WO2006038544A1 - 電源回路の保護方法およびその装置 - Google Patents

電源回路の保護方法およびその装置 Download PDF

Info

Publication number
WO2006038544A1
WO2006038544A1 PCT/JP2005/018086 JP2005018086W WO2006038544A1 WO 2006038544 A1 WO2006038544 A1 WO 2006038544A1 JP 2005018086 W JP2005018086 W JP 2005018086W WO 2006038544 A1 WO2006038544 A1 WO 2006038544A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
supply voltage
abnormality
voltage
Prior art date
Application number
PCT/JP2005/018086
Other languages
English (en)
French (fr)
Inventor
Reiji Kawashima
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005290575A priority Critical patent/AU2005290575B2/en
Priority to US11/664,494 priority patent/US7667941B2/en
Priority to ES05787766T priority patent/ES2435991T3/es
Priority to EP05787766.4A priority patent/EP1811645B8/en
Publication of WO2006038544A1 publication Critical patent/WO2006038544A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a method for protecting a power supply circuit in an apparatus including a power supply circuit that converts an AC input voltage into a predetermined output voltage and an output operation circuit that performs a predetermined operation with the output voltage as an input. And to the device.
  • a device including a power supply circuit that converts an AC input voltage into a predetermined output voltage and an output operation circuit that performs a predetermined operation using the output voltage as an input, the voltage supplied to the power supply circuit is subjected to voltage distortion. If a voltage abnormality such as three-phase imbalance, instantaneous voltage drop, or instantaneous power failure occurs, or if an incorrect voltage is applied due to incorrect wiring, circuit components such as IGBTs, capacitors, and reactors As a result, a greater stress is applied than in normal times, which may cause problems such as damage to parts.
  • abnormal current is detected as an instantaneous overcurrent when a current flowing through a semiconductor switching element such as an IGBT or a transistor exceeds a certain threshold value, and as an overvoltage when a DC voltage exceeds a certain threshold value.
  • the switching operation of the power supply circuit is stopped or the main relay is turned off to protect the circuit components of the power supply.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2003-169481
  • the present invention has been made in view of the above problems, and easily and surely detects the presence or absence of supply voltage abnormality, and performs control necessary to protect the components of the power supply circuit. It is intended to provide a method of protecting a power supply circuit and its apparatus! Means for solving the problem
  • a method for protecting a power supply circuit according to claim 1 includes a power supply circuit that converts an AC input voltage into a predetermined output voltage, and an output operation circuit that performs a predetermined operation with the output voltage as an input.
  • At least the output operation circuit is controlled to cope with the supply voltage abnormality.
  • the protection device for a power supply circuit includes a power supply circuit that converts an AC input voltage into a predetermined output voltage, and an output operation circuit that performs a predetermined operation with the output voltage as an input.
  • At least the output operation circuit is And control means for controlling to cope with the problem.
  • the protection device for a power supply circuit according to claim 3 employs a device that detects a current value on the input side of the power supply circuit as the current detection means.
  • the protection device for a power supply circuit according to claim 4 employs, as the current detection means, a device that detects a current value on the output side of the power supply circuit.
  • the power circuit protection device employs, as the determination means, a device that determines the presence or absence of a power supply imbalance as the presence or absence of a supply voltage abnormality.
  • the power circuit protection device employs, as the determination means, a device that determines the presence or absence of power supply voltage distortion as the presence or absence of a supply voltage abnormality.
  • the power circuit protection device employs, as the determination means, a device for determining the presence or absence of a power supply phase failure as the presence or absence of a supply voltage abnormality.
  • the power circuit protection device employs, as the determination means, a device that determines the presence or absence of an instantaneous voltage drop as the presence or absence of a supply voltage abnormality.
  • the power supply circuit protection device employs, as the determination means, a device that determines the presence or absence of an instantaneous power failure as the presence or absence of a supply voltage abnormality.
  • the power circuit protection device employs, as the control means, one that stops the output operation circuit in response to the determination means determining that there is an abnormality in the supply voltage. It is.
  • the protection device for a power supply circuit employs, as the control means, one that stops the power supply circuit in response to the determination means determining that there is a supply voltage abnormality. is there.
  • the protection device for a power supply circuit has, as the determination means, whether there is an abnormality in the supply voltage of the first level that requires the output operation circuit to be stopped, and the first level lower than the first level. 2 is used to determine whether the supply voltage of level 2 is abnormal.
  • the control means the output operation circuit is stopped in response to the abnormality of the supply voltage of level 1, and the supply of level 2 A device that changes the operating conditions of the output operation circuit in response to a voltage abnormality is adopted.
  • the protection device for a power supply circuit includes, as the determination means, whether there is an abnormality in the supply voltage of the first level that is required to stop the output operation circuit, and the first level lower than the first level. 2 is used, and the control means stops the power supply circuit in response to the abnormality in the first level supply voltage and the second level.
  • Abnormal bell supply voltage Abnormal bell supply voltage
  • the current value of the power supply circuit is detected, and the detected current value is determined whether there is an abnormality in the supply voltage to the power supply circuit.
  • the output operation circuit is Since control is performed to cope with supply voltage abnormality, it becomes possible to detect supply voltage abnormality that cannot be detected with the voltage waveform, and to improve the detection accuracy of supply voltage abnormality.
  • the components of the power supply circuit can be reliably protected.
  • the power supply circuit protection method of the present invention can detect a wide range of supply voltage anomalies, including a supply voltage anomaly that cannot be detected by a voltage waveform, and can detect a supply voltage anomaly. If the accuracy can be improved and the components of the power supply circuit can be reliably protected, there is a unique effect.
  • the protection device for a power supply circuit of the present invention can detect a wide range of supply voltage abnormalities including abnormal supply voltage abnormalities that cannot be detected by a voltage waveform, and can detect supply voltage abnormalities. If the accuracy can be improved and the components of the power supply circuit can be reliably protected, there is a unique effect.
  • FIG. 1 is a schematic diagram showing the configuration of a motor drive system incorporating an embodiment of the present invention.
  • This motor drive system includes a three-phase full-bridge diode rectifier circuit 3 in which an input terminal is connected to a three-phase AC power source 1 via a main relay 2, and outputs of the three-phase full-bridge diode rectifier circuit 3.
  • Capacitor 5 connected between terminals via rear PWM (Pulse Width Modulation) inverter 6 that receives the voltage between terminals of the inverter 5, the motor 7 to which the output of the PWM inverter 6 is supplied, one output terminal of the three-phase full-bridge diode rectifier circuit 3, and the capacitor 5 Current detection unit 8 composed of a current transformer, etc.
  • PWM Pulse Width Modulation
  • abnormality detection unit 9 for detecting an abnormality with the detected current value as an input and outputting an abnormality detection signal
  • capacitor 5 Of the inverter 10 connected to the corresponding input terminal of the PWM inverter 6 and the inverter input voltage obtained between the resistor 10 and the input terminal of the PWM inverter 6 as an input.
  • Each switching element is controlled, and each switching element of PWM inverter 6 is dealt with supply voltage abnormality of 3-phase full-bridge diode rectifier circuit 3 by using abnormality detection signal as input.
  • an inverter control unit 11 for controlling.
  • the abnormality detection unit 9 detects a three-phase unbalance from the difference between the maximum value and the minimum value of the direct current.
  • the power supply also has power such as the peak value of the detected current value, the difference between the detected current value and the reference sine wave waveform (current command value), and the amount of change in current within a certain period is larger than the normal amount of change. It is also possible to detect voltage distortion. It is also possible to detect the differential power supply phase loss between the maximum and minimum DC current values. It is also possible to detect the instantaneous voltage drop by calculating the effective current value. In addition, since a direct current does not flow, it is possible to detect an instantaneous power failure.
  • the abnormality detection unit 9 sets a power supply voltage abnormality detection level in advance, and in response to the detected current value exceeding the power supply voltage abnormality detection level, damage to parts or abnormal noise is detected. It also has a control function that outputs an abnormality detection signal that instructs to stop the operation of the PWM inverter 6 in order to prevent the occurrence.
  • the first power supply voltage abnormality detection level for stopping the operation of the PWM inverter 6 and the second level lower than the first power supply voltage abnormality detection level are set in advance, and the detected current value is equal to or higher than the second level.
  • an abnormality detection signal is issued to instruct the output frequency and duty of the PWM inverter 6 to be reduced to reduce output power and prevent component destruction and abnormal noise. It may further have a control function.
  • a first power supply voltage abnormality detection level that stops the operation of the inverter circuit and a second level lower than the first power supply voltage abnormality detection level are set in advance, and the detected current value is less than the first power supply voltage abnormality detection level. 2nd level, even if If the period exceeding the period continues for a certain period, it may further have a control function for outputting an abnormality detection signal instructing to stop the inverter.
  • FIG. 2 is a schematic diagram showing the configuration of a motor drive system incorporating another embodiment of the present invention.
  • This motor drive system includes an output of a single-phase full-bridge diode rectifier circuit 23 having an input terminal connected to a single-phase AC power source 21 via a main relay 22, and outputs of a single-phase full-bridge diode rectifier circuit 23.
  • PWM Pulse
  • capacitor 33 connected via a diode 32 between the collector and emitter terminals of transistor 25, and the voltage across terminals of capacitor 33 (Width modulation) inverter 26, motor 27 to which the output of PWM inverter 26 is supplied, and one output terminal of single-phase full-bridge diode rectifier circuit 23 and the corresponding terminal of transistor 25.
  • a single-phase full-bridge diode rectifier circuit 23, a rear tuttle 24, and a transistor 25 constitute a PWM rectifier circuit.
  • the abnormality detector 29 detects the peak value of the detected current value, the difference between the detected current value and the reference sine wave waveform (current command value), and the amount of change in current within a certain period of time is greater than the normal amount of change. Threshold and other forces also detect power supply voltage distortion. However, it is also possible to detect the instantaneous voltage drop by calculating the effective current value. In addition, since a direct current does not flow, it is possible to detect an instantaneous power failure.
  • the abnormality detection unit 29 sets a power supply voltage abnormality detection level in advance, and in response to the detected current value exceeding the power supply voltage abnormality detection level, if the component is damaged, In order to prevent the occurrence of this, a control function for outputting an abnormality detection signal instructing to stop the operation of the PWM inverter 26 is further provided.
  • the first power supply voltage abnormality detection level for stopping the operation of the PWM inverter 26 and the second level lower than the first power supply voltage abnormality detection level are set in advance, and the detected current value exceeds the second level and the first level is detected. If it is below the power supply voltage abnormality detection level, the output power should be reduced to prevent component destruction and abnormal noise.
  • Output abnormality detection signal to instruct to reduce the output frequency and duty of PWM inverter 26. It may further have a control function. Also, the first power supply voltage abnormality detection level that stops the operation of the inverter circuit and the second level lower than that are set in advance, and the detected current value is less than the first power supply voltage abnormality detection level. However, if the period exceeding the second level continues for a certain period, it may further have a control function for outputting an abnormality detection signal instructing to stop the inverter.
  • the first power supply voltage abnormality detection level that stops PWM operation and the second level lower than that are set, and the detected current value is greater than or equal to the second level and less than the first level, It has the function of outputting an abnormality detection signal to stop the switching operation of the PWM rectifier circuit in that carrier cycle and to prevent the destruction of parts and the generation of abnormal noise!
  • the abnormality detection signal from the abnormality detection unit 29 is supplied to the corresponding side of the inverter control unit 31 and the converter control unit 34 according to the type of the abnormality detection signal.
  • FIG. 3 is a schematic diagram showing the configuration of a motor drive system incorporating still another embodiment of the present invention.
  • This motor drive system is connected between the PWM rectifier circuit 43 whose input terminal is connected to the three-phase AC power source 41 via the main relay 42a and the rear tail 42b, and the output terminal of the PWM rectifier circuit 43.
  • the current detection resistor 48 connected between the abnormality detection unit 49 that detects the abnormality with the detected current value as input and outputs an abnormality detection signal, and one terminal of the capacitor 45 and the PWM inverter 46
  • Each switching element of the PWM inverter 46 is connected with the resistor 50 connected between the input terminal and the inverter input voltage obtained between the resistor 50 and the input terminal of the PWM inverter 46 as an input.
  • the inverter controller 51 that controls each switching element of the PWM inverter 46 to cope with the supply voltage abnormality of the PWM rectifier circuit 43 and the current detection resistor
  • the current detected using 48 is used as an input to control the switching element of PWM rectifier circuit 43, and when the force is applicable (if there is a broken line connection in Fig. 3), anomaly detection is performed.
  • a converter control unit 52 for controlling the switching element of the PWM rectifier circuit 43 to cope with the supply voltage abnormality of the PWM rectifier circuit 43 by using a signal as an input.
  • the abnormality detection unit 49 detects a three-phase imbalance from the difference between the maximum value and the minimum value of the direct current.
  • the power is also limited by the peak value of the detected current value, the difference between the detected current value and the reference sine wave waveform (current command value), and the amount of change in current within a certain period of time being greater than the normal amount of change. It is also possible to detect voltage distortion. Also, the maximum value of DC current Differential force from the minimum value It is also possible to detect a power failure. Furthermore, instantaneous voltage drop can be detected by calculating the effective current value. Furthermore, it is possible to detect a momentary power outage even when the direct current does not flow.
  • the abnormality detection unit 49 sets a power supply voltage abnormality detection level in advance, and in response to the detected current value exceeding the power supply voltage abnormality detection level, if the component is damaged, In order to prevent the occurrence of this, a control function for outputting an abnormality detection signal instructing to stop the operation of the PWM inverter 46 is further provided.
  • the first power supply voltage abnormality detection level that stops the operation of the PWM inverter 46 and the second level lower than the first power supply voltage abnormality detection level are set in advance, and the detected current value is equal to or higher than the second level. If it is below the power supply voltage abnormality detection level, the output power should be reduced to prevent component destruction and abnormal noise.
  • Output abnormality detection signal that instructs to reduce the output frequency and duty of PWM inverter 46. It may further have a control function. Also, the first power supply voltage abnormality detection level that stops the operation of the inverter circuit and the second level lower than that are set in advance, and the detected current value is less than the first power supply voltage abnormality detection level. However, if the period exceeding the second level continues for a certain period, it may further have a control function for outputting an abnormality detection signal instructing to stop the inverter.
  • the first power supply voltage abnormality detection level that stops PWM operation and the second level lower than that are set, and the detected current value is greater than or equal to the second level and less than the first level, It has the function of outputting an abnormality detection signal to stop the switching operation of the PWM rectifier circuit in that carrier cycle and to prevent the destruction of parts and the generation of abnormal noise!
  • the abnormality detection signal from the abnormality detection unit 49 is supplied to the corresponding side of the inverter control unit 51 and the converter control unit 52 according to the type of the abnormality detection signal.
  • FIG. 4 is a schematic diagram showing the configuration of a motor drive system incorporating still another embodiment of the present invention.
  • This motor drive system is different from the motor drive system of FIG. 3 in that the current detection resistor 48 is omitted and a current detection unit 53 such as a current transformer is provided on the input side of the PWM rectifier circuit 43.
  • a current detection unit 53 such as a current transformer is provided on the input side of the PWM rectifier circuit 43.
  • the current detection unit 53 may be any unit that detects current for three phases, but may only detect current for two phases. In the latter case, the remaining current for one phase can be detected by calculation in a necessary processing unit.
  • the abnormality detection unit 49 in this embodiment detects a three-phase unbalance by calculating an effective value of each of the three-phase currents and calculating an unbalance rate of each phase current.
  • a power supply missing phase by detecting the presence of a phase in which no current flows.
  • an instantaneous voltage drop by calculating an effective current value.
  • instantaneous power failure can be detected because each phase current does not flow.
  • various power supply voltage abnormalities can be detected by detecting the current on the input side (AC side) of the PWM rectifier circuit 43, and in response to this detection.
  • the PWM inverter 46 and Z or the PWM rectifier circuit 43 can be controlled in order to prevent breakage of components of the PWM rectifier circuit 43 and generation of abnormal noise.
  • FIG. 5 is a schematic diagram showing the configuration of a motor drive system incorporating still another embodiment of the present invention.
  • the input terminal of the matrix converter 63 is connected to the three-phase AC power supply 61 via the main relay 62, and the output of the matrix converter 63 is supplied to the motor 67.
  • a current detection unit 68 such as a current transformer that detects current between the matrix converter 63 and the motor 67, and an abnormality detection unit 69 that performs abnormality detection by inputting the detected current value and outputs an abnormality detection signal 69.
  • each switching element of the matrix converter 63 is controlled using the detection current as an input, and the force is also controlled so that the switching element of the matrix converter 63 can cope with the supply voltage abnormality of the matrix converter 63 using the abnormality detection signal as an input.
  • a matrix converter control unit 70 may be any unit that detects a current for three phases, but may be a unit that detects only a current for two phases. In the latter case, the remaining current for one phase can be detected by calculation in the necessary processing unit.
  • the matrix converter 63 serves as both a rectifier circuit and an inverter.
  • the abnormality detection unit 69 detects the three-phase unbalance by calculating the effective value of each of the three-phase currents and calculating the unbalance rate of each phase current.
  • a power failure phase by detecting the presence of a phase in which no current flows.
  • the instantaneous voltage drop by calculating the effective current value.
  • instantaneous power failure can be detected because each phase current does not flow.
  • the abnormality detection unit 69 sets a first power supply voltage abnormality detection level for stopping the PWM operation and a second level lower than the first power supply voltage abnormality detection level, and the detected current value is equal to or higher than the second level. If the level is less than 1, the switching operation of the matrix converter 63 in the carrier cycle is stopped, and an abnormality detection signal is output to instruct to prevent the destruction of parts and the generation of abnormal noise.
  • various power supply voltage abnormalities can be detected by detecting the current on the output side of the matrix converter 63, and in response to this detection, the matrix converter 63
  • the matrix converter 63 can be controlled in order to prevent damage to the components and the generation of abnormal noise.
  • the inverter control circuit generally has its ground on the negative side of the DC part of the rectifier circuit, and it is necessary to insulate it in order to detect the supply voltage waveform on the AC side of the rectifier circuit. Therefore, an expensive and large component such as a transformer is required for the supply voltage detection circuit, but by detecting the current, an expensive and large component can be made unnecessary.
  • the PWM rectifier circuit is used for input current control, and can detect the current using the input current detection means.
  • FIG. 1 is a schematic diagram showing the configuration of a motor drive system incorporating an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a motor drive system incorporating another embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the configuration of a motor drive system incorporating still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a configuration of a motor drive system incorporating still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a configuration of a motor drive system incorporating still another embodiment of the present invention.
  • FIG. 6 is a diagram showing the voltage waveform and current waveform of each part when the three-phase unbalance is ⁇ 2%.
  • FIG. 7 is a diagram showing the voltage waveform and current waveform of each part when the 3-phase imbalance is 0%.
  • FIG. 8 is a diagram showing a power supply voltage waveform and a current waveform when power supply voltage distortion occurs.
  • FIG. 9 is a diagram showing a voltage waveform and a current waveform of each part when a power failure occurs. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Description

明 細 書
電源回路の保護方法およびその装置
技術分野
[0001] 本発明は、交流入力電圧を所定の出力電圧に変換する電源回路、および出力電 圧を入力として所定の動作を行う出力動作回路を含む装置において、電源回路を保 護するための方法およびその装置に関する。
背景技術
[0002] 交流入力電圧を所定の出力電圧に変換する電源回路、および出力電圧を入力と して所定の動作を行う出力動作回路を含む装置において、電源回路に供給される電 圧に、電圧歪み、三相不平衡、瞬時電圧低下、瞬時停電等の電圧異常が生じた場 合や、誤配線により間違った電圧が印加された場合には、 IGBT、コンデンサ、リアク トル等の回路構成部品に対して、通常時に比べて大きなストレスが力かるため、部品 の破損などの不具合が生じる恐れがある。
[0003] そのため従来は、 IGBT、トランジスタなどの半導体スイッチング素子に流れる電流 がある閾値を超えると瞬時過電流として、直流電圧がある閾値を超えると過電圧とし て、それぞれ異常を検出し、この検出に応答して、電源回路のスイッチング動作を停 止させたり、メインリレーをオフして、電源装置の回路構成部品を保護している。
[0004] また、供給電圧波形の検出手段を設けて、積極的に電源電圧異常を検出し、異常 発生時には駆動電力を停止するか、または適切な補正を行なうことにより、保護動作 を可能とし、部品破損や異音の発生を防止することも提案されている (特許文献 1参 照)。
特許文献 1 :特開 2003— 169481号公報
発明の開示
発明が解決しょうとする課題
[0005] 電源回路に供給される電圧に、何らかの異常がある場合には、部品の破損を招い たり、異音が発生するなどの問題が生じるため、供給電圧の異常を検出し、保護動作 を行なう必要があるが、従来の過電流検出方式、過電圧検出方式では、部品破損を 回避することはできるが、供給電圧異常により異音が発生していても検知することは できず、異音の発生を防止することはできない。
[0006] また、特許文献 1に示すような、供給電圧波形から電圧異常を検出する方式では、 検出が難しい供給電圧異常があるだけでなぐまた、部品に影響がでていない状態 でも、供給電圧異常と判定してしまう恐れがある。
[0007] さらに、単相 PWM整流回路のように電流制御を行うために供給電圧波形を検出し ている場合を除き、他のほとんどの電源回路では、供給電圧異常の検出専用の回路 を新たに追加する必要がありコストアップとなる。
[0008] 本発明は、上記の問題点に鑑みてなされたものであり、供給電圧異常の有無を簡 単に、かつ確実に検出し、電源回路の構成部品を保護するために必要な制御を行う ことができる電源回路の保護方法およびその装置を提供することを目的として!/、る。 課題を解決するための手段
[0009] 請求項 1の電源回路の保護方法は、交流入力電圧を所定の出力電圧に変換する 電源回路、および出力電圧を入力として所定の動作を行う出力動作回路を含む装 ¾【こ; i l /、て、
電源回路の電流値を検出し、
検出した電流値から電源回路への供給電圧の異常の有無を判定し、
供給電圧の異常があると判定されたことに応答して、少なくとも出力動作回路を、供 給電圧異常に対処すべく制御する方法である。
[0010] 請求項 2の電源回路の保護装置は、交流入力電圧を所定の出力電圧に変換する 電源回路、および出力電圧を入力として所定の動作を行う出力動作回路を含む装
¾【こ; /、て、
電源回路の電流値を検出する電流検出手段と、
検出した電流値から電源回路への供給電圧の異常の有無を判定する判定手段と、 判定手段により供給電圧の異常があると判定されたことに応答して、少なくとも出力 動作回路を、供給電圧異常に対処すべく制御する制御手段とを含むものである。
[0011] 請求項 3の電源回路の保護装置は、前記電流検出手段として、電源回路の入力側 の電流値を検出するものを採用するものである。 [0012] 請求項 4の電源回路の保護装置は、前記電流検出手段として、電源回路の出力側 の電流値を検出するものを採用するものである。
[0013] 請求項 5の電源回路の保護装置は、前記判定手段として、供給電圧の異常の有無 として電源不平衡の有無を判定するものを採用するものである。
[0014] 請求項 6の電源回路の保護装置は、前記判定手段として、供給電圧の異常の有無 として電源電圧歪みの有無を判定するものを採用するものである。
[0015] 請求項 7の電源回路の保護装置は、前記判定手段として、供給電圧の異常の有無 として電源欠相の有無を判定するものを採用するものである。
[0016] 請求項 8の電源回路の保護装置は、前記判定手段として、供給電圧の異常の有無 として瞬時電圧低下の有無を判定するものを採用するものである。
[0017] 請求項 9の電源回路の保護装置は、前記判定手段として、供給電圧の異常の有無 として瞬時停電の有無を判定するものを採用するものである。
[0018] 請求項 10の電源回路の保護装置は、前記制御手段として、判定手段により供給電 圧の異常があると判定されたことに応答して、出力動作回路を停止させるものを採用 するものである。
[0019] 請求項 11の電源回路の保護装置は、前記制御手段として、判定手段により供給電 圧の異常があると判定されたことに応答して、電源回路を停止させるものを採用する ものである。
[0020] 請求項 12の電源回路の保護装置は、前記判定手段として、出力動作回路を停止 させることが必要な第 1のレベルの供給電圧の異常の有無、および第 1のレベルより も低い第 2のレベルの供給電圧の異常の有無を判定するものを採用し、前記制御手 段として、第 1のレベルの供給電圧の異常に応答して出力動作回路を停止させ、第 2 のレベルの供給電圧の異常に応答して出力動作回路の動作条件を変化させるもの を採用するものである。
[0021] 請求項 13の電源回路の保護装置は、前記判定手段として、出力動作回路を停止 させることが必要な第 1のレベルの供給電圧の異常の有無、および第 1のレベルより も低い第 2のレベルの供給電圧の異常の有無を判定するものを採用し、前記制御手 段として、第 1のレベルの供給電圧の異常に応答して電源回路を停止させ、第 2のレ ベルの供給電圧の異常
に応答して出力動作回路の動作条件を変化させるものを採用するものである。
[0022] 本発明の電源回路の保護方法およびその装置であれば、交流入力電圧を所定の 出力電圧に変換する電源回路、および出力電圧を入力として所定の動作を行う出力 動作回路を含む装置において、
電源回路の電流値を検出し、検出した電流値力 電源回路への供給電圧の異常の 有無を判定し、供給電圧の異常があると判定されたことに応答して、少なくとも出力 動作回路を、供給電圧異常に対処すべく制御するのであるから、電圧波形では検出 できな力つた供給電圧異常を検出することが可能になり、しかも、供給電圧異常の検 出精度を高めることができ、さらに、電源回路の構成部品を確実に保護することがで きる。
発明の効果
[0023] 本発明の電源回路の保護方法は、電圧波形では検出できなカゝつた供給電圧異常 を含めて広範囲の供給電圧異常を検出することを可能にでき、しかも、供給電圧異 常の検出精度を高めることができ、さらに、電源回路の構成部品を確実に保護するこ とができると!、う特有の効果を奏する。
[0024] 本発明の電源回路の保護装置は、電圧波形では検出できなカゝつた供給電圧異常 を含めて広範囲の供給電圧異常を検出することを可能にでき、しかも、供給電圧異 常の検出精度を高めることができ、さらに、電源回路の構成部品を確実に保護するこ とができると!、う特有の効果を奏する。
発明を実施するための最良の形態
[0025] 以下、添付図面を参照して、本発明の電源回路の保護方法およびその装置の実 施の形態を詳細に説明する。
[0026] 図 1は本発明の一実施形態を組み込んだモータ駆動システムの構成を示す概略 図である。
[0027] このモータ駆動システムは、 3相交流電源 1に対してメインリレー 2を介して入力端 子が接続された 3相フルブリッジダイオード整流回路 3と、 3相フルブリッジダイオード 整流回路 3の出力端子間にリアタトル 4を介して接続されたコンデンサ 5と、コンデン サ 5の端子間電圧を入力とする PWM (パルス幅変調)インバータ 6と、 PWMインバー タ 6の出力が供給されるモータ 7と、 3相フルブリッジダイオード整流回路 3の一方の 出力端子とコンデンサ 5の対応する端子との間に設けられたカレントトランスなどから なる電流検出部 8と、検出された電流値を入力として異常検出を行い、異常検出信 号を出力する異常検出部 9と、コンデンサ 5の一方の端子と PWMインバータ 6の対応 する入力端子との間に接続された抵抗 10と、抵抗 10と PWMインバータ 6の入力端 子との間で得られるインバータ入力電圧を入力として PWMインバータ 6の各スィッチ ング素子を制御し、しかも、異常検出信号を入力として PWMインバータ 6の各スイツ チング素子を、 3相フルブリッジダイオード整流回路 3の供給電圧異常に対処させる ベく制御するインバータ制御部 11とを有して 、る。
[0028] 前記異常検出部 9は、直流電流の最大値と最小値との差から 3相不平衡の検出を 行うものである。ただし、検出した電流値のピーク値、検出した電流値と基準正弦波 波形 (電流指令値)との差、一定期間内での電流の変化量が通常の変化量よりも大 きいことなど力も電源電圧歪みの検出を行うことも可能である。また、直流電流の最大 値と最小値との差力 電源欠相の検出を行うことも可能である。さらに、電流実効値 を演算して瞬時電圧低下の検出を行うことも可能である。さらに、直流電流が流れな いことから瞬時停電の検出を行うことも可能である。
[0029] そして、前記異常検出部 9は、電源電圧異常検出レベルを予め設定しておき、検出 した電流値が電源電圧異常検出レベルを超えたことに応答して、部品の破損や異音 の発生を防止すべく PWMインバータ 6の動作を停止することを指示する異常検出信 号を出力する制御機能をさらに有している。ただし、 PWMインバータ 6の動作を停止 させる第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め設定し ておき、検出した電流値が、第 2のレベル以上で第 1の電源電圧異常検出レベル未 満の場合は、出力電力を小さくして部品破壊や異音の発生を防止すベぐ PWMイン バータ 6の出力周波数、デューティーを小さくすることを指示する異常検出信号を出 力する制御機能をさらに有していてもよい。また、インバータ回路の動作を停止させる 第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め設定しておき 、検出した電流値が、第 1の電源電圧異常検出レベル未満であっても、第 2のレベル を越える期間が一定期間続けば、インバータを停止させることを指示する異常検出 信号を出力する制御機能をさらに有して 、てもよ 、。
通常動作時のインバータ制御部 11の処理は従来公知であるから、詳細な説明を省 略する。
[0030] 図 1のモータ駆動システムであれば、 3相フルブリッジダイオード整流回路 3の出力 側(直流側)の電流を検出することにより、種々の電源電圧異常を検出することができ 、この検出に応答して、 3相フルブリッジダイオード整流回路 3の構成部品の破損、異 音の発生を防止すべく PWMインバータ 6を制御することができる。
[0031] 図 2は本発明の他の実施形態を組み込んだモータ駆動システムの構成を示す概略 図である。
[0032] このモータ駆動システムは、単相交流電源 21に対してメインリレー 22を介して入力 端子が接続された単相フルブリッジダイオード整流回路 23と、単相フルブリッジダイ オード整流回路 23の出力端子間にリアタトル 24を介して接続されたトランジスタ 25と 、トランジスタ 25のコレクタ一ェミッタ端子間にダイオード 32を介して接続されたコン デンサ 33と、コンデンサ 33の端子間電圧を入力とする PWM (パルス幅変調)インバ ータ 26と、 PWMインバータ 26の出力が供給されるモータ 27と、単相フルブリッジダ ィオード整流回路 23の一方の出力端子とトランジスタ 25の対応する端子との間に接 続された電流検出用の抵抗 (電流検出部) 28と、検出された電流値を入力として異 常検出を行い、異常検出信号を出力する異常検出部 29と、コンデンサ 33の一方の 端子と PWMインバータ 26の対応する入力端子との間に接続された抵抗 30と、抵抗 30と PWMインバータ 26の入力端子との間で得られるインバータ入力電圧を入力と して PWMインバータ 26の各スイッチング素子を制御し、し力も、異常検出信号を入 力として PWMインバータ 26の各スイッチング素子を、単相フルブリッジダイオード整 流回路 23の供給電圧異常に対処させるベく制御するインバータ制御部 31と、検出さ れた電流値を入力としてトランジスタ 25を制御し、し力も、該当する場合には(図 2中 の破線の接続が存在する場合には)、異常検出信号を入力としてトランジスタ 25を単 相フルブリッジダイオード整流回路 23の供給電圧異常に対処させるベく制御するコ ンバータ制御部 34とを有して 、る。 [0033] なお、単相フルブリッジダイオード整流回路 23、リアタトル 24、およびトランジスタ 25 で PWM整流回路を構成して!/、る。
前記異常検出部 29は、検出した電流値のピーク値、検出した電流値と基準正弦波 波形 (電流指令値)との差、一定期間内での電流の変化量が通常の変化量よりも大 きいことなど力も電源電圧歪みの検出を行うものである。ただし、電流実効値を演算 して瞬時電圧低下の検出を行うことも可能である。また、直流電流が流れないことから 瞬時停電の検出を行うことも可能である。
[0034] そして、前記異常検出部 29は、電源電圧異常検出レベルを予め設定しておき、検 出した電流値が電源電圧異常検出レベルを超えたことに応答して、部品の破損ゃ異 音の発生を防止すべく PWMインバータ 26の動作を停止することを指示する異常検 出信号を出力する制御機能をさらに有している。ただし、 PWMインバータ 26の動作 を停止させる第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め 設定しておき、検出した電流値が、第 2のレベル以上で第 1の電源電圧異常検出レ ベル未満の場合は、出力電力を小さくして部品破壊や異音の発生を防止すベぐ P WMインバータ 26の出力周波数、デューティーを小さくすることを指示する異常検出 信号を出力する制御機能をさらに有していてもよい。また、インバータ回路の動作を 停止させる第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め設 定しておき、検出した電流値が、第 1の電源電圧異常検出レベル未満であっても、第 2のレベルを越える期間が一定期間続けば、インバータを停止させることを指示する 異常検出信号を出力する制御機能をさらに有していてもよい。また、 PWM動作を停 止させる第 1の電源電圧異常検出レベルとそれよりも低い第 2のレベルを設定し、検 出した電流値力 第 2のレベル以上で第 1のレベル未満の場合は、そのキャリア周期 での PWM整流回路のスイッチング動作を停止させ、部品破壊や異音の発生を防止 することを指示する異常検出信号を出力する機能を有して!/ヽてもよ ヽ。
もちろん、前記異常検出部 29からの異常検出信号は、異常検出信号の種類に応じ てインバータ制御部 31、コンバータ制御部 34の該当する側に供給される。
[0035] 通常動作時のインバータ制御部 31の処理、およびコンバータ制御部 34の処理は 従来公知であるから、詳細な説明を省略する。 [0036] 図 2のモータ駆動システムであれば、単相フルブリッジダイオード整流回路 23の出 力側 (直流側)の電流を検出することにより、種々の電源電圧異常を検出することが でき、この検出に応答して、単相フルブリッジダイオード整流回路 23の構成部品の破 損、異音の発生を防止すべく PWMインバータ 26および Zまたは PWM整流回路を 帘 U御することができる。
[0037] 図 3は本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示 す概略図である。
[0038] このモータ駆動システムは、 3相交流電源 41に対してメインリレー 42aおよびリアタト ル 42bを介して入力端子が接続された PWM整流回路 43と、 PWM整流回路 43の 出力端子間に接続されたコンデンサ 45と、コンデンサ 45の端子間電圧を入力とする PWMインバータ 46と、 PWMインバータ 46の出力が供給されるモータ 47と、 PWM 整流回路 43の一方の出力端子とコンデンサ 45の対応する端子との間に接続された 電流検出用抵抗 48と、検出された電流値を入力として異常検出を行い、異常検出 信号を出力する異常検出部 49と、コンデンサ 45の一方の端子と PWMインバータ 46 の対応する入力端子との間に接続された抵抗 50と、抵抗 50と PWMインバータ 46の 入力端子との間で得られるインバータ入力電圧を入力として PWMインバータ 46の 各スイッチング素子を制御し、しカゝも、異常検出信号を入力として PWMインバータ 4 6の各スイッチング素子を、 PWM整流回路 43の供給電圧異常に対処させるベく制 御するインバータ制御部 51と、電流検出用抵抗 48を用いて検出された電流を入力と して PWM整流回路 43のスイッチング素子を制御し、し力も、該当する場合には(図 3 中の破線の接続が存在する場合には)、異常検出信号を入力として PWM整流回路 43のスイッチング素子を、 PWM整流回路 43の供給電圧異常に対処させるベく制御 するコンバータ制御部 52とを有して 、る。
[0039] 前記異常検出部 49は、直流電流の最大値と最小値との差から 3相不平衡の検出 を行う
ものである。ただし、検出した電流値のピーク値、検出した電流値と基準正弦波波形 (電流指令値)との差、一定期間内での電流の変化量が通常の変化量よりも大きいこ となど力も電源電圧歪みの検出を行うことも可能である。また、直流電流の最大値と 最小値との差力 電源欠相の検出を行うことも可能である。さらに、電流実効値を演 算して瞬時電圧低下の検出を行うことも可能である。さらに、直流電流が流れないこ と力も瞬時停電の検出を行うことも可能である。
[0040] そして、前記異常検出部 49は、電源電圧異常検出レベルを予め設定しておき、検 出した電流値が電源電圧異常検出レベルを超えたことに応答して、部品の破損ゃ異 音の発生を防止すべく PWMインバータ 46の動作を停止することを指示する異常検 出信号を出力する制御機能をさらに有している。ただし、 PWMインバータ 46の動作 を停止させる第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め 設定しておき、検出した電流値が、第 2のレベル以上で第 1の電源電圧異常検出レ ベル未満の場合は、出力電力を小さくして部品破壊や異音の発生を防止すベぐ P WMインバータ 46の出力周波数、デューティーを小さくすることを指示する異常検出 信号を出力する制御機能をさらに有していてもよい。また、インバータ回路の動作を 停止させる第 1の電源電圧異常検出レベルと、それよりも低い第 2のレベルを予め設 定しておき、検出した電流値が、第 1の電源電圧異常検出レベル未満であっても、第 2のレベルを越える期間が一定期間続けば、インバータを停止させることを指示する 異常検出信号を出力する制御機能をさらに有していてもよい。また、 PWM動作を停 止させる第 1の電源電圧異常検出レベルとそれよりも低い第 2のレベルを設定し、検 出した電流値力 第 2のレベル以上で第 1のレベル未満の場合は、そのキャリア周期 での PWM整流回路のスイッチング動作を停止させ、部品破壊や異音の発生を防止 することを指示する異常検出信号を出力する機能を有して!/ヽてもよ ヽ。
もちろん、前記異常検出部 49からの異常検出信号は、異常検出信号の種類に応じ てインバータ制御部 51、コンバータ制御部 52の該当する側に供給される。
[0041] 通常動作時のインバータ制御部 51の処理、および通常動作時のコンバータ制御 部 52の処理は従来公知であるから、詳細な説明を省略する。
[0042] 図 3のモータ駆動システムであれば、 PWM整流回路 43の出力側(直流側)の電流 を検出することにより、種々の電源電圧異常を検出することができ、この検出に応答 して、 PWM整流回路 43の構成部品の破損、異音の発生を防止すべく PWMインバ ータ 46および Zまたは PWM整流回路 43を制御することができる。 [0043] 図 4は本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示 す概略図である。
[0044] このモータ駆動システムが図 3のモータ駆動システムと異なる点は、電流検出用抵 抗 48を省略し、 PWM整流回路 43の入力側にカレントトランスなどの電流検出部 53 を設けた点、および異常検出部 49として、電流検出用抵抗 48を用いて検出された 電流を入力とする代わりに、電流検出部 53により検出された電流を入力とするものを 採用した点のみである。なお、電流検出部 53としては、 3相分の電流を検出するもの であればよいが、 2相分の電流のみを検出するものであってもよい。後者の場合には 、必要な処理部において、残余の 1相分の電流を演算により検出することができる。
[0045] この実施形態における異常検出部 49は、 3相電流それぞれの実効値を演算して各 相電流の不平衡率を算出することで 3相不平衡の検出を行うものである。ただし、電 流が流れない相の存在を検出することにより、電源欠相を検出することも可能である 。また、電流実効値を演算して瞬時電圧低下の検出を行うことも可能である。さらに、 各相電流が流れないことから瞬時停電の検出を行うことも可能である。
[0046] 図 4のモータ駆動システムであれば、 PWM整流回路 43の入力側(交流側)の電流 を検出することにより、種々の電源電圧異常を検出することができ、この検出に応答 して、 PWM整流回路 43の構成部品の破損、異音の発生を防止すべく PWMインバ ータ 46および Zまたは PWM整流回路 43を制御することができる。
[0047] 図 5は本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示 す概略図である。
[0048] このモータ駆動システムは、 3相交流電源 61に対してメインリレー 62を介してマトリ ックスコンバータ 63の入力端子を接続し、マトリックスコンバータ 63の出力をモータ 6 7に供給している。そして、マトリックスコンバータ 63とモータ 67との間で電流を検出 するカレントトランスなどの電流検出部 68と、検出された電流値を入力として異常検 出を行い、異常検出信号を出力する異常検出部 69と、検出電流を入力としてマトリツ タスコンバータ 63の各スイッチング素子を制御し、し力も、異常検出信号を入力として マトリックスコンバータ 63のスイッチング素子を、マトリックスコンバータ 63の供給電圧 異常に対処させるベく制御するマトリックスコンバータ制御部 70とを有している。なお 、電流検出部 68としては、 3相分の電流を検出するものであればよいが、 2相分の電 流のみを検出するものであってもよい。後者の場合には、必要な処理部において、残 余の 1相分の電流を演算により検出することができる。
[0049] また、この実施形態においては、マトリックスコンバータ 63が整流回路とインバータ とを兼ねている。
[0050] 異常検出部 69は、 3相電流それぞれの実効値を演算して各相電流の不平衡率を 算出することで 3相不平衡の検出を行うものである。ただし、電流が流れない相の存 在を検出することにより、電源欠相を検出することも可能である。また、電流実効値を 演算して瞬時電圧低下の検出を行うことも可能である。さらに、各相電流が流れない ことから瞬時停電の検出を行うことも可能である。
[0051] また、異常検出部 69は、 PWM動作を停止させる第 1の電源電圧異常検出レベル とそれよりも低い第 2のレベルを設定し、検出した電流値が、第 2のレベル以上で第 1 のレベル未満の場合は、そのキャリア周期でのマトリックスコンバータ 63のスィッチン グ動作を停止させ、部品破壊や異音の発生を防止することを指示する異常検出信号 を出力する機能を有して 、る。
[0052] 通常動作時のマトリックスコンバータ制御部 70の処理、マトリックスコンバータ 63の 動作は従来公知であるから (例えば、平成 16年電気学会全国大会 4— 070〜073参 照)、詳細な説明を省略する。
[0053] 図 5のモータ駆動システムであれば、マトリックスコンバータ 63の出力側の電流を検 出することにより、種々の電源電圧異常を検出することができ、この検出に応答して、 マトリックスコンバータ 63の構成部品の破損、異音の発生を防止すべくマトリックスコ ンバータ 63を制御することができる。
[0054] ただし、図 5の実施形態において、マトリックスコンバータ 63の出力側の電流を検出 する代わりに、マトリックスコンバータ 63の入力側の電流を検出することが可能である
[0055] 次いで、 3相不平衡の検出を、図 6および図 7の波形を参照して説明する。なお、図 6
は、 3相不平衡が ± 2%の場合を、図 7は、 3相不平衡が 0%の場合を、それぞれ示し ている。また、両図において、(A)は各相電圧 Vr、 Vs、 Vtを示し、(B)〜(D)は各相 電流 I (LI)、 I (L2)、 I (L3)を示し、(E)は各相電流 I (LI)、 I (L2)、 I (L3)を合成し た電流を示し、(F)は整流回路の出力電圧 VPを示し、(G)はコンデンサの端子間電 圧 Vdcを示し、 (H)は整流回路の出力側に流れる電流 I (Ld)を示している。
[0056] 図 6と図 7とを対比すれば分力るように、電源電圧の 3相不平衡率が ± 2%の場合に 、電流の不平衡が ± 20%程度になるので、供給電圧波形から電源電圧の 3相不平 衡を検出することは困難であるが、電流波形力も電源電圧の 3相不平衡を検出する ことは容易である。また、電流波形力もの電源電圧の 3相不平衡の検出の精度を高 めることができる。そして、電源電圧の不平衡が生じていても、ダイオードゃコンデン サなど各部品の電流容量を越えていなければ、出力を制限することで、部品の保護 を図りながら運転を維持することが可能となる。
[0057] 図 2に示す単相 PWM整流回路では、電圧歪みが発生すると、図 8に示すような電 圧歪み (供給電圧波形からは検出することが困難な電圧歪み、図 8に示す電源電圧 VAC参照)であっても、入力電流 IACが大きく歪んでしまい、素子破壊を招くおそれ がある。しかし、電流波形力も電源異常の検出が可能である。この場合において、電 圧歪みが生じて 、ても電流のピーク値が過電流レベルとならな 、ように、出力電力を 制御することによって、安全な状態で運転を維持することができる。
[0058] 図 1に示す 3相フルブリッジダイオード整流回路 3では、欠相が発生すると、図 9に 示すように、各部の電圧波形および電流波形が得られるので、簡単に、かつ精度よく 電源欠相が発生したことを検出することができる。
[0059] 上記の実施形態においては、供給電圧波形を検出するのではなぐ電流検出を行 うようにしている。したがって、安価で小型なカレントトランスを用いて電流検出を達成 することができる。すなわち、インバータ制御回路は、そのグランドを整流回路の直流 部のマイナス側にするのが一般的であり、整流回路の交流側で供給電圧波形を検出 するためには、絶縁することが必要になるため、供給電圧検出回路にトランスなどの 高価で大型の部品が必要になるが、電流を検出することによって、高価で大型の部 品を不要にすることができる。
また、従来から、電力制御 (過負荷時の垂下、停止など)を行うために電流検出手段 を設けているのであるから、この電流検出手段を用いて上記の電流検出を行わせる ことが可能であり、コストアップを防止することができる。 PWM整流回路では入力電 流制御に用いられて 、る入力電流検出手段を用いて上記の電流検出を行わせるこ とが可能である。
図面の簡単な説明
[0060] [図 1]本発明の一実施形態を組み込んだモータ駆動システムの構成を示す概略図で ある。
[図 2]本発明の他の実施形態を組み込んだモータ駆動システムの構成を示す概略図 である。
[図 3]本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示す 概略図である。
[図 4]本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示す 概略図である。
[図 5]本発明のさらに他の実施形態を組み込んだモータ駆動システムの構成を示す 概略図である。
[図 6]3相不平衡が ± 2%の場合における各部の電圧波形、および電流波形を示す 図である。
[図 7]3相不平衡が 0%の場合における各部の電圧波形、および電流波形を示す図 である。
[図 8]電源電圧歪み発生時における電源電圧波形および電流波形を示す図である。
[図 9]電源欠相発生時における各部の電圧波形、および電流波形を示す図である。 符号の説明
[0061] 3 3相フルブリッジダイオード整流回路
6 PWMインバータ
8 電流検出部
9 異常検出部
23 単相フルブリッジダイオード整流回路
26 PWMインバータ 電流検出用抵抗 異常検出部
PWM整流回路
PWMインバータ 電流検出用抵抗 異常検出部 電流検出部 マトリックスコンバータ 電流検出部 異常検出部

Claims

請求の範囲
[1] 交流入力電圧を所定の出力電圧に変換する電源回路、および出力電圧を入力とし て所定の動作を行う出力動作回路を含む装置にぉ 、て、
電源回路の電流値を検出し、
検出した電流値から電源回路への供給電圧の異常の有無を判定し、
供給電圧の異常があると判定されたことに応答して、少なくとも出力動作回路を、供 給電圧異常に対処すべく制御する
ことを特徴とする電源回路の保護方法。
[2] 交流入力電圧を所定の出力電圧に変換する電源回路 (3) (23) (43) (63)、および 出力電圧を入力として所定の動作を行う出力動作回路 (6) (26) (46) (63)を含む装 ¾【こ; i l /、て、
電源回路(3) (23) (43) (63)の電流値を検出する電流検出手段 (8) (28) (48) (53 ) (68)と、
検出した電流値力 電源回路(3) (23) (43) (63)への供給電圧の異常の有無を判 定する判定手段 (9) (29) (49) (69)と、
判定手段 (9) (29) (49) (69)により供給電圧の異常があると判定されたことに応答し て、少なくとも出力動作回路 (6) (26) (46) (63)を、供給電圧異常に対処すべく制 御する制御手段(9) (29) (49) (69)と
を含むことを特徴とする電源回路の保護装置。
[3] 前記電流検出手段(53)は、電源回路 (43)の入力側の電流値を検出するものであ る請求項 2に記載の電源回路の保護装置。
[4] 前記電流検出手段 (8) (28) (48) (68)は、電源回路(3) (23) (43) (63)の出力側 の電流値を検出するものである請求項 2に記載の電源回路の保護装置。
[5] 前記判定手段(9) (29) (49) (69)は、供給電圧の異常の有無として電源不平衡の 有無を判定するものである請求項 2に記載の電源回路の保護装置。
[6] 前記判定手段(9) (29) (49) (69)は、供給電圧の異常の有無として電源電圧歪み の有無を判定するものである請求項 2に記載の電源回路の保護装置。
[7] 前記判定手段(9) (29) (49) (69)は、供給電圧の異常の有無として電源欠相の有 無を判定するものである請求項 2に記載の電源回路の保護装置。
[8] 前記判定手段(9) (29) (49) (69)は、供給電圧の異常の有無として瞬時電圧低下 の有無を判定するものである請求項 2に記載の電源回路の保護装置。
[9] 前記判定手段(9) (29) (49) (69)は、供給電圧の異常の有無として瞬時停電の有 無を判定するものである請求項 2に記載の電源回路の保護装置。
[10] 前記制御手段(9) (29) (49) (69)は、判定手段(9) (29) (49) (69)により供給電圧 の異常があると判定されたことに応答して、出力動作回路を停止させるものである請 求項 2に記載の電源回路の保護装置。
[11] 前記制御手段(9) (29) (49) (69)は、判定手段(9) (29) (49) (69)により供給電圧 の異常があると判定されたことに応答して、電源回路を停止させるものである請求項
2に記載の電源回路の保護装置。
[12] 前記判定手段 (9) (29) (49) (69)は、出力動作回路 (6) (26) (46) (63)を停止させ ることが必要な第 1のレベルの供給電圧の異常の有無、および第 1のレベルよりも低 い第 2のレベルの供給電圧の異常の有無を判定するものであり、前記制御手段(9) (
29) (49) (69)は、第 1のレベルの供給電圧の異常に応答して出力動作回路 (6) (2
6) (46) (63)を停止させ、第 2のレベルの供給電圧の異常に応答して出力動作回路
(6) (26) (46) (63)の動作条件を変化させるものである請求項 2から請求項 10の何 れかに記載の電源回路の保護装置。
[13] 前記判定手段 (9) (29) (49) (69)は、出力動作回路 (6) (26) (46) (63)を停止させ ることが必要な第 1のレベルの供給電圧の異常の有無、および第 1のレベルよりも低
V、第 2のレベルの供給電圧の異常の有無を判定するもの
であり、前記制御手段(9) (29) (49) (69)は、第 1のレベルの供給電圧の異常に応 答して電源回路(3) (23) (43) (63)を停止させ、第 2のレベルの供給電圧の異常に 応答して出力動作回路 (6) (26) (46) (63)の動作条件を変化させるものである請求 項 2から請求項 9、請求項 11の何れかに記載の電源回路の保護装置。
PCT/JP2005/018086 2004-10-04 2005-09-30 電源回路の保護方法およびその装置 WO2006038544A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2005290575A AU2005290575B2 (en) 2004-10-04 2005-09-30 Power supply circuit protecting method and apparatus for the same
US11/664,494 US7667941B2 (en) 2004-10-04 2005-09-30 Power supply circuit protecting method and apparatus for the same
ES05787766T ES2435991T3 (es) 2004-10-04 2005-09-30 Procedimiento de protección de circuito de alimentación y aparato para el mismo
EP05787766.4A EP1811645B8 (en) 2004-10-04 2005-09-30 Power supply circuit protecting method and apparatus for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-291315 2004-10-04
JP2004291315A JP4759968B2 (ja) 2004-10-04 2004-10-04 Pwm整流回路の保護方法およびその装置

Publications (1)

Publication Number Publication Date
WO2006038544A1 true WO2006038544A1 (ja) 2006-04-13

Family

ID=36142619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018086 WO2006038544A1 (ja) 2004-10-04 2005-09-30 電源回路の保護方法およびその装置

Country Status (7)

Country Link
US (1) US7667941B2 (ja)
EP (1) EP1811645B8 (ja)
JP (4) JP4759968B2 (ja)
CN (1) CN100590959C (ja)
AU (1) AU2005290575B2 (ja)
ES (1) ES2435991T3 (ja)
WO (1) WO2006038544A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333611A (ja) * 2005-05-25 2006-12-07 Mitsubishi Electric Corp 多相対多相電力変換装置
JP2013154496A (ja) * 2012-01-27 2013-08-15 Sumitomo Heavy Ind Ltd 射出成形機及びコンバータ
CN106058813A (zh) * 2016-07-08 2016-10-26 国家电网公司 一种三相异步电动机电源保护装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045309B2 (en) 2008-02-20 2011-10-25 Merstech, Inc. Magnetic energy recovery switch having protective circuit
JP2009225581A (ja) * 2008-03-17 2009-10-01 Daikin Ind Ltd 電力変換装置
JP2009247063A (ja) * 2008-03-28 2009-10-22 Daikin Ind Ltd 電力変換装置
JP5387859B2 (ja) * 2008-05-30 2014-01-15 株式会社安川電機 マトリクスコンバータの制御装置及びその出力電圧発生方法
JP5353188B2 (ja) * 2008-11-04 2013-11-27 ダイキン工業株式会社 ヒートポンプ装置
DE112008004182T5 (de) * 2008-11-13 2012-03-15 Merstech, Inc. Magnetenergie-Rückgewinnungsschalter, eine Schutzschaltung aufweisend
JP5274236B2 (ja) * 2008-12-25 2013-08-28 株式会社日立製作所 3相インバータの電源回路保護装置
WO2010114513A1 (en) * 2009-03-30 2010-10-07 Hewlett-Packard Development Company, L.P. Three phase power supply fault protection
WO2010122648A1 (ja) * 2009-04-23 2010-10-28 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP4706987B2 (ja) * 2009-07-15 2011-06-22 ダイキン工業株式会社 電力変換回路
JP2011155782A (ja) * 2010-01-28 2011-08-11 Daihen Corp 溶接電源装置
FR2967528B1 (fr) * 2010-11-15 2014-04-11 Schneider Toshiba Inverter Systeme de protection d'un convertisseur de puissance en cas d'erreur de cablage
JP5942337B2 (ja) * 2011-04-28 2016-06-29 株式会社ジェイテクト 車両用操舵装置
JP5906679B2 (ja) * 2011-11-10 2016-04-20 富士電機株式会社 電力変換装置、および過電流保護回路
JP2013158219A (ja) * 2012-01-31 2013-08-15 Nippon Densan Corp モータユニット
JP5429316B2 (ja) * 2012-03-02 2014-02-26 ダイキン工業株式会社 インダイレクトマトリックスコンバータ
US8988026B2 (en) * 2012-07-31 2015-03-24 Rockwell Automation Technologies, Inc. Single phase operation of a three-phase drive system
JP2014064447A (ja) * 2012-08-30 2014-04-10 Mitsubishi Heavy Ind Ltd コンバータ制御装置、方法、プログラム及び空気調和機
CN104218543B (zh) * 2013-05-30 2016-12-28 南京南瑞继保电气有限公司 电流源型变流器差动保护方法
JP5971483B2 (ja) * 2013-06-21 2016-08-17 Jfeスチール株式会社 三相巻線形誘導電動機のスリップリングにおける欠相検知方法およびその検知装置
JP5900522B2 (ja) * 2014-01-22 2016-04-06 トヨタ自動車株式会社 車両の電源装置
CN103969498A (zh) * 2014-05-30 2014-08-06 江苏容天机电科技有限公司 一种大功率高频电源输出过压检测电路
JP6446855B2 (ja) * 2014-06-20 2019-01-09 株式会社安川電機 電力変換装置、状態検出装置および状態検出方法
JP6344558B2 (ja) * 2014-07-11 2018-06-20 富士電機株式会社 半導体電力変換器の故障検出装置
JP6156282B2 (ja) * 2014-08-07 2017-07-05 株式会社デンソー 回転機の制御装置
JP5839374B1 (ja) * 2014-09-29 2016-01-06 山洋電気株式会社 モータ制御装置
JP6532099B2 (ja) * 2014-10-17 2019-06-19 三菱重工業株式会社 電流推定回路、ac−dcコンバータ、電力制御装置、電流推定方法及びプログラム
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
JP6453108B2 (ja) * 2015-02-25 2019-01-16 日立ジョンソンコントロールズ空調株式会社 電力変換装置、アクティブフィルタ、及びモータ駆動装置
TWI555316B (zh) * 2015-10-07 2016-10-21 財團法人工業技術研究院 保護電路
US10855194B2 (en) * 2015-12-22 2020-12-01 Thermatool Corp. High frequency power supply system with closely regulated output for heating a workpiece
WO2017138176A1 (ja) * 2016-02-08 2017-08-17 三菱電機株式会社 電力変換装置
AU2016434774B2 (en) * 2016-12-28 2020-06-25 Mitsubishi Electric Corporation Converter device, motor driving apparatus, refrigerator, air conditioning apparatus, and heat pump water heater
WO2018131120A1 (ja) * 2017-01-12 2018-07-19 三菱電機株式会社 空気調和機
EP3676925A1 (en) * 2017-08-29 2020-07-08 Eaton Intelligent Power Limited Matrix converter with solid state circuit breaker
US11038340B2 (en) * 2017-09-21 2021-06-15 Eaton Intelligent Power Limited Soft-starter AC-AC converter with integrated solid-state circuit breaker and method of operation thereof
JP6988670B2 (ja) * 2018-04-24 2022-01-05 三菱電機株式会社 駆動回路、パワーモジュール及び電力変換システム
CN110579720B (zh) * 2018-06-08 2022-08-30 台达电子工业股份有限公司 电源监控器
CN112840522A (zh) * 2019-06-17 2021-05-25 东芝三菱电机产业系统株式会社 电源装置以及交流电源的异常检测方法
JP6689478B1 (ja) * 2019-10-28 2020-04-28 三菱電機株式会社 コンバータおよびモータ制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184316A (ja) * 1993-12-24 1995-07-21 Nec Corp 欠相検出回路
JPH09163752A (ja) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm制御自励式整流装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878434A (ja) * 1972-01-28 1973-10-22
US4719555A (en) * 1985-12-19 1988-01-12 Hitachi, Ltd. Electric power control apparatus with first and second fixed time intervals
JPS6369462A (ja) * 1986-09-10 1988-03-29 Japan Storage Battery Co Ltd サイリスタ整流器の欠相及び不平衡検出装置
US4918592A (en) * 1986-10-31 1990-04-17 Honda Giken Kogyo Kabushiki Kaisha Power regulating system for portable engine generator
JPH0681416B2 (ja) * 1987-07-28 1994-10-12 三菱電機株式会社 交流電動機駆動装置
JP2928264B2 (ja) * 1989-03-20 1999-08-03 株式会社日立製作所 半導体電力変換システム
JPH02302809A (ja) * 1989-05-18 1990-12-14 Kawamura Denki Sangyo Kk オートトランス投入回路
JP3158212B2 (ja) * 1991-08-20 2001-04-23 株式会社日立製作所 電力変換システム及びその制御方法
JP3251616B2 (ja) * 1991-11-12 2002-01-28 オークマ株式会社 インバータ制御装置
JPH06105556A (ja) * 1992-09-17 1994-04-15 Hitachi Ltd 電力変換装置
JPH07322622A (ja) * 1994-05-18 1995-12-08 Toshiba Corp 電力変換装置
JPH099487A (ja) * 1995-06-23 1997-01-10 Sanyo Electric Co Ltd 空気調和装置の制御装置
JPH09247944A (ja) * 1996-03-06 1997-09-19 Fuji Electric Co Ltd Pwm制御自励式整流装置
JPH09266695A (ja) * 1996-03-28 1997-10-07 Mitsubishi Electric Corp 周波数変換装置
TW528847B (en) * 1998-06-18 2003-04-21 Hitachi Ltd Refrigerator
US6396721B1 (en) * 2000-02-03 2002-05-28 Kabushiki Kaisha Toshiba Power converter control device and power converter thereof
JP2001286148A (ja) * 2000-03-30 2001-10-12 Yuasa Corp 多相整流回路の制御方法および制御装置ならびに多相整流回路を制御するためのプログラムを記録したコンピュータ読取可能な記録媒体
JP3473569B2 (ja) * 2000-11-10 2003-12-08 ダイキン工業株式会社 制御装置
JP2002186172A (ja) * 2000-12-14 2002-06-28 Kokusan Denki Co Ltd インバータ発電装置及びその過負荷時制御方法
JP2002204524A (ja) * 2001-01-05 2002-07-19 Daikin Ind Ltd 負荷の運転制御方法
JP2003016948A (ja) 2001-07-05 2003-01-17 Matsushita Electric Ind Co Ltd 面放電型プラズマ・ディスプレイ・パネル
EP1446869A1 (en) * 2001-11-23 2004-08-18 Danfoss Drives A/S Frequency converter for different mains voltages
JP2003169481A (ja) * 2001-11-30 2003-06-13 Daikin Ind Ltd 電源装置および空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07184316A (ja) * 1993-12-24 1995-07-21 Nec Corp 欠相検出回路
JPH09163752A (ja) * 1995-12-11 1997-06-20 Fuji Electric Co Ltd Pwm制御自励式整流装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811645A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333611A (ja) * 2005-05-25 2006-12-07 Mitsubishi Electric Corp 多相対多相電力変換装置
JP2013154496A (ja) * 2012-01-27 2013-08-15 Sumitomo Heavy Ind Ltd 射出成形機及びコンバータ
CN106058813A (zh) * 2016-07-08 2016-10-26 国家电网公司 一种三相异步电动机电源保护装置

Also Published As

Publication number Publication date
JP5429205B2 (ja) 2014-02-26
JP2011092004A (ja) 2011-05-06
EP1811645A1 (en) 2007-07-25
JP5267591B2 (ja) 2013-08-21
AU2005290575B2 (en) 2009-08-13
JP2011092003A (ja) 2011-05-06
JP2011092005A (ja) 2011-05-06
US7667941B2 (en) 2010-02-23
CN101040428A (zh) 2007-09-19
EP1811645A4 (en) 2011-10-26
EP1811645B8 (en) 2013-10-02
JP2006109583A (ja) 2006-04-20
JP5223935B2 (ja) 2013-06-26
CN100590959C (zh) 2010-02-17
ES2435991T3 (es) 2013-12-26
JP4759968B2 (ja) 2011-08-31
AU2005290575A1 (en) 2006-04-13
EP1811645B1 (en) 2013-08-28
US20080130183A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5267591B2 (ja) Pwm整流回路の保護方法およびその装置
JP5274236B2 (ja) 3相インバータの電源回路保護装置
KR100566437B1 (ko) 위상천이를 이용한 인버터 고장 검출 장치 및 방법
US8379353B2 (en) Method for detecting earth-fault conditions in a motor controller
AU2009230596B2 (en) Power conversion apparatus
CN102334269B (zh) 具有过电流保护的功率因数校正电路
JP3864793B2 (ja) Pwmサイクロコンバータ及びpwmサイクロコンバータの保護方法
JP2001218474A (ja) インバータの地絡検出方法および検出装置
JP4609634B2 (ja) 交流−交流直接変換器の保護装置
JP4766241B2 (ja) 直流電圧降圧回路および電力変換装置
KR20000001770A (ko) 역률제어용 승압형 컨버터의 구동제어장치
JP4139951B2 (ja) 電力変換装置および電力変換方法
JPH0654550A (ja) 欠相検知装置
KR100734352B1 (ko) 인버터 시스템
KR100202599B1 (ko) 유도모타의 과전류 보호장치
KR20030050930A (ko) 인버터공기조화기의 역률개선제어회로
KR102116680B1 (ko) 공기 조화기의 전원장치
JP4235910B2 (ja) 巻線形誘導電動機の制御装置
JPH0746905B2 (ja) インバータ装置
JPH10304554A (ja) 交直変換器の異常検出装置および保護装置
KR20210069372A (ko) 인버터 제어장치 및 방법
JPH06233551A (ja) インバータ装置
JPH04207992A (ja) エレベータの電力変換装置
JPS63114502A (ja) 電気車制御装置
JPS6335183A (ja) 電動機制御装置の保護装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580033613.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005787766

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005290575

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005290575

Country of ref document: AU

Date of ref document: 20070430

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11664494

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005787766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11664494

Country of ref document: US