率 nと C線の波長 656. 27
F
nmにおける屈折率 nとの差 (n— n )が 0. 0145以上である密着複層型回折光学
C F C
素子用光学材料と、硬化後の樹脂の屈折率 nが 1. 54以下であり、硬化後の樹脂の d
平均分散 (n— n )が 0. 0145以上である密着複層型回折光学素子用榭脂前駆体
F C
組成物が提供される。
発明の効果
[0015] 本発明によれば、 2官能含フッ素 (メタ)アタリレートを用いることにより、分子中にフ ッ素原子を存在させることで低屈折率を実現し、また、フルオレン構造を有する 2官能 (メタ)アタリレートを用いることにより高分散を実現しながら、均質な低屈折率高分散 の榭脂層を形成することができ、また、榭脂前駆体組成物の適度な粘性も付与できる ことから、光学特性に優れた密着複層型回折光学素子を作業性よく製造することが できる。
図面の簡単な説明
[0016] [図 1]図 1は、 実施例 1における密着複層型回折光学素子の製造工程を示す説明 図である。
[図 2]図 2は、榭脂前駆体組成物 aの IRスペクトルである。
[図 3]図 3は、榭脂前駆体組成物 bの IRスペクトルである。
[図 4]図 4は、榭脂前駆体組成物 cの IRスペクトルである。
[図 5]図 5は、榭脂前駆体組成物 aの硬化物の IRスペクトルである。
[図 6]図 6は、榭脂前駆体組成物 bの硬化物の IR ^ベクトルである。
[図 7]図 7は、榭脂前駆体組成物 cの硬化物の IRスペクトルである。
符号の説明
[0017] 1· ··ガラス製母材、 2…榭脂層成形面、 3…金型、 4…低屈折率高分散榭脂前駆体 組成物、 5· ··低屈折率高分散樹脂からなる光学部材 (第 1の榭脂層)、 6· ··高屈折率 低分散樹脂前駆体組成物、 7…金型、 8…高屈折率低分散樹脂からなる光学部材( 第 2の榭脂層)。
発明を実施するための最良の形態
[0018] 密着複層型回折光学素子では、回折光学面を挟む光学部材の光学特性が、相対 的に高屈折率低分散と低屈折率高分散であることが求められる。ここで高屈折低分 散の光学材料としては、低融点ガラスを用いることが多い。この場合、ガラスモールド 法でガラスに回折面を成形し、その上に紫外線硬化榭脂を積層することで、密着複 層型回折光学素子を作製することができる。このような用途に用いられる低融点ガラ スの一つとして、 K— PSK60 (株式会社住田光学ガラス)がある。
[0019] 波長え で m次回折効率が 100%になるように最適化した格子高 dは、高屈折率 低分散と低屈折率高分散の材料の λ における屈折率をそれぞれ η 、η とす れば、下記のように表される。
m — n ) X d =m X λ
すなわち、格子高 dは高屈折率低分散の材料と低屈折率高分散の材料との屈折率 差に反比例する。
[0020] また、 m次の回折効率 は、 a= { (nl— l) d—(n2— l) d}Z とすると下記のよ うに表される。
η = isirua mノ π Z、a m) π }'
一般に、回折光学素子は、画角依存性を小さくするためには格子高が低いことが 望ましぐフレアを小さくするためには使用波長域に渡って回折効率が高いことが望 ましい。そこで、 K— PSK60と本発明の低屈折高分散榭脂 (nd= l. 54、 nF— nC = 1. 5502- 1. 5367 = 0. 0145)とを糸且み合わせてみると、格子高力 ^11. 55 /z mと 低ぐまた回折効率は F線(波長 486. 13nm)で 95%、 d線(波長 587. 56nm)で 10 0%、 C線 (波長 656. 27nm)で 98%と、可視光域に渡り回折効率 95%以上という優 れた回折効率をもつ密着複層型回折光学素子が実現できることがわかる。
[0021] そこで本発明における第 1の榭脂の屈折率 nは 1. 54以下であり、第 1の榭脂の平 均分散 (n— n )は 0. 0145以上であるが望ましい。また、第 2の榭脂の屈折率 nが
1. 55以上、第 2の榭脂の平均分散 (n— n )が 0. 013以下でれば、従来実現でき な力 た低格子高、高回折効率の良好な光学特性を備える光学部材に全て榭脂を 用いた密着複層型回折光学素子を得ることができるためさらに望ましい。
