KR101049827B1 - 연료 전지 시스템 및 그 구동 방법 - Google Patents

연료 전지 시스템 및 그 구동 방법 Download PDF

Info

Publication number
KR101049827B1
KR101049827B1 KR1020080130521A KR20080130521A KR101049827B1 KR 101049827 B1 KR101049827 B1 KR 101049827B1 KR 1020080130521 A KR1020080130521 A KR 1020080130521A KR 20080130521 A KR20080130521 A KR 20080130521A KR 101049827 B1 KR101049827 B1 KR 101049827B1
Authority
KR
South Korea
Prior art keywords
fuel cell
unit
unit cells
discharge resistor
voltage
Prior art date
Application number
KR1020080130521A
Other languages
English (en)
Other versions
KR20100071712A (ko
Inventor
박준영
서준원
이치승
안성진
이진화
김현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020080130521A priority Critical patent/KR101049827B1/ko
Priority to US12/654,450 priority patent/US8691457B2/en
Publication of KR20100071712A publication Critical patent/KR20100071712A/ko
Application granted granted Critical
Publication of KR101049827B1 publication Critical patent/KR101049827B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04949Electric variables other electric variables, e.g. resistance or impedance
    • H01M8/04953Electric variables other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 연료 전지 시스템 및 그 구동 방법에 관한 것으로, 연료 전지 시스템의 기동이 중지된 후, 단시간 내에 연료 전지 스택의 캐소드 준위를 낮출 수 있는 기술을 개시한다.
연료 전지, OCV, 캐소드 전극

Description

연료 전지 시스템 및 그 구동 방법{FUEL CELL SYSTEM AND DRIVING METHOD THE SAME}
본 발명은 연료 전지 시스템 및 그 구동 방법에 관한 것으로, 특히 고분자 전해질형 연료 전지의 시스템 및 그 구동 방법에 관한 기술이다.
연료 전지(Fuel cell)는 메탄올, 에탄올, 천연가스와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다.
연료전지는 사용되는 전해질의 종류에 따라, 인산형 연료 전지, 용융탄산염 형 연료 전지, 고체 산화물형 연료 전지, 고분자 전해질형 또는 알칼리형 연료 전지 등으로 분류된다. 이들 각각의 연료 전지는 근본적으로 같은 원리에 의해 작동되지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다.
이들 중 근래에 개발되고 있는 고분자 전해질형 연료 전지(PEMFC; Polymer Electrolyte Membrane Fuel Cell)는 다른 연료 전지에 비하여 출력 특성이 탁월하며 작동 온도가 낮고 아울러 빠른 시동 및 응답 특성을 가지며, 자동차와 같은 이동용 전원은 물론, 주택, 공공 건물과 같은 분산용 전원 및 전자기기용과 같은 소 형 전원 등 그 응용 범위가 넓은 장점을 가진다.
상기와 같은 PEMFC는 기본적으로 시스템을 구성하기 위해 스택(stack), 개질기(reformer), 연료 탱크, 및 연료 펌프 등을 구비한다. 스택은 연료 전지의 본체를 형성하며, 연료 펌프는 연료 탱크 내의 연료를 개질기로 공급한다. 개질기는 연료를 개질하여 수소 가스를 발생시키고 그 수소 가스를 스택으로 공급한다. 따라서, 이 PEMFC는 연료 펌프의 작동으로 연료 탱크 내의 연료를 개질기로 공급하고, 이 개질기에서 연료를 개질하여 수소 가스를 발생시키며, 스택에서 이 수소 가스와 산소를 전기 화학적으로 반응시켜 전기에너지를 발생시킨다.
이러한 연료 전지 시스템에 있어서, 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리(MEA; Membrane Electrode Assembly)와 세퍼레이터(Separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수 십개로 적층된 구조를 가진다. 상기 막-전극 어셈블리는 수소 이온 전도성 고분자를 포함하는 고분자 전해질 막을 사이에 두고 애노드 전극(일명, "연료극" 또는 "산화전극"이라 한다)과 캐소드 전극(일명 "공기극" 또는 "환원전극" 이라고 한다)이 위치하는 구조를 가진다. 상기 바이폴라 플레이트는 상기 각각의 막/전극 접합체를 분리하고 연료 전지의 반응에 필요한 수소 가스와 산소를 막/전극 접합체의 애노드 전극과 캐소드 전극으로 공급하는 통로의 역할과, 각 막/전극 접합체의 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 역할을 동시에 수행한다. 바이폴라 플레이트를 통해 애노드 전극에는 메탄올 수용액이나 개질가스와 같은 수소를 함유한 연료가 공급되는 반면, 캐소드 전극에는 공기와 같은 산소를 함 유한 산화제가 공급된다. 이 과정에서 애노드 전극에서는 수소 가스의 산화 반응이 일어나게 되고, 캐소드 전극에서는 산소의 환원 반응이 일어나게 되며 이때 생성되는 전자의 이동으로 인해 전기를 발생시키고, 열과 수분을 부수적으로 발생시킨다.
이와 같은 연료 전지의 애노드 전극 및 캐소드 전극에는 연료의 산화 및 산소의 환원을 촉진시키는 촉매가 함유되어 있다. PEMFC의 경우, 캐소드와 애노드용 촉매로서 비정질 탄소 담체에 백금 입자를 분산시킨 것을 사용하고 있다.
한편, 연료 전지 시스템의 발전이 정지되면, 애노드 및 캐소드 전극측 개폐 밸브를 닫아 수소 및 산소 가스 공급을 중단시킨다. 그러나, 개폐 밸브를 닫는 과정에서 개폐 밸브와 인접한 영역의 애노드 전극 및 캐소드 전극으로 수소 가스 및 산소 가스가 일부 주입된다. 주입된 수소 가스는 전해질막을 통해서 캐소드 전극으로 이동하여 캐소드 전극의 산소와 반응하게 된다. 이로 인해, 캐소드 전극의 준위가 높아진다. 캐소드 전극의 준위가 높아지면, 백금의 산화가 발생하여 백금이 촉매로서의 활성이 저하될 뿐만 아니라 백금이 용해되면서 촉매 면적이 감소된다. 특히, 캐소드 전극의 준위가 높아진 상태로 장시간 유지될 경우 이러한 현상이 심화되면서 연료 전지 스택의 수명이 저하되는 문제점이 있다. 따라서, 현재는 높아진 캐소드 전극의 준위를 낮추기 위해 질소를 이용한 퍼지 장치 등으로 잔류된 수소와 산소를 제거하는 방법을 사용하고 있다. 그런데. 이러한 퍼지 장치는 실험실 내에서만 사용 가능하고, 잔류된 가스를 제거하는데 한 시간 이상의 긴 시간이 필요하며, 부피를 많이 차지한다. 또한 질소를 사용하기 위해서는 추가 비용이 드는 등의 문제점이 있어 현실적으로 연료 전지 시스템에 적용하기 힘든 실정이다.
본 발명은 상술한 문제점을 해결하기 위해, 연료 전지 시스템의 기동이 중지된 후, 단시간 내에 연료 전지 스택의 캐소드 준위를 낮출 수 있는 연료 전지 시스템 및 그 구동 방법을 제공하는데 그 목적이 있다.
본 발명에 따른 연료 전지 시스템은, 복수의 단위 셀을 포함하는 연료 전지 스택; 상기 복수의 단위 셀과 방전 저항을 연결하는 스위칭부; 상기 연료 전지 스택의 발전이 정지된 후, 상기 연료 전지 스택의 전압이 무부하 출력 전압에 도달한 시점에 동기되어 동작하고, 상기 스위칭부를 제어하는 선택 제어 신호를 생성하는 스위칭 제어부; 및 상기 복수의 단위 셀 각각의 전압을 센싱하여 상기 선택 제어 신호의 활성화 구간을 제어하는 셀 전압 센싱 신호를 생성하는 센싱부를 포함한다. 여기서, 상기 스위칭부는 상기 복수의 단위 셀의 복수의 제1 전극과 상기 방전 저항의 일측을 각각 연결하는 복수의 제1 방전 스위치; 및 상기 복수의 단위 셀의 복수의 제2 전극과 상기 방전 저항의 타측을 각각 연결하는 복수의 제2 방전 스위치를 포함한다. 상기 스위칭 제어부는 상기 복수의 단위 셀 중 선택된 어느 하나와 상기 방전 저항이 연결되도록 상기 스위칭부를 제어하고, 상기 센싱부는 상기 복수의 단위 셀 각각의 전압이 소정의 전압이 되는 시점에 상기 셀 전압 센싱 신호를 활성화시킨다. 상기 센싱부는 상기 방전 저항의 일측과 연결되어 있다.
그리고, 본 발명에 따른 복수의 단위 셀을 포함하는 연료 전지 스택과, 상기 복수의 단위 셀과 방전저항을 연결하는 스위칭부 및 상기 스위칭부를 제어하는 선택 제어 신호를 생성하는 스위칭 제어부를 포함하는 연료 전지 시스템의 구동 방법에 있어서, 상기 연료 전지 스택의 발전이 정지된 후, 상기 연료 전지 스택의 전압이 무부하 출력 전압에 도달한 시점에 상기 선택 제어 신호를 활성화 시키는 단계; 및 상기 선택 제어 신호에 따라 상기 복수의 단위 셀 중 선택된 어느 하나와 상기 방전 저항을 연결하는 단계를 포함한다. 여기서, 상기 선택된 단위 셀의 전압이 소정 전압이 되는 시점에 상기 선택 제어 신호를 비활성화 시키는 단계를 더 포함하고, 상기 복수의 단위 셀과 상기 방전 저항을 순차적으로 연결한다.
이상에서 설명한 바와 같이 본 발명의 특징에 따르면, 연료 전지 시스템의 기동이 중지된 후, 단시간 내에 연료 전지 스택의 캐소드 준위를 낮출 수 있는 효과를 제공한다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명에 따른 연료 전지 시스템을 도시한 도면이다.
도 1을 참조하면, 본 발명의 연료 전지 시스템은 연료 전지 스택(10), 스위칭부(20), 방전 저항(R), 스위칭 제어부(30) 및 센싱부(40)를 포함한다. 연료 전지 스택(10)은 제1 전원전압 단자(+)와 제2 전원전압 단자(-) 사이에 직렬 연결된 복수의 단위 셀(C1~C4)을 포함한다. 스위칭부(20)는 복수의 방전 스위치(S1~S10)를 포함한다. 복수의 방전 스위치(S1~S10)는 스위칭 제어부(30)로부터 출력된 선택 제어신호(SCONT)에 따라 온/오프된다. 본 발명의 실시 예에 따른 선택 제어신호(SCONT)는 방전 스위치(S1~S10) 각각에 대응되는 복수의 신호를 지칭한다. 예컨대, 복수의 단위 셀(C1~C4) 중 단위 셀(C2)의 방전이 필요한 경우 선택 제어신호(SCONT)는 방전 스위치(S2) 및 방전 스위치(S5)를 턴 온시킨다. 그러면, 단위 셀(C2)은 방전 저항(R)을 따라 흐르는 전류에 의해 방전된다. 이에 대한 구체적인 설명은 후술한다.
방전 스위치(S1)의 일단은 단위 셀(C1)의 애노드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 일단에 연결되어 있다. 방전 스위치(S2)의 일단은 단위 셀(C1)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 일단에 연결되어 있다. 방전 스위치(S3)의 일단은 단위 셀(C1)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 타단에 연결되어 있다. 방전 스위치(S4)의 일단은 단위 셀(C2)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 일단에 연결되어 있다. 방전 스위치(S5)의 일단은 단위 셀(C2)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 타단에 연결되어 있다. 방전 스위치(S6)의 일단은 단위 셀(C3)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 일단에 연결되어 있다. 방전 스위치(S7)의 일단은 단위 셀(C3)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 타단에 연결되어 있다. 방전 스위치(S8)의 일단은 단위 셀(C4)의 애노드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 일단에 연결되어 있다. 방전 스위치(S9)의 일단은 단위 셀(C4)의 애노드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 타단에 연결되어 있다. 방전 스위치(S10)의 일단은 단위 셀(C4)의 캐소드 전극 단자에 연결되어 있고, 타단은 방전 저항(R)의 타단에 연결되어 있다.
방전 저항(R)은 방전 스위치(S1)의 타단과 방전 스위치(S10)의 타단 사이에 연결되어 있다. 여기서, 방전 저항(R)은 연료 전지 스택(10)의 단위 출력당 전류를 계산하여 구할 수 있다. 예컨대, 연료 전지 스택(10)의 출력이 300W이고, 32개의 단위 셀이 있다면, 아래의 <수학식 1>에 의해 계산할 수 있다.
<수학식 1>
P = I2R
여기서, P는 연료 전지 스택(10)의 단위 출력(W), I는 전류(A), R은 방전 저 항(Ω)이다.
상기와 같은 <수학식 1>에서 전류(I)를 4A로 가정하여 계산하면 방전 저항(R)은 0.63 Ω이 된다. 즉, 단위 셀 하나당 출력이 약 10W이면 약 1 Ω의 방전 저항(R)만 있으면 된다. 방전 저항(R)의 크기는 단위 셀의 개수 및 단위 셀에 흐르는 전류를 고려하여 조절할 수 있다.
스위칭 제어부(30)는 복수의 단위 셀(C1~C4)을 순차적으로 방전 저항(R)과 연결하기 위한 선택 제어 신호(SCONT)를 생성한다. 스위칭 제어부(30)는 연료 전지 스택(10)의 발전이 정지된 후, 연료 전지 스택(10)의 전압이 무부하 출력 전압(Open Circuit Voltage 이하, OCV)에 도달한 시점에 동기되어 선택 제어 신호(SCONT)를 생성한다. 그리고, 스위칭 제어부(30)는 센싱부(40)로부터 출력된 셀 전압 센싱 신호(CVS)에 따라 선택 제어 신호(SCONT)의 활성화 구간을 조절한다.
센싱부(40)는 방전 저항(R)의 일단과 연결되어 복수의 단위 셀(C1~V4) 각각의 전압(CV)을 센싱하여 셀 전압 센싱 신호(CVS)를 생성한다. 셀 전압 센싱 신호(CVS)는 복수의 단위 셀(C1~C4)의 각 전압(CV)이 소정의 전압, 예컨대 0V가 되는 시점에 활성화되는 신호이다.
상술한 구성을 갖는 본 발명의 연료 전지 시스템의 동작을 설명하면 다음과 같다. 먼저, 스위칭 제어부(30)는 연료 전지 스택(10)의 발전이 정지된 후, 연료 전지 스택(10)의 전압이 OCV에 도달한 시점에 방전 스위치(S1, S3)에 대응하는 선택 제어 신호(SCONT)를 활성화시킨다. 그러면, 단위 셀(C1)의 애노드 전극과 캐소드 전극이 각각 방전 저항(R)의 일측 및 타측에 연결된다. 이에 따라, 단위 셀(C1) 의 전압이 방전 저항(R)에 의해 방전된다. 그 다음, 센싱부(40)는 단위 셀(C1)의 전압이 소정의 전압이 되는 시점에 셀 전압 센싱 신호(CVS)를 활성화시킨다. 그러면, 스위칭 제어부(30)는 방전 스위치(S1, S3)를 오프시키고, 방전 스위치(S2, S5)를 온시킨다. 그러면, 단위 셀(C2)의 전압이 방전 저항(R)에 의해 방전된다. 이와 같은 방법으로 단위 셀(C3, C4)도 순차적으로 방전시킨다. 한편, 본 발명의 실시 예에서는 복수의 단위 셀(C1~C4)을 순차적으로 방전시키는 것을 예를 들어 설명하였으나, 이에 한정되지 않고 임의의 단위 셀을 선택적으로 방전시킬 수도 있다. 그리고, 방전 저항(R)의 크기를 고려하여 2개 이상의 단위 셀을 방전시킬 수도 있다. 또한, 센싱부(40)가 단위 셀의 전압을 측정하지 않고, 소정 시간 동안 방전 후 방전 스위치를 오프 시킬 수 있다. OCV 전압에서 소정의 전압까지 저항(R)을 이용해 소요되는 시간을 실험적인 데이터로 산출하여, 산출된 데이터 중 가장 긴 시간 동안 방전 시킨 후 방전 스위치를 턴 오프 시킬 수 있다. 그러면 센싱부(40)가 단위 셀의 전압을 개별적으로 측정할 필요가 없어 보다 간단하게 단위 셀 방전을 제어할 수 있다.
도 2는 본 발명의 실시 예에 따른 연료 전지 시스템의 효과를 설명하기 위해 도시한 그래프로서, 단위 셀 하나의 시간 당 성능 감소율을 도시한 것이다.
본 발명은 연료 전지 스택(10)의 발전이 정지된 후, 개폐 밸브를 닫은 상태에서 연료 전지 스택(10)의 전압이 OCV에 도달하면, 복수의 단위 셀(C1~C4)을 각각 방전 저항(R)과 연결한다. 그러면, 애노드 전극 및 캐소드 전극에 일부 주입된 수소 가스와 산소 가스에 의해 발생한 전자가 방전 저항(R)을 통해 방전된다. 따라 서, 도 2에 도시된 바와 같이, 캐소드 전극의 준위가 수초 이내에 방전되어 종래 단위 셀의 성능 감소율(A) 보다 본 발명에 따른 단위 셀의 성능 감소율(B)이 감소되는 것을 볼 수 있다. 따라서, 촉매의 산화 및 용해 현상에 의한 연료 전지 스택의 성능 열화를 방지할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
도 1은 본 발명에 따른 연료 전지 시스템을 도시한 도면.
도 2는 본 발명의 실시 예에 따른 연료 전지 시스템의 효과를 설명하기 위해 도시한 그래프.

Claims (8)

  1. 복수의 단위 셀을 포함하는 연료 전지 스택;
    상기 복수의 단위 셀과 하나의 방전 저항을 연결하는 스위칭부;
    상기 연료 전지 스택의 발전이 정지된 후, 상기 연료 전지 스택의 전압이 무부하 출력 전압에 도달한 시점에 동기되어 동작하고, 상기 스위칭부를 제어하는 선택 제어 신호를 생성하는 스위칭 제어부; 및
    상기 복수의 단위 셀 각각의 전압을 센싱하여 상기 선택 제어 신호의 활성화 구간을 제어하는 셀 전압 센싱 신호를 생성하는 센싱부
    를 포함하고,
    상기 복수의 단위 셀은 상기 선택 제어 신호에 대응하여 선택적으로 상기 하나의 방전 저항에 연결되어 방전되는 연료 전지 시스템.
  2. 제 1 항에 있어서,
    상기 스위칭부는
    상기 복수의 단위 셀의 복수의 제1 전극과 상기 방전 저항의 일측을 각각 연결하는 복수의 제1 방전 스위치; 및
    상기 복수의 단위 셀의 복수의 제2 전극과 상기 방전 저항의 타측을 각각 연결하는 복수의 제2 방전 스위치
    를 포함하는 연료 전지 시스템.
  3. 제 1 항에 있어서,
    상기 스위칭 제어부는 상기 복수의 단위 셀 중 선택된 어느 하나와 상기 방전 저항이 연결되도록 상기 스위칭부를 제어하는 연료 전지 시스템.
  4. 제 1 항에 있어서, 상기 센싱부는 상기 복수의 단위 셀 각각의 전압이 0V가 되는 시점에 상기 셀 전압 센싱 신호를 활성화시키는 연료 전지 시스템.
  5. 제 1 항에 있어서, 상기 센싱부는 상기 방전 저항의 일측과 연결되어 있는 연료 전지 시스템.
  6. 복수의 단위 셀을 포함하는 연료 전지 스택과, 상기 복수의 단위 셀과 하나의 방전저항을 연결하는 스위칭부 및 상기 스위칭부를 제어하는 선택 제어 신호를 생성하는 스위칭 제어부를 포함하는 연료 전지 시스템의 구동 방법에 있어서,
    상기 연료 전지 스택의 발전이 정지된 후, 상기 연료 전지 스택의 전압이 무부하 출력 전압에 도달한 시점에 상기 선택 제어 신호를 활성화 시키는 단계; 및
    상기 선택 제어 신호에 따라 상기 복수의 단위 셀을 선택적으로 상기 하나의 방전 저항에 연결하는 단계
    를 포함하는 연료 전지 시스템의 구동 방법.
  7. 삭제
  8. 제 6 항에 있어서,
    상기 복수의 단위 셀과 상기 하나의 방전 저항을 순차적으로 연결하는 연료 전지 시스템의 구동 방법.
KR1020080130521A 2008-12-19 2008-12-19 연료 전지 시스템 및 그 구동 방법 KR101049827B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080130521A KR101049827B1 (ko) 2008-12-19 2008-12-19 연료 전지 시스템 및 그 구동 방법
US12/654,450 US8691457B2 (en) 2008-12-19 2009-12-18 Fuel cell system and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080130521A KR101049827B1 (ko) 2008-12-19 2008-12-19 연료 전지 시스템 및 그 구동 방법

Publications (2)

Publication Number Publication Date
KR20100071712A KR20100071712A (ko) 2010-06-29
KR101049827B1 true KR101049827B1 (ko) 2011-07-15

Family

ID=42266596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080130521A KR101049827B1 (ko) 2008-12-19 2008-12-19 연료 전지 시스템 및 그 구동 방법

Country Status (2)

