WO2018131120A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018131120A1
WO2018131120A1 PCT/JP2017/000832 JP2017000832W WO2018131120A1 WO 2018131120 A1 WO2018131120 A1 WO 2018131120A1 JP 2017000832 W JP2017000832 W JP 2017000832W WO 2018131120 A1 WO2018131120 A1 WO 2018131120A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
value
current
alternating current
unit
Prior art date
Application number
PCT/JP2017/000832
Other languages
English (en)
French (fr)
Inventor
宏昭 鈴木
加藤 崇行
照佳 村松
貴寛 平田
誠 谷川
友美 東川
泰明 江村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/000832 priority Critical patent/WO2018131120A1/ja
Priority to JP2018561158A priority patent/JP6639705B2/ja
Publication of WO2018131120A1 publication Critical patent/WO2018131120A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Definitions

  • the present invention relates to an air conditioner that detects a phase failure of a three-phase AC power source.
  • an air conditioner control device detects an AC current of two phases of the three phases using an AC current detection device, and the remaining one.
  • the value of the remaining one-phase alternating current is calculated using the value of the two-phase alternating current that is the detection result without using the alternating current detecting device.
  • the phase loss of the three-phase AC power supply means that at least one of the three-phase AC currents supplied from the three-phase AC power supply is not supplied from the three-phase AC power supply due to a contact failure of the power line.
  • the control device compares the magnitudes of the three-phase AC currents with a threshold value that is an arbitrary value, If at least one of the values is equal to or greater than the threshold value, it is determined that the three-phase AC power supply is in an open phase state (see Patent Document 1).
  • the control device may erroneously determine that the phase is lost even though the three-phase AC power supply is not open. If the controller determines that the three-phase AC power supply is in an open-phase state and stops the operation of the air conditioner, the air conditioner is stopped for several minutes due to restrictions on the control of the refrigerant circuit. It is necessary to reduce the air conditioning performance of the air conditioner. Therefore, an unnecessary operation stop of the air conditioner is not preferable as a product.
  • This invention is made in view of the above, Comprising: It aims at obtaining the air conditioner which can suppress the misjudgment of the open phase state of a three-phase alternating current power supply.
  • the air conditioner according to the present invention includes a compressor.
  • the air conditioner includes an AC / DC converter that converts a three-phase AC current supplied from a three-phase AC power source into a DC current.
  • the air conditioner includes a DC / AC converter that converts the DC current converted by the AC / DC converter into a pseudo three-phase AC current.
  • the air conditioner includes a compressor motor that is supplied with the pseudo three-phase alternating current converted by the direct current alternating current conversion unit and drives the compressor.
  • the air conditioner includes a motor current detection unit that detects a pseudo three-phase alternating current supplied to the compressor motor.
  • the air conditioner includes a first AC current detection unit that detects an AC current of a first phase of a three-phase AC power source.
  • the air conditioner includes a second alternating current detection unit that detects the alternating current of the second phase of the three-phase alternating current power supply.
  • the air conditioner determines the phase loss of the three-phase AC power supply based on the detection result by the motor current detection unit, the detection result by the first AC current detection unit, and the detection result by the second AC current detection unit. A part.
  • the air conditioner according to the present invention has an effect of being able to suppress erroneous determination of the phase loss state of the three-phase AC power supply.
  • the block diagram which shows an example of the air conditioner concerning embodiment of this invention The block diagram which shows an example of a function structure of the control apparatus in FIG.
  • FIG. 1 is a configuration diagram illustrating an example of an air conditioner according to an embodiment of the present invention.
  • the air conditioner 10 includes an indoor unit 20 and an outdoor unit 30. Electric power is supplied from the three-phase AC power supply 50 to each of the indoor unit 20 and the outdoor unit 30.
  • the three-phase AC power source 50 is a commercial power source, for example.
  • the indoor unit 20 and the outdoor unit 30 are connected via a refrigerant pipe (not shown).
  • the outdoor unit 30 includes a control device 31, alternating current detection devices 32 and 33, a power generation device 34, a communication device 35, a combined current detection device 36, a transistor module 37, and a compressor motor 38.
  • Current detectors 39 and 40, an AC / DC converter 41, a reactor 42, and a smoothing capacitor 43 are provided.
  • the compressor motor 38 drives the compressor of the outdoor unit 30.
  • the control device 31 is an example of a control unit and a determination unit.
  • the alternating current detection device 32 is an example of a first alternating current detection unit.
  • the alternating current detection device 33 is an example of a second alternating current detection unit.
  • the combined current detection device 36 is an example of a motor current detection unit.
  • the transistor module 37 is an example of a DC / AC converter.
  • the phase-specific current detection devices 39 and 40 are an example of a motor current detection unit.
  • the AC / DC converter 41 is an example of an AC / DC converter.
  • AC / DC converter 41, reactor 42 and smoothing capacitor 43 are provided between three-phase AC power supply 50 and transistor module 37.
  • the AC / DC converter 41 converts the AC power supplied from the three-phase AC power supply 50 into DC power by using six diode elements D1 to D6 incorporated therein.
  • the AC power supplied from the three-phase AC power supply 50 is stored as DC power in the smoothing capacitor 43 via the AC / DC converter 41.
  • the smoothing capacitor 43 is provided to smooth the drive control of the compressor motor 38, and the smoothing capacitor 43 may not be provided.
  • the smoothed direct current is supplied to the transistor module 37.
  • the transistor module 37 is provided between the AC / DC converter 41 and the compressor motor 38.
  • the transistor module 37 converts the supplied direct current into a pseudo three-phase alternating current by operating the six built-in switching elements SW1 to SW6 according to a predetermined order.
  • the pseudo three-phase alternating current generated by the transistor module 37 is supplied to the compressor motor 38.
  • the operation order of the six switching elements SW1 to SW6 incorporated in the transistor module 37 is determined in advance by the control device 31, and the six switching elements incorporated in the transistor module 37 are determined according to the signal pattern output from the control device 31.
  • the operation order of the elements SW1 to SW6 is determined.
  • the control device 31 controls the overall operation of the outdoor unit 30.
  • the control device 31 controls the operating frequency of the compressor motor 38.
  • the control device 31 transmits and receives various signals to and from the indoor unit 20 via the communication device 35.
  • the control device 31 operates the indoor unit 20 and the outdoor unit 30 in cooperation with each other by transmitting and receiving various signals to and from the indoor unit 20.
  • the control device 31 performs the phase loss detection process of FIG. 4 to be described later, whereby the phase loss of the three-phase AC power supply 50 when the three-phase voltage of the three-phase AC power supply 50 is biased. An erroneous determination of the state can be suppressed.
  • the detection result of the alternating current by the phase-specific current detection device 39 provided in the power supply line 47 and the detection result of the alternating current by the phase-specific current detection device 40 provided in the power supply line 49 are voltages.
  • Each signal is input to the control device 31.
  • the control device 31 uses the power line 48 based on the detection result of the alternating current by the phase-specific current detection device 39 provided in the power line 47 and the detection result of the alternating current by the phase-specific current detection device 40 provided in the power line 49. The value of the alternating current flowing through the is calculated.
  • the value of the alternating current flowing through the compressor motor 38 in which the three phases of the three-phase alternating current are synthesized is the value of the alternating current flowing through the power line 47 as the detection result and the alternating current flowing through the power line 48 as the calculation result. And the value of the alternating current flowing through the power line 49 as a detection result.
  • the outdoor unit 30 since the control device 31 does not need to calculate the value of the alternating current flowing through the power line 48 and does not need to calculate the value of the alternating current flowing through the compressor motor 38, the outdoor unit 30 has the phase-specific current detection device. 39 and the phase-specific current detection device 40 may not be provided.
  • the power consumed by the compressor motor 38 is supplemented by the three-phase AC power supply 50.
  • the alternating current of the first phase flowing through the power supply line 45 is detected by the alternating current detection device 32 provided in the power supply line 45, and the alternating current of the second phase flowing through the power supply line 46 is The detection result is input to the control device 31 as a voltage signal.
  • the power generation device 34 generates power to be a power source for the communication device 35.
  • the power generation device 34 is an example of a power generation unit.
  • the communication device 35 is an example of a communication unit.
  • the power generation device 34 is connected to the power supply line 44 and the power supply line 45, and generates power to be a power source for the communication device 35 from the alternating current flowing through the power supply line 44 and the power supply line 45.
  • the present embodiment with respect to the third-phase alternating current flowing through the power supply line 44 not provided with the alternating-current detection device, it is impossible to generate power to be the power source of the communication device 35 when this phase is lost. It becomes a state.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the control device 31 in FIG. 1 .
  • the control device 31 includes a control unit 100, an input / output unit 110, and a storage unit 120.
  • the control unit 100 includes an operation state determination unit 101, an operation frequency determination unit 102, a motor current determination unit 103, an AC current determination unit 104, a timer measurement unit 105, and a power supply phase loss determination unit 106.
  • the timer measurement unit 105 is an example of a measurement unit.
  • the operating state determination unit 101 determines whether the compressor motor 38 is in an operating state or a stopped state.
  • the operating frequency determination unit 102 determines whether or not the value of the operating frequency of the compressor motor 38 exceeds the value F1.
  • the value F1 is an example of a first value. In order to increase the value of the operating frequency of the compressor motor 38, it is necessary to increase the value of the alternating current supplied from the three-phase alternating current power supply 50.
  • the value F1 is set in advance, and even when the voltage of the three-phase AC power supply 50 is biased, the value detected by the AC current detection device 32 does not fall below the value of I1, which will be described later. This is to ensure that the value detected by the AC current detection device 33 does not fall below the value of I2 described later.
  • the value detected by the AC current detection device 32 when the value of the operating frequency of the compressor motor 38 exceeds the value F1, the value detected by the AC current detection device 32 even when the voltage of the three-phase AC power supply 50 is biased. It is guaranteed that the value of I1 described later does not fall below and that the value detected by the alternating current detection device 33 does not fall below the value of I2 mentioned later.
  • the value F1 is set in advance with reference to a situation in which the alternating current detection devices 32 and 33 can input a value other than zero to the control device 31 in an environment where the current hardly flows.
  • the motor current determination unit 103 calculates the value of the alternating current flowing through the compressor motor 38 based on the voltage signal input from the phase-specific current detection devices 39 and 40, and the three phases of the three-phase alternating current are synthesized. It is determined whether the value of the alternating current flowing through the compressor motor 38 exceeds the value X1.
  • the value X1 is an example of a second value. In order to increase the value of the alternating current flowing through the compressor motor 38, it is necessary to increase the value of the alternating current supplied from the three-phase AC power supply 50.
  • the value X1 is set in advance, and even when the voltage of the three-phase AC power supply 50 is biased, the value detected by the AC current detection device 32 does not fall below the value of I1 described later, and This is to ensure that the value detected by the AC current detection device 33 does not fall below the value of I2 described later. That is, when the value of the alternating current flowing through the compressor motor 38 exceeds the value X1, the value detected by the alternating current detection device 32 even when the voltage of the three-phase alternating current power supply 50 is biased. Is not less than the value of I1 described later, and the value detected by the alternating current detection device 33 is guaranteed not to be lower than the value of I2 described later.
  • the value X1 is set in advance with reference to a situation in which the value of the alternating current flowing through the compressor motor 38 increases and the influence of the voltage deviation of the three-phase alternating current power supply 50 starts to appear noticeably.
  • the alternating current determination unit 104 determines whether or not the value of the alternating current flowing through the power supply line 45 is lower than the value I1, based on the voltage signal input from the alternating current detection device 32.
  • the value I1 is an example of a third value.
  • the value I1 is set in advance and is set to a value that is determined to be an open phase. For example, the value I1 is set assuming a maximum value that can be input to the control device 31 when the power supply phase of the power supply line 45 is in an open phase state.
  • the alternating current determination unit 104 determines whether the value of the alternating current flowing through the power supply line 46 is lower than the value I2 based on the voltage signal input from the alternating current detection device 33.
  • the value I2 is an example of a fourth value.
  • the value I2 is set in advance and is set to a value that is determined to be an open phase.
  • the value I2 is set assuming a maximum value that can be input to the control device 31 when the power supply phase of the power supply line 46 is in an open phase state.
  • the timer measuring unit 105 uses a timer (not shown) to measure the time during which the alternating current flowing through the power supply line 45 is below the value I1 or the alternating current flowing through the power supply line 46 is below the value I2. .
  • the timer measuring unit 105 determines whether or not the measured value of the timer is greater than or equal to the value T1.
  • the value T1 is set in advance, and is set to a value at which it is possible to determine that the bias between the phases of the voltage of the three-phase AC power supply 50 is temporary.
  • the power supply phase loss determination unit 106 determines that the three-phase AC power supply 50 is in a phase loss state when the timer measurement unit 105 determines that the measured value of the timer is equal to or greater than the value T1.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the control circuit 200 of the control device 31 in FIG.
  • the control device 31 includes a control circuit 200 that is hardware that implements the control unit 100, the input / output unit 110, and the storage unit 120.
  • the control circuit 200 includes an input / output interface circuit 201 including an input circuit for inputting information from the outside of the control circuit 200 and an output circuit for outputting the information to the outside of the control circuit 200, a processor 202, and a memory 203. .
  • the input / output interface circuit 201 sends information received from the outside to the memory 203.
  • the memory 203 stores information received from the input / output interface circuit 201.
  • the memory 203 stores a computer program.
  • the processor 202 reads a computer program stored in the memory 203 and performs arithmetic processing based on information stored in the memory 203. Calculation result information indicating the calculation result by the processor 202 is sent to the memory 203.
  • the input / output interface circuit 201 sends information stored in the memory 203 to the outside.
  • the input / output interface circuit 201 implements the input / output unit 110.
  • the processor 202 implements the control unit 100.
  • the memory 203 implements the storage unit 120.
  • FIG. 4 is a flowchart of the phase loss detection process executed by the control device 31 in FIG. The process of FIG. 4 is executed while power is being supplied to the outdoor unit 30 from the three-phase AC power supply 50.
  • step S101 the operation state determination unit 101 of the control device 31 determines whether or not the compressor motor 38 is in an operation state.
  • the compressor motor 38 cannot be stopped by itself, and is stopped by a command from the control device 31. Therefore, the operation state determination unit 101 determines that the compressor motor 38 is in an operating state if the control device 31 drives the compressor motor 38, and if the control device 31 stops the compressor motor 38. It is determined that the compressor motor 38 is not in an operating state, that is, is in a stopped state.
  • step S101 when the operation state determination unit 101 determines that the compressor motor 38 is in the operation state (Yes in step S101), the process proceeds to step S102.
  • step S101 when the operation state determination unit 101 determines that the compressor motor 38 is not in an operation state, that is, is in a stop state (No in step S101), the process proceeds to step S110.
  • step S110 the timer measurement unit 105 of the control device 31 executes the process of step S107 described later, stops the timer measurement if the timer measurement is in progress, clears the timer measurement value, and executes step S101. Return to processing.
  • step S101 the timer measurement unit 105 of the control device 31 does not execute the process of step S107, which will be described later, and it is not necessary to stop the timer measurement unless the timer is being measured, and the process returns to the process of step S101. .
  • step S102 the operating frequency determination unit 102 of the control device 31 determines whether or not the operating frequency of the compressor motor 38 exceeds the value F1.
  • step S102 when the operation frequency determination unit 102 determines that the operation frequency of the compressor motor 38 exceeds the value F1 (Yes in step S102), the process proceeds to step S103.
  • step S102 when the operation frequency determination unit 102 determines that the operation frequency of the compressor motor 38 does not exceed the value F1, that is, is equal to or less than the value F1 (No in step S102), step S110. Proceed to the process.
  • step S103 the motor current determination unit 103 of the control device 31 calculates the value of the alternating current flowing through the power supply line 48 based on the voltage signal input from the phase-specific current detection devices 39 and 40, thereby obtaining a three-phase alternating current.
  • the value of the alternating current flowing through the compressor motor 38 combined with the three phases of the current is calculated, and it is determined whether or not the value of the alternating current flowing through the compressor motor 38 exceeds the value X1.
  • the motor current determination unit 103 of the control device 31 determines whether or not the value of the alternating current flowing through the compressor motor 38 exceeds the value X1 based on the voltage signal input from the combined current detection device 36. You may judge.
  • step S103 when the motor current determination unit 103 determines that the value of the alternating current flowing through the compressor motor 38 exceeds the value X1 (Yes in step S103), the process proceeds to step S104. .
  • step S103 when the motor current determination unit 103 determines that the value of the alternating current flowing through the compressor motor 38 does not exceed the value X1, that is, is equal to or less than the value X1 (No in step S103). The process proceeds to step S110.
  • step S104 it is guaranteed that the compressor motor 38 and the transistor module 37 are normally connected.
  • step S104 even when the voltage of the three-phase AC power supply 50 is biased, the value detected by the AC current detection device 32 does not fall below the value of I1 described above, and the AC current It is guaranteed that the value detected by the detection device 33 does not fall below the value of I2 described above. Thereby, the erroneous detection of the missing phase due to the voltage deviation of the three-phase AC power supply 50 can be suppressed.
  • step S104 the alternating current determination unit 104 of the control device 31 determines whether the value of the alternating current flowing through the power supply line 45 is lower than the value I1, based on the voltage signal input from the alternating current detection device 32. To do.
  • step S104 when the alternating current determination unit 104 determines that the value of the alternating current flowing through the power supply line 45 is lower than the value I1 (Yes in step S104), the process proceeds to step S106.
  • step S104 when the alternating current determination unit 104 determines that the value of the alternating current flowing through the power supply line 45 is not lower than the value I1, that is, is equal to or larger than the value I1 (No in step S104), The process proceeds to step S105.
  • step S105 the alternating current determination unit 104 of the control device 31 determines whether or not the value of the alternating current flowing through the power line 46 is lower than the value I2 based on the voltage signal input from the alternating current detection device 33. To do.
  • step S105 when the alternating current determination unit 104 determines that the value of the alternating current flowing through the power line 46 is lower than the value I2 (Yes in step S105), the process proceeds to step S106.
  • step S105 when the alternating current determination unit 104 determines that the value of the alternating current flowing through the power supply line 46 is not lower than the value I2, that is, is equal to or larger than the value I2 (No in step S105), The process proceeds to step S110.
  • step S106 the timer measuring unit 105 of the control device 31 determines whether or not a timer that measures time by executing the process of step S107 described later is being measured. If it is determined in step S106 that the timer is measuring, the process of step S107 is executed, the process returns to step S101 via the process of step S108 described later, and the process of step S106 is performed. is there.
  • step S106 when the timer measurement unit 105 executes the process of step S107 described later and determines that the timer is measuring (Yes in step S106), the process proceeds to step S108.
  • step S106 when the timer measurement unit 105 determines that the timer is not being measured (No in step S106), the timer measurement unit 105 starts measuring the timer (step S107), and step S108. Proceed to the process.
  • step S108 the timer measurement unit 105 determines whether the measured value of the timer is equal to or greater than the value T1.
  • step S108 when the timer measurement unit 105 determines that the measured value of the timer is equal to or greater than the value T1 (Yes in step S108), the power supply phase loss determination unit 106 of the control device 31 It is determined that the AC power supply 50 is in an open phase state (step S109), and this process ends.
  • the control device 31 stops the operation of the outdoor unit 30 and pre- A predetermined communication signal is transmitted, and the display function of the indoor unit 20 is used to inform the user that the three-phase AC power supply 50 is in a phase-out state.
  • step S108 when the timer measurement unit 105 determines that the measured value of the timer is not equal to or greater than the value T1 (No in step S108), the process returns to step S101.
  • the value detected by the AC current detector 32 is the value of I1 described above. And the value detected by the alternating current detection device 33 is guaranteed not to fall below the value of I2. That is, depending on the voltage deviation of the three-phase AC power supply 50, the process does not proceed to step S106. Thereby, the erroneous detection of the missing phase due to the voltage deviation of the three-phase AC power supply 50 can be suppressed.
  • Step S109 when the timer measurement unit 105 determines that the measured value of the timer is equal to or greater than the value T1 (Yes in step S108), it is determined that the three-phase AC power supply 50 is in an open phase state.
  • Step S109 even when the process proceeds to step S104, the three-phase AC power supply 50 is not determined to be in an open-phase state due to a temporary deviation of the voltage of the three-phase AC power supply 50 between phases.
  • the phase loss state of the phase AC power supply 50 can be determined more accurately.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit and change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Inverter Devices (AREA)

Abstract

空気調和機(10)は、三相交流電源(50)から供給された三相交流電流を直流電流に変換する交流直流変換装置(41)と、変換された直流電流を疑似三相交流電流に変換するトランジスタモジュール(37)と、疑似三相交流電流が供給される圧縮機モータ(38)と、圧縮機モータ(38)に供給される疑似三相交流電流を検出する相別電流検出装置(39,40)と、三相交流電源(50)の第1の相の交流電流を検出する交流電流検出装置(32)と、三相交流電源(50)の第2の相の交流電流を検出する交流電流検出装置(33)と、相別電流検出装置(39,40)による検出結果、および交流電流検出装置(32,33)による検出結果に基づいて、三相交流電源(50)の欠相を判定する制御装置(31)を備える。

Description

空気調和機
 本発明は、三相交流電源の欠相の検知を行う空気調和機に関する。
 一般に、空気調和機の制御装置は、三相交流電源の三相の交流電流を検出する場合、三相のうちの二相の交流電流については交流電流検出装置を用いて検出し、残りの一相の交流電流については交流電流検出装置を用いることなく、検出結果である二相の交流電流の値を使用して残りの一相の交流電流の値の算出を行っている。三相交流電源の欠相とは、三相交流電源から供給される三相交流電流のうちの少なくとも1つの交流電流が、電源線の接触不良といった原因によって、三相交流電源から供給されなくなることをいう。そして、制御装置は、三相交流電源の欠相の検知を行う場合は、三相の交流電流のそれぞれの値と任意の値である閾値との大きさを比較し、三相の交流電流のそれぞれの値のうち、1つでも閾値以上なものがあれば三相交流電源が欠相状態であると判定している(特許文献1参照)。
国際公開第2015/033427号
 しかしながら、三相交流電源の三相の電圧が相間で偏っている、すなわち三相交流電源の三相の電圧のうちの少なくとも1つの相の電圧が他の相の電圧と異なっていると、三相の交流電流の値に相間で大幅な偏りが発生し、制御装置が、三相交流電源が欠相していないにもかかわらず欠相状態と誤判定してしまう場合があった。制御装置が、三相交流電源が欠相状態であると判定し、空気調和機の運転を停止してしまうと、冷媒回路の制御の制約上、数分間の空気調和機の運転停止期間を確保する必要があり、空気調和機の空調性能を低下させることになる。そのため、空気調和機の不要な運転停止は製品として好ましくない。
 本発明は、上記に鑑みてなされたものであって、三相交流電源の欠相状態の誤判定を抑制することができる空気調和機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる、空気調和機は、圧縮機を備える。空気調和機は、三相交流電源から供給された三相交流電流を直流電流に変換する交流直流変換部を備える。空気調和機は、交流直流変換部により変換された直流電流を疑似三相交流電流に変換する直流交流変換部を備える。空気調和機は、直流交流変換部により変換された疑似三相交流電流が供給され、圧縮機を駆動する圧縮機モータを備える。空気調和機は、圧縮機モータに供給される疑似三相交流電流を検出するモータ電流検出部を備える。空気調和機は、三相交流電源の第1の相の交流電流を検出する第1の交流電流検出部を備える。空気調和機は、三相交流電源の第2の相の交流電流を検出する第2の交流電流検出部を備える。空気調和機は、モータ電流検出部による検出結果、第1の交流電流検出部による検出結果、および第2の交流電流検出部による検出結果に基づいて、三相交流電源の欠相を判定する判定部を備える。
 本発明にかかる空気調和機は、三相交流電源の欠相状態の誤判定を抑制することができるという効果を奏する。
本発明の実施の形態にかかる空気調和機の一例を示す構成図 図1における制御装置の機能構成の一例を示すブロック図 図1における制御装置の制御回路のハードウェア構成の一例を示す図 図1における制御装置が実行する欠相検知処理のフローチャート
 以下に、本発明の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 まず、本発明の実施の形態にかかる空気調和機について説明する。図1は、本発明の実施の形態にかかる空気調和機の一例を示す構成図である。
 図1に示すように、空気調和機10は、室内機20と、室外機30とを備える。室内機20および室外機30のそれぞれに三相交流電源50から電力が供給される。三相交流電源50は、たとえば商用電源である。室内機20および室外機30は、図示しない冷媒配管を介して接続される。
 室外機30は、制御装置31と、交流電流検出装置32,33と、電源生成装置34と、通信装置35と、合成電流検出装置36と、トランジスタモジュール37と、圧縮機モータ38と、相別電流検出装置39,40と、交流直流変換装置41と、リアクタ42と、平滑コンデンサ43とを備える。圧縮機モータ38は、室外機30の圧縮機を駆動する。制御装置31は、制御部および判定部の一例である。交流電流検出装置32は、第1の交流電流検出部の一例である。交流電流検出装置33は、第2の交流電流検出部の一例である。合成電流検出装置36は、モータ電流検出部の一例である。トランジスタモジュール37は、直流交流変換部の一例である。相別電流検出装置39,40は、モータ電流検出部の一例である。交流直流変換装置41は、交流直流変換部の一例である。
 交流直流変換装置41、リアクタ42および平滑コンデンサ43は、三相交流電源50と、トランジスタモジュール37との間に設けられる。交流直流変換装置41は、内蔵される6つのダイオード素子D1~D6により、三相交流電源50から供給された交流電力を直流電力に変換する。三相交流電源50から供給される交流電力、交流直流変換装置41を経て平滑コンデンサ43に直流電力として蓄えられる。平滑コンデンサ43は、圧縮機モータ38の駆動制御を円滑化するために設けているものであり、平滑コンデンサ43を設けなくてもよい。平滑化された直流電流はトランジスタモジュール37に供給される。
 トランジスタモジュール37は、交流直流変換装置41と、圧縮機モータ38との間に設けられる。トランジスタモジュール37は、内蔵される6つのスイッチング素子SW1~SW6を予め決められた順序に従って動作させることにより、供給された直流電流を疑似三相交流電流に変換する。トランジスタモジュール37により生成された疑似三相交流電流は、圧縮機モータ38に供給される。トランジスタモジュール37に内蔵される6つのスイッチング素子SW1~SW6の動作順序は、制御装置31によって予め決められており、制御装置31から出力された信号のパターンによってトランジスタモジュール37に内蔵される6つのスイッチング素子SW1~SW6の動作順序が決定される。
 制御装置31は、室外機30の全体の動作を制御する。制御装置31は、圧縮機モータ38の運転周波数を制御する。制御装置31は、通信装置35を介して室内機20と各種信号を送受信する。制御装置31は、室内機20と各種信号を送受信することで、室内機20と、室外機30とを連係して動作させる。
 三相交流電源の三相の電圧が相間で偏っている、すなわち不平衡であると、三相の交流電流の値に相間で大幅な偏りが発生し、制御装置が、三相交流電源が欠相していないにもかかわらず欠相状態と誤判定してしまう場合があった。本実施の形態では、制御装置31が後述する図4の欠相検知処理を実行することにより、三相交流電源50の三相の電圧が偏っている場合における、三相交流電源50の欠相状態の誤判定を抑制することができる。
 本実施の形態では、電源線47に設けられた相別電流検出装置39による交流電流の検出結果と、電源線49に設けられた相別電流検出装置40による交流電流の検出結果とは、電圧信号としてそれぞれ制御装置31に入力される。制御装置31は、電源線47に設けられた相別電流検出装置39による交流電流の検出結果と、電源線49に設けられた相別電流検出装置40による交流電流の検出結果とから電源線48に流れる交流電流の値を算出する。三相交流電流の三相分が合成された圧縮機モータ38に流れる交流電流の値は、検出結果である電源線47に流れる交流電流の値と、算出結果である電源線48に流れる交流電流の値と、検出結果である電源線49に流れる交流電流の値とから算出される。本実施の形態では、交流直流変換装置41とトランジスタモジュール37との間に設けられた合成電流検出装置36によって圧縮機モータ38に供給される三相交流電流の三相分の交流電流の合成値が検出され、検出結果が電圧信号として制御装置31に入力されてもよい。この場合、制御装置31は電源線48に流れる交流電流の値を算出する必要がなく、圧縮機モータ38に流れる交流電流の値を算出する必要がないため、室外機30は相別電流検出装置39および相別電流検出装置40を備えなくてもよい。
 本実施の形態では、圧縮機モータ38で消費された電力は、三相交流電源50により補われる。その過程において、電源線45に流れる第1の相の交流電流が電源線45に設けられた交流電流検出装置32によって検出されるとともに、電源線46に流れる第2の相の交流電流が電源線46に設けられた交流電流検出装置33によって検出され、検出結果は電圧信号としてそれぞれ制御装置31に入力される。
 本実施の形態では、電源生成装置34は、通信装置35の電源となる電力を生成する。電源生成装置34は、電源生成部の一例である。通信装置35は、通信部の一例である。電源生成装置34は、電源線44および電源線45に接続し、電源線44および電源線45に流れる交流電流から通信装置35の電源となる電力を生成する。本実施の形態では、交流電流検出装置が設けられていない電源線44に流れる第3の相の交流電流については、この相の欠相時には通信装置35の電源となる電力の生成が不可能な状態となる。本実施の形態では、通信装置35の電源となる電力が供給されないと、室内機20と室外機30との間で通信ができないといった通信異常が発生するため、当該通信異常の発生により、交流電流検出装置が設けられていない電源線44に流れる第3の相の交流電流についての欠相を判定することができる。
 次に、図1における制御装置31の機能構成について説明する。図2は、図1における制御装置31の機能構成の一例を示すブロック図である。
 図2に示すように、制御装置31は、制御部100と、入出力部110と、記憶部120とを備える。
 制御部100は、運転状態判定部101と、運転周波数判定部102と、モータ電流判定部103と、交流電流判定部104と、タイマ計測部105と、電源欠相判定部106とを備える。タイマ計測部105は、計測部の一例である。
 運転状態判定部101は、圧縮機モータ38が運転状態であるか停止状態であるかを判定する。運転周波数判定部102は、圧縮機モータ38の運転周波数の値が値F1を上回っているか否かを判定する。値F1は、第1の値の一例である。圧縮機モータ38の運転周波数の値を高くするためには、三相交流電源50から供給される交流電流の値を大きくする必要がある。値F1は予め設定されるものであり、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が後述するI1の値を下回らないこと、および交流電流検出装置33で検出される値が後述するI2の値を下回らないことを保証するためのものである。すなわち、圧縮機モータ38の運転周波数の値が値F1を上回っている場合には、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が後述するI1の値を下回らないこと、および交流電流検出装置33で検出される値が後述するI2の値を下回らないことが保証される。たとえば、値F1は、最も電流の流れにくい環境下において、交流電流検出装置32,33がゼロ以外の値を制御装置31に入力できる状況を目安として、予め設定される。
 モータ電流判定部103は、相別電流検出装置39および40から入力された電圧信号に基づいて、圧縮機モータ38に流れる交流電流の値を算出し、三相交流電流の三相分が合成された圧縮機モータ38に流れる交流電流の値が値X1を上回っているか否かを判定する。値X1は、第2の値の一例である。圧縮機モータ38に流れる交流電流の値を大きくするためには、三相交流電源50から供給される交流電流の値を大きくする必要がある。値X1は予め設定されるものであり、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が後述するI1の値を下回らないこと、および交流電流検出装置33で検出される値が後述するI2の値を下回らないことを保証するためのものである。すなわち、圧縮機モータ38に流れる交流電流の値が値X1を上回っている場合には、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が後述するI1の値を下回らないこと、および交流電流検出装置33で検出される値が後述するI2の値を下回らないことが保証される。たとえば、値X1は、圧縮機モータ38に流れる交流電流の値が大きくなり、三相交流電源50の電圧の偏りの影響が顕著に出始める状況を目安として、予め設定される。
 交流電流判定部104は、交流電流検出装置32から入力された電圧信号に基づいて、電源線45に流れる交流電流の値が値I1を下回っているか否かを判定する。値I1は、第3の値の一例である。値I1は予め設定されるものであり、欠相と判定される値に設定される。たとえば、値I1は、電源線45の電源相が欠相状態にあった際に、制御装置31に入力されうる最大値を想定して設定される。交流電流判定部104は、交流電流検出装置33から入力された電圧信号に基づいて、電源線46に流れる交流電流の値が値I2を下回っているか否かを判定する。値I2は、第4の値の一例である。値I2は予め設定されるものであり、欠相と判定される値に設定される。たとえば、値I2は、電源線46の電源相が欠相状態にあった際に、制御装置31に入力されうる最大値を想定して設定される。
 タイマ計測部105は、図示しないタイマを使用して、電源線45に流れる交流電流が値I1を下回っている、または電源線46に流れる交流電流が値I2を下回っている間の時間を計測する。タイマ計測部105は、タイマの計測値が値T1以上であるか否かを判定する。値T1は予め設定されるものであり、三相交流電源50の電圧の相間での偏りが一時的であると判定できる値に設定される。
 電源欠相判定部106は、タイマ計測部105によりタイマの計測値が値T1以上であると判定されたときに、三相交流電源50が欠相状態であると判定する。
 次に、図1における制御装置31のハードウェア構成について説明する。図3は、図1における制御装置31の制御回路200のハードウェア構成の一例を示す図である。制御装置31は、制御部100、入出力部110および記憶部120を実現するハードウェアである制御回路200を備える。
 制御回路200は、制御回路200の外部からの情報が入力される入力回路および情報を制御回路200の外部へ出力する出力回路を含む入出力インターフェース回路201と、プロセッサ202と、メモリ203とを備える。入出力インターフェース回路201は、外部から受信した情報をメモリ203に送る。メモリ203は、入出力インターフェース回路201から受け取った情報を記憶する。また、メモリ203にはコンピュータプログラムが記憶されている。プロセッサ202は、メモリ203に記憶されているコンピュータプログラムを読み出し、メモリ203に記憶されている情報に基づいて演算処理を行う。プロセッサ202による演算結果を示す演算結果情報は、メモリ203に送られる。入出力インターフェース回路201は、メモリ203に記憶されている情報を外部に送る。
 入出力インターフェース回路201は、入出力部110を実現する。プロセッサ202は、制御部100を実現する。メモリ203は、記憶部120を実現する。
 次に、図1における制御装置31が実行する欠相検知処理について説明する。図4は、図1における制御装置31が実行する欠相検知処理のフローチャートである。図4の処理は、室外機30に三相交流電源50から電力が供給されている間において実行される。
 図4に示すように、まず、ステップS101では、制御装置31の運転状態判定部101は、圧縮機モータ38が運転状態であるか否かを判定する。圧縮機モータ38は、単独では運転を停止することは不可能であり、制御装置31からの指令によって運転を停止する。したがって、運転状態判定部101は、制御装置31が圧縮機モータ38を駆動させていれば圧縮機モータ38が運転状態であると判定し、制御装置31が圧縮機モータ38を停止させていれば圧縮機モータ38が運転状態でない、すなわち停止状態であると判定する。
 ステップS101での判定の結果、運転状態判定部101により圧縮機モータ38が運転状態であると判定されたときは(ステップS101でYes)、ステップS102の処理に進む。ステップS101での判定の結果、運転状態判定部101により圧縮機モータ38が運転状態でない、すなわち停止状態であると判定されたときは(ステップS101でNo)、ステップS110の処理に進む。ステップS110では、制御装置31のタイマ計測部105は、後述するステップS107の処理を実行してタイマの計測中であればタイマの計測を停止し、タイマの計測値をクリアして、ステップS101の処理に戻る。ステップS101では、制御装置31のタイマ計測部105は、後述するステップS107の処理を実行しておらず、タイマの計測中でなければタイマの計測を停止する必要はなく、ステップS101の処理に戻る。
 ステップS102では、制御装置31の運転周波数判定部102は、圧縮機モータ38の運転周波数が値F1を上回っているか否かを判定する。
 ステップS102での判定の結果、運転周波数判定部102により圧縮機モータ38の運転周波数が値F1を上回っていると判定されたときは(ステップS102でYes)、ステップS103の処理に進む。ステップS102での判定の結果、運転周波数判定部102により圧縮機モータ38の運転周波数が値F1を上回っていない、すなわち値F1以下であると判定されたときは(ステップS102でNo)、ステップS110の処理に進む。
 ステップS103では、制御装置31のモータ電流判定部103は、相別電流検出装置39および40から入力された電圧信号に基づいて、電源線48に流れる交流電流の値を算出して、三相交流電流の三相分が合成された圧縮機モータ38に流れる交流電流の値を算出し、圧縮機モータ38に流れる交流電流の値が値X1を上回っているか否かを判定する。ステップS103では、制御装置31のモータ電流判定部103は、合成電流検出装置36から入力された電圧信号に基づいて、圧縮機モータ38に流れる交流電流の値が値X1を上回っているか否かを判定してもよい。
 ステップS103での判定の結果、モータ電流判定部103により圧縮機モータ38に流れる交流電流の値が値X1を上回っていると判定されたときは(ステップS103でYes)、ステップS104の処理に進む。ステップS103での判定の結果、モータ電流判定部103により圧縮機モータ38に流れる交流電流の値が値X1を上回っていない、すなわち値X1以下であると判定されたときは(ステップS103でNo)、ステップS110の処理に進む。
 ステップS104の処理に進む場合は、圧縮機モータ38とトランジスタモジュール37とが正常に接続されていることが保証される。ステップS104の処理に進む場合は、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が上述したI1の値を下回らないこと、および交流電流検出装置33で検出される値が上述したI2の値を下回らないことが保証される。これにより、三相交流電源50の電圧の偏りによる欠相の誤検知を抑制することができる。
 ステップS104では、制御装置31の交流電流判定部104は、交流電流検出装置32から入力された電圧信号に基づいて、電源線45に流れる交流電流の値が値I1を下回っているか否かを判定する。
 ステップS104での判定の結果、交流電流判定部104により電源線45に流れる交流電流の値が値I1を下回っていると判定されたときは(ステップS104でYes)、ステップS106の処理に進む。ステップS104での判定の結果、交流電流判定部104により電源線45に流れる交流電流の値が値I1を下回っていない、すなわち値I1以上であると判定されたときは(ステップS104でNo)、ステップS105の処理に進む。
 ステップS105では、制御装置31の交流電流判定部104は、交流電流検出装置33から入力された電圧信号に基づいて、電源線46に流れる交流電流の値が値I2を下回っているか否かを判定する。
 ステップS105での判定の結果、交流電流判定部104により電源線46に流れる交流電流の値が値I2を下回っていると判定されたときは(ステップS105でYes)、ステップS106の処理に進む。ステップS105での判定の結果、交流電流判定部104により電源線46に流れる交流電流の値が値I2を下回っていない、すなわち値I2以上であると判定されたときは(ステップS105でNo)、ステップS110の処理に進む。
 ステップS106では、制御装置31のタイマ計測部105は、後述するステップS107の処理を実行して時間を計測するタイマが計測中であるか否かを判定する。ステップS106でタイマが計測中であると判定される場合は、ステップS107の処理を実行し、後述するステップS108の処理を経由して、ステップS101の処理に戻り、ステップS106の処理を行う場合である。
 ステップS106での判定の結果、タイマ計測部105により後述するステップS107の処理を実行してタイマが計測中であると判定されたときは(ステップS106でYes)、ステップS108の処理に進む。ステップS106での判定の結果、タイマ計測部105によりタイマが計測中でないと判定されたときは(ステップS106でNo)、タイマ計測部105はタイマの計測を開始して(ステップS107)、ステップS108の処理に進む。
 ステップS108では、タイマ計測部105は、タイマの計測値が値T1以上であるか否かを判定する。
 ステップS108での判定の結果、タイマ計測部105によりタイマの計測値が値T1以上であると判定されたときは(ステップS108でYes)、制御装置31の電源欠相判定部106は、三相交流電源50が欠相状態であると判定して(ステップS109)、本処理を終了する。ステップS109で電源欠相判定部106により三相交流電源50が欠相状態であると判定された場合は、制御装置31は、室外機30の運転を停止するとともに、室内機20に対して予め決められた通信信号を送信し、室内機20の表示機能を用いてユーザに三相交流電源50が欠相状態であることを伝える。
 ステップS108での判定の結果、タイマ計測部105によりタイマの計測値が値T1以上でないと判定されたときは(ステップS108でNo)、ステップS101の処理に戻る。
 図4の処理によれば、ステップS104の処理に進む場合は、三相交流電源50の電圧に偏りが生じている場合においても、交流電流検出装置32で検出される値が上述したI1の値を下回らないこと、および交流電流検出装置33で検出される値が上述したI2の値を下回らないことが保証される。すなわち、三相交流電源50の電圧の偏りによっては、ステップS106の処理に進むことはない。これにより、三相交流電源50の電圧の偏りによる欠相の誤検知を抑制することができる。
 図4の処理によれば、タイマ計測部105によりタイマの計測値が値T1以上であると判定されたときに(ステップS108でYes)、三相交流電源50が欠相状態であると判定される(ステップS109)。これにより、ステップS104の処理に進んだ場合においても、一時的な三相交流電源50の電圧の相間での偏りによっては三相交流電源50が欠相状態と判定されることがないため、三相交流電源50の欠相状態の判定をさらに正確に行うことができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。
 10 空気調和機、20 室内機、30 室外機、31 制御装置、32,33 交流電流検出装置、34 電源生成装置、35 通信装置、36 合成電流検出装置、37 トランジスタモジュール、38 圧縮機モータ、39,40 相別電流検出装置、41 交流直流変換装置、42 リアクタ、43 平滑コンデンサ、44,45,46,47,48,49 電源線、50 三相交流電源、D1,D2,D3,D4,D5,D6 ダイオード素子、SW1,SW2,SW3,SW4,SW5,SW6 スイッチング素子、100 制御部、101 運転状態判定部、102 運転周波数判定部、103 モータ電流判定部、104 交流電流判定部、105 タイマ計測部、106 電源欠相判定部、110 入出力部、120 記憶部、200 制御回路、201 入出力インターフェース回路、202 プロセッサ、203 メモリ。

