WO2015141195A1 - 複合光学素子及び複合光学素子用樹脂材料 - Google Patents

複合光学素子及び複合光学素子用樹脂材料 Download PDF

Info

Publication number
WO2015141195A1
WO2015141195A1 PCT/JP2015/001378 JP2015001378W WO2015141195A1 WO 2015141195 A1 WO2015141195 A1 WO 2015141195A1 JP 2015001378 W JP2015001378 W JP 2015001378W WO 2015141195 A1 WO2015141195 A1 WO 2015141195A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
meth
acrylate
resin material
resin
Prior art date
Application number
PCT/JP2015/001378
Other languages
English (en)
French (fr)
Inventor
小林 信幸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015141195A1 publication Critical patent/WO2015141195A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate

Definitions

  • the present disclosure relates to a composite optical element.
  • Patent Document 1 discloses a thiourethane prepolymer compound obtained by reacting a polythiol compound having a trifunctional or higher functionality having a sulfide bond with a polyisocyanate compound, at least one bifunctional or higher (meth) acrylate compound, and these And a resin composition containing a radical copolymerizable compound is disclosed.
  • Patent Document 2 discloses an organic-inorganic hybrid resin composition containing at least an organic compound having a polymerizable functional group, metal oxide fine particles, and a polymerization initiator.
  • the composite optical element in the present disclosure is: A glass lens, and a resin lens laminated on the glass lens,
  • the resin lens is formed from a resin material, and the resin material is formed from at least a (meth) acrylate polymerizable compound having no sulfur atom in the molecular structure and a polymerizable compound having a sulfide bond in the molecular structure. It is characterized by.
  • the resin material for composite optical elements in the present disclosure is: It comprises at least a (meth) acrylate polymerizable compound having no sulfur atom in the molecular structure and a polymerizable compound having a sulfide bond in the molecular structure.
  • FIG. 1 is a schematic configuration diagram of a hybrid lens, which is an example of a composite optical element.
  • FIG. 2A is a schematic explanatory diagram illustrating a first manufacturing process of a hybrid lens.
  • FIG. 2B is a schematic explanatory diagram illustrating a second manufacturing process of the hybrid lens.
  • FIG. 2C is a schematic explanatory diagram illustrating a third manufacturing process of the hybrid lens.
  • Embodiment 1 will be described with reference to FIGS. 1 to 2C.
  • FIG. 1 is a schematic diagram of a hybrid lens as a composite optical element according to the present disclosure.
  • the hybrid lens 10 includes a first lens 11 and a second lens 12.
  • the hybrid lens 10 is an example of a composite optical element.
  • the second lens 12 is an example of a resin lens, and is formed from the resin material according to the first embodiment.
  • the second lens 12 is laminated on one optical surface of the first lens 11.
  • the resin material includes at least a (meth) acrylate polymerizable compound having no sulfur atom in the molecular structure (hereinafter referred to as sulfur-free (meth) acrylate) and a polymerizable compound having a sulfide bond in the molecular structure ( Hereinafter referred to as sulfide compound).
  • sulfur-free (meth) acrylates and sulfide compounds are copolymerized to have structural units derived from sulfur-free (meth) acrylates and structural units derived from sulfide compounds.
  • sulfur-free (meth) acrylate a (meth) acrylate having no sulfur atom, which is generally used in optical applications, can be used.
  • monofunctional (meth) acrylates and polyfunctional (meth) acrylates for example, monofunctional (meth) acrylates represented by the following chemical formula (2) and chemical formulas (1) and (3) At least one of polyfunctional (meth) acrylates represented by (56) to (56) can be used.
  • polyfunctional (meth) acrylates represented by (56) to (56) can be used.
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the sulfur-free (meth) acrylate is a compound having not more than one aromatic ring in the molecular structure.
  • the sulfur-free (meth) acrylate having two or more aromatic rings in the molecular structure has high blue light absorptivity having a wavelength of about 400 nm.
  • the resin material using sulfur-free (meth) acrylate having two or more aromatic rings in the molecular structure has a reduced blue light transmittance, and when the resin material is used as a resin lens, the resin material is yellowish. There is a risk of forming an image.
  • a polymer comprising only sulfur-free (meth) acrylate that is, a copolymer of sulfur-free (meth) acrylate and sulfide compound as compared with a resin material having only a structural unit derived from sulfur-free (meth) acrylate That is, a resin material having a structural unit derived from sulfur-free (meth) acrylate and a structural unit derived from a sulfide compound has an increased refractive index and a large positive anomalous dispersibility.
  • a resin material composed of a sulfur-free (meth) acrylate and a sulfide compound is imparted not only with a high refractive index and a large positive anomalous dispersibility, but also with high transparency and high heat resistance.
  • R 1 and R 2 may each independently have a substituent, and may have a divalent aliphatic hydrocarbon group not containing a sulfur atom, or a substituent.
  • examples include linear, branched, or cyclic alkylene groups, alkenylene groups, alkynylene groups, and the like that do not contain a sulfur atom.
  • the divalent aromatic hydrocarbon group which may have a substituent and does not contain a sulfur atom may have, for example, a substituent which contains an oxygen atom and does not contain a sulfur atom.
  • divalent hydrocarbon groups including a benzene ring and a naphthalene ring Specific examples include the formula ( ⁇ -1):
  • sulfide compounds represented by the following chemical formulas (57), (58), and (59) in that the effect of improving the refractive index, positive anomalous dispersibility, and heat resistance of the obtained resin material is large. It is beneficial to use In addition, it is advantageous to use a sulfide compound represented by the chemical formulas (57) and (58) having one or less aromatic rings in the molecular structure in that the effect of improving the transparency is great.
  • a resin material using a compound having one or less aromatic ring in the molecular structure as a sulfide compound has no risk of lowering the transmittance of blue light, and when the resin material is a resin lens, a yellowish image There is no fear of forming.
  • the amount of the sulfide compound is not particularly limited. According to the optical properties such as the refractive index, positive anomalous dispersion, and transparency of the target resin material, the amount of the sulfide compound with the sulfur-free (meth) acrylate to be copolymerized with the sulfide compound.
  • the ratio may be appropriately adjusted in consideration of the ratio. For example, it is beneficial that it is 70% by weight or less of the total amount of the resin material, further 50% by weight or less, and 5% by weight or more of the total amount of the resin material, more preferably It is beneficial to be greater than or equal to weight percent.
  • the resin material is obtained by copolymerizing a sulfur-free (meth) acrylate and a sulfide compound. As will be described later, this resin material is cured, and the second lens is formed on the first lens 11 shown in FIG. Since the hybrid lens 10 is formed by laminating 12, it is beneficial that the resin material contains a polymerization initiator.
  • the type of the polymerization initiator is not particularly limited, and may be appropriately selected according to the type of sulfur-free (meth) acrylate and sulfide compound to be used.
  • a well-known radical photopolymerization initiator such as phosphine oxide can be used.
  • phosphine oxide it is advantageous to use a hydroxyketone compound having a weight average molecular weight of 1000 to 2000 from the viewpoint that a higher refractive index and a large positive anomalous dispersion can be imparted to the resin material.
  • the amount of the polymerization initiator is not particularly limited, and for example, it is beneficial to be 1 to 5% by weight of the total amount of the resin material.
  • a copolymer can be obtained by copolymerizing at least a sulfur-free (meth) acrylate constituting the resin material and a sulfide compound, but the method is not particularly limited. For example, after adding a radical polymerization initiator, for example, to a monomer mixture composed of at least sulfur-free (meth) acrylate and a sulfide compound and sufficiently stirring to prepare a homogeneous monomer mixture, ultraviolet rays, visible light, etc. The polymerization reaction may be carried out by appropriately adjusting the temperature and time.
  • the molecular weight of the copolymer is not only provided with a high refractive index and a large positive anomalous dispersibility, but also with sufficient transparency and high heat resistance. Although there is no particular limitation, it is beneficial that the weight average molecular weight is about 200 to 1,000.
  • the anomalous dispersion ⁇ PgF is a deviation between a point on the standard line of normal dispersion glass corresponding to the Abbe number ⁇ d in the d-line (wavelength 588 nm) of each material and the partial dispersion ratio PgF of the material.
  • the partial dispersion ratio PgF is defined by the following formula (b).
  • ng the refractive index of the material at the g-line (wavelength 436 nm)
  • nF refractive index of material at F-line (wavelength 486 nm)
  • nC Refractive index at the C-line (wavelength 656 nm) of the material.
  • a prism coupler manufactured by Metricon, MODEL 2010
  • the resin composition constituting the resin material is an ultraviolet curable acrylic resin composition.
  • FIGS. 2A to 2C are schematic explanatory diagrams illustrating a manufacturing process of a hybrid lens according to the present disclosure.
  • the first lens 11 is molded.
  • the 1st lens 11 which is an example of a glass lens
  • the 1st lens 11 is shape
  • the resin material 23 is discharged onto the molding surface of the molding die 21 using the dispenser 20.
  • the first lens 11 is placed from above the resin material 23 and spread until the resin material 23 has a predetermined thickness. Then, the mold 21 is placed on a turntable (not shown) and rotated.
  • the resin material 23 is cured on the first lens 11 that is a glass lens by irradiating ultraviolet rays from above the first lens 11 with the light source 22 and curing the resin material 23.
  • a hybrid lens 10 that is a composite optical element in which two lenses 12 are laminated is obtained.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • Example 1 The results of each Example and Comparative Example are shown in Table 1 below.
  • the optical characteristics of each resin lens sample were measured using a prism coupler (manufactured by Metricon, MODEL 2010).
  • nd is the refractive index at the d-line
  • the transmittance (% T) is the transmittance of light having a wavelength of 400 nm.
  • the resulting monomer mixture (manufactured by Ushio (Ltd.), SP-9) UV irradiation apparatus by UV light (80mW / cm 2 ⁇ 90sec) was irradiated with a copolymer obtained by promoting the polymerization reaction A resin material was cured and further heated at about 80 ° C. for about 1 hour to prepare a resin lens sample (thickness: 50 ⁇ m).
  • resin lens samples were prepared in the same procedure.
  • a biconvex glass lens (center thickness of about 5 mm) is placed from above the resin material, and the resin material is spread while maintaining a predetermined thickness.
  • the mold was placed on a turntable and rotated. Then, UV resin (80 mW / cm 2 .90 sec) is irradiated from above the glass lens with a UV irradiation device to cure the resin material, and a meniscus resin lens sample (center) is formed on the biconvex glass lens.
  • a hybrid lens having a thickness of about 0.1 mm was obtained. In the following Examples 2 to 7 and Comparative Example 1, hybrid lenses were manufactured in the same procedure.
  • the resin lens sample of Example 1 has a high refractive index exceeding 1.62, exhibits a large positive anomalous dispersion satisfying the condition (a), and has a transmittance of 86. More than%, high transparency and high heat resistance. Therefore, the hybrid lens of Example 1 has large positive anomalous dispersion, high transparency, and high heat resistance.
  • Example 2 In Example 1, the amount of sulfur-free compound A was changed to 0.5638 g, the amount of sulfide compound A was changed to 0.2409 g, and the amount of photopolymerization initiator a was changed to 0.0249 g, respectively.
  • a resin lens sample and a hybrid lens of Example 2 were produced in the same manner as described above.
  • the resin lens sample of Example 2 has a high refractive index exceeding 1.64, exhibits a large positive anomalous dispersion satisfying the condition (a), and has a transmittance of 86. More than%, high transparency and high heat resistance. Therefore, the hybrid lens of Example 2 has large positive anomalous dispersion, high transparency, and high heat resistance.
  • Example 1 is the same as Example 1 except that the amount of the sulfur-free compound A was changed to 0.4078 g, the amount of the sulfide compound A was changed to 0.4078 g, and the amount of the photopolymerization initiator a was changed to 0.0265 g. In the same manner, a resin lens sample and a hybrid lens of Example 3 were produced.
  • Example 1 is the same as Example 1 except that the amount of sulfur-free compound A was changed to 0.2605 g, the amount of sulfide compound A was changed to 0.6052 g, and the amount of photopolymerization initiator a was changed to 0.0267 g. In the same manner, a resin lens sample and a hybrid lens of Example 4 were produced.
  • Example 5 In Example 2, the amount of the sulfur-free compound A was 0.5635 g, the sulfide compound A 0.2409 g was converted to 0.2408 g of a compound represented by the chemical formula (58) (hereinafter referred to as sulfide compound B), and a photopolymerization initiator.
  • a resin lens sample and a hybrid lens of Example 5 were produced in the same manner as in Example 2 except that the amount of a was changed to 0.0248 g.
  • the resin lens sample of Example 5 has a high refractive index exceeding 1.63, exhibits a large positive anomalous dispersion satisfying the condition (a), and a transmittance of 86. More than%, high transparency and high heat resistance. Therefore, the hybrid lens of Example 5 has large positive anomalous dispersion, high transparency, and high heat resistance.
  • Example 6 In Example 3, the amount of the sulfur-free compound A was 0.4075 g, the sulfide compound A 0.4078 g was converted to 0.4076 g of a compound represented by the chemical formula (59) (hereinafter referred to as sulfide compound C), and a photopolymerization initiator.
  • a resin lens sample and a hybrid lens of Example 6 were produced in the same manner as in Example 3 except that the amount of a was changed to 0.0264 g.
  • the resin lens sample of Example 6 has a high refractive index exceeding 1.67, exhibits large positive anomalous dispersion satisfying the condition (a), and has a transmittance of 80. More than%, high transparency and high heat resistance. Therefore, the hybrid lens of Example 6 has large positive anomalous dispersion, high transparency, and high heat resistance.
  • Example 7 In Example 3, 0.0265 g of photopolymerization initiator a was added to oligo [2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone] (weight average molecular weight 1500, hereinafter, photopolymerization initiator. A resin lens sample and a hybrid lens of Example 7 were produced in the same manner as in Example 3 except that it was changed to 0.0265 g).
  • the resin lens sample of Example 7 has a high refractive index exceeding 1.66, exhibits a large positive anomalous dispersion satisfying the condition (a), and a transmittance of 84. More than%, high transparency and high heat resistance. Therefore, the hybrid lens of Example 7 has large positive anomalous dispersion, high transparency, and high heat resistance.
  • the sample and hybrid lens of Example 7 were obtained using the high molecular weight photopolymerization initiator b, the sample and the hybrid lens of Example 7 had a higher refractive index than the sample and hybrid lens of Example 3, It shows a large positive anomalous dispersion.
  • Example 1 In Example 1, the amount of the sulfur-free compound A was changed to 1.0000 g, the amount of the photopolymerization initiator a was changed to 0.0310 g, and the sulfide compound A was not used. Thus, a resin lens sample and a hybrid lens of Comparative Example 1 were produced.
  • the resin lens samples of Examples 1 to 7 are the same as those of the resin lens of Comparative Example 1.
  • the refractive index is considerably higher than that of the resin lens sample of Comparative Example 1 while substantially maintaining the high transmittance of the sample.
  • the positive anomalous dispersibility is also considerably larger than that of the resin lens sample of Comparative Example 1. Therefore, unlike the resin lens sample of Comparative Example 1, the hybrid lenses of Examples 1 to 6 using a sulfide compound have high refractive index, large positive anomalous dispersion, high transparency, and high heat resistance. I understood.
  • the hybrid lenses of Examples 1 to 3 and 5 were obtained by using a sulfide compound having one or less aromatic rings in the molecular structure and the amount of the sulfide compound being 50% by weight or less of the total amount of the resin material. Therefore, the transmittance of light having a wavelength of 400 nm was extremely high exceeding 85%, and it was found that the hybrid lenses of Examples 1 to 3 and 5 had higher transparency.
  • the present disclosure can be suitably used for optical elements such as lenses and prisms.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 ガラスレンズとガラスレンズ上に積層された樹脂レンズとを備え、樹脂レンズは、樹脂材料から形成されてなり、樹脂材料は、少なくとも、分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物と分子構造中にスルフィド結合を有する重合性化合物とからなる複合光学素子。

Description

複合光学素子及び複合光学素子用樹脂材料
 本開示は、複合光学素子に関する。
 光学素子は、透明性以外にも種々の光学特性が求められ、近年特に、適度の屈折率及びアッベ数や、耐熱性を光学材料に付与し得る樹脂組成物の開発が進められている。
 特許文献1には、スルフィド結合を有する3官能以上のポリチオール化合物とポリイソシアネート化合物とを反応させて得られたチオウレタンプレポリマー化合物、少なくとも1種の2官能以上の(メタ)アクリレート化合物、及びこれらとラジカル共重合可能な化合物を含有する樹脂組成物が開示されている。
 特許文献2には、重合性官能基を有する有機化合物、金属酸化物微粒子、及び重合開始剤を少なくとも含有する有機無機ハイブリッド樹脂組成物が開示されている。
日本特許第3830227号公報 日本特許公開2012-162595号公報
 本開示における複合光学素子は、
ガラスレンズと、該ガラスレンズ上に積層された樹脂レンズとを備え、
樹脂レンズは樹脂材料から形成されてなり、樹脂材料は、少なくとも分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物と分子構造中にスルフィド結合を有する重合性化合物とから形成されてなる
ことを特徴とする。
 本開示における複合光学素子用樹脂材料は、
 少なくとも分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物と、分子構造中にスルフィド結合を有する重合性化合物とからなる
ことを特徴とする。
図1は、複合光学素子の一例である、ハイブリッドレンズの概略構成図である。 図2Aは、ハイブリッドレンズの第一の製造工程を示す概略説明図である。 図2Bは、ハイブリッドレンズの第二の製造工程を示す概略説明図である。 図2Cは、ハイブリッドレンズの第三の製造工程を示す概略説明図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 以下、図1から図2Cを用いて実施の形態1について説明する。
 [1.ハイブリッドレンズ]
 図1は、本開示に係る複合光学素子としてのハイブリッドレンズの該略構成図である。ハイブリッドレンズ10は、第1レンズ11と第2レンズ12とで構成されている。ハイブリッドレンズ10は、複合光学素子の一例である。
 第1レンズ11は、ガラスレンズの一例であり、ガラス材料から形成されている。第1レンズ11は、両凸形状のレンズである。
 第2レンズ12は、樹脂レンズの一例であり、実施の形態1に係る樹脂材料から形成されている。第2レンズ12は、第1レンズ11の一方の光学面上に積層されている。
 [2.樹脂材料]
 樹脂材料は、少なくとも、分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物(以下、硫黄非含有(メタ)アクリレートという)と、分子構造中にスルフィド結合を有する重合性化合物(以下、スルフィド化合物という)とで構成される。これら硫黄非含有(メタ)アクリレートとスルフィド化合物とが共重合し、硫黄非含有(メタ)アクリレート由来の構造単位と、スルフィド化合物由来の構造単位とを有する。
 [3.硫黄非含有(メタ)アクリレート]
 硫黄非含有(メタ)アクリレートとしては、光学用途において一般的に用いられている、硫黄原子を有さない(メタ)アクリレートを使用することができる。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ハロゲン置換フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、α-ナフチル(メタ)アクリレート、β-ナフチル(メタ)アクリレート、ジシクロペンチルオキシエチルアクリレート等の単官能(メタ)アクリレート類;エチレングリコールジメタクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、水添ジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート等の多官能(メタ)アクリレート類が挙げられ、これらは単独で又は2種以上を同時に用いることができる。
 また、単官能(メタ)アクリレート類及び多官能(メタ)アクリレート類の他にも、例えば、以下の化学式(2)で表される単官能(メタ)アクリレートや、化学式(1)及び(3)~(56)で表される多官能(メタ)アクリレートの少なくとも1種を用いることができる。なお、本開示において「(メタ)アクリ」は「アクリ」又は「メタクリ」を意味する。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 硫黄非含有(メタ)アクリレートは、分子構造中に芳香環を1つ以下有する化合物であることが有益である。分子構造中に芳香環を2つ以上有する硫黄非含有(メタ)アクリレートは、400nm程度の波長を有する青色光線の吸収性が高い。該分子構造中に芳香環を2つ以上有する硫黄非含有(メタ)アクリレートを用いた樹脂材料は、青色光線の透過率が低下し、該樹脂材料を樹脂レンズとした場合には、黄色を帯びた像が形成される恐れがある。
 [3.スルフィド化合物]
 硫黄非含有(メタ)アクリレートのみからなる重合体、すなわち硫黄非含有(メタ)アクリレート由来の構造単位のみを有する樹脂材料と比較して、硫黄非含有(メタ)アクリレートとスルフィド化合物との共重合体、すなわち硫黄非含有(メタ)アクリレート由来の構造単位とスルフィド化合物由来の構造単位とを有する樹脂材料は、屈折率が上昇し、正の異常分散性が大きくなる。また、硫黄非含有(メタ)アクリレートとスルフィド化合物とで構成される樹脂材料は、高屈折率及び大きな正の異常分散性だけでなく、高透明性及び高耐熱性も併せて付与される。
 スルフィド化合物には特に限定がなく、硫黄非含有(メタ)アクリレートとの共重合が可能であればよいが、例えば、一般式(α):
Figure JPOXMLDOC01-appb-C000010
 (式中、R及びRは、それぞれ独立して、置換基を有していてもよく、硫黄原子を含まない2価の脂肪族炭化水素基、又は置換基を有していてもよく、硫黄原子を含まない2価の芳香族炭化水素基、又は単結合を示し、R及びRは、それぞれ独立して、水素原子又はメチル基を示す)で表されるスルフィド化合物が挙げられる。
 R及びRを示す、置換基を有していてもよく、硫黄原子を含まない2価の脂肪族炭化水素基としては、例えば、酸素原子を含む置換基を有していてもよく、硫黄原子を含まない、直鎖状、分枝鎖状又は環状の、アルキレン基、アルケニレン基、アルキニレン基等が挙げられる。また、置換基を有していてもよく、硫黄原子を含まない2価の芳香族炭化水素基としては、例えば、酸素原子を含む置換基を有していてもよく、硫黄原子を含まない、ベンゼン環、ナフタレン環等を含む2価の炭化水素基等が挙げられ、具体的には、例えば、式(α-1):
Figure JPOXMLDOC01-appb-C000011
又は式(α-2):
Figure JPOXMLDOC01-appb-C000012
で表される2価の基が挙げられる。
 これらの中では、得られる樹脂材料による屈折率、正の異常分散性及び耐熱性の向上効果が大きいという点で、以下の化学式(57)、(58)及び(59)で表されるスルフィド化合物を用いることが有益である。加えて透明性の向上効果も大きいという点で、化学式(57)及び(58)で表される、分子構造中に芳香環を1つ以下有するスルフィド化合物を用いることが有益である。スルフィド化合物として分子構造中に芳香環を1つ以下有する化合物を用いた樹脂材料は、青色光線の透過率が低下する恐れがなく、該樹脂材料を樹脂レンズとした場合に、黄色を帯びた像が形成される恐れもない。
Figure JPOXMLDOC01-appb-C000013
 スルフィド化合物の量には特に限定がなく、目的とする樹脂材料の屈折率、正の異常分散性、透明性等の光学特性に応じ、スルフィド化合物と共重合させる硫黄非含有(メタ)アクリレートとの比率を考慮して適宜調整すればよいが、例えば、樹脂材料全量の70重量%以下、さらには50重量%以下であることが有益であり、樹脂材料全量の5重量%以上、さらに好ましくは8重量%以上であることが有益である。
 [4.重合開始剤]
 樹脂材料は、硫黄非含有(メタ)アクリレートとスルフィド化合物とを共重合させてなるものであり、後述するように、この樹脂材料を硬化させ、図2に示す第1レンズ11上に第2レンズ12を積層してハイブリッドレンズ10を形成するので、樹脂材料には重合開始剤が含有されることが有益である。
 重合開始剤の種類には特に限定がなく、用いる硫黄非含有(メタ)アクリレート及びスルフィド化合物の種類に応じて適宜選択すればよいが、例えば、アセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサン系、アシルフォスフィンオキサイド系等の公知の光ラジカル重合開始剤を用いることができる。これらの中でも、樹脂材料へのより高屈折率及び大きな正の異常分散性の付与が可能であるという点から、重量平均分子量が1000~2000のヒドロキシケトン化合物を用いることが有益である。重合開始剤の量にも特に限定がなく、例えば、樹脂材料全量の1~5重量%であることが有益である。
 [5.共重合体]
 樹脂材料を少なくとも構成する硫黄非含有(メタ)アクリレートとスルフィド化合物とを共重合させることにより、共重合体を得ることができるが、その方法には特に限定がない。例えば、少なくとも硫黄非含有(メタ)アクリレートとスルフィド化合物とからなるモノマー混合物に、例えば光ラジカル重合開始剤を添加し、充分に撹拌して均質なモノマー混合液を調製した後、紫外線、可視光線等を照射し、適宜温度、時間を調整して重合反応させればよい。
 共重合体の分子量は、樹脂材料に、高屈折率及び大きな正の異常分散性が付与されるだけでなく、高透明性及び高耐熱性も併せて付与される効果が充分に発現される限り特に限定はないが、重量平均分子量が200~1000程度であることが有益である。
 [6.異常分散性]
 異常分散性ΔPgFは、個々の材料のd線(波長588nm)におけるアッベ数νdに対応する正常分散ガラスの標準線上の点とその材料の部分分散比PgFとの偏差である。部分分散比PgFは、以下の式(b)にて定義される。
  PgF=(ng-nF)/(nF-nC) ・・・(b)
ここで、
 ng:材料のg線(波長436nm)における屈折率、
 nF:材料のF線(波長486nm)における屈折率、
 nC:材料のC線(波長656nm)における屈折率
である。
 本開示における樹脂レンズ、すなわち第2レンズ12は、以下の条件(a)を満足することが有益である。
  ΔPgF>0.04 ・・・(a)
ここで、
 ΔPgF:異常分散性
である。
 なお、屈折率、アッベ数、ΔPgFの測定には、プリズムカップラー(Metricon社製、MODEL 2010)を用いることができる。
 [7.製造方法]
 ハイブリッドレンズ10の製造方法について、図面を用いて説明する。ここでは、樹脂材料を構成する樹脂組成物を紫外線硬化性アクリル系樹脂組成物とする。
 図2Aから図2Cは、本開示におけるハイブリッドレンズの製造工程を示す概略説明図である。まず、第1レンズ11を成形する。ガラスレンズの一例である第1レンズ11には特に限定がなく、第1レンズ11は、射出成形、プレス成形等の公知の製造方法を用いて成形される。
 図2Aに示すように、ディスペンサー20を用い、成形型21の成形面に樹脂材料23を吐出する。
 次に、図2Bに示すように、樹脂材料23の上方から第1レンズ11を載せ、樹脂材料23が所定の厚みになるまで押し広げる。そして、成形型21を回転台(図示せず)に載せて回転させる。
 そして、図2Cに示すように、第1レンズ11の上方から光源22にて紫外線を照射し、樹脂材料23を硬化させることにより、ガラスレンズである第1レンズ11上に、樹脂レンズである第2レンズ12が積層された、複合光学素子であるハイブリッドレンズ10が得られる。
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下に、本実施の形態に係るハイブリッドレンズの実施例と、比較例とを示す。なお、本開示はこれらの実施例に限定されるものではない。
 各実施例及び比較例の結果は、後の表1に示す。各樹脂レンズのサンプルの光学特性は、プリズムカップラー(Metricon社製、MODEL 2010)を用いて測定した。表1中、ndはd線における屈折率であり、透過率(%T)は波長400nmの光線の透過率である。
 <実施例1>
 化学式(1)で表される化合物(以下、硫黄非含有化合物Aという)0.7249gと、化学式(57)で表される化合物(以下、スルフィド化合物Aという)0.0803gとに、重合開始剤としてIrgacure184(BASF社製、1-ヒドロキシシクロヘキシルフェニルケトン、重量平均分子量204、以下、光重合開始剤aという)0.0250gを添加し、これらを充分に撹拌して均質なモノマー混合液である樹脂材料を調製した。このモノマー混合液に、UV照射装置(ウシオ電機(株)製、SP-9)にてUV光(80mW/cm・90sec)を照射し、重合反応を促進して得られた共重合体である樹脂材料を硬化させ、さらに約80℃で約1時間加熱して樹脂レンズのサンプル(厚み50μm)を作製した。なお、以下の実施例2~7及び比較例1においても、同じ手順で樹脂レンズのサンプルを作製した。
 次に、図2Aから図2Cに示すとおり、得られた樹脂レンズのサンプルを用いてハイブリッドレンズを作成した。
 ディスペンサーを用いて、成形型の成形面に樹脂材料を吐出した後、樹脂材料の上方から両凸形状のガラスレンズ(中心厚み約5mm)を載せ、樹脂材料が所定の厚みになるままで押し広げ、成形型を回転台に載せて回転させた。そして、ガラスレンズの上方からUV照射装置にてUV光(80mW/cm・90sec)を照射して樹脂材料を硬化させ、両凸形状のガラスレンズ上に、メニスカス形状の樹脂レンズのサンプル(中心厚み約0.1mm)が積層されたハイブリッドレンズを得た。なお、以下の実施例2~7及び比較例1においても、同じ手順でハイブリッドレンズを作製した。
 表1に示すように、実施例1の樹脂レンズのサンプルは、1.62を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が86%を超えて、高透明性及び高耐熱性である。したがって、実施例1のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例2>
 実施例1において、硫黄非含有化合物Aの量を0.5638gに、スルフィド化合物Aの量を0.2409gに、光重合開始剤aの量を0.0249gに各々変更したほかは、実施例1と同様にして実施例2の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例2の樹脂レンズのサンプルは、1.64を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が86%を超えて、高透明性及び高耐熱性である。したがって、実施例2のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例3>
 実施例1において、硫黄非含有化合物Aの量を0.4078gに、スルフィド化合物Aの量を0.4078gに、光重合開始剤aの量を0.0265gに各々変更したほかは、実施例1と同様にして実施例3の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例3の樹脂レンズのサンプルは、1.66を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が85%を超えて、高透明性及び高耐熱性である。したがって、実施例3のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例4>
 実施例1において、硫黄非含有化合物Aの量を0.2605gに、スルフィド化合物Aの量を0.6052gに、光重合開始剤aの量を0.0267gに各々変更したほかは、実施例1と同様にして実施例4の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例4の樹脂レンズのサンプルは、1.68を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が83%を超えて、高透明性及び高耐熱性である。したがって、実施例4のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例5>
 実施例2において、硫黄非含有化合物Aの量を0.5635gに、スルフィド化合物A0.2409gを化学式(58)で表される化合物(以下、スルフィド化合物Bという)0.2408gに、光重合開始剤aの量を0.0248gに各々変更したほかは、実施例2と同様にして実施例5の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例5の樹脂レンズのサンプルは、1.63を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が86%を超えて、高透明性及び高耐熱性である。したがって、実施例5のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例6>
 実施例3において、硫黄非含有化合物Aの量を0.4075gに、スルフィド化合物A0.4078gを化学式(59)で表される化合物(以下、スルフィド化合物Cという)0.4076gに、光重合開始剤aの量を0.0264gに各々変更したほかは、実施例3と同様にして実施例6の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例6の樹脂レンズのサンプルは、1.67を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が80%を超えて、高透明性及び高耐熱性である。したがって、実施例6のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 <実施例7>
 実施例3において、光重合開始剤a0.0265gをオリゴ[2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン](重量平均分子量1500、以下、光重合開始剤bという)0.0265gに変更したほかは、実施例3と同様にして実施例7の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、実施例7の樹脂レンズのサンプルは、1.66を超える高屈折率を有し、条件(a)を満足する、大きな正の異常分散性を示し、透過率が84%を超えて、高透明性及び高耐熱性である。したがって、実施例7のハイブリッドレンズは、大きな正の異常分散性および高透明性、高耐熱性を有するものである。
 なお、実施例7のサンプル及びハイブリッドレンズは、高分子量の光重合開始剤bを用いて得られたものであるので、実施例3のサンプル及びハイブリッドレンズよりもさらに、高屈折率を有し、大きな正の異常分散性を示している。
 <比較例1>
 実施例1において、硫黄非含有化合物Aの量を1.0000gに、光重合開始剤aの量を0.0310gに各々変更し、スルフィド化合物Aを使用しなかったほかは、実施例1と同様にして比較例1の樹脂レンズのサンプル及びハイブリッドレンズを作製した。
 表1に示すように、比較例1の樹脂レンズのサンプルと実施例1~7の樹脂レンズのサンプルとを比較すると、実施例1~7の樹脂レンズのサンプルは、比較例1の樹脂レンズのサンプルの高い透過率をほぼ維持しながら、屈折率が、比較例1の樹脂レンズのサンプルよりもかなり高くなっている。しかも正の異常分散性も、比較例1の樹脂レンズのサンプルよりもかなり大きくなっている。したがって、比較例1の樹脂レンズのサンプルとは異なり、スルフィド化合物を用いた実施例1~6のハイブリッドレンズは、高屈折率、大きな正の異常分散性、高透明性及び高耐熱性を有することが分かった。
 特に実施例1~3及び5のハイブリッドレンズは、分子構造中に芳香環を1つ以下有するスルフィド化合物を用い、かつ該スルフィド化合物の量を樹脂材料全量の50重量%以下として得られたものであるので、波長400nmの光線の透過率が85%を超えて極めて高く、実施例1~3及び5のハイブリッドレンズは、より高透明性を有することが分かった。
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、レンズ、プリズム等の光学素子に好適に用いることができる。
10 ハイブリッドレンズ
11 第1レンズ
12 第2レンズ
20 ディスペンサー
21 成形型
22 光源
23 樹脂材料

Claims (5)

  1.  ガラスレンズと、該ガラスレンズ上に積層された樹脂レンズとを備え、
     前記樹脂レンズは、樹脂材料から形成されてなり、
     前記樹脂材料は、少なくとも、分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物と、分子構造中にスルフィド結合を有する重合性化合物とからなる、
    複合光学素子。
  2.  前記分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物は、分子構造中に芳香環を1つ以下有する化合物である、
    請求項1に記載の複合光学素子。
  3.  重合開始剤が含有されており、
     前記重合開始剤は、重量平均分子量が1000~2000のヒドロキシケトン化合物である、
    請求項1に記載の複合光学素子。
  4.  前記樹脂レンズは、以下の条件(a)を満足する、請求項1に記載の複合光学素子:
      ΔPgF>0.04 ・・・(a)
    ここで、
     ΔPgF:異常分散性
    である。
  5.  少なくとも、
     分子構造中に硫黄原子を有さない(メタ)アクリレート系重合性化合物と、分子構造中にスルフィド結合を有する重合性化合物とからなる、
    複合光学素子用樹脂材料。
PCT/JP2015/001378 2014-03-20 2015-03-12 複合光学素子及び複合光学素子用樹脂材料 WO2015141195A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058511 2014-03-20
JP2014058511A JP2017082020A (ja) 2014-03-20 2014-03-20 光学用樹脂組成物、光学材料及び複合光学素子

Publications (1)

Publication Number Publication Date
WO2015141195A1 true WO2015141195A1 (ja) 2015-09-24

Family

ID=54144179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001378 WO2015141195A1 (ja) 2014-03-20 2015-03-12 複合光学素子及び複合光学素子用樹脂材料

Country Status (2)

Country Link
JP (1) JP2017082020A (ja)
WO (1) WO2015141195A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253809A (ja) * 1988-08-18 1990-02-22 Tokuyama Soda Co Ltd 有機ガラス
JPH03284661A (ja) * 1990-03-30 1991-12-16 Tokuyama Soda Co Ltd ビニルスルフイド化合物
JPH05271315A (ja) * 1992-03-24 1993-10-19 Tokuyama Soda Co Ltd 重合性組成物
JP2000344857A (ja) * 1999-06-07 2000-12-12 Hoya Corp 光学製品
WO2006068137A1 (ja) * 2004-12-20 2006-06-29 Nikon Corporation 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
WO2007119566A1 (ja) * 2006-03-28 2007-10-25 Dai Nippon Printing Co., Ltd. 低屈折率層を備えてなる光学積層体
WO2009038134A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 樹脂複合型光学素子及びその製造方法
JP2009227724A (ja) * 2008-03-19 2009-10-08 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2009249542A (ja) * 2008-04-08 2009-10-29 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2009256462A (ja) * 2008-04-16 2009-11-05 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2011001395A (ja) * 2009-06-16 2011-01-06 Olympus Corp 複合光学素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253809A (ja) * 1988-08-18 1990-02-22 Tokuyama Soda Co Ltd 有機ガラス
JPH03284661A (ja) * 1990-03-30 1991-12-16 Tokuyama Soda Co Ltd ビニルスルフイド化合物
JPH05271315A (ja) * 1992-03-24 1993-10-19 Tokuyama Soda Co Ltd 重合性組成物
JP2000344857A (ja) * 1999-06-07 2000-12-12 Hoya Corp 光学製品
WO2006068137A1 (ja) * 2004-12-20 2006-06-29 Nikon Corporation 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
WO2007119566A1 (ja) * 2006-03-28 2007-10-25 Dai Nippon Printing Co., Ltd. 低屈折率層を備えてなる光学積層体
WO2009038134A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 樹脂複合型光学素子及びその製造方法
JP2009227724A (ja) * 2008-03-19 2009-10-08 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2009249542A (ja) * 2008-04-08 2009-10-29 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2009256462A (ja) * 2008-04-16 2009-11-05 Olympus Corp 光学用の材料組成物およびそれを用いた光学素子
JP2011001395A (ja) * 2009-06-16 2011-01-06 Olympus Corp 複合光学素子

Also Published As

Publication number Publication date
JP2017082020A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
KR101267187B1 (ko) 광학 재료 및 광학 소자
EP2189823B1 (en) Resin composite-type optical element and process for producing the resin composite-type optical element
TWI488910B (zh) 光硬化性樹脂組成物、使用其的光學膜的製造方法及含有其的光學膜
JP4767836B2 (ja) 光学用樹脂組成物およびそれを用いた光学素子
JPWO2006068137A1 (ja) 密着複層型回折光学素子、それに用いられる光学材料、樹脂前駆体及び樹脂前駆体組成物
JP2009120832A (ja) 重合性組成物、硬化物、および光学部材
CN108780166A (zh) 复合衍射光学元件用的高折射率低色散树脂用组合物、和使用其的复合衍射光学元件
CN106414525B (zh) 光固化性树脂组合物
WO2012057071A1 (ja) 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
CN108368211B (zh) 固化性组合物及固化物
CN111183164B (zh) 固化性组合物及固化物
JP2010037470A (ja) 光学用の材料組成物およびそれを用いた光学素子
KR20140050296A (ko) 실세스퀴옥산을 포함하는 조성물과 그 제조 방법, 및 이를 이용한 하드 코팅막과 그 제조 방법
JP2006152115A (ja) 硬化型樹脂組成物、耐光性光学部品および光学機器
JPWO2018020732A1 (ja) 樹脂組成物及びそれを用いた立体造形物
JPWO2016129350A1 (ja) ウレタン(メタ)アクリレート樹脂、硬化性樹脂組成物、その硬化物、及びプラスチックレンズ
US20100314591A1 (en) Curable resins and articles made therefrom
JP2009256462A (ja) 光学用の材料組成物およびそれを用いた光学素子
WO2015141195A1 (ja) 複合光学素子及び複合光学素子用樹脂材料
JP5698566B2 (ja) シリコーン樹脂組成物及びその成形体
JP2009102539A (ja) 重合性樹脂組成物およびそれを用いた光学素子
JPWO2019073836A1 (ja) 光硬化性組成物、積層体及びその製法、ディスプレイ用導光板
JP5573329B2 (ja) 感光性樹脂組成物、感光性樹脂ワニス、感光性樹脂フィルム、感光性樹脂硬化物、及び可視光導光路
JP2012185477A (ja) 複合光学素子用樹脂組成物、複合光学素子、ならびに複合光学素子を備えた撮像装置および光学式記録再生装置
JP4293485B2 (ja) 高屈折率光硬化性樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP