CN104218543B - 电流源型变流器差动保护方法 - Google Patents

电流源型变流器差动保护方法 Download PDF

Info

Publication number
CN104218543B
CN104218543B CN201310210288.0A CN201310210288A CN104218543B CN 104218543 B CN104218543 B CN 104218543B CN 201310210288 A CN201310210288 A CN 201310210288A CN 104218543 B CN104218543 B CN 104218543B
Authority
CN
China
Prior art keywords
current
formula
diff
res
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310210288.0A
Other languages
English (en)
Other versions
CN104218543A (zh
Inventor
张琦雪
陈俊
闫伟
石祥建
王光
严伟
刘为群
沈全荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201310210288.0A priority Critical patent/CN104218543B/zh
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to US14/894,944 priority patent/US9584007B2/en
Priority to EP14804991.9A priority patent/EP3007294B1/en
Priority to PCT/CN2014/075267 priority patent/WO2014190814A1/zh
Priority to KR1020157035281A priority patent/KR102010117B1/ko
Priority to RU2015156143A priority patent/RU2649324C2/ru
Priority to ES14804991T priority patent/ES2917880T3/es
Priority to JP2016515618A priority patent/JP6396999B2/ja
Publication of CN104218543A publication Critical patent/CN104218543A/zh
Application granted granted Critical
Publication of CN104218543B publication Critical patent/CN104218543B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/34Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors of a three-phase system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/30Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
    • H02H3/305Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel involving current comparison
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/30Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
    • H02H3/307Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel involving comparison of quantities derived from a plurality of phases, e.g. homopolar quantities; using mixing transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Abstract

电流源型变流器差动保护方法,继电保护装置对被保护的电流源型变流器两侧的电流互感器CT二次侧电流进行采样,得到进线侧三相电流iNa、iNb、iNc,和出线侧三相电流iMa、iMb、iMc;进行数字整流,得到等效的进线侧输入电流iN和出线侧输出电流iM;按两侧CT电流变比折算iN、iM后求差,得到暂态差流idiff;按两侧CT电流变比折算iN、iM后求平均,得到暂态制动电流ires;经过算术平均或方均根的函数变换,得到差动电流Idiff和制动电流Ires;最后由Idiff和Ires按常规的折线比率制动特性或变斜率比率制动特性实现差动保护。本发明解决了电流型变流器因两侧电流频率不同而无法差动保护的问题,二次回路接线简单,保护定值整定方便,易于应用。

