WO2006062206A1 - Cis系薄膜太陽電池及びその作製方法 - Google Patents

Cis系薄膜太陽電池及びその作製方法 Download PDF

Info

Publication number
WO2006062206A1
WO2006062206A1 PCT/JP2005/022698 JP2005022698W WO2006062206A1 WO 2006062206 A1 WO2006062206 A1 WO 2006062206A1 JP 2005022698 W JP2005022698 W JP 2005022698W WO 2006062206 A1 WO2006062206 A1 WO 2006062206A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cis
alkali
back electrode
metal back
Prior art date
Application number
PCT/JP2005/022698
Other languages
English (en)
French (fr)
Inventor
Katsumi Kushiya
Yoshiaki Tanaka
Masaru Onodera
Manabu Tanaka
Yoshinori Nagoya
Original Assignee
Showa Shell Sekiyu K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu K.K. filed Critical Showa Shell Sekiyu K.K.
Priority to EP05814238.1A priority Critical patent/EP1833096A4/en
Priority to US11/721,381 priority patent/US20080271781A1/en
Priority to CN2005800425138A priority patent/CN101076895B/zh
Publication of WO2006062206A1 publication Critical patent/WO2006062206A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention blocks and controls an alkali component of a CIS-based thin film solar cell (when a light absorption layer is formed on a metal back electrode layer, the glass substrate force under the metal back electrode layer also diffuses). ) Alkaline barrier layer and method for producing the same.
  • the present invention relates to a multi-component compound semiconductor thin film as a light absorption layer, particularly a group III-VI chalcopyra.
  • Indium diselenide gallium Cu (InGaXSSe)
  • the present invention relates to a CIS-based thin-film solar cell having a pn heterojunction composed of a shaped window layer (transparent conductive film).
  • a conventional CIS-based thin-film solar cell 1B has a basic structure as shown in FIG. 7, and includes a substrate 2 made of blue glass, and a metal back electrode layer (generally, Mo) 3, p A pn heterojunction device having a substrate structure in which high-quality thin film layers are sequentially laminated in the order of a CIS-based light absorption layer 4, a high-resistance buffer layer 5, and an n-type window layer (transparent conductive film) 6.
  • blue plate glass is used because it is inexpensive as its substrate 2.
  • heat treatment is performed up to about 600 ° C., and by this heat treatment, alkali components (for example, Na, Ca, Mg, K) from the blue plate glass as the substrate 2 are thermally diffused into the light absorption layer 4. . If this alkali component is excessively thermally diffused into the light absorption layer, the light absorption layer 4 is peeled off from the interface with the metal back electrode layer, and deliquescent Na is non-uniformly distributed in the light absorption layer. Inclusion of light causes instability of the light absorption layer itself or shortens the lifetime.
  • alkali components for example, Na, Ca, Mg, K
  • an alkali barrier layer such as an oxide or nitride is formed.
  • Each of the above research examples is an example in which an independent alkali barrier layer such as an oxide or nitride is formed on a blue glass substrate, and the diffusion of alkali components on the blue glass substrate is strong.
  • Is related to the film forming method see, for example, Non-Patent Document 6
  • it has been reported that diffusion of alkali components can be blocked only partially by a metal back electrode layer alone without an alkali barrier layer for example, See Non-Patent Document 5.
  • Non-Patent Document 1 David F. Dawson-Elli, el.al: “Substrate Influences On CIS Device Performance Proc. 1st World Conference of Photovoltaic Energy Conversion (l 995) 152-155
  • Patent Document 2 C. Jensen: "The Study of Base Electrode / Substrate Interactions By U se of Air Anneal Imagingj Proc. 13th European Photovoltaic Solar Energy Conferenc e (1995)
  • Patent Document 3 V. Probst, el.al: “Large Area CIS Formation By Rapid Thermal Proces sing Of Stacked elemental Layers” Proc. 17th European Photovoltaic Solar Energy Conference (2002) 1005-1010
  • Patent Document 4 V. Probst, el.al: ⁇ Advanced stacked a CIS Formation By Rapid Thermal Processing Of Stacked Elemental Layer Process For Cu (InGa) Se2 Thin Film Phot voltaicDevices J Mat. Res. Soc. Symp. Proc. Vol 426 (1996) 165-176
  • Patent Document 5 J. Holz'el.al: Proc. 12th European Photovoltaic Solar Energy Conferen ce (1994) 1592-1595
  • Patent Document 6 R.J.Araujo.el.al: ⁇ Sodium Redistribution Between Oxide Phases '' Journal of Non-Crystalline Solids 197 (1996) 154-163
  • the alkali barrier layer of the CIS-based thin film solar cell that has been published so far is an independent ultrathin film layer such as an oxide or a nitride.
  • an independent ultrathin film layer such as an oxide or a nitride.
  • an object of the present invention is to provide an alkali barrier layer that can control the diffusion amount of an alkali component necessary for producing a high-quality light absorption layer in order to improve solar cell performance (for example, conversion efficiency, open circuit voltage). It is to provide a method for manufacturing with high reproducibility.
  • an object of the present invention is to provide a CIS-based light absorption device having device characteristics that can achieve high conversion efficiency.
  • An object of the present invention is to provide a production method capable of securing the diffusion amount of an alkali component necessary for producing a light collecting layer.
  • an alkali barrier layer capable of completely shutting out the diffusion of the alkaline component having the strength of a blue plate glass substrate is intentionally formed, and a metal back electrode layer is formed thereon, and further, a necessary amount of
  • Another problem of the present invention is that a manufacturing method comprising an alkali barrier layer forming step and a Na-containing layer forming step capable of completely shutting down diffusion of alkali components from a soda glass substrate is unnecessary. It is to provide a manufacturing method.
  • a thin film layer such as an oxide or a nitride and a metal back electrode layer are continuously provided at a constant substrate transport speed or rotational speed in the same film forming apparatus. It is providing the preparation method which can form into a film.
  • an oxide or nitride is used.
  • the part of the thin film layer is reactive in Ar gas mixed with oxygen using a metal target (for example, metal Si: B target in the case of silica film) alloyed with boron (B) etc. by DC sputtering.
  • a metal target for example, metal Si: B target in the case of silica film
  • boron (B) etc. by DC sputtering.
  • Another object of the present invention is to provide a high-quality alkali barrier layer and metal back electrode layer without increasing the device cost without the risk of high resistance due to oxidation of the metal back electrode layer. It is to provide a production method for continuously forming a film at a constant substrate transport speed in the same sputter film forming apparatus.
  • the present invention solves the above-described problems, and includes a glass substrate, an alkali-free layer, a laminated metal back electrode layer, a p-type CIS light absorbing layer, a high-resistance buffer layer, and an n-type window layer.
  • a CIS-based thin film solar cell which is a pn heterojunction device having a substrate structure stacked in the order of, wherein the alkali-free layer is a glass substrate force when the light absorption layer is formed.
  • Alkali component to the light absorption layer This is a CIS-based thin-film solar cell that has an alkali barrier function to prevent and control the thermal diffusion of water.
  • the present invention is a substrate structure in which a glass substrate, an alkali-free layer, a laminated metal back electrode layer, a p-type CIS light absorbing layer, a high-resistance buffer layer, and an n-type window layer are laminated in this order.
  • a CIS-based thin film solar cell which is a pn heterojunction device of the above, wherein the alkali-free layer and the first layer of the metal back electrode layer of the laminated structure form the light absorption layer when forming the light absorption layer.
  • This is a CIS-based thin-film solar cell that has an alkali barrier function to prevent and control the thermal diffusion of alkali components into the layer.
  • the present invention is the CIS-based thin-film solar cell according to (1) or (2), wherein the alkali-free layer also has an oxide or nitride force.
  • the alkali-free layer is an oxide, a nitride, or a special compound, preferably silica (SiO or SiO 2), wherein (1), (2) or (3 CIS thin
  • the present invention provides silica (SiO 2) and Z or Z having the alkali-free laminar stoichiometric composition.
  • the thickness of the alkali-free layer is in the range of 3 to: LOOnm, preferably 20 to 50 nm, and any one of the forces (1) to (5)
  • the present invention provides the first layer of the metal back electrode layer according to (2), wherein the metal crystal grains are fine and dense and the crystal grain size is adjusted.
  • CIS thin film solar power It is a pond.
  • the present invention is the CIS-based thin-film solar cell according to (2), wherein the total thickness of the first layer of the alkali-free layer and the metal back electrode layer is 50 to 110 nm.
  • the thickness force of the metal back electrode layer having the laminated structure is in the range of 100 to 1000 nm, and preferably in the range of 300 to 500 nm.
  • the present invention provides a substrate structure in which a glass substrate, an alkali-free layer, a laminated metal back electrode layer, a p-type CIS light absorbing layer, a high-resistance buffer layer, and an n-type window layer are laminated in this order.
  • a metal back electrode layer having a laminated structure is formed on the alkali-free layer, and when the light absorption layer is formed on the alkali-free layer, an alkali component from the glass substrate to the light absorption layer is formed.
  • the present invention provides a substrate structure in which a glass substrate, an alkali-free layer, a laminated metal back electrode layer, a p-type CIS light absorbing layer, a high-resistance buffer layer, and an n-type window layer are laminated in this order.
  • the glass substrate force prevents the thermal diffusion of the alkali component to the light absorption layer and retains an alkali barrier function for control. This is a method for producing a CIS-based thin film solar cell.
  • the alkali-free layer is formed by using a silica target and forming a film by RF sputtering in an inert gas such as Ar gas, or conductive metal metal.
  • an inert gas such as Ar gas, or conductive metal metal.
  • metal silicon targets alloyed with metal elements such as boron
  • the power applied to the target during sputtering of the alkali-free layer is in the range of 0.5 to 1.5 WZcm 2 in the RF sputtering method, and in the DC sputtering method, In the range of 1.0 to 3.
  • OWZcm 2 the crystal grain size (granularity) force of the first layer of the metal back electrode layer is less than SlOnm, and preferably the size is in the range of 3 to 5 nm.
  • the present invention provides a film forming pressure force in the range of 0.5 to 5 Pa (pascal) during sputtering of the alkali-free layer, and preferably 0.5 to 1.5 Pa (pascal).
  • the film forming pressure is determined so that the particle size of the first layer of the metal back electrode layer is in the range of 3 to 5 nm.
  • the CIS system according to (11) or (12) It is a manufacturing method of a thin film solar cell.
  • the first layer of the metal back electrode layer having the above-described laminated structure is formed by continuously applying the power applied to the target at the time of sputtering film formation.
  • the power applied to the target during sputtering deposition of the metal back electrode layer is in the range of 1Z8 to 1Z2, and by adjusting the voltage applied to the target, the particle size is less than lOnm, preferably 3-5nm.
  • the present invention provides the CIS-based thin film according to (11) or (12), wherein the metal back electrode layer having the laminated structure is continuously formed at a constant substrate transport speed. This is a method for manufacturing solar cells.
  • the metal back electrode layer having the above-described laminated structure uses a metal (for example, molybdenum (Mo)) as a target and is formed in an inert Ar gas by a DC sputtering method.
  • a metal for example, molybdenum (Mo)
  • Mo molybdenum
  • the metal back electrode layer having the above-described laminated structure selects a metal that is corrosion-resistant to selenium, and includes molybdenum (Mo), titanium (Ti), tantalum (Ta), and the like. Relationship between compound formation with any one of the refractory metals or silica layer (eg MoSiO etc.)
  • the present invention provides a pressure between a non-alkali layer film forming chamber for forming the alkali-free layer and a metal back electrode layer film forming chamber for forming the metal back electrode layer.
  • a sputtering gas atmosphere for example, Ar gas, Ar + O mixed gas
  • the metal back electrode layer is continuously formed in the same sputtering apparatus, and an excessive heat of the alkali component in the light absorption layer is formed.
  • the light-absorbing layer that reduces the solar cell performance conversion efficiency, open-circuit voltage
  • the light-absorbing layer prevents peeling from the interface with the metal back electrode layer, improving yield and reducing cost. can do.
  • the present invention is capable of being applied to ceramic targets that are non-conductive oxides or nitrides. Since the applied power cannot be increased, the film-forming speed is low.
  • the RF sputtering method provides high insulation.
  • a silica layer can be formed from a silica target, and the film forming speed can be increased by increasing the applied power at the same film forming pressure and the same substrate transport speed following the formation of this silica layer.
  • a plurality of film forming processes such as different materials can be formed in the same in-line type sputtering film forming apparatus. it can.
  • the present invention can solve the problem caused by the difference in film forming conditions by two different sputtering film forming methods, and enables film formation at the same substrate transport speed.
  • the present invention makes it possible to form a silica layer by RF sputtering and a laminated structure by DC sputtering by enabling film formation at the same pressure (same Ar gas flow rate) in a common Ar gas.
  • the first layer of the metal back electrode layer is continuously formed into a two-layer structure, and this two-layer structure functions as an alkali barrier layer, greatly increasing the film formation speed and reducing the equipment cost. Is also reduced.
  • the present invention can contribute to cost reduction of CIS-based thin-film solar cells by eliminating the need to purchase a soda-lime glass substrate with an alkali barrier layer.
  • the alkaline component force semiconductor is produced from the blue glass substrate 2.
  • the present invention relates to a method for producing an alkali barrier layer 8 for preventing and controlling thermal diffusion into a light absorption layer of a body, and a CIS-based thin-film solar cell 1 having the alkali barrier layer 8 formed thereon.
  • the alkali barrier layer 8 includes a silica layer 7 formed on a soda-lime glass substrate as a first alkali barrier layer, a silica layer 7 as a second alkali barrier layer, and a laminated structure continuously on the silica layer 7. It consists of an alkali barrier layer with a laminated structure composed of the first layer 3a of the metal back electrode layer to be formed.
  • a CIS-based thin film solar cell 1 of the present invention has a basic structure as shown in FIG. 7 and a substrate 2 that also has a blue plate glass power, and a metal back electrode layer (generally, Mo) 3, p It is a pn heterojunction device with a substrate structure in which high-quality thin film layers are sequentially stacked in the order of a CIS-based light absorption layer 4, a high-resistance buffer layer 5, and an n-type window layer (transparent conductive film) 6.
  • the light absorption layer 4 is a multi-component compound semiconductor thin film, particularly a group I-III-VI chalcopyrite semiconductor, for example, copper diselenide.
  • blue plate glass is used because it is inexpensive as the substrate 2, but at the time of manufacturing the light absorption layer 4 on the metal back electrode layer 3, 500 ° C or more is used.
  • heat treatment is performed up to about 600 ° C., and by this heat treatment, alkali components (for example, Na, Ca, Mg, K) of the blue plate glass force that is the substrate 2 are thermally diffused in the light absorption layer 4. To do. If this alkali component is excessively thermally diffused into the light absorption layer, the light absorption layer 4 is peeled off from the interface with the metal back electrode layer, and Na having deliquescence is non-uniformly contained in the light absorption layer.
  • alkali components for example, Na, Ca, Mg, K
  • the present invention when the light absorption layer 4 is formed on the metal back electrode layer of the blue glass substrate 2 on which the metal back electrode layer 3 is formed, Alkali component strength from the blue plate glass substrate 2
  • the alkali barrier layer 8 for preventing and controlling the thermal diffusion into the light absorption layer of the semiconductor is prepared.
  • the metal back electrode layer 3 has a laminated structure including a plurality of layers. Note that the metal back electrode layer 3 having a single layer structure can be used although the effect of preventing peeling is somewhat reduced.
  • the alkali-free layer 7 is an oxide, a nitride, or a special compound, preferably a silica force, and more specifically, a stoichiometric composition of silica (SiO 2) and
  • Silica (SiO 2) is suitable if it has a stoichiometric composition of 2 Z or some oxygen deficiency. And alkali-free (silica)
  • the thickness of the layer ranges from 3 to 100 nm, preferably 20 to 50 nm.
  • the metal back electrode layer 3 having the multilayer structure is a multilayer structure of three or more layers, and the material is made of Mo (molybdenum).
  • the first layer 3a of the metal back electrode layer 3 has crystal grains of the metal. It is fine and dense, and its film thickness ranges from 10 to: LOOnm, preferably 30 to 60 nm. Note that the thickness of the metal back electrode layer 3 having the laminated structure is in the range of 100 to 1000 nm, and preferably in the range of 300 to 500 nm.
  • FIG. 2 An example of an apparatus for producing the alkali barrier layer 8 of the present invention is shown in FIG. 2, and a method for producing the alkali barrier layer 8 will be described below.
  • RF sputtering method B is used to improve the RF sputtering method or conductivity using a non-alkali stable silica target.
  • the DC sputtering method can increase the film forming speed continuously with the film.
  • the film is formed with multiple DC sputtering units D1, D2, D3, and D4 with the same film forming pressure and the same substrate transport speed.
  • a metal back electrode layer 3 having a multilayer structure is produced.
  • a high-quality alkali barrier layer having a required two-layer structure is produced by the silica layer 7 and the first layer 3a of the metal back electrode layer formed by adjusting the applied power.
  • the silica layer 7 alone can provide an alkali barrier function by adjusting the film thickness.
  • RF sputtering part B non-alkali layer film forming chamber
  • DC sputtering part D metal back electrode layer film forming chamber
  • each thin film layer can be formed at different pressures and different sputtering gas compositions (for example, Ar + O mixed gas in the case of reactive DC sputtering). Is also possible.
  • the silica layer 7 is formed by using one or more silica targets and forming a film by an RF sputtering method in an inert gas (Ar gas), or metal silicon.
  • Ar gas inert gas
  • metal silicon targets alloyed with metal elements such as boron are used, and a film is formed by reactive DC sputtering in a mixed gas of Ar gas and oxygen.
  • the power applied to the target during sputtering deposition is in the range of 0.5 to 1.5 WZcm 2 in the RF sputtering method, and in the range of 1.0 to 3. OW / cm 2 in the DC sputtering method.
  • the applied power is determined so that the crystal grain size is lOnm or less, and preferably the grain size is in the range of 3 to 5 nm.
  • the film forming pressure during the sputtering of the silica layer 7 is in the range of 0.5 to 5 Pa (pascal), preferably in the range of 0.5 to 1.5 Pa (pascal). The film forming pressure is determined so as to obtain fine particles in the range of 3 to 5 nm.
  • the metal back electrode layer having the laminated structure is formed continuously by a DC sputtering method at a constant substrate transfer speed or rotation speed.
  • a crystal structure with one of high melting point metals such as molybdenum (Mo), titanium (Ti), tantalum (Ta), etc., which is a metal having corrosion resistance to selenium, or a silica layer (for example, , MoSiO, etc.)
  • a film is formed in an inert Ar gas by DC sputtering.
  • the metal crystal grains are made fine and dense.
  • the power applied to the target during the sputtering film formation is continuously formed on the metal back electrode layer 3
  • the applied power is determined so that the power applied to the target during the sputtering film formation is in the range of 1Z8 to 1Z2, the crystal grain size is less than SlOnm, and the desired grain size is in the range of 3 to 5 nm.
  • the deposition pressure at the time of sputtering deposition is in the range of 0.5 to 1.5 Pa (Pascal), the particle size is less than lOnm, and preferably the particle size is in the range of 3 to 5 nm. Determine membrane pressure.
  • Table 1 shows a comparison of the performance of the CIS thin film solar cell 1A having the alkali barrier layer of the present invention and the conventional CIS thin film solar cell 1B having no alkali barrier layer.
  • the alkali component absorbs excessive light.
  • the CIS-based light absorption layer has weak adhesion to the metal back electrode layer, and the light absorption layer peels off the interfacial force with the metal back electrode layer.
  • the first metal back electrode layer Similarly, when there is no layer, the light absorption layer has weak adhesion with the metal back electrode layer, and the interfacial force peeling between the light absorption layer and the metal back electrode layer occurs.
  • the metal back electrode layer when the alkali barrier layer is only a silica layer, the metal back electrode layer is not peeled off from the glass substrate, but the CIS light absorption layer is Peeling occurs when peeling and round spots with different colors occur on the metal back electrode layer surface.
  • the alkali barrier layer is composed of the silica layer and the first layer of the metal back electrode, the metal back electrode layer is peeled off from the glass substrate and the CIS light absorption layer is peeled off from the metal back electrode layer. The round spots with different colors on the surface of the metal back electrode layer are greatly reduced.
  • the film can be formed in the same sputtering film forming apparatus, and the metal back electrode layer is peeled off from the glass substrate, the light absorption layer and the metal back electrode layer. As a result, the yield of products when manufacturing solar cells is improved and the cost is reduced.
  • Fig. 3 shows an example of conditions for producing the silica layer of the alkali barrier layer of the present invention (silica layer deposition pressure).
  • the applied power (power density) of the silica film is constant.
  • OWZcm 2 the change in the film thickness of the formed silica layer with respect to the change in the silica film pressure (Pa), and the CIS thin film provided with this silica layer It shows changes in the open-circuit voltage (VZ cell) of solar cells.
  • the silica film thickness increases with increasing silica film forming pressure (Pa), but the open circuit voltage is almost constant.
  • Fig. 4 shows an example of conditions for producing the silica layer of the alkali barrier layer of the present invention (sputtering power applied to the silica layer).
  • FIG. 5 shows an example of conditions for producing the first metal back electrode layer of the alkali barrier layer of the present invention (film forming pressure of the metal back electrode layer first layer).
  • the silica layer was deposited at a deposition power density of 1.55 (WZcm 2 ), and the metal was deposited in response to changes in the deposition pressure (Pa) as the preparation conditions for the first layer of the metal back electrode layer.
  • Changes in the film thickness of the first layer of the back electrode layer and changes in the open circuit voltage (VZ cell) of the CIS-based thin film solar cell provided with the silica layer and the first layer of the metal back electrode layer formed under these conditions There are things.
  • the film-forming pressure (Pa) increases, but the open-circuit voltage of the CIS-based thin-film solar cell is substantially constant.
  • FIG. 6 shows an example of conditions for producing the first metal back electrode layer of the alkali barrier layer of the present invention (sputtering power applied to the first metal back electrode layer).
  • 55WZcm 2 as preparation conditions of the metallic back electrode layer first layer of the metallic back electrode layer a first layer with respect to a change in the power density (WZcm 2) It shows the change in film thickness and the change in open circuit voltage (VZ cell) of a CIS-based thin-film solar cell provided with a silica layer and a first metal back electrode layer formed under these conditions.
  • the film thickness of the first metal back electrode layer increases as the power density (WZcm 2 ) increases.
  • the open-circuit voltage of the CIS-based thin-film solar cell is substantially constant.
  • FIG. 1 is a configuration diagram (cross-sectional view) of a CIS-based thin film solar cell of the present invention.
  • FIG. 2 shows an alkali barrier layer forming apparatus for a CIS-based thin film solar cell of the present invention.
  • FIG. 3 Relationship between the thickness of the silica layer and the open discharge pressure of the thin-film solar cell provided with the film-forming pressure (change) during the formation of the silica layer in the alkali barrier layer of the CIS-based thin-film solar cell of the present invention
  • FIG. 4 The relationship between the thickness of the silica layer and the open-circuit voltage of the thin-film solar cell provided with the power density (change) during the formation of the silica layer in the alkali barrier layer of the CIS-based thin-film solar cell of the present invention.
  • FIG. 5 The thickness of the first metal back electrode layer with respect to the film-forming pressure (change) during the deposition of the first metal back electrode layer in the alkali barrier layer of the CIS-based thin-film solar cell of the present invention, and the provision thereof It is a figure which shows the relationship of the open circuit voltage of the thin film solar cell.
  • FIG. 5 is a diagram showing the relationship between the film thickness of the first metal back electrode layer and the open circuit voltage of a thin-film solar cell provided with the power density (change) during single-layer deposition.
  • FIG. 7 is a configuration diagram (cross-sectional view) of a conventional CIS-based thin film solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 アルカリバリア層と金属裏面電極層の製膜を、低コスト且つ短時間で行い、光吸収層が金属裏面電極層との界面から剥離する現象を防止する。  ガラス基板2、シリカ等の無アルカリ層7、積層構造の金属裏面電極層3、p形CIS系光吸収層4、高抵抗バッファ層5、n形窓層6の順に積層されたCIS系薄膜太陽電池1及びその作製方法に関する。前記層7又はこれと層3の第1層3aは、層4の製膜時に基板2から光吸収層へのアルカリ成分の熱拡散を防止し、制御するためのアルカリバリア層8となる。層3aは結晶粒が微粒且つ高密度である。基板上に層7をRF又はDCスパッタ法で製膜後、該層7上に連続してDCスパッタ法で層3を製膜する。

Description

CIS系薄膜太陽電池及びその作製方法
技術分野
[0001] 本発明は、 CIS系薄膜太陽電池の (金属裏面電極層上に光吸収層を製膜する時 に金属裏面電極層の下層であるガラス基板力も拡散するアルカリ成分をブロックし、 制御する)アルカリバリア層及びその作製方法に関する。
背景技術
[0002] 本発明は、光吸収層として多元化合物半導体薄膜、特に、ト III-VI 族カルコパイラ
2
イト半導体、例えば、 2セレン化銅インジウム (CuInSe )、 2セレン化銅インジウム 'ガリ
2
ゥム (CuInGaSe )、 2セレン化銅ガリウム (CuGaSe )、 2セレン ·ィォゥ化銅インジウム ·
2 2
ガリウム (Cu(InGaXSSe) )、 2ィォゥ化銅インジウム (CuInS )、 2ィォゥ化銅ガリウム (CuG
2 2
aS )、 2ィォゥ化銅インジウム ·ガリウム (CuInGaS )、薄膜の 2セレン ·ィォゥ化銅インジ
2 2
ゥム ·ガリウム (Cu(InGaXSSe) )を表面層として有する 2セレン化銅インジウム ·ガリウム(
2
CuInGaSe )のような p形半導体を用い、この光吸収層と高抵抗バッファ層を介して n
2
形窓層 (透明導電膜)とからなる pnヘテロ接合を有する CIS系薄膜太陽電池に関す る。
[0003] 従来の CIS系薄膜太陽電池 1Bは、図 7に示すような基本構造であり、青板ガラスか らなる基板 2、その上に金属裏面電極層(一般的には、 Mo) 3、 p形 CIS系光吸収層 4 、高抵抗バッファ層 5、 n形窓層 (透明導電膜) 6の順で高品質薄膜層が順次積層さ れたサブストレート構造の pnヘテロ接合デバイスである。 CIS系薄膜太陽電池 1にお いては、その基板 2として安価であるために青板ガラスが使用されるが、金属裏面電 極層 3上に光吸収層 4を作製する工程時には、 500°C以上、場合によっては 600°C 付近迄加熱処理され、この加熱処理により、基板 2である青板ガラスからのアルカリ成 分 (例えば、 Na、 Ca、 Mg、 K )が光吸収層 4中に熱拡散する。このアルカリ成分が過 剰に光吸収層中に熱拡散されると、光吸収層 4が金属裏面電極層との界面から剥離 し、更に、潮解性を有する Naが光吸収層中に不均一に含まれることによる光吸収層 自体の不安定性又は短寿命化等の原因となる。従って、高品質,高性能と高再現性 を達成するためには、基板である青板ガラスからの前記アルカリ成分の拡散をブロッ クし、制御する必要があり、通常、酸ィ匕物又は窒化物等のアルカリバリア層を製膜し ている。
[0004] し力しながら、アルカリバリア層に関する研究発表 ·報告例は極めて少なぐ同時蒸 着法で光吸収層を作製する場合には、アルカリバリア層が必要であるとの報告例は ない。第 1の研究例として、アルカリバリア層を製膜した時の太陽電池特性に及ぼす 効果を議論した例、又は第 2の研究例として、青板ガラス基板からのアルカリ成分の 拡散を完全にシャットアウトできるアルカリバリア層を意図的に製膜し、その上に金属 裏面電極層を製膜し、更に、必要量の Na含有層を別途製膜して太陽電池を作製す る製造プロセスを採用している例が公表されている。これらは何れも酸化物又は窒化 物等の独立したアルカリバリア層を青板ガラス基板上に製膜している例であり、本発 明のように、シリカ層と積層構造の金属裏面電極層の第 1層目(結晶粒径が調整され た)からなる 2層構造のアルカリバリア層で構成されるものではない。
[0005] 前記第 1の研究例では、アルカリバリア層を製膜した時の太陽電池特性に及ぼす 効果を議論し、アルカリバリア層が必要であることを結論している(例えば、非特許文 献 1及び 2参照。 ) 0前記第 2の研究例は、青板ガラス基板力 のアルカリ成分の拡散 を完全にシャットアウトできるアルカリバリア層を意図的に製膜し、その上に金属裏面 電極層を製膜し、更に、必要量の Na含有層を別途製膜するものである(例えば、非 特許文献 3、 4及び 5参照。)。
[0006] 前記研究例は、何れも酸ィ匕物又は窒化物等の独立したアルカリバリア層を青板ガ ラス基板上に製膜している例であり、青板ガラス基板力ものアルカリ成分の拡散は製 膜法に関係し (例えば、非特許文献 6参照。)、一方、アルカリバリア層なしの金属裏 面電極層単独ではアルカリ成分の拡散を部分的にしかブロックできないと報告されて いる (例えば、非特許文献 5参照。 ) 0
[0007] 非特許文献 1: David F.Dawson- Elli,el.al: 「Substrate Influences On CIS Device Perfo rmancej Proc. 1st World Conference of Photovoltaic Energy Conversion(l 995) 152- 155
特許文献 2 : C.Jensen:「The Study of Base Electrode/ Substrate Interactions By U se of Air Anneal Imagingj Proc. 13th European Photovoltaic Solar Energy Conferenc e (1995)
特許文献 3 : V. Probst, el. al:「Large Area CIS Formation By Rapid Thermal Proces sing Of Stacked elemental Layers」 Proc. 17th European Photovoltaic SolarEnergy C onference (2002) 1005-1010
特許文献 4 : V. Probst, el. al:「Advanced stacked a CIS Formation By Rapid Therm al Processing Of Stacked Elemental Layer Process For Cu(InGa)Se2 Thin Film Phot voltaicDevices J Mat. Res. Soc. Symp. Proc. Vol. 426 (1996) 165-176
特許文献 5 : J. Holz'el.al: Proc. 12th European Photovoltaic Solar EnergyConferen ce (1994) 1592-1595
特許文献 6 : R.J. Araujo.el.al:「Sodium Redistribution Between Oxide Phases」Jour nal of Non- CristallineSolids 197(1996)154-163
発明の開示
発明が解決しょうとする課題
[0008] 前記のように、これまでに発表された CIS系薄膜太陽電池のアルカリバリア層は、酸 化物又は窒化物等の独立した極薄膜層であり、前記研究例力もも明らかなように、青 板ガラス基板からのアルカリ成分の拡散を完全にブロックするためには、アルカリバリ ァ層の厚さを厚くすることが必要となり、単独に製膜する必要が生じる。従って、 50〜 200nmの厚いアルカリバリア層を製膜した青板ガラスを基板として購入することにな り、コストアップ要因であった。一方、 CIS系薄膜太陽電池の出力特性を向上するた めには、 CIS系光吸収層の導電率をある範囲に制御する必要があり、そのためには 、青板ガラス基板からのアルカリ成分の拡散が必要であることから、アルカリ成分があ る程度熱拡散できる漏れのあるバリア層が必要である。し力しながら、アルカリ成分の 拡散量の制御は十分にできていない。そこで、本発明の課題は、太陽電池性能 (例 えば、変換効率、開放電圧)を向上させるために、高品質な光吸収層作製に必要な 、アルカリ成分の拡散量を制御できるアルカリバリア層を高再現性で作製する方法を 提供することである。
[0009] 更に、本発明の課題は、高変換効率が達成できるデバイス特性を持つ CIS系光吸 収層を作製するために必要なアルカリ成分の拡散量を青板ガラス基板カゝら確保でき る作製方法を提供することである。
[0010] 更に、青板ガラス基板力ものアルカリ成分の拡散を完全にシャットアウトできるアル カリバリア層を意図的に製膜し、その上に金属裏面電極層を製膜し、更に、必要量の
Na含有層を別途製膜する製造方法では、原材料費及び工程数が増加し、コストアツ プにつながることから低コストィ匕の目的に反するという問題があった。従って、本発明 のもう一つの課題は、青板ガラス基板からのアルカリ成分の拡散を完全にシャットァゥ トできるアルカリバリア層の製膜工程と Na含有層の製膜工程とからなる製造方法を不 要とする作製方法を提供することである。
[0011] 従来、酸ィ匕物又は窒化物等のセラミックターゲットを用いた RFスパッタ法による酸 化物又は窒化物等の薄膜層の製膜は製膜速度が遅ぐ製膜速度を速くできる DCス ノッタ法による金属裏面電極層の製膜を同一スパッタ製膜装置内で連続的に一定 の基板搬送速度で製膜することはコスト削減に有効な方法であるが、製膜圧力の制 御が困難なことから、酸化物又は窒化物等の薄膜層と金属裏面電極層の夫々の最 適化が困難になるという問題があった。従って、本発明のもう一つの課題は、同一ス ノ^タ製膜装置内で酸ィ匕物又は窒化物等の薄膜層と金属裏面電極層を連続的に一 定の基板搬送速度又は回転速度で製膜できる作製方法を提供することである。
[0012] 同一スパッタ製膜装置内で酸ィ匕物又は窒化物等の薄膜層と金属裏面電極層を連 続的に一定の基板搬送速度で製膜するために、酸ィ匕物又は窒化物等の薄膜層の 部分は DCスパッタ法によりボロン (B)等を合金化した金属ターゲット(例えば、シリカ 膜の場合は金属 Si: Bターゲット)を使用して酸素を混合した Arガス中で反応性スパ ッタ法により、製膜する場合、この酸素が金属裏面電極層の部分を製膜する金属裏 面電極層製膜室に混入すると金属裏面電極層を作製するターゲット及び Z又は金 属裏面電極層自体が酸化して高抵抗化の原因となることから、酸化物又は窒化物等 の薄膜層製膜室と金属裏面電極層製膜室のガスの混合を完全にシャットアウトする ための高性能排気機能が必要となり、装置コストが上昇するという問題があった。従 つて、本発明のもう一つの課題は、金属裏面電極層の酸化による高抵抗化のリスクが なぐ装置コストを上昇させることなぐ高品質なアルカリバリア層と金属裏面電極層を 同一スパッタ製膜装置内で連続的に一定の基板搬送速度で製膜する作製方法を提 供することである。
課題を解決するための手段
[0013] (1)本発明は、前記課題を解決するもので、ガラス基板、無アルカリ層、積層構造 の金属裏面電極層、 p形 CIS系光吸収層、高抵抗バッファ層、 n形窓層の順に積層さ れたサブストレート構造の pnヘテロ接合デバイスである CIS系薄膜太陽電池であつ て、前記無アルカリ層は前記光吸収層を製膜する際にガラス基板力 光吸収層への アルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機能を有する CIS系 薄膜太陽電池である。
[0014] (2)本発明は、ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS 系光吸収層、高抵抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pn ヘテロ接合デバイスである CIS系薄膜太陽電池であって、前記無アルカリ層及び前 記積層構造の金属裏面電極層の第 1層が前記光吸収層を製膜する際にガラス基板 力 光吸収層へのアルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機 能を有する CIS系薄膜太陽電池である。
[0015] (3)本発明は、前記無ァリカリ層が、酸ィ匕物又は窒化物力もなる前記(1)又は(2) に記載の CIS系薄膜太陽電池である。
[0016] (4)本発明は、前記無アルカリ層が、酸化物、窒化物、又は特殊な化合物であり、 望ましくはシリカ(SiO又は SiO )である前記(1)、 (2)又は(3)に記載の CIS系薄
2 2-X
膜太陽電池である。
[0017] (5)本発明は、前記無アルカリ層力 化学量論組成のシリカ(SiO )及び Z又はい
2
くらか酸素不足傾向の化学量論組成でな 、シリカ(SiO )力もなる前記(1)乃至 (4
2-X
)の何れか 1つに記載の CIS系薄膜太陽電池である。
[0018] (6)本発明は、前記無アルカリ層の厚さが 3〜: LOOnmの範囲であり、望ましくは、 2 0〜50nmである前記(1)乃至(5)の何れ力 1つに記載の CIS系薄膜太陽電池であ る。
[0019] (7)本発明は、前記金属裏面電極層の第 1層目は、その金属の結晶粒が微粒且 つ高密度で結晶粒径が調整されたものである前記(2)に記載の CIS系薄膜太陽電 池である。
[0020] (8)本発明は、前記無アルカリ層と金属裏面電極層の第 1層の合計の膜厚が、 50 〜110nmである前記(2)に記載の CIS系薄膜太陽電池である。
[0021] (9)本発明は、前記積層構造の金属裏面電極層が Mo (モリブデン)力もなり、 2層 以上の積層構造である前記(1)又は(2)に記載の CIS系薄膜太陽電池である。
[0022] (10)本発明は、前記積層構造の金属裏面電極層の厚さ力 100〜1000nmの範 囲であり、望ましくは、 300〜500nmの範囲である前記(1)、(2)又は(9)に記載の C IS系薄膜太陽電池である。
[0023] (11)本発明は、ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS 系光吸収層、高抵抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pn ヘテロ接合デバイスである CIS系薄膜太陽電池の製造方法における無アルカリ層及 びその上部に連続する積層構造の金属裏面電極層の製膜方法であって、前記ガラ ス基板上に無アルカリ層を製膜した後、該無アルカリ層上に積層構造の金属裏面電 極層を製膜し、前記無アルカリ層に、前記光吸収層を製膜する際にガラス基板から 光吸収層へのアルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機能を 保持させる CIS系薄膜太陽電池の作製方法である。
[0024] (12)本発明は、ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS 系光吸収層、高抵抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pn ヘテロ接合デバイスである CIS系薄膜太陽電池の製造方法における無アルカリ層及 び積層構造の金属裏面電極層の製膜方法であって、前記ガラス基板上に無アルカリ 層を製膜した後、該無アルカリ層上に積層構造の金属裏面電極層を製膜し、前記積 層構造の金属裏面電極層の第 1層は製膜条件を変えて結晶粒径を調整するもので あり、前記無アルカリ層及び金属裏面電極層の第 1層に、前記光吸収層を製膜する 際にガラス基板力 光吸収層へのアルカリ成分の熱拡散を防止し、制御するための アルカリバリア機能を保持させる CIS系薄膜太陽電池の作製方法である。
[0025] (13)本発明は、前記無アルカリ層の製膜が、シリカターゲットを使用し、不活性ガス の Arガス中等で RFスパッタ法により製膜するカゝ、又は金属シリコンに導電性を持た せるためにボロン等の金属元素を合金化した金属シリコンターゲットを 1個又は複数 個使用し、 Arガスと酸素の混合ガス中で反応性 DCスパッタ法により製膜する前記(1 1)又は(12)に記載の CIS系薄膜太陽電池の作製方法である。
[0026] (14)本発明は、前記無アルカリ層のスパッタ製膜時のターゲットへの印加電力が、 前記 RFスパッタ法では 0. 5〜1. 5WZcm2の範囲であり、前記 DCスパッタ法では 1 . 0〜3. OWZcm2の範囲であり、前記金属裏面電極層の第 1層の結晶粒径 (粒度) 力 SlOnm以下で、望ましくは、粒径 3〜5nmの範囲の微粒となるように電力を決定す る前記(11)又は(12)に記載の CIS系薄膜太陽電池の作製方法である。
[0027] (15)本発明は、前記無アルカリ層のスパッタ製膜時の製膜圧力力 0. 5〜5Pa (パ スカル)の範囲であり、望ましくは、 0. 5〜1. 5Pa (パスカル)の範囲であり、前記金属 裏面電極層の第 1層の粒径が 3〜5nmの範囲の微粒となるように製膜圧力を決定す る前記(11)又は(12)に記載の CIS系薄膜太陽電池の作製方法である。
[0028] (16)本発明は、前記積層構造の金属裏面電極層の第 1層の製膜が、そのスパッタ 製膜時のターゲットへの印加電力が、その上部に連続して製膜される金属裏面電極 層のスパッタ製膜時のターゲットへの印加電力の 1Z8〜1Z2の範囲であり、ターゲ ットへの印加電圧を調整することにより、粒径が lOnm以下で、望ましくは、 3〜5nm の粒径の微粒で且つ高密度にする前記(11)又は(12)に記載の CIS系薄膜太陽電 池の作製方法である。
[0029] (17)本発明は、前記積層構造の金属裏面電極層の製膜が、一定の基板搬送速 度で連続して製膜する前記(11)又は(12)に記載の CIS系薄膜太陽電池の作製方 法である。
[0030] (18)本発明は、前記積層構造の金属裏面電極層の製膜が、金属 (例えば、モリブ デン(Mo) )をターゲットとして使用し、 DCスパッタ法により不活性ガスの Arガス中で 製膜する前記(11)又は(12)に記載の CIS系薄膜太陽電池の作製方法である。
[0031] (19)本発明は、前記積層構造の金属裏面電極層が、セレンに対して耐蝕性のあ る金属を選択し、モリブデン (Mo)、チタン (Ti)、タンタル (Ta)等の高融点金属の何 れカ 1つ又はシリカ層との化合物形成 (例えば、 MoSiO 等)の関係力 これらの組
X
み合わせ力 なる前記(11)又は(12)に記載の CIS系薄膜太陽電池の作製方法で ある。 [0032] (20)本発明は、前記無アルカリ層を製膜するための無アルカリ層製膜室と金属裏 面電極層を製膜するための金属裏面電極層製膜室との間に圧力調整機構及び Z 又は排気系を設置し、異なる圧力及び Z又は異なる組成のスパッタガス雰囲気 (例 えば、 Arガス、 Ar+O混合ガス)で夫々の薄膜層を製膜する前記(11)又は(12)に
2
記載の CIS系薄膜太陽電池の作製方法である。
発明の効果
[0033] 本発明は、アルカリバリア層の作製という新たな工程を設けても、金属裏面電極層 を同一スパッタ装置内で連続的に製膜し、光吸収層中へのアルカリ成分の過剰な熱 拡散を防止し、制御することで、太陽電池性能 (変換効率、開放電圧)を低下させる ことなぐ光吸収層が金属裏面電極層との界面から剥離を防止し、歩留りを向上させ 、コストを低減することができる。
[0034] 本発明は、導電性のない酸ィ匕物又は窒化物であるセラミックターゲットに適用でき る力 印加パワーを大きくできないために製膜速度が遅い、 RFスパッタ法により、絶 縁性の高いシリカターゲットからシリカ層を製膜し、このシリカ層の製膜に連続して、 同一の製膜圧力、同一の基板搬送速度で、印加パワーを大きくすることで、製膜速 度を速くできる DCスパッタ法により、積層構造の金属裏面電極層の第 1層目を製膜 することにより、異種材料カゝらなる複数の製膜工程を同一のインライン型スパッタ製膜 装置内で製膜することができる。
[0035] 更に、本発明は、 2つの異なるスパッタ製膜法による製膜条件の違いによる問題を 解決し、同一基板搬送速度の製膜を可能にすることができる。
[0036] 更に、本発明は、共通の Arガス中で同一圧力(同一 Arガス流量)で製膜可能にす ることで、 RFスパッタ法によるシリカ層の製膜と DCスパッタ法による積層構造の金属 裏面電極層の第 1層目の製膜を連続して 2層構造で製膜し、この 2層構造体をアル カリバリア層として機能させることで、製膜速度が大幅に向上し、装置コストも低減す る。
[0037] 更に、本発明は、アルカリバリア層付き青板ガラス基板の購入が不要となることで、 CIS系薄膜太陽電池の低コスト化に寄与することができる。
発明を実施するための最良の形態 [0038] 以下、本発明の実施の形態を説明する。
本発明は、青板ガラス基板 2上に金属裏面電極層 3が製膜され、その金属裏面電 極層上に光吸収層 4を製膜する時に、青板ガラス基板 2からアルカリ成分力 ¾形半導 体の光吸収層中へ熱拡散することを防止し、制御するためのアルカリバリア層 8の作 製方法及びアルカリバリア層 8が形成された CIS系薄膜太陽電池 1に関するするもの である。
前記アルカリバリア層 8は、第 1のアルカリバリア層である青板ガラス基板上に形成 されるシリカ層 7と、第 2のアルカリバリア層である前記シリカ層 7とその上部に連続し て積層構造で製膜される金属裏面電極層の第 1層 3aで構成される積層構造のアル カリバリア層から構成される。
[0039] 本発明の CIS系薄膜太陽電池 1は、図 7に示すような基本構造であり、青板ガラス 力もなる基板 2、その上に金属裏面電極層(一般的には、 Mo) 3、 p形 CIS系光吸収 層 4、高抵抗バッファ層 5、 n形窓層 (透明導電膜) 6の順で高品質薄膜層が順次積層 されたサブストレート構造の pnヘテロ接合デバイスである。前記光吸収層 4は、多元 化合物半導体薄膜、特に、 I-III-VI族カルコパイライト半導体、例えば、 2セレン化銅
2
インジウム (CuInSe )、 2セレン化銅インジウム ·ガリウム (CuInGaSe )、 2セレン化銅ガリ
2 2
ゥム (CuGaSe )、 2セレン.ィォゥ化銅インジウム.ガリウム (Cu(InGa)(SSe) )、 2ィォウイ匕
2 2
銅インジウム (CuInS )、 2ィォゥ化銅ガリウム (CuGaS )、 2ィォゥ化銅インジウム 'ガリウ
2 2
ム (CuInGaS )、薄膜の 2セレン.ィォゥ化銅インジウム.ガリウム (Cu(InGa)(SSe) )を表面
2 2 層として有する 2セレン化銅インジウム ·ガリウム (CuInGaSe )のような p形半導体から
2
なる。
[0040] CIS系薄膜太陽電池 1においては、その基板 2として安価であるために青板ガラス が使用されるが、金属裏面電極層 3上に光吸収層 4を作製する工程時には、 500°C 以上、場合によっては 600°C付近迄加熱処理され、この加熱処理により、基板 2であ る青板ガラス力 のアルカリ成分 (例えば、 Na、 Ca、 Mg、 K )が光吸収層 4中に熱拡 散する。このアルカリ成分が過剰に光吸収層中に熱拡散されると、光吸収層 4が金属 裏面電極層との界面から剥離し、更に、潮解性を有する Naが光吸収層中に不均一 に含まれることによる光吸収層自体の不安定性又は短寿命化等の原因となる。 [0041] そこで、本発明は、図 1に示すように、その上に金属裏面電極層 3が製膜された青 板ガラス基板 2の金属裏面電極層上に光吸収層 4を製膜する時に、青板ガラス基板 2からアルカリ成分力 ¾形半導体の光吸収層中へ熱拡散することを防止し、制御する ためのアルカリバリア層 8を作製するものであり、アルカリバリア層 8として、第 1のアル カリバリア層である青板ガラス基板上に形成される無アルカリのシリカ層 7単独の場合 と、第 2のアルカリバリア層である前記シリカ層 7及びその上部に連続して積層構造で 製膜される結晶粒径が調整された金属裏面電極層の第 1層 3Aで構成される積層構 造のアルカリバリア層の場合がある。また、前記金属裏面電極層 3は複数の層からな る積層構造である。なお、多少剥離防止効果は低下するが単層構造の金属裏面電 極層 3を使用することもできる。
[0042] 前記無アルカリ層 7は、酸化物、窒化物、又は特殊な化合物であり、望ましくはシリ 力であり、詳細には、化学量論組成のシリカ(SiO )及び
2 Z又はいくらか酸素不足傾 向の化学量論組成でな 、シリカ(SiO )が適して 、る。そして、無アルカリ(シリカ)
2- X
層の厚さは 3〜100nmの範囲であり、望ましくは、 20〜50nmである。
[0043] 前記積層構造の金属裏面電極層 3は 3層以上の積層構造であり、材質は Mo (モリ ブデン)からなり、金属裏面電極層 3の第 1層 3aは、その金属の結晶粒が微粒且つ 高密度であり、その膜厚は、 10〜: LOOnmの範囲であり、望ましくは、 30〜60nmで ある。なお、前記積層構造の金属裏面電極層 3の厚さは、 100〜1000nmの範囲で あり、望ましくは、 300〜500nmの範囲である。
[0044] 本発明のアルカリバリア層 8の製造装置の一例を図 2示すと共にアルカリバリア層 8 の作製方法を以下に説明する。
製膜速度のアンバランス、装置コストの上昇を解決するため、先ず、 RFスパッタ部 B で、無アルカリである安定なシリカターゲットを用いて RFスパッタ法又は導電性を向 上するためにボロン等を合金化した Si— B合金ターゲットを使用して、 Ar+O混合
2 ガス雰囲気中で反応性 DCスパッタ法により無アルカリであるシリカ層 7を製膜し、次 に、同一スパッタ装置内の DCスパッタ部 Dで Arガスをスパッタガスとして使用し、シリ 力層の製膜に連続して、製膜速度を速くできる DCスパッタ法により、同一の製膜圧 力、同一の基板搬送速度で複数の DCスパッタ部 Dl、 D2、 D3、 D4により製膜を行 い積層構造の金属裏面電極層 3が作製される。その結果、前記シリカ層 7と印加電力 を調整して製膜した金属裏面電極層の第 1層 3aとにより 2層構造力もなる高品質で、 必要な膜厚のアルカリバリア層が作製される。なお、前記のように、シリカ層 7単独で も膜厚の調整によりアルカリバリア機能を付与できる。なお、前記シリカ層 7を製膜す るための RFスパッタ部 B (無アルカリ層製膜室)と金属裏面電極層 3を製膜するため の DCスパッタ部 D (金属裏面電極層製膜室)との間に圧力調整機構 Cを設置するこ とで、異なる圧力及び異なるスパッタガス組成 (例えば、反応性 DCスパッタ法の場合 は、 Ar+O混合ガス)で夫々の薄膜層を製膜することも可能である。
2
[0045] 前記シリカ層 7の製膜は、詳細には、 1個又はそれ以上のシリカターゲットを使用し 、不活性ガス (Arガス)中で RFスパッタ法により製膜するカゝ、又は金属シリコンに導電 性を持たせるためにボロン等の金属元素を合金化した 1個又はそれ以上の金属シリ コンターゲットを使用し、 Arガスと酸素の混合ガス中で反応性 DCスパッタ法により製 膜する。そして、スパッタ製膜時のターゲットへの印加電力は、前記 RFスパッタ法で は 0. 5〜1. 5WZcm2の範囲であり、前記 DCスパッタ法では 1. 0〜3. OW/cm2 の範囲であり、何れも結晶粒径が lOnm以下で、望ましくは、粒径 3〜5nmの範囲の 微粒となるように印加電力を決定する。そして、シリカ層 7のスパッタ製膜時の製膜圧 力は、 0. 5〜5Pa (パスカル)の範囲で、望ましくは、 0. 5〜1. 5Pa (パスカル)の範 囲であり、粒径 3〜5nmの範囲の微粒となるように製膜圧力を決定する。
[0046] 前記積層構造の金属裏面電極層の製膜は、前記のように、一定の基板搬送速度 又は回転速度で連続して DCスパッタ法により製膜する。その際、セレンに対して耐 蝕性のある金属である、モリブデン (Mo)、チタン (Ti)、タンタル (Ta)等の高融点金 属の何れか 1つ又はシリカ層との結晶構造 (例えば、 MoSiO 等)の関係から、これら
X
の組み合わせ力もなる金属(例えば、モリブデン (Mo) )をターゲットとして使用し、 D Cスパッタ法により不活性ガスの Arガス中で製膜する。そして、前記金属裏面電極層 の第 1層 3aの製膜は、ターゲットへの印加電圧を調整することにより、その金属の結 晶粒を微粒且つ高密度にする。
[0047] 前記積層構造の金属裏面電極層の第 1層 3aの製膜においては、そのスパッタ製膜 時のターゲットへの印加電力が、その上部に連続して製膜される金属裏面電極層 3 のスパッタ製膜時のターゲットへの印加電力の 1Z8〜1Z2の範囲であり、結晶粒径 力 SlOnm以下で、望ましい粒径が 3〜5nmの範囲になるように印加電力を決定する。 そして、そのスパッタ製膜時の製膜圧力は、 0. 5〜1. 5Pa (パスカル)の範囲であり 、粒径 lOnm以下で、望ましくは、粒径が 3〜5nmの範囲になるように製膜圧力を決 定する。
[0048] 前記本発明のアルカリバリア層が形成された CIS系薄膜太陽電池 1の効果を以下 に説明する。
前記本発明のアルカリバリア層が形成された CIS系薄膜太陽電池 1Aと従来のアル カリバリア層が形成されない CIS系薄膜太陽電池 1Bとの性能の比較を下記表 1に示 す。
[0049] [表 1] 本発明の C I S系薄膜太陽電池と従来の C I S系薄膜太陽電池との性 ΐ
Figure imgf000014_0001
以上のように、従来の CIS系薄膜太陽電池 1Bのようにアルカリバリア層(シリカ層及 び結晶粒径が調整された金属裏面電極の第 1層)がない場合、アルカリ成分が過剰 に光吸収層中に熱拡散し、 CIS系光吸収層は金属裏面電極層の密着力が弱ぐ光 吸収層は金属裏面電極層との界面力 剥離する。また、前記金属裏面電極層の第 1 層がない場合も同様に、光吸収層は金属裏面電極層との密着力が弱ぐ光吸収層と 金属裏面電極層との界面力 剥離が起こる。また、本発明の CIS系薄膜太陽電池 1 Aにおいて、アルカリバリア層がシリカ層のみの場合は、ガラス基板からの金属裏面 電極層の剥離はなくなるが、 CIS系光吸収層が金属裏面電極層力 剥離し、金属裏 面電極層表面に色の異なる丸 ヽ斑点が発生すると ヽぅ現象が生じる。これに対して、 アルカリバリア層がシリカ層及び前記金属裏面電極の第 1層からなる場合は、ガラス 基板からの金属裏面電極層の剥離及び CIS系光吸収層の金属裏面電極層からの 剥離がなくなり、金属裏面電極層表面の色の異なる丸い斑点も大幅に減少する。
[0051] その結果、アルカリバリア層の作製という新たな工程を設けても、同一スパッタ製膜 装置内で製膜でき、ガラス基板からの金属裏面電極層の剥離、光吸収層と金属裏面 電極層との界面からの剥離等が防止されるので、太陽電池を製造する際の製品の歩 留りが向上し、コストが削減される。
[0052] 本発明のアルカリバリア層のシリカ層の作製条件 (シリカ層の製膜圧力)の一例を図 3示す。
シリカ製膜の印加電力(パワー密度)を一定、 1. OWZcm2にし、シリカ製膜圧力( Pa)の変化に対する製膜されたシリカ層の膜厚の変化及びこのシリカ層を設けた CIS 系薄膜太陽電池の開放電圧 (VZセル)の変化を示すものある。
シリカ製膜圧力(Pa)の増加に応じてシリカ膜厚は増加するが、開放電圧は略一定 である。
[0053] 本発明のアルカリバリア層のシリカ層の作製条件 (シリカ層のスパッタ印加電力)の 一例を図 4示す。
シリカ層の製膜パワー密度 (WZcm2 )の変化に対する製膜されたシリカ層の膜厚 の変化及びこのシリカ層を設けた CIS系薄膜太陽電池の開放電圧 (VZセル)の変 化を示すものである。
シリカ製膜パワー密度 (WZcm2 )の増加に応じて、シリカ膜厚は増加するが、開放 電圧は略一定である。
[0054] 本発明のアルカリバリア層の金属裏面電極層第 1層の作製条件 (金属裏面電極層 第 1層の製膜圧力)の一例を図 5示す。 シリカ層の製膜パワー密度を 1. 55 (WZcm2)でシリカ層を製膜し、金属裏面電極 層第 1層の作製条件として、その製膜圧力 (Pa)の変化に対する製膜された金属裏 面電極層第 1層の膜厚の変化及びこの条件で製膜されたシリカ層及び金属裏面電 極層第 1層を設けた CIS系薄膜太陽電池の開放電圧 (VZセル)の変化を示すもの ある。
製膜圧力(Pa)の増加に応じて、金属裏面電極層第 1層の膜厚は増加するが、前 記 CIS系薄膜太陽電池の開放電圧は略一定である。
[0055] 本発明のアルカリバリア層の金属裏面電極層第 1層の作製条件 (金属裏面電極層 第 1層のスパッタ印加電力)の一例を図 6示す。
シリカ層の製膜パワー密度を 1. 55WZcm2でシリカ層を製膜し、金属裏面電極層 第 1層の作製条件として、そのパワー密度 (WZcm2 )の変化に対する金属裏面電極 層第 1層の膜厚の変化及びこの条件で製膜されたシリカ層及び金属裏面電極層第 1 層を設けた CIS系薄膜太陽電池の開放電圧 (VZセル)の変化を示すものである。 パワー密度 (WZcm2 )の増加に応じて、金属裏面電極層第 1層の膜厚は増加する 力 前記 CIS系薄膜太陽電池の開放電圧は略一定である。
図面の簡単な説明
[0056] [図 1]本発明の CIS系薄膜太陽電池の構成図(断面図)である。
[図 2]本発明の CIS系薄膜太陽電池のアルカリバリア層製膜装置である。
[図 3]本発明の CIS系薄膜太陽電池のアルカリバリア層におけるシリカ層製膜時の製 膜圧力(の変化)に対するシリカ層の膜厚及びこれを設けた薄膜太陽電池の開放電 圧の関係を示す図である。
[図 4]本発明の CIS系薄膜太陽電池のアルカリバリア層におけるシリカ層製膜時のパ ヮー密度 (の変化)に対するシリカ層の膜厚及びこれを設けた薄膜太陽電池の開放 電圧の関係を示す図である。
[図 5]本発明の CIS系薄膜太陽電池のアルカリバリア層における金属裏面電極層第 1層製膜時の製膜圧力(の変化)に対する金属裏面電極層第 1層の膜厚及びこれを 設けた薄膜太陽電池の開放電圧の関係を示す図である。
[図 6]本発明の CIS系薄膜太陽電池のアルカリバリア層における金属裏面電極層第 1層製膜時のパワー密度 (の変化)に対する金属裏面電極層第 1層の膜厚及びこれ を設けた薄膜太陽電池の開放電圧の関係を示す図である。
[図 7]従来の CIS系薄膜太陽電池の構成図(断面図)である。
符号の説明
1 CIS系薄膜太陽電池
2 青板ガラス基板
3 金属裏面電極層
3a 金属裏面電極層第 1層
3b 金属裏面電極層第 2層
3c 金属裏面電極層第 3層
3d 金属裏面電極層第 4層
4 CIS系光吸収層
5 高抵抗バッファ層
6 層
7 シリカ層
A ロード、ロック咅
B RFスパッタ部(又は DCスパッタ部)
C 圧力調整機構
D DCスパッタ部
Dl 第 1DCスパッタ部
D2 第 2DCスパッタ部
D3 第 3DCスパッタ部
D4 第 4DCスパッタ部
E アンロード、ロック咅

Claims

請求の範囲
[1] ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS系光吸収層、高抵 抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pnヘテロ接合デバィ スである CIS系薄膜太陽電池であって、前記無アルカリ層は前記光吸収層を製膜す る際にガラス基板力 光吸収層へのアルカリ成分の熱拡散を防止し、制御するため のアルカリバリア機能を有することを特徴とする CIS系薄膜太陽電池。
[2] ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS系光吸収層、高抵 抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pnヘテロ接合デバィ スである CIS系薄膜太陽電池であって、前記無アルカリ層及び前記積層構造の金属 裏面電極層の第 1層が前記光吸収層を製膜する際にガラス基板力ゝら光吸収層への アルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機能を有することを 特徴とする CIS系薄膜太陽電池。
[3] 前記無アリカリ層は酸ィ匕物又は窒化物力もなることを特徴とする請求項 1又は 2に記 載の CIS系薄膜太陽電池。
[4] 前記無アルカリ層は、酸化物、窒化物、又は特殊な化合物であり、望ましくはシリカ( SiO又は SiO )であることを特徴とする請求項 1、 2又は 3に記載の CIS系薄膜太
2 2-X
陽電池。
[5] 前記無アルカリ層は、化学量論組成のシリカ(SiO )及び
2 Z又はいくらか酸素不足傾 向の化学量論組成でな 、シリカ(SiO )力もなることを特徴とする請求項 1乃至 4の
2-X
何れか 1つに記載の CIS系薄膜太陽電池。
[6] 前記無アルカリ層の厚さは 3〜: LOOnmの範囲であり、望ましくは、 20〜50nmである ことを特徴とする請求項 1乃至 5の何れ力 1つに記載の CIS系薄膜太陽電池。
[7] 前記金属裏面電極層の第 1層目は、その金属の結晶粒が微粒且つ高密度で結晶粒 径が調整されたものであることを特徴とする請求項 2に記載の CIS系薄膜太陽電池。
[8] 前記無アルカリ層と金属裏面電極層の第 1層の合計の膜厚は、 50〜: L lOnmである ことを特徴とする請求項 2に記載の CIS系薄膜太陽電池。
[9] 前記積層構造の金属裏面電極層は Mo (モリブデン)力もなり、 2層以上の積層構造 であることを特徴とする請求項 1又は 2に記載の CIS系薄膜太陽電池。
[10] 前記積層構造の金属裏面電極層の厚さは、 100〜1000nmの範囲であり、望ましく は、 300〜500nmの範囲であることを特徴とする請求項 1、 2又は 9に記載の CIS系 薄膜太陽電池。
[11] ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS系光吸収層、高抵 抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pnヘテロ接合デバィ スである CIS系薄膜太陽電池の製造方法における無アルカリ層及びその上部に連 続する積層構造の金属裏面電極層の製膜方法であって、前記ガラス基板上に無ァ ルカリ層を製膜した後、該無アルカリ層上に積層構造の金属裏面電極層を製膜し、 前記無アルカリ層に、前記光吸収層を製膜する際にガラス基板力 光吸収層へのァ ルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機能を保持させることを 特徴とする CIS系薄膜太陽電池の作製方法。
[12] ガラス基板、無アルカリ層、積層構造の金属裏面電極層、 p形 CIS系光吸収層、高抵 抗バッファ層、 n形窓層の順に積層されたサブストレート構造の pnヘテロ接合デバィ スである CIS系薄膜太陽電池の製造方法における無アルカリ層及び積層構造の金 属裏面電極層の製膜方法であって、前記ガラス基板上に無アルカリ層を製膜した後 、該無アルカリ層上に積層構造の金属裏面電極層を製膜し、前記積層構造の金属 裏面電極層の第 1層は製膜条件を変えて結晶粒径を調整するものであり、前記無ァ ルカリ層及び金属裏面電極層の第 1層に、前記光吸収層を製膜する際にガラス基板 力 光吸収層へのアルカリ成分の熱拡散を防止し、制御するためのアルカリバリア機 能を保持させることを特徴とする CIS系薄膜太陽電池の作製方法。
[13] 前記無アルカリ層の製膜は、シリカターゲットを使用し、不活性ガスの Arガス中等で RFスパッタ法により製膜するカゝ、又は金属シリコンに導電性を持たせるためにボロン 等の金属元素を合金化した金属シリコンターゲットを 1個又は複数個使用し、 Arガス と酸素の混合ガス中で反応性 DCスパッタ法により製膜することを特徴とする請求項 1 1又は 12に記載の CIS系薄膜太陽電池の作製方法。
[14] 前記無アルカリ層のスパッタ製膜時のターゲットへの印加電力は、前記 RFスパッタ法 では 0. 5〜1. 5WZcm2の範囲であり、前記 DCスパッタ法では 1. 0〜3. OW/cm2 の範囲であり、前記金属裏面電極層の第 1層の結晶粒径が lOnm以下で、望ましく は、粒径 3〜5nmの範囲の微粒となるように電力を決定することを特徴とする請求項 11又は 12に記載の CIS系薄膜太陽電池の作製方法。
[15] 前記無アルカリ層のスパッタ製膜時の製膜圧力は、 0. 5〜5Pa (パスカル)の範囲で あり、望ましくは、 0. 5〜1. 5Pa (パスカル)の範囲であり、前記金属裏面電極層の第 1層の粒径が 3〜5nmの範囲の微粒となるように製膜圧力を決定することを特徴とす る請求項 11又は 12に記載の CIS系薄膜太陽電池の作製方法。
[16] 前記積層構造の金属裏面電極層の第 1層の製膜は、そのスパッタ製膜時のターゲッ トへの印加電力が、その上部に連続して製膜される金属裏面電極層のスパッタ製膜 時のターゲットへの印加電力の 1Z8〜1Z2の範囲であり、ターゲットへの印加電圧 を調整することにより、粒径が lOnm以下で、望ましくは、 3〜5nmの粒径の微粒で且 つ高密度にすることを特徴とする請求項 12に記載の CIS系薄膜太陽電池の作製方 法。
[17] 前記積層構造の金属裏面電極層の製膜は、一定の基板搬送速度で連続して製膜 することを特徴とする請求項 11又は 12に記載の CIS系薄膜太陽電池の作製方法。
[18] 前記積層構造の金属裏面電極層の製膜は、金属 (例えば、モリブデン (Mo) )をター ゲットとして使用し、 DCスパッタ法により不活性ガスの Arガス中で製膜することを特 徴とする請求項 11又は 12に記載の CIS系薄膜太陽電池の作製方法。
[19] 前記積層構造の金属裏面電極層は、セレンに対して耐蝕性のある金属を選択し、モ リブデン (Mo)、チタン (Ti)、タンタル (Ta)等の高融点金属の何れか 1つ又はシリカ 層との化合物形成 (例えば、 MoSiO 等)の関係力 これらの組み合わせ力 なるこ
X
とを特徴とする請求項 11又は 12に記載の CIS系薄膜太陽電池の作製方法。
[20] 前記無アルカリ層を製膜するための無アルカリ層製膜室と金属裏面電極層を製膜す るための金属裏面電極層製膜室との間に圧力調整機構及び Z又は排気系を設置し 、異なる圧力及び Z又は異なる組成のスパッタガス雰囲気(例えば、 Arガス、 Ar+O 混合ガス)で夫々の薄膜層を製膜することを特徴とする請求項 11又は 12に記載の
2
CIS系薄膜太陽電池の作製方法。
PCT/JP2005/022698 2004-12-09 2005-12-09 Cis系薄膜太陽電池及びその作製方法 WO2006062206A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05814238.1A EP1833096A4 (en) 2004-12-09 2005-12-09 CIS BASED THIN FILM SOLAR BATTERY AND METHOD FOR MANUFACTURING THE SAME
US11/721,381 US20080271781A1 (en) 2004-12-09 2005-12-09 Cis Type Thin-Film Solar Cell and Process for Producing the Same
CN2005800425138A CN101076895B (zh) 2004-12-09 2005-12-09 Cis型薄膜太阳能电池及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004356909A JP2006165386A (ja) 2004-12-09 2004-12-09 Cis系薄膜太陽電池及びその作製方法
JP2004-356909 2004-12-09

Publications (1)

Publication Number Publication Date
WO2006062206A1 true WO2006062206A1 (ja) 2006-06-15

Family

ID=36578026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022698 WO2006062206A1 (ja) 2004-12-09 2005-12-09 Cis系薄膜太陽電池及びその作製方法

Country Status (6)

Country Link
US (1) US20080271781A1 (ja)
EP (1) EP1833096A4 (ja)
JP (1) JP2006165386A (ja)
KR (1) KR20070100249A (ja)
CN (1) CN101076895B (ja)
WO (1) WO2006062206A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838167B1 (ko) 2006-07-18 2008-06-13 주식회사 엘지화학 Ci(g)s 태양전지 후면전극의 제조방법
WO2008120307A1 (ja) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Cis系薄膜太陽電池サブモジュールの製造システム
US20100300512A1 (en) * 2007-12-07 2010-12-02 Saint-Gobain Glass France Made to elements capable of collecting light
JP2011077074A (ja) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd 薄膜太陽電池及びその製造方法
US20120073646A1 (en) * 2009-06-16 2012-03-29 Lg Innotek Co., Ltd. Solar Cell And Method Of Fabricating The Same

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047614A (ja) * 2006-08-11 2008-02-28 Showa Shell Sekiyu Kk 吸着材を利用した改良型太陽電池モジュール
US7914762B2 (en) 2007-09-28 2011-03-29 Korea Research Institute Of Chemical Technology Preparation method of chalcopyrite-type compounds with microwave irradiation
JP2009267337A (ja) 2007-09-28 2009-11-12 Fujifilm Corp 太陽電池
JP4974986B2 (ja) 2007-09-28 2012-07-11 富士フイルム株式会社 太陽電池用基板および太陽電池
WO2009041660A1 (ja) 2007-09-28 2009-04-02 Fujifilm Corporation 太陽電池用基板および太陽電池
FR2922046B1 (fr) * 2007-10-05 2011-06-24 Saint Gobain Perfectionnements apportes a des elements capables de collecter de la lumiere
KR101047941B1 (ko) * 2007-10-31 2011-07-11 주식회사 엘지화학 Ci(g)s 태양전지 후면 전극의 제조방법
US20090260678A1 (en) * 2008-04-16 2009-10-22 Agc Flat Glass Europe S.A. Glass substrate bearing an electrode
JP4384237B2 (ja) * 2008-05-19 2009-12-16 昭和シェル石油株式会社 Cis系薄膜太陽電池の製造方法
KR20110025207A (ko) * 2008-06-30 2011-03-09 고쿠리츠 다이가쿠 호진 도호쿠 다이가쿠 나트륨을 함유하는 유리 기체를 갖는 전자 장치 및 그 제조 방법
TWI382556B (en) * 2008-10-17 2013-01-11 A method for manufacturing electrodes of a solar cell and a shelter structure for use in the manufacture of electrodes of the solar cell
JP2010212336A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 光電変換素子とその製造方法、及び太陽電池
US20100236616A1 (en) * 2009-03-19 2010-09-23 Jenn Feng Industrial Co., Ltd. Cigs solar cell having thermal expansion buffer layer and method for fabricating the same
US20100242953A1 (en) * 2009-03-27 2010-09-30 Ppg Industries Ohio, Inc. Solar reflecting mirror having a protective coating and method of making same
KR101014106B1 (ko) 2009-03-31 2011-02-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US7897020B2 (en) * 2009-04-13 2011-03-01 Miasole Method for alkali doping of thin film photovoltaic materials
US7785921B1 (en) * 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
US8134069B2 (en) 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2010258368A (ja) * 2009-04-28 2010-11-11 Tohoku Univ 電子装置及びその製造方法
KR101039993B1 (ko) 2009-06-19 2011-06-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP2011009287A (ja) 2009-06-23 2011-01-13 Showa Shell Sekiyu Kk Cis系薄膜太陽電池
KR101081079B1 (ko) 2009-06-25 2011-11-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP5114683B2 (ja) * 2009-09-07 2013-01-09 新日鐵住金株式会社 太陽電池用ガラス基板の裏面電極及びその製造方法
US7923628B2 (en) * 2009-09-09 2011-04-12 International Business Machines Corporation Method of controlling the composition of a photovoltaic thin film
KR101072089B1 (ko) * 2009-09-30 2011-10-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8709335B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by cold spraying
US8709548B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
JP2011129631A (ja) 2009-12-16 2011-06-30 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の製造方法
TWI520367B (zh) * 2010-02-09 2016-02-01 陶氏全球科技公司 具透明導電阻擋層之光伏打裝置
JP2012077321A (ja) * 2010-09-30 2012-04-19 Sumitomo Heavy Ind Ltd 成膜基板の製造方法、成膜基板、および成膜装置
US7935558B1 (en) 2010-10-19 2011-05-03 Miasole Sodium salt containing CIG targets, methods of making and methods of use thereof
US9169548B1 (en) 2010-10-19 2015-10-27 Apollo Precision Fujian Limited Photovoltaic cell with copper poor CIGS absorber layer and method of making thereof
US8048707B1 (en) 2010-10-19 2011-11-01 Miasole Sulfur salt containing CIG targets, methods of making and methods of use thereof
KR20120054365A (ko) * 2010-11-19 2012-05-30 한국전자통신연구원 화합물 반도체 태양전지 및 그 제조방법
CN102610690A (zh) * 2011-01-19 2012-07-25 河南师范大学 一种铜铟镓硒薄膜太阳能电池缓冲层材料制备方法
KR101219948B1 (ko) 2011-01-27 2013-01-21 엘지이노텍 주식회사 태양광 발전장치 및 제조방법
KR101283183B1 (ko) * 2011-04-04 2013-07-05 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP5620334B2 (ja) * 2011-05-18 2014-11-05 株式会社神戸製鋼所 Cigs系太陽電池
WO2012169845A2 (ko) * 2011-06-10 2012-12-13 주식회사 포스코 태양전지 기판과 그 제조방법 및 이를 이용한 태양전지
KR101228735B1 (ko) 2011-06-10 2013-02-01 주식회사 포스코 다층 확산방지막을 포함하는 태양전지 기판 및 이를 이용한 태양전지
KR101228685B1 (ko) * 2011-06-13 2013-01-31 주식회사 포스코 Ci(g)s태양전지용 기판 및 이를 이용한 ci(g)s태양전지
EP2720279A4 (en) * 2011-06-13 2014-12-24 Posco SOLAR CELL SUBSTRATE AND SOLAR CELL WITH IT
KR101228666B1 (ko) * 2011-06-13 2013-01-31 주식회사 포스코 다층 하부전극을 포함한 ci(g)s 태양전지용 기판 및 이를 이용한 ci(g)s 태양전지
FR2977078B1 (fr) * 2011-06-27 2013-06-28 Saint Gobain Substrat conducteur pour cellule photovoltaique
JP5665712B2 (ja) * 2011-09-28 2015-02-04 京セラ株式会社 光電変換装置
JP2013074123A (ja) * 2011-09-28 2013-04-22 Fujifilm Corp 光電変換素子用基板および光電変換素子
KR101196350B1 (ko) 2011-10-19 2012-11-01 주식회사 아바코 박막형 태양전지와 그 제조 방법 및 이를 제조하기 위한 스퍼터링장치
KR101306529B1 (ko) * 2011-11-21 2013-09-09 엘지이노텍 주식회사 태양전지 및 이의 제조방법
KR101338782B1 (ko) * 2011-11-29 2014-01-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP5258951B2 (ja) 2011-12-02 2013-08-07 昭和シェル石油株式会社 薄膜太陽電池
KR101867617B1 (ko) * 2011-12-20 2018-06-15 주식회사 포스코 다층 확산방지막을 포함하는 태양전지
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
JP5575163B2 (ja) * 2012-02-22 2014-08-20 昭和シェル石油株式会社 Cis系薄膜太陽電池の製造方法
DE102012205375A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Mehrschicht-Rückelektrode für eine photovoltaische Dünnschichtsolarzelle, Verwen-dung der Mehrschicht-Rückelektrode für die Herstellung von Dünnschichtsolarzellen und -modulen, photovoltaische Dünnschichtsolarzellen und -module enthaltend die Mehrschicht-Rückelektrode sowie ein Verfahren zur Herstellung photovoltaischer Dünnschichtsolarzellen und -module
DE102012205377A1 (de) * 2012-04-02 2013-10-02 Robert Bosch Gmbh Mehrschicht-Rückelektrode für eine photovoltaische Dünnschichtsolarzelle, Verwendung der Mehrschicht-Rückelektrode für die Herstellung von Dünnschichtsolarzellen und -modulen, photovoltaische Dünnschichtsolarzellen und -module enthaltend die Mehrschicht-Rückelektrode sowie ein Verfahren zur Herstellung photovoltaischer Dünnschichtsolarzellen und -module
KR101382819B1 (ko) * 2012-04-17 2014-04-09 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US20140041721A1 (en) * 2012-08-09 2014-02-13 Samsung Sdi Co., Ltd. Solar cell and manufacturing method thereof
JP5660091B2 (ja) 2012-08-30 2015-01-28 株式会社豊田中央研究所 光電素子用電極
KR101865953B1 (ko) * 2012-09-12 2018-06-08 엘지이노텍 주식회사 태양전지 및 이의 제조방법
JP2014063795A (ja) 2012-09-20 2014-04-10 Seiko Epson Corp 光電変換素子、光電変換素子の製造方法、及び電子機器
EP2917941A2 (en) * 2012-11-09 2015-09-16 Nanoco Technologies Ltd Molybdenum substrates for cigs photovoltaic devices
US8748217B2 (en) * 2012-11-13 2014-06-10 Tsmc Solar Ltd. Metal-based solution treatment of CIGS absorber layer in thin-film solar cells
KR101474488B1 (ko) 2013-05-15 2014-12-19 엘에스엠트론 주식회사 화합물 박막 태양전지용 후면 기판 및 이를 포함하는 화합물 박막 태양전지
KR20150050186A (ko) * 2013-10-31 2015-05-08 삼성에스디아이 주식회사 태양 전지 및 그 제조 방법
CN104617183B (zh) * 2014-09-05 2016-09-28 厦门神科太阳能有限公司 一种cigs基薄膜太阳电池及其制备方法
EP3109905A1 (en) * 2015-06-26 2016-12-28 International Iberian Nanotechnology Laboratory A solar cell module
JP6673360B2 (ja) * 2015-09-18 2020-03-25 Agc株式会社 太陽電池用ガラス基板及び太陽電池
CN108511537B (zh) * 2018-06-26 2022-11-29 上海祖强能源有限公司 一种太阳能电池
CN112071946A (zh) * 2019-05-21 2020-12-11 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池的制备方法
KR20220055526A (ko) * 2020-10-26 2022-05-04 삼성디스플레이 주식회사 반도체 구조물을 포함하는 적층 구조물 및 이의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220381A (ja) * 1985-07-16 1987-01-28 シーメンス ソーラー インダストリーズ,エル.ピー. 二セレン化インジウム銅半導体膜の製造方法
JPH05114749A (ja) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd 電子素子部材およびその製造方法
JPH09186350A (ja) * 1996-01-05 1997-07-15 Canon Inc 光起電力素子及びその製造方法
JP2001148490A (ja) * 1999-03-29 2001-05-29 Shinko Electric Ind Co Ltd 化合物半導体太陽電池及びその製造方法
WO2004008547A1 (ja) * 2002-07-12 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha 薄膜太陽電池およびその製造方法
JP2004103663A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd 太陽電池
JP2004140307A (ja) * 2002-10-16 2004-05-13 Honda Motor Co Ltd 薄膜太陽電池の製造方法
JP2004532501A (ja) * 2001-01-31 2004-10-21 サン−ゴバン グラス フランス 電極を備えた透明基材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047101A (en) * 1976-01-08 1977-09-06 Westinghouse Electric Corporation Filament for alkali metal ionization detector
US5089442A (en) * 1990-09-20 1992-02-18 At&T Bell Laboratories Silicon dioxide deposition method using a magnetic field and both sputter deposition and plasma-enhanced cvd
DE4442824C1 (de) * 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
US6258620B1 (en) * 1997-10-15 2001-07-10 University Of South Florida Method of manufacturing CIGS photovoltaic devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220381A (ja) * 1985-07-16 1987-01-28 シーメンス ソーラー インダストリーズ,エル.ピー. 二セレン化インジウム銅半導体膜の製造方法
JPH05114749A (ja) * 1991-10-23 1993-05-07 Nikko Kyodo Co Ltd 電子素子部材およびその製造方法
JPH09186350A (ja) * 1996-01-05 1997-07-15 Canon Inc 光起電力素子及びその製造方法
JP2001148490A (ja) * 1999-03-29 2001-05-29 Shinko Electric Ind Co Ltd 化合物半導体太陽電池及びその製造方法
JP2004532501A (ja) * 2001-01-31 2004-10-21 サン−ゴバン グラス フランス 電極を備えた透明基材
WO2004008547A1 (ja) * 2002-07-12 2004-01-22 Honda Giken Kogyo Kabushiki Kaisha 薄膜太陽電池およびその製造方法
JP2004103663A (ja) * 2002-09-05 2004-04-02 Matsushita Electric Ind Co Ltd 太陽電池
JP2004140307A (ja) * 2002-10-16 2004-05-13 Honda Motor Co Ltd 薄膜太陽電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1833096A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838167B1 (ko) 2006-07-18 2008-06-13 주식회사 엘지화학 Ci(g)s 태양전지 후면전극의 제조방법
WO2008120307A1 (ja) * 2007-03-28 2008-10-09 Showa Shell Sekiyu K.K. Cis系薄膜太陽電池サブモジュールの製造システム
US20100300512A1 (en) * 2007-12-07 2010-12-02 Saint-Gobain Glass France Made to elements capable of collecting light
US20120073646A1 (en) * 2009-06-16 2012-03-29 Lg Innotek Co., Ltd. Solar Cell And Method Of Fabricating The Same
JP2011077074A (ja) * 2009-09-29 2011-04-14 Dainippon Printing Co Ltd 薄膜太陽電池及びその製造方法

Also Published As

Publication number Publication date
CN101076895B (zh) 2011-12-21
US20080271781A1 (en) 2008-11-06
JP2006165386A (ja) 2006-06-22
EP1833096A1 (en) 2007-09-12
EP1833096A4 (en) 2014-10-01
CN101076895A (zh) 2007-11-21
KR20070100249A (ko) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2006062206A1 (ja) Cis系薄膜太陽電池及びその作製方法
JP2006165386A6 (ja) Cis系薄膜太陽電池及びその作製方法
Dhere Present status and future prospects of CIGSS thin film solar cells
Ong et al. Review on substrate and molybdenum back contact in CIGS thin film solar cell
JP3249408B2 (ja) 薄膜太陽電池の薄膜光吸収層の製造方法及び製造装置
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
Romeo et al. Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
Chopra et al. Thin‐film solar cells: an overview
CN100524839C (zh) 黄铜矿型太阳能电池及其制造方法
Dimmler et al. Scaling‐up of CIS technology for thin‐film solar modules
US20120018828A1 (en) Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
US8252621B2 (en) Method for forming copper indium gallium chalcogenide layer with optimized gallium content at its surface
KR20090014146A (ko) 박막 태양 전지 제작을 위한 전구체 막 및 화합물 층의 제조 기술 및 이에 대응하는 장치
US20110226320A1 (en) Solar cell having a transparent conductive oxide contact layer with an oxygen gradient
Chung et al. Incorporation of Cu in Cu (In, Ga) Se2-based thin-film solar cells
CN102652368A (zh) 太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法
WO2011040645A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
US20110073186A1 (en) Target for a sputtering process for making a compound film layer of a thin solar cell, method of making the thin film solar cell, and thin film solar cell made thereby
US20110186103A1 (en) Photoelectric conversion element, thin-film solar cell, and photoelectric conversion element manufacturing method
Dhere et al. Thin-film photovoltaics
JP2007059484A (ja) 太陽電池の製造方法および太陽電池
US9112095B2 (en) CIGS absorber formed by co-sputtered indium
JP2004140307A (ja) 薄膜太陽電池の製造方法
JP2004047917A (ja) 薄膜太陽電池およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 4350/DELNP/2007

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2005814238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005814238

Country of ref document: EP

Ref document number: 1020077012933

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042513.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11721381

Country of ref document: US