WO2006054548A1 - 燃料電池発電システムとその停止保管方法、停止保管プログラム - Google Patents

燃料電池発電システムとその停止保管方法、停止保管プログラム Download PDF

Info

Publication number
WO2006054548A1
WO2006054548A1 PCT/JP2005/020936 JP2005020936W WO2006054548A1 WO 2006054548 A1 WO2006054548 A1 WO 2006054548A1 JP 2005020936 W JP2005020936 W JP 2005020936W WO 2006054548 A1 WO2006054548 A1 WO 2006054548A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
power generation
fuel cell
oxidant
electrode
Prior art date
Application number
PCT/JP2005/020936
Other languages
English (en)
French (fr)
Inventor
Hiroshi Chizawa
Yasuji Ogami
Original Assignee
Toshiba Fuel Cell Power Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corporation filed Critical Toshiba Fuel Cell Power Systems Corporation
Priority to US11/719,546 priority Critical patent/US8173314B2/en
Priority to DE112005002853T priority patent/DE112005002853B4/de
Publication of WO2006054548A1 publication Critical patent/WO2006054548A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04917Current of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates fuel by an electrochemical reaction by supplying fuel and an oxidizing agent to a fuel cell stack configured by stacking a plurality of unit cells, and stops when the power generation is stopped. It relates to the power generation stop storage technology for maintaining and managing the state.
  • a fuel cell power generation system supplies fuel such as hydrogen and an oxidant such as air to a fuel cell main body and causes them to react electrochemically, thereby directly converting the chemical energy of the fuel directly into electrical energy.
  • This is a power generation device that converts and takes it out.
  • This fuel cell power generation system is characterized by high efficiency and environmental friendliness despite its relatively small size.
  • it can be applied as a cogeneration system by collecting the heat generated by power generation as hot water or steam.
  • Such fuel cell bodies are classified into various types depending on the difference in electrolytes.
  • solid polymer fuel cells using a solid polymer electrolyte membrane as the electrolyte have low-temperature operability. It is suitable for use as a power source for small-sized cogeneration systems and electric vehicles with a view to general home use due to its characteristics such as high power density and the like. Expected.
  • This polymer electrolyte fuel cell power generation system produces a hydrogen-containing gas from hydrocarbon fuels typified by city gas, LPG, etc., taking a small-sized cogeneration system for general homes as an example. Reformers, fuel cell stacks that generate electromotive force by supplying hydrogen-containing gas produced by the reformers and air in the atmosphere to the fuel electrode and oxidant electrode, respectively, and electric energy generated in the fuel cell stack It is composed of an electric control device that supplies power to an external load, and a heat-utilizing system that collects heat generated by power generation.
  • the power generation efficiency is an index indicating the performance of the fuel cell power generation system.
  • the fuel cell stack that is actually responsible for the power generation function has a problem that the voltage decreases with time due to various factors associated with the operation, resulting in a decrease in power generation efficiency. There is. In other words, suppression of the voltage drop of the fuel cell stack over time is the most important point in providing a fuel cell power generation system with high power generation efficiency.
  • a fuel cell power generation system is generally operated by periodically starting and stopping in accordance with a user's power demand. Air is mixed into the fuel electrode and oxidizer electrode of the fuel cell from the outside during stopped storage with the supply of reactive gas stopped. If hydrogen-rich gas is supplied to the fuel electrode at start-up while oxygen is present at both the fuel electrode and the oxidant electrode, local degradation of the acid / oxidizer electrode catalyst will cause a voltage drop in the fuel cell stack. cause. Therefore, it is necessary to reduce the oxygen partial pressure of the oxidizer electrode in advance.
  • Patent Document 1 Patent 2004
  • Patent Document 2 JP-A-2002-93448
  • the present invention has been made to solve the above-described problems, and its purpose is to prevent the catalyst from deteriorating by suppressing an increase in the oxygen partial pressure inside the fuel cell stack over a long period of time. It is to provide a fuel cell power generation system, its suspended storage method, and a suspended storage program that can prevent the fuel cell performance from being degraded due to the suspension of power generation of the fuel cell power generation system.
  • the present invention provides a fuel cell with a hydrogen rich gas supplied to the fuel electrode after the oxidant supply line is closed in the process of stopping the power generation of the fuel cell power generation system.
  • the following reaction formula is obtained by flowing a direct current from the acid agent electrode through the external circuit to the fuel electrode until the cell voltage with respect to the electrode is higher than 1.2 V and less than 0. IV.
  • Such a hydrogen pump is implemented. With the hydrogen pump, hydrogen can be charged by moving from the fuel electrode to the oxidant electrode without maintaining the high potential of the fuel electrode. Enclosed hydrogen consumes oxygen mixed in from external force during stopped storage, increasing the oxygen partial pressure. The accompanying potential increase is suppressed.
  • Oxidizer electrode 2H + + 2e— ⁇ H
  • the stop storage method of the present invention includes a fuel cell stack configured by stacking a plurality of unit cells each having a fuel electrode and an oxidant electrode arranged with an electrolyte interposed therebetween, and a fuel and an oxidant in the fuel cell stack.
  • a fuel cell power generation system including a fuel supply line and an oxidant supply line for supplying the fuel cell, and a fuel discharge line and an oxidant discharge line for discharging the fuel and oxidant supplied to the fuel cell stack, respectively.
  • the method of stopping storage is characterized by performing the following operations during the power generation stoppage of the fuel cell power generation system.
  • an oxidant supply line closing operation for closing the oxidant supply line is performed. Then, with the oxidant supply line closed by this oxidant supply line closing operation, the oxidant is reduced as much as possible until the cell voltage with respect to the fuel electrode is higher than 1.2 V and less than 0.1 IV.
  • Direct current energization operation is performed to pass direct current to the fuel electrode via an external circuit.
  • the oxidant discharge line closing operation for closing the oxidant discharge line is performed after the start of the direct current energization operation.
  • the fuel discharge / supply line closing operation is performed to close the fuel discharge line and the fuel supply line.
  • stop storage program and the fuel cell power generation system of the present invention grasp the features of the above stop storage method from the viewpoint of the computer program and system.
  • the fuel-rich power generation system moves the hydrogen-rich gas supplied to the fuel electrode to the oxidant electrode electrochemically during the power generation stop process. Not only the electrode but also the oxidant electrode is filled with hydrogen-rich gas. Since the enclosed hydrogen consumes oxygen mixed from the outside during stop storage, it is possible to suppress an increase in the oxygen partial pressure of the fuel electrode and the oxidant electrode during stop storage.
  • the sintering of the catalyst by maintaining the high potential of the oxidizer electrode accompanying the increase in the partial pressure of oxygen during stopped storage causes the hydrogen rich gas to flow in a state where oxygen is mixed in both electrodes at the time of startup.
  • the catalyst deterioration of the oxidizer electrode seen when it is supplied can be suppressed, so the decrease in the effective catalyst surface area of the oxidizer electrode is prevented and the voltage drop in the fuel cell stack due to the decrease in the catalyst effective surface area is prevented. can do.
  • the hydrogen-rich gas supplied to the fuel electrode is electrochemically moved to the oxidant electrode without holding the high potential of the fuel electrode as in the case of performing electrolysis of moisture. Sintering associated with maintaining a high potential can be prevented.
  • the unit cell voltage with respect to the fuel electrode becomes higher than 1.2V and lower than 0.4V.
  • the oxidant flows as much as possible to the fuel electrode via an external circuit, the increase in the partial pressure of oxygen inside the fuel cell stack is suppressed over a long period of time, thereby preventing catalyst deterioration. It is possible to provide a fuel cell power generation system, its suspended storage method, and a suspended storage program that can prevent the fuel cell performance from being degraded due to the suspension and storage of power generation.
  • a fuel cell power generation system that implements the suspended storage method and the suspended storage program is configured by stacking a plurality of unit cells each having a fuel electrode and an oxidant electrode arranged with an electrolyte interposed therebetween.
  • the fuel discharge line, the normal load operation mode in which the electric energy obtained in the fuel cell stack is supplied to the external load, and the fuel from the oxidizer electrode via the external circuit when there is no electromotive force in the fuel cell stack An electric control unit having a current source mode in which a direct current flows through the poles; and the fuel supply line and the oxidant supply line; System control means for controlling the control means, and by this system control means, the oxidant supply line is closed in the power generation stop process, and the electric control means is closed in the power generation stop process.
  • the load operation mode is switched to the current source mode, and direct current is passed to the fuel electrode via the external circuit as much as possible in the oxidizer, and the unit cell voltage with respect to the fuel electrode is higher than -1.2V.
  • the acid discharge line is closed after the time when the electric control means switches to the current source mode.
  • the fuel discharge line and the fuel supply line are characterized in that they are closed after the time point when the electric control means stops operating from the current source mode.
  • the system control means in the fuel cell power generation system includes a memory that stores and saves an operation sequence program in advance, and a CPU that reads out the sequence program and issues a control command via the input / output unit.
  • a reformer provided in the fuel supply line;
  • an air blower provided in the oxidant supply line, and the reformer and the air blower are controlled by the system controller to supply the reformed gas (hydrogen) as fuel and the air as the oxidant To control.
  • FIG. 1 is a configuration diagram showing a fuel cell power generation system according to a first embodiment to which the present invention is applied.
  • FIG. 2 is a flowchart showing a power generation stop operation procedure in the stop storage method of the fuel cell power generation system according to the first embodiment.
  • FIG. 3 is a flowchart showing a power generation start operation procedure in the stopped storage method of the first embodiment.
  • FIG. 4 is a timing chart showing a power generation stop operation in the stop storage method of the first embodiment.
  • FIG. 5 is a diagram showing the effect of the stopped storage method of the first embodiment, and the number of start / stop times during the cycle test and the effectiveness of the catalyst of the oxidizer electrode for the fuel cell power generation system of the first embodiment and the comparative example.
  • the graph which shows the relationship with a surface area ratio.
  • FIG. 6 is a diagram showing the effect of the stopped storage method of the first embodiment, and shows the fuel cell power generation system of the first embodiment and the comparative example with respect to the initial value of the effective electrode catalyst effective surface area after the cycle test. A graph showing the ratio.
  • FIG. 7 is a flowchart showing a power generation stop operation procedure in a stop storage method for a fuel cell power generation system according to a modification of the first embodiment to which the present invention is applied.
  • FIG. 8 is a timing chart showing power generation stopping operation in the stopped storage method of the modified example.
  • FIG. 9 is a flowchart showing a power generation stop operation procedure in the stop storage method of the fuel cell power generation system according to still another modification of the first embodiment of the present invention and its modification.
  • FIG. 10 is a timing chart showing the power generation stop operation in the stopped storage method of the other modified example.
  • FIG. 11 is a configuration diagram showing a fuel cell power generation system according to a second embodiment to which the present invention is applied.
  • FIG. 12 is a configuration diagram showing a fuel cell power generation system according to a third embodiment to which the present invention is applied.
  • FIG. 13 is a flow chart showing a power generation stop operation procedure in the stop storage method of the third embodiment.
  • FIG. 14 is a timing chart showing a power generation stop operation in the stop storage method of the third embodiment.
  • FIG. 15 is a configuration diagram showing a fuel cell power generation system according to a fourth embodiment to which the present invention is applied.
  • FIG. 16 is a flowchart showing a hydrogen replenishment operation procedure during stop storage in the stop storage method of the fourth embodiment.
  • FIG. 17 is a configuration diagram showing a fuel cell power generation system according to a fifth embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a fuel cell power generation system according to a first embodiment to which the present invention is applied.
  • the solid line connecting the blocks indicates the connection diagram of the gas piping
  • the broken line or chain line indicates the connection diagram of the electrical wiring.
  • the fuel cell power generation system of the first embodiment also includes a fuel cell stack 1, a reformer 2, an electric controller 3, and a force.
  • the fuel cell stack 1 is actually configured by stacking a plurality of unit cells having a fuel electrode and an oxidant electrode arranged with an electrolyte interposed therebetween. From this, it is shown that the fuel cell stack 1 is composed of the fuel electrode 1a and the oxidant electrode lb.
  • the reformed gas obtained by steam reforming the city gas by the reformer 2 is supplied to the fuel electrode la of the fuel cell stack 1 through the fuel supply line 11 and discharged through the fuel discharge line 12. .
  • the oxidant electrode lb is supplied from an air blower 4 through an aerodynamic oxidant supply line 13 and discharged through an oxidant discharge line 14. Then, the electric energy obtained by the fuel cell stack 1 is supplied to an external load 5 such as a motor by the electric control device 3.
  • the electric control device 3 is in a state where there is no electromotive force in the fuel cell stack 1 in addition to the normal load operation mode in which the electric energy obtained in the fuel cell stack 1 is supplied to the external load 5. It has a current source mode that allows a direct current to flow from the oxidizer electrode lb to the fuel electrode la via the electric control device 3 and an external circuit including the external power source 200.
  • the system control device 100 issues a control command for the reformed gas amount to the reformer, and the reformed gas amount corresponding to the magnitude of the direct current is provided to the fuel electrode la.
  • valves 15 to 18 for sealing the fuel cell stack 1 are provided in the respective lines 11 to 14 for supplying and discharging the reformed gas and air to the fuel cell stack 1. ing. That is, a fuel electrode inlet valve 15 for closing the fuel supply line 11 is provided at the inlet of the fuel electrode la, and a fuel electrode outlet valve 16 for closing the fuel discharge line 12 is provided at the outlet of the fuel electrode la. ing. Similarly, an oxidant electrode inlet valve 17 for closing the oxidant supply line 13 is provided at the inlet of the oxidant electrode lb, and an oxidant electrode for closing the oxidant discharge line 14 is provided at the outlet of the oxidant electrode lb. An outlet valve 18 is provided.
  • each part of the fuel cell power generation system as described above is controlled by a control command from the system control device 100. That is, the start and stop of the mode switching of the electric control device 3 is performed by a control command from the system control device 100.
  • the reformer 2, the air blower 4, and the four valves 15 to 18 are controlled by a control command from the system controller 100 to be started, stopped, or opened / closed.
  • the system control device 100 includes a CPU 101, a memory 102, and an input / output unit 103.
  • the CPU 101 reads out the sequence program from the memory 102 in which the operation sequence program is stored and stored in advance, and passes through the input / output unit 103 based on the read sequence program.
  • Control commands such as opening / closing of valves, blower output control, reformer control, and operation mode switching of electric control units.
  • the A one-dot chain line in the figure indicates a signal such as a control command exchanged between the system controller 100 and each unit.
  • system control device 100 is specifically realized by a microcomputer storing a program specially designed for suspended storage according to the present invention.
  • FIG. 2 is a flowchart showing a power generation stop operation procedure in the stop storage method of the fuel cell power generation system of the present embodiment.
  • the air supply from the air pro 4 to the oxidizer electrode lb is stopped.
  • the oxidant electrode inlet valve 17 provided in the oxidant supply line 13 is closed (S102), and the load operation mode is continued by the external power source 200 of the external circuit including the electric control device 3 (S103).
  • the duration of this load operation mode is the period until the cell voltage (average cell voltage of the fuel cell stack 1) with reference to the fuel electrode la drops to the preset mode switching voltage Vo (NO in S104). It is.
  • the mode switching voltage Vo 0.IV.
  • the operation mode of the electric control device 3 is switched from the load operation mode to the current source mode. Then, an operation of flowing a direct current from the oxidizer electrode lb to the fuel electrode la via an external circuit including the electric control device 3 is performed (S105).
  • the duration of this current source mode is the time until the preset holding time Th elapses after the cell voltage with respect to the fuel electrode la drops to a value higher than 1.2 V and lower than 0. IV. (NO in S 106).
  • the holding time Th 120 seconds.
  • FIG. 3 is a flowchart showing a power generation start-up operation procedure in the stop storage method of the fuel cell power generation system of the present embodiment.
  • the fuel electrode inlet valve 15 provided in the fuel supply line 11 and the fuel electrode outlet provided in the fuel discharge line 12
  • the oxidant electrode inlet valve 17 provided in the oxidant supply line 13 and the oxidant discharge
  • the oxidant electrode outlet valve 18 provided in the line 14 is opened (S203), and the supply of air from the air blower 4 to the oxidant electrode lb is started (S204).
  • FIG. 4 is a timing chart showing the power generation stop operation in the fuel cell power generation system stop storage method of the present embodiment as described above, the timing of control commands from the system control device 100 to each part of the system, and the fuel cell It shows the change in the average cell voltage of stack 1 over time.
  • the operation of the fuel cell power generation system stop storage method of the present embodiment will be described with reference to FIG.
  • the electric control device 3 In the state where there is no electromotive force in the fuel cell stack 1, the electric control device 3 is When switching from the load operation mode to the current source mode and continuing the operation of flowing a direct current from the oxidizer electrode lb to the fuel electrode la via an external circuit, it was caused by oxidation of hydrogen supplied to the fuel electrode la. The proton moves to the oxidizer electrode lb, and hydrogen is generated by the reduction of the proton at the oxidizer electrode lb. Therefore, both the fuel electrode la and the oxidizer electrode lb are filled with hydrogen-rich gas.
  • the average cell voltage of the fuel cell stack 1 at this time is a voltage that is lower than the equivalent of the overvoltage by less than 0.4, but in this embodiment, this overvoltage equivalent is at least less than 1.2V.
  • this reaction differs from the hydrogen generation by water electrolysis using water as a starting material. It becomes a form.
  • the amount of reformed gas supplied to the fuel electrode la is determined by the magnitude of the direct current, catalyst corrosion due to fuel depletion of the fuel electrode la can be prevented.
  • the valves 15 to 18 provided at the inlets and outlets of the oxidant electrode lb and the fuel electrode la are closed, so that the fuel electrode la and the oxidant electrode lb of the fuel cell stack 1 are sealed in a state filled with hydrogen-rich gas.
  • the hydrogen-rich gas supplied to the fuel electrode la is electrochemically moved to the oxidant electrode lb, so that not only the fuel electrode la but also the oxidant electrode lb is filled with the hydrogen-rich gas.
  • This encapsulated hydrogen consumes oxygen mixed in by external force during stop storage, so that an increase in the oxygen partial pressure of the fuel electrode la and the oxidant electrode lb during stop storage can be suppressed.
  • the symbol P indicates the upper limit of the fuel electrode pressure or the total of the fuel electrode pressure and the oxidant electrode pressure.
  • FIG. 5 and FIG. 6 are diagrams showing the effects of the fuel cell power generation system stop storage method of the present embodiment as described above.
  • the effects of the fuel cell power generation system of this embodiment will be described with reference to FIG. 5 and FIG.
  • FIG. 5 shows the fuel cell power generation system of this embodiment and Comparative Example 1! /, Cycle
  • This graph shows the relationship between the number of start / stops during the test and the effective surface area ratio of the oxidizer electrode. Specifically, it is a start / stop cycle with 12 hours of power generation and 12 hours of stop storage as one cycle. The change in the effective surface area of the oxidant electrode catalyst constituting the fuel cell stack 1 after 60 runs (initial value: 100%) is shown.
  • FIG. 6 is a graph showing the ratio of the effective surface area of the fuel electrode catalyst after the cycle test to the initial value (100%) for the fuel cell power generation system of this embodiment and Comparative Example 2. is there. In this cycle test, purging with an inert gas such as nitrogen before and after battery start-up was omitted.
  • Comparative Example 1 and Comparative Example 2 shown in FIG. 5 and FIG. 6 are systems having the configuration shown in FIG. 1, as in the fuel cell power generation system of the present embodiment. Except for the power generation stop operation procedure, the conditions are the same as those in the present embodiment.
  • Comparative Example 2 shown in FIG. 6 when the fuel cell power generation system is in a power generation stop operation, the reformed gas is supplied to the fuel electrode la, and the fuel electrode la is connected to the oxidant electrode lb. 1. Apply a DC voltage to 120 V for 120 seconds to electrolyze the water remaining in the electrode and fill the oxidant electrode lb with hydrogen, and then the inlet / outlet of the fuel electrode la and the oxidant electrode lb The valve 15 to 18 provided in is closed, and the fuel cell stack is sealed and stored in another conventional stopped storage method.
  • the reduction in the effective catalyst surface area accompanying the catalyst deterioration of the oxidant electrode as seen in Comparative Example 1 is improved. That is, according to the stopped storage method of the fuel cell power generation system of the present embodiment, the oxygen mixed from the outside during the stopped storage is consumed not only by the fuel electrode but also by the hydrogen preliminarily enclosed in the oxidizer electrode. It is possible to suppress an increase in oxygen partial pressure during stopped storage.
  • the sintering of the catalyst by maintaining the high potential of the oxidizer electrode accompanying the increase in the oxygen partial pressure during stop-storage, the hydrogen-rich gas in a state where oxygen is mixed in both electrodes at the time of startup.
  • the catalyst deterioration of the oxidizer electrode seen when it is supplied can be suppressed, so the decrease in the effective catalyst surface area of the oxidizer electrode is prevented and the voltage drop in the fuel cell stack due to the decrease in the catalyst effective surface area is prevented. can do.
  • the reduction in the effective catalyst surface area accompanying the catalyst deterioration of the fuel electrode as seen in Comparative Example 2 is improved. That is, according to the stopped storage method of the fuel cell power generation system of this embodiment, the high potential holding of the fuel electrode as in the case of performing the electrolysis of water is performed during the operation of filling the oxidizer electrode with hydrogen. Without being accompanied, the hydrogen-rich gas supplied to the fuel electrode can be electrochemically moved to the oxidant electrode to prevent sintering associated with holding the high potential of the fuel electrode. It is particularly effective in the system that has been applied.
  • a variation 1 of the first embodiment to which the present invention is applied is a configuration in which the configuration of the fuel cell power generation system is the same as that of the first embodiment (FIG. 1), and only the suspension storage method is changed. is there.
  • FIG. 7 is a flowchart showing the power generation stop operation procedure in the stop storage method of this modification. As shown in FIG. 7, the power generation stop operation procedure of the present modification is obtained by changing a part of the power generation stop operation procedure in the first embodiment shown in FIG.
  • the first point is that the oxidant electrode outlet valve 18 of the oxidant discharge line 14 is closed during the duration of the current source mode.
  • the cell voltage relative to the fuel electrode la is higher than -1.2V and 0.
  • the oxidant electrode outlet valve 18 is closed (S108), and then However, the electric current source mode is continued, and when the preset second holding time Th2 has elapsed (YES in S132), the electric control device 3 is stopped (S107).
  • the power generation starting operation procedure of this modification is the same as that of the first embodiment, and is a procedure as shown in FIG.
  • FIG. 8 is a timing chart showing the power generation stop operation in the stop storage method of the fuel cell power generation system of this modification as described above.
  • the CPU 101 power of the system control device 100 is connected via the input / output unit 103.
  • the changes in the fuel electrode pressure and oxidant electrode pressure over time are shown.
  • FIG. 8 the operation of the fuel cell power generation system stop storage method of the present embodiment will be described.
  • the inside of the fuel cell stack is pressurized and sealed in advance.
  • the temperature of the fuel cell stack decreases, it is possible to prevent the negative pressure from being reduced due to the decrease in volume caused by the condensation of water vapor, and to prevent air from entering the fuel cell stack external force.
  • FIG. 9 is a flowchart showing the power generation stop operation procedure in the stop storage method of the second modification.
  • the power generation stop operation procedure of Modification 2 is a partial modification of the power generation stop operation procedure of First Modification 1 shown in FIG. 18 is closed (S108), and the current source mode is continued, and then only the judgment condition for stopping the electric control device 3 is different.
  • the power generation stop operation procedure other than this part is the same as the power generation stop operation procedure of Modification 1. Further, the power generation starting operation procedure of the second modification is the same as that of the first embodiment and the first modification, and is a procedure as shown in FIG. [0065] [Action 'effect]
  • FIG. 10 is a timing chart showing the power generation stop operation in the fuel cell power generation system stop storage method of the second modification as described above.
  • the CPU 101 of the system controller 100 is connected to the input / output unit.
  • the change in the fuel electrode pressure and the acid agent electrode pressure over time is reflected by the timing of the control command to each part of the system via 103 and the change in the average cell voltage of the fuel cell stack 1 over time. Is shown.
  • the suspended storage method of the present modification 2 in addition to obtaining the same effect as that of the modification 1, the average cell voltage of the fuel cell stack is monitored.
  • the pressure of the oxidizer electrode can be detected, so that, as in the third embodiment to be described later, pressure management is easy, and the effect of being particularly effective when the maximum allowable value of the internal pressure of the fuel cell is low is obtained. It is done.
  • the system components can be simplified by the amount that the pressure gauge can be omitted as compared with the third embodiment.
  • FIG. 11 is a configuration diagram showing a fuel cell power generation system according to a second embodiment to which the present invention is applied.
  • the fuel cell power generation system according to the present embodiment is the same as that of the first embodiment except that the fuel electrode outlet valve 16 provided in the fuel discharge line 12 and the oxidant provided in the oxidant discharge line 14 are used.
  • Combustors 21 and 22 are provided downstream of the pole outlet valve 18, respectively, and a heat exchanger 23 that uses the heat generated by the combustor 21 to maintain the temperature of the reformer 2 is provided.
  • the combustor 21 provided in the fuel discharge line 12 is supplied with air that has been adjusted to the combustion range together with unreacted hydrogen discharged from the fuel electrode la, and is obtained by combustion in the combustor 21.
  • the generated heat is used by the heat exchanger 23 as a heat source for maintaining the temperature of the reformer 2.
  • the combustor 22 provided in the oxidant discharge line 14 is provided with an oxidation catalyst that is brought into contact with air. Don't drain! Give it a function!
  • the electric control device 3 has a normal load operation mode in accordance with a command from the system control device. In addition to the function similar to that of the electric control device 3 in the first embodiment for switching between the current mode and the current source mode, it further has a function of controlling the DC current value according to the temperature of the reforming device 2. . Since other configurations are the same as those of the fuel cell power generation system according to the first embodiment, the description thereof is omitted.
  • the power generation stop operation procedure and the power generation start operation procedure in the fuel cell power generation system of the present embodiment are the same as those in the first embodiment, and the procedures are as shown in FIGS.
  • the fuel exhaust gas discharged from the fuel electrode la is returned to the combustor 21, and the hydrogen residual gas in the fuel exhaust gas is returned.
  • the heat generated by this combustion is used as a heat source for the reformer 2. Therefore, if the amount of residual hydrogen gas is large, the amount of heat generated in the combustor 21 increases, and the temperature of the reformer 2 rises.
  • FIG. 12 is a configuration diagram showing a fuel cell power generation system according to a third embodiment to which the present invention is applied.
  • the fuel cell power generation system according to the present embodiment has the oxidant electrode upstream of the oxidant electrode outlet valve 18 in the oxidant discharge line 14 in the configurations of the first embodiment and the modification 1 thereof.
  • a pressure gauge 41 that measures the pressure in lb is provided. Since other configurations are the same as those of the fuel cell power generation system according to the first embodiment and the first modification thereof, description thereof is omitted.
  • FIG. 13 is a flowchart showing a power generation stop operation procedure in the stop storage method of the fuel cell power generation system according to this embodiment.
  • the power generation stop operation procedure of this embodiment is a modification of part of the power generation stop operation procedure in Modification 1 of the first embodiment shown in FIG. Only the judgment conditions for stopping the electric control device 3 after closing the pole roll 18 are closed (S108) and continuing the current source mode.
  • the force gauge 41 measures the force. It is determined whether or not the pressure value of the oxidizer electrode lb has reached the preset set pressure value Po (S141). When the set pressure value Po is reached (YES in S141), the electric control device 3 is stopped (S107).
  • the set pressure value Po 50 kPa.
  • the power generation stop operation procedure other than this part is the same as the power generation stop operation procedure of Modification 1 of the first embodiment. Further, the power generation starting operation procedure of the present embodiment is the same as that of the first embodiment and its modification example 1, and is a procedure as shown in FIG.
  • FIG. 14 is a timing chart showing the power generation stop operation in the fuel cell power generation system stop storage method of the present embodiment as described above.
  • the CPU 101 of the system control device 100 is also connected to each part of the system via the input / output unit 103.
  • the time variation of the fuel electrode pressure and the oxidant electrode pressure is shown.
  • the pressure of the oxidizer electrode is directly monitored. Therefore, pressure management is easy, and it is particularly effective when the maximum allowable value of the internal pressure of the fuel cell is low.
  • FIG. 15 is a configuration diagram showing a fuel cell power generation system according to a fourth embodiment to which the present invention is applied.
  • a hydrogen storage tank 61 is provided upstream of the fuel electrode inlet valve 15 in the fuel supply line 11 in comparison with the configuration of the first embodiment. Is. Since other configurations are the same as those of the fuel cell power generation system according to the first embodiment, the description thereof is omitted.
  • the power generation stop operation procedure and the power generation start operation procedure of this embodiment are the same as those of the first embodiment, and are procedures as shown in FIGS. 2 and 3, respectively.
  • FIG. 16 is a flowchart showing a hydrogen replenishment operation procedure during stop storage in the stop storage method of the fuel cell power generation system of this embodiment.
  • the fuel electrode inlet valve 15 is opened and hydrogen supply from the hydrogen storage tank 61 to the fuel electrode la is started ( After S301), the operation mode of the electric control device 3 is set to the current source mode, and an operation of flowing a direct current from the oxidizer electrode to the fuel electrode via the external circuit is started (S302).
  • the cell voltage with respect to the fuel electrode la decreases until it is higher than -1.2V and lower than 0.4V.
  • the electric control device 3 is stopped (S304) and the fuel electrode inlet valve 15 is closed (S304) to complete the hydrogen supply operation. To do.
  • the hydrogen supply operation as described above is performed at predetermined time intervals, for example, every 12 hours.
  • the operation of the present embodiment as described above is as follows. That is, immediately after the power generation stop operation is completed, the hydrogen partial pressure gradually decreases as the fuel electrode la and the oxidant electrode lb are sealed with hydrogen-rich gas. In contrast, in this embodiment, hydrogen is pressurized and supplied from the hydrogen storage tank 61 to the fuel electrode lb by opening the fuel electrode inlet valve 15 every 12 hours. In addition, when the average cell voltage of the fuel cell stack 1 is less than 0. IV, an operation is performed to pass a direct current from the oxidant electrode 1 b to the fuel electrode la via the external circuit, thereby Hydrogen moves to the pole lb. That is, by the hydrogen replenishment operation described above, the hydrogen partial pressure can be increased in both the fuel electrode la and the oxidant electrode lb during stopped storage.
  • the hydrogen partial pressure that has decreased due to the consumption of hydrogen due to oxygen contamination can be increased by periodically performing a hydrogen replenishment operation during stopped storage. Even when oxygen is mixed, oxygen is consumed because hydrogen remains sufficiently, and as a result, an increase in oxygen partial pressure can be more effectively prevented.
  • the increase in the oxygen partial pressure inside the fuel cell electrode can be more effectively prevented in this way, the high potential of the oxidizer electrode accompanying the increase in the oxygen partial pressure during stopped storage is maintained.
  • the catalyst is sintered, it is possible to suppress the deterioration of the oxidizer electrode catalyst that occurs when hydrogen-rich gas is supplied in a state in which oxygen is mixed in both electrodes at startup. Therefore, it is possible to more effectively prevent a decrease in the effective catalyst surface area of the oxidizer electrode, and it is possible to more effectively prevent a decrease in the voltage of the fuel cell stack due to the decrease in the effective catalyst surface area.
  • a fuel cell power generation system including the reformer 2 is described. As described above, a system configuration using only the hydrogen storage tank 61 without using the reformer 2 as shown in FIG. 17 is also possible. In the configuration of the fifth embodiment, the same effect as that of the fourth embodiment can be obtained. Since other configurations are the same as those of the fourth embodiment, description thereof is omitted.
  • the present invention is not limited to the above-described embodiments, and various other variations can be implemented within the scope of the present invention.
  • the holding time shown for the power generation stop operation procedure is merely an example and can be changed as appropriate. That is, according to the present invention, in the process of stopping the power generation of the fuel cell power generation system, after the oxidant supply line is closed, the cell voltage with respect to the fuel electrode is oxidized until the cell voltage is higher than 1.2V and lower than 0.4V. As long as a direct current flows from the agent electrode to the fuel electrode via the external circuit, the specific system configuration and power generation stop operation procedure can be changed as appropriate, and the same excellent effects can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
燃料電池発電システムとその停止保管方法、停止保管プログラム 技術分野
[0001] 本発明は、単電池を複数積層して構成される燃料電池スタックに燃料および酸ィ匕 剤をそれぞれ供給して電気化学反応により発電を行う燃料電池システム、とその発電 停止時に、停止状態を保ってそれを管理するための、発電停止保管技術に関するも のである。
背景技術
[0002] 燃料電池発電システムは、水素等の燃料と空気等の酸化剤を燃料電池本体に供 給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを電気エネ ルギ一に直接変換して外部へ取り出す発電装置である。この燃料電池発電システム は、比較的小型であるにもかかわらず、高効率で、環境性に優れるという特徴を持つ 。また、発電に伴う発熱を温水や蒸気として回収することにより、コージェネレーション システムとしての適用が可能である。
[0003] このような燃料電池本体は、電解質の違い等により様々なタイプのものに分類され るが、中でも、電解質に固体高分子電解質膜を用いた固体高分子形燃料電池は、 低温動作性や高出力密度等の特徴から、一般家庭用を視野に入れた小型コージェ ネレーシヨンシステムや電気自動車用の動力源としての用途に適しており、今後、巿 場規模が急激に拡大することが予想されて 、る。
[0004] この固体高分子形燃料電池発電システムは、一般家庭用の小型コージエネレーシ ヨンシステムを例にとると、都市ガスや LPG等に代表される炭化水素系燃料から水素 含有ガスを製造する改質装置、改質装置で製造された水素含有ガスと大気中の空 気を燃料極および酸化剤極にそれぞれ供給して起電力を発生させる燃料電池スタツ ク、燃料電池スタックで発生した電気エネルギーを外部負荷に供給する電気制御装 置、および発電に伴う発熱を回収する熱利用系等力 構成されている。
[0005] このように、燃料電池発電システムの運転には燃料の投入が前提となるため、燃料 投入量に対する発電量で定義される発電効率が高いほど、燃料使用量の削減が実 現でき、ユーザメリットが高くなる。したがって、発電効率が燃料電池発電システムの 性能を示す指標となって 、る。
[0006] この燃料電池発電システムにおいて、実際に発電機能を担っている燃料電池スタ ックには、運転に伴う様々な要因により経時的に電圧が低下し、結果として発電効率 が低下するという問題がある。すなわち、燃料電池スタックの経時的な電圧低下を抑 制することが、発電効率の高い燃料電池発電システムを提供する上で、最も重要な ポイントとなっている。
[0007] 燃料電池発電システムは、ユーザの電力需要に応じて定期的に起動停止して運用 するのが一般的である。反応ガスの供給停止を伴う停止保管時には燃料電池の燃 料極と酸化剤極に外部から空気が混入する。燃料極と酸化剤極の両極に酸素が存 在する状態のまま、起動時に燃料極に水素リッチガスを供給すると、局所的に酸ィ匕 剤極触媒の劣化が生じ、燃料電池スタックの電圧低下を引き起こす。したがって、少 なくとも酸化剤極の酸素分圧を予め低減させておく必要がある。
[0008] 酸化剤極の酸素分圧低減方法としては、燃料電池発電システムの起動前に窒素 等で置換する方法や、燃料供給時に固定負荷を接続して力ソードの残存酸素を消 費する方法等が知られている。また、燃料電池システムの停止保管時に酸化剤極を 酸素雰囲気に保持すると、酸化剤極の高電位保持に起因する触媒のシンタリングや 燃料極への酸素の透過による電解質膜の劣化が生じるため、停止保管時にも、前記 方法により、酸化剤極を還元雰囲気にしておくことが好ましい。
[0009] 現状では、例えば、発電停止時に窒素パージ等により酸化剤極の酸素分圧を低減 させた後、燃料電池を密封する方法が広く採用されている (例えば、特許文献 1 :特 開 2004— 6166参照)。また、燃料電池に外部電源を接続して、水分を電気分解し て酸化剤極に水素含有ガスを充填させた後、燃料電池を密封することにより、窒素パ ージによる方法で困難であった酸化剤極内部の残留酸素を完全に除去することが可 能となる(例えば、特許文献 2:特開 2002— 93448参照)。
[0010] し力しながら、上述したような従来の燃料電池発電システムの停止保管方法には、 次のような問題がある。
[0011] まず、特許文献 1に記載の方法にぉ 、ては、シール材の経年劣化やシール機能の 限界等の問題から、停止保管時に外部力 微量の空気が徐々〖こ燃料電池内部に混 入してしまい、その結果、還元雰囲気に保持される時間が短くなり、長期停止に対応 できな 、と!/、う問題がある。
[0012] また、特許文献 2に記載の方法では、特許文献 1につ 、ての上記問題は改善され るものの、水分を電気分解して酸化剤極に水素を発生させるためには、燃料電池の 燃料極へ印加する電圧を少なくとも標準状態での平衡電位 1. 22V以上に設定する 必要があり、燃料極の高電位保持によって、触媒のシンタリングゃ担持体カーボンの 腐食が生じ、触媒が劣化するという問題がある。
[0013] さらに、燃料極触媒として、良好な CO耐性を示すことが知られている PtRu等の合 金触媒を使用する場合には、燃料極電位の上昇により、 Ru等の合金種の溶出が加 速され、 CO耐性が低下するという問題も生じる。
[0014] また、固体高分子形燃料電池にお!ヽては、電解質膜に所定量の水分を含水保持 させる必要があるため、停止保管時に水分を電気分解すると、水分の消費に伴う電 解質膜の含水率の低下によって、再起動後の燃料電池の性能が低下するという問 題がある。
[0015] 本発明は、上記課題を解決するためになされたものであり、その目的は、長期に亘 り燃料電池スタック内部の酸素分圧の上昇を抑制して、触媒の劣化を防止し、燃料 電池発電システムの発電停止、停止保管に伴う燃料電池性能の低下を防止可能な 、燃料電池発電システムとその停止保管方法、停止保管プログラムを提供することで ある。
発明の開示
[0016] 本発明は、上記のような目的を達成するために、燃料電池発電システムの発電停 止過程で、酸化剤供給ラインを閉止した後、燃料極に水素リッチガスを供給した状態 で、燃料極を基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満となるまで酸 ィ匕剤極から外部回路を経由して燃料極に直流電流を流すことにより、以下の反応式 で示すような水素ポンプを実施したものである。水素ポンプにより、燃料極の高電位 保持を伴わずに、水素を燃料極から酸化剤極へ移動させて充填する事ができる。封 入された水素は、停止保管時に外部力 混入した酸素を消費し、酸素分圧の上昇に 伴う電位上昇が抑制される。
燃料極 : H →2H+ + 2e—
2
酸化剤極 : 2H+ + 2e—→H
2
[0017] 本発明の停止保管方法は、電解質を挟んで配置した燃料極と酸化剤極とを有する 単電池を複数積層して構成される燃料電池スタックと、前記燃料電池スタックに燃料 および酸化剤をそれぞれ供給する燃料供給ラインおよび酸化剤供給ラインと、前記 燃料電池スタックへ供給された燃料および酸化剤をそれぞれ排出する燃料排出ライ ンおよび酸化剤排出ラインを備えた燃料電池発電システムの発電停止、停止保管を 行う方法において、燃料電池発電システムの発電停止過程で、次のような操作を行う ことを特徴としている。
[0018] すなわち、燃料電池発電システムの発電停止過程において、まず、酸化剤供給ラ インを閉止する酸化剤供給ライン閉止操作を行う。そして、この酸化剤供給ライン閉 止操作により酸化剤供給ラインを閉止した状態で、燃料極を基準とした単電池電圧 が一 1. 2Vより高くかつ 0. IV未満となるまで酸化剤極力ゝら外部回路を経由して燃料 極に直流電流を流す直流電流通電操作を行う。また、直流電流通電操作の開始時 点以降に、酸化剤排出ラインを閉止する酸化剤排出ライン閉止操作を行う。さらに、 直流電流通電操作の終了時点以降に、燃料排出ラインおよび燃料供給ラインを閉 止する燃料排出 ·供給ライン閉止操作を行う。
[0019] また、本発明の停止保管プログラムおよび燃料電池発電システムは、上記の停止 保管方法の特徴をコンピュータプログラムおよびシステムの観点力 把握したもので ある。
[0020] 以上のような特徴を有する本発明によれば、燃料電池発電システムの発電停止過 程において、燃料極に供給した水素リッチガスを電気化学的に酸化剤極に移動させ ることにより、燃料極だけでなく酸化剤極にも水素リッチガスが充填される。この封入 された水素によって、停止保管時に外部から混入した酸素が消費されるので、停止 保管時における燃料極と酸化剤極の酸素分圧の上昇を抑制することができる。
[0021] したがって、停止保管時における酸素分圧の上昇に伴う酸化剤極の高電位保持に よる触媒のシンタリングゃ、起動時に両極に酸素が混入した状態で水素リッチガスを 供給したときに見られる酸化剤極の触媒劣化を抑制することができるので、酸化剤極 の触媒有効表面積の低下を防止し、触媒有効表面積の低下に起因する燃料電池ス タックの電圧低下を防止することができる。
[0022] また、水分の電気分解を行う場合のような燃料極の高電位保持を伴わずに、燃料 極に供給した水素リッチガスを電気化学的に酸化剤極に移動させることにより、燃料 極の高電位保持に伴うシンタリングを防止することができる。
[0023] 本発明によれば、燃料電池発電システムの発電停止過程で、酸化剤供給ラインを 閉止した後、燃料極を基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満とな るまで酸化剤極力 外部回路を経由して燃料極に直流電流を流すことにより、長期 に亘り燃料電池スタック内部の酸素分圧の上昇を抑制して、触媒の劣化を防止し、 燃料電池発電システムの発電停止、停止保管に伴う燃料電池性能の低下を防止可 能な、燃料電池発電システムとその停止保管方法、停止保管プログラムを提供するこ とがでさる。
また、本発明によれば、上記の停止保管方法、停止保管プログラムを実施する燃料 電池発電システムは、電解質を挟んで配置した燃料極と酸化剤極とを有する単電池 を複数積層して構成される燃料電池スタックと、燃料電池スタックに燃料および酸ィ匕 剤をそれぞれ供給する燃料供給ラインおよび酸化剤供給ラインと、燃料電池スタック へ供給された燃料および酸化剤をそれぞれ排出する燃料排出ラインおよび酸化剤 排出ラインと、燃料電池スタックで得られた電気エネルギーを外部負荷に供給する通 常の負荷運転モードと、燃料電池スタックの起電力がない状態において酸化剤極か ら外部回路を経由して燃料極に直流電流を流す電流源モードを有する電気制御手 段と、さらに、前記燃料供給ラインおよび酸化剤供給ラインと、前記電気制御手段を 制御するシステム制御手段を有しており、このシステム制御手段により、酸化剤供給 ラインは、発電停止過程で閉止し、電気制御手段は、発電停止過程で、酸化剤供給 ラインが閉止した状態で、負荷運転モードから電流源モードに切り替わって、酸化剤 極力ゝら外部回路を経由して燃料極に直流電流を流し、燃料極を基準とした単電池電 圧が— 1. 2Vより高くかつ 0. IV未満となった時点で動作を停止するようにし、酸ィ匕 剤排出ラインは、電気制御手段が前記電流源モードに切り替わった時点以降に閉止 し、また、燃料排出ラインおよび前記燃料供給ラインは、電気制御手段が電流源モー ドから動作を停止した時点以降に閉止するようにした、ことを特徴とする。
上記の燃料電池発電システムに於けるシステム制御手段は、動作シーケンスプログ ラムを予め記憶保存したメモリと、そのシーケンスプログラムを読み出し、入出力部を 介して制御指令を出す CPUを含む。また、燃料供給ラインに設けられた改質装置と
、酸化剤供給ラインに設けられた空気ブロワを更に有し、改質装置及び空気ブロワは 、システム制御装置により制御されて、燃料としての改質ガス (水素)と酸化剤としての 空気の供給量を制御する。
図面の簡単な説明
[図 1]本発明を適用した第 1の実施形態に係る燃料電池発電システムを示す構成図
[図 2]第 1の実施形態に係る燃料電池発電システムの停止保管方法における発電停 止操作手順を示すフローチャート。
[図 3]第 1の実施形態の停止保管方法における発電起動操作手順を示すフローチヤ ート。
[図 4]第 1の実施形態の停止保管方法における発電停止動作を示すタイミングチヤ一
[図 5]第 1の実施形態の停止保管方法による効果を示す図であり、第 1の実施形態の 燃料電池発電システムと比較例について、サイクル試験時の起動停止回数と酸化剤 極の触媒有効表面積比との関係を示すグラフ。
[図 6]第 1の実施形態の停止保管方法による効果を示す図であり、第 1の実施形態の 燃料電池発電システムと比較例について、サイクル試験後の燃料極触媒有効表面 積の初期値に対する比を示すグラフ。
[図 7]本発明を適用した第 1の実施形態の一変形例に係る燃料電池発電システムの 停止保管方法における発電停止操作手順を示すフローチャート。
[図 8]上記変形例の停止保管方法における発電停止動作を示すタイミングチャート。
[図 9]上記本発明の第 1実施例及びその一変形例のさらに他の変形例に係る燃料電 池発電システムの停止保管方法における発電停止操作手順を示すフローチャート。 [図 10]上記他の変形例の停止保管方法における発電停止動作を示すタイミングチヤ ート。
[図 11]本発明を適用した第 2の実施形態に係る燃料電池発電システムを示す構成図
[図 12]本発明を適用した第 3の実施形態に係る燃料電池発電システムを示す構成図
[図 13]上記第 3の実施形態の停止保管方法における発電停止操作手順を示すフロ ーテヤート。
[図 14]上記第 3の実施形態の停止保管方法における発電停止動作を示すタイミング チャート。
[図 15]本発明を適用した第 4の実施形態に係る燃料電池発電システムを示す構成図
[図 16]上記第 4の実施形態の停止保管方法における停止保管時の水素補給操作手 順を示すフローチャート。
[図 17]本発明の第 5の実施形態に係る燃料電池発電システムを示す構成図。
発明を実施するための最良の形態
[0025] 以下には、本発明を適用した実施形態について、図面を参照して具体的に説明す る。
[0026] [第 1の実施形態]
[構成]
図 1は、本発明を適用した第 1の実施形態に係る燃料電池発電システムを示す構 成図である。なお、図中において、ブロック間を接続する実線はガス配管の結線図、 破線又は鎖線は電気配線の結線図をそれぞれ示して ヽる。
[0027] 図 1に示すように、第 1の実施形態の燃料電池発電システムは、燃料電池スタック 1 、改質装置 2、電気制御装置 3、力も構成されている。なお、燃料電池スタック 1は、実 際には、電解質を挟んで配置した燃料極と酸化剤極とを有する単電池を複数積層し て構成されているが、図中では、簡略ィ匕の観点から、燃料電池スタック 1が、燃料極 1 aと酸化剤極 lbから構成されて 、るように示して 、る。 [0028] 燃料電池スタック 1の燃料極 laには、改質装置 2により都市ガスを水蒸気改質して 得た改質ガスが、燃料供給ライン 11を通じて供給され、燃料排出ライン 12を通じて 排出される。また、酸化剤極 lbには空気ブロワ 4からの空気力 酸化剤供給ライン 13 を通じて供給され、酸化剤排出ライン 14を通じて排出される。そして、燃料電池スタツ ク 1で得られた電気エネルギーは、電気制御装置 3により、例えばモータ等の外部負 荷 5へ供給される。
[0029] ここで、電気制御装置 3は、燃料電池スタック 1で得られた電気エネルギーを外部負 荷 5に供給する通常の負荷運転モードの他に、燃料電池スタック 1の起電力がない 状態において酸化剤極 lbからこの電気制御装置 3、外部電源 200を含む外部回路 を経由して燃料極 laへ直流電流を流すことができる電流源モードを有している。ここ で、システム制御装置 100は、改質装置に対して改質ガス量の制御指令を行い、直 流電流の大きさに応じた改質ガス量が燃料極 laに提供される。
[0030] また、燃料電池スタック 1に対して改質ガスおよび空気の供給'排出を行う各ライン 1 1〜14には、燃料電池スタック 1を密封するためのバルブ 15〜18がそれぞれ設けら れている。すなわち、燃料極 laの入口には、燃料供給ライン 11を閉止する燃料極入 口バルブ 15が設けられ、燃料極 laの出口には、燃料排出ライン 12を閉止する燃料 極出口バルブ 16が設けられている。同様に、酸化剤極 lbの入口には、酸化剤供給 ライン 13を閉止する酸化剤極入口バルブ 17が設けられ、酸化剤極 lbの出口には、 酸化剤排出ライン 14を閉止する酸化剤極出口バルブ 18が設けられている。
[0031] さらに、以上のような燃料電池発電システムの各部は、システム制御装置 100から の制御指令により制御されるようになっている。すなわち、電気制御装置 3のモード切 替ゃ起動'停止は、システム制御装置 100からの制御指令により行われる。同様に、 改質装置 2、空気ブロワ 4、および 4つのバルブ 15〜18についても、システム制御装 置 100からの制御指令により制御されて起動 '停止または開閉するようになっている。 即ち、システム制御装置 100は CPU101、メモリ 102、入出力部 103を含み、 CPU 101は、動作のシーケンスプログラムを予め記憶保存したメモリ 102からシーケンスプ ログラムを読み出し、それに基づき、入出力部 103を経由してバルブの開閉、ブロワ の出力制御、改質装置の制御、電気制御装置の運転モード切替等の制御指令を出 す。図中の一点鎖線は、システム制御装置 100と各部との間でやり取りされる制御指 令などの信号を示している。
[0032] なお、このようなシステム制御装置 100は、具体的には、本発明による停止保管用 に特ィ匕したプログラムを記憶させたマイコンにより実現される。
[0033] [発電停止操作手順]
図 2は、本実施形態の燃料電池発電システムの停止保管方法における発電停止操 作手順を示すフローチャートである。この図 2に示すように、システム制御装置 100よ り、燃料電池発電システムの発電中に発電停止指令がなされた場合には、空気プロ ヮ 4から酸化剤極 lbへの空気の供給を停止し (S101)、酸化剤供給ライン 13に設け た酸化剤極入口バルブ 17を閉止して(S102)、電気制御装置 3を含む外部回路の 外部電源 200により負荷運転モードを継続する(S103)。この負荷運転モードの継 続時間は、燃料極 laを基準とした単電池電圧 (燃料電池スタック 1の平均セル電圧) が予め設定されたモード切替電圧 Voに低下するまでの間(S104の NO)である。ここ では、一例として、モード切替電圧 Vo = 0. IVであるとする。
[0034] 次に、燃料極 laを基準とした単電池電圧が 0. IVまで低下した時点(S 104の YES )で、電気制御装置 3の運転モードを負荷運転モードから電流源モードに切り替えて 、酸化剤極 lbから電気制御装置 3を含む外部回路を経由して燃料極 laに直流電流 を流す操作を実施する(S 105)。この電流源モードの継続時間は、燃料極 laを基準 とした単電池電圧が、 1. 2Vより高くかつ 0. IV未満となるまで低下した後、予め設 定された保持時間 Thを経過するまでの間(S 106の NO)である。ここでは、一例とし て、保持時間 Th= 120秒間であるとする。
[0035] 続いて、燃料極 laを基準とした単電池電圧が、 1. 2Vより高くかつ 0. IV未満と なるまで低下した後、 120秒間経過した時点(S 106の YES)で、電気制御装置 3を 停止する(S107)。この後、酸化剤排出ライン 14に設けた酸化剤極出口バルブ 18を 閉止し (S 108)、改質装置 2から燃料極 laへの改質ガスの供給を停止する(S109) と共に、燃料供給ライン 11に設けた燃料極入口バルブ 15および燃料排出ライン 12 に設けた燃料極出口バルブ 16をそれぞれ閉止する(S110)ことにより、燃料電池ス タック 1を密封して、発電停止操作を完了する。この発電停止操作の結果、燃料電池 発電システムは、停止保管状態となる。
[0036] [発電起動操作手順]
図 3は、本実施形態の燃料電池発電システムの停止保管方法における発電起動操 作手順を示すフローチャートである。この図 3に示すように、燃料電池発電システムの 停止保管中に発電起動指令がなされた場合には、燃料供給ライン 11に設けた燃料 極入口バルブ 15および燃料排出ライン 12に設けた燃料極出口バルブ 16を開き(S2 01)、改質装置 2から燃料極 laへの改質ガスの供給を開始した (S202)後、酸化剤 供給ライン 13に設けた酸化剤極入口バルブ 17および酸化剤排出ライン 14に設けた 酸化剤極出口バルブ 18を開いて(S203)、空気ブロワ 4から酸化剤極 lbへの空気 の供給を開始する(S 204)。
[0037] そして、燃料極 laを基準とした単電池電圧が、予め設定された負荷運転開始電圧 Vsに到達した時点(S205の YES)で、電気制御装置 3を負荷運転モードに切り替え 、外部負荷 5に接続して発電を開始する(S206)ことにより、発電起動操作を完了す る。ここでは、一例として、負荷運転開始電圧 Vs = 0. 9Vであるとする。この発電起 動操作の結果、燃料電池発電システムは、通常の発電状態となる。
[0038] [作用]
図 4は、以上のような本実施形態の燃料電池発電システムの停止保管方法におけ る発電停止動作を示すタイミングチャートであり、システム制御装置 100からシステム 各部への制御指令のタイミング、および燃料電池スタック 1の平均セル電圧の時間的 な変化を示している。以下には、この図 4を参照して、本実施形態の燃料電池発電シ ステムの停止保管方法による作用につ 、て説明する。
[0039] 図 4に示すように、燃料電池スタック 1が発電状態にあるとき、すなわち、燃料極 la に水素リッチな改質ガス、酸化剤極 lbに空気をそれぞれ供給し、かつ、外部負荷 5 に対して電力を供給している発電状態において、発電停止状態に移行する際に、酸 ィ匕剤極 laへ供給する空気を停止すると、酸化剤極 lbにある残留酸素が消費される。 この結果、酸化剤極 lbの電位が燃料極 laの電位である水素基準電位近傍まで低下 し、燃料電池スタック 1の起電力は 0. IV付近まで低下する。
[0040] このように燃料電池スタック 1の起電力がない状態において、電気制御装置 3を負 荷運転モードから電流源モードに切り替え、外部回路を経由して酸化剤極 lbから燃 料極 laに直流電流を流す操作を継続すると、燃料極 laへ供給された水素の酸化〖こ より生じたプロトンが酸化剤極 lbへ移動し、酸化剤極 lbにおいてプロトンの還元によ り水素が生成するため、燃料極 laと酸化剤極 lbは共に水素リッチガスで満たされる
[0041] なお、このときの燃料電池スタック 1の平均セル電圧は、 0. IVより過電圧相当分だ け下回る電圧となるが、本実施形態においては、この過電圧相当分を、少なくとも 1. 2V未満、すなわち、燃料極基準とした場合の平均セル電圧が、少なくとも—1. 2Vを 上回るように直流電流を制御することにより、水を出発物質とした水分の電気分解に よる水素発生とは異なる反応形態となる。
[0042] ここでは、直流電流の大きさにより、燃料極 laへ供給する改質ガス量を決定してい るので、燃料極 laの燃料欠乏に起因する触媒腐食を防止できる。その後、酸化剤極 lbおよび燃料極 laの各出入口に設けたバルブ 15〜18を閉止することで、燃料電池 スタック 1の燃料極 laおよび酸化剤極 lbは水素リッチガスで充填された状態で密封 される。
[0043] すなわち、本実施形態の燃料電池発電システムにお!/ヽては、発電停止過程にお!、 て、水分の電気分解を行う場合のような燃料極 laの高電位保持を伴わずに、燃料極 laに供給した水素リッチガスを電気化学的に酸化剤極 lbに移動させることにより、燃 料極 laだけでなく酸化剤極 lbにも水素リッチガスが充填される。この封入された水素 によって、停止保管時に外部力 混入した酸素が消費されるので、停止保管時にお ける燃料極 laと酸化剤極 lbの酸素分圧の上昇を抑制することができる。尚、本図及 び以下の図面において、符号 Pは燃料極圧力、または、燃料極圧力と酸化剤極圧力 の計の上限値を示す。
[0044] [効果]
図 5、図 6は、以上のような本実施形態の燃料電池発電システムの停止保管方法に よる効果を示す図である。以下には、これらの図 5、図 6を参照して、本実施形態の燃 料電池発電システムの効果につ!、て説明する。
[0045] まず、図 5は、本実施形態の燃料電池発電システムと比較例 1につ!/、て、サイクル 試験時の起動停止回数と酸化剤極の触媒有効表面積比との関係をそれぞれ示すグ ラフであり、具体的には、 12時間の発電と 12時間の停止保管を 1サイクルとした起動 停止サイクルを 60回実施した場合の燃料電池スタック 1を構成する酸化剤極触媒の 有効表面積の変化 (初期値: 100%)を示して 、る。
[0046] また、図 6は、本実施形態の燃料電池発電システムと比較例 2につ ヽて、サイクル 試験後の燃料極触媒有効表面積の初期値(100%)に対する比をそれぞれ示すダラ フである。なお、当該サイクル試験においては、電池起動停止前後の窒素等の不活 性ガスによるパージは省略した。
[0047] ここで、図 5、図 6に示す比較例 1および比較例 2は、本実施形態の燃料電池発電 システムと同様に、図 1に示すような構成を有するシステムであり、以下に示すような 発電停止操作手順以外は、本実施形態と同一の条件としたものである。
[0048] まず、図 5に示す比較例 1は、燃料電池発電システムの発電停止操作時に、負荷 遮断後に酸化剤極 lbに対して窒素パージを実施して酸素分圧を十分に低下させた 後に燃料極 laおよび酸化剤極 lbの出入口に設けたバルブ 15〜18を閉止し、燃料 電池スタック 1を密封して保管するという従来の停止保管方法を採用したものである。
[0049] また、図 6に示す比較例 2においては、燃料電池発電システムの発電停止操作時 に、燃料極 laに改質ガスを供給した状態で、酸化剤極 lbに対して燃料極 laが 1. 8 Vとなるように直流電圧を 120秒間印加して、電極内に残留する水分を電気分解して 酸化剤極 lbに水素を充填させた後、燃料極 laおよび酸化剤極 lbの出入口に設け たバルブ 15〜18を閉止し、燃料電池スタックを密封して保管するという従来の別の 停止保管方法を採用したものである。
[0050] 図 5から明らかなように、本実施形態では、比較例 1でみられるような酸化剤極の触 媒劣化に伴う触媒有効表面積の低下が改善されている。すなわち、本実施形態の燃 料電池発電システムの停止保管方法によれば、停止保管時に外部から混入した酸 素が、燃料極だけでなく酸化剤極にも予め封入された水素によって消費されるため、 停止保管時の酸素分圧の上昇を抑制することができる。
[0051] したがって、停止保管時における酸素分圧の上昇に伴う酸化剤極の高電位保持に よる触媒のシンタリングゃ、起動時に両極に酸素が混入した状態で水素リッチガスを 供給したときに見られる酸化剤極の触媒劣化を抑制することができるので、酸化剤極 の触媒有効表面積の低下を防止し、触媒有効表面積の低下に起因する燃料電池ス タックの電圧低下を防止することができる。
[0052] さらに、図 6から明らかなように、本実施形態では、比較例 2でみられるような燃料極 の触媒劣化に伴う触媒有効表面積の低下が改善されている。すなわち、本実施形態 の燃料電池発電システムの停止保管方法によれば、酸化剤極に水素を充填する操 作にぉ 、て、水分の電気分解を行う場合のような燃料極の高電位保持を伴わずに、 燃料極に供給した水素リッチガスを電気化学的に酸化剤極に移動させることにより、 燃料極の高電位保持に伴うシンタリングを防止することができるため、耐 CO被毒対 策を施したシステムにお 、て特に有効である。
[変形例 1]
[構成]
本発明を適用した第 1の実施形態の一変形例 1は、燃料電池発電システムの構成 を、第 1の実施形態と同様の構成(図 1)とし、その停止保管方法のみを変更したもの である。
[0053] [発電停止操作'発電起動操作手順]
図 7は、本変形例の停止保管方法における発電停止操作手順を示すフローチヤ一 トである。この図 7に示すように、本変形例の発電停止操作手順は、図 2に示した第 1 の実施形態における発電停止操作手順の一部を変更したものである。
[0054] すなわち、本変形例にお!、て、燃料電池発電システムの発電中に発電停止指令が なされた場合に、酸化剤極 lbへの空気の供給を停止して酸化剤極入口バルブ 17を 閉止した後、電気制御装置 3の負荷運転モードを継続し、燃料極 laを基準とした単 電池電圧が 0. IVに低下した時点で電気制御装置 3を電流源モードに切り替えて燃 料極 laに直流電流を流すまでの一連の操作 (S101〜S105)は、第 1の実施形態の 発電停止操作手順と同様である。
[0055] 本変形例の発電停止操作手順にお!ヽては、この電流源モードの継続時間の間に、 酸化剤排出ライン 14の酸化剤極出口バルブ 18を閉止する点で、第 1の実施形態の 手順と異なる。すなわち、燃料極 laを基準とした単電池電圧が— 1. 2Vより高くかつ 0. IV未満となるまで低下した後、予め設定された第 1の保持時間 Thlを経過した時 点(S131の YES)で、酸化剤極出口バルブ 18を閉止し(S108)、さらに、この後も、 電流源モードを継続し、予め設定された第 2の保持時間 Th2を経過した時点(S132 の YES)で、電気制御装置 3を停止する(S107)。ここでは、一例として、第 1の保持 時間 Thl =60秒間、第 2の保持時間 Th2 = 60秒間、であるとする。
[0056] また、本変形例の発電停止操作手順においては、電気制御装置 3を停止した後に 、燃料極出口バルブ 16をまず閉止し (S133)、予め設定された第 3の保持時間 Th3 を経過した時点(S134の YES)で、燃料極 laへの改質ガスの供給を停止する(S10 9)と共に、燃料極入口バルブ 15を閉止する(S135)点でも、第 1の実施形態の手順 と異なる。ここでは、一例として、第 3の保持時間 Th3 = 5秒間であるとする。
[0057] なお、本変形例の発電起動操作手順は、第 1の実施形態と同様であり、図 3に示す ような手順である。
[0058] [作用]
図 8は、以上のような本変形例の燃料電池発電システムの停止保管方法における 発電停止動作を示すタイミングチヤ一トであり、システム制御装置 100の CPU 101力 ら入出力部 103を介してのシステム各部への制御指令のタイミング、および燃料電池 スタック 1の平均セル電圧の時間的な変化に加えて、燃料極圧力と酸化剤極圧力の 時間的な変化を示している。以下には、この図 8を参照して、本実施形態の燃料電池 発電システムの停止保管方法による作用につ 、て説明する。
[0059] 図 8に示すように、本変形例の発電停止操作においては、酸化剤極入口バルブ 17 を閉止した後に、外部電源 200を電源として電気制御装置 3の電流源モードを継続 して電流を流すことにより、継続的に酸化剤極 lbへの水素の移動が生じ、酸化剤極 lbの圧力が徐々に上昇する。また、燃料極 laについても、燃料極出口バルブ 16を 閉止した後に改質ガスの供給を停止すると共に燃料極入口バルブ 15を閉止すること によりカロ圧される。したがって、燃料電池スタック 1の発電停止操作完了時点では、燃 料極 laおよび酸化剤極 lbは水素リッチガスで加圧された状態で封入される。
[0060] [効果]
以上のような本変形例にぉ ヽては、予め燃料電池スタック内部を加圧して封入する ことにより、燃料電池スタックの温度が低下した場合にも、水蒸気の凝縮に伴う体積 の減少に起因する負圧保持を防ぎ、燃料電池スタック外部力 の空気の混入を防止 することができる。
[0061] したがって、本変形例 1によれば、燃料電池電極内部の酸素分圧の上昇をより効果 的に防止することができるため、停止保管時に酸素分圧の上昇に伴う高電位保持に よる触媒のシンタリングゃ、起動時に両極に酸素が混入した状態で水素リッチガスを 供給したときに見られる酸化剤極の触媒劣化をより効果的に抑制することができ、酸 ィ匕剤極の触媒有効表面積の低下に起因する燃料電池スタックの電圧低下をより効果 的に防止することが可能となる。
[変形例 2]
[構成]
上記の第 1の実施形態、およびその変形例 1の更なる変形例 2に於いては、その燃 料電池発電システムの構成を、それらと同様の構成(図 1)とし、その停止保管方法の みを変更したものである。
[0062] [発電停止操作'発電起動操作手順]
図 9は、本変形例 2の停止保管方法における発電停止操作手順を示すフローチヤ ートである。この図 9に示すように、本変形例 2の発電停止操作手順は、図 7に示した 第 1変形例 1における発電停止操作手順の一部を変更したものであり、酸化剤極出 口バルブ 18を閉止して(S 108)、電流源モードを継続した後に、電気制御装置 3を 停止する際の判断条件のみが異なる。
[0063] すなわち、変形例 1にお!/ヽては、予め設定された第 2の保持時間 Th2を経過したか 否かを判断した(S132) 1S 本変形例 2においては、燃料極 laを基準とした単電池 電圧が予め設定された下限電圧 VLまで低下したカゝ否かを判断し (S151)、下限電 圧 VLまで低下した時点(S 151の YES)で、電気制御装置 3を停止する(S 107)。こ こでは、一例として、下限電圧 VL=—0. 2Vであるとする。
[0064] この部分以外の発電停止操作手順は、変形例 1の発電停止操作手順と同様である 。また、本変形例 2の発電起動操作手順は、第 1実施形態、その変形例 1と同様であ り、図 3に示すような手順である。 [0065] [作用'効果]
図 10は、以上のような本変形例 2の燃料電池発電システムの停止保管方法におけ る発電停止動作を示すタイミングチャートであり、具体的には、システム制御装置 10 0の CPU101から入出力部 103を介してシステム各部への制御指令のタイミング、お よび燃料電池スタック 1の平均セル電圧の時間的な変ィ匕にカ卩えて、燃料極圧力と酸 ィ匕剤極圧力の時間的な変化を示している。
[0066] この図 10から明らかなように、本変形例 2の停止保管方法によれば、変形例 1と同 様の効果が得られることに加えて、燃料電池スタックの平均セル電圧をモニターする ことにより酸化剤極の圧力を検知できるため、後述する第 3実施形態と同様に、圧力 管理が容易であり、燃料電池の内圧の最大許容値が低い場合に特に有効であると いう効果が得られる。本変形例 2においては、さらに、第 3実施形態に比べて圧力計 を省略できる分だけ、システム構成機器の簡素化が可能となる。
[0067] [第 2の実施形態]
[構成]
図 11は、本発明を適用した第 2の実施形態に係る燃料電池発電システムを示す構 成図である。この図 11に示すように、本実施形態の燃料電池発電システムは、第 1の 実施形態の構成において、燃料排出ライン 12に設けた燃料極出口バルブ 16および 酸化剤排出ライン 14に設けた酸化剤極出口バルブ 18の下流に、燃焼器 21, 22を それぞれ設けると共に、燃焼器 21の発熱を改質装置 2の温度維持に利用する熱交 翻 23を設けたものである。
[0068] すなわち、燃料排出ライン 12に設けた燃焼器 21には、燃料極 laから排出された未 反応水素と共に燃焼範囲に調整された空気が供給され、燃焼器 21での燃焼により 得られた発熱は、熱交換器 23により、改質装置 2の温度維持のための熱源として利 用される。
また、酸化剤排出ライン 14に設けた燃焼器 22には、空気と接触させた酸化触媒を配 置することで、酸化剤極 lb力も水素リッチガスが排出された際にも、系外に可燃ガス を排出しな!、機能を持たせて!/、る。
[0069] また、電気制御装置 3には、システム制御装置の指令により、通常の負荷運転モー ドと電流源モードとを切り替えるという、第 1の実施形態における電気制御装置 3と同 様な機能に加えて、さらに、改質装置 2の温度により直流電流値を制御する機能を持 たせている。なお、他の構成は、第 1の実施形態に係る燃料電池発電システムと同様 であるのでその説明は省略する。
[0070] [発電停止操作'発電起動操作手順]
本実施形態の燃料電池発電システムにおける発電停止操作手順および発電起動 操作手順は、第 1の実施形態と同様であり、図 2、図 3に示すような手順である。
[0071] [作用'効果]
以上のような本実施形態の燃料電池発電システムによる作用 ·効果は次の通りであ る。
[0072] まず、本実施形態の燃料電池発電システムにお!/ヽては、発電停止操作中に、燃料 極 laから排出された燃料排ガスを燃焼器 21に戻し、燃料排ガス中の水素残ガスを 燃焼させることにより、この燃焼による発熱が、改質装置 2の熱源として利用される。し たがって、水素残ガス量が多いと、燃焼器 21で生じる発熱量が増大し、改質装置 2 の温度が上昇する。
[0073] ここで、電気制御装置 3が負荷運転モードにあるときには、直流電流値が増大する と、燃料極 laにおける水素の消費量が増大して、水素残ガス量が減少する。他方、 電気制御装置 3が電流源モードにあるときにも、直流電流値の増加により、水素の酸 ィ匕剤極 lbへの移動量の増大し、同様に水素残ガス量が減少する。すなわち、直流 電流値の増加によって、燃料排ガス中の水素残ガス量は減少する。そのため、改質 装置 2の温度が高い場合には、直流電流値を増加させることで、燃料排ガス中の水 素残ガス量の減少に伴い、燃焼器 21で生じる発熱量も減少し、改質装置 2の温度を 低下させることができる。
[0074] したがって、本実施形態によれば、第 1の実施形態と同様の効果が得られることに カロえて、さらに、改質装置の温度を適正範囲に制御することができ、改質装置の劣化 を防止することができるという効果が得られる。
[0075] また、電気制御装置 3が外部電源 200を電源として電流源モードに移行した後は、 酸化剤極 lbに水素が移動するため、この操作を継続すると、酸化剤極 lbの排ガス 中の水素濃度が徐々に上昇する。これに対して、本実施形態では、酸化剤極出口に も燃焼器 22が設けられているため、予め空気と接触させた燃焼器 22において水素 ガスを燃焼させ、排出ガス中の水素濃度を爆発限界未満に低下させることができる。 したがって、安全性に優れて!/ヽると!/、う効果も得られる。
[0076] [第 3の実施形態]
[構成]
図 12は、本発明を適用した第 3の実施形態に係る燃料電池発電システムを示す構 成図である。この図 12に示すように、本実施形態の燃料電池発電システムは、第 1の 実施形態及びその変形例 1の構成において、酸化剤排出ライン 14における酸化剤 極出口バルブ 18の上流に酸化剤極 lbの圧力を測定する圧力計 41を設けたもので ある。なお、他の構成は、第 1の実施形態及びその変形例 1に係る燃料電池発電シ ステムと同様であるのでその説明は省略する。
[0077] [発電停止操作'発電起動操作手順]
図 13は、本実施形態に係る燃料電池発電システムの停止保管方法における発電 停止操作手順を示すフローチャートである。この図 13に示すように、本実施形態の 発電停止操作手順は、図 7に示した第 1の実施形態の変形例 1における発電停止操 作手順の一部を変更したものであり、酸化剤極出ロノ レブ 18を閉止して(S108)、 電流源モードを継続した後に、電気制御装置 3を停止する際の判断条件のみが異な る。
[0078] すなわち、この変形例 1においては、予め設定された第 2の保持時間 Th2を経過し た力否かを判断した (S 132)が、本実施形態においては、圧力計 41により測定され た酸化剤極 lbの圧力値が、予め設定された設定圧力値 Poに到達したカゝ否かを判断 し (S141)、設定圧力値 Poに到達した時点(S141の YES)で、電気制御装置 3を停 止する(S107)。ここでは、一例として、設定圧力値 Po = 50kPaであるとする。
[0079] この部分以外の発電停止操作手順は、上記第 1実施形態の変形例 1の発電停止 操作手順と同様である。また、本実施形態の発電起動操作手順は、第 1の実施形態 及びその変形例 1と同様であり、図 3に示すような手順である。
[0080] [作用'効果] 図 14は、以上のような本実施形態の燃料電池発電システムの停止保管方法にお ける発電停止動作を示すタイミングチャートであり、システム制御装置 100の CPU10 1力も入出力部 103を介してシステム各部への制御指令のタイミング、および燃料電 池スタック 1の平均セル電圧の時間的な変化に加えて、燃料極圧力と酸化剤極圧力 の時間的な変化を示して 、る。
[0081] この図 14から明らかなように、本実施形態の停止保管方法によれば、上記変形例 1 と同様の効果が得られることに加えて、さらに、酸化剤極の圧力を直接モニターして いるため、圧力管理が容易であり、燃料電池の内圧の最大許容値が低い場合に特 に有効であると 、う効果が得られる。
[0082] [第 4の実施形態]
[構成]
図 15は、本発明を適用した第 4の実施形態に係る燃料電池発電システムを示す構 成図である。この図 15に示すように、本実施形態の燃料電池発電システムは、第 1の 実施形態の構成にぉ ヽて、燃料供給ライン 11における燃料極入口バルブ 15の上流 に水素貯蔵タンク 61を設けたものである。なお、他の構成は、第 1の実施形態に係る 燃料電池発電システムと同様であるのでその説明は省略する。
[0083] [発電停止操作'発電起動操作手順]
本実施形態の発電停止操作手順および発電起動操作手順は、第 1の実施形態と 同様であり、それぞれ、図 2、図 3に示すような手順である。
[0084] [停止保管時水素補給操作手順]
図 16は、本実施形態の燃料電池発電システムの停止保管方法における停止保管 時の水素補給操作手順を示すフローチャートである。この図 16に示すように、燃料 電池発電システムの停止保管時に水素補給指令がなされた場合には、燃料極入口 バルブ 15を開いて水素貯蔵タンク 61から燃料極 laへの水素補給を開始した(S301 )後、電気制御装置 3の運転モードを電流源モードに設定して、酸化剤極から外部回 路を経由して燃料極に直流電流を流す操作を開始する(S302)。
[0085] この電流源モードを継続して、燃料極 laを基準とした単電池電圧 (燃料電池スタツ ク 1の平均セル電圧)が、 - 1. 2Vより高くかつ 0. IV未満となるまで低下した後、保 持時間 Th ( = 120秒)が経過した時点(S303の YES)で、電気制御装置 3を停止し て(S304)燃料極入口バルブ 15を閉止する(S304)ことにより、水素補給操作を完 了する。
[0086] 具体的には、停止保管中の燃料電池発電システムにおいて、以上のような水素補 給操作を、所定の時間間隔、例えば、 12時間毎に実施する。
[0087] [作用]
以上のような本実施形態の作用は、次の通りである。すなわち、発電停止操作の完 了直後は、燃料極 la、酸化剤極 lb共に水素リッチガスで封入されている力 徐々に 水素分圧が低下する。これに対して、本実施形態では、 12時間経過毎に、燃料極入 口バルブ 15を開くことにより、水素貯蔵タンク 61から燃料極 lbに水素が加圧供給さ れる。さらに、燃料電池スタック 1の平均セル電圧が 0. IV未満の状態で、酸化剤極 1 bから外部回路を経由して燃料極 laに直流電流を流す操作を実施することにより、酸 ィ匕剤極 lbへ水素が移動する。すなわち、上記の水素補給操作により、停止保管時に ぉ 、て、燃料極 laおよび酸化剤極 lb共に水素分圧を上昇させることができる。
[0088] [効果]
以上のように、本実施形態においては、停止保管中に、定期的に水素補給操作を 実施することにより、酸素の混入による水素の消費によって低下した水素分圧を上昇 させることができるので、連続的に酸素が混入した場合でも、水素が十分に残存して いるために、酸素が消費され、結果として、酸素分圧の上昇をより効果的に防止する ことができる。
[0089] そして、このように、燃料電池電極内部の酸素分圧の上昇をより効果的に防止する ことができることから、停止保管時における酸素分圧の上昇に伴う酸化剤極の高電位 保持による触媒のシンタリングゃ、起動時に両極に酸素が混入した状態で水素リッチ ガスを供給したときに見られる酸化剤極の触媒劣化を抑制することができる。したがつ て、酸化剤極の触媒有効表面積の低下をより効果的に防止し、触媒有効表面積の 低下に起因する燃料電池スタックの電圧低下をより効果的に防止することができる。
[0090] [第 5の実施形態]
なお、第 4の実施形態では、改質装置 2を備えた燃料電池発電システムについて説 明したが、図 17に示すような、改質装置 2を使用せずに水素貯蔵タンク 61のみを使 用するシステム構成も可能である。この第 5の実施形態の構成においても、第 4実施 形態と同様の効果が得られる。なお、他の構成に関しては第 4の実施形態と同じであ るのでその説明は省略する。
[他の実施形態]
なお、本発明は、前述した実施形態に限定されるものではなぐ本発明の範囲内で 他にも多種多様な変形例が実施可能である。例えば、発電停止操作手順について 示した保持時間は、一例にすぎず、適宜変更可能である。すなわち、本発明は、燃 料電池発電システムの発電停止過程で、酸化剤供給ラインを閉止した後、燃料極を 基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満となるまで酸化剤極から外 部回路を経由して燃料極に直流電流を流す限り、具体的なシステム構成や発電停 止操作手順は適宜変更可能であり、同様に優れた効果が得られるものである。

Claims

請求の範囲
[1] 電解質を挟んで配置した燃料極と酸化剤極とを有する単電池を複数積層して構成 される燃料電池スタックと、前記燃料電池スタックに燃料および酸化剤をそれぞれ供 給する燃料供給ラインおよび酸化剤供給ラインと、前記燃料電池スタックへ供給され た燃料および酸化剤をそれぞれ排出する燃料排出ラインおよび酸化剤排出ラインを 備えた燃料電池発電システムの発電停止、停止保管を行う方法にお!ヽて、
前記燃料電池発電システムの発電停止過程で、前記酸化剤供給ラインを閉止し、 前記酸化剤供給ライン閉止操作により前記酸化剤供給ラインを閉止した状態で、 前記燃料極を基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満となるまで前 記酸化剤極力 外部回路を経由して燃料極に直流電流を流す直流電流通電し、 前記直流電流通電操作の開始時点以降に、前記酸化剤排出ラインを閉止し、 前記直流電流通電操作の終了時点以降に、前記燃料排出ラインおよび前記燃料 供給ラインを閉止する、
ことを特徴とする燃料電池発電システムの停止保管方法。
[2] 前記直流電流通電操作を終了した後に、前記酸化剤排出ライン閉止操作および 前記燃料排出,供給ライン閉止操作を行うことを特徴とする請求項 1に記載の燃料電 池発電システムの停止保管方法。
[3] 前記直流電流通電操作を開始した後に、前記酸化剤排出ライン閉止操作を行い、 前記酸化剤排出ライン閉止操作を行った後に、前記直流電流通電操作を終了する と共に前記燃料排出 ·供給ライン閉止操作を行うことを特徴とする請求項 1に記載の 燃料電池発電システムの停止保管方法。
[4] 前記酸化剤排出ライン閉止操作を行った後に前記酸化剤極の圧力を監視して、当 該圧力の検出値が予め設定された設定圧力値に到達した時点で、前記直流電流通 電操作を終了すると共に前記燃料排出 ·供給ライン閉止操作を行うことを特徴とする 請求項 3に記載の燃料電池発電システムの停止保管方法。
[5] 前記酸化剤排出ライン閉止操作を行った後に前記燃料極を基準とした単電池電圧 が予め設定された設定電圧値を下回った時点で、前記直流電流通電操作を終了す ると共に前記燃料排出 ·供給ライン閉止操作を行うことを特徴とする請求項 3に記載 の燃料電池発電システムの停止保管方法。
[6] 前記燃料電池発電システムの停止保管時に、前記燃料供給ラインを開 ヽて前記燃 料電池スタックに燃料を供給する保管時燃料供給操作と、前記燃料供給操作後に、 前記燃料極を基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満となるまで前 記酸化剤極力ゝら外部回路を経由して燃料極に直流電流を流す保管時直流電流通 電操作と、前記直流電流通電操作を終了した後に、前記燃料供給ラインを閉止する 保管時燃料ライン閉止操作を行うことを特徴とする請求項 1に記載の燃料電池発電 システムの停止保管方法。
[7] 前記燃料電池システムは、炭化水素系燃料力も水素リッチガスを製造する改質装 置と製造した水素リッチガスを貯蔵する水素貯蔵タンクを更に備えており、前記保管 時燃料供給操作により供給される前記燃料は、前記燃料電池システム運転中に前 記改質装置にて製造されて前記水素貯蔵タンクに貯蔵されている水素リッチガスで あることを特徴とする請求項 6に記載の燃料電池発電システムの停止保管方法。
[8] 前記直流電流の大きさを、前記改質装置の温度により制御することを特徴とする請 求項 1に記載の燃料電池発電システムの停止保管方法。
[9] 前記酸化剤排出ラインに燃焼器を設けて排ガス中の水素を燃焼させることを特徴と する請求項 1に記載の燃料電池発電システムの停止保管方法。
[10] 電解質を挟んで配置した燃料極と酸化剤極とを有する単電池を複数積層して構成 される燃料電池スタックと、前記燃料電池スタックに燃料および酸化剤をそれぞれ供 給する燃料供給ラインおよび酸化剤供給ラインと、前記燃料電池スタックへ供給され た燃料および酸化剤をそれぞれ排出する燃料排出ラインおよび酸化剤排出ラインを 備えた燃料電池発電システムの発電停止、停止保管を行うためのプログラムにお!/ヽ て、
前記燃料電池発電システムの発電停止過程で、前記酸化剤供給ラインを閉止する 酸化剤供給ライン閉止操作と、
前記酸化剤供給ライン閉止操作により前記酸化剤供給ラインを閉止した状態で、 前記燃料極を基準とした単電池電圧が 1. 2Vより高くかつ 0. IV未満となるまで前 記酸化剤極力ゝら外部回路を経由して燃料極に直流電流を流す直流電流通電操作と 前記直流電流通電操作の開始時点以降に、前記酸化剤排出ラインを閉止する酸 化剤排出ライン閉止操作と、
前記直流電流通電操作の終了時点以降に、前記燃料排出ラインおよび前記燃料 供給ラインを閉止する燃料排出,供給ライン閉止操作と、
をコンピュータで実現させるようにしたことを特徴とする燃料電池発電システムの停止 保管プログラム。
電解質を挟んで配置した燃料極と酸化剤極とを有する単電池を複数積層して構成 される燃料電池スタックと、
前記燃料電池スタックに燃料および酸化剤をそれぞれ供給する燃料供給ラインお よび酸化剤供給ラインと、
前記燃料電池スタックへ供給された燃料および酸化剤をそれぞれ排出する燃料排 出ラインおよび酸化剤排出ラインと、
前記燃料電池スタックで得られた電気エネルギーを外部負荷に供給する通常の負 荷運転モードと、燃料電池スタックの起電力がな 、状態にお 、て前記酸化剤極から 外部回路を経由して前記燃料極に直流電流を流す電流源モードを有する電気制御 手段と、
前記燃料供給ラインおよび酸化剤供給ラインと、前記電気制御手段を制御するシ ステム制御手段を、有し、
前記システム制御手段により、前記酸化剤供給ラインは、発電停止過程で閉止し、 前記電気制御手段は、発電停止過程で、前記酸化剤供給ラインが閉止した状態で、 前記負荷運転モードから前記電流源モードに切り替わって、前記酸化剤極から外部 回路を経由して燃料極に直流電流を流し、前記燃料極を基準とした単電池電圧が
— 1. 2Vより高くかつ 0. IV未満となった時点で動作を停止するようにし、前記酸ィ匕 剤排出ラインは、前記電気制御手段が前記電流源モードに切り替わった時点以降に 閉止し、また、前記燃料排出ラインおよび前記燃料供給ラインは、前記電気制御手 段が前記電流源モードから動作を停止した時点以降に閉止するようにした、ことを特 徴とする燃料電池発電システム。
[12] 前記システム制御手段は、動作シーケンスプログラムを予め記憶保存したメモリと、 そのシーケンスプログラムを読み出し、入出力部を介して制御指令を出す CPUを含 む、ことを特徴とする請求項 11記載の燃料電池発電システム。
[13] 前記燃料供給ラインに設けられた改質装置と、前記酸化剤供給ラインに設けられた 空気ブロワを更に有し、前記改質装置及び前記空気ブロワは、前記システム制御装 置により制御されて、燃料としての都市ガスからの改質ガスと酸化剤としての空気の 供給量を制御するようにした、ことを特徴とする請求項 11記載の燃料電池発電シス テム。
[14] 前記燃料排出ライン、酸化剤排出ラインの下流側に燃焼器を設け、燃料排出ライン の下流側に設けた燃焼器は熱交 を介して前記改質装置に接続された、ことを特 徴とする請求項 13記載の燃料電池発電システム。
[15] 前記酸化剤排出ラインに酸化剤極の圧力を測定する圧力計を設けた、ことを特徴 とする請求項 13記載の燃料電池発電システム。
[16] 前記燃料供給ラインに設けた改質装置と燃料極との間に水素貯蔵タンクを設けた、 ことを特徴とする請求項 13記載の燃料電池発電システム。
[17] 前記燃料供給ラインに設けられた水素貯蔵タンクと、前記酸化剤供給ラインに設け られた空気ブロワを更に有し、前記改質装置及び前記空気ブロワは、前記システム 制御装置により制御されて、燃料としての水素と酸化剤としての空気の供給量を制御 するようにした、ことを特徴とする請求項 11記載の燃料電池発電システム。
PCT/JP2005/020936 2004-11-17 2005-11-15 燃料電池発電システムとその停止保管方法、停止保管プログラム WO2006054548A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/719,546 US8173314B2 (en) 2004-11-17 2005-11-15 Fuel cell power generation system, its stopping/safekeeping method and program
DE112005002853T DE112005002853B4 (de) 2004-11-17 2005-11-15 Brennstoffzellenenergiesystem und Verfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004333440A JP4907861B2 (ja) 2004-11-17 2004-11-17 燃料電池発電システムとその停止保管方法、停止保管プログラム
JP2004-333440 2004-11-17

Publications (1)

Publication Number Publication Date
WO2006054548A1 true WO2006054548A1 (ja) 2006-05-26

Family

ID=36407091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020936 WO2006054548A1 (ja) 2004-11-17 2005-11-15 燃料電池発電システムとその停止保管方法、停止保管プログラム

Country Status (5)

Country Link
US (1) US8173314B2 (ja)
JP (1) JP4907861B2 (ja)
KR (1) KR100856016B1 (ja)
DE (1) DE112005002853B4 (ja)
WO (1) WO2006054548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185750A (ja) * 2004-12-27 2006-07-13 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムの運転方法及び燃料電池発電システム
US20100261078A1 (en) * 2007-09-10 2010-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266626B2 (ja) * 2006-06-21 2013-08-21 日産自動車株式会社 燃料電池システム
JP5168825B2 (ja) * 2006-06-23 2013-03-27 日産自動車株式会社 燃料電池システム
JP5168828B2 (ja) * 2006-06-27 2013-03-27 日産自動車株式会社 燃料電池システム
JP2008047300A (ja) * 2006-08-10 2008-02-28 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システム及びその運用方法
JP2008084636A (ja) * 2006-09-27 2008-04-10 Toshiba Fuel Cell Power Systems Corp 燃料電池システム
JP4956226B2 (ja) * 2007-02-27 2012-06-20 東芝燃料電池システム株式会社 燃料電池発電システムの停止保管方法およびプログラム並びに燃料電池発電システム
JP5022079B2 (ja) * 2007-03-28 2012-09-12 株式会社日立製作所 燃料電池システム
JP5169056B2 (ja) * 2007-07-31 2013-03-27 日産自動車株式会社 燃料電池システム及びその運転停止方法
JP2009076247A (ja) * 2007-09-19 2009-04-09 Nissan Motor Co Ltd 燃料電池システムおよびその制御方法
US20100285379A1 (en) * 2007-11-13 2010-11-11 Schrieber Jeffrey W Transitioning an electrochemical cell stack between a power producing mode and a pumping mode
KR100957369B1 (ko) * 2008-04-25 2010-05-12 현대자동차주식회사 연료전지의 공기극 개폐장치
JP2009283278A (ja) * 2008-05-22 2009-12-03 Ebara Ballard Corp 燃料電池システム
KR101077604B1 (ko) * 2008-12-16 2011-10-27 삼성에스디아이 주식회사 전기화학퍼지를 이용한 연료전지의 잔류산소 제거방법
KR101049827B1 (ko) 2008-12-19 2011-07-15 삼성에스디아이 주식회사 연료 전지 시스템 및 그 구동 방법
JP5513760B2 (ja) * 2009-03-19 2014-06-04 本田技研工業株式会社 燃料電池システムの運転停止方法
US8597841B2 (en) 2009-09-04 2013-12-03 Lg Fuel Cell Systems Inc. Method for generating a gas which may be used for startup and shutdown of a fuel cell
US9118048B2 (en) 2009-09-04 2015-08-25 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
US9083020B2 (en) 2009-09-04 2015-07-14 Lg Fuel Cell Systems Inc. Reducing gas generators and methods for generating reducing gas
US9874158B2 (en) 2009-09-04 2018-01-23 Lg Fuel Cell Systems, Inc Engine systems and methods of operating an engine
US9140220B2 (en) 2011-06-30 2015-09-22 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
US8668752B2 (en) * 2009-09-04 2014-03-11 Rolls-Royce Fuel Cell Systems (Us) Inc. Apparatus for generating a gas which may be used for startup and shutdown of a fuel cell
US9178235B2 (en) 2009-09-04 2015-11-03 Lg Fuel Cell Systems, Inc. Reducing gas generators and methods for generating a reducing gas
CA2776982C (en) 2009-10-07 2013-12-31 Hideyuki Kumei Fuel cell system control comprising n2 and h2 partial pressure detection
WO2011070618A1 (ja) * 2009-12-10 2011-06-16 株式会社 東芝 燃料電池システムおよびその運転停止方法
JP5333575B2 (ja) * 2010-08-02 2013-11-06 トヨタ自動車株式会社 燃料電池システム
JP2013257959A (ja) * 2012-06-11 2013-12-26 Honda Motor Co Ltd 燃料電池システム
DE102014216856A1 (de) 2014-08-25 2016-02-25 Volkswagen Aktiengesellschaft Verfahren zum Starten einer Brennstoffzelle sowie Brennstoffzellensystem
JP6627888B2 (ja) * 2015-12-25 2020-01-08 日産自動車株式会社 固体酸化物型燃料電池システム、固体酸化物型燃料電池システムの制御方法
CN111082098A (zh) * 2019-12-30 2020-04-28 上海神力科技有限公司 一种燃料电池系统停机方法
KR102324535B1 (ko) 2020-05-11 2021-11-09 여영찬 연료전지 시스템
US20230261223A1 (en) * 2022-02-11 2023-08-17 Ford Global Technologies, Llc Cell voltage control through oxygen starvation for fuel cell systems
DE102022204532A1 (de) * 2022-05-09 2023-11-09 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Brennstoffzellensystems, Steuergerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116373A (ja) * 1986-11-05 1988-05-20 Hitachi Ltd 燃料電池運転法
JPH01200567A (ja) * 1988-02-05 1989-08-11 Hitachi Ltd 燃料電池発電システム
JPH02270267A (ja) * 1989-04-11 1990-11-05 Mitsubishi Electric Corp 燃料電池発電システム
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2003217631A (ja) * 2002-01-17 2003-07-31 Nissan Motor Co Ltd 燃料電池の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04255672A (ja) * 1991-02-08 1992-09-10 Toshiba Corp 燃料電池発電システム
JPH05335026A (ja) * 1992-05-29 1993-12-17 Mitsubishi Electric Corp リン酸型燃料電池およびその運転の停止方法
US5527632A (en) * 1992-07-01 1996-06-18 Rolls-Royce And Associates Limited Hydrocarbon fuelled fuel cell power system
JPH10144334A (ja) * 1996-11-13 1998-05-29 Toshiba Corp 燃料電池発電プラント及びその起動・停止方法
JP4283928B2 (ja) * 1999-03-04 2009-06-24 大阪瓦斯株式会社 燃料電池の運転方法
JP2000285944A (ja) * 1999-03-31 2000-10-13 Osaka Gas Co Ltd 燃料電池発電装置の運転方法及び燃料電池発電装置
US6399231B1 (en) 2000-06-22 2002-06-04 Utc Fuel Cells, Llc Method and apparatus for regenerating the performance of a PEM fuel cell
JP4632501B2 (ja) * 2000-09-11 2011-02-16 大阪瓦斯株式会社 燃料電池の停止保管方法
JP3863042B2 (ja) * 2002-03-20 2006-12-27 東芝燃料電池システム株式会社 燃料電池の再活性化処理方法およびそのシステム
JP2004006166A (ja) 2002-06-03 2004-01-08 Fuji Electric Holdings Co Ltd 固体高分子電解質形燃料電池とその運転方法
JP2004022487A (ja) * 2002-06-20 2004-01-22 Nissan Motor Co Ltd 燃料電池システム
JP4201605B2 (ja) * 2003-01-09 2008-12-24 大阪瓦斯株式会社 水素含有ガス生成装置の停止方法及び水素含有ガス生成装置
JP2005166479A (ja) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116373A (ja) * 1986-11-05 1988-05-20 Hitachi Ltd 燃料電池運転法
JPH01200567A (ja) * 1988-02-05 1989-08-11 Hitachi Ltd 燃料電池発電システム
JPH02270267A (ja) * 1989-04-11 1990-11-05 Mitsubishi Electric Corp 燃料電池発電システム
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2003217631A (ja) * 2002-01-17 2003-07-31 Nissan Motor Co Ltd 燃料電池の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185750A (ja) * 2004-12-27 2006-07-13 Toshiba Fuel Cell Power Systems Corp 燃料電池発電システムの運転方法及び燃料電池発電システム
US20100261078A1 (en) * 2007-09-10 2010-10-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8541142B2 (en) * 2007-09-28 2013-09-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
US20090148730A1 (en) 2009-06-11
DE112005002853B4 (de) 2010-03-18
JP2006147250A (ja) 2006-06-08
JP4907861B2 (ja) 2012-04-04
KR20070085778A (ko) 2007-08-27
DE112005002853T5 (de) 2007-09-13
KR100856016B1 (ko) 2008-09-03
US8173314B2 (en) 2012-05-08

Similar Documents

Publication Publication Date Title
JP4907861B2 (ja) 燃料電池発電システムとその停止保管方法、停止保管プログラム
US8071243B2 (en) Fuel cell system
JP5476408B2 (ja) 燃料電池システム
US20080026268A1 (en) Fuel Cell System and Method
JP2000512069A (ja) 高分子電解質膜形燃料電池発電装置の運転方法
CN100411234C (zh) 燃料电池系统
JP2004095527A (ja) 燃料電池装置の制御方法及び装置
EP1764854A1 (en) Purge system for fuel cell
JP2001243961A (ja) 燃料電池システム
JP5128072B2 (ja) 燃料電池発電システム
US7709119B2 (en) Method for operating fuel cell
JP4721650B2 (ja) 固体高分子形燃料電池発電システムおよび家庭用定置分散電源システム
EP2375484B1 (en) Operating method of fuel cell system
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JP4661055B2 (ja) 燃料電池システムおよび運転方法
JP5364492B2 (ja) 燃料電池発電システム
JP4872181B2 (ja) 燃料電池システムとその運転方法
JP2007323959A (ja) 燃料電池システム
JP2001229951A (ja) 移動体用燃料電池システム
JP4956226B2 (ja) 燃料電池発電システムの停止保管方法およびプログラム並びに燃料電池発電システム
JP4617647B2 (ja) 燃料電池システムとその運転方法
CA2518419A1 (en) Fuel cell system, method of starting fuel cell system
US20100285379A1 (en) Transitioning an electrochemical cell stack between a power producing mode and a pumping mode
JP5358988B2 (ja) 燃料電池システム
JP2012209154A (ja) 燃料電池システムを制御する制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050028534

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077012672

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005002853

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05807078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11719546

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607