[0022] 本発明の第 1の榭脂前駆体組成物は、 2官能含フッ素 (メタ)アタリレート、フルォレ ン構造を有する 2官能 (メタ)アタリレート、及び、光重合開始剤を含む。 2官能含フッ 素 (メタ)アタリレートの含有量を多くすれば屈折率は低くなるが、分散が小さくなる。 またフルオレン構造を有する 2官能 (メタ)アタリレートの含有量を多くすれば分散は 大きくなるが、屈折率が高くなる。そこで、密着複層型回折光学素子に好適な低屈折 率高分散の光学特性を得るため、 2官能含フッ素 (メタ)アタリレートの含有量は 10〜 80wt%、フルオレン構造を有する 2官能 (メタ)アタリレートの含有量は 10〜80wt% とすることが望ましい。
[0023] 本発明に好適な 2官能含フッ素 (メタ)アタリレートとしては、下記構造式 (化 2)で表 される化合物が挙げられる。
[0024] [化 2]
CH2 =C~C0^0~(CH2 )X ~(CH2 )X~0~C0~C=CH2
R1 R2
… (化 2)
[0025] (ここで R1及び R2は、それぞれ水素原子又はメチル基であり、 Xは 1〜2の整数、 Yは 炭素数 2〜 12のパーフルォロアルキル基又は—(CF -O-CF ) 一、 zは 1〜4の
2 2 z
整数である。 )
具体的には、 1, 4ージ (メタ)アタリロイルォキシ 2, 2, 3, 3, ーテトラフルォロブタ ン、 1, 6 ジ (メタ)アタリロイルォキシ— 3, 3, 4, 4—テトラフルォ口へキサン、 1, 6- ジ(メタ)アタリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5—ォクタフルォ口へキサン、 1, 8 —ジ(メタ)アタリロイルォキシ— 3, 3, 4, 4, 5, 5, 6, 6—ォクタフルォロオクタン、 1, 8 ジ(メタ)アタリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 ドデカフルォ 口オクタン、 1, 9 ジ (メタ)アタリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 , 8, 8—テトラデカフルォロノナン、 1, 10 ジ (メタ)アタリロイルォキシ一 2, 2, 3, 3 , 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9 へキサデカフルォロデカン、 1, 12 ジ (メタ )アタリロイルォキシ— 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11
, 11—ィコサフルォロドデカンを用いることができる。さらに、エチレンォキシド変性ビ スフエノール Fジ (メタ)アタリレート、プロピレンォキシド変性ビスフエノール Fジ (メタ) アタリレートなども、含フッ素 (メタ)アタリレートとして用いることができる。
[0026] これら 2官能含フッ素 (メタ)アタリレートは単一の化合物であってもよく、 2種以上の 化合物を併用しても構わない。
[0027] フルオレン構造を含む 2官能 (メタ)アタリレートには、例えば、下記一般式 (化 3)で 表される化合物などが挙げられる。これらフルオレン構造を含む 2官能 (メタ)アタリレ ートは単一の化合物であってもよぐ 2種以上の化合物を併用しても構わない。
[0028] [化 3]
Figure imgf000009_0001
[0029] (ここで、 R3及び R4はそれぞれ一((CH ) 0) m—又は一(CH CH (OH) CH 0) m
2 p 2 2 一であり(ただし mは 1〜3の整数、 pは 2〜4の整数)、 R5〜R1C)はそれぞれ、水素原 子、フッ素原子、炭素数 1〜6の炭化水素基、フエニル基、フッ化フエ-ル基、及び、 炭素数 1〜6の炭化水素基が置換されたフエ-ル基のいずれかであり、 RU〜R12は 水素原子又はメチル基である。 )
なお、本発明の第 1の榭脂前駆体組成物は、上記した 2つのアタリレートとは別に第 3の成分として、両者と共重合可能な 1〜4官能 (メタ)アタリレートを必要に応じて含 有させることができる。これにより、粘度調整が可能となるとともに、硬化物の透明性を 向上させることができる。 [0030] 第 3の成分として含有させる 1〜4官能 (メタ)アタリレートは、分子中になるベく硫黄 、塩素、臭素、ヨウ素、脂環構造のいずれも含まないことが望ましい。これらの原子ま たは構造を含むと分散が小さくなるからである。また、低屈折高分散の光学特性を得 るため、 1〜4官能 (メタ)アタリレートの添加量は 40%以下とすることが望ましい。
[0031] 以下、第 3の成分として含有させることができる 1〜4官能 (メタ)アタリレートの例を挙 げるが、本発明はこれに限られるものではなぐ 1種又は 2種以上の (メタ)アタリレート を適宜選択して用いることができる。
[0032] 1官能 (メタ)アタリレートとしては、例えば、メチル (メタ)アタリレート、ェチル (メタ)ァ タリレート、ブチル (メタ)アタリレート、イソデシル (メタ)アタリレート、ラウリル (メタ)ァク リレート、トリデシル (メタ)アタリレート、セチル (メタ)アタリレート、ステアリル (メタ)ァク リレー K tert—ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、 2- ヒドロキシブチル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロ キシプロピル (メタ)アタリレート、 3—メトキシブチル (メタ)アタリレート、ジェチルァミノ ェチル (メタ)アタリレート、フエノキシポリエチレングリコール (メタ)アタリレート、イソス テアリル (メタ)アタリレート、パラクミルフエノキシエチレングリコール (メタ)アタリレート ジメチルアミノエチル (メタ)アタリレート、 2—ェチルへキシルカルビトール (メタ)アタリ レート、ブトキシェチル (メタ)アタリレート、エトキシジエチレングリコール (メタ)アタリレ ート、ラウロキシポリエチレングリコール (メタ)アタリレート、ポリエチレングリコール (メタ
)アタリレート、ポリプロピレングリコール (メタ)アタリレート、アタリロキシポリエチレング リコール (メタ)アタリレート、ステアロキシポリエチレングリコール (メタ)アタリレート、ォ クトキシポリエチレングリコール ポリプロピレングリコール (メタ)アタリレート、ポリ(プ ロピレングリコール一テトラメチレングリコール)(メタ)アタリレート、ポリ(エチレングリコ 一ルーテトラメチレングリコール)(メタ)アタリレート、ポリ(エチレングリコーループロピ レンダリコール)(メタ)アタリレート、ポリプロピレングリコール (メタ)アタリレート、メトキ シポリエチレングリコール (メタ)アタリレート、メトキシポリプロピレングリコール (メタ)ァ タリレート、ベンジル (メタ)アタリレートなどが挙げられる。
[0033] 2官能 (メタ)アタリレートとしては、例えば、 2 ェチル, 2 ブチループロパンジォ ール (メタ)アタリレート、 1, 3—ブチレングリコールジ (メタ)アタリレート、 1, 6—へキ サンジオールジ(メタ)アタリレート、 1, 9ーノナンジオールジ (メタ)アタリレート、 1, 10 ーデカンジオールジ (メタ)アタリレート、ネオペンチルグリコールジ(メタ)アタリレート、 ジプロピレングリコールジ(メタ)アタリレート、グリセロールジ(メタ)アタリレート、ェチレ ンォキシド変性ネオペンチルグリコールジ (メタ)アタリレート、プロピレンォキシド変性 ネオペンチルグリコールジ (メタ)アタリレート、エチレンォキシド変性ビスフエノール A ジ(メタ)アタリレート、プロピレンォキシド変性ビスフエノール Aジ (メタ)アタリレート、ェ チレンォキシド 'プロピレンォキシド変性ビスフエノール Aジ (メタ)アタリレート、ポリプ ロピレングリコール (メタ)アタリレート、ブチルェチルプロパンジオールジ (メタ)アタリ レートが挙げられる。
[0034] 3官能 (メタ)アタリレートとしては、例えば、トリス(アタリ口キシェチル)イソシァヌレー ト、トリス(メタクリロキシェチル)イソシァヌレート、ェピクロルヒドリン変性グリセロールト リアタリレート、エチレンォキシド変性グリセロールトリアタリレート、プロピレンォキシド 変性グリセロールトリアタリレート、力プロラタトン変性トリメチロールプロパントリアタリレ ート、エチレンォキシド変性トリメチロールプロパントリアタリレート、プロピレンォキシド 変性トリメチロールプロパントリアタリレート、ペンタエリスリトールトリアタリレート、トリメ チロールプロパントリアタリレート、トリメチロールプロパントリメタタリレートが挙げられる
[0035] 4官能 (メタ)アタリレートとしては、例えば、ペンタエリスリトールテトラアタリレート、ジ ペンタエリスリトールヒドロキシペンタアタリレート、ジトリメチロールプロパンテトラアタリ レートなどが上げられる。
[0036] これらの中でも、第 3の成分として含有させるアタリレートとしては、 1官能 (メタ)ァク リレートである、フエノキシエチレングリコールアタリレート、メトキシジエチレングリコー ルメタタリレート、ベンジルメタタリレート、メトキシトリプロピレングリコールアタリレート; 2官能 (メタ)アタリレートであるネオペンチルダリコールジアタリレート、トリプロピレング リコールジアタリレートが好ましい。
[0037] 本発明の榭脂前駆体組成物に含まれる光重合開始剤はとくに限定されるものでは なぐ紫外線硬化型榭脂に通常使用されているものを適宜選択して使用することがで きる。
[0038] なお、榭脂の成形時の硬化工程は、気泡の混入を防止するために、真空中で行う ことができるが、力かる場合に成分の一部が揮発してしまうと、糸且成が不均一になって しまう。そこで、上述した榭脂前駆体組成物の分子量は全て 180以上であるのが好ま しい (ただし、光重合開始剤を除く)。
実施例 1
[0039] A.低屈折率高分散榭脂前駆体組成物の調製
(1)榭脂前駆体組成物 aの調製
2官能含フッ素アタリレートである 2, 2, 3, 3, 4, 4, 5, 5, —ォクタフルォ口へキサ ン 1, 6 ジアタリレート 57重量部と、フルオレン構造を有する 2官能アタリレートで ある 9, 9 ビス [4一(2—アタリロイルォキシエトキシ)フエ-ル]フルオレン 43重量部 と、光重合開始剤であるィルガキュア 184 (チバスペシャルティーケミカルズ) 0. 5wt %とを混合し、榭脂前駆体組成物 aを得た。
(2)榭脂前駆体組成物 b
2官能含フッ素アタリレートである 2, 2, 3, 3, 4, 4, 5, 5, —ォクタフルォ口へキサ ン 1, 6 ジアタリレート 53重量部と、フルオレン構造を有する 2官能アタリレートで ある 9, 9 ビス [4一(2—アタリロイルォキシエトキシ)フエ-ル]フルオレン 42重量部 と、 1官能アタリレートである 2 フエノキシエチレングリコールアタリレート 5重量部と、 光重合開始剤ィルガキュア 184 (チノくスペシャルティーケミカルズ) 0. 5wt%とを混 合し、榭脂前駆体組成物 bを得た。
(3)榭脂前駆体組成物 c
2官能含フッ素アタリレートである 2, 2, 3, 3, 4, 4, 5, 5, —ォクタフルォ口へキサ ン 1, 6 ジアタリレート 52重量部と、フルオレン構造を有する 2官能アタリレートで ある 9, 9 ビス [4一(2—アタリロイルォキシエトキシ)フエ-ル]フルオレン 43重量部 と、 1官能アタリレートであるメトキシポリプロピレングリコールアタリレート 5重量部と、 光重合開始剤であるィルガキュア 184 (チバスペシャルティーケミカルズ) 0. 5wt%と を混合し、榭脂前駆体組成物 cを得た。
(4)榭脂の調製 得られた榭脂前駆体組成物 a〜cのそれぞれに、紫外線を 8000mjZcm2照射して 硬化させ、その屈折率を測定したところ、表 1に示すような密着複層型回折光学素子 の低屈折率高分散光学部材として好適な光学特性が実現されたことがわ力つた。な お、硬化物は光学的に均一で、糸且成の不均—による外観不良は見られな力つた。
[0040] [表 1]
Figure imgf000013_0002
[0041] なお、榭脂前駆体組成物 aを硬化させて得られた榭脂は、つぎの構造式 (化 4)によ り表される二つの繰り返し単位を備える網目状のランダム共重合体であると考えられ る。
[0042] [化 4]
Figure imgf000013_0001
(化 4 ) [0043] また、榭脂前駆体組成物 bを硬化させて得られた榭脂は、上記構造式 (化 4)により 表される二つの繰り返し単位に加えて、下記構造式 (化 5)により表される繰り返し単 位をさらに備える網目状のランダム共重合体であると考えられる。
[0044] [化 5]
(化 5 )
Figure imgf000014_0001
[0045] 榭脂前駆体組成物 cを硬化させて得られた榭脂は、上記構造式 (化 4)により表され る二つの繰り返し単位に加えて、下記構造式 (化 6)により表される繰り返し単位をさら に備える網目状のランダム共重合体であると考えられる。
[0046] [化 6]
(化 6 )
Figure imgf000014_0002
[0047] B.高屈折率低分散榭脂前駆体組成物の調製
2官能アタリレートであるトリシクロ [5. 2. 1. 02' 6]デカンジメタノールジアタリレートと 、 2官能チオールであるジ(2—メルカプトジェチル)スルフイドとを、 2官能アタリレート : 2官能チオール = 3: 1又は 2. 5: 1のモル比で混合した。均一になったところで触媒 として 0. lwt%のトリエチルァミンをカロえて室温で更に攪拌を続けたところ、混合物 は次第に増粘した。
[0048] 4日間経過後、触媒を除くために吸着剤トミター AD700NS (富田製薬株式会社) を加え攪拌し、ろ過により吸着剤を取り除いた後、光重合開始剤としてィルガキュア 1 84 (チバスペシャルティーケミカルズ)を 0. 5wt%添加して更に攪拌し、紫外線硬化 性榭脂前駆体組成物 d, eを得た。この紫外線硬化性榭脂前駆体組成物は、チォー ルの臭気が殆どしな力つた。
[0049] 得られた榭脂前駆体組成物に、紫外線を 8000mjZcm2照射して硬化させ、その 屈折率を測定したところ、表 2に示すような密着複層型回折光学素子の高屈折率低 分散光学部材として好適な光学特性が実現されたことがわ力 た。なお、硬化物に は光学的不均質による特性劣化は見られな力つた。
[表 2]
Figure imgf000015_0003
[0051] 得られたオリゴマーは、つぎの構造式 (化 7)により表される構造を備える末端アタリ レートオリゴマーであると考えられる。なお、この生成物は、 n=0としたとき構造式 (ィ匕 7)で表される 2官能アタリレート(すなわち、未反応の原料アタリレート)を 20モル%程 度含有していた。
[0052] [化 7]
Figure imgf000015_0001
… (化 7 )
[0053] (ただし、 R13は下記構造式 (ィ匕 8)で表される、トリシクロ [5. 2. 1. 02' 6]デカン骨格を 備える炭化水素基であり、 nは 1〜3の整数である。 )
[0054] [化 8]
… (化 8 )
Figure imgf000015_0002
[0055] C.密着複層型回折光学素子の作製
上述の工程により得られた低屈折率高分散榭脂前駆体組成物として榭脂前駆体 組成物 a, b又は cを用い、高屈折率低分散榭脂前駆体組成物として榭脂前駆体組 成物 eを用いて外径 50mm、格子高 20 mの密着複層型回折光学素子を作成した 。なお、素子の格子ピッチは中心付近で 3. 5mm、外周付近で 0. 17mmとし、外周( 周辺)に近いほどピッチが小さくなるようにした。 [0056] まず、ガラス製母材 1の、榭脂層を成形する面 2にシランカップリング処理をした(図 1 (a) )。次に、図 1 (b)に示すように、処理面 2と上述した格子形状の成型面を備える 金型 3とを対向させ、その間に低屈折率高分散榭脂前駆体組成物 4を充填し、紫外 線を照射して硬化させ低屈折率高分散樹脂からなる光学部材 5とした後、離型した( 図 1 (c) )。続いて、図 1 (d)に示すように、この光学部材 5と回折格子の無い連続面の 形状の成型面を備える金型 7とを対向させ、その間に上述の工程により得られた高屈 折率低分散榭脂前駆体組成物 6を充填し、紫外線を照射して硬化させ高屈折率低 分散樹脂からなる光学部材 8とした後、離型した (図 1 (e) )。
[0057] 得られた密着複層型回折光学素子は、 Vヽずれの榭脂前駆体組成物を用いた場合 も良好な光学特性を備えて!/ヽた。
[0058] なお、本実施例にお!ヽて形成された光学部材 8を構成する榭脂は、つぎの構造式 ( 化 9)により表される繰り返し単位力 なる網目状の共重合体であると考えられる。
[0059] [化 9]
Figure imgf000016_0001
■■■ (化 9 )
[0060] D.上記実施例 1記載の低屈折率高分散榭脂前駆体組成物 a〜cおよび低屈折率高 分散光学部材 a〜cの IR ^ベクトルを測定した。
図 2は、榭脂前駆体組成物 aの IR ^ベクトルである。
図 3は、榭脂前駆体組成物 bの IRスペクトルである。
図 4は、榭脂前駆体組成物 cの IR ^ベクトルである。
図 5は、榭脂前駆体組成物 aの硬化物の IR ^ベクトルである。
図 6は、榭脂前駆体組成物 bの硬化物の IR ^ベクトルである。
図 7は、榭脂前駆体組成物 cの硬化物の IR ^ベクトルである。
産業上の利用可能性
[0061] 本発明によれば、光学的に均質な低屈折率高分散の榭脂層を備える密着複層型 回折光学素子を製造することができる。

Claims

請求の範囲
[1] 互いに密接した 2つの光学部材を備え、該光学部材の界面が回折格子を構成する 密着複層型回折光学素子であって、
上記光学部材の一方は、
2官能含フッ素アタリレート及び/又は 2官能含フッ素メタアタリレートと、フルオレン 構造を有する 2官能アタリレート及び Z又はフルオレン構造を有する 2官能メタアタリ レートと、光重合開始剤とを含む第 1の榭脂前駆体組成物の硬化物である第 1の榭 脂からなることを特徴とする密着複層型回折光学素子。
[2] 上記光学部材の他方は、
2官能チオールに過剰の 2官能アタリレートを反応させて得られる末端アタリレート オリゴマーと光重合開始剤とを含む第 2の榭脂前駆体組成物の硬化物である第 2の 榭脂からなることを特徴とする請求項 1記載の密着複層型回折光学素子。
[3] 上記第 1の榭脂の屈折率 nは 1. 54以下であり、
d
上記第 1の榭脂の平均分散 (n— n )は 0. 0145以上であることを特徴とする請求
F C
項 1又は 2記載の密着複層型回折光学素子。
[4] 上記第 2の榭脂の屈折率 nは 1. 55以上であり、
d
上記第 2の榭脂の平均分散 (n— n )は 0. 013以下であることを特徴とする請求項
F C
1〜3のいずれかに記載の密着複層型回折光学素子。
[5] 上記第 1の榭脂前駆体組成物は、
2官能含フッ素アタリレート及び 2官能含フッ素メタアタリレートの総含有量が 10〜8 Owt%であり、
フルオレン構造を有する 2官能アタリレート及びフルオレン構造を有する 2官能メタ アタリレートの総含有量が 10〜80wt%であることを特徴とする請求項 1〜4のいずれ かに記載の密着複層型回折光学素子。
[6] 上記第 1の榭脂前駆体組成物は、
上記 2官能含フッ素アタリレート及び Z又は 2官能含フッ素メタアタリレートと、上記 フルオレン構造を有する 2官能アタリレート及び Z又はフルオレン構造を有する 2官 能メタアタリレートと共重合可能な (メタ)アタリレートをさらに含んで!/、る ことを特徴とする請求項 1〜5のいずれかに記載の密着複層型回折光学素子。
[7] 2官能含フッ素アタリレート及び Z又は 2官能含フッ素メタアタリレートと、
フルオレン構造を有する 2官能アタリレート及び Z又はフルオレン構造を有する 2官 能メタアタリレートと、
光重合開始剤と
を含むことを特徴とする榭脂前駆体組成物。
[8] 2官能含フッ素アタリレート及び Z又は 2官能含フッ素メタアタリレートと、
フルオレン構造を有する 2官能アタリレート及び Z又はフルオレン構造を有する 2官 能メタアタリレートと、
光重合開始剤と
を含む榭脂前駆体組成物を硬化させて得られることを特徴とする紫外線硬化型榭脂 下記一般式 (化 la)で表される第 1の繰り返し単位と、下記一般式 (化 lb)で表され る第 2の繰り返し単位とを備える共重合体であることを特徴とするアクリル榭脂。
[化 1]
(化 1 b )
Figure imgf000019_0001
(ここで R1及び R2は、それぞれ水素原子又はメチル基であり、 R3及び R4はそれぞれ — ( (CH ) 0) m—又は—(CH CH (OH) CH 0) m—であり(ただし mは 1〜3の整 数、 pは 2〜4の整数)、 R5〜R1Gはそれぞれ、水素原子、フッ素原子、炭素数 1〜6の 炭化水素基、フ ニル基、フッ化フ ニル基、及び、炭素数 1〜6の炭化水素基が置 換されたフエ-ル基のいずれかであり、 RU〜R12は水素原子又はメチル基であり、 X は 1〜2の整数であり、 Yは炭素数 2〜 12のパーフルォロアルキル基又は一(CF—
2
O— CF ) 一である(ただし zは 1〜4の整数)。 )
2 z
[10] 硬化後の榭脂の屈折率 nが 1. 54以下であり、
d
硬化後の樹脂の平均分散 (n— n )が 0. 0145以上であることを特徴とする密着複
F C
層型回折光学素子用榭脂前駆体組成物。
[11] 屈折率 nが 1. 54以下であり、
d
平均分散 (n— n )が 0. 0145以上であることを特徴とする密着複層型回折光学素
F C
子用紫外線硬化型榭脂。
[12] 硬化後の榭脂の屈折率 nが 1. 54以下であり、
d
硬化後の樹脂の平均分散 (n— n )が 0. 0145以上であることを特徴とする密着複
F C
層型回折光学素子用榭脂前駆体組成物。
PCT/JP2005/023363 2004-12-20 2005-12-20 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物 WO2006068137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006548999A JP4760714B2 (ja) 2004-12-20 2005-12-20 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
EP05819856.5A EP1830204B1 (en) 2004-12-20 2005-12-20 Close-bonded diffractive optical element, optical material used therefor
US11/793,308 US20080094712A1 (en) 2004-12-20 2005-12-20 Close-Bonded Diffractive Optical Element, Optical Material Used Therefore, Resin Precursor And Resin Precursor Composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004367608 2004-12-20
JP2004-367608 2004-12-20
JP2005-237573 2005-08-18
JP2005237573 2005-08-18

Publications (1)

Publication Number Publication Date
WO2006068137A1 true WO2006068137A1 (ja) 2006-06-29

Family

ID=36601737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023363 WO2006068137A1 (ja) 2004-12-20 2005-12-20 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物

Country Status (4)

Country Link
US (1) US20080094712A1 (ja)
EP (1) EP1830204B1 (ja)
JP (1) JP4760714B2 (ja)
WO (1) WO2006068137A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038134A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 樹脂複合型光学素子及びその製造方法
JP2009161487A (ja) * 2008-01-08 2009-07-23 Nikon Corp かご型ポリシルセスキオキサン誘導体、それを含む光学材料用樹脂前駆体組成物、光学材料用樹脂、および光学素子、ならびにこれらの製造方法
JP2009197217A (ja) * 2008-01-21 2009-09-03 Canon Inc 樹脂組成物およびそれにより成形された光学素子、回折光学素子及び積層型回折光学素子
WO2009107610A1 (ja) * 2008-02-25 2009-09-03 株式会社ニコン 対物レンズ
WO2010098055A1 (ja) * 2009-02-25 2010-09-02 パナソニック株式会社 回折光学素子
WO2011010633A1 (ja) * 2009-07-22 2011-01-27 株式会社ニコン 樹脂前駆体組成物、及びそれを光硬化させた樹脂
WO2015141195A1 (ja) * 2014-03-20 2015-09-24 パナソニックIpマネジメント株式会社 複合光学素子及び複合光学素子用樹脂材料
JP2016126157A (ja) * 2014-12-26 2016-07-11 株式会社ニコン 回折光学素子、光学機器、および回折光学素子の光学材料設計方法
JP2018039988A (ja) * 2016-08-23 2018-03-15 三洋化成工業株式会社 光硬化性組成物
JP2018163360A (ja) * 2018-06-05 2018-10-18 株式会社ニコン 回折光学素子の光学材料設計方法および回折光学素子の製造方法
JPWO2018134871A1 (ja) * 2017-01-17 2019-11-07 株式会社ニコン (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4860500B2 (ja) * 2007-02-13 2012-01-25 株式会社 ニコンビジョン 色消しレンズ系、光学装置
EP2042528B1 (en) * 2007-09-25 2010-06-16 Sony Chemical & Information Device Corporation Curable resin composition
JP5382531B2 (ja) 2007-12-20 2014-01-08 株式会社ニコン 接眼レンズ系、光学装置
CN101999090B (zh) * 2008-04-11 2014-04-16 株式会社尼康 显微镜物镜
TWI379840B (en) * 2008-08-01 2012-12-21 Eternal Chemical Co Ltd Polymerizable composition and its uses
US8225837B2 (en) 2009-01-05 2012-07-24 The Procter & Gamble Company Apparatus for making absorbent articles having side seams
US20110165343A1 (en) 2010-01-04 2011-07-07 Essilor International (Compagnie Generale D'optique) Fresnel lens coating process
US20110164329A1 (en) * 2010-01-04 2011-07-07 Essilor International (Compagnie General D'optique) Fresnel lens coating process
JP5532456B2 (ja) 2010-05-24 2014-06-25 株式会社ニコン 望遠鏡光学系及びこれを備える光学装置
CN103298603B (zh) 2011-01-04 2017-01-18 埃西勒国际通用光学公司 制造具有结构化表面的眼科透镜的方法
JP5641461B2 (ja) 2011-04-06 2014-12-17 株式会社ニコン ズーム光学系及びこれを有する撮像装置
WO2013128856A1 (ja) 2012-02-29 2013-09-06 株式会社ニコン ズーム光学系
EP3096173B1 (en) 2014-01-15 2022-08-17 Nikon Corporation Objective lens and microscope
WO2016031249A1 (ja) 2014-08-26 2016-03-03 株式会社ニコン 光学材料用樹脂前駆体組成物、この組成物から得られる光学要素およびこの光学要素を用いて構成される回折光学素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072939A (ja) * 1992-11-16 1995-01-06 Sola Internatl Holdings Ltd 架橋性、注型用ポリマー組成物
JPH09127321A (ja) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd 回折光学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891557B2 (ja) * 1991-03-20 1999-05-17 新日本製鐵株式会社 エポキシアクリレート樹脂系成形材料
US5847877A (en) * 1994-09-12 1998-12-08 Olympus Optical Co., Ltd. Diffractive optical element
WO2002031026A2 (en) * 2000-10-10 2002-04-18 Corning Incorporated High refractive index waveguide polymers
JP4530565B2 (ja) * 2001-03-29 2010-08-25 大阪瓦斯株式会社 モノアクリレートフルオレン化合物、該化合物を含有する組成物、及びその硬化物
EP1455200A4 (en) * 2001-11-30 2005-09-28 Nikon Corp OPTICAL RESIN PRECURSOR COMPOSITION, OPTICAL USE RESIN, OPTICAL ELEMENT AND ARTICLE
US8367872B2 (en) * 2004-12-20 2013-02-05 Nikon Corporation Close-bonded diffractive optical element, optical material used therefor, resin precursor, and resin precursor composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072939A (ja) * 1992-11-16 1995-01-06 Sola Internatl Holdings Ltd 架橋性、注型用ポリマー組成物
JPH09127321A (ja) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd 回折光学素子

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009038134A1 (ja) * 2007-09-19 2011-01-06 株式会社ニコン 樹脂複合型光学素子及びその製造方法
WO2009038134A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 樹脂複合型光学素子及びその製造方法
JP2009161487A (ja) * 2008-01-08 2009-07-23 Nikon Corp かご型ポリシルセスキオキサン誘導体、それを含む光学材料用樹脂前駆体組成物、光学材料用樹脂、および光学素子、ならびにこれらの製造方法
JP2009197217A (ja) * 2008-01-21 2009-09-03 Canon Inc 樹脂組成物およびそれにより成形された光学素子、回折光学素子及び積層型回折光学素子
WO2009107610A1 (ja) * 2008-02-25 2009-09-03 株式会社ニコン 対物レンズ
JP2009198961A (ja) * 2008-02-25 2009-09-03 Nikon Corp 対物レンズ
US9030750B2 (en) 2008-02-25 2015-05-12 Nikon Corporation Objective lens
CN102317817B (zh) * 2009-02-25 2013-08-07 松下电器产业株式会社 衍射光学元件
WO2010098055A1 (ja) * 2009-02-25 2010-09-02 パナソニック株式会社 回折光学素子
CN102317817A (zh) * 2009-02-25 2012-01-11 松下电器产业株式会社 衍射光学元件
JP4547467B1 (ja) * 2009-02-25 2010-09-22 パナソニック株式会社 回折光学素子
US8736958B2 (en) 2009-02-25 2014-05-27 Panasonic Corporation Diffractive optical element
US8835524B2 (en) 2009-07-22 2014-09-16 Nikon Corporation Resin precursor composition and resin obtained by photocuring the same
JP5696663B2 (ja) * 2009-07-22 2015-04-08 株式会社ニコン 樹脂前駆体組成物、及びそれを光硬化させた樹脂
WO2011010633A1 (ja) * 2009-07-22 2011-01-27 株式会社ニコン 樹脂前駆体組成物、及びそれを光硬化させた樹脂
WO2015141195A1 (ja) * 2014-03-20 2015-09-24 パナソニックIpマネジメント株式会社 複合光学素子及び複合光学素子用樹脂材料
JP2016126157A (ja) * 2014-12-26 2016-07-11 株式会社ニコン 回折光学素子、光学機器、および回折光学素子の光学材料設計方法
JP2018039988A (ja) * 2016-08-23 2018-03-15 三洋化成工業株式会社 光硬化性組成物
JPWO2018134871A1 (ja) * 2017-01-17 2019-11-07 株式会社ニコン (メタ)アクリレート化合物、光学用樹脂添加剤、光学素子、及び光学装置
US11142636B2 (en) 2017-01-17 2021-10-12 Nikon Corporation (Meth)acrylate compound, additive for optical resin, optical element, and optical device
JP2018163360A (ja) * 2018-06-05 2018-10-18 株式会社ニコン 回折光学素子の光学材料設計方法および回折光学素子の製造方法

Also Published As

Publication number Publication date
US20080094712A1 (en) 2008-04-24
EP1830204A4 (en) 2014-10-15
JPWO2006068137A1 (ja) 2008-06-12
JP4760714B2 (ja) 2011-08-31
EP1830204B1 (en) 2018-10-17
EP1830204A1 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2006068137A1 (ja) 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
JP5136358B2 (ja) 光学用樹脂前駆体組成物、光学用樹脂、光学素子及び光学物品
TWI427318B (zh) Resin composite optical element and manufacturing method thereof
JP4872671B2 (ja) 密着複層型回折光学素子
JP5361613B2 (ja) 光学材料および光学素子
WO2016080346A1 (ja) 半導体装置及びその製造方法、並びに可撓性樹脂層形成用樹脂組成物
TWI536101B (zh) A photo-hardened nanoimprint composition, a method of forming the pattern of the composition, and a copying tool for a nanoimprint of the hardened body having the composition
CN101061148A (zh) 可固化配方、固化组合物及由其形成的制品
JP2006182011A (ja) 光硬化性樹脂成型用モールドおよび該モールドを用いる硬化物の製造方法
WO2013146346A1 (ja) 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
JP5307511B2 (ja) 被膜形成用ラジカル重合性樹脂組成物
JP2013076097A (ja) 硬化性樹脂組成物及び光学部材
JP2006152115A (ja) 硬化型樹脂組成物、耐光性光学部品および光学機器
JP5239169B2 (ja) 光学部材
JP4164493B2 (ja) 光重合性組成物およびその用途
JP5786695B2 (ja) 光導波路の製造方法
JP2007327031A (ja) 樹脂組成物及びその硬化物を用いた光学部材
WO2021145102A1 (ja) 樹脂組成物、光ファイバ及び光ファイバの製造方法
JP2006308792A (ja) 光硬化型樹脂組成物、および該光硬化型樹脂組成物により形成された光学素子、回折光学素子、光学系
JP2008075081A (ja) 樹脂組成物及びその硬化物を用いた光学部材
JP2012185477A (ja) 複合光学素子用樹脂組成物、複合光学素子、ならびに複合光学素子を備えた撮像装置および光学式記録再生装置
TWI540151B (zh) 可光聚合的組成物及光學片
JP2006342254A (ja) 光硬化型樹脂組成物の製造方法
JP2004346125A (ja) 光学用硬化型樹脂組成物および耐光性光学部品
US20100183870A1 (en) Resin composition for hybrid optical element, and hybrid optical element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548999

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11793308

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005819856

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005819856

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11793308

Country of ref document: US