Description

电流源型变流器差动保护方法
技术领域
本发明涉及电力系统及电力电子领域,更具体地涉及电流源型变流器差动保护的继电保护方法。
背景技术
大功率电力电子变流器(有时有称逆变器),按照输出波形的类型,把具有输出电压波形独立可控拓扑的变流器称为电压源型变流器(Voltage Source Converter,或Voltage Source Inverter),简称为VSC或VSI;类似地,把具有输出电流波形独立可控拓扑的变流器称为电流源型变流器(Current Source Converter,或Current SourceInverter),简称为CSC或CSI。关于这方面的论述,可参考《电力电子技术手册》([美]Muhammad H.Rashid主编,陈建业等译,机械工业出版社,2004年)的第14章。
大容量的CSC广泛应用于电力系统。比如,大型发电机自并励磁系统的三相全桥式可控整流、大型抽水蓄能机组的水泵运行方式启动设备——静止变频器(StaticFrequency Converter,简称SFC)、大型燃气轮发电机组启动设备——负载换相式逆变器(Load Commutated Inverter,简称LCI,也称为静态启动设备),以及一些大型牵引设备使用的变流器,等等。
对于这些大容量的CSC设备,往往需要可靠、快速的判别内部短路故障的继电保护方法。比率制动特性的差动保护方法(可参见清华大学王维俭教授编写的《电气主设备继电保护原理与应用(第二版)》,中国电力出版社,2002年),是一种在电力系统中广泛应用的电力设备内部短路故障的判别方法,不仅保护可靠性高、动作速度快,而且还能区别短路故障发生在内部(称为区内故障),还是外部(称为区外故障)。被保护设备的进线侧和出线侧均安装保护级的电流互感器(CT),以往的差动保护方法需要测量并计算两侧CT的工频电流。然而,电力系统中应用的CSC设备,往往进线侧(电网侧)输入工频频率的交流电流,另一侧出线侧输出频率大范围变化的交流电流,以往的差动保护方法无法直接应用于两侧电流频率不同的场合。
目前,大容量的CSC设备,多采用的继电保护方法有:过流保护、过负荷保护、三相电流不对称保护、电流变化率保护,等等。这些保护方法与差动保护相比,往往存在保护动作时间相对比较长的缺点。此外,这些保护方法,无法区别短路故障发生在区内还是区外。
发明内容
本发明的目的是:提出一种电流源型变流器差动保护方法,解决现有差动保护方法不能应用于电流源型变流器的问题。
本发明采取的技术方案是:电流源型变流器差动保护方法,继电保护装置对被保护的电流源型变流器(CSC)两侧的电流互感器CT二次侧电流进行采样,得到进线侧(电网侧)三相电流iNa、iNb、iNc,和出线侧三相电流iMa、iMb、iMc;进行数字整流,得到等效的进线侧(电网侧)输入电流iN和出线侧输出电流iM;按两侧CT电流变比折算iN、iM后求差,得到暂态差流idiff;按两侧CT电流变比折算iN、iM后求平均,得到暂态制动电流ires;经过算术平均或方均根的函数变换,得到差动电流Idiff和制动电流Ires;最后由Idiff和Ires按常规的折线比率制动特性或变斜率比率制动特性实现差动保护。
进一步的,保护装置测量到的进线侧三相电流(CT电流二次值)数据序列为iNa(n)、iNb(n)、iNc(n),测量到的出线侧三相电流(CT电流二次值)数据序列为iMa(n)、iMb(n)、iMc(n)。括号中符号n表示采样序列号,下标Na、Nb、Nc表示进线侧(电网侧)a相、b相、c相,下标Ma、Mb、Mc表示出线侧a相、b相、c相。
按式1、式2进行数字整流,得数据序列:
i N + ( n ) = i Na + ( n ) + i Nb + ( n ) + i Nc + ( n ) i N - ( n ) = i Na - ( n ) + i Nb - ( n ) + i Nc - ( n ) 式1
i M + ( n ) = i Ma + ( n ) + i Mb + ( n ) + i Mc + ( n ) i M - ( n ) = i Ma - ( n ) + i Mb - ( n ) + i Mc - ( n ) 式2
其中,
j=a,b,c;k=N,M 式3
j=a,b,c;k=N,M 式4
或者采用式1'、式2'进行数字整流,得:
i N ( n ) = | i Na ( n ) | + | i Nb ( n ) | + | i Nc ( n ) | 2 式1'
i M ( n ) = | i Ma ( n ) | + | i Mb ( n ) | + | i Mc ( n ) | 2 式2'
等效的两侧电流做差,得到暂态差流:
i diff + ( n ) = K 1 i N + ( n ) - K 2 i M + ( n ) i diff - ( n ) = K 1 i N - ( n ) - K 2 i M - ( n ) i diff ( n ) = K 1 i N ( n ) - K 2 i M ( n ) 式5
等效的两侧电流求平均,得到暂态制动电流:
i res + ( n ) = K 1 i N + ( n ) + K 2 i M + ( n ) 2 i res - ( n ) = K 1 i N - ( n ) + K 2 i M - ( n ) 2 i res ( n ) = K 1 i N ( n ) + K 2 i M ( n ) 2 式6
公式中电流变量的括号里的符号n表示采样序列号。
式5、式6中的K1、K2是电流归算系数,与进线侧及出线侧CT电流变比有关。设进线侧CT电流变比为nCT,N,出线侧CT电流变比为nCT,M。一般情况下,归算到CT变比较小的这一侧。当nCT,M≥nCT,N时,
K 1 = 1 K 2 = n CT , M / n CT , N 式7
当nCT,M<nCT,N时,
K 1 = n CT , N / n CT , M K 2 = 1 式8
取一个数据窗的序列,采用算术平均计算差动电流和制动电流:
I diff + ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff + ( k ) | I diff - ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff - ( k ) | , I diff ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff ( k ) | I res + ( n ) = 1 W Σ k = n - ( W - 1 ) n i res + ( k ) I res - ( n ) = 1 W Σ k = n - ( W - 1 ) n i res - ( k ) I res ( n ) = 1 W Σ k = n - ( W - 1 ) n i res ( k ) 式9
或者采用方均根的算法得到差动电流和制动电流:
I diff + ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff + 2 ( k ) I diff - ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff - 2 ( k ) , I diff ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff 2 ( k ) I res + ( n ) = 1 W Σ k = n - ( W - 1 ) n i res + 2 ( k ) I res - ( n ) = 1 W Σ k = n - ( W - 1 ) n i res - 2 ( k ) I res ( n ) = 1 W Σ k = n - ( W - 1 ) n i res 2 ( k ) 式10
公式中电流变量的括号里的符号n或k表示采样序列号。
式9、式10中,W是数据窗长度,可取一个工频周期内采样点数的0.5~1.0倍。W为一个工频周期内采样点数时,称为全数据窗;当W小于一个工频周期内采样点数时,称为短数据窗。采用短数据窗时,可以加快差动保护的动作速度。
Idiff+和Ires+构成一组差动电流和制动电流,可以按常规的折线比率制动特性或变斜率比率制动特性实现差动保护(比如ZL02138170.4《变斜率的比率差动保护方法》)。类似的,Idiff-和Ires-构成一组差动电流和制动电流,Idiff和Ires构成一组差动电流和制动电流。在经过上述步骤后,本发明差动保护定值的整定方法与常规的差动保护定值整定方法完全相同。
本发明的有益效果是:解决了以往电流型变流器因为两侧电流频率不同而无法实现差动保护的问题,解决了以往电流型变流器的继电保护不能区分是区内故障还是区外故障的问题,同时为电流型变流器提供了一种快速的继电保护方法,该方法二次回路接线简单,保护定值整定方便,易于应用。
附图说明
图1~图2是本发明电流型变流器差动保护接线示意图,
图3是本发明电流型变流器差动保护某实例实测的进线侧三相电流波形,
图4是本发明电流型变流器差动保护某实例实测的出线侧三相电流波形,
图5是本发明电流型变流器差动保护某实例计算的差动电流与制动电流,
图6是本发明电流型变流器差动保护两折线比率制动特性图示意图,
图7是本发明电流型变流器差动保护变斜率比率制动特性图示意图。
具体实施方式