Claims (7)

  1.  圧縮機を備える空気調和機であって、
     三相交流電源から供給された三相交流電流を直流電流に変換する交流直流変換部と、
     前記交流直流変換部により変換された前記直流電流を疑似三相交流電流に変換する直流交流変換部と、
     前記直流交流変換部により変換された前記疑似三相交流電流が供給され、前記圧縮機を駆動する圧縮機モータと、
     前記圧縮機モータに供給される前記疑似三相交流電流を検出するモータ電流検出部と、
     前記三相交流電源の第1の相の交流電流を検出する第1の交流電流検出部と、
     前記三相交流電源の第2の相の交流電流を検出する第2の交流電流検出部と、
     前記モータ電流検出部による検出結果、前記第1の交流電流検出部による検出結果、および前記第2の交流電流検出部による検出結果に基づいて、前記三相交流電源の欠相を判定する判定部とを備える
     ことを特徴とする空気調和機。
  2.  前記圧縮機モータの運転周波数を制御する制御部を備え、
     前記判定部は、さらに前記圧縮機モータの運転周波数に基づいて、前記三相交流電源の欠相の判定を行うことを特徴とする請求項1に記載の空気調和機。
  3.  前記判定部は、前記圧縮機モータの運転周波数の値が第1の値を上回り、前記モータ電流検出部による検出結果である前記圧縮機モータに供給される前記疑似三相交流電流の値が第2の値を上回っている場合であって、前記第1の交流電流検出部による検出結果である前記三相交流電源の第1の相の交流電流の値が第3の値を下回っているとき、または前記第2の交流電流検出部による検出結果である前記三相交流電源の第2の相の交流電流の値が第4の値を下回っているときに、前記三相交流電源が欠相状態であると判定することを特徴とする請求項2に記載の空気調和機。
  4.  前記モータ電流検出部は、前記直流交流変換部と前記圧縮機モータとの間の電源線に設けられることを特徴とする請求項1から3のいずれか1項に記載の空気調和機。
  5.  前記モータ電流検出部は、前記交流直流変換部と前記直流交流変換部との間の電源線に設けられ、前記圧縮機モータに供給される前記疑似三相交流電流の三相分の電流の合成値を検出することを特徴とする請求項1から3のいずれか1項に記載の空気調和機。
  6.  前記圧縮機モータの運転周波数の値が第1の値を上回り、前記モータ電流検出部による検出結果である前記圧縮機モータに供給される前記疑似三相交流電流の値が第2の値を上回っている場合であって、前記第1の交流電流検出部による検出結果である前記三相交流電源の第1の相の交流電流の値が第3の値を下回っている間、または前記第2の交流電流検出部による検出結果である前記三相交流電源の第2の相の交流電流の値が第4の値を下回っている間の時間の計測を行う計測部を備え、
     前記判定部は、さらに前記計測部による計測結果に基づいて、前記三相交流電源の欠相の判定を行うことを特徴とする請求項3に記載の空気調和機。
  7.  前記判定部による判定結果を室内機へ送信する通信部と、
     前記三相交流電源の第1の相の交流電流と、前記三相交流電源の第3の相の交流電流とから前記通信部の電源となる電力を生成する電源生成部とを備えることを特徴とする請求項1から6のいずれか1項に記載の空気調和機。
PCT/JP2017/000832 2017-01-12 2017-01-12 空気調和機 WO2018131120A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/000832 WO2018131120A1 (ja) 2017-01-12 2017-01-12 空気調和機
JP2018561158A JP6639705B2 (ja) 2017-01-12 2017-01-12 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/000832 WO2018131120A1 (ja) 2017-01-12 2017-01-12 空気調和機

Publications (1)

Publication Number Publication Date
WO2018131120A1 true WO2018131120A1 (ja) 2018-07-19

Family

ID=62840071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000832 WO2018131120A1 (ja) 2017-01-12 2017-01-12 空気調和機

Country Status (2)

Country Link
JP (1) JP6639705B2 (ja)
WO (1) WO2018131120A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083112B2 (en) 2018-07-23 2021-08-03 Hoffman Enclosures, Inc. Three-phase electronic control unit for enclosure air conditioners
CN114144972A (zh) * 2019-07-25 2022-03-04 三菱电机株式会社 旋转机控制装置、制冷剂压缩装置、制冷环路装置以及空调机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109583A (ja) * 2004-10-04 2006-04-20 Daikin Ind Ltd 電源回路の保護方法およびその装置
WO2009116235A1 (ja) * 2008-03-17 2009-09-24 ダイキン工業株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109583A (ja) * 2004-10-04 2006-04-20 Daikin Ind Ltd 電源回路の保護方法およびその装置
JP2011092004A (ja) * 2004-10-04 2011-05-06 Daikin Industries Ltd Pwm整流回路の保護方法およびその装置
WO2009116235A1 (ja) * 2008-03-17 2009-09-24 ダイキン工業株式会社 電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083112B2 (en) 2018-07-23 2021-08-03 Hoffman Enclosures, Inc. Three-phase electronic control unit for enclosure air conditioners
US11711911B2 (en) 2018-07-23 2023-07-25 Hoffman Enclosures Inc. Three-phase electronic control unit for enclosure air conditioners
CN114144972A (zh) * 2019-07-25 2022-03-04 三菱电机株式会社 旋转机控制装置、制冷剂压缩装置、制冷环路装置以及空调机
CN114144972B (zh) * 2019-07-25 2024-02-06 三菱电机株式会社 旋转机控制装置、制冷剂压缩装置、制冷环路装置以及空调机

Also Published As

Publication number Publication date
JP6639705B2 (ja) 2020-02-05
JPWO2018131120A1 (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
EP2605394B1 (en) Power-supply control apparatus and heat pump apparatus having the power-supply control apparatus
KR101737364B1 (ko) 공기조화기
JP5837534B2 (ja) インバータの直流リンクコンデンサ診断装置
JP6579117B2 (ja) パワーコンディショナ
AU2019245978B2 (en) Power source quality management system and air conditioning apparatus
JP4596251B2 (ja) 欠相検出装置及び交流−交流直接変換装置
JP6276232B2 (ja) 高圧インバータ再起動装置及び方法
US10742023B2 (en) Air conditioner
WO2018131120A1 (ja) 空気調和機
KR101934095B1 (ko) 공기조화기
JP2010043959A (ja) 電源保護装置、それを備えた冷凍空調装置、洗濯機及び電気掃除機、並びに、電源保護方法
JP6402788B2 (ja) 電力変換装置
JP2001091600A (ja) 電源高調波抑制装置
US20150354579A1 (en) Hermetic compressor driving device
JP6680368B2 (ja) 無停電電源装置
JP4590859B2 (ja) 電力変換装置
KR20180040878A (ko) 공기조화기의 전원 역상 검출 장치 및 방법
JP2006109670A (ja) 三相欠相検出回路
KR101957168B1 (ko) 공기조화기
KR101195157B1 (ko) 결선이상 검출기능이 구비된 모터제어 인버터
JP2019198214A (ja) インバータの出力欠相検出装置
KR102035140B1 (ko) 공기조화기 및 그 제어방법
JP2006238577A (ja) 空気調和機の三相欠相検出回路
JP4975582B2 (ja) 直流電流アンバランス検出装置
KR20090026485A (ko) 시스템 에어컨의 과부하 보호장치 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891444

Country of ref document: EP

Kind code of ref document: A1