Country Link
US (1) US8691457B2 (ko)
KR (1) KR101049827B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951583B1 (fr) * 2009-10-19 2012-01-27 Commissariat Energie Atomique Prevention de la corrosion d'une pile a combustible
DE102010061576A1 (de) * 2010-12-27 2012-06-28 Fev Gmbh Vorrichtung mit wenigstens zwei in Reihe schaltbaren Brennstoffzellen
CN102437356B (zh) * 2011-12-12 2013-11-13 新源动力股份有限公司 一种燃料电池堆停机降压的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322570A (ja) * 2004-05-11 2005-11-17 Nissan Motor Co Ltd 燃料電池システム
JP2007214072A (ja) * 2006-02-13 2007-08-23 Aisin Seiki Co Ltd 燃料電池スタックのセル電圧測定装置
JP2007323959A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp 燃料電池システム
JP7107859B2 (ja) * 2019-01-25 2022-07-27 トヨタ自動車株式会社 充電インレットの固定構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107859B2 (ja) 1988-05-27 1995-11-15 富士電機株式会社 燃料電池の放電制御回路
JP4904661B2 (ja) * 2002-11-21 2012-03-28 株式会社デンソー 燃料電池システム
JP4907861B2 (ja) 2004-11-17 2012-04-04 東芝燃料電池システム株式会社 燃料電池発電システムとその停止保管方法、停止保管プログラム
JP2006185904A (ja) 2004-11-30 2006-07-13 Nissan Motor Co Ltd 燃料電池システム
JP4593311B2 (ja) 2005-02-24 2010-12-08 三菱電機株式会社 燃料電池発電システム及びその停止方法
KR100803660B1 (ko) 2006-05-18 2008-02-19 안살도 퓨얼 셀즈 에스.피.에이. 연료 전지 저항 테스트 장치 및 방법
JP2007323954A (ja) 2006-05-31 2007-12-13 Aisin Seiki Co Ltd 燃料電池システムおよび燃料電池システムの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322570A (ja) * 2004-05-11 2005-11-17 Nissan Motor Co Ltd 燃料電池システム
JP2007214072A (ja) * 2006-02-13 2007-08-23 Aisin Seiki Co Ltd 燃料電池スタックのセル電圧測定装置
JP2007323959A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp 燃料電池システム
JP7107859B2 (ja) * 2019-01-25 2022-07-27 トヨタ自動車株式会社 充電インレットの固定構造

Also Published As

Publication number Publication date
KR20100071712A (ko) 2010-06-29
US8691457B2 (en) 2014-04-08
US20100159296A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
JP5441310B2 (ja) 電源システム
CN101228657B (zh) 燃料电池以及燃料电池运转方法
KR101126206B1 (ko) 연료전지 시스템
JPH10144334A (ja) 燃料電池発電プラント及びその起動・停止方法
JP7429720B2 (ja) 燃料電池アセンブリの動作方法
US20070154743A1 (en) Micro-energy re-activating method to recover PEM fuel cell performance
KR100645690B1 (ko) 연료전지 운전중지 방법 및 이를 이용한 연료전지 장치
US8889308B2 (en) Fuel cell system and driving method for the same
KR100844785B1 (ko) 펌프 구동 모듈 및 이를 구비한 연료전지 시스템
KR100639017B1 (ko) 연료 전지 시스템
KR101049827B1 (ko) 연료 전지 시스템 및 그 구동 방법
JP5198412B2 (ja) 燃料電池システム及び燃料電池システムの運転方法
CN112956059B (zh) 具有改善的性能恢复的用于操作电化学燃料电池堆的方法和系统
JP2006156040A (ja) 燃料電池システム
KR100698677B1 (ko) 연료전지 하이브리드 시스템의 운전제어 장치
KR20060097325A (ko) 연료 전지의 초기 구동 방법
KR20070084733A (ko) 성능회복장치를 장착한 연료전지 시스템 및 연료전지시스템 성능회복방법
JP2006351343A (ja) 燃料電池発電装置及び燃料電池発電方法
KR20070093279A (ko) 성능회복장치를 장착한 연료전지 시스템
JP2005302495A (ja) 燃料電池システム
JP2014029869A (ja) 電源システム
CN113711399A (zh) 用于在霜冻启动条件下启动燃料电池装置的方法以及燃料电池装置和机动车
KR20060037751A (ko) 연료전지 시스템
KR20090030998A (ko) 연료전지 스택 기동 방법 및 이를 채용한 연료전지 시스템
KR20080040465A (ko) 연료전지 장치의 운전제어 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150623

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee