WO2006064772A1 - プラズマドーピング方法 - Google Patents

プラズマドーピング方法 Download PDF

Info

Publication number
WO2006064772A1
WO2006064772A1 PCT/JP2005/022799 JP2005022799W WO2006064772A1 WO 2006064772 A1 WO2006064772 A1 WO 2006064772A1 JP 2005022799 W JP2005022799 W JP 2005022799W WO 2006064772 A1 WO2006064772 A1 WO 2006064772A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
doping method
plasma doping
gas
time
Prior art date
Application number
PCT/JP2005/022799
Other languages
English (en)
French (fr)
Inventor
Yuichiro Sasaki
Katsumi Okashita
Hiroyuki Ito
Bunji Mizuno
Tomohiro Okumura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE602005025015T priority Critical patent/DE602005025015D1/de
Priority to KR1020077013165A priority patent/KR101123788B1/ko
Priority to JP2006548833A priority patent/JP5102495B2/ja
Priority to EP05814536A priority patent/EP1826814B8/en
Publication of WO2006064772A1 publication Critical patent/WO2006064772A1/ja
Priority to US11/647,149 priority patent/US7407874B2/en
Priority to US11/741,861 priority patent/US7348264B2/en
Priority to US12/139,968 priority patent/US20080318399A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • H01L21/2236Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase from or into a plasma phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Definitions

  • the present invention relates to a plasma doping method, and more particularly to a plasma doping method for introducing impurities into the surface of a solid sample such as a semiconductor substrate.
  • a plasma doping (PD) method is known in which impurities are ionized and introduced into a solid with low energy (for example, Patent Document 1). reference).
  • the most widely used method for introducing impurities at present is the ion injection method.
  • the plasma doping method is described in the column of Non-Patent Document 1, and also described in Non-Patent Document 2 as a next-generation impurity introduction technology for ion implantation, and is an impurity introduction technology different from the ion implantation method.
  • ITRS is a document that is referenced by a wide range of engineers in the semiconductor industry. The technical differences between ion implantation and plasma doping are explained in a little more detail below.
  • an ion source that generates gas force plasma, an ion force extracted from the ion source, an analysis magnet that performs mass separation to select only the desired ions, and accelerates the desired ions.
  • An apparatus configuration is used that includes an electrode to perform and a process chamber for injecting desired accelerated ions into a silicon substrate. In order to implant an impurity shallowly, the energy for extracting ions from the ion source and the acceleration energy should be reduced. However, if the extraction energy is reduced, the number of ions extracted is reduced.
  • the beam diameter expands due to the repulsive force caused by the charge between ions while the ion beam is transported from the ion source to the wafer, and many ions are lost due to collision with the inner wall of the beam line. End up.
  • the throughput of the injection process is reduced.
  • the throughput starts to decrease when the acceleration energy is 2 keV or less, and when the acceleration energy is 0.5 keV or less, it becomes difficult to transport the beam itself. Even if the energy is reduced to 0.5 keV, it is about 20 nm. B will be injected to the depth. In other words, when it is desired to make an extension electrode thinner than this, there is a problem that productivity is extremely lowered.
  • a plasma generation source for inducing plasma in a cylindrical vacuum vessel that can arrange a silicon substrate inside, a bias electrode for arranging the silicon substrate, a bias electrode
  • a device configuration having a bias power supply for adjusting the potential is used.
  • the device configuration is completely different from that of ion implantation, which has neither an analysis magnet nor an acceleration electrode.
  • a bias electrode that doubles as a plasma source and a wafer holder is installed in a vacuum vessel, and ions are accelerated and introduced by the potential generated between the plasma and the wafer.
  • the dose rate is an order of magnitude greater. This feature allows high throughput to be maintained even with low energy B implantation.
  • Non-patent Document 3. The paper was accepted by the VLSI Symposium and recognized as a new and particularly effective process technology (Non-patent Document 3.).
  • doping source gas introduced from the gas inlet port for example, BH
  • BH doping source gas
  • the plasma is generated by plasma generating means that also has an electromagnetic wave force and an electromagnetic wave, and boron ions in the plasma are supplied to the surface of the sample by a high-frequency power source.
  • the dose amount determines the specific resistance, which is one of the important elements that determine the device characteristics, so the control of the dose amount is an extremely important point.
  • the present inventors dilute BH, which has extremely high toxicity to human body, as much as possible to improve safety and reduce doping efficiency.
  • BH gas as a substance containing impurities to be doped is used.
  • Patent Document 2 A method of diluting with He gas with low ionization energy, generating He plasma in advance, and discharging B H after it has been proposed (Patent Document 2). This way smell
  • the B H gas concentration should be less than 0.05%.
  • the change in dose amount is small, so that the dose amount can be easily controlled.
  • the force that has been developed to improve the control accuracy of the dose amount Basically, it was an advancement of the conventional method of changing the dose amount by changing the plasma doping time. Here, no consideration was given to the relationship between the change in dose and the gas concentration.
  • Patent Document 1 US Patent No. 4912065
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-179592
  • Non-Patent Document 2 International Technology Roadmap for Semiconductors 2003 Edition (I
  • Non-Patent Document 2 Y. Sasaki, et al., Symp. On VLSI Tech. Pl80 (2004)
  • the dose amount is extremely controlled. It was an important issue. And of course, in-plane uniformity is an extremely important issue in device formation. In particular, in recent years, the diameter of wafers has been increasing, and it has been extremely difficult to obtain a uniform dose in the surface.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a plasma doping method capable of controlling the dose with high accuracy and forming a shallow impurity region.
  • Still another object of the present invention is to provide a plasma doping method capable of controlling the dose with high accuracy with high in-plane dose uniformity.
  • the plasma doping method of the present invention is a method of supplying a gas plasma containing impurity ions to a sample at a predetermined concentration for a predetermined time to form an impurity introduction layer on the surface of the sample, the dose amount being time-dependent.
  • the doping time and the concentration of the gas plasma containing impurities are set so as to be constant with no property.
  • the present inventors have conducted various experiments, and as a result, for example, B H / He plasma is applied to a silicon substrate.
  • the plasma doping method of the present invention is a method of supplying a gas plasma containing impurity ions to a sample at a predetermined concentration for a predetermined time to form an impurity introduction layer on the surface of the sample, the dose amount being time-dependent.
  • the doping time and the concentration of the gas plasma containing impurities are set so that the dose is constant and the dose is constant and the dose is not time-dependent. It is characterized by that.
  • the concentration power of gas plasma containing impurity ions has time dependency. Since the dose amount is set within a time range in which the dose amount is constant, the dose amount can be accurately controlled. In other words, even if the time is slightly shifted, the dose amount hardly changes and the dose amount can be controlled stably. On the other hand, in the case of the conventional method of controlling the dose amount by time, the dose amount changes greatly even if the time is slightly shifted.
  • the B H / He concentration is changed with respect to a predetermined bias.
  • the doping time and the concentration of the gas plasma containing the impurities are set so that the doping of impurities onto the substrate surface and the sputtering from the substrate surface are saturated.
  • the doping time is set so that the dose amount in the substrate surface is small! /, And the dose amount of the portion is added to the dose amount of the portion where the dose amount is saturated. Including those that have been.
  • the concentration of the gas plasma containing impurity ions is set to a time range in which the dose amount is constant without being time-dependent, and the doping time is small in the substrate surface. Since the dose amount of the portion is set to catch up with the dose amount of the portion where the dose amount is saturated, the dose amount can be accurately controlled so as to improve the in-plane uniformity.
  • the saturation time zone is measured at each point in the plane, and the driving end point is set to the latest time among the start points of the time zone. As a result, the dose amount in the portion of the substrate surface where the dose amount is small is saturated with the dose amount. By catching up with the dose amount of the part, good in-plane uniformity can be obtained.
  • the plasma doping method of the present invention includes a method of changing the level of the dose amount that does not have time dependency and is constant by changing the concentration of the gas plasma containing the impurity ions.
  • the plasma doping method of the present invention includes a method of changing the concentration of gas plasma containing impurity ions by changing the concentration, pressure, and source power of the gas containing impurity atoms.
  • the gas plasma concentration can be set in a desired range.
  • the concentration of the gas plasma containing the impurity ions can be easily and accurately changed by changing the concentration of the gas containing the impurity atoms.
  • the gas containing impurity atoms and the dilution gas are mixed and used, and the mass flow controller is used to change the flow rate of each gas to change the mixing ratio of each gas.
  • the concentration of gas plasma containing impurity ions can be easily and accurately changed.
  • the concentration of ions, radicals, and gas in the gas plasma is such that the doping of the impurity ions onto the substrate surface and the sputtering from the substrate surface take time. Including those in which the concentration of the gas plasma is set so as to become saturated with respect to the increase.
  • the concentration of the gas plasma is set so that the doping of the impurity ions on the substrate surface and the sputtering from the substrate surface are saturated, so that the dose amount can be accurately adjusted regardless of the time change. Therefore, an impurity region whose impurity concentration is controlled with high accuracy can be formed stably.
  • the plasma doping method of the present invention is a gas plasma including the impurity ions, which is a mixed gas plasma of molecules (B H) and He consisting of boron atoms and hydrogen atoms.
  • the plasma doping method of the present invention includes a gas plasma power B H and He mixed gas plasma containing impurity ions.
  • the dose amount can be accurately controlled regardless of the time change, so that the impurity region whose impurity concentration is stably controlled with high accuracy can be formed.
  • the plasma doping method of the present invention provides the B B of the mixed gas plasma of B H and He.
  • H gas concentration 0.01% or more and 1% or less. 0.Below 01%, B H
  • the B H gas concentration is more preferably 0.025.
  • the B H gas concentration of the mixed gas plasma of B H and He was set to about 0.1%.
  • the plasma doping method of the present invention has a bias voltage V of 60V or less.
  • the plasma doping method of the present invention includes one having a source power of about 1500W.
  • the gas plasma including the impurity ions includes a mixed gas plasma of BF and He.
  • BF and He can be obtained only when a mixed gas plasma of B H and He is used.
  • the plasma doping method of the present invention includes one in which the sample is a silicon substrate.
  • the present invention is essentially characterized by setting the doping time and the concentration of the gas plasma containing boron so that the doping of boron onto the substrate surface and the sputtering from the substrate surface are saturated. There is an ingenuity.
  • the present invention provides an impurity region in which the dose amount of impurities is stably controlled with high accuracy by performing plasma doping in a time region where the dose amount is not time-dependent and constant. Can be formed.
  • the step of activating the step includes irradiating a laser beam. including.
  • the step of activating may include a step of irradiating light emitted from a flash lamp.
  • the step of activating may include a step of irradiating a tungsten halogen lamp with emitted light.
  • Heat treatment using a tungsten halogen lamp has already been put into practical use and can be activated with high reliability.
  • the plasma doping is performed in a state where the temperature of the inner wall of the reaction vessel is substantially constant in contact with the plasma.
  • plasma doping is performed in a state where the inner wall of the reaction vessel in contact with plasma is heated.
  • the plasma doping is performed in a state where the inner wall of the reaction vessel is cooled in contact with the plasma.
  • the plasma doping includes a dopant in which the concentration of a gas containing an impurity element is lowered during the treatment.
  • the impurity introduction amount can be precisely controlled, and the impurity region in which the dose amount is stably controlled can be formed. Is possible.
  • an impurity region having excellent in-plane uniformity can be formed.
  • FIG. 1 is a cross-sectional view of an impurity introduction apparatus used in Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of an impurity introduction apparatus used in Embodiment 2 of the present invention.
  • FIG. 3 is a graph showing the relationship between dose and time in the method of Example 1 of the present invention.
  • FIG. 4 is a graph showing the relationship between the dose and gas concentration in the method of Example 1 of the present invention.
  • FIG. 5 is a graph showing the Rs distribution of the sample obtained by the method of Example 1 of the present invention.
  • FIG. 6 is a graph showing the Rs distribution of the sample obtained by the method of Example 1 of the present invention.
  • FIG. 7 is a graph showing the relationship between dose and time in the method of Example 2 of the present invention.
  • FIG. 8 is a comparative diagram showing in-plane uniformity of dose in the method of Example 2 of the present invention.
  • FIG. 9 is a diagram showing a sheet resistance distribution on the Y-axis in the method of Example 2 of the present invention.
  • FIG. 10 is a diagram showing a distribution of sheet resistance standard values on the Y-axis in the method of Example 2 of the present invention.
  • the apparatus shown in FIG. 1 is a plasma doping apparatus A (PD apparatus A).
  • PD apparatus A plasma doping apparatus A
  • the concentration of the gas plasma containing the impurity ions to be introduced is such that the doping of the impurity ions and the sputtering of the surface of the silicon substrate (silicon wafer) are saturated. Set.
  • the dose can be accurately controlled regardless of changes in time, and an impurity region in which the impurity concentration is stably controlled with high accuracy can be formed.
  • the concentration of the gas plasma is set so that the doping of the impurity ions and the sputtering of the substrate surface are saturated.
  • the dose amount can be accurately controlled regardless of a change in time, and an impurity region in which the impurity dose amount is stably controlled with high accuracy can be formed.
  • in-plane uniformity in order to obtain in-plane uniformity, the time zone in which saturation occurs at each point in the plane is measured, and the doping end point is set to the latest time among the start points of the time zone.
  • in-plane uniformity can be obtained by catching up the dose amount of the portion with a small dose amount in the substrate surface to the dose amount of the portion where the dose amount is saturated.
  • FIG. 1 shows a cross-sectional view of an impurity introduction apparatus used in Embodiment 1 of the present invention.
  • This impurity introduction apparatus that is, a process chamber, is composed of a reaction vessel 15 and an exhaust for evacuating the reaction vessel 15.
  • a turbo molecular pump 6 as a device, a pressure regulating valve 7 as a pressure control device for controlling the pressure in the reaction vessel 15, and a dielectric window facing the lower electrode 14 are provided.
  • a coil and an antenna 3 as a plasma source, a high-frequency power source 12 for supplying a high frequency power of 13.56 MHz to the coil or antenna 3, and a high-frequency power source 1 as a voltage source for supplying a voltage to the lower electrode 14.
  • the substrate to be processed (substrate) 13 is placed on the lower electrode 14 that also serves as a sample stage, and plasma irradiation is performed.
  • a high frequency is supplied from the coil and the antenna 3 through a high frequency power source 1 for generating plasma and a matching box 2 for adjusting discharge.
  • Necessary gas is supplied via mass flow controllers MFC4 and 5.
  • the degree of vacuum in the reaction vessel 15 is controlled by the mass flow controllers 4 and 5, the turbo molecular pump 6, the pressure regulating valve 7, and the dry pump 8.
  • Electric power is supplied to the reaction vessel 15 from the high frequency power source 12 through the matching box 11.
  • the substrate to be processed 13 placed in the reaction vessel 15 is placed on the sample stage 14 and supplied with the power.
  • a predetermined gas is introduced into the reaction vessel 15 of the process chamber 1 from the gas supply device via the mass flow controllers 4 and 5, and the gas is exhausted by the turbo molecular pump 8 serving as an exhaust device.
  • the inside of the reaction vessel 15 is maintained at a predetermined pressure by the pressure regulating valve 9 as the above. Then, by supplying a high frequency power of 13.56 MHz to the coil 3 as a plasma source from the high frequency power source 1, inductively coupled plasma is generated in the reaction vessel 15. In this state, a silicon substrate 13 as a sample is placed on the lower electrode 14.
  • high frequency power is supplied to the lower electrode 14 by a high frequency power source 12, and the potential of the lower electrode 14 is set so that a silicon substrate (substrate to be processed) 13 as a sample has a negative potential with respect to plasma. You will be able to control.
  • helicon wave plasma may be used instead of the force coil shown in the case of generating inductively coupled plasma using a coil.
  • helicon wave plasma may be used instead of the force coil shown in the case of generating inductively coupled plasma using a coil.
  • reaction vessel 15 After placing the silicon substrate 13 on the sample stage 14 as the lower electrode, the reaction vessel 15 is evacuated, helium gas is reacted in the reaction vessel 15 by the mass flow controller 4, and reaction is performed by the mass flow controller 5 Diborane (BH) as doping source gas in vessel 15
  • BH Diborane
  • a silicon substrate is irradiated with a mixed gas plasma of B H and He (B H / He plasma) to form a plasma.
  • the saturation time is relatively long and stable and easy to use.
  • the dose can be accurately controlled by setting the process window to a time when the dose is almost constant regardless of changes in time.
  • in-plane uniformity can be obtained by intensively measuring the time during which the dose is constant within this silicon substrate surface and setting the doping time according to the start time of the slowest one. I was able to.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the apparatus shown in FIG. 2 is called a plasma doping apparatus B (PD apparatus B).
  • PD apparatus B plasma doping apparatus B
  • FIG. 2 shows a schematic plan view of an impurity introduction apparatus used in Embodiment 2 of the present invention.
  • the impurity introduction apparatus uses a helicon plasma apparatus, and even in this apparatus, B H ZHe gas and He gas are passed through the mass flow controllers 24 and 25.
  • an impurity is introduced into the silicon substrate (sample) 33 placed on the sample stage 34 in the reaction vessel 35.
  • a high frequency power is supplied to the coil 23 by the high frequency power source 21, and the mass flow is performed.
  • plasma doping was performed by changing the boron dose and plasma doping time on a 200 mm silicon substrate.
  • Figure 3 shows the measurement results of the relationship between the boron dose and the plasma doping time.
  • the vertical axis represents the dose amount, and the horizontal axis represents the plasma doping time.
  • a silicon substrate is irradiated with a mixed gas plasma of B H and He (B H / He plasma).
  • the saturation time is relatively long and stable and easy to use.
  • the dose amount increases at first, but thereafter, the dose amount remains almost constant regardless of the change in time, and when the time is further increased, the dose amount decreases.
  • the dose can be accurately controlled by setting the process window to a time when the dose is almost constant regardless of changes in time. Also, in-plane uniformity could be obtained.
  • the dose is 1100 ° C, the sheet resistance force after annealing for 3 minutes.
  • the force that is estimated.
  • the difference in the sheet resistance of the sample between the doping time of 45 seconds and 60 seconds is The force was 107.4 to 107. Oohm / sq and 0.4 ohm / sq.
  • the change in dose over a long period of 15 seconds is small!
  • the time lag relative to repeated plasma doping for 50 seconds is at most several hundred microseconds. As a result, in practice, for example, it is only necessary to worry about a deviation of about 50 seconds ⁇ 0.5 seconds, so this can be said to be a very stable controllability and dose control method.
  • Figure 3 shows that when the B H / He gas concentration is 0.025% / 99.975%
  • Figure 4 summarizes the relationship with the H gas concentration. Vertical axis is saturated dose, horizontal axis
  • the dose level at which the dose change is almost constant with respect to the time can be changed, and the dose level at which the dose change is almost constant with respect to the time change can be changed to the desired dose amount. Adjusting gas concentration and changing dose with time
  • the dose can be accurately controlled to a desired value by adjusting the plasma doping time in a time region where is almost constant.
  • just adjusting the BH gas concentration lacks stability against time lag.
  • the adjustment of the plasma doping time is not stable in the time region other than the time region where the dose change is almost constant with respect to the time change. Furthermore, the time region where the dose change is almost constant with time changes is the B H gas concentration.
  • FIG. 5 and FIG. 6 show the results of annealing the substrate after plasma doping manufactured using this dose control method at 1075 ° C. for 20 seconds.
  • the sheet resistance was measured at 81 locations in the plane excluding the end of 5 mm of the 200 mm substrate. It is characterized by the use of plasma doping time and B H / He gas concentration that makes the dose constant over time.
  • the figure 3 is characterized by the use of plasma doping time and B H / He gas concentration that makes the dose constant over time.
  • the plasma doping conditions used in FIGS. 5 and 6 are the plasma doping conditions indicated by arrows a and b on the drawings in FIGS. a shows the conditions in Fig. 5 and b shows the conditions in Fig. 6.
  • Fig. 5 shows a plasm-by-plasma process using a dose control method with B H / He gas concentration of 0.1% / 99.9%
  • Uniformity was 2.25% at 1 ⁇ at ohm / sq. In the sample that was prototyped at a time when the dose amount was not saturated, the uniformity was about 5% to 10% at 1 ⁇ , and this was not uniform. This is one of the effective effects.
  • Fig. 6 shows a plasm-by-plasma process using a dose control method with a B H / He gas concentration of 0.2% / 99.8%.
  • Example 2 of the present invention plasma doping was performed by changing the boron dose and plasma doping time on a 300 mm silicon substrate using the entire PD apparatus shown in FIG.
  • FIG. 7 is a graph showing the results of measuring the relationship between the plasma doping time, the boron dose, and in-plane uniformity. It can be seen that the boron dose starts to saturate with time as it takes about 30 seconds. The in-plane uniformity of the boron dose amount was also good when the dose amount was saturated and about 30 seconds passed, that is, when the plasma doping time was 60 seconds.
  • FIG. 8 shows the in-plane distribution of the sheet resistance after annealing the plasma of boron on the 300 mm substrate shown in FIG. 7 at 1075 ° C. for 20 seconds. Sheet resistance was measured at 121 points in the plane excluding the 3mm edge of the 300mm board.
  • Fig. 9 shows the sheet resistance distribution on the vertical axis passing through the center of the substrate in the in-plane distribution of Fig. 8.
  • FIG. 10 is a similar diagram, but shows the sheet resistance divided by the average value in each substrate surface and expressed as a standard.
  • the dose does not change with respect to the change of the plasma doping time, and after a while, a product with good in-plane uniformity can be obtained. This is considered to be because, after a while after the dose amount force does not change with respect to the change of the plasma doping time, the dose amount portion of the silicon substrate surface where the dose amount is small catches up with the dose amount of the portion where the dose amount is saturated.
  • the dose in the substrate surface is small. Since the dose amount of the portion cannot catch up with the dose amount of the portion where the dose amount is saturated, the in-plane uniformity may be sufficient.
  • FIG. 9 and FIG. Figures 9 and 10 show the sheet resistance after 7 seconds (7 seconds), 30 seconds (30 seconds), and 60 seconds (60 seconds), respectively.
  • the portion doped with a large amount of boron (the horizontal axis in FIGS. 9 and 10—the portion from 150 mm to Omm) saturates relatively quickly with time.
  • the portion where boron is not heavily doped at first (portions 75 to 150 mm in Fig. 9 and Fig. 10) takes a relatively long time until the dose is saturated.
  • the portion that was initially doped with a large amount of boron was not readily implanted with boron, while the portion that was initially doped with too little boron was As the dose reaches saturation, the difference becomes smaller. This is why the variation width of the sheet resistance on the vertical axis is small when doping is performed for 60 seconds in Figs. As a result, the in-plane uniformity of the sheet resistance can be improved.
  • the method of the present invention is a very effective means for ensuring in-plane uniformity by plasma doping. As described above, the dose can be controlled simultaneously.
  • the sheet resistance distribution may be considered as a dose distribution.
  • the dose amount and the sheet resistance are also forces that have a one-to-one relationship.
  • the impurities are almost completely electrically activated, which is considered to be the reason for the one-to-one correspondence.
  • a silicon substrate supplied with impurity ions is placed on the sample table of the annealing apparatus, and the surface of the silicon substrate is irradiated with laser light reflected by a mirror such as an infrared laser camera. Can be activated by heating the surface of
  • a flash lamp treatment chamber is used as the activation process chamber. It is also possible.
  • the flash lamp processing chamber consists of a container, a sample stage, a window, and a flash lamp. A silicon substrate to which impurity ions are supplied is placed on a sample stage, and the surface of the silicon substrate is heated and activated by irradiating the surface of the silicon substrate with light emitted from a flash lamp force. it can.
  • the power using the flash lamp treatment chamber as the activation treatment chamber is currently used in a semiconductor mass production factory! It is also possible to use a tungsten halogen lamp processing chamber.
  • the present invention can be applied when processing samples of various other materials. For example, it is also effective for strained silicon substrates and SOI substrates. These are the same forces as the silicon substrate when considering only the surface shape visible from the plasma.
  • Finction is also effective for strained silicon substrates and SOI substrates. These are the same forces as the silicon substrate when considering only the surface shape visible from the plasma.
  • Finction is also effective for strained silicon substrates and SOI substrates.
  • the structure of the FET is as strong as a silicon substrate that is so small that it can be ignored.
  • the force exemplified for the case where the impurity is boron is a semiconductor substrate made of silicon
  • the present invention is effective particularly when the impurity is arsenic, phosphorus, boron, aluminum, or antimony. . This is because they can form a shallow junction in the transistor portion.
  • the present invention is effective when the concentration of the gas containing impurities is low, and is particularly effective as a plasma doping method that requires precise control of the dose.
  • the gas supplied into the reaction vessel is a gas containing a doping raw material during the plasma doping step
  • the gas supplied into the reaction vessel does not contain the doping raw material and is in a solid state. Even when the doping raw material is generated from the impurities of the present invention, It is valid.
  • the present invention is also effective in the case where a solid containing impurity atoms is placed in a reaction vessel and a plasma such as He is excited to turn the impurity atoms into plasma and plasma doping.
  • the treatment when performing the plasma doping, it is preferable to perform the treatment in a state where the temperature of the inner wall of the reaction vessel is in contact with the plasma and is substantially constant. This is because if the temperature of the inner wall of the reaction vessel changes during the process, the probability of attachment of impurity atoms at the inner wall temperature changes, and impurity atoms released into the plasma from the thin film containing the impurity element attached to the inner wall. This is because the dose per unit time changes due to the change in the number of.
  • a force such as a method of heating with a heater or a method of cooling by circulating a refrigerant can be appropriately selected.
  • the concentration of the gas containing impurities in the reaction vessel is lowered only by adjusting the gas supply amount and directly adjusting the concentration itself, thereby depositing the prescribed impurities. Therefore, by reducing the concentration of the impurities or increasing the temperature of the inner wall of the reaction vessel to suppress the precipitation of predetermined impurities, the concentration of the impurities can be maintained, or by adjusting the temperature of the inner wall of the reaction vessel, It is also possible to adjust the amount. In addition, by providing a feedback function, it is possible to control the concentration while controlling the temperature of the inner wall of the reaction vessel.
  • the concentration of the gas containing an impurity element may be lowered in the course of processing when performing plasma doping. An appropriate processing method in this case will be described.
  • the dose per unit time in the initial stage of the treatment is increased.
  • plasma doping is performed in a state where the concentration of the gas containing the impurity element is low. Then, the plasma doping process is stopped within a time range in which the dose amount is constant with no time dependency. By processing in such a procedure, it is possible to shorten the total processing time compared to the case where the gas containing the impurity element is low in concentration from the beginning and processed in the state.
  • the temperature of the inner wall of the reaction vessel is first raised, the concentration of the gas containing impurities is increased to the maximum, and then the temperature of the inner wall of the reaction vessel is lowered to precipitate impurities on the inner wall. It is also effective to promote gas and reduce the gas concentration.
  • the plasma doping method of the present invention is economical, can accurately control the amount of impurities introduced, and can realize a plasma doping method that forms a shallow impurity diffusion region. It can also be applied to applications such as the production of thin film transistors used in the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 ドーズ量を精密に制御することのできるプラズマドーピング方法を実現する。ドーズ量の面内均一性の向上をはかる。 B2H6/Heプラズマをシリコン基板に照射してバイアスをかけると、ボロンのドーズ量がほとんど一定となる時間があり、また、その飽和する時間が装置制御の繰り返し性が確保できる時間と比べて比較的長く安定して使用し易いことを発見しその結果に着目してなされたものである。すなわち、プラズマ照射を開始すると、最初はドーズ量が増加するが、その後、時間の変化によらずドーズ量はほとんど一定となる時間が続き、さらに時間を増加させるとドーズ量は減少する。時間の変化に依存することなく、ドーズ量がほとんど一定となる時間をプロセスウインドウとすることでドーズ量を正確に制御できる。

Description

明 細 書
プラズマドーピング方法
技術分野
[0001] 本発明は、プラズマドーピング方法に係り、特に不純物を半導体基板等の固体試 料の表面に導入するプラズマドーピング方法に関する。
背景技術
[0002] 不純物を固体試料の表面に導入する技術としては、不純物をイオン化して低エネ ルギ一で固体中に導入するプラズマドーピング (PD)法が知られて 、る(例えば、特 許文献 1参照)。
[0003] 一方、不純物を導入する方法として、現在最も広く用いられて!/ヽる方法はイオン注 入法である。プラズマドーピング法は、非特許文献 1の欄に記載され、非特許文献 2 でも引き続きイオン注入の次世代の不純物導入技術として記載され、イオン注入法と は異なる不純物導入技術である。なお、 ITRSは半導体業界では広範囲の技術者に 参照されて ヽる文献である。以下にイオン注入とプラズマドーピングの技術的相違点 を少し詳細に説明する。
[0004] イオン注入法にぉ 、ては、ガス力 プラズマを発生させるイオン源と、イオン源から 引き出したイオン力 所望のイオンだけを選別するために質量分離する分析磁石と、 所望のイオンを加速する電極と、加速した所望のイオンをシリコン基板に注入するプ ロセスチャンバ一とを有する装置構成が用いられる。イオン注入にぉ 、て不純物を浅 く注入するためには、イオン源からイオンを引き出すエネルギーと加速エネルギーと を小さくすれば良い。しかし、引き出しエネルギーを小さくすると引き出されるイオンの 数が減少してしまう。さらに、加速エネルギーが小さくなるとイオンビームをイオン源か らウェハに輸送する間にイオン同士の電荷による反発力でビーム径が広がってしまい 、ビームライン内壁に衝突するなどして多数のイオンが失われてしまう。そのため、注 入処理のスループットが低下してしまう。例えば B+イオンを注入する場合では、加速 エネルギーが 2keV以下になるとスループットが低下し始め、 0.5keV以下になるとビー ムの輸送自体が困難になる。し力し、 0.5keVまで低エネルギー化しても 20nm程度の 深さまで Bが注入されてしまう。つまり、これよりも薄いエクステンション電極を作りたい 場合には生産性が極端に低下してしまうという課題がある。
[0005] これに対してプラズマドーピング法においては、シリコン基板を内部に配置できるよ うな円柱形状の真空容器にプラズマを誘起するプラズマ発生源と、シリコン基板を配 置するバイアス電極と、バイアス電極の電位を調整するバイアス電源を有する装置構 成が用いられる。分析磁石も加速電極も有しない、イオン注入と全く異なる装置構成 である。真空容器にプラズマ源とウェハホールダを兼ねたバイアス電極を設置し、プ ラズマとウェハの間に発生するポテンシャルでイオンを加速して導入する。これにより 、低エネルギーのプラズマを直接使用することができるので、イオン注入と比較して 大量の低エネルギーイオンをウェハに照射できる。つまりドーズレートが桁違いに大 き 、と 、う特徴がある。この特徴により低エネルギーの B注入でも高 、スループットを 維持できる。
[0006] さらに、本発明者らは、プラズマドーピング法を応用して、極めて浅くて且つ低抵抗 のソース ·ドレインエクステンション電極を形成するプロセス技術を開発した。この新規 プロセス技術は、 2004年 6月に半導体分野で最も権威がある国際学会の一つであ る
VLSI Symposiumに論文が採択され、新規で特段の効果があるプロセス技術として 認知されて!ヽる (非特許文献 3.)。
[0007] この方法では、ガス導入口カゝら導入されたドーピング原料ガス、例えば B Hを、マ
2 6 イク口波導波管及び電磁石力も成るプラズマ発生手段によってプラズマ化し、プラズ マ中のボロンイオンを高周波電源によって試料の表面に供給するという方法がとられ る。
[0008] 半導体装置の小型化、高集積化に伴い、不純物導入領域における特性は極めて 重要である。なかでも、ドーズ量 (不純物導入量)は、素子特性を決定する重要な要 素のひとつである比抵抗を決定するため、ドーズ量の制御はきわめて重要なポイント である。
しカゝしながら、プラズマドーピング法を用いると、極浅で低抵抗のソース'ドレインェ タステンション電極が形成できることはわ力つたにも係らず、その特性を制御するドー ズ量の制御方法は開発されて 、な力つた。これまでにはプラズマドーピングする時間 を変化させることで、ドーズ量を変化させる方法が採られていた力 これでは制御の 精度が不十分であり、実用的ではな力つた。
[0009] このような状況の中で、本発明者らは、人体に対してきわめて危険性の高い毒性を もつ B Hをできるだけ希釈して安全性を高め、ドーピング効率を低下させることなぐ
2 6
安定してプラズマの発生や維持を行なうとともに、ドーパント注入量の制御を容易に 行なうことのできる方法として、ドーピングする不純物を含む物質としての B Hガスを
2 6
、電離エネルギーの小さい Heガスで希釈し、 Heのプラズマを先行して発生させ、し カゝる後に B Hを放電させるようにする方法を提案した (特許文献 2)。この方法におい
2 6
て、 B Hガスの濃度が 0. 05%未満となるようにするのが望ましいとの提案もある。
2 6
し力しながら、 0. 05%程度の低濃度にしたとき、ドーズ量を制御しやすいとの報告 はなされているものの、これはガス濃度を一定にしつつ、時間を変化させてドーズ量 を変えるものであった。 B Hガス濃度を低濃度にした方が、時間変化に対するボロン
2 6
のドーズ量変化が小さくなるのでドーズ量を制御し易いという内容のものであった。ド ーズ量の制御精度を高める上で進歩したものであった力 基本的にはプラズマドー ビングする時間を変化させることで、ドーズ量を変化させる従来の方法を進歩させた ものであった。ここで、ドーズ量の変化とガス濃度との関係についての考察について は何らなされて ヽなかった。
[0010] 特許文献 1:米国特許第 4912065号明細書
特許文献 2 :特開 2004— 179592号公報
特干文献 1 international Tecnnology Roadmap for semiconductors 2001 Edition (I
TRS2001)の FrontEnd Processの Figure 30の Shallow Junction Ion Doping
非特許文献 2: International Technology Roadmap for Semiconductors 2003 Edition (I
TRS2003)
非特許文献 2 : Y. Sasaki, et al., Symp. on VLSI Tech. pl80 (2004)
発明の開示
発明が解決しょうとする課題
[0011] 上述したように、不純物導入領域を形成するにあたり、ドーズ量の制御はきわめて 重要な課題となっていた。そしてさらに当然ながら、面内均一性は素子形成に当たり 極めて重要な課題となっている。特に、近年ウェハの大口径ィ匕は進む一方であり、面 内で均一なドーズ量を得ようとすると極めて困難であった。
本発明は前記実情に鑑みてなされたもので、高精度にドーズ量を制御することがで き、浅 、不純物領域を形成することのできるプラズマドーピング方法を提供することを 目的とする。
さらにまた、本発明は、ドーズ量の面内均一性が高ぐ高精度にドーズ量を制御す ることができるプラズマドーピング方法を提供することを目的とする。
課題を解決するための手段
[0012] そこで本発明のプラズマドーピング方法は、試料に不純物イオンを含むガスプラズ マを所定時間、所定濃度で供給し、前記試料表面に不純物導入層を形成する方法 であって、ドーズ量が時間依存性を持たず一定となるように、ドーピング時間と、不純 物を含むガスプラズマの濃度を設定したことを特徴とする。
[0013] 本発明者らは種々の実験を重ねた結果、例えば B H /Heプラズマをシリコン基板
2 6
に照射してバイアスをかけると、ボロンのドーズ量がほとんど一定となる時間があること を発見した。また、その飽和する時間が装置制御の繰り返し性が確保できる時間と比 ベて比較的長く安定して使用し易いことがわ力つた。すなわち、プラズマ照射を開始 すると、最初はドーズ量が増加する力 その後、時間の変化によらずドーズ量はほと んど一定となる時間が続き、さらに時間を増加させるとドーズ量は減少する。時間の 変化に依存することなぐドーズ量がほとんど一定となる時間をプロセスウィンドウとす ることでドーズ量を正確に制御できるということを発見した。本発明は、これに着目し てなされたものである。
[0014] そこで本発明のプラズマドーピング方法は、試料に不純物イオンを含むガスプラズ マを所定時間、所定濃度で供給し、前記試料表面に不純物導入層を形成する方法 であって、ドーズ量が時間依存性を持たず一定となるように、ドーピング時間と、不純 物を含むガスプラズマの濃度を設定して、ドーズ量が時間依存性を持たず一定とな る時間範囲でプラズマドーピングを行なうようにしたことを特徴とする。
[0015] この構成によれば、不純物イオンを含むガスプラズマの濃度力 時間依存性を持た ずドーズ量が一定となる時間範囲に設定されて 、るため、ドーズ量を正確に制御す ることができる。つまり、時間が少しずれたとしてもドーズ量がほとんど変わらないので 安定してドーズ量を制御できる。これに対して、時間でドーズ量を制御する従来の方 法の場合には、時間が少しずれただけでもドーズ量が大幅に変化してしまう。
[0016] また、実験を重ねた結果、ある所定のバイアスに対して B H /He濃度を変化させる
2 6
ことで、ドーズ量がほとんど変化しない飽和する時間帯を得ることができた。さらにそ の時間帯の中でもァニール後のシート抵抗(Rs)の面内均一性、すなわちドーズ量の 面内均一性が極めて良好となる時間帯があることを発見し、この結果にもとづいてな されたものである。これにより、プラズマドーピングを実用化するうえで、最も大きな課 題とされていたドーズ量の制御と面内均一性の課題を一挙に解決できる。
[0017] また、本発明のプラズマドーピング方法は、不純物の基板表面へのドーピングと、 基板表面からのスパッタリングとが飽和状態となるようにドーピング時間と、不純物を 含むガスプラズマの濃度を設定するようにしたものを含む。
[0018] 本発明者らは種々の実験を重ねた結果、例えば B H /Heプラズマをシリコン基板
2 6
に照射してバイアスをかけると、ボロンのドーピングと、プラズマに含まれるイオン、ラ ジカル、ガスの照射による基板表面力 のボロンのスパッタリングが飽和する(釣り合 う)時間があることを発見した。また、その飽和する時間が装置制御の繰り返し性が確 保できる時間と比べて比較的長く安定して使用し易いことがわ力つた。
[0019] また本発明のプラズマドーピング方法は、ドーピング時間を、基板面内のドーズ量 が少な!/、部分のドーズ量が、ドーズ量が飽和した部分のドーズ量に追!、つく程度に 設定されているものを含む。
この構成によれば、不純物イオンを含むガスプラズマの濃度が、時間依存性を持た ずドーズ量が一定となる時間範囲に設定されており、さらにドーピング時間が、基板 面内のドーズ量が少な 、部分のドーズ量が、ドーズ量が飽和した部分のドーズ量に 追いつく程度に設定されているため、面内均一性を高めるように、ドーズ量を正確に 制御することができる。実際には、面内の各ポイントで、飽和する時間帯を測定し、ド 一ビング終了点をその時間帯の開始点のうちもっとも遅い時間に設定するようにして いる。これにより、基板面内のドーズ量が少ない部分のドーズ量は、ドーズ量が飽和 した部分のドーズ量に追いつくことにより、良好な面内均一性を得ることができる。
[0020] また、本発明のプラズマドーピング方法は、前記不純物イオンを含むガスプラズマ の濃度を変化させることで時間依存性を持たず一定となるドーズ量の水準を変化さ せるものを含む。
この構成により、前記不純物イオンの前記基板表面へのドーピングと、前記基板表 面からのスパッタリングとが飽和状態となるようにガスプラズマの濃度を設定すること により、一定となるドーズ量の水準を変化させることができるため、安定して高精度に 不純物濃度が制御された不純物領域を形成することができる。
[0021] また、本発明のプラズマドーピング方法は、不純物原子を含むガスの濃度、圧力、 ソースパワーを変化させることで前記不純物イオンを含むガスプラズマの濃度を変化 させるものを含む。
この構成により、ガスプラズマの濃度を所望の範囲に設定することができる。
特に、不純物原子を含むガスの濃度を変えることで前記不純物イオンを含むガスプ ラズマの濃度を簡単に且つ正確に変えることができるという利点がある。具体的な手 段は、不純物原子を含むガスと希釈ガスを混合して用いるようにしておき、マスフロー コントローラを用いてそれぞれのガスの流量を変えてそれぞれのガスの混合比を変え ることで前記不純物イオンを含むガスプラズマの濃度を簡単に且つ正確に変えること ができる。
[0022] また、本発明のプラズマドーピング方法は、前記ガスプラズマ中のイオンとラジカル とガスの濃度が、前記不純物イオンの前記基板表面へのドーピングと、前記基板表 面からのスパッタリングとが時間の増加に対して飽和状態となるように、前記ガスブラ ズマの濃度が設定されるものを含む。
この構成により、前記不純物イオンの前記基板表面へのドーピングと、前記基板表 面からのスパッタリングとが飽和状態となるようにガスプラズマの濃度を設定すること により、時間変化によらずドーズ量を正確に制御することができるため、安定して高精 度に不純物濃度が制御された不純物領域を形成することができる。
[0023] また、本発明のプラズマドーピング方法は、前記不純物イオンを含むガスプラズマ 力 ボロン原子と水素原子からなる分子(B H )と Heの混合ガスプラズマであるもの
n m を含む。
種々の実験を重ねた結果、 B Hガス濃度を小さくしていった際、時間の変化によ らずドーズ量がほぼ一定となる領域が存在することを発見した。ボロンの基板表面へ のドーピングと、基板表面からのスパッタリングとが飽和状態となるように B Hガス濃 度を設定することにより、時間変化によらずドーズ量を正確に制御することができるた め、安定して高精度に不純物のドーズ量を制御された不純物領域を形成することが できる。
[0024] また、本発明のプラズマドーピング方法は、前記不純物イオンを含むガスプラズマ 力 B Hと Heの混合ガスプラズマであるものを含む。
2 6
種々の実験の結果、 B Hと Heの混合ガスプラズマを用いた場合に、 B Hガス濃
2 6 2 6 度を小さくしていった際、時間の変化によらずドーズ量がほぼ一定となる領域が存在 することを発見し、この事実に着目してなされたものである。ボロンの基板表面へのド 一ビングと、基板表面からのスパッタリングとが飽和状態となるように B Hガスの濃度
2 6 を設定することにより、時間変化によらずドーズ量を正確に制御することができるため 、安定して高精度に不純物濃度が制御された不純物領域を形成することができる。
[0025] また、本発明のプラズマドーピング方法は、前記 B Hと Heの混合ガスプラズマの B
2 6
Hガス濃度が 0. 01%以上、 1%以下であるものを含む。 0. 01%以下では、 B H
2 6 2 6 ガス濃度を変化させたときに、時間変化に対して飽和するボロンのドーズ量の変化が 小さ過ぎる。よって、時間変化に対して飽和するボロンのドーズ量を B Hガス濃度の
2 6 変化で制御することが困難である。また、 1%以上では、 B Hガス濃度を変化させた
2 6
ときに、時間変化に対して飽和するボロンのドーズ量の変化が大き過ぎる。よって、こ の場合も制御性が劣る。同様の理由から、 B Hガス濃度は、さらに望ましくは 0. 025
2 6
%以上、 0. 6%以下である。
実験結果から、 B Hと Heの混合ガスプラズマの B Hガス濃度を 0. 1%程度とした
2 6 2 6
とき、時間変化に依存することなくドーズ量がほぼ一定となる領域が存在することを発 した。
[0026] また、本発明のプラズマドーピング方法は、バイアス電圧 V カ 60V以下であるもの
DC
を含む。 実験結果から、バイアス電圧 V 力 ½OV以下であるとき、時間変化に依存すること
DC
なくドーズ量がほぼ一定となる領域が存在することを発見した。
[0027] また、本発明のプラズマドーピング方法は、ソースパワーが 1500W程度であるもの を含む。
実験結果から、ソースパワーが 1500W程度であるとき、時間変化に依存することな くドーズ量がほぼ一定となる領域が存在することを発見した。
[0028] また、本発明のプラズマドーピング方法は、前記不純物イオンを含むガスプラズマ は、 BFと Heの混合ガスプラズマであるものを含む。
3
実験結果から、 B Hと Heの混合ガスプラズマを用いた場合だけでなぐ BFと He
2 6 3 の混合ガスプラズマを用いた場合も同様に、実験の結果、 BFガス濃度を小さくして
3
いった際、時間の変化によらずドーズ量がほぼ一定となる領域が存在する。従って、 安定して高精度に不純物のドーズ量を制御された不純物領域を形成することができ る。
[0029] また、本発明のプラズマドーピング方法は、前記試料がシリコン基板であるものを含 む。
種々の実験の結果、シリコン基板へのドーピングに際し、 B Hと Heの混合ガスブラ
2 6
ズマを用いた場合に、 B Hガス濃度を小さくしていった際、時間の変化によらずドー
2 6
ズ量がほぼ一定となる領域が存在することを発見した。また BmHnと Heの混合ガス プラズマを用いた場合にも同様の結果を得ることができた。
[0030] このように、本発明は、ボロンの基板表面へのドーピングと、基板表面からのスパッ タリングとが飽和状態となるようにドーピング時間とボロンを含むガスプラズマの濃度 を設定したことに本質的な工夫がある。
[0031] また、本発明は、ドーズ量が時間依存性を持たず一定となる時間領域でプラズマド 一ビングを行なうことにより、安定して高精度に不純物のドーズ量を制御された不純 物領域を形成することができる。
この構成により、時間の変化に依存することなぐドーズ量が一定となる時間をプロ セスウィンドウとすることでドーズ量を正確に制御することができる。
[0032] さらにまた、望ましくは、前記活性ィ匕する工程としては、レーザー光を照射する工程 を含む。
レーザー光は光のエネルギー密度が高いため、高効率の活性ィ匕が可能となる。
[0033] さらにまた、前記活性ィ匕する工程としては、フラッシュランプの放射光を照射するェ 程を含むようにしてもよい。
フラッシュランプは安価であるため、低コストィ匕が可能となる。
[0034] さらにまた、前記活性ィ匕する工程としては、タングステンハロゲンランプの放射光を 照射する工程を含むようにしてもよ!ヽ。
タングステンハロゲンランプを用いた熱処理は、すでに実用化されており、信頼性 良く活性ィ匕できる。
[0035] また、上記プラズマドーピングにお 、て、プラズマが接して 、る反応容器の内壁の 温度をほぼ一定とした状態でプラズマドーピングを行うようにして 、る。
また、上記プラズマドーピングにおいて、プラズマが接している反応容器の内壁を 加熱した状態でプラズマドーピングを行う。
[0036] また、上記プラズマドーピングにお 、て、プラズマが接して 、る反応容器の内壁を 冷却した状態でプラズマドーピングを行う。
[0037] また、上記プラズマドーピングにお 、て、不純物元素を含むガスの濃度を、処理の 途中で低下させるようにしたプものを含む。
発明の効果
[0038] 以上説明してきたように、本発明のプラズマドーピング方法によれば、不純物導入 量を精密に制御することができ、安定して高精度にドーズ量制御のなされた不純物 領域を形成することが可能となる。
また面内均一性に優れた不純物領域を形成することができる。
図面の簡単な説明
[0039] [図 1]本発明の実施の形態 1で用いられる不純物導入装置の断面図
[図 2]本発明の実施の形態 2で用いられる不純物導入装置の断面図
[図 3]本発明の実施例 1の方法におけるドーズ量と時間との関係を示す図
[図 4]本発明の実施例 1の方法におけるドーズ量とガス濃度との関係を示す図
[図 5]本発明の実施例 1の方法で得られたサンプルの Rs分布を示す図 [図 6]本発明の実施例 1の方法で得られたサンプルの Rs分布を示す図
[図 7]本発明の実施例 2の方法におけるドーズ量と時間との関係を示す図
[図 8]本発明の実施例 2の方法におけるドーズ量の面内均一性を示す比較図
[図 9]本発明の実施例 2の方法における Y軸上のシート抵抗分布を示す図
[図 10]本発明の実施例 2の方法における Y軸上のシート抵抗規格値の分布を示す図 符号の説明
1 高周波電源
2 マッチングボックス
3 コイル
4 マスフローコントローラ
5 マスフローコントローラ
6 ターボ分子ポンプ
7 調圧弁
8 ドライポンプ
9 冷却水供給ユニット
10 V モニター
DC
11 マッチングボックス
12 高周波電源
13 試料 (被処理基板)
14 下部電極
15 反応容器
21 高周波電源
23 コィノレ
24 マスフローコントロー -ラ
25 マスフローコントロー -ラ
33 試料
34 試料台
35 反応容器 発明を実施するための最良の形態
[0041] 以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態 1)
以下、本発明の実施の形態 1について、図面を参照しつつ詳細に説明する。
図 1に記載の装置をプラズマドーピング装置 A (PD装置一 A)とする。
本実施の形態では、不純物の導入に際し、導入すべき不純物イオンを含むガスプ ラズマの濃度が、前記不純物イオンのドーピングと、シリコン基板 (シリコンウエノ、)表 面のスパッタリングとが飽和状態となるように設定する。これにより、時間変化によらず ドーズ量を正確に制御することができ、安定して高精度に不純物濃度を制御された 不純物領域を形成することができる。また面内均一性に優れた不純物領域を形成す ることがでさる。
[0042] ここでは、前記不純物イオンのドーピングと、基板表面のスパッタリングとが飽和状 態となるようにガスプラズマの濃度を設定する。これにより、時間変化によらずドーズ 量を正確に制御することができるため、安定して高精度に不純物のドーズ量を制御さ れた不純物領域を形成することができる。
[0043] これは以下のようにも表現できる。前記不純物イオンのドーピングと、基板表面のス ノ ッタリングとが飽和状態となってドーズ量が時間変化によらず一定となる時間範囲 でプラズマドーピングを行なうことで安定して高精度に不純物のドーズ量を制御され た不純物領域を形成することができる。
[0044] さらにまた、面内均一性を得るためには、面内の各ポイントで、飽和する時間帯を 測定し、ドーピング終了点をその時間帯の開始点のうちもっとも遅い時間に設定する 。これにより、基板面内のドーズ量が少ない部分のドーズ量は、ドーズ量が飽和した 部分のドーズ量に追いつくことにより、面内均一性を得ることができる。
[0045] 図 1に本発明の実施の形態 1にお 、て用いられる不純物導入装置の断面図を示す この不純物導入装置すなわちプロセスチャンバ一は、反応容器 15と、反応容器 15 内を排気する排気装置としてのターボ分子ポンプ 6と、反応容器 15内の圧力を制御 する圧力制御装置としての調圧弁 7と、下部電極 14に対向した誘電体窓の近傍に設 けられたプラズマ源としてのコイルおよびアンテナ 3と、このコイルまたはアンテナ 3に 13. 56MHzの高周波電力を供給する高周波電源 12と、下部電極 14に電圧を供給 する電圧源としての高周波電源 1とで構成されており、試料台を兼ねる下部電極 14 上に被処理基板 (基板) 13を設置し、プラズマ照射を行なうものである。
[0046] ここでは、プラズマを発生させるための高周波電源 1と放電の調整を行なうマツチン グボックス 2を介して、コイル及びアンテナ 3から高周波が供給される。必要なガスは マスフローコントローラ MFC4及び 5を介して供給される。反応容器 15内の真空度は 前記マスフローコントローラ 4及び 5、ターボ分子ポンプ 6、調圧弁 7、ドライポンプ 8に よって制御される。反応容器 15に対しては、高周波電源 12から、マッチングボックス 11を介して電力が供給される。反応容器 15内に設置した、被処理基板 13は試料台 14に載置され、前記電力が供給される。
[0047] 次に、プラズマドーピング工程について述べる。
[0048] このプロセスチャンバ一の反応容器 15内にガス供給装置からマスフローコントロー ラ 4、 5を介して所定のガスを導入しつつ、排気装置としてのターボ分子ポンプ 8により 排気を行い、圧力制御装置としての調圧弁 9により反応容器 15内を所定の圧力に保 つ。そして高周波電源 1により、プラズマ源としてのコイル 3に 13. 56MHzの高周波 電力を供給することにより、反応容器 15内に誘導結合型プラズマを発生させる。この 状態で下部電極 14上に、試料としてのシリコン基板 13を載置する。また、下部電極 1 4には高周波電源 12によって高周波電力が供給されており、試料としてのシリコン基 板 (被処理基板) 13がプラズマに対して負の電位をもつように、下部電極 14の電位 を制御することができるようになって 、る。
なお、ここではコイルを用いて誘導結合型プラズマを発生させる場合を示した力 コ ィルに代えてアンテナを用いてもよぐヘリコン波プラズマ、表面波プラズマ、電子サ イクロトロン共鳴プラズマなどを発生させてもょ 、。
[0049] シリコン基板 13を下部電極としての試料台 14に載置した後、反応容器 15内を排気 しつつ、マスフローコントローラ 4により反応容器 15内にヘリウムガスを、またマスフ口 一コントローラ 5により反応容器 15内にドーピング原料ガスとしてのジボラン (B H )
2 6 ガスを供給し、調圧弁 9を制御して反応容器 15内の圧力を 0. 9Paに保つ。次に、プ ラズマ源としてのコイル 3に高周波電力を 1500W供給することにより、反応容器 15内 にプラズマを発生させるとともに、下部電極 14に 200Wの高周波電力を供給すること により、ボロンをシリコン基板 13の表面近傍に打ち込むことができる。ここでシリコン基 板 13に曝されているプラズマは、 B Hと Heの混合ガスプラズマ(B H /Heプラズマ
2 6 2 6
)である。なお、 B Hと Heの混合の割合は、マスフローコントローラ 4と 5に流す Heガ
2 6
スと B Hガスの流量の比を変えることで変化させることができる。
2 6
[0050] B Hと Heの混合ガスプラズマ(B H /Heプラズマ)をシリコン基板に照射してバイ
2 6 2 6
ァスをかけると、ボロンのドーピングとスパッタリングが飽和する(釣り合う)時間がある ことがわ力つた。さらに、本実施の形態では、その飽和する時間が比較的長く安定し て使用し易いことがわ力つた。すなわち、プラズマ照射を開始すると、最初はドーズ量 が増加するが、その後、時間の変化によらずドーズ量はほとんど一定となる時間が続 き、さらに時間を増カロさせるとドーズ量は減少する。時間の変化によらずドーズ量が ほとんど一定となる時間をプロセスウィンドウとすることでドーズ量を正確に制御できる 。また、このシリコン基板面内で、ドーズ量が一定となる時間をあら力じめ測定し、そ の一番遅いものの開始時間に合わせてドーピング時間を設定することにより、面内均 一性も得ることができた。
[0051] (実施の形態 2)
以下、本発明の実施の形態 2について、図 2を参照して説明する。
図 2に記載の装置をプラズマドーピング装置 B (PD装置一 B)とする。
図 2に、本発明の実施の形態 2において用いる不純物導入装置の概略平面図を示 す。図 2において、不純物導入装置は、ヘリコンプラズマ装置を用いたもので、この装 置においてもマスフローコントローラ 24、 25を介して B H ZHeガスおよび Heガスが
2 6
供給されるようになって 、る。
[0052] ここでも反応容器 35内の試料台 34に載置されたシリコン基板 (試料) 33に対し、不 純物を導入するもので、高周波電源 21によってコイル 23に高周波が供給され、 マス フローコントローラ 24、 25を介して供給される B H /Heガスおよび Heガス力 プラ
2 6
ズマ化されるようになって 、る。
そしてこの装置でも、マスフローコントローラ 24、 25を高精度に制御することにより、 B H ZHeの混合比が制御され、時間依存性なしにドーズ量が一定となるように、ガ
2 6
スプラズマ濃度を制御できるようになって!/、る。
[0053] <実施例 1 >
図 2で示した実施の形態 2で説明した PD装置一 Bを用いて 200mmのシリコン基板 につ 、て、ボロンのドーズ量とプラズマドーピング時間とを変化させプラズマドーピン グを行った。
図 3に、このときのボロンのドーズ量とプラズマドーピング時間との関係を測定した結 果を示す。縦軸はドーズ量、横軸はプラズマドーピング時間である。
B Hと Heの混合ガスプラズマ(B H /Heプラズマ)をシリコン基板に照射してバイ
2 6 2 6
ァスをかけると、ボロンのドーピングとスパッタリングが飽和する(釣り合う)時間がある ことがわ力つた。さらに、本実施の形態では、その飽和する時間が比較的長く安定し て使用し易いことがわ力つた。すなわち、プラズマ照射を開始すると、最初はドーズ量 が増加するが、その後、時間の変化によらずドーズ量はほとんど一定となる時間が続 き、さらに時間を増カロさせるとドーズ量は減少する。時間の変化によらずドーズ量が ほとんど一定となる時間をプロセスウィンドウとすることでドーズ量を正確に制御できる 。また、面内均一性も得ることができた。
[0054] この現象を利用すると、例えば、ボロンのドーズ量を 1 σ = 1%以内の精度で 2. 62 E15cm_2に設定できることを実証した。 B H /Heガス濃度を 0. 2%/99. 8%として
2 6
V 60V、ソースノ ヮ一 1500W、圧力 0. 9Paでプラズマドーピングすると 45秒から 6
DC
0秒の間のドーズ量の変化は、図 3曲線 bに示すように、 45秒で 2. 62E15cm_2であ り、 60秒で 2. 63E15cm_2であることから、わず力に 0. 01E15cm_2であった。この 間は、単位時間当たりわずかずつドーズ量は増加する。そのレートは、(2. 63E15 - 2. 62E15) / (60-45) =6. 7El lcm_2/秒と非常にゆっくりであり、時間変化に 対して非常に安定である。
[0055] 2. 62E15cm_2を狙った場合に 1 σ = 1%となるように許容できるドーズ量の最大 値と最小値の差(± 3 σ )は、 2. 52- 2. 68E15cm_2であるため、その差は約 1. 5E 14cm_2である。ドーピング時間が 45秒から 60秒までの間では、ドーズ量は 6. 7E1 lcm—2/秒とゆっくりの割合でしか変化しないので、 2. 62E15cm_2を狙ったl σ = 1 %のドーズ量制御ができる見通しが立つ。なぜなら、装置によって決まるドーピング 時間の制御は 100ミリ秒オーダーであり、大きく見積もってもドーピング時間が 1秒以 上ずれることはな!/ヽからである。
[0056] ここで、ドーズ量は、 1100°C、 3分の条件でァニールした後のシート抵抗力 推定 したものである力 ドーピング時間が 45秒から 60秒の間のサンプルのシート抵抗の 差はわず力に 107. 4〜107. Oohm/sqと 0. 4ohm/sqであった。 15秒の長い時間に わたってドーズ量の変化が小さ!/、ことは注目すべき新たな発見である。前述したが、 装置制御の観点から、プラズマドーピングを繰り返し 50秒行なうことに対する時間の ずれは、せいぜい数百マイクロ秒である。これにより、実際には、例えば 50秒 ±0. 5 秒程度のずれを気にすればよ 、ので、非常に安定した制御性の高 、ドーズ量の制 御方法と言うことができる。
[0057] 図 3力ら、 B H /Heガス濃度を 0. 025%/99. 975%とした場合は 60秒付近にボ
2 6
ロンのドーピングとスパッタリングが釣り合う時間範囲があることがわかる。また、 B H
2 6
/Heガス濃度が 0. 1%/99. 9%の場合は 60秒付近、 0. 2%/99. 8%の場合は 45 〜60秒付近、 0. 5%/99. 5%の場合は 60〜70秒付近、 0. 6%/99. 5%の場合は 60秒〜 100秒付近にボロンのドーピングとスパッタリングが釣り合う時間範囲がある。 この付近では、装置制御の観点力 のドーピング時間の制御に比べて、ドーズ量の 時間変化が非常に小さぐドーズ量の高精度の制御が可能であることは、 B H /He
2 6 ガス濃度を 0. 2%/99. 8%とした場合と同様の理論で説明可能である。
[0058] また、図 3の実験結果から時間変化に対してその変化が飽和したときのドーズ量と B
Hガス濃度との関係をまとめた結果を図 4に示す。縦軸は飽和したドーズ量、横軸
2 6
は B Hガス濃度である。この結果、 B Hガス濃度と飽和したドーズ量は 1対 1の対応
2 6 2 6
にあることがわ力つた。以上のことから、 B Hガス濃度を変化させることで、時間変化
2 6
に対してドーズ量変化がほとんど一定となるドーズ量の水準を変化させることができ、 時間変化に対してドーズ量変化がほとんど一定となるドーズ量の水準が所望のドー ズ量になるように B Hガス濃度を調整して、且つ、時間変化に対してドーズ量変化
2 6
がほとんど一定となる時間領域にプラズマドーピング時間を調整することで、ドーズ量 を所望の値に正確に制御できることを実証した。 [0059] これに対して、 B Hガス濃度を調整しただけでは時間のずれに対して安定性を欠
2 6
く。また、時間変化に対してドーズ量変化がほとんど一定となる時間領域以外で、プ ラズマドーピング時間を調整しただけでも時間のずれに対して安定性を欠く。さらに 時間変化に対してドーズ量変化がほとんど一定となる時間領域は、 B Hガス濃度に
2 6 よって違うので、各 B Hガス濃度にあった時間領域に調整しなければならない。これ
2 6
を行わな力つた場合には、ある B Hガス濃度では正確にドーズ量を調整できても、
2 6
違う B Hガス濃度では時間のずれに対して安定性を欠く。
2 6
[0060] 図 5、図 6はこのドーズ量制御の方法を用いて試作したプラズマドーピング後の基 板を 1075°C、 20秒でァニールした結果である。シート抵抗は、 200mm基板の端部 5 mmを除いた面内の 81箇所を測定した。ドーズ量が時間の変化に対して一定となる プラズマドーピング時間と B H /Heガス濃度を用いたことが特徴である。ここでは図 3
2 6
と図 4を参照しながら簡単に説明する。ある所定のバイアスに対して B H /Heガス濃
2 6 度を適切に設定すると、図 3のようにプラズマドーピング時間の変化に対して Bドーズ 量がほとんど変化しない飽和する時間帯をつくることができる。飽和する Bドーズ量は 、 B H /Heガス濃度を変化させることで図 4のように変化させることができる。すなわ
2 6
ち、ドーズ量を制御することができる。ここで図 5と図 6で用いたプラズマドーピング条 件は、図 3と図 8の図面上に矢印 a、 bで示したプラズマドーピング条件である。 aは図 5、 bは図 6の条件を示す。
[0061] 図 5は、ドーズ量制御の方法を用いて、 B H /Heガス濃度を 0.1%/99.9%としプラズ
2 6
マドーピング時間を 60秒とすることで Bドーズ量を 1.63E15cm-2に調整した場合の Rs 均一性の結果である。 Rsの平均は 194.0
ohm/sqで、均一性は 1 σで 2.25%であった。ドーズ量が飽和しない時間で試作した サンプルでは、均一性は 1 σで 5%から 10%程度であり、このように均一なものはできて おらず、ドーズ量が飽和する時間を選択したことによる有効な効果のひとつである。
[0062] 図 6は、ドーズ量制御の方法を用いて、 B H /Heガス濃度を 0.2%/99.8%としプラズ
2 6
マドーピング時間を 45秒とすることで Bドーズ量を 2.62E15cm— 2に調整した場合のガス 濃度と時間との関係を測定した結果を示す図である。 Rsの平均は 147.9
ohm/sqで、均一性は 1 σで 2.42%であった。このように、図 5と異なるドーズ量でも 2.5 %以下の良い水準の均一性を再現できることがわかる。
[0063] 一般的に、均一性は、 1 σの値が小さくなればなるほど均一性を良くする技術的難 易度は飛躍的に増大する。つまり、 10%のものを 5%に改善する難易度と 5%のものを 2.5 %に改善する難易度は大幅に後者の方が難しい。本発明を用いない場合には 5%以 上であった均一性が、本発明を用いることで 2.5%以下の均一性を容易に得られること は本発明の有効性を示すものである。
[0064] <実施例 2 >
次に、本発明の実施例 2として前記図 1で示した PD装置一 Αを用 、て 300mmのシ リコン基板に対してボロンのドーズ量とプラズマドーピング時間とを変化させプラズマ ドーピングを行った。
図 7は、プラズマドーピング時間とボロンドーズ量、面内均一性の関係を測定した結 果を示す図である。ボロンのドーズ量は、 30秒程度で時間の変化に対して飽和を始 めていることがわかる。また、ボロンドーズ量の面内均一性は、ドーズ量が飽和してさ らに 30秒程度経過した時間、すなわちプラズマドーピング時間が 60秒のときにもつと も良好な値を示した。
[0065] 図 8は、図 7で示した 300mm基板にボロンをプラズマドーピングした後、 1075°C、 20秒でァニールした後のシート抵抗の面内分布である。シート抵抗は、 300mm基 板の端部 3mmを除いた面内の 121箇所を測定した。図 9は、図 8の各面内分布で基 板中央を通る縦軸上のシート抵抗の分布を示したものである。また、図 10は、同様の 図であるが、シート抵抗をそれぞれの基板面内の平均値で除して規格ィ匕して表した 図である。
[0066] このように、ドーズ量がプラズマドーピング時間の変化に対して変化しな 、ようにな つて、さらにしばらくすると面内均一性も良いものが得られるようになる。これはドーズ 量力 プラズマドーピング時間の変化に対して変化しないようになってしばらくすると 、シリコン基板面内のドーズ量が少ない部分のドーズ量力 ドーズ量が飽和した部分 のドーズ量に追いつくためと考えられる。
[0067] 一方、ドーズ量が、プラズマドーピング時間の変化に対して変化しな 、ようになった 直後の時間をプラズマドーピング時間に設定すると、基板面内のドーズ量が少な 、 部分のドーズ量が、ドーズ量が飽和した部分のドーズ量に追いつかないために、面 内均一性は十分とは 、えな 、場合がある。
つまり、ドーズ量制御について十分であっても、さらに面内均一性を確保しようとす ると、プラズマドーピング時間をより最適に設定する必要がある場合もある。
[0068] 次に、本発明のメカニズムを図 9、図 10を参照して説明する。図 9、図 10において は、それぞれ 7秒(7sec)後、 30秒(30sec)後、 60秒(60sec)後のシート抵抗を示す 。最初にボロンが多数ドーピングされた部分(図 9、図 10の横軸- 150mmから Ommの 部分)は、時間が経過するに従ってドーズ量が相対的に早く飽和する。逆に、最初に ボロンがあまりドーピングされなかった部分(図 9、図 10の横軸 75mmから 150mmの部 分)は、ドーズ量が飽和するまでに相対的に多くの時間が掛かる。
[0069] ただし、ドーズ量が飽和しはじめてしばらく時間が経過すると、最初にボロンが多数 ドーピングされた部分はそれ以上なかなかボロンが注入されず、一方で最初にボロン があまりドーピングされな力つた部分はドーズ量が飽和に達するので、その差が小さ くなる。図 9、図 10で 60秒ドーピングした場合に、縦軸のシート抵抗のばらつき幅が 小さいのはそのためである。これによりシート抵抗の面内均一性を改善することがで きる。本発明の方法は、プラズマドーピングで面内均一性を確保する非常に有効な 手段である。同時にドーズ量の制御ができることは前述の通りである。
[0070] なお、実施例 1と実施例 2で採用した 1075°C、 20秒のァニール条件では、シート 抵抗の分布は、ドーズ量の分布と考えて差し支えない。ドーズ量とシート抵抗は 1対 1 の関係にある力もである。このような高温で比較的長い時間のァニール条件では、不 純物はほぼ完全に電気的に活性ィ匕されていると推測でき、そのことが 1対 1で対応す る理由として考えられる。
[0071] 次に、活性化工程にっ 、て述べる。これは PD装置に依存することなく共通である。
ァニールに際しては、ァニール装置の試料台上に、不純物イオンの供給されたシリコ ン基板を載置し、赤外線レーザーカゝらミラーで反射させたレーザー光をシリコン基板 の表面に照射することにより、シリコン基板の表面を加熱して活性ィ匕することができる
[0072] なお、活性化工程にお!、ては、活性ィ匕処理室として、フラッシュランプ処理室を用 いることも可能である。フラッシュランプ処理室は、容器と、試料台と、窓と、フラッシュ ランプとからなる。試料台上に、不純物イオンが供給されたシリコン基板を載置し、フ ラッシュランプ力 の放射光をシリコン基板の表面に照射することにより、シリコン基板 の表面を加熱して活性ィ匕することができる。
[0073] なお、前記実施の形態では、活性化工程にお!ヽては、活性ィ匕処理室としてフラッシ ュランプ処理室を用いた力 現在半導体の量産工場で用いられて!/、るようなタンダス テンハロゲンランプ処理室を用いることも可能である。
[0074] 以上述べた本発明の実施の形態においては、本発明の適用範囲のうち、処理室の 構成、形状、配置等に関して様々なノ リエーシヨンのうちの一部を例示したに過ぎな い。本発明の適用にあたり、ここで例示した以外にも様々なノ リエーシヨンが考えられ ることは、いうまでもない。
[0075] また、試料がシリコン基板よりなる半導体基板である場合を例示したが、他の様々な 材質の試料を処理するに際して、本発明を適用することができる。例えば、歪みシリ コン基板や SOI基板にも有効である。これらはプラズマから見える表面形状だけを考 えた場合、シリコン基板と同様だ力もである。さらに、 Fin
FETの場合でも有効である。 Fin FETの場合でも、一般的に、その構造は 1 m、或 いはそれ以下のオーダーの寸法である。プラズマのシースの幅は lmm以上のォー ダーである。よって、プラズマ力も見える表面形状だけを考えた場合、 Fin
FETの構造は無視できる程度に小さぐシリコン基板と同様だ力もである。
[0076] また、不純物がボロンである場合について例示した力 試料がシリコンよりなる半導 体基板である場合、特に不純物が砒素、燐、ボロン、アルミニウムまたはアンチモンで ある場合に本発明は有効である。これは、トランジスタ部分に浅い接合を形成するこ とができるカゝらである。
[0077] また、本発明は、不純物を含むガス濃度が低濃度である場合に有効であり、特に、 高精度にドーズ量のコントロールの必要なプラズマドーピング方法として有効である。
[0078] また、プラズマドーピング工程にぉ 、て、反応容器内に供給するガスがドーピング 原料を含むガスである場合を例示したが、反応容器内に供給するガスがドーピング 原料を含まず、固体状の不純物からドーピング原料を発生させる場合にも本発明は 有効である。つまり、不純物原子を含む固体を反応容器内に配置し、 Heなどのブラ ズマを励起させて不純物原子をプラズマ化してプラズマドーピングさせるなどの場合 にも本発明は有効である。
[0079] また、プラズマドーピングを行うに際して、プラズマが接して 、る反応容器の内壁の 温度をほぼ一定とした状態で処理を行うことが好ましい。これは、反応容器の内壁の 温度が処理の途中で変化すると内壁の温度における不純物原子の付着確率が変化 し、また、内壁に付着した不純物元素を含む薄膜からプラズマ内に放出される不純 物原子の数が変化するため、単位時間当たりのドーズ量が変化してしまうためである 。反応容器内壁の温度を一定に保つ方法としては、ヒーターによって加熱する方法 や、冷媒を循環させることによって冷却する方法など力 適宜選択することができる。 また、反応容器中の不純物を含むガスの濃度を調整するに際し、ガスの供給量を 調整して濃度そのものを直接調整する方法だけでなぐ反応容器内壁の温度を下げ て、所定の不純物を析出させることにより、当該不純物の濃度を低下させたり、反応 容器内壁の温度を上げて、所定の不純物の析出を抑制することにより、当該不純物 の濃度を維持したり、反応容器内壁温度の調整により、ドーズ量を調整することも可 能である。また、フィードバック機能を備えることにより、反応容器内壁の温度制御を しながら濃度制御を行うことも可能である。
[0080] また、プラズマドーピングを行うに際して不純物元素を含むガスの濃度を処理の途 中で下げても良 、。この場合の適切な処理方法につ!、て説明する。
まず、不純物元素を含むガスの濃度が高 、状態でプラズマドーピングを行うことに より、処理の初期における単位時間当たりのドーズ量を高くする。
次!、で不純物元素を含むガスの濃度が低 、状態でプラズマドーピングを行う。そし て、ドーズ量が時間依存性を持たず一定となる時間範囲でプラズマドーピング処理を 停止する。このような手順で処理することにより、初期から不純物元素を含むガスの濃 度が低 、状態で処理した場合と比較して、総処理時間の短縮を図ることが可能とな る。
この場合も、反応容器内壁の温度を最初上げておき、最大限に不純物を含むガス の濃度を高めておき、続いて反応容器内壁の温度を下げ、不純物の内壁への析出 を促進し、ガスの濃度を下げる方法も有効である。
産業上の利用可能性
本発明のプラズマドーピング方法は、経済的で、不純物導入量を精密に制御でき、 浅い不純物拡散領域を形成するプラズマドーピング方法を実現することが可能であり 、半導体の不純物導入工程をはじめ、液晶などで用いられる薄膜トランジスタの製造 等の用途にも適用できる。

Claims

請求の範囲
[1] 試料に不純物イオンを含むガスプラズマを所定時間、所定濃度で照射し、前記試 料表面に不純物導入層を形成する方法であって、
ドーズ量が時間依存性を持たず一定となるように、ドーピング時間と、不純物を含む ガスプラズマの濃度を設定して、ドーズ量が時間依存性を持たず一定となる時間範 囲でプラズマドーピングを行なうプラズマドーピング方法。
[2] 請求項 1に記載のプラズマドーピング方法であって、
不純物の基板表面へのドーピングと、基板表面力 のスパッタリングとが飽和状態と なるように、ドーピング時間と、不純物を含むガスプラズマの濃度を設定して、プラズ マドーピングを行なうプラズマドーピング方法。
[3] 請求項 2に記載のプラズマドーピング方法であって、
ドーピング時間を、
基板面内のドーズ量が少な 、部分のドーズ量が、ドーズ量が飽和した部分のドー ズ量に追いつく程度の長さに設定したプラズマドーピング方法。
[4] 請求項 1乃至 3の 、ずれかに記載のプラズマドーピング方法であって、
前記不純物イオンを含むガスプラズマの濃度を変化させることで時間依存性を持た ず一定となるドーズ量の水準を変化させるプラズマドーピング方法。
[5] 請求項 1乃至 4の 、ずれかに記載のプラズマドーピング方法であって、
不純物原子を含むガスの濃度を変化させることで前記不純物イオンを含むガスブラ ズマの濃度を変化させるプラズマドーピング方法。
[6] 請求項 1乃至 4の 、ずれかに記載のプラズマドーピング方法であって、
不純物原子を含むガスの圧力、ソースパワーを変化させることで前記不純物イオン を含むガスプラズマの濃度を変化させるプラズマドーピング方法。
[7] 請求項 1乃至 5の 、ずれかに記載のプラズマドーピング方法であって、
前記ガスプラズマの濃度は、前記ガスプラズマ中のイオンとラジカルとガスの濃度が 、前記不純物イオンの前記基板表面へのドーピングと、前記基板表面からのスパッタ リングとが時間の増加に対して飽和状態となるように設定されるプラズマドーピング方 法。
[8] 請求項 1乃至 7の 、ずれかに記載のプラズマドーピング方法であって、
前記不純物イオンを含むガスプラズマは、ボロン原子と水素原子からなる分子 (B H )と Heの混合ガスプラズマであるプラズマドーピング方法。
[9] 請求項 8に記載のプラズマドーピング方法であって、
前記不純物イオンを含むガスプラズマは、 B Hと Heの混合ガスプラズマであるプ
2 6
ラズマドーピング方法。
[10] 請求項 9に記載のプラズマドーピング方法であって、
前記 B Hと Heの混合ガスプラズマ中の B Hガス濃度は 0. 01%以上、 1%以下
2 6 2 6
であるプラズマドーピング方法。
[11] 請求項 10に記載のプラズマドーピング方法であって、
前記 B Hと Heの混合ガスプラズマ中の B Hガス濃度は 0. 025%以上、 0. 6%
2 6 2 6
以下であるプラズマドーピング方法。
[12] 請求項 11に記載のプラズマドーピング方法であって、
ノィァス電圧 V 力 60V以下であるプラズマドーピング方法。
DC
[13] 請求項 8に記載のプラズマドーピング方法であって、
前記不純物イオンを含むガスプラズマは、 BFと Heの混合ガスプラズマであるプラ
3
ズマドーピング方法。
[14] 請求項 1乃至 13のいずれかに記載のプラズマドーピング方法であって、
前記試料はシリコン基板であるプラズマドーピング方法。
[15] 試料に不純物イオンを含むガスプラズマを所定時間、所定濃度で照射し、前記試 料表面に不純物導入層を形成する方法であって、
ドーズ量が時間依存性を持たず一定となる時間領域でプラズマドーピングを行なう プラズマドーピング方法。
[16] 請求項 1乃至 15のいずれかに記載のプラズマドーピング方法であって、
プラズマが接している反応容器の内壁の温度をほぼ一定とした状態でプラズマドー ビングを行うプラズマドーピング方法。
[17] 請求項 16に記載のプラズマドーピング方法であって、
プラズマが接している反応容器の内壁を加熱した状態でプラズマドーピングを行う プラズマドーピング方法。
[18] 請求項 16に記載のプラズマドーピング方法であって、
プラズマが接している反応容器の内壁を冷却した状態でプラズマドーピングを行う プラズマドーピング方法。
[19] 請求項 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17および 18の!ヽずれ力 に記載のプラズマドーピング方法であって、
不純物元素を含むガスの濃度を、処理の途中で低下させるようにしたプラズマドー ビング方法。
PCT/JP2005/022799 2004-12-13 2005-12-12 プラズマドーピング方法 WO2006064772A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602005025015T DE602005025015D1 (de) 2004-12-13 2005-12-12 Plasma-dotierungsverfahren
KR1020077013165A KR101123788B1 (ko) 2004-12-13 2005-12-12 플라즈마 도핑 방법
JP2006548833A JP5102495B2 (ja) 2004-12-13 2005-12-12 プラズマドーピング方法
EP05814536A EP1826814B8 (en) 2004-12-13 2005-12-12 Plasma doping method
US11/647,149 US7407874B2 (en) 2004-12-13 2006-12-29 Plasma doping method
US11/741,861 US7348264B2 (en) 2004-12-13 2007-04-30 Plasma doping method
US12/139,968 US20080318399A1 (en) 2004-12-13 2008-06-16 Plasma doping method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-360122 2004-12-13
JP2004360122 2004-12-13
JP2005128301 2005-04-26
JP2005-128301 2005-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/647,149 Continuation US7407874B2 (en) 2004-12-13 2006-12-29 Plasma doping method

Publications (1)

Publication Number Publication Date
WO2006064772A1 true WO2006064772A1 (ja) 2006-06-22

Family

ID=36587827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022799 WO2006064772A1 (ja) 2004-12-13 2005-12-12 プラズマドーピング方法

Country Status (8)

Country Link
US (3) US7407874B2 (ja)
EP (1) EP1826814B8 (ja)
JP (1) JP5102495B2 (ja)
KR (1) KR101123788B1 (ja)
DE (1) DE602005025015D1 (ja)
SG (1) SG144152A1 (ja)
TW (1) TWI390610B (ja)
WO (1) WO2006064772A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059827A1 (fr) * 2006-11-15 2008-05-22 Panasonic Corporation Procédé de dopage de plasma
WO2008100824A1 (en) * 2007-02-16 2008-08-21 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
WO2009016778A1 (ja) 2007-07-27 2009-02-05 Panasonic Corporation 半導体装置及びその製造方法
US7622725B2 (en) 2005-03-30 2009-11-24 Panaosnic Corporation Impurity introducing apparatus and impurity introducing method
JP2010503202A (ja) * 2006-08-31 2010-01-28 アプライド マテリアルズ インコーポレイテッド 高い吸光係数を有する光吸収層を堆積させるための低温hdpcvd過程による注入ドーパントの動的表面アニーリング法
US7800165B2 (en) 2007-01-22 2010-09-21 Panasonic Corporation Semiconductor device and method for producing the same
US8004045B2 (en) 2007-07-27 2011-08-23 Panasonic Corporation Semiconductor device and method for producing the same
US8030187B2 (en) 2007-12-28 2011-10-04 Panasonic Corporation Method for manufacturing semiconductor device
JP2011527124A (ja) * 2008-07-06 2011-10-20 アイメック 半導体構造のドープ方法およびその半導体デバイス
US8063437B2 (en) 2007-07-27 2011-11-22 Panasonic Corporation Semiconductor device and method for producing the same
US8324685B2 (en) 2009-02-12 2012-12-04 Panasonic Corporation Semiconductor device having a fin-type semiconductor region
US8409939B2 (en) 2009-12-17 2013-04-02 Panasonic Corporation Semiconductor device and method for fabricating the same
US8574972B2 (en) 2009-12-28 2013-11-05 Panasonic Corporation Method for fabricating semiconductor device and plasma doping apparatus

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596427A4 (en) * 2003-02-19 2009-06-10 Panasonic Corp PROCESS FOR INTRODUCING CONTAMINATION
CN101436534B (zh) * 2003-10-09 2012-02-08 松下电器产业株式会社 制作器件的方法以及采用该方法形成的已加工材料
WO2005119745A1 (ja) * 2004-06-04 2005-12-15 Matsushita Electric Industrial Co., Ltd. 不純物導入方法
SG144152A1 (en) * 2004-12-13 2008-07-29 Matsushita Electric Ind Co Ltd Plasma doping method
KR20070115907A (ko) * 2005-03-31 2007-12-06 마쯔시다덴기산교 가부시키가이샤 플라즈마 도핑 방법 및 장치
US20080075880A1 (en) * 2006-09-26 2008-03-27 Anthony Renau Non-doping implantation process utilizing a plasma ion implantation system
WO2008041702A1 (fr) * 2006-10-03 2008-04-10 Panasonic Corporation Procédé et appareil de dopage de plasma
CN101681843B (zh) * 2007-06-20 2012-05-09 株式会社半导体能源研究所 半导体装置的制造方法
US20090104719A1 (en) * 2007-10-23 2009-04-23 Varian Semiconductor Equipment Associates, Inc. Plasma Doping System with In-Situ Chamber Condition Monitoring
KR100908820B1 (ko) * 2007-11-01 2009-07-21 주식회사 하이닉스반도체 플라즈마 도핑 방법 및 그를 이용한 반도체 소자의제조방법
CN102124543B (zh) * 2008-08-15 2013-03-13 株式会社爱发科 等离子体掺杂方法及半导体装置的制造方法
US7994016B2 (en) * 2009-11-11 2011-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method for obtaining quality ultra-shallow doped regions and device having same
US8796124B2 (en) 2011-10-25 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Doping method in 3D semiconductor device
US8574995B2 (en) 2011-11-10 2013-11-05 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain doping method in 3D devices
GB201202128D0 (en) * 2012-02-08 2012-03-21 Univ Leeds Novel material
US9224644B2 (en) 2012-12-26 2015-12-29 Intermolecular, Inc. Method to control depth profiles of dopants using a remote plasma source
US9558946B2 (en) * 2014-10-03 2017-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and methods of forming FinFETs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179592A (ja) * 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd プラズマドーピング方法およびデバイス

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912065A (en) * 1987-05-28 1990-03-27 Matsushita Electric Industrial Co., Ltd. Plasma doping method
KR930003857B1 (ko) * 1987-08-05 1993-05-14 마쯔시다덴기산교 가부시기가이샤 플라즈마 도우핑방법
JPH04368763A (ja) 1991-06-17 1992-12-21 Matsushita Electric Ind Co Ltd イオン照射処理装置
JPH0536620A (ja) 1991-07-25 1993-02-12 Canon Inc 半導体表面処理方法及び装置
US5572038A (en) * 1993-05-07 1996-11-05 Varian Associates, Inc. Charge monitor for high potential pulse current dose measurement apparatus and method
US5711812A (en) * 1995-06-06 1998-01-27 Varian Associates, Inc. Apparatus for obtaining dose uniformity in plasma doping (PLAD) ion implantation processes
JP3340318B2 (ja) 1995-08-10 2002-11-05 松下電器産業株式会社 不純物導入装置及び不純物導入方法
US5851906A (en) * 1995-08-10 1998-12-22 Matsushita Electric Industrial Co., Ltd. Impurity doping method
US7118996B1 (en) * 1996-05-15 2006-10-10 Semiconductor Energy Laboratory Co., Ltd. Apparatus and method for doping
JPH1154451A (ja) * 1997-08-07 1999-02-26 Mitsubishi Electric Corp 半導体装置の製造方法および半導体装置
JP2000114198A (ja) 1998-10-05 2000-04-21 Matsushita Electric Ind Co Ltd 表面処理方法および装置
US6383901B1 (en) * 2001-01-25 2002-05-07 Macronix International Co., Ltd. Method for forming the ultra-shallow junction by using the arsenic plasma
US6531367B2 (en) * 2001-03-20 2003-03-11 Macronix International Co., Ltd. Method for forming ultra-shallow junction by boron plasma doping
US20030153101A1 (en) * 2001-04-09 2003-08-14 Michihiko Takase Method for surface treatment and system for fabricating semiconductor device
US20020187614A1 (en) * 2001-04-16 2002-12-12 Downey Daniel F. Methods for forming ultrashallow junctions with low sheet resistance
US7135423B2 (en) * 2002-05-09 2006-11-14 Varian Semiconductor Equipment Associates, Inc Methods for forming low resistivity, ultrashallow junctions with low damage
KR100703121B1 (ko) * 2002-06-26 2007-04-05 세미이큅, 인코포레이티드 이온 주입 방법
JP4013674B2 (ja) 2002-07-11 2007-11-28 松下電器産業株式会社 プラズマドーピング方法及び装置
US7238597B2 (en) * 2002-09-27 2007-07-03 Brontek Delta Corporation Boron ion delivery system
FR2847383B1 (fr) * 2002-11-14 2005-04-15 St Microelectronics Sa Procede de fabrication d'un transistor mos de longueur de grille reduite, et circuit integre comportant un tel transistor
US20040147070A1 (en) * 2003-01-24 2004-07-29 National Chiao-Tung University Ultra-shallow junction formation for nano MOS devices using amorphous-si capping layer
EP1596427A4 (en) * 2003-02-19 2009-06-10 Panasonic Corp PROCESS FOR INTRODUCING CONTAMINATION
JP2005005328A (ja) 2003-06-09 2005-01-06 Matsushita Electric Ind Co Ltd 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置
WO2005020306A1 (ja) 2003-08-25 2005-03-03 Matsushita Electric Industrial Co., Ltd. 不純物導入層の形成方法及び被処理物の洗浄方法並びに不純物導入装置及びデバイスの製造方法
US20050045507A1 (en) * 2003-08-29 2005-03-03 Meyer Scott Edward Storage box for HotWheelsR or MatchboxR die-cast model vehicles
JP4303662B2 (ja) 2003-09-08 2009-07-29 パナソニック株式会社 プラズマ処理方法
US7199064B2 (en) * 2003-09-08 2007-04-03 Matsushita Electric Industrial Co., Ltd. Plasma processing method and apparatus
SG144152A1 (en) * 2004-12-13 2008-07-29 Matsushita Electric Ind Co Ltd Plasma doping method
KR101246869B1 (ko) * 2005-03-15 2013-03-25 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 플라즈마 이온 주입에서 프로파일 조정
US7601404B2 (en) * 2005-06-09 2009-10-13 United Microelectronics Corp. Method for switching decoupled plasma nitridation processes of different doses
US7879701B2 (en) * 2005-06-30 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179592A (ja) * 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd プラズマドーピング方法およびデバイス

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622725B2 (en) 2005-03-30 2009-11-24 Panaosnic Corporation Impurity introducing apparatus and impurity introducing method
US7626184B2 (en) 2005-03-30 2009-12-01 Panasonic Corporation Impurity introducing apparatus and impurity introducing method
JP2010503202A (ja) * 2006-08-31 2010-01-28 アプライド マテリアルズ インコーポレイテッド 高い吸光係数を有する光吸収層を堆積させるための低温hdpcvd過程による注入ドーパントの動的表面アニーリング法
JP5237820B2 (ja) * 2006-11-15 2013-07-17 パナソニック株式会社 プラズマドーピング方法
WO2008059827A1 (fr) * 2006-11-15 2008-05-22 Panasonic Corporation Procédé de dopage de plasma
US7790586B2 (en) 2006-11-15 2010-09-07 Panasonic Corporation Plasma doping method
US8105926B2 (en) 2007-01-22 2012-01-31 Panasonic Corporation Method for producing a semiconductor device by plasma doping a semiconductor region to form an impurity region
CN101601138B (zh) * 2007-01-22 2012-07-25 松下电器产业株式会社 半导体装置及其制造方法
US7800165B2 (en) 2007-01-22 2010-09-21 Panasonic Corporation Semiconductor device and method for producing the same
CN101641764B (zh) * 2007-02-16 2012-03-07 瓦里安半导体设备公司 多阶等离子体掺杂基板的方法
US7820533B2 (en) 2007-02-16 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
JP2010519735A (ja) * 2007-02-16 2010-06-03 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 改良型ドーズ量制御付きマルチステップ・プラズマドーピング方法
WO2008100824A1 (en) * 2007-02-16 2008-08-21 Varian Semiconductor Equipment Associates, Inc. Multi-step plasma doping with improved dose control
US8004045B2 (en) 2007-07-27 2011-08-23 Panasonic Corporation Semiconductor device and method for producing the same
US8063437B2 (en) 2007-07-27 2011-11-22 Panasonic Corporation Semiconductor device and method for producing the same
WO2009016778A1 (ja) 2007-07-27 2009-02-05 Panasonic Corporation 半導体装置及びその製造方法
US8536000B2 (en) 2007-07-27 2013-09-17 Panasonic Corporation Method for producing a semiconductor device have fin-shaped semiconductor regions
US8030187B2 (en) 2007-12-28 2011-10-04 Panasonic Corporation Method for manufacturing semiconductor device
JP2011527124A (ja) * 2008-07-06 2011-10-20 アイメック 半導体構造のドープ方法およびその半導体デバイス
US8324685B2 (en) 2009-02-12 2012-12-04 Panasonic Corporation Semiconductor device having a fin-type semiconductor region
US8409939B2 (en) 2009-12-17 2013-04-02 Panasonic Corporation Semiconductor device and method for fabricating the same
US8574972B2 (en) 2009-12-28 2013-11-05 Panasonic Corporation Method for fabricating semiconductor device and plasma doping apparatus

Also Published As

Publication number Publication date
TWI390610B (zh) 2013-03-21
TW200633025A (en) 2006-09-16
EP1826814B8 (en) 2011-04-13
US7348264B2 (en) 2008-03-25
EP1826814B1 (en) 2010-11-24
EP1826814A4 (en) 2008-07-02
JPWO2006064772A1 (ja) 2008-06-12
EP1826814A1 (en) 2007-08-29
KR20070086048A (ko) 2007-08-27
DE602005025015D1 (de) 2011-01-05
KR101123788B1 (ko) 2012-03-12
SG144152A1 (en) 2008-07-29
US20070190759A1 (en) 2007-08-16
US20080318399A1 (en) 2008-12-25
US20070166846A1 (en) 2007-07-19
JP5102495B2 (ja) 2012-12-19
US7407874B2 (en) 2008-08-05

Similar Documents

Publication Publication Date Title
JP5102495B2 (ja) プラズマドーピング方法
TWI385718B (zh) Plasma doping method
US7682954B2 (en) Method of impurity introduction, impurity introduction apparatus and semiconductor device produced with use of the method
JP5237820B2 (ja) プラズマドーピング方法
JP4544447B2 (ja) プラズマドーピング方法
US8889534B1 (en) Solid state source introduction of dopants and additives for a plasma doping process
TWI404110B (zh) 用於工件之電漿植入之方法與電漿摻雜裝置
JP4447555B2 (ja) 不純物導入の制御方法
TW201218253A (en) Plasma doping apparatus and plasma doping method
JP2015128108A (ja) ドーピング方法、ドーピング装置及び半導体素子の製造方法
WO2002084724A1 (fr) Procede de traitement de surface et systeme de fabrication d&#39;un dispositif a semi-conducteur
JP2005005328A (ja) 不純物導入方法、不純物導入装置およびこれを用いて形成された半導体装置
JP5097538B2 (ja) プラズマドーピング方法およびこれに用いられる装置
WO2013164940A1 (ja) 被処理基体にドーパントを注入する方法、及びプラズマドーピング装置
KR20140083882A (ko) 플라즈마 도핑 장치 및 플라즈마 도핑 방법
JP2004039874A (ja) 表面処理方法および半導体装置の製造装置
JP2013045826A (ja) プラズマドーピング方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11647149

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006548833

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005814536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077013165

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042734.5

Country of ref document: CN

Ref document number: 2541/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11647149

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005814536

Country of ref document: EP