为清楚的说明本发明的方法,这里以某50MW抽水蓄能机组的静止变频器SFC为例,阐明本发明的具体实施方式。
其中,图1中的BUS为电网进线侧母线,CB1是进线侧断路器,CB2是出线侧断路器,T1为进线侧隔离变压器,T2为出线侧隔离变压器,NB1、NB2是进线侧整流桥(简称网桥),MB是出线侧逆变桥(简称机桥),L是变流器直流电抗器,G是发电电动机,CT1~CT5是三相电流互感器,图中的a表示差动保护元件。图2与图1的区别在于没有出线侧隔离变压器,进线侧整流桥只有一组。图1是较为常见的SFC接线示意图,图2是较为常见的LCI接线示意图。
图3是变流器某一次变频启动过程中实测的进线侧三相电流波形,iNa是a相电流,iNb是b相电流,iNc是c相电流。
图4是变流器某一次变频启动过程中实测的出线侧三相电流波形,iMa是a相电流,iMb是b相电流,、iMc是c相电流。
图5是针对图3、图4数据的计算结果,其中,Idiff和Ires按本发明式9计算得到的差动电流与制动电流。
图6中的横坐标Ires是制动电流,纵坐标Idiff是差动电流,两折线的比率制动特性曲线ABC,曲线上方是差动保护动作区,曲线下方是差动保护制动区,Iop,0是起始点A对应的差动电流值,Ires,0是拐点B对应的制动电流值。
图7中的横坐标Ires是制动电流,纵坐标Idiff是差动电流,变斜率的比率制动特性曲线ABCD,曲线上方是差动保护动作区,曲线下方是差动保护制动区,Iop,0是起始点A对应的差动电流值,Kbl1是起始比率差动斜率(曲线在A点处的斜率),Irated是被保护设备的额定电流(已折算成CT二次值),a是最大比率制动系数时的制动电流倍数,Kbl2是最大比率差动斜率(曲线在C点处的斜率),CD段为直线段。
如一抽水蓄能发电电动机额定功率50MW,额定电压10.5kV,额定功率因数0.85。配置的SFC如附图1所示,进线侧母线电压10.5kV,进线变压器T1是一台容量为4MVA的三圈变压器,电压变比为10.5kV/0.7kV/0.7kV,变压器接线方式Dd0y1;SFC进线侧为两组整流桥NB1和NB2级联,整流桥交流侧三相电流互感器CT2、CT3的电流变比均为2000A/1A;SFC出线侧为一组逆变桥MB,逆变桥交流侧三相电流互感器CT4的电流变比为2000A/1A;逆变桥输出后接一台容量为4MVA的两圈变压器T2,电压变比为1.4kV/10.5kV,变压器接线方式为Yd1,该变压器输出后,接发电电动机G。
这里SFC两侧电流,以CT2测量到的进线侧电流和CT4测量到的输出侧电流为例,可以按本发明的方法实现差动保护。类似的CT3测量到的进线侧电流和CT4测量到的输出侧电流同样可以实现差动保护。
本发明的具体步骤是:
(1)电流采样
继电保护装置对电流互感器CT2二次侧电流进行采样,得到进线侧三相电流(CT电流二次值)数据序列iNa(n)、iNb(n)、iNc(n);继电保护装置对电流互感器CT4二次侧电流进行采样,得到出线侧三相电流(CT电流二次值)数据序列iMa(n)、iMb(n)、iMc(n)。符号n表示采样序列号,下标Na、Nb、Nc表示进线侧(电网侧)a相、b相、c相,下标Ma、Mb、Mc表示出线侧a相、b相、c相。W为采样数据窗的长度,国内继电保护装置中,W一般设为24。
附图3是该抽水蓄能机组静止变频器SFC变频启动过程中实测的进线侧三相电流波形。附图4是该抽水蓄能机组SFC变频启动过程中实测的出线侧三相电流波形。在变频启动过程中,进线侧三相电流的频率保持在工频频率50Hz,而出线侧三相电流的频率大范围变化,由低到高,逐渐上升至50Hz。变频启动过程中,前一阶段是脉冲换相过程,电流断续,后一阶段是负载换相过程,电流连续。
(2)数字整流
分别将进线侧(电网侧)三相电流和出线侧三相电流进行数字整流。整流方法按下面的式1、式2,得数据序列:
i N + ( n ) = i Na + ( n ) + i Nb + ( n ) + i Nc + ( n ) i N - ( n ) = i Na - ( n ) + i Nb - ( n ) + i Nc - ( n ) 式1
i M + ( n ) = i Ma + ( n ) + i Mb + ( n ) + i Mc + ( n ) i M - ( n ) = i Ma - ( n ) + i Mb - ( n ) + i Mc - ( n ) 式2
其中,
j=a,b,c;k=N,M 式3
j=a,b,c;k=N,M 式4
或者采用式1'、式2'进行数字整流,得:
i N ( n ) = | i Na ( n ) | + | i Nb ( n ) | + | i Nc ( n ) | 2 式1'
