WO2006054647A1 - 射出成形装置、射出成形方法及び射出成形金型 - Google Patents

射出成形装置、射出成形方法及び射出成形金型 Download PDF

Info

Publication number
WO2006054647A1
WO2006054647A1 PCT/JP2005/021128 JP2005021128W WO2006054647A1 WO 2006054647 A1 WO2006054647 A1 WO 2006054647A1 JP 2005021128 W JP2005021128 W JP 2005021128W WO 2006054647 A1 WO2006054647 A1 WO 2006054647A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
mold
gap
pressure
injection molding
Prior art date
Application number
PCT/JP2005/021128
Other languages
English (en)
French (fr)
Inventor
Kazuo Inoue
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006545132A priority Critical patent/JP4593572B2/ja
Priority to US11/629,906 priority patent/US7559761B2/en
Publication of WO2006054647A1 publication Critical patent/WO2006054647A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/38Cutting-off equipment for sprues or ingates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C2045/0077Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping removing burrs or flashes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/001Carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records
    • B29L2017/003Records or discs
    • B29L2017/005CD''s, DVD''s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/81Sound record

Definitions

  • the present invention relates to an injection molding apparatus, an injection molding method, and an injection mold for molding a resin molded product having an inner hole formed therein.
  • an optical disk substrate is manufactured by an injection molding method.
  • This substrate is generally formed from a thermoplastic resin.
  • An example of a mold used for the injection molding method is shown in FIG. In FIG. 16, reference numeral 101 is a fixed side mold, and reference numeral 102 is a movable side mold.
  • a sprue bush 103 serving as a molten resin inflow port is disposed at the center of the fixed-side mold 101, and a stamper holder 104 is provided between the sprue bush 103 and the fixed-side mirror surface plate 105. It is arranged.
  • a stamper 106 On the surface of the fixed-side mirror surface plate 105, a stamper 106 in which information by unevenness is put is disposed. This stamper 106 is fixed to the fixed-side mirror surface plate 105 by a stamper holder 104 and an outer peripheral ring 107.
  • the fixed side mirror plate 105 is fixed to the fixed side base 108.
  • a mold center force ejector pin 109 In the movable mold 102, a mold center force ejector pin 109, a cut punch 110, an ejector 111, a movable fixed bush 112, and a movable mirror plate 113 are arranged in this order.
  • the cut punch 110 has a function of forming an inner hole in the optical disk substrate by protruding.
  • the ejector 111 functions to release the molded substrate from the movable mold 102.
  • the ejector pin 109 functions to push out the sprue portion separated from the optical disc substrate cover as an inner hole.
  • the movable side fixed bush 112 functions to prevent the movable side mirror surface plate 113 from being worn by preventing the ejector 111 from coming into direct contact with the movable side mirror surface plate 113.
  • the movable side mirror surface plate 113 is fixed to the movable side base plate 114.
  • a fixed-side abutment ring 115 is provided on the outermost periphery of the fixed-side mold 101, and a movable-side abutment ring 116 is provided on the outermost periphery of the movable-side mold 102.
  • the fixed side abutting ring 115 and the movable side abutting ring 116 are fitted together so that the center position is determined.
  • FIGS. 17 (a) and 17 (b) show how the inner holes of the substrate are formed.
  • Figure 17 (a) shows the fixed side
  • the mold 101 and the movable mold 102 are closed, and the sprue hole also shows the state when the molten resin flows into the mold.
  • the cut punch 110 is fitted into the sprue bush 103 while maintaining the relative position with the ejector pin 109 as shown in FIG. By fitting in this way, an inner hole is formed in the optical disk substrate.
  • Patent Document 1 when forming the inner hole in the substrate, the fixed-side mold member is slid to protrude toward the movable-side mold member, and the sprue bushing is fitted to the ejector. It is disclosed to combine them.
  • Patent Document 2 discloses that the cut punch of the movable mold is formed in a recessed shape, while the sprue bush is formed in a protruding shape, and the cut punch is fitted to the sprue bush. Has been.
  • Patent Document 4 describes a method of cutting with a cutter
  • Patent Document 5 describes a method of cutting with a gas burner
  • Patent Document 6 describes a method of decomposing with ultraviolet light.
  • Patent Document 7 is cited as a technique related to burrs, although it is not a technique for molding an optical disc substrate.
  • high pressure air is supplied into a cavity from a mold (for example, an upper mold) that forms the back side surface of a resin molded product, and the resin molded product is pressed against the lower mold by the high pressure air. Avoid sink marks on the front side of the resin molded product.
  • a method for producing a resin molded product is disclosed.
  • Patent Document 7 describes that by defining the thickness of the gap through which the high-pressure air flows, the molten resin can be prevented from flowing into the gap and the generation of dust can be prevented.
  • Patent Document 1 Patent No. 1944425 Specification
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-240101
  • Patent Document 3 Patent No. 2071462
  • Patent Document 4 Japanese Patent Laid-Open No. 4-235006
  • Patent Document 5 Japanese Patent Application Laid-Open No. 59-196212
  • Patent Document 6 Japanese Patent Laid-Open No. 6-99581
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2005-28731
  • the present invention has been made in view of the problem to be solved, and the purpose of the present invention is to generate burrs to the extent that it is necessary to remove the rear force when forming the inner hole in the resin molded product. Deter It is in.
  • the present invention injects molten resin into a cavity formed between the first mold and the second mold to form a resin molded product having an inner hole formed therethrough.
  • a movable portion provided in one of the first mold and the second mold, and at least one of the first mold and the second mold are provided so as to be able to communicate in the cavity.
  • the gas passage force at the position is configured to be movable between the advance position where the gas has advanced into the cavity so that a gap into which the outflowed gas can flow is left between the mold and the counterpart mold.
  • the movement control of the movable part and the opening / closing of the on-off valve according to the injection of the molten resin It is configured to perform the control.
  • the present invention provides a method for molding a resin molded product having an inner hole formed by injecting molten resin into a cavity formed between a first mold and a second mold.
  • a gas passage is provided in at least one of the molds so as to communicate with the cavity, and the first mold and the second mold in which a movable part is provided in one of the molds are used.
  • the movable part has a gap between the normal position when the molten resin is injected and the gas passage force at the position where the inner hole is formed. In this way, it is configured to be movable between the advanced position where it has advanced into the cavity, and after injecting molten resin into the cavity, the movable part is moved to the advanced position, and the gap is filled with gas. Inflow.
  • the present invention is based on a mold having a first mold and a second mold and provided with a cavity for molding a resin molded product having an inner hole between the molds.
  • a movable portion provided in one of the first mold and the second mold, and a gas passage provided in at least one of the first mold and the second mold so as to communicate with the cavity.
  • the movable part is provided so that a gap through which the gas passage force can flow in at a position where the molten resin is injected and a position where the inner hole is formed remain between the mating mold.
  • it is configured to be able to move between the advancing positions that have advanced into the aforementioned cavity.
  • the edge of the inner hole in the resin molded product A gap is formed between the corresponding mold and the corresponding mold. Then, gas flows into this gap through the gas passage, and the molten resin in the gap is pushed out by this gas. For this reason, since the molten resin existing in the gap moves toward the inner hole, no burrs are formed in the inner hole of the resin molded product. Therefore, according to the present invention, it is possible to eliminate the residue in the vicinity of the inner hole of the resin molded product without providing a removal step. As a result, it is possible to suppress adhesion of dust as foreign matter. In addition, since the burrs are not removed later, the quality of the resin molded product can be stabilized.
  • FIG. 1 is a cross-sectional view showing an injection mold according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of an injection molding apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a view corresponding to FIG. 2, showing another configuration of the injection molding apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view showing an optical disk substrate molded by the injection mold.
  • FIG. 6 is a view corresponding to FIG. 2, showing another configuration of the injection molding apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 3 of the present invention.
  • FIG. 8 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 4 of the present invention.
  • FIG. 9 is an equivalent view of FIG. 4 showing an injection mold according to another aspect of Embodiment 4 of the present invention.
  • FIG. 10 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 5 of the present invention.
  • FIG. 11 is a view corresponding to FIG. 4, showing an injection mold according to another aspect of Embodiment 5 of the present invention.
  • FIG. 12 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 6 of the present invention.
  • FIG. 13 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 7 of the present invention.
  • FIG. 14 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 8 of the present invention.
  • FIG. 15 is a view corresponding to FIG. 4, showing an injection mold according to Embodiment 9 of the present invention.
  • FIG. 16 is a cross-sectional view showing a conventional optical disk substrate mold.
  • FIG. 17 (a) is a cross-sectional view partially showing a conventional mold for an optical disk substrate when injecting molten resin, and (b) the optical disk substrate mold when forming an inner hole in the optical disk substrate.
  • FIG. 18 (a) to (c) are cross-sectional views showing an optical disk substrate formed by a conventional injection molding apparatus.
  • FIG. 1 is a cross-sectional view schematically showing a main part of an injection mold provided in an embodiment of an injection molding apparatus according to the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of the injection molding apparatus 50.
  • the injection molding apparatus 50 is for molding a substrate for an optical disc, and the optical disc substrate 56 is a circular flat resin molded product provided with a hole (inner hole) 56a in the center.
  • the injection molding apparatus 50 includes an injection mold 52 for molding an optical disk substrate 56 in which an inner hole 56a is formed.
  • This injection mold 52 includes a fixed mold 1 as an example of a first mold and a movable mold 2 as an example of a second mold.
  • a disk-shaped cavity 54 is formed on the surface.
  • the fixed-side mold 1 includes a fixed-side base 10, a fixed-side specular panel 6, a sprue bush 3, a fixed-side fixed bush 4, a stamper holder 5, an outer ring 9, and a stamper 8. It is equipped with.
  • the sprue bush 3 is arranged at the center of the fixed mold 1.
  • the sprue bush 3 is formed with a sprue hole 3a serving as an inlet for the molten resin.
  • the sprue hole 3a is formed in such a shape that its cross-sectional area increases as it goes to the cavity 54, and a recess 3b is formed on the inner end surface of the sprue bush 3 in a range including the downstream end of the sprue hole 3a. ing.
  • the outer diameter of the sprue bush 3 is formed substantially the same as the inner diameter of the optical disk substrate 56. Molten resin is supplied to the sprue hole 3a from a molten resin supply device (not shown).
  • the stamper 8 is fixed to the fixed-side mirror surface plate 6 by a stamper holder 5 disposed in the central portion and an outer peripheral ring 9 disposed in the outer peripheral portion.
  • the fixed-side fixed bush 4 includes a cylindrical portion 4a formed in a cylindrical shape, and a flange portion 4b provided at a base end portion of the cylindrical portion 4a.
  • the cylindrical portion 4 a of the fixed-side fixed bush 4 is fitted into the through-holes of the fixed-side base 10 and the fixed-side mirror surface plate 6.
  • the tip (inner end) force of the cylindrical part 4a is in line with the end (inner end) of the tamper holder 5.
  • the sprue bush 3 is fitted into the fixed-side fixed bush 4, and thus the sprue bush 3 is held by the fixed bush 4! Since the sprue bush 3 can be removed from the fixed-side fixed bush 4, only this sprue bush 3 can be replaced!
  • the fixed side base 10 is provided with a gas passage 7.
  • the outer end portion of the gas passage 7 also protrudes from the side force of the fixed base 10, and the outer end portion is configured to be connectable to an external gas pipe 60 (see FIG. 2).
  • the gas passage 7 extends to the center of the fixed base 10 and communicates with a gap 62 between the sprue bush 3 and the cylindrical portion 4 a of the fixed fixed bush 4. High-pressure gas flows into the gap 62 through the gas passage 7.
  • the gap 62 is formed over the entire length of the cylindrical portion 4 a of the fixed-side fixed bush 4, and the gas passage 7 communicates with the interior of the cavity 54 through the gap 62.
  • the movable side mold 2 includes an ejector pin 11, a cut punch 12 as an example of a movable part, an ejector 13, a movable side fixed bush 14, a movable side specular panel 15, and a movable side base.
  • the cut punch 12, the ejector 13, the movable side fixed bushing 14, and the movable side specular panel 15 are arranged with the central force of the movable side mold 2 in order.
  • the ejector pin 11 and the cut punch 12 are provided at positions facing the sprue bush 3. Since the sprue bush 3 and the cut punch 12 have substantially the same outer diameter, the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 is located at the position facing the outer peripheral surface of the cut punch 12. [0032]
  • the cut punch 12 is configured to be movable between a normal position when the molten resin is injected into the cavity 54 and an advance position where the molten resin advances from the normal position toward the sprue bush 3 into the cavity 54. Being sung.
  • the inner end surface of the cut punch 12 is flush with the inner surfaces of, for example, the movable-side fixed bush 14 and the movable-side mirror 15 in the first embodiment. For this reason, the cut punch 12 and the sprue bush 3 in the normal position are arranged with an interval corresponding to the thickness of the optical disk substrate 56.
  • a recess 12a is formed leaving its outer peripheral part.
  • a pin hole is formed in the force punch 12, and the ejector pin 11 is disposed in the pin hole.
  • the ejector pin 11 is recessed deeper than the recess 12a.
  • the cut punch 12 is configured as a sliding member that slides with respect to the ejector 13.
  • the cut punch 12 has a function of forming an inner hole 56a in the optical disk substrate 56 by moving the normal position force to the advanced position.
  • a gap 66 (with a predetermined width) is formed between the inner end surface of the cut punch 12 around the recess 12a and the inner end surface of the sprue bush 3 around the recess 3b. Gas outflow gap) is formed.
  • the gap 66 is formed at a position connected to the peripheral surface of the inner hole 56 a of the optical disk substrate 56 in the cavity 54.
  • the gap 66 is disposed at the end in the thickness direction of the inner hole 56 a of the optical disc substrate 56.
  • molten resin is present in the gap 66. That is, at this time, the molten resin in the cavity 54 is connected to the sprue portion 64 in the recesses 12a and 3b and the optical disk substrate 56 outside the cut punch 12 by the thin-walled resin in the gap 66. Therefore, if the molten resin is solidified in this state, an annular burr is formed in the inner hole 56a of the optical disk substrate 56. However, as will be described later, the molten resin is solidified. By introducing a high-pressure gas into the gap 66 before it is completely removed, the burrs are not formed by eliminating the molten resin in the gap 66.
  • the ejector pin 11 moves together with the cut punch 12! /.
  • the ejector pin 11 slides against the cut punch 12 in the advanced position.
  • the ejector pin 11 has a function of projecting from the cut punch 12 to push out the sprue portion 64 separated from the optical disc substrate 56 as the inner hole 56a and release it from the movable mold 2.
  • the ejector 13 is arranged so that the inner end surface thereof is flush with the movable mirror surface plate 15, and slides with respect to the movable side fixed bush 14.
  • the ejector 13 has a function of releasing the optical disk substrate 56 molded in the cavity 54 from the movable mold 2 by protruding from the movable fixed bush 14.
  • the movable side fixed bushing 14 has a function of preventing the movable side mirror surface plate 15 from being worn by preventing the ejector 13 from coming into direct contact with the movable mirror surface plate 15.
  • the movable mirror plate 15 is fixed to the movable substrate 16.
  • a fixed side abutment ring 17 is provided on the outermost periphery of the fixed side mold 1, and a movable side abutment ring 18 is provided on the outermost periphery of the movable side mold 2.
  • the movable side abutting ring 18 is fitted, the center positions of the fixed side mold 1 and the movable side mold 2 are determined.
  • FIG. 2 is a diagram schematically showing an overall configuration of the injection molding apparatus 50 according to the present embodiment.
  • the injection molding apparatus 50 includes an electromagnetic valve 22 as an example of an on-off valve provided in a gas pipe 60 connected to an injection mold 52, a controller 70, a tank 21, And a booster 20.
  • the booster 20 is connected to the gas supply source 19 via a pipe. Gas is supplied from this gas supply source 19. The low-pressure gas supplied from the gas supply source 19 is raised to a predetermined pressure by the booster 20 and stored in the tank 21.
  • the electromagnetic valve 22 is provided in a gas pipe 60 between the tank 21 and the gas passage.
  • the controller 70 includes a pressure control circuit 23 and a molding machine control circuit 24. Completion The molding machine control circuit 24 drives and controls the injection mold 52.
  • the pressure control circuit 23 performs opening / closing control of the electromagnetic valve 22 in accordance with the signal of the molding machine control circuit 24. Specifically, the pressure control circuit 23 calculates a start time for supplying the high-pressure gas and a duration time for continuing the supply in accordance with a signal output from the molding machine control circuit 24, and sends an electric signal to the electromagnetic valve 22. To control the flow of high-pressure gas.
  • FIG. 4 showing a part of the mold 52 shown in FIG. 1 in detail.
  • the cut punch 12 is in the normal position (indicated by a broken line in FIG. 4). In this state, molten resin is injected into the cavity 54 through the sprue hole 3a. Then, the resin in the cavity 54 is in a molten state for a predetermined time after the injection of the resin, and within this predetermined time, the cut punch 12 is brought into contact with the sprue bush 3 as shown in FIG. Move forward in the direction of the hollow arrow until you are ready.
  • the inner hole 56a is formed in the optical disk substrate 56.
  • the ejector pin 11 is moved while maintaining the relative position to the force punch 12 in conjunction with the cut punch 12. This is to eliminate the possibility that the resin in the pin hole of the cut punch 12 will break by shortening the stroke of pushing out the sprue portion 64 separated from the optical disk substrate 56 with the ejector pin 11 after the resin has solidified.
  • a slight gas outflow gap 66 is formed between the inner end face of the spool bush 3 and the inner end face of the cut punch 12, as shown by a solid line in FIG. It becomes the advanced position.
  • the inner end surface of the sprue bush 3 outside the recess 3b and the inner end surface of the cut punch 12 outside the recess 12a are flat annular surfaces.
  • the gap width between the sprue bush 3 and the cut punch 12 is preferably 0.1 ⁇ m or less, more preferably 10 ⁇ m or more and more preferably 50 ⁇ m or less.
  • the high-pressure gas in the tank 21 is introduced into the annular gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 through the gas pipe 60 and the gas passage 7. Is done. As indicated by the downward arrow in FIG. 4, the high pressure gas flows through the gap 62 toward the cavity 54 and then flows out of the gap 62 into the gas outflow gap 66. The molten resin near the outlet of the gap 62 is pushed away. . As a result, the molten resin moves to the substrate side and the sprue side and is pushed out from the gas outflow gap 66. As a result, when the resin is solidified, burrs are not formed in the inner hole 56a of the optical disk substrate 56.
  • FIG. 4 shows a state in which the high-pressure gas has flowed into the cavity 54 and the optical disk substrate 56 is completely separated from the sprue portion 64.
  • the optical disk substrate 56 is molded into the mold 52. Take out from. That is, the movable mold 2 is moved away from the fixed mold 1, and at this time, air is blown out between the fixed fixed bush 4 and the stamper holder 5, and the ejector 13 and the movable fixed bush 14 are moved. Also, air is blown out from between and the ejector pin 11 and the ejector 13 are ejected to release the sprue portion 64 and the optical disc substrate 56, respectively, and the sprue portion 64 and the optical disc substrate 56 are taken out.
  • the outer diameter and inner hole diameter of the resin substrate are determined by standards and the like. Then, by defining the amount of high-pressure gas that flows out into the gas outflow gap 66, the optical disk base It is difficult for sink marks and burrs to be formed in the inner hole 56a of the plate 56. That is, the amount of high-pressure gas flowing out into the mold 52 may be such that the molten resin forming the inner peripheral surface of the inner hole 56a is pushed back slightly. Therefore, the amount of gas may be small.
  • the pressure of the high-pressure gas is slightly higher than the pressure of the molten resin (grease pressure). If the gas pressure is too high or the amount of gas is too large, the melted resin that forms the inner hole 56a is reduced.
  • the pressure of the high-pressure gas flowing out into the gap 66 is preferably 2% or more and 15% or less, preferably 5% or more and 10% or less, higher than the pressure of the molten resin (grease pressure). I found out. It was found that the gas outflow time was 0.05 seconds or more and 1 second or less, preferably 0.1 seconds or more and 0.5 seconds or less.
  • the grease pressure in the cavity 54 becomes equal to the pressure acting on the resin in the cavity 54 due to the clamping force of the molding apparatus 50.
  • the pressure applied to the resin is equal to the pressure applied by the mold clamping force before the mold is compressed, while the compression force is applied after the mold is compressed. Is equal to the pressure applied to the fat. That is, the grease pressure is considered to be equal to the mold clamping force or compressive force divided by the area of the annular flat surface of the resin molded product to be the optical disk substrate 56.
  • the grease pressure when molding the optical disk substrate 56 can be determined as follows.
  • the optical disk substrate 56 has an outer diameter of 120 mm and an inner diameter of 15 mm.
  • the area (one side) of the molten resin that will receive the clamping force or compressive force is
  • the pressure of the high-pressure gas introduced into the cavity 54 does not vary from shot to shot.
  • the pressure of this high-pressure gas is preferably suppressed to fluctuations within ⁇ 5% of the set value (target value), for example. Therefore, the injection molding apparatus 50 preferably includes a gas pressure adjusting unit that maintains the gas pressure within a predetermined range.
  • the gas pressure adjusting means includes a pressure gauge 25 as an example of a pressure detector for measuring the pressure in the tank 21, and a tank according to the measurement result by the pressure gauge 25. And a pressure control circuit 23 for controlling the internal pressure. A signal corresponding to the pressure measured by the pressure gauge 25 is input to the pressure control circuit 23.
  • the pressure control circuit 23 activates the booster 20 when the measured pressure falls below a predetermined value. It may be configured to output a signal.
  • the pressure in the tank 21 can be controlled to be maintained within a certain range by driving the booster 20.
  • the predetermined value here means a value smaller than the set value by 5% or less.
  • the distance from the electromagnetic valve 22 to the gap 66 through which high-pressure gas flows out is determined when the inner diameter of the gas pipe 60 is 6 mm, for example. , Lm or less, more preferably 0.5 m or less.
  • the response speed of the high-pressure gas can be improved. That is, if the distance is long, the amount of high-pressure gas in the gas pipe 60 increases, so that the amount of movement of the resin from the gap 66 through which the high-pressure gas flows out increases, and the resin is pushed too much by the high-pressure gas. There is a risk that the inner hole 56a will be recessed.
  • the inner volume of the pipe is 28.3 cm 3 .
  • air is used as the high-pressure gas
  • the distance from the electromagnetic valve 22 to the high-pressure gas outflow gap 66 is 0.5 m
  • an optical disk substrate 56 having an outer diameter of 120 mm, an inner diameter of 15 mm, and a plate thickness of 1.1 mm is polycarbonate resin.
  • Molded with The injection time of the molten resin is 0.1 second. After 0.05 seconds have passed after the molten resin is filled in the cavity 54, compression is performed at a mold clamping force of 196 kN for 0.1 second, and then the mold clamping force is Kept at 98 kN.
  • the force is also advanced to the advanced position, and after the cut punch 12 has completely advanced and stopped, compressed air at a pressure of 9.5 MPa is used as the high-pressure gas. Spilled for 3 seconds. At this time, the gap width between the sprue bush 3 and the cut punch 12 was 20 m. In a molding test performed under these conditions, a roundness with a radius of 0.1 mm or less was formed at the end of the inner hole 56a of the optical disk substrate 56 on the high-pressure gas outflow side, and the cracks did not occur.
  • high-pressure gas flows into the gas outflow gap 66 between the sprue bush 3 and the cut punch 12 through the gas passage 7 of the stationary mold 1, and this gas causes gas outflow.
  • the molten resin in the gap 66 is pushed out. For this reason, since the molten resin exists in the gas outflow gap 66 and moves toward the inner hole 56a, burrs are not formed in the inner hole 56a of the optical disk substrate. Therefore, it is possible to prevent the occurrence of burrs that need to be removed after the optical disk substrate 56 is formed. In addition, since the influence of the removal accuracy is eliminated, the thickness accuracy when the optical disk substrate 56 is bonded can be improved.
  • the signal quality of an optical disk using this substrate can be improved. Furthermore, since the eccentricity of the inner hole 56a can be suppressed, tracking control can be stabilized when set in the drive device.
  • the controller opens the on-off valve for a predetermined time. Accordingly, since the gas can be sent into the cavity by a predetermined amount through the gas pipe, the amount of movement of the resin can be effectively controlled.
  • the injection molding apparatus of the present embodiment is for molding an optical disk substrate.
  • the thickness accuracy when the optical disk substrate is bonded can be improved. Also, part of the burr is removed during the manufacturing process. Since it is possible to avoid adhesion as a foreign substance on the disk substrate, the signal quality of an optical disk using this substrate can be improved. Furthermore, since the eccentricity of the inner hole can be suppressed, tracking control can be stabilized when set in the drive device.
  • the controller opens the on-off valve for a predetermined time. Accordingly, since the gas can be sent into the cavity by a predetermined amount through the gas pipe, the amount of movement of the resin can be effectively controlled.
  • the controller opens the on-off valve for a time period not less than 0.05 seconds and not more than 1 second. Therefore, it is possible to make it difficult to cause burrs in the molded resin product.
  • the gas pipe is provided with a tank on the upstream side of the on-off valve, and the pressure in the tank is against the resin pressure in the molten state. Is set to 2% or more and 15% or less. With such a setting, the resin in a molten state can be pressed in the cavity by the gas flowing out of the gas passage and the resin can be moved.
  • the length of the gas pipe on the downstream side of the tank is lm or less. Therefore, the response speed of the gas can be increased.
  • the width of the gap is set to 10 ⁇ m or more and 50 m or less. Accordingly, the molten resin in the gap can be efficiently moved out of the gap by the gas flowing into the gap.
  • the gap is arranged at a position corresponding to the peripheral surface of the inner hole of the resin molded product or closer to the center of the inner hole than that. Therefore, the molten resin forming the peripheral surface of the inner hole can be effectively pushed by the gas flowing out into the gap.
  • the gap is disposed at the end of the inner hole in the penetration direction. Therefore, the molten resin that forms the end of the inner hole can be pushed by the gas that has flowed into the gap. For this reason, since the molten resin at the end of the inner hole is pressed by the gas and pulled, even if the mating surface of the mold is formed at the end of the inner hole, burrs caused by the mating surface are not generated. It can be done.
  • the gas passage is configured to communicate with the gap through a gap between a sprue bush and a fixed bush holding the sprue bush. Therefore, even if the gas passage is not formed so as to be connected to the inside of the cavity, the gas passage can be connected to the inside of the cavity through the gap.
  • control unit performs control to maintain the gas pressure when the on-off valve is opened within a predetermined range. Accordingly, since the pressure of the gas flowing out into the gap can be stabilized every time the on-off valve is opened, the amount of movement of the molten resin pushed by the gas can be stabilized.
  • control unit maintains the gas pressure within a range of 5% with respect to a target value. Therefore, it is possible to reliably suppress the inner hole dent caused by the movement of the molten resin within the allowable range.
  • a tank disposed on the upstream side of the on-off valve in the gas pipe, a pressure detector for detecting the pressure in the tank, and the tank And a booster for increasing the pressure inside the controller, and the controller drives the booster according to the detected pressure of the pressure detector. Therefore, the pressure in the tank when the on-off valve is opened can be reliably maintained within a predetermined range.
  • the gas is air or nitrogen.
  • the gas is allowed to flow out for a predetermined time. Accordingly, since the gas can be sent into the cavity by a predetermined amount through the gas passage, the amount of movement of the resin can be effectively controlled.
  • the gas is allowed to flow out at a pressure of 2% or more and 15% or less with respect to the molten resin pressure. Therefore, the gas that has flowed out of the gas passage can be pressed into the molten state in the cavity to move the resin.
  • the width of the gap is set to 10 ⁇ m or more and 50 / zm or less. Therefore, the molten resin in the gap can be efficiently moved out of the gap by the gas flowing into the gap.
  • an optical disk substrate is molded.
  • the injection mold is composed of a plurality of members, there is a gap at the joint between the members. Even in the case of injection molding using such a mold, if the surface irregularities are relatively large, such as a low-density optical disk substrate such as a compact disk (CD), the viscosity of the molten resin is high and the force is high. Even if the pressure applied is low, desired irregularities can be formed on the substrate, so that the molten resin enters the gaps between the members, and it is difficult for the substrate to generate a crack.
  • a low-density optical disk substrate such as a compact disk (CD)
  • the maximum resin temperature is 320 ° C
  • the mold temperature is 70 ° C
  • the maximum injection speed is 150 mmZs
  • the maximum mold clamp is 196kN, tact 4 seconds.
  • the maximum resin temperature is 380 ° C
  • the mold temperature is 120 ° C
  • the maximum injection speed is 200mmZs, maximum clamping force 196kN, tact 6 seconds.
  • the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 is Force that is configured to be formed at substantially the same position as the inner hole diameter of the optical disk substrate 56
  • the force is not limited to this.
  • the outer diameter of the sprue bush 3 and the fixed-side fixing bush 4 The inner diameter of the optical disk substrate 56 may be smaller than the inner hole diameter.
  • the pressure booster 20 is provided.
  • Machine 20 can be omitted.
  • the tank can be omitted.
  • the force is such that the gas flows in the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4.
  • the boundary surface between the sprue bush 3 and the fixed-side fixed bush 4 A hole may be formed in the hole, and a gas may flow through the hole. It is preferable to provide a plurality of holes on the boundary surface in the circumferential direction.
  • a tank 21 having a smaller capacity than the tank 21 in the first embodiment is used, and the opening / closing control of the electromagnetic valve 22 is different from that in the first embodiment.
  • the injection molding apparatus 50 the one shown in FIG. 3 is used.
  • FIG. 3 is used.
  • only parts different from the first embodiment will be described, and description of other parts will be omitted.
  • the pressure of the high-pressure gas is kept substantially constant, and the amount of gas flowing out to the gap 66 is controlled by the opening / closing time of the electromagnetic valve 22.
  • the high-pressure gas is stored.
  • the tank 21 is limited in size, and the gas storage capacity and gas pressure of the tank 21 immediately before opening the electromagnetic valve 22 are made substantially constant, and after the electromagnetic valve 22 is opened, the electromagnetic valve 22 is closed. Gas is not supplied to the tank 21.
  • the tank capacity is set so that the pressure of the high-pressure gas is lower than the resin pressure of the molten resin by keeping the electromagnetic valve 22 open for a long time.
  • the time during which the high pressure gas is at a pressure at which the molten resin in the gas outflow gap 66 can be moved is limited by the capacity of the tank 21 and the gas pressure in the tank immediately before opening the electromagnetic valve 22. .
  • the injection mold 52 has the same configuration as in the first embodiment. As shown in FIG. 4, when the cut punch 12 moves forward to the advance position before the sprue bush 3, the pressure control circuit 23 receives the signal from the molding machine control circuit 24. The pressure control circuit 23 transmits a signal for opening the electromagnetic valve 22 to the electromagnetic valve 22. As a result, when the electromagnetic valve 22 is opened, the high-pressure gas stored in the tank 21 starts to flow out from the gas outflow gap 66 through the gas pipe 60 and the gas passage 7.
  • the gas pressure gradually decreases.
  • the pressure control circuit 23 outputs a signal for closing the electromagnetic valve 22, and the electromagnetic valve 22 is closed. During this time, the booster 20 does not operate, and no gas flows into the tank 21.
  • the preset time is a time longer than the time during which the pressure of the high-pressure gas flowing out from the gas outflow gap 66 is lower than that of the molten resin, and is obtained in advance by experiments or the like. It is time.
  • the capacity of the tank 21 is small and the booster 20 is not driven when the electromagnetic valve 22 is opened. Therefore, as the gas in the tank flows into the mold, the gas outflow gap 66 The gas pressure flowing into the inside decreases.
  • the pressure control circuit 23 operates the booster 20.
  • the pressure control circuit 23 receives the signal from the pressure gauge 25 and ends the operation of the booster 20. Thereby, the gas of the same gas pressure can be flowed out for every shot.
  • the capacity of the high-pressure gas distribution system including the tank 21 must be at least 5 cm 3 .
  • the inner diameter of the gas pipe 60 is 6 mm.
  • the pressure of the high-pressure gas flowing out from the gas outflow gap 66 is 2% or more and 10% or less, preferably 3% or more and 8% or less with respect to the resin pressure. Is more preferred That's right.
  • the capacity of the tank 21 is large and the pressure of the gas flowing out from the gas outflow gap 66 is equal to the pressure in the tank 21, but in the second embodiment, the tank 21 has a small capacity. If the volume and the volume in the system from the solenoid valve 22 to the cavity 54 are the same, the pressure in the tank needs to be double that in the first embodiment.
  • the width of the gas outflow gap 66 between the sprue bush 3 and the cut punch 12 is preferably 0.1 mm or less, more preferably 10 ⁇ m or more and more preferably 50 ⁇ m or less.
  • a molding test of the optical disk substrate 56 was performed by the injection molding apparatus 50 of the second embodiment using air as a gas.
  • the gas is air
  • the capacity of the high-pressure gas distribution system including the tank 21 is 20 cm 3
  • the maximum pressure is 9.3 MPa
  • the outer diameter is 120 mm
  • the inner diameter is 15 mm
  • the plate thickness is 1.1 mm.
  • 56 was molded with polycarbonate resin.
  • the injection time of the molten resin was 0.1 second, and after 0.05 seconds after the molten resin was filled, compression was performed with a mold clamping force of 196 kN for 0.1 second, and then the mold clamping force was maintained at 98 kN. .
  • the cut punch 12 was advanced to the advanced position 0.2 seconds after the injection of the molten resin. In this forming test, a roundness with a radius of 0.1 mm or less was formed in the inner hole 56a in the vicinity where high-pressure gas flows out.
  • the gas pipe is provided with a tank on the upstream side of the on-off valve.
  • the capacity is such that the pressure is lower than the oil pressure.
  • the on-off valve is opened, the gas pressure gradually decreases to a pressure lower than the resin pressure, so that the gas cannot push back the molten resin at that time. For this reason, the amount of gas flowing into the gap before the gas pressure falls below the grease pressure can be defined by the tank capacity. As a result, it is not necessary to accurately control the opening time of the on-off valve, and the control can be simplified.
  • the pressure in the tank before opening the on-off valve is set to 2% or more and 10% or less with respect to the molten resin pressure.
  • the volume of the distribution system including the tank and the flow of gas into the cavity is 5 cm 3 or more. Above, and is set to 30 cm 3 or less. Therefore, by opening the on-off valve, it is possible to ensure that the gas pressure is lower than the grease pressure.
  • the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 is formed at substantially the same position as the peripheral surface position of the inner hole 56a of the optical disk substrate 56.
  • the inner diameter of the inner hole 56 a of the optical disk substrate 56 that is, the outer diameter of the sprue bush 3 and the inner diameter of the fixed fixing bush 4 are made smaller than the inner hole diameter of the optical disk substrate 56. Also , ,.
  • FIG. 7 shows a main part of an injection mold 52 applied to the injection molding apparatus according to the third embodiment of the present invention.
  • the sprue bush 3, the fixed-side fixed bush 4 and the cut punch 12 are different from those in the first embodiment.
  • only parts different from the first embodiment will be described, and description of other parts will be omitted.
  • the cylindrical portion 4a of the fixed-side fixed bush 4 is formed in an annular shape, but the inner end surface of the outer portion of the cylindrical portion 4a is configured to be flush with the stamper holder 5, while the cylindrical portion 4a
  • the inner part 4c extends into the cavity 54 toward the outer part force cut punch 12.
  • the front end surface of the inner side portion 4c of the fixed side fixed bush 4 is formed in an annular flat shape.
  • a substantially half of the inner hole 56a of the optical disk substrate 56 is formed by the inner portion 4c of the fixed-side fixing bush 4.
  • the inner side 4c of the fixed-side fixed bushing 4 has a smooth curved outer side, so that one end (upper side in FIG. 7) of the inner hole 56a of the optical disk substrate 56 is formed into a rounded shape. It has come to be.
  • the outer portion 3c of the sprue bush 3 extends toward the cut punch 12 in the same manner as the fixed-side fixed bush 4.
  • the tip surface of the outer portion 3c of the sprue bush 3 is formed in an annular shape that is flush with the tip surface of the inner portion 4c of the fixed-side fixed bush 4.
  • the cut punch 12 is configured to have an outer diameter substantially the same as the outer diameter of the inner portion 4c of the fixed-side fixed bush 4.
  • the gas outflow gap 66 surrounded by the outer portion 3c of the sprue bush 3, the inner portion 4c of the fixed-side fixed bush 4 and the outer periphery of the recess 12a in the cut punch 12 is an annular gap.
  • the gas outflow gap 66 is formed in the middle portion of the optical disk substrate 56 in the thickness direction. Therefore, when a high-pressure gas is allowed to flow out, even if a recess is generated in the inner hole 56a, the recess is an intermediate portion in the thickness direction of the optical disk substrate 56.
  • the width of the gas outflow gap 66 is preferably 0.1 mm or less, more preferably 10 m or more and 50 m or less.
  • the recess of the inner hole 56a caused by the gas has a radius of 0.1 mm or less.
  • the gas outflow gap 66 is surrounded by the flat portions facing each other, and when the high-pressure gas is directly blown into the gas outflow gap 66, the gas outflow gap 66 In this case, the molten resin is first extruded with high-pressure gas, so that the amount of movement of the resin can be easily controlled.
  • the end portion of the inner hole 56a on the ejector 13 side of the molded optical disk substrate 56 is also rounded. This is because the cut punch 12 operates in the protruding direction, A force is applied in the direction of purging and ejecting the grease that enters between the cut punch 12 and the ejector 13, and a sufficient pressure is not applied to the grease located at the end of the inner hole 56a. The reason is considered to be that the amount of shrinkage is larger than that of the added oil.
  • the third embodiment although there may be a recess at the intermediate portion of the inner hole 56a in the thickness direction of the optical disk substrate 56, no edge or sink mark is generated at the end of the inner hole 56a. For this reason, when the end of the inner hole 56a is supported, such as when the optical disk is centered when it is set in the optical disk drive, the recess in the middle of the inner hole 56a has an effect. None give. Therefore, the signal quality of the optical disc can be improved.
  • the gas that has flowed into the cavity is configured to flow directly into the gap. Therefore, since the gas that has flowed into the cavity flows into the gap without passing through any other place in the cavity, the gap between the gas flow rate flowing into the cavity and the amount of movement of the molten resin is improved. As a result, the amount of movement of the molten resin can be accurately controlled.
  • FIG. 8 shows a main part of an injection mold 52 applied to the molding apparatus according to the fourth embodiment of the present invention.
  • the inner end surface of the cut punch 12 is configured to be a flat surface.
  • the recess 12a is not formed on the inner end face of the cut punch 12. That is, if there is a recess in at least one of the sprue bush 3 or the cut punch 12, it is possible to secure a volume of grease that can be pushed away as the sprue portion 64 when the cut punch 12 moves forward.
  • the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 is formed to have the same force as the inner diameter of the inner hole 56a of the optical disk substrate 56, that is, the outer diameter of the cut punch 12, or a smaller diameter. Is desirable. If the gas outflow gap 66 is surrounded by flat portions facing each other, the molten resin in the gap 66 is first pushed out by the high-pressure gas, so that the amount of movement of the resin can be controlled easily. can do.
  • the gas outflow gap 6 between the sprue bush 3 and the cut punch 12 is as follows.
  • the molten resin is pushed back by the high-pressure gas that has flowed into 6, and the resin is cooled and solidified as the gas pressure decreases. Therefore, the end of the inner hole 56a of the optical disk substrate 56 is rounded, and no warp is generated.
  • the width of the gas outflow gap 66 is preferably 0.1 mm or less, more preferably 10 m or more and 50 m or less.
  • the recess of the inner hole 56a caused by the gas has a radius of 0.1 mm or less.
  • the concave portion 3b is formed leaving the planar outer peripheral portion on the inner end face of the sprue bush 3.
  • the sprue bush 3 has an outer peripheral portion. It is possible that the recess 3b is formed without leaving it. Even in this case, the same effect can be obtained.
  • FIG. 10 shows a main part of an injection mold 52 applied to the molding apparatus according to the fifth embodiment of the present invention.
  • the sprue bush 3 is retracted more than the fixed-side fixed bush 4.
  • only parts different from the first embodiment will be described, and description of other parts will be omitted.
  • the inner end face of the sprue bush 3 is formed in a flat shape! That is, the recess 3 b is not formed on the inner end surface of the sprue bush 3.
  • the inner end surface is retracted in a direction away from the cut punch 12 than the inner end surface of the fixed-side fixed bush 4. Therefore, even if the cut punch 12 moves forward to the advanced position, the gap between the sprue bush 3 and the sprue bush 3 does not become a slight width as in the first embodiment.
  • a gap 66 having a slight width is formed between the cut punch 12 and the fixed-side fixed bush 4. Therefore, the high-pressure gas that has passed through the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4 compresses the molten resin around the low-density sprue 64 while compressing the fixed-side fixed bush 4 and the cut punch 12. Reach the gap 66 between.
  • the high-pressure gas pushes the resin located at the end of the inner hole 56a toward the optical disk substrate 56 side. As the gas pressure is reduced, the resin is cooled and solidified, and the end of the inner hole 56a is rounded, so that no residue is generated.
  • the cut punch 12 moves in the direction opposite to the direction in which the melted resin enters the gap between the cut punch 12 and the ejector 13, and this gap is provided. In recent years, sufficient pressure is not applied to the resin, so the density is low, and the shrinkage is large and rounding occurs.
  • the gap 66 between the fixed-side fixed bush 4 and the cut punch 12 is preferably 0.1 mm or less, more preferably 10 m or more and 50 m or less.
  • the roundness at the end of the inner hole 56a on the fixed fixing bush 4 side has a radius of 0.1 mm or less.
  • the force that makes the outer diameter of the sprue bush 3 substantially the same as the diameter of the inner hole 56a of the substrate that is, the force that makes the outer diameter of the cut punch 12 substantially the same, as shown in FIG. It doesn't matter.
  • the gap 62 formed by the sprue bush 3 and the fixed-side fixed bush 4 is formed at a position closer to the center than the inner hole 56a of the substrate. Even in this case, since the high-pressure gas passes around the sprue portion 64 and reaches the gap 66, the resin in the gap 66 can be pushed out toward the substrate 56 side.
  • the end portion on the inner end surface of the cut punch 12 or the end portion on the inner end surface of the fixed-side fixing bush 4 may be chamfered.
  • FIG. 12 shows a main part of an injection mold 52 applied to the molding apparatus according to the sixth embodiment of the present invention.
  • the gas passage 7 is provided in the movable mold 2.
  • only parts different from the first embodiment will be described, and description of other parts will be omitted.
  • the sprue bush 3 and the fixed-side fixed bush 4 are provided on the fixed-side mold 1, but in the sixth embodiment, the fixed-side fixed bush 4 is omitted.
  • the sprue bush 3 has a larger outer diameter than the inner hole 56a of the optical disk substrate 56.
  • the cut punch 12 of the movable die 2 also has two members, an outer tube portion 12a and an inner tube portion 12b, and has a double structure.
  • the gas passage 7 is formed in the movable base 16 and communicates with a gap 74 between the inner cylinder portion 12b and the outer cylinder portion 12a. Accordingly, the high-pressure gas flowing through the gas passage 7 flows through the annular gap 74 between the outer cylinder portion 12a and the inner cylinder portion 12b. It is like that.
  • the outer cylinder part 12a, the inner cylinder part 12b, and the ejector pin 11 are in the positions indicated by the broken lines shown in FIG. 12 when the fixed mold 1 and the movable mold 2 are closed and the molten resin is injected.
  • the outer cylinder part 12a, the inner cylinder part 12b and the ejector pin 11 advance in the direction of the hollow arrow while maintaining this positional relationship, and as shown in FIG. 12, the outer cylinder part 12a And the inner cylinder 12b stops before the sprue bush 3.
  • the gap 66 between the fixed-side fixed bush 4 and the cut punch 12 is preferably 0.1 mm or less, more preferably 10 ⁇ m or more and more preferably 50 ⁇ m or less.
  • the recess of the inner hole 56a caused by the gas has a radius of 0.1 mm or less.
  • the movable part is constituted by an outer cylinder part and an inner cylinder part, and the gas passage is inserted into the gap through a gap between the outer cylinder part and the inner cylinder part. It is configured to communicate. Therefore, even if the gas passage is not formed so as to be connected to the inside of the cavity, the gas passage can be communicated with the inside of the cavity through the gap.
  • FIG. 13 shows a main part of an injection mold 52 applied to the molding apparatus according to the seventh embodiment of the present invention.
  • the cut punch 12 is retracted more than the ejector 13 when in the normal position.
  • only parts different from the first embodiment will be described, and description of other parts will be omitted.
  • the cylindrical portion 4a of the fixed-side fixed bush 4 is formed in an annular shape, and its outer portion is configured to be flush with the stamper holder 5, while the inner portion 4c has the outer portion force and the cut punch 12 It is extended in the cavity 54.
  • the front end surface of the inner side portion 4 c of the fixed side fixing bush 4 is formed in an annular flat shape located in the vicinity of the inner end surface of the ejector 13.
  • the inner portion 4c of the fixed-side fixing bush 4 forms almost the entire inner hole 56a of the optical disk substrate 56.
  • the inner side 4c of the fixed bush 4 is By extending in a smooth curved shape from the side portion, one end (upper side in FIG. 13) of the inner hole 56a of the optical disk substrate 56 is formed into a rounded shape.
  • the sprue bush 3 is extended to the cut punch 12 in the same direction as the fixed-side fixed bush 4.
  • the front end surface (inner end surface) of the sprue bush 3 is formed in an annular shape that is flush with the front end surface at the inner side of the fixed-side fixing bush 4. Note that the recess 3 b is not formed on the tip surface of the sprue bush 3.
  • the cut punch 12 has an outer diameter larger than the outer diameter of the fixed-side fixed bush 4, and the recess 12a formed on the inner end surface is equal to the outer diameter of the inner portion 4c in the fixed-side fixed bush 4. They have almost the same inner diameter.
  • the outer portion of the inner end face outside the recess 12a is set to be retracted from the ejector 13 (movable side specular plate 15). ing.
  • the sprue bush 3 and the fixed-side fixed bush 4 protrude about the thickness of the optical disk substrate 56, so that the grease can flow into the cavity 54. ! /
  • the high-pressure gas flows into the cavity 54 through the gas passage 7 through the gap 62 between the sprue bush 3 and the fixed-side fixed bush 4. At this time, the grease in the cavity 54 is in a molten state, so that the high-pressure gas blows out the grease to the outside of the sprue portion 64 located in the recess 12a of the cut punch 12 and the fixed-side fixed bush 4.
  • the resin that is separated from the optical disk substrate 56 and forms the end of the inner hole 56a of the optical disk substrate 56 is pushed out to the optical disk substrate 56 side. As the gas pressure decreases, the resin cools and solidifies, and roundness is formed at the end of the inner hole 56a.
  • the gap 66 between the fixed-side fixed bush 4 and the cut punch 12 is preferably 0.1 mm or less, more preferably 10 ⁇ m or more and more preferably 50 ⁇ m or less.
  • gas The recess at the end of the inner hole 56a caused by the above has a radius of 0.1 mm or less.
  • the inner diameter of the recess 12a of the cut punch 12 is substantially the same as the inner hole diameter of the optical disc substrate 56, but it may be smaller than the inner hole diameter.
  • FIG. 14 shows a main part of an injection mold 52 applied to the molding apparatus according to the eighth embodiment of the present invention.
  • the high-pressure gas flows in the movable mold 2.
  • Only the parts different from Embodiment 7 will be described, and description of other parts will be omitted.
  • the fixed-side fixing bush 4 is omitted.
  • the sprue bush 3 has an outer diameter larger than the inner hole position of the optical disk substrate 56.
  • the sprue bush 3 extends into the cavity 54 toward the cut punch 12.
  • the outer end of the sprue bush 3 extending into the cavity 54 is cut off, and the front end of the sprue bush 3 is formed to have an outer diameter corresponding to the inner hole 56a of the optical disk substrate 56.
  • the tip of the sprue bush 3 is formed into an annular flat surface located near the inner end of the ejector 13! RU
  • the cut punch 12 has two members, an outer tube portion 12a and an inner tube portion 12b, and has a double structure.
  • the gas passage 7 is formed in the movable base 16 and communicates with a gap 74 between the inner cylinder portion 12b and the outer cylinder portion 12a. Therefore, the high-pressure gas force flowing through the gas passage 7 flows through the annular gap 74 between the outer cylinder portion 12a and the inner cylinder portion 12b.
  • the outer cylindrical portion 12a has an outer diameter larger than the outer diameter of the fixed-side fixed bush 4, and the inner cylindrical portion 12b has an inner diameter that is substantially the same as the outer diameter of the inner peripheral portion of the sprue bush 3. is doing.
  • the inner end surface of the outer cylindrical portion 12a is set to be retracted from the ejector 13 (movable side specular panel 15) as shown by a broken line in FIG. Since the cut punch 12 is retracted in this way, the resin can flow into the cavity 54 even if the sprue bush 3 protrudes to the thickness of the optical disk substrate 56.
  • the outer cylindrical portion 12a, the inner cylindrical portion 12b and the ejector pin 11 advance in the direction of the hollow arrow while maintaining this positional relationship, and as shown by the solid line in FIG. Stop before Bush 3.
  • the high-pressure gas flows out into the cavity 54 through the gap 74 between the outer cylinder portion 12a and the inner cylinder portion 12b.
  • the high-pressure gas reaches the gap 66 between the sprue bush 3 and the outer cylinder 12a while compressing the resin around the low density sprue 64, and pushes out the oil at the end of the inner hole 56a to the optical disk substrate 56 side.
  • the gas pressure decreases and the resin cools and solidifies, and a round is formed at the end of the inner hole 56a.
  • the gap 66 between the outer cylindrical portion 12a of the cut punch 12 and the sprue bush 3 is preferably 0.1 mm or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the recess of the inner hole 56a caused by the gas has a radius of 0.1 mm or less.
  • the height at which the outer cylindrical portion 12a and the ejector pin 11 face the substrate with the outer cylindrical portion 12a in the advanced position is It is preferable that they are substantially the same.
  • the outer diameter force at the tip of the sprue bush 3 corresponding to the inner hole diameter of the optical disc substrate 56 is the force substantially the same as the inner diameter of the outer cylinder portion 12a.
  • the sprue bush 3 and the outer cylinder portion 12a Therefore, the inner diameter of the outer cylinder portion 12a may be smaller than the outer diameter at the tip end portion of the sprue bush 3.
  • FIG. 15 shows a main part of an injection mold 52 applied to the molding apparatus according to the ninth embodiment of the present invention.
  • the cut punch 12 also has one member, and the inner end surface of the cut punch 12 is formed with a recess 12a.
  • the outer periphery of the recess 12a is an annular flat surface.
  • the gas passage 7 communicates with a gap 74 between the cut punch 12 and the ejector 13, and high-pressure gas flows through the gap 74 and flows out into the cavity 54.
  • the ejector 13 and the cut punch 12 are movable side fixed bush 14 (movable side Recessed more than the specular panel 15). As a result, even when molten resin is injected, it can flow into the cavity 54. [0155] When the resin has been injected, the cut punch 12 and the ejector 13 advance in the direction of the hollow arrow while maintaining this positional relationship, and in front of the sprue bush 3 as shown by the solid line in FIG. Stop.
  • the resin flows out from the gap 74 between the high-pressure gas force cut punch 12 and the ejector 13 to move the resin, so that the optical disk substrate 56 is completely separated from the sprue portion 64.
  • the gas pressure is reduced, the resin is cooled and solidified, and the end of the inner hole 56a is rounded, so that no residue is generated.
  • the gap 66 between the cut punch 12 and the sprue bush 3 is preferably 0.1 mm or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the recess of the inner hole 56a caused by the gas has a radius of 0.1 mm or less.
  • the height at which the cut punch 12 and the ejector 13 face the substrate with the cut punch 12 in the advanced position is substantially the same. It is preferable to do.
  • the outer diameter of the cut punch 12 may be a force that is substantially the same as the outer diameter at the tip of the sprue bush 3 corresponding to the inner hole 56a.
  • the force described in the example in which the cut punch 12 of the movable die 2 is configured as a movable part is movable.
  • the sprue bush 3 of the fixed die 1 is It may also be configured as a movable part that can be moved.
  • the gas passage is configured to communicate with the gap through a gap between the movable part and an ejector. Therefore, even if the gas passage is not formed so as to be connected to the cavity, the gas passage can be connected to the cavity through the gap.
  • the present invention can be used for an injection molding apparatus, a molding method, and a mold for molding an injection molded product having an inner hole including an optical disk substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

明 細 書
射出成形装置、射出成形方法及び射出成形金型
技術分野
[0001] 本発明は、内孔が形成された榭脂成形品を成形するための射出成形装置、射出 成形方法及び射出成形金型に関する。
背景技術
[0002] 一般に光ディスクの基板は射出成形法で作製される。この基板は一般に熱可塑性 榭脂によって成形される。射出成形法に用いる金型の一例を図 16に示す。図 16に おいて、符号 101は固定側金型であり、符号 102は可動側金型である。
[0003] 固定側金型 101の中央部には、溶融樹脂の流入口となるスプルブッシュ 103が配 設されており、このスプルブッシュ 103と固定側鏡面盤 105との間にスタンパホルダ 一 104が配設されている。固定側鏡面盤 105の表面には、凹凸による情報が入れら れたスタンパ 106が配設されており、このスタンパ 106はスタンパホルダー 104と外周 リング 107によって固定側鏡面盤 105に固定されている。固定側鏡面盤 105は固定 側基盤 108に固定されている。
[0004] 可動側金型 102には、金型中央部力 ェジェクタピン 109、カットパンチ 110、ェジ ェクタ 111、可動側固定ブッシュ 112及び可動側鏡面盤 113がこの順で配設されて いる。カットパンチ 110は、突き出ることにより、光ディスク基板に内孔を形成する働き がある。ェジェクタ 111は、成形された基板を可動側金型 102から離型させる働きが ある。ェジェクタピン 109は、内孔として光ディスク基板カゝら分離されたスプル部を押 し出す働きがある。可動側固定ブッシュ 112は、ェジェクタ 111が可動側鏡面盤 113 と直接接触しないようにすることで、可動側鏡面盤 113の磨耗を防ぐ働きがある。可 動側鏡面盤 113は可動側基盤 114に固定されて 、る。
[0005] 固定側金型 101の最外周には固定側突き当てリング 115があり、可動側金型 102 の最外周には可動側突き当てリング 116がある。固定側突き当てリング 115と可動側 突き当てリング 116とが嵌合することで中心位置出しが行われるようになつて 、る。
[0006] 図 17 (a) (b)は基板の内孔を形成する様子を示したものである。図 17 (a)は固定側 金型 101と可動側金型 102とを閉じ、スプル孔カも溶融榭脂を金型内に流入させると きの状態を示している。そして、その樹脂が溶融状態にあるときに図 17 (b)に示すよ うに、カットパンチ 110をェジェクタピン 109との相対位置を保ったままスプルブッシュ 103に嵌合する。このように嵌合させることによって、光ディスク基板に内孔を形成す るようにしている。
[0007] 一方、特許文献 1には、基板に内孔を形成する際に、固定側金型の部材を摺動さ せて可動側金型の部材の方に突き出し、スプルブッシュをェジェクタに嵌合させるこ とが開示されている。
[0008] また、特許文献 2には、可動側金型のカットパンチを凹んだ形状に形成する一方、 スプルブッシュを突き出した形状に形成し、カットパンチをスプルブッシュに嵌合させ ることが開示されている。
[0009] また、基板に内孔を形成するのに部材同士を嵌合させないものもある。例えば特許 文献 3には、光ディスク基板とスプルとが薄膜状の連結部で連結されており、榭脂が 固化した後、光ディスク基板を離型させるときにェジェクタスリーブを突き出すことによ り、連結部を切断させてスプルを光ディスク基板力 切り離すことが記載されて ヽる。
[0010] 特許文献 1や特許文献 2の方法のように、榭脂が溶融状態のときに 2つの部材を嵌 合させるものでは、両部材間の合わせ目に溶融樹脂が入り込むため、この合わせ目 に応じたバリが発生することになる。この場合、内孔を形成するための雄部材 '雌部 材を固定側金型と可動側金型のどちら側に設けるかによつて、図 18 (a)または図 18 (b)のように内孔のどちら側の端部にノ リが生じるかが決まる。また、特許文献 3の場 合では、図 18 (c)に示すように内孔の中央部分にバリを生じる。
[0011] ノ リを取り除く方法としては、カッターで切断する方法が特許文献 4に、ガスパーナ 一で溶断する方法が特許文献 5に、紫外線光で分解する方法が特許文献 6に記載さ れている。
[0012] また光ディスク基板を成形する技術ではな!/、が、バリに関連する技術として特許文 献 7が挙げられる。この特許文献 7には、榭脂成形品の裏側面を形成する金型 (例え ば上型)から高圧エアーをキヤビティ内に供給し、この高圧エアーによって榭脂成形 品を下型に押し付けることによって榭脂成形品の表側面にヒケが発生しないようにす る榭脂成形品の製造方法が開示されている。この特許文献 7には、前記高圧エアー を流入させる隙間の厚さを規定することで、この隙間への溶融樹脂の流入を防止し、 ノ リの発生を防止できることが記載されて 、る。
特許文献 1:特許第 1944425号明細書
特許文献 2:特開 2002— 240101号公報
特許文献 3:特許第 2071462号明細書
特許文献 4:特開平 4— 235006号公報
特許文献 5:特開昭 59— 196212号公報
特許文献 6:特開平 6— 99581号公報
特許文献 7:特開 2005 - 28731号公報
[0013] 特許文献 4、 5、 6のようにバリを取り除く工程を設けるとしても、ノ リが完全に取り切 れず、し力もそのノ リの一部が基板の搬送中等に取れて、異物となって基板に付着 してしまう虞がある。特に、榭脂成形品の一例としての光ディスク基板の場合、異物が 付着すると信号品質を低下させるという問題が生ずる。また、光ディスク基板を貼合 せる際にノ リが嚙み込んで光ディスクの厚さの精度を低下させると 、う問題もある。ま た、一般にバリは一周の中でばらつきがあるため、ノ リが内孔近傍にある場合には、 このノ リのある基板を用いて光ディスクを作製すると、ドライブ装置にセットした際に偏 芯が大きくなると 、う問題もある。
[0014] またバリを取り除くためには工程が増えるという課題もある。し力も、バリ取り精度に よっては、内孔の寸法に影響を与える虡もある。
[0015] そこで、問題となるバリが生じる金型部材同士の隙間を狭くしてその隙間に榭脂が 入りにくいようにすることも考えられるが、この場合、金型部材同士の嵌合がきつくな るため金型の組立分解を伴うメンテナンスが困難になるという課題が生じる。また、バ リが生じる金型部材の少なくとも一方が他の部材と摺動する場合には、金型部材の 磨耗が著しくなるという課題も生ずる。
発明の開示
[0016] 本発明は、カゝかる課題を鑑みてなされたものであり、その目的は、榭脂成形品に内 孔を形成する際に、後力 取り除力なければならない程度のバリの発生を抑止するこ とにある。
[0017] そこで、本発明は、第 1金型と第 2金型との間に形成されるキヤビティ内に溶融榭脂 を射出して、内孔が貫通形成された榭脂成形品を成形する成形装置を前提として、 前記第 1金型及び第 2金型の一方に設けられる可動部と、前記第 1金型及び前記第 2金型の少なくとも一方に前記キヤビティ内に連通可能に設けられたガス通路と、前 記ガス通路に連通するガス配管に設けられる開閉弁と、制御器とを備え、前記可動 部は、溶融榭脂を射出するときの通常位置と、前記内孔が形成される位置で前記ガ ス通路力 流出したガスが流入可能な間隙が相手金型との間に残るように前記キヤ ビティ内に進出した進出位置との間を移動可能に構成されており、前記制御器は、 前記溶融樹脂の射出に応じて、前記可動部の移動制御と前記開閉弁の開閉制御を 行うように構成されている。
[0018] また本発明は、第 1金型と第 2金型との間に形成されたキヤビティ内に溶融榭脂を 射出して内孔が貫通形成された榭脂成形品を成形する方法を前提として、前記金型 の少なくとも一方に前記キヤビティ内に連通可能にガス通路が設けられるとともに、前 記金型の一方に可動部が設けられた前記第 1金型及び前記第 2金型を使用し、前記 可動部は、溶融榭脂を射出するときの通常位置と、前記内孔が形成される位置で前 記ガス通路力 流出したガスが流入可能な間隙が相手金型との間に残るように前記 キヤビティ内に進出した進出位置との間を移動可能に構成されており、前記キヤビテ ィ内に溶融榭脂を射出した後、前記可動部を進出位置まで移動させ、前記間隙にガ スを流入させる。
[0019] また本発明は、第 1金型と第 2金型とを有し、この金型間に内孔を有する榭脂成形 品を成形するためのキヤビティが設けられる金型を前提として、前記第 1金型及び第 2金型の一方に設けられる可動部と、前記第 1金型及び前記第 2金型の少なくとも一 方に、前記キヤビティ内に連通可能に設けられたガス通路とを備え、前記可動部は、 溶融榭脂を射出するときの通常位置と、前記内孔が形成される位置で前記ガス通路 力 流出したガスが流入可能な間隙が相手金型との間に残るように前記キヤビティ内 に進出した進出位置との間を移動可能に構成されている。
[0020] 本発明では、前記可動部が進出位置に移動すると榭脂成形品における内孔の縁 部に相当するところで相手側の金型との間に間隙が形成される。そして、ガス通路を 通してこの間隙にガスが流入し、このガスにより間隙内の溶融樹脂が押し出されること になる。このため間隙内に存在している溶融樹脂が内孔に向力つて移動するので、 榭脂成形品の内孔にバリが形成されないようなる。したがって、本発明によれば、ノ リ 取り工程を設けなくても榭脂成形品の内孔近傍のノ リを無くすことができる。その結 果、ノ リが異物として付着するのを抑制することができる。また後からバリを取るもので はないので、榭脂成形品の品質を安定させることができる。
図面の簡単な説明
[図 1]本発明の実施形態 1に係る射出成形金型を示す断面図である。
[図 2]本発明の実施形態 1に係る射出成形装置の構成を概略的に示す図である。
[図 3]本発明の実施形態 1に係る射出成形装置のその他の構成を示す図 2相当図で ある。
圆 4]前記射出成形金型を拡大して部分的に示す断面図である。
[図 5]前記射出成形金型によって成形された光ディスク基板を示す断面図である。
[図 6]本発明の実施形態 1に係る射出成形装置のその他の構成を示す図 2相当図で ある。
[図 7]本発明の実施形態 3に係る射出成形金型を示す図 4相当図である。
[図 8]本発明の実施形態 4に係る射出成形金型を示す図 4相当図である。
[図 9]本発明の実施形態 4の別の態様に係る射出成形金型を示す図 4相当図である
[図 10]本発明の実施形態 5に係る射出成形金型を示す図 4相当図である。
[図 11]本発明の実施形態 5の別の態様に係る射出成形金型を示す図 4相当図であ る。
[図 12]本発明の実施形態 6に係る射出成形金型を示す図 4相当図である。
[図 13]本発明の実施形態 7に係る射出成形金型を示す図 4相当図である。
[図 14]本発明の実施形態 8に係る射出成形金型を示す図 4相当図である。
[図 15]本発明の実施形態 9に係る射出成形金型を示す図 4相当図である。
[図 16]従来の光ディスク基板用金型を示す断面図である。 [図 17] (a)溶融榭脂を射出するときの従来の光ディスク基板用金型を部分的に示す 断面図であり、 (b)光ディスク基板に内孔を形成するときの同光ディスク基板用金型 の断面図である。
[図 18] (a)〜 (c)従来の射出成形装置によって成形された光ディスク基板を示す断面 図である。
発明を実施するための最良の形態
[0022] 以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説 明する。
[0023] (実施の形態 1)
図 1は、本発明に係る射出成形装置の一実施形態に設けられる射出成形金型の要 部を概略的に示す断面図である。また図 2は射出成形装置 50の構成を概略的に示 す図である。この射出成形装置 50は、光ディスク用の基板を成形するためのもので あり、この光ディスク基板 56は中心に孔(内孔) 56aが設けられた円形平板状の榭脂 成形品である。
[0024] 図 1及び図 2に示すように、射出成形装置 50は、内孔 56aが形成された光ディスク 基板 56を成形するための射出成形金型 52を備えている。この射出成形金型 52は、 第 1金型の一例としての固定側金型 1と、第 2金型の一例としての可動側金型 2とを 備えており、これら両金型 1, 2間には円板状のキヤビティ 54が形成されている。
[0025] 前記固定側金型 1は、固定側基盤 10と、固定側鏡面盤 6と、スプルブッシュ 3と、固 定側固定ブッシュ 4と、スタンパホルダー 5と、外周リング 9と、スタンパ 8とを備えてい る。スプルブッシュ 3は固定側金型 1の中央部に配置されている。このスプルブッシュ 3には、溶融樹脂の流入口となるスプル孔 3aが形成されている。このスプル孔 3aは、 キヤビティ 54に向力うにしたがって断面積が大きくなる形状に形成されていて、スプ ルブッシュ 3の内側端面には、スプル孔 3aの下流端を含む範囲に凹部 3bが形成さ れている。スプルブッシュ 3の外径は光ディスク基板 56の内孔径と略同一に形成され ている。スプル孔 3aには、図外の溶融榭脂供給装置から溶融樹脂が供給される。
[0026] スプルブッシュ 3の外側には固定側固定ブッシュ 4、スタンパホルダー 5、固定側鏡 面盤 6が順次設けられている。この固定側鏡面盤 6は固定側基盤 10に固定されてい る。そして、固定側基盤 10及び固定側鏡面盤 6の中央部には、前記キヤビティ 54内 へ連通される貫通孔が形成されて 、る。
[0027] 固定側鏡面盤 6の内側表面には、凹凸による情報が入れられたスタンノ ¾が配設さ れている。スタンパ 8は、中央部に配設されるスタンパホルダー 5と外周部に配設され る外周リング 9とによって固定側鏡面盤 6に固定されている。
[0028] 固定側固定ブッシュ 4は、円筒状に形成された円筒部 4aと、この円筒部 4aの基端 部に設けられた鍔部 4bとを備えている。固定側固定ブッシュ 4の円筒部 4aは、前記 固定側基盤 10及び固定側鏡面盤 6の貫通孔に嵌め込まれている。この円筒部 4aの 先端部(内端部)力^タンパホルダー 5の端部(内端部)と一致して 、る。スプルブッシ ュ 3は、固定側固定ブッシュ 4に嵌め込まれており、これによりスプルブッシュ 3は固定 ブッシュ 4に保持されて!、る。スプルブッシュ 3は固定側固定ブッシュ 4から取り外せる ことができるので、このスプルブッシュ 3のみを交換可能となって!/、る。
[0029] 固定側基盤 10には、ガス通路 7が設けられている。このガス通路 7の外端部は、固 定側基盤 10の側面力も突出していて、この外端部は外部のガス配管 60 (図 2参照) に接続可能に構成されている。ガス通路 7は、固定側基盤 10の中央部まで延びてい て、スプルブッシュと 3と固定側固定ブッシュ 4の円筒部 4aとの間のすき間 62に連通 している。このすき間 62には、ガス通路 7を通して高圧のガスが流入するようになって いる。このすき間 62は、固定側固定ブッシュ 4の円筒部 4aの長さ方向の全体に亘っ て形成されていて、ガス通路 7は、このすき間 62を通してキヤビティ 54内と連通して いる。
[0030] 一方、前記可動側金型 2は、ェジェクタピン 11と、可動部の一例としてのカットパン チ 12と、ェジヱクタ 13と、可動側固定ブッシュ 14と、可動側鏡面盤 15と、可動側基盤 16とを備えており、これらカットパンチ 12、ェジェクタ 13、可動側固定ブッシュ 14及 び可動側鏡面盤 15は、可動側金型 2の中央部力も順次配置されて 、る。
[0031] 前記ェジェクタピン 11及びカットパンチ 12は、スプルブッシュ 3に対向する位置に 設けられている。スプルブッシュ 3とカットパンチ 12は外径がほぼ等しいので、スプル ブッシュ 3と固定側固定ブッシュ 4の間のすき間 62は、カットパンチ 12の外周面に対 向する位置となっている。 [0032] カットパンチ 12は、溶融樹脂がキヤビティ 54内に射出されるときの通常位置と、この 通常位置からスプルブッシュ 3に向かってキヤビティ 54内に進出する進出位置との間 で移動可能に構成されて ヽる。
[0033] 前記通常位置では、カットパンチ 12の内端面は、本実施形態 1では例えば可動側 固定ブッシュ 14及び可動側鏡面盤 15の内面と面一の状態となっている。このため、 通常位置にあるカットパンチ 12とスプルブッシュ 3とは、光ディスク基板 56の厚み相 当の間隔をお 、て配置されて 、る。
[0034] カットパンチ 12の内端面には、その外周部を残して凹部 12aが形成されている。力 ットパンチ 12にはピン孔が形成されていて、このピン孔内に前記ェジェクタピン 11が 配設されている。ェジェクタピン 11は、前記凹部 12aよりも奥に引っ込んでいる。
[0035] 前記カットパンチ 12は、ェジヱクタ 13に対して摺動する摺動部材として構成されて いる。カットパンチ 12は、通常位置力も進出位置まで進出することにより、光ディスク 基板 56に内孔 56aを形成する機能を有する。
[0036] カットパンチ 12が進出位置に進出した状態では、このカットパンチ 12の凹部 12aと 前記スプルブッシュ 3の凹部 3bとが対向し、これら凹部 12a, 3b間に空間が形成され る。この空間内には、光ディスク基板 56から内孔 56aとして分離されたスプル部 64が 収納される(図 4参照)。
[0037] またカットパンチ 12が進出位置にあるときには、凹部 12aの周囲のカットパンチ 12 の内側端面と、凹部 3bの周囲のスプルブッシュ 3の内側端面との間に、所定の幅の 間隙 66 (ガス流出間隙)が形成されている。この間隙 66は、キヤビティ 54内における 光ディスク基板 56の内孔 56aの周面に繋がる位置に形成される。本実施形態 1では 、スプルブッシュ 3の内側端面がスタンパ 8の内面とほぼ面一になつているので、前記 間隙 66は光ディスク基板 56の内孔 56aにおける厚み方向端部に配置される。
[0038] カットパンチ 12がこの進出位置に進出した時点では、この間隙 66内に溶融樹脂が 存在している。すなわち、このときキヤビティ 54内の溶融榭脂は、凹部 12a, 3b内の スプル部 64と、カットパンチ 12外側の光ディスク基板 56とが間隙 66内の薄肉状の榭 脂で繋がっている。したがって、この状態で溶融樹脂が固まってしまうと光ディスク基 板 56の内孔 56aに円環状のバリができることになるが、後述するように溶融樹脂が固 まる前にこの間隙 66内に高圧のガスを流入させることにより、間隙 66内の溶融榭脂 を排除することによってバリが形成されな 、ようにして 、る。
[0039] カットパンチ 12が通常位置力も進出位置まで移動するときには、前記ェジェクタピ ン 11がカットパンチ 12と一体となって移動するようになって!/、る。ェジェクタピン 11は 進出位置にあるカットパンチ 12に対して摺動するようになつている。ェジェクタピン 11 は、カットパンチ 12から突出することにより、内孔 56aとして光ディスク基板 56から分 離されたスプル部 64を押出し、可動側金型 2から離型させる機能を有する。
[0040] 前記ェジ クタ 13は、内端面が可動側鏡面盤 15と面一の状態に配設される一方、 可動側固定ブッシュ 14に対して摺動するようになつている。ェジェクタ 13は、可動側 固定ブッシュ 14から突出することにより、キヤビティ 54内で成形された光ディスク基板 56を可動側金型 2から離型させる機能を有する。可動側固定ブッシュ 14は、ェジエタ タ 13が可動鏡面盤 15に直接接触しな 、ようにすることで、可動側鏡面盤 15の磨耗 を防ぐ機能を有する。可動側鏡面盤 15は可動側基盤 16に固定されている。
[0041] 固定側金型 1の最外周には固定側突き当てリング 17があり、可動側金型 2の最外 周には可動側突き当てリング 18があり、この固定側突き当てリング 17と可動側突き当 てリング 18が嵌合することで固定側金型 1と可動側金型 2の中心位置出しが行われ る。
[0042] 図 2は本実施の形態に係る射出成形装置 50の全体構成を概略的に示す図である 。同図に示すように、本射出成形装置 50は、射出成形金型 52に接続されるガス配 管 60に設けられる開閉弁の一例としての電磁バルブ 22と、制御器 70と、タンク 21と 、昇圧機 20とを備えている。
[0043] 昇圧機 20は、配管を介してガス供給源 19に接続されている。このガス供給源 19か らガスが供給されるようになっている。そして、ガス供給源 19から供給された低圧力の ガスは、昇圧機 20で所定の圧力まで上げられてタンク 21に貯蔵される。
[0044] タンク 21とガス通路との間のガス配管 60に前記電磁バルブ 22が設けられている。
電磁バルブ 22が開放されることによって、タンク 21内の高圧のガスがガス通路 7に流 出する。
[0045] 前記制御器 70には、圧力制御回路 23と成形機制御回路 24とが含まれている。成 形機制御回路 24は、射出成形金型 52を駆動制御する。圧力制御回路 23は、成形 機制御回路 24力もの信号に従って電磁バルブ 22の開閉制御を行う。具体的に、圧 力制御回路 23は、成形機制御回路 24から出力される信号にしたがい、高圧ガスを 供給する開始時間と、供給を継続する継続時間とを算出し、電磁バルブ 22に電気信 号を送り高圧ガスの流れを制御する。
[0046] 次に図 1に示した金型 52の一部を詳細に表した図 4を用いて、本実施形態での金 型 52内で光ディスク基板 56に内孔 56aを形成する方法について説明する。射出成 形金型 52を閉じたときには、カットパンチ 12は通常位置(図 4において破線で示す) にある。この状態でスプル孔 3aを通してキヤビティ 54内に溶融樹脂が注入される。そ して、榭脂が射出されて力も所定時間の間は、キヤビティ 54内の榭脂は溶融状態に あり、この所定時間内に図 4に示すように、カットパンチ 12をスプルブッシュ 3と接触 する手前まで中抜き矢印の方向に前進させる。これにより光ディスク基板 56に内孔 5 6aが形成されることになる。この際、カットパンチ 12に連動してェジェクタピン 11を力 ットパンチ 12との相対位置を保持したまま移動させる。これは榭脂が固化した後に光 ディスク基板 56から分離されたスプル部 64をェジェクタピン 11で押し出すストローク を短くすることにより、カットパンチ 12のピン孔中の樹脂が折れる恐れを無くすためで ある。
[0047] カットパンチ 12を所定位置まで前進させることにより、図 4に実線で示すように、スプ ルブッシュ 3の内側端面とカットパンチ 12の内端面との間にわずかなガス流出間隙 6 6が形成された進出位置となる。このスプルブッシュ 3における凹部 3bの外側の内側 端面と、カットパンチ 12における凹部 12aの外側の内端面とは、それぞれ平坦な環 状面となっている。このスプルブッシュ 3とカットパンチ 12との間の間隙幅は、 0. lm m以下であるのが好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。
[0048] 次に、電磁弁 22を開放すると、タンク 21内の高圧ガスは、ガス配管 60及びガス通 路 7を通してスプルブッシュ 3と固定側固定ブッシュ 4との間の環状のすき間 62に導 入される。図 4の下向きの矢印で示すように、この高圧ガスは、このすき間 62をキヤビ ティ 54に向力つて流れた後、このすき間 62から前記ガス流出間隙 66に流出するの で、この高圧ガスによってすき間 62の流出口近傍にある溶融樹脂が押し退けられる 。これにより、溶融榭脂は基板側およびスプル部側に移動してガス流出間隙 66から 押し出しされる。この結果、榭脂が固化したときには、光ディスク基板 56の内孔 56a にバリが形成されなくなる。
[0049] 溶融樹脂の移動量は、榭脂圧とガス圧との影響を受ける。すなわち、榭脂の移動は 、榭脂圧とガス圧とが釣り合ったところで停止する。なお、図 4は高圧ガスをキヤビティ 54内に流出させて、光ディスク基板 56がスプル部 64と完全に分離された状態を示し ている。
[0050] このように内孔 56aが形成された光ディスク基板 56を構成する榭脂からスプル部 64 を構成する榭脂が完全に分離された状態で固化させた後、光ディスク基板 56を金型 52から取り出す。すなわち、可動側金型 2を移動させて固定側金型 1から離間させ、 このとき固定側固定ブッシュ 4とスタンパホルダー 5との間からエアーを吹き出させると ともに、ェジェクタ 13と可動側固定ブッシュ 14との間からもエアーを吹き出させ、かつ 、ェジェクタピン 11およびェジェクタ 13を突き出して、それぞれ、スプル部 64と光ディ スク基板 56をそれぞれ離型させ、スプル部 64と光ディスク基板 56を取り出す。
[0051] 背景技術として挙げた特許文献 7に記載された方法では、高圧ガスによって榭脂成 形品を下型に押し付けることで製品のヒケを防止しており、それに合わせて高圧エア 一が流通する隙間の厚さを規定することで、この隙間への溶融樹脂の流入を防止し 、ノ リの発生を防止するものである。この方法では、製品のヒケを防止するために必 要な高圧エアーが流通する隙間があることに起因して製品にバリが発生するのを防 止しようとするものである。これに対し、本発明は、榭脂成形品に孔を形成するのに起 因するバリが発生するのを防止しょうとする点で相違している。
[0052] ここで、ポリカーボネート榭脂を用いた成形テストの結果について説明する。このテ ストでは、外径 120mm、厚さ 1. 2mmのブルーレイディスク用の榭脂基板を作製す る条件下で行った。この成形テストにおいて、金型 52内に流出する高圧ガスを適正 な条件下とした場合、榭脂基板の内孔 56a近傍の形状は図 5に示すように内孔 56a の端部および中央部にバリが全くな 、ことが実験的に確かめられた。
[0053] 光ディスクでは、その榭脂基板の外径や内孔径が規格等で決められて ヽる。そして 、ガス流出間隙 66内に流出させる高圧ガス量を規定することによって、光ディスク基 板 56の内孔 56aにヒケもバリもでき難いようになっている。すなわち、高圧ガスの金型 52内への流出量は内孔 56aの内周面を形成している溶融榭脂を少し押し戻す程度 でいい。したがってガス量は僅かでよい。また、高圧ガスの圧力は溶融樹脂の圧力( 榭脂圧)より僅かに高い程度がよぐガス圧が高すぎたりガス量が多すぎると、内孔 56 aを形成している溶融榭脂を押しすぎてしまい、その結果、内孔 56a近傍に凹みや気 泡ができてしまう。反対に、ガス圧が低すぎたりガス量が少なすぎると、間隙 66の間 にある溶融樹脂が硬化する前に榭脂を十分に押し戻すことができず、その結果として 内孔 56aにバリを発生させることになる。また、ガス圧が高すぎると、すき間 62から流 出するガス量の周方向ばらつきが生じやすくなる。すなわち、すき間 62の幅が周方 向に一定でない場合には、ガス圧が高すぎると、すき間 62の幅の大きなところからよ り多くのガスが流出することとなって周方向のばらつきが大きくなる。またガス圧が高 すぎる場合には、流出時間を一定に設定してもショット間でガス量のばらつきが生じ 易くなる。
[0054] このような観点力 ガス圧及びガス量の最適化を図ることにより、榭脂のヒケもバリも 生じに《なると考えられる。そして検討の結果、間隙 66内に流出させる高圧ガスの 圧力は溶融樹脂の圧力 (榭脂圧)に対して 2%以上 15%以下、好ましくは 5%以上 1 0%以下だけ高いのが良好であることが分かった。このときのガス流出時間は、 0. 05 秒以上で且つ 1秒以下、好ましくは 0. 1秒以上で且つ 0. 5秒以下であることが分か つた o
[0055] キヤビティ 54内の榭脂圧は、図 1のようなコア押し機構がない射出成形装置 50では 成形装置 50の型締力によってキヤビティ 54内の樹脂に作用する圧力に等しくなる。 またコア押し機構がある成形装置では、金型に圧縮をかける前であれば型締力によ つて榭脂にかかる圧力に等しくなる一方、金型に圧縮をかけた後であればこの圧縮 力によって榭脂にかかる圧力に等しくなる。すなわち、榭脂圧は、型締カ又は圧縮力 を光ディスク基板 56となる榭脂成形品の環状平面の面積で除したものに等しくなると 考えられる。
[0056] 例えば、光ディスク基板 56を成形するときの榭脂圧は、以下のようにして求めること ができる。すなわち、光ディスク基板 56は外径が 120mm、内径が 15mmなので、型 締カ又は圧縮力を受けることになる溶融樹脂の面積 (片面)は、
(6 X 6 -0. 75 X 0. 75) X π = 111. 33 [cm2]
となる。そして、型締力が 98kNの場合には、榭脂圧は、
98 [kN] / (l l l . 33 X 10"4[m2] )
= 8. 8 X 103[kN/m2]
= 8. 8 [MPa]
となる。
[0057] 光ディスク基板 56の内孔 56aの形状を安定させるためには、キヤビティ 54内に導入 される高圧ガスの圧力がショットごとに変動しな 、ようにするのが好まし 、。この高圧 ガスの圧力は、例えば設定値(目標値)に対して ± 5%以内での変動に抑えるのが好 ましい。そのため、射出成形装置 50は、ガス圧を所定範囲に維持するガス圧力調整 手段を備えるのが好ましい。
[0058] 例えば図 3に示すようにこのガス圧力調整手段には、タンク 21内の圧力を計測する 圧力検出器の一例としての圧力計 25と、この圧力計 25による測定結果に応じてタン ク内圧力を制御する圧力制御回路 23とが含まれる。そして、圧力計 25による測定圧 力に応じた信号が圧力制御回路 23に入力されるようにし、圧力制御回路 23は、測 定圧力が所定値よりも低下したときに、昇圧機 20を作動させる信号を出力するように 構成すればよい。そして、昇圧機 20の駆動によってタンク 21内の圧力が一定範囲内 に維持されるように制御することができる。ここでの所定値は、設定値より 5%以内だ け小さい値を意味している。
[0059] 電磁バルブ 22から高圧ガスの流出する間隙 66 (スプルブッシュ 3と固定側固定ブッ シュ 4の間のすき間 62の端部)までの距離は、ガス配管 60の内径が例えば 6mmの 場合において、 lm以下、より好ましくは 0. 5m以下であるのがよい。そうすれば高圧 ガスの応答速度を向上させることができる。すなわち、前記距離が長いとガス配管 60 内にある高圧ガスの量が多くなるため、高圧ガスが流出する間隙 66からの榭脂の移 動量が大きくなり、高圧ガスによって榭脂が押され過ぎるために内孔 56aに凹みが生 じる虞がある。なお、ガス配管 60の内径が 6mmで長さが lmの場合、管内容積は 28 . 3cm3となる。 [0060] 例えば高圧ガスとして空気を用い、電磁バルブ 22から高圧ガスの流出間隙 66まで の距離を 0. 5mとし、外径 120mm、内径 15mm、板厚 1. 1mmの光ディスク基板 56 をポリカーボネート榭脂で成形した。溶融樹脂の射出時間は 0. 1秒とし、溶融樹脂が キヤビティ 54内に充填された後 0. 05秒経過してから型締カ 196kNで 0. 1秒間圧縮 を行い、その後、型締カを 98kNに保持した。カットパンチ 12は溶融樹脂の充填後 0 . 2秒経過して力も進出位置に前進させ、カットパンチ 12が完全に前進して停止して から、高圧ガスとして圧力 9. 5MPaの圧縮エアーを 0. 3秒間流出させた。このときの スプルブッシュ 3とカットパンチ 12との間の間隙幅は、 20 mであった。この条件下で 行った成形テストでは、光ディスク基板 56の内孔 56aにおける高圧ガス流出側の端 部に半径 0. 1mm以下の丸みが形成され、ヒケゃバリは発生しな力つた。
[0061] 以上説明したように、本実施形態では、固定側金型 1のガス通路 7を通してスプル ブッシュ 3及びカットパンチ 12間のガス流出間隙 66に高圧のガスが流入し、このガス によりガス流出間隙 66内の溶融樹脂が押し出されることになる。このためガス流出間 隙 66内に存在して 、る溶融樹脂が内孔 56aに向力つて移動するので、光ディスク用 基板の内孔 56aにバリが形成されないようなる。したがって、光ディスク基板 56が成 形された後で、取り除く必要のあるバリが発生するのを抑止することができる。しかも、 ノ リ取り精度の影響がなくなるので、光ディスク基板 56を貼合せたときの厚み精度を 向上させることができる。また、製造工程中にバリの一部が取れて光ディスク基板 56 上に異物として付着するのを回避できるので、この基板が用いられる光ディスクの信 号品質を向上することができる。さらに内孔 56aの偏心を抑止できるので、ドライブ装 置にセットした際にトラッキング制御を安定させることができる。
[0062] ここで、本実施の形態 1の特徴について、以下に説明する。
[0063] (1)本実施形態の射出成形装置では、前記制御器は、前記開閉弁を所定時間だけ 開放する。したがって、ガスがガス配管を通してキヤビティ内に所定量だけ送り込まれ るようにできるので、榭脂量の移動量を効果的に制御することができる。
[0064] (2)本実施形態の射出成形装置は、光ディスク基板を成形するためのものである。
本実施形態では、バリ取り精度の影響がなくなるので、光ディスク基板を貼り合わせ たときの厚み精度を向上することができる。また製造工程中にバリの一部が取れて光 ディスク基板上に異物として付着するのを回避できるので、この基板が用いられる光 ディスクの信号品質を向上することができる。さらに内孔の偏心を抑止できるので、ド ライブ装置にセットした際にトラッキング制御を安定させることができる。
[0065] (3)本実施形態の射出成形装置では、前記制御器は、前記開閉弁を所定時間だけ 開放する。したがって、ガスがガス配管を通してキヤビティ内に所定量だけ送り込まれ るようにできるので、榭脂量の移動量を効果的に制御することができる。
[0066] (4)本実施形態の射出成形装置では、前記制御器は、前記開閉弁を 0. 05秒以上 で、かつ 1秒以下の時間だけ開放する。したがって、榭脂成形品にヒケゃバリができ 難くすることができる。
[0067] (5)本実施形態の射出成形装置では、前記ガス配管には、前記開閉弁よりも上流 側にタンクが設けられ、前記タンク内の圧力は、溶融状態にある榭脂圧に対して 2% 以上で、かつ 15%以下に設定されている。このような設定にすることにより、ガス通路 カゝら流出したガスによってキヤビティ内で溶融状態にある榭脂を押圧して、榭脂を移 動させることができる。
[0068] (6)本実施形態の射出成形装置では、前記タンクの下流側におけるガス配管の長 さは lm以下である。したがて、ガスの応答速度を上げることができる。
[0069] (7)本実施形態の射出成形装置では、前記間隙の幅は、 10 μ m以上で、かつ 50 m以下に設定されている。したがって、前記間隙内に流出したガスによってこの間 隙内の溶融榭脂を間隙の外まで効率的に移動させることができる。
[0070] (8)本実施形態の射出成形装置では、前記間隙は、前記榭脂成形品の内孔の周 面に対応する位置、またはそれよりも前記内孔の中心寄りに配置される。したがって 、内孔の周面を形成する溶融榭脂を間隙内に流出したガスによって効果的に押すこ とがでさる。
[0071] (9)本実施形態の射出成形装置では、前記間隙は、前記内孔における貫通方向の 端部に配置される。したがって、内孔の端部を形成する溶融榭脂を間隙内に流出し たガスで押すことができる。このため、内孔端部の溶融樹脂がガスに押圧されて引つ 込むので、金型の合わせ面が内孔の端部に形成される場合であっても、その合わせ 面に起因したバリが生じに《することができる。 [0072] (10)本実施形態の射出成形装置では、前記ガス通路は、スプルブッシュとこのスプ ルブッシュを保持する固定ブッシュとの間のすき間を通して前記間隙に連通するよう に構成されている。したがって、ガス通路をキヤビティ内までつながるように形成しなく てもガス通路が前記すき間を通してキヤビティ内に連通するように構成することができ る。
[0073] (11)本実施形態の射出成形装置では、前記制御部は、前記開閉弁を開放するとき のガス圧を所定範囲に維持する制御を行う。したがって、開閉弁を開放する毎に前 記間隙内に流出するガスの圧力を安定させることができるので、このガスによって押 される溶融樹脂の移動量を安定させることができる。
[0074] (12)本実施形態の射出成形装置では、前記制御部は、前記ガス圧を目標値に対し て 5%の範囲内に維持する。したがって、溶融榭脂の移動によって生ずる内孔の凹 み等を許容範囲内に確実に抑えることができる。
[0075] (13)本実施形態の射出成形装置では、前記ガス配管における前記開閉弁よりも上 流側に配置されるタンクと、前記タンク内の圧力を検出する圧力検出器と、前記タン ク内の圧力を上げるための昇圧機とが設けられ、前記制御器は、前記圧力検出器の 検出圧力に応じて前記昇圧機を駆動する。したがって、開閉弁を開放するときのタン ク内の圧力を確実に所定範囲に維持することができる。
[0076] (14)本実施形態による射出成形方法では、前記ガスは、空気又は窒素である。
[0077] (15)本実施形態による射出成形方法では、前記ガスを所定時間だけ流出させる。し たがって、ガスがガス通路を通してキヤビティ内に所定量だけ送り込まれるようにでき るので、榭脂量の移動量を効果的に制御することができる。
[0078] (16)本実施形態による射出成形方法では、溶融状態にある榭脂圧に対して 2%以 上で、かつ 15%以下の圧力でガスを流出させる。したがって、ガス通路から流出した ガスによってキヤビティ内で溶融状態にある榭脂を押圧して、榭脂を移動させることが できる。
[0079] (17)本実施形態による射出成形方法では、前記間隙の幅は、 10 μ m以上で、かつ 50 /z m以下に設定されている。したがって、前記間隙内に流出したガスによってこの 間隙内の溶融榭脂を間隙の外まで効率的に移動させることができる。 [0080] (18)本実施形態による射出成形方法では、光ディスク基板を成形する。
[0081] 射出成形金型は、複数の部材によって構成されるため、部材間の継ぎ目の部分に 隙間がある。このような金型を用いて射出成形する場合でも、コンパクトディスク(CD) のように低密度の光ディスクの基板のように表面の凹凸が相対的に大きなものでは、 溶融樹脂の粘度が高く且つ力ける圧力が低くても基板上に所望の凹凸を形成するこ とができるため、部材間の隙間に溶融樹脂が入り込みに《なり、ノ リは生じにくい。 例えば、直径 120mm、厚さ 1. 2mmの CDのポリカーボネート製基板を射出成形す るには、例えば、最高榭脂温度 320°C、金型温度 70°C、最大射出速度 150mmZs 、最高型締カ 196kN、タクト 4秒とすることができる。
[0082] これに対し、例えば波長 400nm台の短波長の光に対応した高密度の光ディスクの 榭脂基板のように表面に微小の凹凸を形成しなければならないものでは、金型内で の溶融樹脂の粘度がより低く且つ高流動状態で高圧をかける必要がある。このように 高密度光ディスクの榭脂基板の成形時のように溶融樹脂の粘度が低 、状態で高圧 をかける場合には、部材間の隙間に溶融樹脂が入り込みやすくなり、バリが大きくな る傾向にある。例えば、直径 120mm、厚さ 1. 1mmのブルーレイディスク(BD)のポ リカーボネート製基板を射出成形するには、例えば、最高榭脂温度 380°C、金型温 度 120°C、最大射出速度 200mmZs、最高型締カ 196kN、タクト 6秒にする必要が ある。
[0083] このように CDの基板を成形する場合に比べ、 BDの基板を成形する場合には、榭 脂温度及び金型温度を高くする必要があり、基板 56の内孔 56aにバリが生じやすい 。し力しながら、本実施形態のように、スプル部 64から内孔 56aに繋がる溶融樹脂の 薄肉部を高圧のガスによって分割し、その一方を内孔 56a側に押し戻すことにより、 高榭脂温度及び高金型温度の条件下であってもバリが発生しないようにすることがで きる。
[0084] なお、図 3に示す態様おいては、電磁バルブ 22の開閉制御と昇圧機 20の作動制 御を一つの圧力制御回路 23で行った力 電磁バルブ 22の開閉制御と昇圧機 20の 作動制御とを別の制御回路で行うようにしても構わな 、。
[0085] また、本実施形態 1ではスプルブッシュ 3と固定側固定ブッシュ 4の間のすき間 62が 光ディスク基板 56の内孔径と略同じ位置に形成される構成とした力 これに限られる ものではなぐ例えば光ディスク基板 56の内孔径よりも中心寄り、即ちスプルブッシュ 3の外径及び固定側固定ブッシュ 4の内径を光ディスク基板 56の内孔径よりも小さく してもいい。
[0086] また、本実施形態 1では、昇圧機 20を設ける構成とした力 図 6に示すように、ガス ボンベのような高圧のガスが封入されたガス供給源 19を用いる場合には、昇圧機 20 を省略することも可能である。この場合において、タンクを省略することも可能である。
[0087] また、本実施形態 1では、スプルブッシュ 3と固定側固定ブッシュ 4の間のすき間 62 をガスが流れる構成とした力 これに代え、スプルブッシュ 3と固定側固定ブッシュ 4と の境界面に孔を形成し、この孔内にガスを流す構成にしてもよい。この孔は境界面に 周方向に間隔をお 、て複数設けるのが好まし 、。
[0088] また、本実施形態 1では、ガスとして空気を使用する例について、説明したが、これ に代え、ガスとして窒素を使用してもよい。
[0089] (実施の形態 2)
本発明の第 2実施形態では、実施形態 1におけるタンク 21よりも容量の小さなタンク 21が使用され、電磁バルブ 22の開閉制御が実施形態 1と異なっている。射出成形 装置 50としては図 3に示す構成のものが使用されている。なお、ここでは、実施形態 1と異なる部分についてのみ説明し、その他の部分の説明は省略する。
[0090] 実施形態 1では、高圧ガスの圧力を略一定に保ち、電磁バルブ 22の開閉時間によ つて間隙 66に流出するガス量を制御するようにした力 実施形態 2では、高圧ガスを 貯蔵するタンク 21の大きさを制限し、電磁バルブ 22を開く直前のタンク 21のガス貯 蔵量とガス圧力とを略一定にするとともに、電磁バルブ 22の開放した後は電磁バル ブ 22を閉じるまでタンク 21にはガスの供給を行わないようにしている。そして、電磁 バルブ 22を長く開放しつづけることで、高圧ガスの圧力が溶融樹脂の樹脂圧よりも低 下するようなタンク容量に設定されている。すなわち、高圧ガスがガス流出間隙 66内 の溶融榭脂を移動させることのできる圧力でいる時間をタンク 21の容量と電磁バル ブ 22を開く直前のタンク内のガス圧とで制限するものである。なお、射出成形金型 52 は実施形態 1と同様の構成である。 [0091] 図 4に示すように、カットパンチ 12がスプルブッシュ 3の手前の進出位置まで前進し たときには、その信号を圧力制御回路 23が成形機制御回路 24から受信する。そして 、圧力制御回路 23は電磁バルブ 22に電磁バルブ 22を開く信号を送信する。これに より、電磁バルブ 22が開くと、タンク 21に貯蔵されていた高圧ガスは、ガス配管 60及 びガス通路 7を通ってガス流出間隙 66から流出し始める。これによりガス圧が徐々に 低下する。そして、予め設定された所定時間が経過すると圧力制御回路 23が電磁バ ルブ 22を閉じる信号を出力し、電磁バルブ 22が閉じられる。この間、昇圧機 20は作 動せず、タンク 21へのガスの流入はない。
[0092] 前記予め設定された時間とは、ガス流出間隙 66から流出する高圧ガスの圧力が溶 融榭脂の榭脂圧よりも低下する時間より長い時間であり、実験等によって予め得られ ている時間である。本実施形態 2では、タンク 21の容量が小さぐしかも電磁バルブ 2 2の開放時は昇圧機 20を駆動しな 、ため、タンク内のガスが金型内に流れ込むのに 伴い、ガス流出間隙 66内に流入するガス圧が低下する。
[0093] そして、電磁バルブ 22が閉じられた後に圧力制御回路 23は昇圧機 20を作動させ る。タンク 21内の圧力が設定値になれば圧力計 25からの信号を受けて圧力制御回 路 23は昇圧機 20の作動を終了する。これにより、ショットごとに同じガス圧のガスを流 出させることができる。
[0094] タンク 21を含む高圧ガスの流通系統の容量、即ちタンク 21からキヤビティ 54内 66 までの容積は 30cm3以下が好ましぐ 20cm3以下であるのがより好ましい。すなわち 、ガス量が多いとガス流出間隙 66からの榭脂の移動量が大きくなり、光ディスク基板 56の内孔 56aに凹みが生じたり気泡が生じたりする恐れがある。また、高圧ガスの圧 力が高すぎるとガス流出間隙 66から流出するガス量に周内ばらつきが生じやすくな り、流出時間を一定に設定してもショット間でガス量がばらつきやすくなる。反対にガ ス量が少ないと、ガス流出間隙 66からの榭脂の移動量が少なく内孔 56aにバリが発 生する。このためタンク 21を含む高圧ガスの流通系統の容量は少なくとも 5cm3必要 である。なお、ガス配管 60の内径は 6mmとしている。
[0095] 本実施形態 2では、ガス流出間隙 66から流出する高圧ガスの圧力は榭脂圧に対し て 2%以上で且つ 10%以下が好ましぐ 3%以上で且つ 8%以下であるのがより好ま しい。
[0096] 実施形態 1ではタンク 21の容量が大きくガス流出間隙 66から流出するガスの圧力 はタンク 21内の圧力に等しいが、本実施形態 2ではタンク 21の容量が小さぐこのタ ンク 21の容積と電磁バルブ 22からキヤビティ 54までの系統内の容積が同じであれば 、タンク内の圧力は実施形態 1の場合の 2倍にする必要がある。
[0097] スプルブッシュ 3とカットパンチ 12とのガス流出間隙 66の幅は、 0. 1mm以下である のが好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。
[0098] ガスとして空気を使用し、本実施形態 2の射出成形装置 50により、光ディスク基板 5 6の成形テストを行った。この成形テストでは、ガスは空気とし、タンク 21を含む高圧 ガスの流通系統内の容量を 20cm3とし、最大圧力を 9. 3MPaとして、外径 120mm、 内径 15mm、板厚 1. 1mmの光ディスク基板 56をポリカーボネート榭脂で成形した。 溶融樹脂の射出時間は 0. 1秒とし、溶融樹脂が充填された後 0. 05秒経過してから 型締カ 196kNで 0. 1秒間圧縮を行い、その後、型締カを 98kNに保持した。カット パンチ 12は溶融樹脂の射出後 0. 2秒経過して力も進出位置に前進させた。この成 形テストでは、高圧ガスが流出する近傍の内孔 56aに半径 0. 1mm以下の丸みが形 成された。
[0099] ここで、本実施の形態 2の特徴について、以下に説明する。
[0100] (1)本実施形態の射出成形装置では、前記ガス配管には、前記開閉弁よりも上流 側にタンクが設けられており、前記タンクは、前記開閉弁を開放することによってガス の圧力が榭脂圧よりも低下するような容量を有している。この態様では、開閉弁を開 放すると、ガスの圧力が榭脂圧よりも低い圧力まで次第に低下するので、その時点で ガスが溶融榭脂を押し戻すことができなくなる。このため、ガス圧が榭脂圧よりも低下 するまでに前記間隙内に流入するガス量をタンクの容量によって規定することができ ることになる。この結果、開閉弁の開放時間を精度良く制御する必要がなくなり、制御 を簡素化することができる。
[0101] (2)本実施形態の射出成形装置では、前記開閉弁の開放前における前記タンク内 の圧力は、溶融状態にある榭脂圧に対して 2%以上で、かつ 10%以下に設定され、 前記タンクを含め、前記キヤビティ内までガスの流れる流通系統の容積は、 5cm3以 上で、かつ 30cm3以下に設定されている。したがって、開閉弁を開放することによつ てガス圧が榭脂圧よりも確実に低下するようにすることができる。
[0102] (3)本実施形態の射出成形方法では、前記ガスを前記キヤビティ内に流出させたと きに、その圧力が榭脂圧よりも低下する。この態様では、ガスの圧力が榭脂圧よりも 低い圧力まで次第に低下するので、その時点でガスが溶融榭脂を押し戻すことがで きなくなる。このため、ガスをキヤビティ内に流出させる時間を精度よく制御する必要 がなくなるので、制御を簡素化することができる。
[0103] なお、本実施形態 2ではスプルブッシュ 3と固定側固定ブッシュ 4の間のすき間 62 が光ディスク基板 56の内孔 56aの周面位置と略同じ位置に形成される構成としたが 、これに限られるものではなぐ例えば光ディスク基板 56の内孔 56aの周面位置よりも 内側、即ちスプルブッシュ 3の外径及び固定側固定ブッシュ 4の内径を光ディスク基 板 56の内孔径よりも小さくしても 、 、。
[0104] (実施の形態 3)
図 7は、本発明の第 3実施形態に係る射出成形装置に適用される射出成形金型 52 の要部を示している。本実施形態 3では、スプルブッシュ 3、固定側固定ブッシュ 4及 びカットパンチ 12が、実施形態 1におけるものと異なっている。なお、ここでは、実施 形態 1と異なる部分についてのみ説明し、その他の部分の説明は省略する。
[0105] 固定側固定ブッシュ 4の円筒部 4aは、環状に形成されているが、円筒部 4aの外側 部における内端面がスタンパホルダー 5と面一の状態に構成される一方、円筒部 4a の内側部 4cが外側部力 カットパンチ 12に向かってキヤビティ 54内に延出されてい る。そして、固定側固定ブッシュ 4の内側部 4cにおける先端面は、環状の平面状に 形成されている。この固定側固定ブッシュ 4の内側部 4cによって、光ディスク基板 56 の内孔 56aの略半分が形成される。固定側固定ブッシュ 4の内側部 4cがその外側部 力も滑らかな曲線状に延出されることにより、光ディスク基板 56の内孔 56aにおける 一方(図 7における上側)の端部が丸みを帯びる形状に成形されるようになっている。
[0106] スプルブッシュ 3の外側部 3cは、固定側固定ブッシュ 4と同様にカットパンチ 12に 向かって延出されている。そして、このスプルブッシュ 3の外側部 3cの先端面は、固 定側固定ブッシュ 4の内側部 4cにおける先端面と面一の状態の環状に形成されてい る。
[0107] カットパンチ 12は、固定側固定ブッシュ 4の内側部 4cの外径と略同一の外径に構 成されている。そして、カットパンチ 12が進出位置に進出すると、スプルブッシュ 3の 外側部 3c、固定側固定ブッシュ 4の内側部 4c及びカットパンチ 12における凹部 12a の外周部に囲まれたガス流出間隙 66が環状間隙として形成される。すなわち、光デ イスク基板 56の厚み方向の中間部にガス流出間隙 66が形成される。したがって、高 圧のガスを流出させたとき、それによつて内孔 56aに凹みが生ずるとしても、その凹み は光ディスク基板 56の厚み方向の中間部となる。
[0108] 図 7に破線で示すように、溶融榭脂を射出するときにはカットパンチ 12とェジェクタ ピン 11は通常位置にある。これにより、榭脂がキヤビティ 54内に充填されやすくなつ ている。そして、榭脂が未だ溶融状態にある射出からの所定時間の経過時に、カット パンチ 12とェジェクタピン 11とが同じ位置関係を保ったまま図 7に示す中抜き矢印の 方向に前進する。カットパンチ 12はスプルブッシュ 3と固定側固定ブッシュ 4の手前で 停止する。これにより、カットパンチ 12と、スプルブッシュ 3及び固定側固定ブッシュ 4 との間にガス流出間隙 66が残される。
[0109] その後、図 7に下向きの矢印で示すように、ガス通路 7から流れてきた高圧ガスがス プルブッシュ 3と固定側固定ブッシュ 4の間のすき間 62を通ってガス流出間隙 66に 流出させる。そうすると、このガス流出間隙 66内の溶融樹脂が押し出される。榭脂が 固化したときには光ディスク基板 56の内孔 56aにはバリが発生していない。
[0110] ガス流出間隙 66の幅は 0. 1mm以下であるのが好ましぐ 10 m以上で且つ 50 m以下であるのがより好ましい。この場合、ガスにより生ずる内孔 56aの凹みは半径 0 . 1mm以下となる。
[0111] 本実施形態 3のように、ガス流出間隙 66が互いに向かい合った平面部によって囲 まれ、このガス流出間隙 66に直接高圧ガスが吹き出される構成となっていると、ガス 流出間隙 66内にある溶融榭脂がまず高圧ガスで押し出されることになるので、榭脂 の移動量を制御しやすくすることができる。
[0112] 本実施形態 3では、成形された光ディスク基板 56のェジヱクタ 13側の内孔 56aの 端部も丸く形成された。これはカットパンチ 12が突き出る方向に作動することにより、 カットパンチ 12とェジェクタ 13との間に入り込もうとする榭脂を追 、出す方向に力が 働くことと、内孔 56aの端部に位置する榭脂に十分な圧力が加わらず、十分な圧力 が加わった箇所の榭脂より収縮量が大きくなることがその理由と考えられる。
[0113] 本実施形態 3では、内孔 56aにおける光ディスク基板 56の厚み方向の中間部に凹 みができる場合があるものの、内孔 56aの端部にはノ リやヒケが発生しない。このた め、光ディスクドライブにセットされたときに行われる光ディスクの芯出しのように内孔 5 6aの端部が支持される場合等には、内孔 56aの中間部に存在する凹みが影響を与 えることはない。したがって、光ディスクの信号品質を向上することができる。
[0114] ここで、本実施の形態 3の特徴について、以下に説明する。
[0115] (1)本実施形態では、前記キヤビティ内に流出したガスが直接前記間隙内に流入 するように構成されている。したがって、キヤビティ内に流出したガスがキヤビティ内の 他の場所を通ることなく前記間隙内に流入するので、キヤビティ内に流出するガス流 量と溶融樹脂の移動量との相間がよくなる。この結果、溶融樹脂の移動量を精度よく 帘 U御することができる。
[0116] (実施の形態 4)
図 8は、本発明の第 4実施形態に係る成形装置に適用される射出成形金型 52の要 部を示している。本実施形態 4では、実施形態 1と異なり、カットパンチ 12の内端面が 平坦面に構成されている。なお、ここでは、実施形態 1と異なる部分についてのみ説 明し、その他の部分の説明は省略する。
[0117] カットパンチ 12の内端面に凹部 12aが形成されていない。つまり、スプルブッシュ 3 またはカットパンチ 12の少なくとも一方に凹みがあれば、カットパンチ 12が前進する 際にスプル部 64として押し除ける榭脂の容積を確保できる。
[0118] スプルブッシュ 3と固定側固定ブッシュ 4との間のすき間 62は、光ディスク基板 56の 内孔 56aの内径、即ちカットパンチ 12の外径と同じ力、もしくはそれよりも小さい径に 形成されるのが望ましい。そして、ガス流出間隙 66が互いに向かい合った平面部に よって囲まれていると、この間隙 66内にある溶融榭脂がまず高圧ガスで押し出される ことになるので、榭脂の移動量を制御しやすくすることができる。
[0119] 本実施形態 4においても、スプルブッシュ 3とカットパンチ 12の間のガス流出間隙 6 6に流出した高圧ガスによって溶融樹脂が押し戻され、ガス圧の減少とともに榭脂が 冷却固化する。したがって、光ディスク基板 56の内孔 56aの端部に丸みが形成され、 ノ リを生じさせない。
[0120] ガス流出間隙 66の幅は 0. 1mm以下であるのが好ましぐ 10 m以上で且つ 50 m以下であるのがより好ましい。この場合、ガスにより生ずる内孔 56aの凹みは半径 0 . 1mm以下となる。
[0121] なお、本実施形態 4ではスプルブッシュ 3の内側端面に平面状の外周部を残して凹 部 3bを形成する構成としたが、図 9に示すようにスプルブッシュ 3には外周部を残す ことなく凹部 3bが形成される構成としてもょ ヽ。この場合でも同様の効果が得られる。
[0122] (実施の形態 5)
図 10は、本発明の第 5実施形態に係る成形装置に適用される射出成形金型 52の 要部を示している。本実施形態 5では、実施形態 1と異なり、スプルブッシュ 3が固定 側固定ブッシュ 4よりも引っ込んだ配置となっている。なお、ここでは、実施形態 1と異 なる部分についてのみ説明し、その他の部分の説明は省略する。
[0123] スプルブッシュ 3の内側端面は、平面状に形成されて!、る。つまり、スプルブッシュ 3 の内側端面に凹部 3bが形成されていない。そして、この内側端面は、固定側固定ブ ッシュ 4の内側端面よりもカットパンチ 12から離れる方向に引っ込んでいる。したがつ て、カットパンチ 12が進出位置まで前進したとしても、実施形態 1のようにスプルブッ シュ 3との間の間隙が僅かな幅になることはない。
[0124] しかしながら、カットパンチ 12と固定側固定ブッシュ 4との間に僅かな幅の間隙 66 が形成される。したがって、スプルブッシュ 3と固定側固定ブッシュ 4の間のすき間 62 を通ってきた高圧ガスは、密度の低いスプル部 64周囲の溶融榭脂を圧縮しながら固 定側固定ブッシュ 4とカットパンチ 12との間の間隙 66に到達する。そして高圧ガスは 、内孔 56aの端部に位置する榭脂を光ディスク基板 56側に押し込む。ガス圧の減少 と共に榭脂が冷却固化し、この内孔 56aの端部に丸みが形成され、ノ リを生じさせな い。
[0125] これと反対側の内孔 56aの端部では、カットパンチ 12とェジェクタ 13との隙間に溶 融した樹脂が入り込む方向と反対方向にカットパンチ 12が移動し、かつ、この隙間付 近では榭脂に十分な圧力が力からないため密度が低くなるため、収縮が大きく丸み が生じる。
[0126] 固定側固定ブッシュ 4とカットパンチ 12との間隙 66は 0. 1mm以下であるのが好ま しぐ 10 m以上で 50 m以下であるのがより好ましい。この場合、固定側固定ブッ シュ 4側の内孔 56aの端部における丸みは半径 0. 1mm以下となる。
[0127] なお、図 10ではスプルブッシュ 3の外径を基板の内孔 56aの径と略同一、すなわち カットパンチ 12の外径と略同一としている力 図 11に示すように、それより小さくして も構わない。この場合、スプルブッシュ 3と固定側固定ブッシュ 4とで形成されるすき 間 62の位置が基板の内孔 56aよりも中心寄りの位置に形成されることになる。この場 合でも、高圧ガスがスプル部 64の周囲を通過して間隙 66に到達するので、間隙 66 内の榭脂を基板 56側に押出すことができる。
[0128] また、図 11に示すように、カットパンチ 12の内端面における端部や固定側固定ブッ シュ 4の内端面における端部を面取りしてもいい。この場合には、固定側固定ブッシ ュ 4とカットパンチ 12との間の間隙 66が広くならないようにするために、カットパンチ 1 2が固定側固定ブッシュ 4の内側まで入り込むようにする必要がある。
[0129] (実施の形態 6)
図 12は、本発明の第 6実施形態に係る成形装置に適用される射出成形金型 52の 要部を示している。本実施形態 6では、実施形態 1と異なり、ガス通路 7が可動側金 型 2に設けられている。なお、ここでは、実施形態 1と異なる部分についてのみ説明し 、その他の部分の説明は省略する。
[0130] 実施形態 1では、固定側金型 1にスプルブッシュ 3と固定側固定ブッシュ 4とが設け られていたが、本実施形態 6ではこれと異なり、固定側固定ブッシュ 4が省略されてい る。そして、スプルブッシュ 3は、光ディスク基板 56の内孔 56aよりも大きな外径を有し ている。
[0131] 可動側金型 2のカットパンチ 12は、外筒部 12aと内筒部 12bの 2つの部材カもなり、 2重構造とされている。そして、ガス通路 7は、可動側基盤 16に形成されていて、内 筒部 12bと外筒部 12aの間のすき間 74に連通している。したがって、ガス通路 7を通 して流れる高圧のガスが、外筒部 12aと内筒部 12bの間の環状のすき間 74を流れる ようになっている。
[0132] 外筒部 12a、内筒部 12b及びェジェクタピン 11は固定側金型 1と可動側金型 2とが 閉じて、溶融榭脂を射出するときには、図 12に示す破線の位置にある。そして、榭脂 の射出が終わると、外筒部 12a、内筒部 12bおよびェジェクタピン 11がこの位置関係 を保持したまま中抜き矢印の方向に前進し、図 12に示すように、外筒部 12aと内筒 部 12bはスプルブッシュ 3の手前で停止する。この状態で、外筒部 12aと内筒部 12b の間のすき間 74を流れてきた高圧ガスがスプルブッシュ 3とカットパンチ 12との間の ガス流出間隙 66に流出する。これにより、溶融樹脂が移動するため、内孔 56aにバリ が発生しなくなる。
[0133] 固定側固定ブッシュ 4とカットパンチ 12との間の間隙 66は、 0. 1mm以下であるの が好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。この場合、ガス により生ずる内孔 56aの凹みは半径 0. 1mm以下となる。
[0134] ここで、本実施の形態 6の特徴について、以下に説明する。
[0135] (1)本実施形態では、前記可動部は、外筒部と内筒部とによって構成され、前記ガ ス通路は、外筒部と内筒部との間のすき間を通して前記間隙に連通するように構成さ れている。したがって、ガス通路をキヤビティ内までつながるように形成しなくてもガス 通路が前記すき間を通してキヤビティ内に連通するように構成することができる。
[0136] (実施の形態 7)
図 13は、本発明の第 7実施形態に係る成形装置に適用される射出成形金型 52の 要部を示している。本実施形態 7では、実施形態 1と異なり、カットパンチ 12が通常位 置にあるときにはェジェクタ 13よりも引っ込んでいる。なお、ここでは、実施形態 1と異 なる部分についてのみ説明し、その他の部分の説明は省略する。
[0137] 固定側固定ブッシュ 4の円筒部 4aは、環状に形成されているが、その外側部がスタ ンパホルダー 5と面一の状態に構成される一方、内側部 4cが外側部力もカットパンチ 12に向力つてキヤビティ 54内に延出されている。そして、固定側固定ブッシュ 4の内 側部 4cにおける先端面は、ェジ クタ 13の内端面の近傍に位置する環状の平面状 に形成されている。この固定側固定ブッシュ 4の内側部 4cによって、光ディスク基板 5 6の内孔 56aのほぼ全体が形成される。固定側固定ブッシュ 4の内側部 4cがその外 側部から滑らかな曲線状に延出されることにより、光ディスク基板 56の内孔 56aにお ける一方(図 13における上側)の端部が丸みを帯びる形状に成形されるようになって いる。
[0138] スプルブッシュ 3は、固定側固定ブッシュ 4と同様にカットパンチ 12に向力つて延出 されている。そして、このスプルブッシュ 3の先端面(内側端面)は、固定側固定ブッシ ュ 4の内側部における先端面と面一の状態の環状に形成されている。なお、スプルブ ッシュ 3の先端面には凹部 3bが形成されていない。
[0139] カットパンチ 12は、固定側固定ブッシュ 4の外径よりも大きな外径を有しており、内 端面に形成された凹部 12aは、固定側固定ブッシュ 4における内側部 4cの外径とほ ぼ同じ内径を有している。そして、カットパンチ 12が通常位置にあるときには、図 13 に破線で示すように、内端面における凹部 12aの外側の外側部がェジェクタ 13 (可 動側鏡面盤 15)よりも引っ込んだ状態に設定されている。このようにカットパンチ 12が 引っ込んで!/、ることで、スプルブッシュ 3や固定側固定ブッシュ 4が光ディスク基板 56 の厚み程度突き出て 、ても、キヤビティ 54内に榭脂が流入可能となって!/、る。
[0140] 榭脂が射出され終わると、カットパンチ 12とェジェクタピン 11はこの位置関係を保 持した状態で中抜き矢印の方向に前進し、固定側固定ブッシュ 4の手前で停止する 。このとき、カットパンチ 12の外側部における内端面力 ェジェクタ 13の内端面とほ ぼ同じ平面上になる位置で停止させるようにする。これにより、光ディスク基板 56の内 孔 56a近傍が平坦になる。
[0141] 高圧ガスは、ガス通路 7を通ってスプルブッシュ 3と固定側固定ブッシュ 4との間の すき間 62からキヤビティ 54内に流出する。このときキヤビティ 54内の榭脂は溶融状態 にあるので、高圧ガスが吹き出すことよつてこの榭脂は、カットパンチ 12の凹部 12a 内に位置するスプル部 64と、固定側固定ブッシュ 4の外側にある光ディスク基板 56と に分離され、光ディスク基板 56の内孔 56aの端部を形成する榭脂が光ディスク基板 5 6側に押し出されることとなる。ガス圧が減少すると共に樹脂が冷却固化し、この内孔 56aの端部に丸みが形成さる、ノ リは生じない。
[0142] 固定側固定ブッシュ 4とカットパンチ 12との間の間隙 66は、 0. 1mm以下であるの が好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。この場合、ガス により生ずる内孔 56a端部の凹みは半径 0. 1mm以下となる。
[0143] なお、本実施形態 7では、カットパンチ 12の凹部 12aの内径を光ディスク基板 56の 内孔径と略同一としたが、内孔径より小さくても 、。
[0144] (実施の形態 8)
図 14は、本発明の第 8実施形態に係る成形装置に適用される射出成形金型 52の 要部を示している。本実施形態 8では、実施形態 7と異なり、高圧ガスが可動側金型 2内を流れるようになつている。なお、ここでは、実施形態 7と異なる部分についての み説明し、その他の部分の説明は省略する。
[0145] 本実施形態 8では、固定側固定ブッシュ 4が省略されて 、る。そして、スプルブッシ ュ 3は、光ディスク基板 56の内孔位置よりも大きな外径を有している。スプルブッシュ 3は、カットパンチ 12に向かってキヤビティ 54内に延出されている。そして、キヤビティ 54内に延出されたスプルブッシュ 3の先端部では外周部が切除されていて、このス プルブッシュ 3の先端部は光ディスク基板 56の内孔 56aに対応した外径に形成され ている。スプルブッシュ 3の先端面は、ェジェクタ 13の内端面の近傍に位置する環状 の平面状に形成されて!、る。
[0146] カットパンチ 12は、外筒部 12aと内筒部 12bの 2つの部材カもなり、 2重構造とされ ている。そして、ガス通路 7は、可動側基盤 16に形成されていて、内筒部 12bと外筒 部 12aの間のすき間 74に連通している。したがって、ガス通路 7を通して流れる高圧 のガス力 外筒部 12aと内筒部 12bの間の環状のすき間 74を流れるようになつている
[0147] 外筒部 12aは、固定側固定ブッシュ 4の外径よりも大きな外径を有しており、内筒部 12bは、スプルブッシュ 3における内周部の外径とほぼ同じ内径を有している。そして 、カットパンチ 12が通常位置にあるときには、図 14に破線で示すように、外筒部 12a の内端面がェジヱクタ 13 (可動側鏡面盤 15)よりも引っ込んだ状態に設定されている 。このようにカットパンチ 12が引っ込んでいることで、スプルブッシュ 3が光ディスク基 板 56の厚み程度突き出ていても、キヤビティ 54内に樹脂が流入可能となっている。
[0148] 榭脂が射出され終わると、外筒部 12a、内筒部 12b及びェジヱクタピン 11は、この 位置関係を保ったまま中抜き矢印の方向に前進し、図 14に実線で示すようにスプル ブッシュ 3の手前で停止する。その後、榭脂が溶融状態にあるときに、高圧ガスが外 筒部 12aと内筒部 12bの間のすき間 74を通ってキヤビティ 54内に流出する。高圧ガ スは密度の低いスプル部 64周囲の榭脂を圧縮しながらスプルブッシュ 3と外筒部 12 aとの間隙 66に到達し、内孔 56a端部の榭脂を光ディスク基板 56側に押し出す。そ の後ガス圧が減少すると共に樹脂が冷却固化し、内孔 56a端部に丸みが形成され、 ノ リは生じない。
[0149] カットパンチ 12の外筒部 12aとスプルブッシュ 3との間隙 66は、 0. 1mm以下である のが好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。この場合、ガ スにより生ずる内孔 56aの凹みは半径 0. 1mm以下となる。
[0150] この構成の場合、光ディスク基板 56が内孔 56a近傍で平坦面となるには、外筒部 1 2aが進出位置にある状態で外筒部 12aとェジェクタピン 11とが基板と面する高さは 略同一にすることが好ましい。
[0151] なお、本実施形態 8では、光ディスク基板 56の内孔径に相当するスプルブッシュ 3 の先端部における外径力 外筒部 12aの内径と略同一とした力 スプルブッシュ 3と 外筒部 12aとは直接当らな 、ため、外筒部 12aの内径をスプルブッシュ 3の先端部に おける外径よりも小さくしても構わない。
[0152] (実施の形態 9)
図 15は、本発明の第 9実施形態に係る成形装置に適用される射出成形金型 52の 要部を示している。本実施形態 9では、実施形態 8と異なり、カットパンチ 12が 1つの 部材カもなつていて、カットパンチ 12の内端面には凹部 12aが形成されている。そし てこの凹部 12aの外周部は環状の平坦面となっている。なお、ここでは、実施形態 8 と異なる部分についてのみ説明し、その他の部分の説明は省略する。
[0153] ガス通路 7は、カットパンチ 12とェジェクタ 13との間のすき間 74に連通しており、こ のすき間 74を高圧ガスが流れて、キヤビティ 54内に流出するようになっている。
[0154] ェジヱクタ 13及びカットパンチ 12は、固定側金型 1と可動側金型 2とが閉じられると きの通常位置では、図 15に破線で示すように、可動側固定ブッシュ 14 (可動側鏡面 盤 15)よりも引っ込んでいる。これにより溶融榭脂を射出してもキヤビティ 54内に流入 できるようになつている。 [0155] 榭脂が射出され終わると、カットパンチ 12及びェジヱクタ 13は、この位置関係を保 つたまま中抜き矢印の方向に前進し、図 15に実線で示すようにスプルブッシュ 3の手 前で停止する。その後、榭脂が溶融状態にあるときに、高圧ガス力カットパンチ 12と ェジェクタ 13とのすき間 74から流出して榭脂を移動させ、光ディスク基板 56をスプル 部 64から完全に分離させる。そして、ガス圧が減少すると共に樹脂が冷却固化し、内 孔 56aの端部に丸みが形成され、ノ リが生じな!/ヽ。
[0156] カットパンチ 12とスプルブッシュ 3との間隙 66は、 0. 1mm以下であるのが好ましぐ 10 μ m以上で且つ 50 μ m以下であるのがより好ましい。この場合、ガスにより生ずる 内孔 56aの凹みは半径 0. 1mm以下となる。
[0157] この構成の場合、光ディスク基板 56が内孔 56a近傍で平坦面となるには、カットパ ンチ 12が進出位置にある状態でカットパンチ 12とェジェクタ 13とが基板と面する高さ は略同一にすることが好ましい。
[0158] 本実施形態 9では、カットパンチ 12の外径が、内孔 56aに相当するスプルブッシュ 3 の先端部における外径と略同一とした力 それよりも小さくしても構わない。
[0159] 実施形態 1〜9の説明では可動側金型 2のカットパンチ 12が移動可能な可動部とし て構成された例について説明した力 これに代え、固定側金型 1のスプルブッシュ 3 が移動可能な可動部としても構成されて 、ても構わな ヽ。
[0160] ここで、本実施の形態 9の特徴について、以下に説明する。
[0161] (1)本実施形態では、前記ガス通路は、前記可動部とェジ クタとの間のすき間を 通して前記間隙に連通するように構成されている。したがって、ガス通路をキヤビティ 内までつながるように形成しなくてもガス通路が前記すき間を通してキヤビティ内に連 通するように構成することができる。
産業上の利用可能性
[0162] 本発明は、光ディスク用基板を含め、内孔が形成された射出成形品を成形するた めの射出成形装置、成形方法及び金型に利用することが可能である。

Claims

請求の範囲
[1] 第 1金型と第 2金型との間に形成されるキヤビティ内に溶融榭脂を射出して、内孔が 貫通形成された榭脂成形品を成形する成形装置であって、
前記第 1金型及び第 2金型の一方に設けられる可動部と、
前記第 1金型及び前記第 2金型の少なくとも一方に前記キヤビティ内に連通可能に 設けられたガス通路と、
前記ガス通路に連通するガス配管に設けられる開閉弁と、
制御器とを備え、
前記可動部は、溶融榭脂を射出するときの通常位置と、前記内孔が形成される位 置で前記ガス通路力 流出したガスが流入可能な間隙が相手金型との間に残るよう に前記キヤビティ内に進出した進出位置との間を移動可能に構成されており、 前記制御器は、前記溶融樹脂の射出に応じて、前記可動部の移動制御と前記開 閉弁の開閉制御を行うように構成されている射出成形装置。
[2] 前記制御器は、前記開閉弁を 0. 05秒以上で、かつ 1秒以下の時間だけ開放する 請求項 1に記載の射出成形装置。
[3] 前記ガス配管には、前記開閉弁よりも上流側にタンクが設けられ、
前記タンク内の圧力は、溶融状態にある榭脂圧に対して 2%以上で、かつ 15%以 下に設定されている請求項 1に記載の射出成形装置。
[4] 前記開閉弁の開放前における前記タンク内の圧力は、溶融状態にある榭脂圧に対 して 2%以上で、かつ 10%以下に設定され、
前記タンクを含め、前記キヤビティ内までガスの流れる流通系統の容積は、 5cm3以 上で、かつ 30cm3以下に設定されている請求項 3に記載の射出成形装置。
[5] 前記間隙の幅は、 10 m以上で、かつ 50 m以下に設定されている請求項 1に記 載の射出成形装置。
[6] 前記間隙は、前記榭脂成形品の内孔の周面に対応する位置、またはそれよりも前 記内孔の中心寄りに配置される請求項 1に記載の射出成形装置。
[7] 前記間隙は、前記内孔における貫通方向の端部に配置される請求項 1に記載の射 出成形装置。
[8] 前記間隙は、前記内孔における貫通方向の中間部に配置される請求項 1に記載の 射出成形装置。
[9] 前記キヤビティ内に流出したガスが直接前記間隙内に流入するように構成されて 、 る請求項 1に記載の射出成形装置。
[10] 前記ガス通路は、スプルブッシュとこのスプルブッシュを保持する固定ブッシュとの 間のすき間を通して前記間隙に連通するように構成されて 、る請求項 1に記載の射 出成形装置。
[11] 前記可動部は、外筒部と内筒部とによって構成され、
前記ガス通路は、外筒部と内筒部との間のすき間を通して前記間隙に連通するよう に構成されて!ヽる請求項 1に記載の射出成形装置。
[12] 前記ガス通路は、前記可動部とェジ クタとの間のすき間を通して前記間隙に連通 するように構成されて 、る請求項 1に記載の射出成形装置。
[13] 前記ガス配管における前記開閉弁よりも上流側に配置されるタンクと、
前記タンク内の圧力を検出する圧力検出器と、
前記タンク内の圧力を上げるための昇圧機とが設けられ、
前記制御器は、前記圧力検出器の検出圧力に応じて前記昇圧機を駆動する請求 項 1に記載の射出成形装置。
[14] 第 1金型と第 2金型との間に形成されたキヤビティ内に溶融榭脂を射出して内孔が 貫通形成された榭脂成形品を成形する方法であって、
前記金型の少なくとも一方に前記キヤビティ内に連通可能にガス通路が設けられる とともに、前記金型の一方に可動部が設けられた前記第 1金型及び前記第 2金型を 使用し、
前記可動部は、溶融榭脂を射出するときの通常位置と、前記内孔が形成される位 置で前記ガス通路力 流出したガスが流入可能な間隙が相手金型との間に残るよう に前記キヤビティ内に進出した進出位置との間を移動可能に構成されており、 前記キヤビティ内に溶融榭脂を射出した後、前記可動部を進出位置まで移動させ、 前記間隙にガスを流入させる射出成形方法。
[15] 前記ガスは、空気又は窒素である請求項 14に記載の射出成形方法。
[16] 前記ガスを所定時間だけ流出させる請求項 14に記載の射出成形方法。
[17] 溶融状態にある榭脂圧に対して 2%以上で、かつ 15%以下の圧力でガスを流出さ せる請求項 14に記載の射出成形方法。
[18] 前記ガスを前記キヤビティ内に流出させたときに、その圧力が榭脂圧よりも低下する 請求項 14に記載の射出成形方法。
[19] 前記間隙の幅は、 10 m以上で、かつ 50 m以下に設定されている請求項 14に 記載の射出成形方法。
[20] 第 1金型と第 2金型とを有し、この金型間に内孔を有する榭脂成形品を成形するた めのキヤビティが設けられる金型であって、
前記第 1金型及び第 2金型の一方に設けられる可動部と、
前記第 1金型及び前記第 2金型の少なくとも一方に、前記キヤビティ内に連通可能 に設けられたガス通路とを備え、
前記可動部は、溶融榭脂を射出するときの通常位置と、前記内孔が形成される位 置で前記ガス通路力 流出したガスが流入可能な間隙が相手金型との間に残るよう に前記キヤビティ内に進出した進出位置との間を移動可能に構成されて ヽる射出成 形金型。
PCT/JP2005/021128 2004-11-18 2005-11-17 射出成形装置、射出成形方法及び射出成形金型 WO2006054647A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006545132A JP4593572B2 (ja) 2004-11-18 2005-11-17 射出成形装置、射出成形方法及び射出成形金型
US11/629,906 US7559761B2 (en) 2004-11-18 2005-11-17 Injection molding machine, injection molding method and injection mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004334118 2004-11-18
JP2004-334118 2004-11-18

Publications (1)

Publication Number Publication Date
WO2006054647A1 true WO2006054647A1 (ja) 2006-05-26

Family

ID=36407185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021128 WO2006054647A1 (ja) 2004-11-18 2005-11-17 射出成形装置、射出成形方法及び射出成形金型

Country Status (4)

Country Link
US (1) US7559761B2 (ja)
JP (1) JP4593572B2 (ja)
CN (1) CN101018657A (ja)
WO (1) WO2006054647A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253690A (ja) * 2009-04-21 2010-11-11 Mitsubishi Kagaku Media Co Ltd ディスク成形用金型及びインナスタンパホルダ
CN102275273A (zh) * 2011-08-15 2011-12-14 苏州金安精密模塑有限公司 潜浇口浮套顶出机构
CN108715002A (zh) * 2018-04-28 2018-10-30 芜湖盈奇塑业有限公司 一种卸料便捷的模具组件
CN108724627A (zh) * 2018-04-28 2018-11-02 芜湖盈奇塑业有限公司 一种高效率注塑模具组件
CN108724628A (zh) * 2018-04-28 2018-11-02 芜湖盈奇塑业有限公司 一种生产效率高的模具
CN108790042A (zh) * 2018-04-28 2018-11-13 芜湖盈奇塑业有限公司 一种效率高的模具组件
CN108790060A (zh) * 2018-04-28 2018-11-13 芜湖盈奇塑业有限公司 一种模具组件

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647568B2 (ja) * 2006-09-12 2011-03-09 東洋機械金属株式会社 射出成形機
JP4491024B2 (ja) * 2008-05-12 2010-06-30 株式会社東芝 金型装置
CN102990876A (zh) * 2011-09-13 2013-03-27 鸿富锦精密工业(深圳)有限公司 注塑件生产系统及方法
CN105881843A (zh) * 2016-06-16 2016-08-24 丹阳市华医疗器械有限公司 一种高压氮气模内热切模具
CN107351321B (zh) * 2017-08-07 2023-10-20 深圳市南极光电子科技有限公司 一种应用于导光板压缩成型模具的防贴合结构及应用方法
CN108527774A (zh) * 2018-04-28 2018-09-14 芜湖盈奇塑业有限公司 一种成品率高的模具组件
CN108715009B (zh) * 2018-06-27 2020-02-04 青岛捷瑞隆工贸有限公司 一种基于熔点的具有交界漏料自动切断结构的注塑模具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253282A (ja) * 1988-08-13 1990-02-22 Sony Corp ディスクカートリッジ用ハーフ
JPH09193163A (ja) * 1996-01-23 1997-07-29 Meiki Co Ltd 光ディスク基盤用成形型
JPH09201839A (ja) * 1996-01-24 1997-08-05 Meiki Co Ltd コンプレッション成形方法およびコンプレッション成形機
JP2002269848A (ja) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd 光ディスク基板の製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196212A (ja) 1983-04-21 1984-11-07 Minoru Sangyo Kk プラスチツク成形品のバリ取り装置
JPS62160218A (ja) * 1986-01-08 1987-07-16 Mitsubishi Gas Chem Co Inc 射出成形用光デイスク金型
EP0247244B1 (en) * 1986-02-26 1992-01-15 Kabushiki Kaisha Meiki Seisakusho Improved molding apparatus and method for producing centrally-apertured discs
JPH0239910A (ja) * 1988-07-29 1990-02-08 Fuji Photo Film Co Ltd 光ディスク基板の製造方法
US5161081A (en) 1988-08-13 1992-11-03 Sony Corporation Disk cartridge made by injecting molten synthetic resin into a mold so that flash lines, weld lines and burn marks do not occur
JPH0675894B2 (ja) 1989-08-21 1994-09-28 株式会社名機製作所 ディスク成形用金型
JPH0628882B2 (ja) 1989-08-23 1994-04-20 株式会社名機製作所 ディスク成形方法
JPH04235006A (ja) 1991-01-09 1992-08-24 Mazda Motor Corp 樹脂成形品のバリ取り方法およびその装置
US5326240A (en) * 1991-10-12 1994-07-05 Sony Corporation Metal mold device for molding a disc substrate
JPH0699581A (ja) 1992-09-21 1994-04-12 Seiko Epson Corp ノズルプレートの製造方法
JP2944359B2 (ja) * 1993-03-23 1999-09-06 株式会社精工技研 基盤射出成形金型
JP3409215B2 (ja) * 1993-07-12 2003-05-26 日精樹脂工業株式会社 ディスク基板成形金型
JP3294971B2 (ja) * 1995-08-07 2002-06-24 株式会社名機製作所 ディスク基板およびその成形用型
JPH10128810A (ja) * 1996-10-29 1998-05-19 Meiki Co Ltd ディスク成形金型装置のスタンパ押え構造
JP3224347B2 (ja) * 1996-11-28 2001-10-29 株式会社名機製作所 ディスク基板成形用型
JP3517770B2 (ja) * 1997-09-11 2004-04-12 株式会社名機製作所 ディスク成形方法
JP3222830B2 (ja) * 1998-03-13 2001-10-29 住友重機械工業株式会社 ディスク成形装置のゲートカット装置及びゲートカット方法
JP3371224B2 (ja) * 1998-03-19 2003-01-27 株式会社名機製作所 ディスク成形用金型のエアーブロー方法及びその金型
US6875378B1 (en) * 1999-03-12 2005-04-05 Matsushita Electric Industrial Co., Ltd. Optical disk molding apparatus and method
JP4726168B2 (ja) * 2000-04-17 2011-07-20 キヤノン株式会社 光学スケール及び光学式エンコーダ
JP4524893B2 (ja) * 2000-09-14 2010-08-18 ソニー株式会社 成形金型装置
JP2002240101A (ja) * 2000-12-15 2002-08-28 Sony Corp ディスク基板及びそれを射出成形する金型装置とディスク基板取出し用ロボット
US6830716B2 (en) * 2001-06-06 2004-12-14 Fuji Photo Film Co., Ltd. Method of removing extraneous matter from injection mold
JP2002361687A (ja) * 2001-06-06 2002-12-18 Fuji Photo Film Co Ltd 射出成形型の付着物除去方法
WO2004045822A1 (ja) * 2002-11-18 2004-06-03 Sumitomo Heavy Industries, Ltd. 成形用金型、成形方法、ディスク基板及び成形機
JP2005028731A (ja) 2003-07-11 2005-02-03 Aisin Seiki Co Ltd ボス部を有する樹脂成形品の製造方法及びそれに用いる金型

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253282A (ja) * 1988-08-13 1990-02-22 Sony Corp ディスクカートリッジ用ハーフ
JPH09193163A (ja) * 1996-01-23 1997-07-29 Meiki Co Ltd 光ディスク基盤用成形型
JPH09201839A (ja) * 1996-01-24 1997-08-05 Meiki Co Ltd コンプレッション成形方法およびコンプレッション成形機
JP2002269848A (ja) * 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd 光ディスク基板の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253690A (ja) * 2009-04-21 2010-11-11 Mitsubishi Kagaku Media Co Ltd ディスク成形用金型及びインナスタンパホルダ
CN102275273A (zh) * 2011-08-15 2011-12-14 苏州金安精密模塑有限公司 潜浇口浮套顶出机构
CN108715002A (zh) * 2018-04-28 2018-10-30 芜湖盈奇塑业有限公司 一种卸料便捷的模具组件
CN108724627A (zh) * 2018-04-28 2018-11-02 芜湖盈奇塑业有限公司 一种高效率注塑模具组件
CN108724628A (zh) * 2018-04-28 2018-11-02 芜湖盈奇塑业有限公司 一种生产效率高的模具
CN108790042A (zh) * 2018-04-28 2018-11-13 芜湖盈奇塑业有限公司 一种效率高的模具组件
CN108790060A (zh) * 2018-04-28 2018-11-13 芜湖盈奇塑业有限公司 一种模具组件

Also Published As

Publication number Publication date
US7559761B2 (en) 2009-07-14
US20070298137A1 (en) 2007-12-27
CN101018657A (zh) 2007-08-15
JP4593572B2 (ja) 2010-12-08
JPWO2006054647A1 (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2006054647A1 (ja) 射出成形装置、射出成形方法及び射出成形金型
JP3440289B2 (ja) バルブゲート式射出成形方法及び装置
JP5105585B2 (ja) 導光板の成形金型および導光板の成形方法
JP2008279784A (ja) 樹脂成形品
JP4451483B2 (ja) 導光板の成形金型
JP2009034910A (ja) 導光板の成形金型および導光板の成形方法
US7396575B2 (en) Molding die apparatus, method for disc substrate, and disc-shaped recording medium
JP2009149005A (ja) 導光板の成形金型および導光板の成形方法
JP3702463B2 (ja) 成形用金型装置
JP5071794B2 (ja) 薄板状光学用成形品の射出プレス成形方法
JP2007237407A (ja) ディスク基板の成形方法およびブルーレイディスク
JP4201580B2 (ja) 樹脂成形方法
JP3423426B2 (ja) 合成樹脂成形品の射出成形装置
JPH01291915A (ja) 射出成形用金型のエジェクト装置およびそのエジェクト方法
JP3713707B2 (ja) 成形用金型装置
JP2000141427A (ja) 射出成形金型
JP2003245947A (ja) 成形用金型装置
JPH06305746A (ja) 光学ガラスレンズ用成形型
JP2002192576A (ja) 光ディスク成形用金型装置およびその調整方法
JPH0716883A (ja) 射出成形の樹脂充填量制御方法、及びそれを実施する為の樹脂充填量制御装置
JP2000202872A (ja) サイドゲ―ト式ホットランナ金型装置におけるゲ―ト切断装置
JP2003154565A (ja) 光ディスク基板の製造方法
JP2001250283A (ja) 情報記録媒体の基板成形方法及び成形装置
JP2005028782A (ja) 樹脂基板の製造方法及び樹脂基板用射出成形装置
JP2004009392A (ja) 情報記録ディスク用基板の成形用金型、成形方法及び情報記録ディスク用基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006545132

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11629906

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580030968.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806968

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11629906

Country of ref document: US