i M ( n ) = | i Ma ( n ) | + | i Mb ( n ) | + | i Mc ( n ) | 2 式2'
经过数字整流之后,两侧电流变换为波动的直流。SFC内部无短路故障时,流入SFC的直流与流出SFC的直流近似相等,当SFC内部有短路故障时,流入与流出不等,会产生明显的差动电流。
(3)计算暂态差流和暂态制动电流
上述等效的两侧电流做差,按式5计算得到暂态差流;等效的两侧电流求平均,按式6计算得到暂态制动电流。
i diff + ( n ) = K 1 i N + ( n ) - K 2 i M + ( n ) i diff - ( n ) = K 1 i N - ( n ) - K 2 i M - ( n ) i diff ( n ) = K 1 i N ( n ) - K 2 i M ( n ) 式5
i res + ( n ) = K 1 i N + ( n ) + K 2 i M + ( n ) 2 i res - ( n ) = K 1 i N - ( n ) + K 2 i M - ( n ) 2 i res ( n ) = K 1 i N ( n ) + K 2 i M ( n ) 2 式6
式5、式6中的K1、K2是电流归算系数,与进线侧及出线侧CT电流变比有关。一般情况下,归算到CT变比较小的这一侧。进线侧CT2电流变比为nCT,N=2000A/1A,出线侧CT4电流变比为nCT,M=2000A/1A。参照前文的式7,电流归算系数为:K1=K2=1。
(4)计算差动电流和制动电流
计算差动电流和制动电流,有两种方法。
方法一,算术平均法。差动电流、制动电流为:
I diff + ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff + ( k ) | I diff - ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff - ( k ) | , I diff ( n ) = | 1 W Σ k = n - ( W - 1 ) n i diff ( k ) | I res + ( n ) = 1 W Σ k = n - ( W - 1 ) n i res + ( k ) I res - ( n ) = 1 W Σ k = n - ( W - 1 ) n i res - ( k ) I res ( n ) = 1 W Σ k = n - ( W - 1 ) n i res ( k ) 式9
方法二,方均根算法。差动电流、制动电流为:
I diff + ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff + 2 ( k ) I diff - ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff - 2 ( k ) , I diff ( n ) = 1 W Σ k = n - ( W - 1 ) n i diff 2 ( k ) I res + ( n ) = 1 W Σ k = n - ( W - 1 ) n i res + 2 ( k ) I res - ( n ) = 1 W Σ k = n - ( W - 1 ) n i res - 2 ( k ) I res ( n ) = 1 W Σ k = n - ( W - 1 ) n i res 2 ( k ) 式10
式9、式10中,W是数据窗长度,可取一个工频周期内采样点数的0.5~1.0倍。W为一个工频周期内采样点数时,称为全数据窗;当W小于一个工频周期内采样点数时,称为短数据窗。采用短数据窗时,可以加快差动保护的动作速度。通常继电保护装置一个工频周期内采样点数为24,此时W可在12~24范围内取值。
不管是用式9还是用式10进行计算,Idiff+和Ires+构成一组差动电流和制动电流,可以按常规的折线比率制动特性(如附图6所示)或变斜率比率制动特性(如附图7所示)实现差动保护。类似的,Idiff-和Ires-构成一组差动电流和制动电流,Idiff和Ires也可以构成一组差动电流和制动电流。
附图5是采用本发明的式9计算的结果,可以看出该抽水蓄能机组SFC没有故障时,本发明计算的差动电流很小,制动电流相对较大,差动保护能够可靠不动作。
差动定值的整定方法,可参照《DL/T684-2012大型发电机变压器继电保护整定计算导则》,或参照《发电厂继电保护整定计算及其运行技术》(许正亚编著,中国水利水电出版社,2009年)。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何等同替换或改动,并不超出本发明保护范围。

Claims (5)

1.电流源型变流器差动保护方法,其特征是:继电保护装置对被保护的电流源型变流器(CSC)两侧的电流互感器CT二次侧电流进行采样,得到进线侧三相电流iNa、iNb、iNc,和出线侧三相电流iMa、iMb、iMc;进行数字整流,得到等效的进线侧输入电流iN和出线侧输出电流iM;按两侧CT电流变比折算iN、iM后求差,得到暂态差流idiff;按两侧CT电流变比折算iN、iM后求平均,得到暂态制动电流ires;经过算术平均或方均根的函数变换,得到差动电流Idiff和制动电流Ires;最后由差动电流Idiff和制动电流按折线比率制动特性或变斜率比率制动特性实现差动保护;下标Na、Nb、Nc表示进线侧a相、b相、c相,下标Ma、Mb、Mc表示出线侧a相、b相、c相,下标N表示进线侧,下标M表示出线侧,下标res表示“制动”,下标diff表示“差动”。
2.根据权利要求1所述的电流源型变流器差动保护方法,其特征是:分别将进线侧三相电流和出线侧三相电流进行数字整流,有两种数字整流的方法;
方法一,按式1、式2进行数字整流:
其中,
方法二,采用式1'、式2'进行数字整流,得:
公式中电流变量的括号里的符号n表示采样序列号。
3.根据权利要求2所述的电流源型变流器差动保护方法,其特征是:按两侧CT电流变比折算iN、iM后求差,得到暂态差流idiff;按两侧CT电流变比折算iN、iM后求平均,得到暂态制动电流ires
暂态差流按式5计算:
暂态制动电流按式6计算:
公式中电流变量的括号里的符号n表示采样序列号;
式5、式6中的K1、K2是电流归算系数,与进线侧及出线侧CT电流变比有关,设进线侧CT电流变比为nCT,N,出线侧CT电流变比为nCT,M;归算到CT变比较小的这一侧;
当nCT,M≥nCT,N时,
当nCT,M<nCT,N时,
4.根据权利要求3所述的电流源型变流器差动保护方法,其特征是:经过算术平均或方均根的函数变换,得到差动电流Idiff和制动电流Ires
按式9进行算术平均的函数变换得到差动电流和制动电流:
按式10进行方均根的函数变换得到差动电流和制动电流:
公式中电流变量的括号里的符号n或k表示采样序列号;
式中,W是数据窗长度;W取值范围是一个工频周期内采样点数的0.5~1.0倍;当W为一个工频周期内采样点数时,称为全数据窗;当W小于一个工频周期内采样点数时,称为短数据窗;采用短数据窗时,用以加快差动保护的动作速度得到差动电流和制动电流后,按折线比率制动特性或变斜率比率制动特性实现差动保护。
5.根据权利要求4所述的电流源型变流器差动保护方法,其特征是:Idiff+和Ires+构成一组差动电流和制动电流,Idiff-和Ires-构成一组差动电流和制动电流,Idiff和Ires构成一组差动电流和制动电流。
CN201310210288.0A 2013-05-30 2013-05-30 电流源型变流器差动保护方法 Active CN104218543B (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201310210288.0A CN104218543B (zh) 2013-05-30 2013-05-30 电流源型变流器差动保护方法
EP14804991.9A EP3007294B1 (en) 2013-05-30 2014-04-14 Differential protection method for current source converter, and relay protection device
PCT/CN2014/075267 WO2014190814A1 (zh) 2013-05-30 2014-04-14 电流源型变流器差动保护方法及继电保护装置
KR1020157035281A KR102010117B1 (ko) 2013-05-30 2014-04-14 전류형 인버터 차동 보호 방법 및 보호계전 장치
US14/894,944 US9584007B2 (en) 2013-05-30 2014-04-14 Current source converter differential protection method and relay protection device
RU2015156143A RU2649324C2 (ru) 2013-05-30 2014-04-14 Способ дифференциальной защиты преобразователя тока и устройство релейной защиты
ES14804991T ES2917880T3 (es) 2013-05-30 2014-04-14 Método de protección diferencial para convertidor de fuente de corriente, y dispositivo de protección de relé
JP2016515618A JP6396999B2 (ja) 2013-05-30 2014-04-14 電流形コンバータの差動保護方法及び継電保護装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310210288.0A CN104218543B (zh) 2013-05-30 2013-05-30 电流源型变流器差动保护方法

Publications (2)

Publication Number Publication Date
CN104218543A CN104218543A (zh) 2014-12-17
CN104218543B true CN104218543B (zh) 2016-12-28

Family

ID=51987972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310210288.0A Active CN104218543B (zh) 2013-05-30 2013-05-30 电流源型变流器差动保护方法

Country Status (8)

Country Link
US (1) US9584007B2 (zh)
EP (1) EP3007294B1 (zh)
JP (1) JP6396999B2 (zh)
KR (1) KR102010117B1 (zh)
CN (1) CN104218543B (zh)
ES (1) ES2917880T3 (zh)
RU (1) RU2649324C2 (zh)
WO (1) WO2014190814A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186452B (zh) * 2015-09-10 2017-10-31 南京国电南自电网自动化有限公司 一种移相变压器差动保护实现方法
CN105353271B (zh) * 2015-11-03 2017-12-12 云南电网有限责任公司电力科学研究院 一种电流差动保护饱和判别方法
CN105514957B (zh) * 2016-01-28 2017-12-22 南京南瑞继保电气有限公司 一种混合背靠背直流输电系统及潮流反转控制方法
EP3622609A4 (en) * 2017-05-10 2021-05-12 North Carolina State University MODULAR MEDIUM VOLTAGE FAST CHARGERS
CN107612403B (zh) * 2017-10-09 2019-07-26 山东大学 H7电流源型变流器的单周期四采样调制方法
CN108270207B (zh) * 2018-01-15 2019-10-18 清华大学 串联电容补偿线路行波差动保护方法、装置、设备及介质
CN108306263B (zh) * 2018-01-15 2019-09-20 清华大学 电力线路行波差动保护方法、装置、设备及介质
CN108258665B (zh) * 2018-01-15 2019-08-09 清华大学 并联电抗补偿线路行波差动保护方法、装置、设备及介质
JP7117963B2 (ja) * 2018-10-02 2022-08-15 三菱電機株式会社 保護リレー装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2071397A1 (en) * 1991-09-05 1993-03-06 John F. Kral Control apparatus for detecting and commutating fault currents in an alternator-fed dc power supply
CN1474489A (zh) * 2003-08-08 2004-02-11 国电南京自动化股份有限公司 继电保护用时差法电流互感器严重饱和的判别方法
CN101764394A (zh) * 2009-11-24 2010-06-30 国电南瑞科技股份有限公司 整流单元直流差动保护方法
CN102403699A (zh) * 2011-11-08 2012-04-04 西安交通大学 直流线路自适应电流差动保护方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725926U (zh) * 1971-04-20 1972-11-24
US4295175A (en) * 1980-04-21 1981-10-13 General Electric Company Pilot wire relay protection system for electrical distribution networks
US4475150A (en) * 1982-04-28 1984-10-02 General Electric Company Coordinated load commutated inverter protection system
SU1156213A1 (ru) * 1983-11-24 1985-05-15 Челябинский Политехнический Институт Им.Ленинского Комсомола Выпр митель с защитой от токов короткого замыкани
JPH01170318A (ja) * 1987-12-23 1989-07-05 Hitachi Ltd 比率差動リレー
JP2001025154A (ja) * 1999-07-07 2001-01-26 Toshiba Corp 変圧器保護継電装置
US6958894B2 (en) * 2001-05-17 2005-10-25 Yong Cheol Kang Relaying method for protecting a transformer using a difference of current
JP4112930B2 (ja) * 2002-09-04 2008-07-02 東芝三菱電機産業システム株式会社 インバータ装置
SE0303615D0 (sv) * 2003-12-31 2003-12-31 Abb Ab Method and device for Fault Detection in Transformers
JP4759968B2 (ja) * 2004-10-04 2011-08-31 ダイキン工業株式会社 Pwm整流回路の保護方法およびその装置
US7319576B2 (en) * 2005-08-18 2008-01-15 Schweitzer Engineering Labortories, Inc. Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
WO2012113455A1 (en) * 2011-02-25 2012-08-30 Abb Technology Ag A method for obtaining an instantaneous direct current value, and control device
RU2562968C1 (ru) * 2011-10-21 2015-09-10 Абб Рисерч Лтд Способ и система для обнаружения неисправного выпрямителя в преобразователе переменного тока в постоянный ток
CN103208960A (zh) * 2012-01-16 2013-07-17 台达电子企业管理(上海)有限公司 一种励磁控制电路及其电励磁风电系统
EP2842221A4 (en) * 2012-04-26 2016-05-11 Gen Electric SECTOR CONVERTER SYSTEM, DAMPING SYSTEM, AND METHOD OF OPERATING AN AREA CONVERTER SYSTEM
EP2680385B1 (en) * 2012-06-29 2016-04-20 ABB Technology AG Differential protection in electrical power networks
CN103580494B (zh) * 2012-07-19 2016-04-20 台达电子工业股份有限公司 变流器系统
CN103683195B (zh) * 2012-09-11 2016-12-21 南京南瑞继保电气有限公司 静止变频器系统输出变压器变频差动保护方法
JP6018934B2 (ja) * 2013-01-25 2016-11-02 株式会社日立製作所 電力変換装置
US9331487B2 (en) * 2013-03-14 2016-05-03 Rockwell Automation Technologies, Inc. Method and apparatus for islanding detection for grid tie converters
US9891289B2 (en) * 2014-06-03 2018-02-13 Cooper Technologies Company Power transformer inrush current detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2071397A1 (en) * 1991-09-05 1993-03-06 John F. Kral Control apparatus for detecting and commutating fault currents in an alternator-fed dc power supply
CN1474489A (zh) * 2003-08-08 2004-02-11 国电南京自动化股份有限公司 继电保护用时差法电流互感器严重饱和的判别方法
CN101764394A (zh) * 2009-11-24 2010-06-30 国电南瑞科技股份有限公司 整流单元直流差动保护方法
CN102403699A (zh) * 2011-11-08 2012-04-04 西安交通大学 直流线路自适应电流差动保护方法

Also Published As

Publication number Publication date
CN104218543A (zh) 2014-12-17
KR102010117B1 (ko) 2019-08-12
EP3007294B1 (en) 2022-04-13
JP2016526370A (ja) 2016-09-01
ES2917880T3 (es) 2022-07-12
JP6396999B2 (ja) 2018-09-26
EP3007294A4 (en) 2017-01-25
EP3007294A1 (en) 2016-04-13
US20160118877A1 (en) 2016-04-28
RU2015156143A (ru) 2017-07-06
RU2649324C2 (ru) 2018-04-02
US9584007B2 (en) 2017-02-28
KR20160026876A (ko) 2016-03-09
WO2014190814A1 (zh) 2014-12-04

Similar Documents

Publication Publication Date Title
CN104218543B (zh) 电流源型变流器差动保护方法
KR101998916B1 (ko) 정지형 주파수 변환기 시스템의 출력 변압기에 대한 주파수 변환 차동 보호 방법
CN102185283B (zh) 发电机次同步电流计算和次同步过电流及发散保护方法
Ghorbani et al. A PMU-based LOE protection of synchronous generator in the presence of GIPFC
CN101995529A (zh) 用于风力涡轮发电机中的电力滤波器的监视以及电力滤波器失效的检测的系统和方法
Vinayagam et al. Power quality analysis in microgrid: An experimental approach
Chen et al. Investigation on the faulty state of DFIG in a microgrid
CN104037731A (zh) 大功率整流变压器组差动保护方法
CN104215867A (zh) 励磁变压器低压侧单相接地故障在线识别方法
CN101266265B (zh) 检测高压变频器电网电压相位的方法
CN100576676C (zh) 基于参数识别的并联电抗器保护方法
CN102914687A (zh) 一种精确计算电压或电流有效值的方法
CN104638631B (zh) 一种直流孤岛送电系统的直流电流限幅方法
CN104065038A (zh) 大功率整流变压器组差动保护方法
Farooq et al. A Reliable Approach to Protect and Control of Wind Solar Hybrid DC Microgrids
CN104348144B (zh) 一种风电场送出线路的故障检测方法
CN102608498A (zh) 新能源输电线路故障选相方法
WO2012113455A1 (en) A method for obtaining an instantaneous direct current value, and control device
CN205263208U (zh) 一种多功能试验平台
Levačić et al. An overview of harmonics in power transmission networks
CN104078951B (zh) 一种基于相间弧光电压特性线路相间故障双端保护方法
Mohitkar et al. Harmonic measurement and analysis of variable frequency drive (VFD) in industry
Baggini et al. Voltage and current harmonics
CN111355218A (zh) 一种发电机低频启动过程保护方法及装置
CN102185556A (zh) 鼠笼电机背靠背变频器功率联合控制方法及变频器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant