JP7117963B2 - 保護リレー装置 - Google Patents

保護リレー装置 Download PDF

Info

Publication number
JP7117963B2
JP7117963B2 JP2018187338A JP2018187338A JP7117963B2 JP 7117963 B2 JP7117963 B2 JP 7117963B2 JP 2018187338 A JP2018187338 A JP 2018187338A JP 2018187338 A JP2018187338 A JP 2018187338A JP 7117963 B2 JP7117963 B2 JP 7117963B2
Authority
JP
Japan
Prior art keywords
phase
current
failure
ground fault
determination unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187338A
Other languages
English (en)
Other versions
JP2020058142A (ja
Inventor
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018187338A priority Critical patent/JP7117963B2/ja
Priority to KR1020190016655A priority patent/KR102115243B1/ko
Publication of JP2020058142A publication Critical patent/JP2020058142A/ja
Application granted granted Critical
Publication of JP7117963B2 publication Critical patent/JP7117963B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers

Description

本開示は、保護リレー装置に関し、特に、変圧器を保護するための保護リレー装置に関する。
電力系統の変圧器を保護する変圧器保護リレーとして、比率差動リレーが広く用いられている。変圧器の1次側および2次側の巻線比、Y巻線またはΔ巻線等の変圧器の巻線形態によって生じる1次側および2次側の電流位相の差異、1次側および2次側の各々に設置される電流変成器(CT:Current Transformer)のCT比等を考慮して、外部故障時に差電流が生じないように比率差動演算が実行される。
下記非特許文献1によると、Δ巻線が3次巻線であって3次回路を使用しないY-Y-Δ巻線の変圧器では、変圧器の1次側および2次側のCT2次回路をY接続としても位相差は生じない。しかし、変圧器の1次側および2次側のいずれか、または両方の中性点が接地している場合には、変圧器両端に設置された1次側CTおよび2次側CTに囲まれた保護領域の外部(以下、単に「外部」とも称する。)の一相地絡故障において零相電流が差動量になってしまうので、CT2次回路をΔ接続にして零相電流を互いに打ち消すように構成する。すなわち、変圧器の巻線がY巻線の場合にはCT2次回路をΔ結線にするように構成される。なお、変圧器の巻線がΔ巻線の場合にはCT2次回路をY結線にするように構成される。このように、変圧器の巻線形態に応じてCT2次回路の接続方法を適切に選択する必要がある。
ここで、特開昭62-244218号公報(特許文献1)は、外部地絡故障で生じる零相電流による差電流を除去する他の方法を開示している。特許文献1では、変圧器の1次側および2次側の各々の3相CTからの入力電流を合成して得られる零相電流を、各入力電流から差し引くことで、外部地絡故障で生じる零相電流を除去している。この方法によると、3次回路を使用しないY-Y-Δ巻線の変圧器において、当該変圧器の巻線形態に関わらずCT2次回路をY結線にすることができるため、CTの接続施工を誤る可能性を軽減できる。また、CT2次回路をY結線にできるので、比率差動リレーに接続するとともに、他の3相電流入力を必要とする保護リレーにもCT2次電流を入力できる。
特開昭62-244218号公報(式37,38、89頁)
電気規格調査会標準規格 電力機器保護用比率差動継電器JEC-2515-2005(2006年6月30日 電気書院発行)の参考2.変流器2次回路の結線(26~28頁)
非特許文献1のように、変圧器巻線がY巻線の場合に、CT2次回路をΔ結線にする方法では、変圧器両端に設置された1次側CTおよび2次側CTに囲まれた保護領域の内部(以下、単に「内部」とも称する)の1相地絡故障の場合、故障電流が2相のCT2次回路に流入する。これにより、2相の比率差動リレー要素が動作する場合があるため、故障相を判定することが難しい。また、特許文献1においても、内部の1線地絡故障の場合、地絡故障電流の1/3が健全相に流入する。そのため、健全相についても比率差動リレー要素が動作する場合があり、故障相を判定することが難しい。
本開示のある局面における目的は、外部故障時に誤動作することなく、故障相をより正しく判定することが可能な保護リレー装置を提供することである。
ある実施の形態に従うと、3相の電力系統に設けられた変圧器を保護するための保護リレー装置が提供される。保護リレー装置は、変圧器の1次巻線を流れる1次電流と、変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流および第1抑制電流を算出する第1電流算出部と、互いに異なる2相の各々における第1差電流に基づいて、各相における第2差電流を算出し、互いに異なる2相の各々における前記1次電流および前記2次電流に基づいて、各相における第2抑制電流を算出する第2電流算出部と、各相に対応して設けられ、当該相における第1差電流および第1抑制電流に基づいて比率差動演算を実行する第1差動リレー要素と、各相に対応して設けられ、当該相における第2差電流および第2抑制電流に基づいて比率差動演算を実行する第2差動リレー要素と、電力系統の故障相を判定する故障相判定部とを備える。第1相、第2相および第3相のうちの第1相に対応する第1差動リレー要素が動作し、かつ第1相および第3相にそれぞれ対応する2つの第2差動リレー要素が動作したとの条件を満たす場合に、故障相判定部は第1相に故障が発生したと判定する。
他の実施の形態に従うと、3相の電力系統に接続された変圧器を保護するための保護リレー装置が提供される。保護リレー装置は、変圧器の1次巻線を流れる1次電流と、変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流および第1抑制電流を算出する第1電流算出部と、互いに異なる2相の各々における第1差電流に基づいて、各相における第2差電流を算出する第2電流算出部と、各相に対応して設けられ、当該相における第1差電流および第1抑制電流に基づいて比率差動演算を実行する差動リレー要素と、各相に対応して設けられ、当該相における第2差電流の振幅値が閾値よりも大きいか否かを判定する振幅判定部と、電力系統の故障相を判定する故障相判定部とを備える。第1相、第2相および第3相のうちの第1相に対応する差動リレー要素が動作し、かつ第1相および第3相にそれぞれ対応する2つの振幅判定部により第2差電流の振幅値が閾値よりも大きいと判定されたとの条件を満たす場合に、故障相判定部は第1相に故障が発生したと判定する。
さらに他の実施の形態に従うと、3相の電力系統に接続された変圧器を保護するための保護リレー装置が提供される。保護リレー装置は、変圧器の1次巻線を流れる1次電流と、変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流を算出する第1電流算出部と、互いに異なる2相の各々における第1差電流に基づいて、各相における第2差電流を算出し、互いに異なる2相の各々における1次電流および2次電流に基づいて、各相における抑制電流を算出する第2電流算出部と、各相に対応して設けられ、当該相における第1差電流の振幅値が閾値よりも大きいか否かを判定する振幅判定部と、各相に対応して設けられ、当該相における第2差電流および抑制電流に基づいて比率差動演算を実行する差動リレー要素と、電力系統の故障相を判定する故障相判定部とを備える。第1相、第2相および第3相のうちの第1相に対応する振幅判定部により第1差電流の振幅値が閾値よりも大きいと判定され、かつ第1相および第3相にそれぞれ対応する2つの差動リレー要素が動作したとの条件を満たす場合に、故障相判定部は第1相に故障が発生したと判定する。
本開示によると、保護リレー装置において、外部故障時に誤動作することなく、故障相をより正しく判定することが可能となる。
実施の形態1に従う保護リレー装置が適用される電力系統を示す図である。 対称座標法による1相故障時の等価回路を示す図である。 Y-Y-Δ変圧器における1相故障時の電流の流れを説明するための図である。 内部故障時および外部故障時における比率差動リレー要素の動作の有無を説明するための図である。 実施の形態1に従う故障判定方式を説明するための図である。 実施の形態1に従う保護リレー装置のハードウェア構成の一例を示す図である。 実施の形態1に従う保護リレー装置の機能構成の一例を示すブロック図である。 実施の形態2に従う故障判定方式を説明するための図である。 実施の形態2に従う保護リレー装置の機能構成の一例を示すブロック図である。 実施の形態3に従う故障判定方式を説明するための図である。 実施の形態4に従う故障判定方式を説明するための図である。 実施の形態5に従う故障判定方式を説明するための図である。 実施の形態5に従う保護リレー装置の機能構成の一例を示すブロック図である。 実施の形態6に従う故障判定方式を説明するための図である。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
実施の形態1.
<全体構成>
図1は、実施の形態1に従う保護リレー装置が適用される電力系統を示す図である。図1を参照して、3相電力系統には、被保護機器である変圧器8と、変圧器8の1次側(例えば、高圧側)に設置された遮断器2と、変圧器8の2次側(例えば、低圧側)に設置された遮断器3と、電流変成器4,5と、保護リレー装置10と、高圧側の交流電源11と、低圧側の交流電源12とが設けられている。交流電源11,12は、3相交流電源である。本実施の形態では、変圧器8は、3次回路を使用しないY-Y-Δ巻線の変圧器であるとする。
電流変成器4は、変圧器8の1次巻線を流れる1次電流(例えば、高圧側電流)I1を検出する。電流変成器5は、変圧器8の2次巻線を流れる2次電流(例えば、低圧側電流)I2を検出する。
保護リレー装置10は、電流変成器4からの1次電流および電流変成器5からの2次電流を用いて電流変成器4,5に囲まれる保護範囲内の内部故障FI(例えば、地絡故障または短絡故障)を検出すると、変圧器8の両端に設置されている遮断器2,3に対して開放指令であるトリップ信号TRを出力する。これにより、遮断器2,3が開放されて、故障箇所(ここでは、変圧器8)が電力系統から切り離される。具体的には、保護リレー装置10は、故障判定部20と、状態判定部30と、出力制御部40とを含む。
故障判定部20は、電流変成器4によって検出された1次電流I1と、電流変成器5によって検出された2次電流I2とを用いて、内部故障が生じているか否かを判定する。具体的には、故障判定部20は、内部故障が生じていると判定した場合、その故障相を判定し、故障信号を出力する。典型的には、故障判定部20は、比率差動リレー要素を含む。
比率差動リレー要素は、変圧器8が健全である通常の負荷電流状態で、1次電流I1および2次電流I2のベクトル和が零になるように位相、ゲイン等の電流整合をとって差電流ID(すなわち、差電流の振幅値)を算出する。比率差動リレー要素は、整合後のデータを用いて、例えば、スカラー和により抑制電流IR(すなわち、抑制電流の振幅値)を求め、差電流IDと抑制電流IRから比率差動特性を演算する。なお、抑制電流IRは、変圧器1次電流I1および変圧器2次電流I2のうち電流振幅値が大きい方の電流振幅値であってもよい。
比率差動リレー要素は、抑制電流IRに定数αを乗算し、定数βを加算した値よりも差電流IDが大きい(すなわち、ID>α×IR+β)という関係が成立するか否かを判定する。抑制電流IRと差電流IDとが上記関係を満たす場合、比率差動リレー要素は動作する(例えば、動作出力する)。
状態判定部30は、変圧器8の励磁突入電流(あるいは、「インラッシュ電流」とも称する)による保護リレー装置10の不要動作を防止するために設けられている。具体的には、状態判定部30は、差電流の基本波成分に対する第2高調波成分の含有率が閾値よりも大きい場合に、変圧器8がインラッシュ状態(すなわち、変圧器8にインラッシュ電流が流れている状態)であると判定する。なお、インラッシュ電流は差電流になるが、この状態は、内部故障ではない。
出力制御部40は、故障判定部20の判定結果と状態判定部30の判定結果とに基づいて、遮断器2,3にトリップ信号TR(すなわち、開放指令)を出力する。具体的には、出力制御部40は、内部故障が発生した場合にトリップ信号TRを出力し、インラッシュ状態である場合および外部故障が発生した場合にはトリップ信号TRを出力しない。
これにより、遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。このように、保護リレー装置10は、インラッシュ状態である場合および外部故障FOが発生した場合には変圧器8を電力系統から分離しないが、内部故障FIが発生した場合には変圧器8を保護するために変圧器8を電力系統から分離する。
<故障判定方式>
次に、実施の形態1に従う故障判定方式について具体的に説明する。
図2は、対称座標法による1相故障時の等価回路を示す図である。ここでは、Y-Y-Δ巻線の変圧器8の内部でA相の1相地絡故障が発生した場合について説明する。具体的には、図2には、変圧器8の1次側に1相地絡故障が発生した場合の零相回路に着目した電流の流れが示されている。なお、電力系統の中性点接地方式は、直接接地方式であるとする。
図2において、X1は変圧器の1次巻線零相インピーダンス、X2は変圧器の2次巻線零相インピーダンス、X3は変圧器の3次巻線零相インピーダンスを示しており、その他の正相、逆相、零相インピーダンスは、図示していない。
図2を参照して、変圧器8の1次側でA相地絡故障が生じると、1次側の交流電源11から零相電流I0に等しい正相電流が流れ、2次側の交流電源12から零相電流Ig0に等しい正相電流が流れるため、零相回路にはこれらの合計である電流“I0+Ig0”が流れる。
続いて、電流“I0+Ig0”は、1次側の交流電源11の零相回路に流れる電流“I0-I01”と、電流“Ig0+I01”とに分流する。電流“Ig0+I01”は、変圧器8の3次側のΔ巻線X3に流れる電流“I01+I02”と、2次側の交流電源12の零相回路に流れる電流“Ig0-I02”とに分流する。その結果、2次側のY巻線X2には電流“Ig0-I02”が流れ、変圧器8の1次側のY巻線X1には電流“Ig0+I01”が流れる。図2に示す結果より、Y-Y-Δ巻線の変圧器8の内部でA相の1相地絡故障が発生した場合の電流の流れは図3のように表わされる。
図3は、Y-Y-Δ変圧器におけるA相故障時の電流の流れを説明するための図である。図3を参照して、I1a,I1b,I1cは、1次側のA,B,C相に流れる電流をそれぞれ表わしている。I2a,I2b,I2cは、2次側のA,B,C相に流れる電流をそれぞれ表わしている。図3では、A相地絡故障点を示す「1LGA」より左側にCT位置がある場合のCT電流が内部故障の場合の電流を示し、右側にCT位置がある場合のCT電流が外部故障の場合の電流を示す。
図3を参照して、内部の1相故障時における電流I10,I1a、I1b,I1cは、それぞれ以下の式(1),(2),(3),(4)で表される。なお、電流I10は変圧器の1次側の零相電流を表わしている。
I10=(I1a+I1b+I1c)/3=I0-I01 ・・・(1)
I1a=3I0-I01 ・・・(2)
I1b=-I01 ・・・(3)
I1c=-I01 ・・・(4)
電流I20,I2a,I2b,I2cは、それぞれ以下の式(5),(6),(7),(8)で表される。なお、電流I20は変圧器の2次側の零相電流を表わしている。
I20=(I2a+I2b+I2c)/3=Ig0-I02 ・・・(5)
I2a=3Ig0-I02 ・・・(6)
I2b=-I02 ・・・(7)
I2c=-I02 ・・・(8)
A,B,C相における差電流Ida,Idb,Idcは、それぞれ以下の式(9),(10),(11)で表される。
Ida=I1a+I2a=(3I0-I01)+(3g0-I02)=3I0+3g0-(I01+I02) ・・・(9)
Idb=I1b+I2b=-I01-I02=-(I01+I02) ・・・(10)
Idc=I1c+I2c=-I01-I02=-(I01+I02) ・・・(11)
このように、健全相の差電流Idb,Idcは、変圧器8のΔ巻線X3に流れる電流と等しくなる。故障相(ここでは、A相)の差電流Idaの差電流は“3I0+3g0-(I01+I02)”となる。一般的には、(3I0+3g0)>(I01+I02)で、動作可能な差電流になるため、このIdaを使用するA相に対応する比率差動リレー要素は動作する。一方、差電流Idbと差電流Idcの大きさは“I01+I02”であるため、その大きさによっては、B,C相に対応する比率差動リレー要素が動作する可能性がある。
さらに、各相における差電流Ida,Idb,Idcに対してΔ演算を行なった差電流IdaΔ,IdbΔ,IdcΔは、以下の式(12),(13),(14)で表される。なお、Δ演算とは、“Ida-Idb”、“Idb-Idc”、“Idc-Ida”のように、サイクリックに互いに異なる2相間の差分をとる処理である。
IdaΔ=Ida-Idb=3I0+3Ig0 ・・・(12)
IdbΔ=Idb-Idc=0 ・・・(13)
IdcΔ=Idc-Ida=-(3I0+3Ig0) ・・・(14)
これより、故障相(ここでは、A相)の差電流Idaを含むΔ演算後の差電流IdaΔ,IdcΔは“3I0+3Ig0”であり、地絡電流が流れることを示している。そのため、差電流IdaΔ,IdcΔを用いる比率差動リレー要素は動作する。
また、内部故障と同様の考え方により、外部のA相の1相故障時における電流I10,I1a、I1b,I1cは、それぞれ以下の式(15),(16),(17),(18)で表される。
I10=(I1a+I1b+I1c)/3=-Ig0-I01 ・・・(15)
I1a=-3g0-I01 ・・・(16)
I1b=-I01 ・・・(17)
I1c=-I01 ・・・(18)
電流I20,I2a,I2b,I2cは、それぞれ以下の式(19),(20),(21),(22)で表される。
I20=(I2a+I2b+I2c)/3=Ig0-I02 ・・・(19)
I2a=3Ig0-I02 ・・・(20)
I2b=-I02 ・・・(21)
I2c=-I02 ・・・(22)
式(15)より、外部の1相故障時における1次側の零相電流は“-(Ig0+I01)”であり、式(19)より、2次側の零相電流は“Ig0-I02”となる。ここで、1次側の零相電流がマイナスになる理由は、保護リレー装置10の保護方向が内側を向いていることからCT極性もそれに合わせているためである。
そして、外部の1相故障時のA,B,C相における差電流Ida,Idb,Idcは、それぞれ以下の式(23),(24),(25)で表される。
Ida=I1a+I2a=-(3Ig0+I01)+(3Ig0-I02)=-(I01+I02)・・・(23)
Idb=I1b+I2b=-I01-I02=-(I01+I02)・・・(24)
Idc=I1c+I2c=-I01-I02=-(I01+I02)・・・(25)
このように、差電流Ida,Idb,Idcは、変圧器8のΔ巻線X3に流れる電流と等しくなる。これにより、外部故障の場合には、各相における差電流Ida,Idb,Idcに対してΔ演算を行なった差電流IdaΔ,IdbΔ,IdcΔは、以下の式(26)に示すように、すべて0になる。
IdaΔ=IdbΔ=IdcΔ=0・・・(26)
したがって、外部故障時には、Δ演算を行なうことで電流“I01+I02”を削除できる。上記を鑑みると、内部地絡故障時、内部短絡故障時、外部地絡故障時および外部短絡故障時における比率差動リレー要素の動作の有無は図4のように表わされる。
図4は、内部故障時および外部故障時における比率差動リレー要素の動作の有無を説明するための図である。具体的には、図4(a)には、外部および内部の地絡故障時における比率差動リレー要素の動作の有無が示されている。図4(b)には、外部および内部の短絡故障時における比率差動リレー要素の動作の有無が示されている。
なお、図4中において、「×」は比率差動リレー要素が不動作であることを示し、「○」は比率差動リレー要素が動作することを示し、「(○)」は差電流“(I01+I02)”の大きさによっては比率差動リレー要素が動作する可能性があることを示している。
図4(a)を参照して、図中の「AG」,「BG」,「CG」,「ABG」は、A相,B相,C相,AB相の地絡故障をそれぞれ表わしている。
図4(a)に示すように、Δ演算を行なわない通常の差電流Ida,Idb,Idcを用いて比率差動演算を行なう場合には、外部地絡故障時に比率差動リレー要素が動作してしまう可能性がある。また、内部地絡故障時においても、故障相以外の相に対応する比率差動リレー要素が動作してしまう可能性がある。例えば、図4(a)には、A相の内部地絡故障時に、B相およびC相の各々に対応する比率差動リレー要素も動作してしまう可能性があることが示されている。B相,C相の内部地絡故障時についても同様である。なお、AB相の2相の内部地絡故障時には、C相に対応する比率差動リレー要素が動作する可能性があることが示されている。
一方、Δ演算後の差電流IdaΔ,IdBΔ,IdCΔを用いて比率差動演算を行なう場合には、外部地絡故障時に比率差動リレー要素は動作しない(すなわち、不動作である)。また、内部の1相地絡故障時においては、故障相を含むΔ演算した2相に対応する比率差動リレー要素が動作する。例えば、A相におけるΔ演算後の差電流IdaΔ、およびC相におけるΔ演算後の差電流IdcΔは、差電流Idaを含んでいる。そのため、A相の内部地絡故障時には、A相およびC相に対応する比率差動リレー要素が動作し、B相に対応する比率差動リレー要素は動作しない。なお、AB相の2相の内部地絡故障時には、各相に対応する比率差動リレー要素が動作する。
続いて、図4(b)を参照して、図中の「AB」,「BC」,「CA」,「ABC」は、AB相,BC相,CA相,ABC相の短絡故障をそれぞれ表わしている。
図4(b)に示すように、差電流Ida,Idb,Idcを用いて比率差動演算を行なう場合、外部短絡故障時に比率差動リレー要素は動作しない。また、内部の2相短絡故障時において、故障相に対応する比率差動リレー要素が動作する。例えば、図4(b)には、AB相の内部短絡故障時に、A相およびB相に対応する比率差動リレー要素が動作し、C相に対応する比率差動リレー要素は動作しない。BC相,CA相の内部短絡故障時についても同様である。なお、ABC相の3相の内部短絡故障時には、各相に対応する比率差動リレー要素が動作する。
一方、差電流IdaΔ,IdBΔ,IdCΔを用いて比率差動演算を行なう場合、外部短絡故障時に比率差動リレー要素は動作しない。しかしながら、内部短絡故障時においては、故障相に関わらずすべての相に対応する比率差動リレー要素が動作してしまう。
図4に示す比率差動リレーの動作態様に基づくと、故障相を判定するために図5に示すようなロジックを構築することができる。
図5は、実施の形態1に従う故障判定方式を説明するための図である。図5を参照して、保護リレー装置10は、比率差動リレー要素101~106と、地絡検出回路107と、インラッシュ判定回路108~110と、ANDゲート121~126,141~143と、ORゲート131~133とを含む。
比率差動リレー要素101,102,103は、それぞれ、Δ演算後の差電流IdaΔ,IdbΔ,IdcΔを用いて比率差動演算を実行する。例えば、比率差動リレー要素101は、差電流IdaΔとΔ演算後の抑制電流IraΔとが、IdaΔ>IrΔ×α1+β1との関係を満たすか否かを判定する。α1,β1は定数である。また、例えば、抑制電流IraΔは、“(|I1a-I1b|+|I2a-I2b|)”である。本願明細書では、||の記号は振幅値を示している。
比率差動リレー要素101は、上記関係を満たすと判定した場合に動作し、そうではない場合に不動作となる。比率差動リレー要素101は、動作する場合には出力値“1”を、不動作の場合には出力値“0”をANDゲート121,122に出力する。比率差動リレー要素102,103についても同様である。
比率差動リレー要素104,105,106は、それぞれ、Δ演算を行わない通常の差電流Ida,Idb,Idcを用いて比率差動演算を実行する。例えば、比率差動リレー要素104は、差電流Idaと抑制電流Iraとが、Ida>Ir×α2+β2との関係を満たすか否かを判定する。α2,β2は定数である。また、例えば、通常の抑制電流Iraは、“(|I1a|+|I2a|)”である。
比率差動リレー要素104は、動作する場合には出力値“1”を、不動作の場合には出力値“0”をANDゲート121,124,126に出力する。比率差動リレー要素105,106についても同様である。
地絡検出回路107は、地絡故障を検出するための回路である。具体的には、地絡検出回路107は、|Ida+Idb+Idc|>K0との関係を満たすか否かを判定する。
地絡検出回路107は、差電流Ida、差電流Idb、および差電流Idcのベクトル和の振幅値が閾値K0よりも大きい場合に(すなわち、上記関係を満たす場合に)、地絡故障が検出されたことを示す出力値“1”をANDゲート121~126に出力する。地絡検出回路107は、当該振幅値が閾値K0以下の場合に(すなわち、上記関係を満たさない場合に)、地絡故障が検出されていないことを示す出力値“0”をANDゲート121~126に出力する。
なお、本実施の形態では、地絡検出回路107は、3相の差電流のベクトル和で地絡故障を検出しているが、当該構成に限られない。例えば、地絡検出回路107は、変圧器1次側電流の3相電流(例えば、I1a,I1b,I1c)のベクトル和の振幅値と変圧器2次側の3相電流(例えば、I2a,I2b,I2c)のベクトル和の振幅値のいずれか一方で検出閾値を超えた場合に地絡故障を検出する構成であってもよい。
インラッシュ判定回路108,109,110は、それぞれ差電流Ida,Idb,Idcを用いて、変圧器8がインラッシュ状態であるか否かを判定する。例えば、差電流Idaの基本波成分に対する第2高調波成分の含有率が閾値Kfよりも大きい場合に、インラッシュ判定回路108は、A相について変圧器8がインラッシュ状態であると判定して出力値“1”をANDゲート141に出力する。当該含有率が閾値Kf以下である場合に、インラッシュ判定回路108は、A相について変圧器8がインラッシュ状態ではないと判定して出力値“0”をANDゲート141に出力する。インラッシュ判定回路109,110についても同様である。
ANDゲート121は、比率差動リレー要素101,103,104の各出力値と、地絡検出回路107の出力値とのAND演算を行なう。具体的には、比率差動リレー要素101,103,104が動作し、かつ地絡検出回路107により地絡故障が検出された場合に、ANDゲート121は、A相の内部地絡故障を示す信号(すなわち、出力値”1”)をORゲート131に出力する。そうではない場合には、ANDゲート121は、出力値”0”をORゲート131に出力する。
ANDゲート121の出力動作は、図4に示すように、A相の内部地絡故障時において、差電流Idaを用いる比率差動リレー要素(すなわち、比率差動リレー要素104)、およびΔ演算後の差電流IdaΔ,IdcΔをそれぞれ用いる2つの比率差動リレー要素(すなわち、比率差動リレー要素101,103)が動作することからも理解される。なお、A相の外部地絡故障時において、差電流Idaを用いる比率差動リレー要素104は動作する可能性があるが、Δ演算後の差電流IdaΔ,IdcΔを用いる比率差動リレー要素101,103は動作しないため、ANDゲート121から外部地絡故障の場合に信号が出力されることはない。
ANDゲート122は、比率差動リレー要素102,101,105の各出力値と、地絡検出回路107の出力値とのAND演算を行なう。具体的には、比率差動リレー要素102,101,105が動作し、かつ地絡検出回路107により地絡故障が検出された場合に、ANDゲート122は、B相の1相故障を示す信号(すなわち、出力値”1”)をORゲート132に出力する。そうではない場合には、ANDゲート122は、出力値”0”をORゲート132に出力する。
ANDゲート123は、比率差動リレー要素103,102,106の各出力値と、地絡検出回路107の出力値とのAND演算を行なう。具体的には、比率差動リレー要素103,102,106が動作し、かつ地絡検出回路107により地絡故障が検出された場合に、ANDゲート123は、C相の1相故障を示す信号(すなわち、出力値”1”)をORゲート133に出力する。そうではない場合には、ANDゲート123は、出力値”0”をORゲート133に出力する。
ANDゲート124は、比率差動リレー要素104,105の各出力値と、地絡検出回路107の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、比率差動リレー要素104,105が動作し、かつ地絡検出回路107により地絡故障が検出されていない場合に、ANDゲート124は、AB相の短絡故障を示す信号(すなわち、出力値”1”)をORゲート131,132に出力する。そうではない場合には、ANDゲート124は、出力値”0”をORゲート131,132に出力する。
ANDゲート124の出力動作は、図4に示すように、AB相の短絡故障時において、差電流Ida,Idbを用いる2つの比率差動リレー要素(すなわち、比率差動リレー要素104,105)が動作することからも理解される。なお、Δ演算後の差電流を用いる比率差動リレー要素は、いずれの短絡故障でも動作してしまうため、短絡故障の判定には用いられない。
ANDゲート125は、比率差動リレー要素105,106の各出力値と、地絡検出回路107の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、比率差動リレー要素105,106が動作し、かつ地絡検出回路107により地絡故障が検出されていない場合に、ANDゲート125は、BC相の短絡故障を示す信号(すなわち、出力値”1”)をORゲート132,133に出力し、そうではない場合には出力値”0”をORゲート132,133に出力する。
ANDゲート126は、比率差動リレー要素106,104の各出力値と、地絡検出回路107の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、比率差動リレー要素106,104が動作し、かつ地絡検出回路107により地絡故障が検出されていない場合に、ANDゲート126は、CA相の短絡故障を示す信号(すなわち、出力値”1”)をORゲート131,133に出力し、そうではない場合には出力値”0”をORゲート131,133に出力する。
ORゲート131は、ANDゲート121,124,126の各出力値のOR演算を行なう。具体的には、これらの各出力値の少なくとも1つが”1”である場合には、ORゲート131は、A相に故障が発生していることを示す信号(すなわち、出力値“1”)をANDゲート141に出力し、そうではない場合には出力値“0”をANDゲート141に出力する。
ORゲート132は、ANDゲート122,124,125の各出力値のOR演算を行なう。具体的には、これらの各出力値の少なくとも1つが”1”である場合には、ORゲート132は、B相に故障が発生していることを示す信号(すなわち、出力値“1”)をANDゲート142に出力し、そうではない場合には出力値“0”をANDゲート142に出力する。
ORゲート133は、ANDゲート123,125,126の各出力値のOR演算を行なう。具体的には、これらの各出力値の少なくとも1つが”1”である場合には、ORゲート133は、C相に故障が発生していることを示す信号(すなわち、出力値“1”)をANDゲート143に出力し、そうではない場合には出力値“0”をANDゲート143に出力する。
ANDゲート141は、ORゲート131の出力値と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ORゲート131の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート141は、A相に故障が発生していることを示す信号Daを出力する。なお、変圧器8がインラッシュ状態である場合には、信号Daは出力されない(すなわち、信号Daの出力がロックされる)。
同様に、ORゲート132の出力値が“1”であり、かつインラッシュ判定回路109により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート142は、B相に故障が発生したことを示す信号Dbを出力する。また、ORゲート133の出力値が“1”であり、かつインラッシュ判定回路110により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート143は、C相に故障が発生したことを示す信号Dcを出力する。
典型的には、信号Da~Dcの少なくとも1つが出力されると、トリップ信号TRの出力により遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。
図5に示したロジックによると、地絡検出回路107により地絡故障が検出された場合には、Δ演算後の差電流を用いる2つの比率差動リレー要素、および通常の差電流を用いる比率差動リレー要素の動作出力により地絡故障の故障相を判定できる。地絡故障が検出されていない場合には、通常の差電流を用いる2つの比率差動リレー要素の動作出力により短絡故障の故障相を判定できる。また、外部故障を内部故障と誤判定することもない。
<ハードウェア構成>
図6は、実施の形態1に従う保護リレー装置10のハードウェア構成の一例を示す図である。図6を参照して、保護リレー装置10は、補助変成器51と、AD(Analog to Digital)変換部52と、演算処理部70とを含む。
補助変成器51は、電流変成器4,5により検出された電流を取り込み、リレー内の回路に適した電圧に変換して出力する。AD変換部52は、補助変成器51から出力される電圧を取り込んでディジタルデータに変換する。具体的には、AD変換部52は、アナログフィルタと、サンプルホールド回路と、マルチプレクサと、AD変換器とを含む。
アナログフィルタは、補助変成器51から出力される電流の波形信号から高周波のノイズ成分を除去する。サンプルホールド回路は、アナログフィルタから出力される電流の波形信号を予め定められたサンプリング周期でサンプリングする。マルチプレクサは、演算処理部70から入力されるタイミング信号に基づいて、サンプルホールド回路から入力される波形信号を時系列で順次切り替えてAD変換器に入力する。AD変換器は、マルチプレクサから入力される波形信号をアナログデータからディジタルデータに変換する。AD変換器は、ディジタル変換した波形信号(ディジタルデータ)を演算処理部70へ出力する。
演算処理部70は、CPU(Central Processing Unit)72と、ROM73と、RAM74と、DI(ディジタル入力)回路75と、DO(ディジタル出力)回路76と、入力インターフェイス(I/F)77と、通信インターフェイス(I/F)78とを含む。これらは、バス71で結合されている。
CPU72は、予めROM73に格納されたプログラムを読み出して実行することによって、保護リレー装置10の動作を制御する。なお、ROM73には、CPU72によって用いられる各種情報が格納されている。CPU72は、たとえば、マイクロプロセッサである。なお、当該ハードウェアは、CPU以外のFPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)およびその他の演算機能を有する回路などであってもよい。
CPU72は、バス71を介して、AD変換部52からディジタルデータを取り込む。CPU72は、ROM73に格納されているプログラムに従って、取り込んだディジタルデータを用いて制御演算を実行する。
CPU72は、制御演算結果に基づいて、DO回路76を介して、遮断器2,3にトリップ信号TRを出力する。また、CPU72は、DI回路75を介して、トリップ信号TRに対する応答を受け取る。入力インターフェイス77は、典型的には、各種ボタン等であり、系統運用者からの各種設定操作を受け付ける。
<機能構成>
図7は、実施の形態1に従う保護リレー装置10の機能構成の一例を示すブロック図である。図7を参照して、保護リレー装置10は、主たる機能構成として、電流入力部301と、第1電流算出部303と、第2電流算出部305と、故障判定部20と、状態判定部30と、出力制御部40とを含む。故障判定部20は、第1差動リレー演算部307と、第2差動リレー演算部309と、地絡検出部311と、故障相判定部313と、信号出力部314とを含む。これらの各機能は、例えば、保護リレー装置10のマイクロプロセッサがメモリに格納されたプログラムを実行することによって実現される。なお、これらの機能の一部または全部はハードウェアで実現されるように構成されていてもよい。
電流入力部301は、電流変成器4から出力される各相の1次電流I1a,I1b,I1c、および電流変成器5から出力される各相の2次電流I2a,I2b,I2cの入力を受け付ける。
第1電流算出部303は、各相の1次電流I1a,I1b,I1cと2次電流I2a,I2b,I2cとに基づいて、各相における差電流Ida,Idb,Idcおよび抑制電流Ira,Irb,Ircを算出する。具体的には、第1電流算出部303は、各相について、1次電流と2次電流とのベクトル和をとることにより差電流Ida,Idb,Idcを算出する。また、第1電流算出部303は、各相について、1次電流と2次電流とのスカラー和をとることにより抑制電流Ira,Irb,Ircを算出する。例えば、抑制電流Ira,Irb,Ircは、それぞれ“(|I1a|+|I2a|)”,“(|I1b|+|I2b|)”,“(|I1c|+|I2c|)”である。
第2電流算出部305は、第1電流算出部303により算出された、互いに異なる2相(例えば、A相、B相)の各々における差電流(例えば、差電流Ida、差電流Idb)に基づいて、各相におけるΔ演算後の差電流IdaΔ,IdbΔ,IdcΔを算出する。例えば、互いに異なる2相がA相およびB相である場合には、A相における差電流IdaとB相における差電流Idbとの差分をとることで、A相におけるΔ演算後の差電流IdaΔを算出する。
また、第2電流算出部305は、互いに異なる2相(例えば、A相、B相)の各々における1次電流(例えば、1次電流I1a、I1b)および2次電流(例えば、2次電流I2a,I2b)に基づいて、各相におけるΔ演算後の抑制電流IraΔ,IrbΔ,IrcΔを算出する。例えば、Δ演算後の抑制電流IraΔ,IrbΔ,IrcΔは、それぞれ“(|I1a-I1b|+|I2a-I2b|)”,“(|I1b-I1c|+|I2b-I2c|)”,“(|I1c-I1a|+|I2c-I2a|)”である。
状態判定部30は、各相に対応して設けられ、当該相における差電流の基本波成分に対する第2高調波成分の含有率に基づいて変圧器8がインラッシュ状態であるか否かを判定するインラッシュ判定回路108~110を含む。状態判定部30は、インラッシュ判定回路108~110の判定結果を故障判定部20の信号出力部314に出力する。
第1差動リレー演算部307は、各相に対応して設けられ、当該相における差電流および抑制電流に基づいて比率差動演算を実行する比率差動リレー要素を含む。具体的には、第1差動リレー演算部307は、A相における差電流Idaおよび抑制電流Iraに基づいて比率差動演算を実行する比率差動リレー要素104と、B相における差電流Idbおよび抑制電流Irbに基づいて比率差動演算を実行する比率差動リレー要素105と、C相における差電流Idcおよび抑制電流Ircに基づいて比率差動演算を実行する比率差動リレー要素106とを含む。第1差動リレー演算部307は、比率差動リレー要素104~106の動作および不動作を示す出力結果を故障相判定部313に出力する。
第2差動リレー演算部309は、各相に対応して設けられ、当該相におけるΔ演算後の差電流および抑制電流に基づいて比率差動演算を実行する比率差動リレー要素を含む。具体的には、第2差動リレー演算部309は、A相における差電流IdaΔおよび抑制電流IraΔに基づいて比率差動演算を実行する比率差動リレー要素101と、B相における差電流IdbΔおよび抑制電流IrbΔに基づいて比率差動演算を実行する比率差動リレー要素102と、C相における差電流IdcΔおよび抑制電流IrcΔに基づいて比率差動演算を実行する比率差動リレー要素103とを含む。第2差動リレー演算部309は、比率差動リレー要素101~103の動作および不動作を示す出力結果を故障相判定部313に出力する。
地絡検出部311は、各相における差電流Ida,Idb,Idcに基づいて地絡故障を検出する。具体的には、地絡検出部311は、図5中の地絡検出回路107に対応しており、差電流Ida、差電流Idb、および差電流Idcのベクトル和の振幅値が閾値K0よりも大きい場合に、地絡故障の発生を検出する。
故障相判定部313は、第1差動リレー演算部307の出力結果と、第2差動リレー演算部の出力結果と、地絡検出部311の検出結果とに基づいて、電力系統の故障相を判定する。
具体的には、第1差動リレー演算部307における、第1相(例えば、A相)に対応する比率差動リレー要素(例えば、比率差動リレー要素104)が動作し、かつ、第2差動リレー演算部309における、第1相および第3相(例えば、C相)にそれぞれ対応する2つの比率差動リレー要素(例えば、比率差動リレー要素101,103)が動作したとの条件G1を満たす場合に、故障相判定部313は第1相に故障が発生したと判定する。より具体的には、当該条件G1を満たし、かつ地絡検出部311により地絡故障が検出された場合に、故障相判定部313は第1相に地絡故障が発生したと判定する。この場合、故障相判定部313はANDゲート121~123に対応する。
また、第1差動リレー演算部307における、第1相(例えば、A相)および第2相(例えば、B相)にそれぞれ対応する2つの比率差動リレー要素(例えば、比率差動リレー要素104,105)が動作し、かつ地絡故障が検出されない場合に、故障相判定部313は第1相および第2相(例えば、AB相)の短絡故障が発生したと判定する。この場合、故障相判定部313はANDゲート124~126に対応する。
故障相判定部313は、第1相~第3相のうちの故障相を示す信号を信号出力部314に出力する。なお、故障相判定部313は、第1相~第3相のいずれも故障していないと判定した場合には、故障相を示す信号を出力しない。この場合、故障相判定部313はORゲート131~133に対応する。
信号出力部314は、故障相判定部313の判定結果と、状態判定部30の判定結果とに基づいて、故障信号を出力する。ある局面では、故障相判定部313により第1相(例えば、A相)に故障が発生したと判定され、かつ第1相に対応するインラッシュ判定回路(例えば、インラッシュ判定回路108)により変圧器8がインラッシュ状態ではないと判定された場合、信号出力部314は、第1相に故障が発生していることを示す故障信号(例えば、信号Da)を出力する。
同様に、信号出力部314は、第2相(例えば、B相)に故障が発生していることを示す故障信号(例えば、信号Db)および第3相(例えば、C相)に故障が発生していることを示す故障信号(例えば、信号Dc)を出力する。典型的には、信号出力部314は、ANDゲート141~143に対応する。
出力制御部40は、信号出力部314により故障信号が出力された場合に、電力系統に設けられた遮断器2,3へ開放指令であるトリップ信号TRを出力する。具体的には、信号出力部314から信号Da,Db,Dcの少なくとも1つが出力された場合には、出力制御部40は、トリップ信号TRを出力する。
なお、保護リレー装置10は、故障信号を他の目的で利用してもよい。例えば、信号Daが出力された場合に、保護リレー装置10は、A相が故障相であることを示す表示を行なってもよいし、ログを記録してもよいし、変電所の監視制御装置へ通信信号を出力してもよい。
<利点>
実施の形態1によると、1相地絡故障および短絡故障の故障相をより正しく判定することができる。また、外部故障を内部故障と誤判定することもない。そのため、保護リレー装置10は誤動作することなく、適切に動作することができる。
なお、2相地絡故障の場合には故障相に短絡電流が流れることから、故障相の差電流が健全相の差電流よりもかなり大きくなる。したがって、3相の差電流のうち最小相の電流振幅値が他の2相の差電流の振幅値より十分小さいことを確認すれば、最小相を健全相と判定できるため、故障相を判定することができる。
また、実施の形態1によると、インラッシュ電流による誤動作を適切に防止できるとともに、変圧器8のインラッシュ状態中に故障が発生した場合であっても、速やかにインラッシュ判定に基づくロックを外して故障を検出できる。
具体的には、変圧器を電力系統に投入後に1相地絡故障が保護リレー装置の内部で発生した場合、インラッシュ電流に含まれる第2高調波成分により、一旦、比率差動リレー要素の動作はロックされる。その後の故障発生によって故障相電流の基本波成分の増加により、基本波成分に対する第2高調波成分の含有率が閾値以下に低下して、ロックがはずれることが期待される。
しかしながら、特許文献1のように、零相電流(例えば、地絡故障電流の1/3相当)を各入力電流から差し引いている場合には、故障電流が2/3になって基本波成分の増加分が削減される。そのため、インラッシュ電流の第2高調波成分の量によっては基本波成分に対する第2高調波成分の含有率が閾値以下に低下しない場合がある。この場合、故障が発生しても比率差動リレー要素の出力のロックが維持され、保護リレー装置が適切に動作できず、遮断器が開放されない。実施の形態1によると、特許文献1のように零相電流を各入力電流から差し引く処理を行なっていないことから上記特許文献1のような問題は生じない。
さらに、実施の形態1によると、変圧器巻線形態に関係なく、CT2次回路をY結線にすることができるため、誤った接続方法でCT2次回路を接続する可能性を低減できる。また、CTをΔ接続すると、他の3相電流リレーへ接続することは難しいが、Y接続であるため、比率差動リレーから他の3相電流リレーへの接続も可能になる。
実施の形態2.
上述した実施の形態1では、通常の差電流を用いる比率差動リレー要素の出力、およびΔ演算後の差電流を用いる比率差動リレー要素の出力に基づいて故障相を判定する構成について説明した。実施の形態2では、Δ演算後の差電流を用いる比率差動リレー要素の代わりに、Δ演算後の差電流の振幅値が一定以上であるか否かを判定する回路を用いて、故障相を判定する構成について説明する。
<故障判定方式>
図8は、実施の形態2に従う故障判定方式を説明するための図である。図8を参照して、保護リレー装置10Aは、比率差動リレー要素104~106と、地絡検出回路107と、インラッシュ判定回路108~110と、振幅判定回路151~153と、ANDゲート124~126,161~163,181~183と、ORゲート171~173とを含む。保護リレー装置10Aは図1に示す保護リレー装置10に対応するが、他の実施の形態との区別のため、便宜上「A」といった追加の符号を付している。これは、実施の形態3~5でも同様である。
保護リレー装置10Aの構成は、基本的に、図5に示した保護リレー装置10の比率差動リレー要素101~103を、それぞれ振幅判定回路151~153に置き換えた構成に相当する。なお、ANDゲート161~163は、図5中のANDゲート121~123にそれぞれ対応している。また、ORゲート171~173は図5中のORゲート131~133にそれぞれ対応しており、ANDゲート181~183は図5中のANDゲート141~143にそれぞれ対応している。
振幅判定回路151,152,153は、それぞれΔ演算後の差電流IdaΔ,IdbΔ,IdcΔの振幅値が閾値K1よりも大きいか否かを判定する。例えば、差電流IdaΔが閾値K1よりも大きい場合に、振幅判定回路151は出力値“1”をANDゲート161,162に出力する。当該振幅値が閾値K1以下である場合に、振幅判定回路151は出力値“0”をANDゲート161,162に出力する。振幅判定回路152,153についても同様である。
ANDゲート161は、振幅判定回路151,153の各出力値と、比率差動リレー要素104の出力値と、地絡検出回路107の出力値とのAND演算を行なう。具体的には、振幅判定回路151,153によりΔ演算後の差電流の振幅値が閾値K1よりも大きいと判定され、比率差動リレー要素104が動作し、かつ地絡検出回路107により地絡故障が検出された場合に、ANDゲート161は、A相の内部地絡故障を示す信号(すなわち、出力値”1”)をORゲート171に出力する。ANDゲート162,163についても同様である。
ORゲート171は、ANDゲート161,124,126の各出力値のOR演算を行なう。具体的には、これらの各出力値の少なくとも1つが”1”である場合には、ORゲート171は、A相に故障が発生していることを示す信号(すなわち、出力値“1”)をANDゲート181に出力する。ORゲート172,173についても同様である。
ANDゲート181は、ORゲート171の出力値と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ORゲート171の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート181は、A相に故障が発生していることを示す信号Daを出力する。ANDゲート182,183についても同様である。
<機能構成>
図9は、実施の形態2に従う保護リレー装置10Aの機能構成の一例を示すブロック図である。図9を参照して、保護リレー装置10Aの機能構成は、保護リレー装置10の故障判定部20を故障判定部20Aに置き換えたものである。故障判定部20Aは、第1差動リレー演算部307と、地絡検出部311と、故障相判定部313Aと、信号出力部314と、判定部315とを含む。なお、第2電流算出部305Aは、第2電流算出部305と実質的に同一の機能を有する。第2電流算出部305Aは、各相におけるΔ演算後の差電流IdaΔ,IdbΔ,IdcΔを判定部315に対して出力する。
判定部315は、各相に対応して設けられ、当該相におけるΔ演算後の差電流の振幅値が閾値K1よりも大きいか否かを判定する振幅判定回路を含む。具体的には、判定部315は、A相における差電流IdaΔの振幅値が閾値K1よりも大きいか否かを判定する振幅判定回路151と、B相における差電流IdbΔの振幅値が閾値K1よりも大きいか否かを判定する振幅判定回路152と、C相における差電流IdcΔの振幅値が閾値K1よりも大きいか否かを判定する振幅判定回路153とを含む。
故障相判定部313Aは、第1差動リレー演算部307の出力結果と、判定部315の判定結果と、地絡検出部311の検出結果とに基づいて、電力系統の故障相を判定する。
具体的には、第1差動リレー演算部307における、第1相(例えば、A相)に対応する比率差動リレー要素104が動作し、かつ第1相および第3相(例えば、C相)にそれぞれに対応する2つの振幅判定回路(例えば、振幅判定回路151,153)によりΔ演算後の差電流の振幅値が閾値K1よりも大きいと判定されたとの条件G2を満たす場合に、故障相判定部313Aは第1相に故障が発生したと判定する。より具体的には、当該条件G2を満たし、かつ地絡検出部311により地絡故障が検出された場合に、故障相判定部313Aは第1相に地絡故障が発生したと判定する。この場合、故障相判定部313AはANDゲート161~163に対応する。
故障相判定部313Aの短絡故障の判定方式は、故障相判定部313の短絡故障の判定方式と同様である。具体的には、第1差動リレー演算部307における、第1相および第2相にそれぞれ対応する比率差動リレー要素が動作し、かつ地絡故障が検出されない場合に、故障相判定部313Aは第1相および第2相に短絡故障が発生したと判定する。
<利点>
実施の形態2によると、Δ演算後の差電流を用いる比率差動リレー要素の代わりに、Δ演算後の差電流の振幅値が閾値K1よりも大きいか否かを判定する回路を用いる。例えば、外部故障でCT飽和が1次側あるいは、2次側の電流のどちらかで発生すると不要な差電流が生じる可能性がある。そのため、抑制電流により不要判定を抑える機能を有する比率差動リレー要素よりも、当該回路の方が不要出力を行なってしまう可能性が高くなる。しかし、一般的には、変圧器の外部故障では、変圧器の両端CTを流れる電流は変圧器の内部インピーダンスが大きく、故障電流が制限されるためCT飽和の可能性は低い。
したがって、CT飽和時における精度は実施の形態1よりも劣るものの、CT飽和を特に考慮する必要が無い場合には実施の形態1よりも簡易な構成で、実施の形態1と同等の利点を有する。
実施の形態3.
上述した実施の形態1では、地絡検出回路107を用いて、地絡故障と短絡故障とを区別する構成について説明した。実施の形態3では、地絡検出回路107を用いずに故障相を判定する構成について説明する。
<故障判定方式>
図10は、実施の形態3に従う故障判定方式を説明するための図である。図10を参照して、保護リレー装置10Bは、比率差動リレー要素101~106と、インラッシュ判定回路108~110と、ANDゲート191~193,201~203とを含む。
保護リレー装置10Bの構成は、図5中の保護リレー装置10の地絡検出回路107を削除した構成に相当する。地絡検出回路107の削除に伴い、保護リレー装置10における複数の論理ゲート(例えば、ANDゲート124~126、およびORゲート131~133)も削除されている。
ANDゲート191は、比率差動リレー要素101,103,104の各出力値のAND演算を行なう。具体的には、比率差動リレー要素101,103,104が動作した場合に、ANDゲート191は、A相の内部故障を示す信号(すなわち、出力値”1”)をANDゲート201に出力する。同様に、ANDゲート192は、比率差動リレー要素102,101,105が動作した場合に、B相の内部故障を示す信号をANDゲート202に出力する。比率差動リレー要素103,102,106が動作した場合に、ANDゲート193は、C相の内部故障を示す信号をANDゲート203に出力する。
ANDゲート201は、ANDゲート191と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ANDゲート191の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート201は、A相に故障が発生していることを示す信号Daを出力する。ANDゲート202,203についても同様である。典型的には、信号Da~Dcの少なくとも1つが出力されると、開放指令により遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。
上記のように、地絡検出回路107を削除した構成の場合、地絡故障か否かの判定はできないが、1相地絡故障、2相短絡故障では正しく故障相を判定し、外部故障での動作もない。
図4を参照すると、A相の内部地絡故障の場合、Δ演算後の差電流IdaΔ,IdcΔを用いる2つの比率差動リレー要素101,103、および通常の差電流Idaを用いる比率差動リレー要素104は動作するが、差電流IdbΔを用いる比率差動リレー要素105は動作しない。この場合、ANDゲート191は出力値“1”を出力し、ANDゲート192は出力値“0”を出力し、ANDゲート193は出力値“0”を出力する。そのため、保護リレー装置10Bは、A相が故障相であることを判定できる。
また、図4を参照すると、AB相の短絡故障の場合、差電流IdaΔ,IdbΔ,IdcΔをそれぞれ用いる3つの比率差動リレー要素101,102、103および差電流Ida,Idbをそれぞれ用いる2つの比率差動リレー要素104,105が動作する。この場合、ANDゲート191は出力値“1”を出力し、ANDゲート192は出力値“1”を出力し、ANDゲート193は出力値“0”を出力する。そのため、保護リレー装置10Bは、A相が故障相であると判定できる。
同様に、CA相の短絡故障の場合、比率差動リレー要素101,102、103および比率差動リレー要素104,106が動作する。この場合、ANDゲート191は出力値“1”を出力し、ANDゲート192は出力値“0”を出力し、ANDゲート193は出力値“1”を出力する。そのため、保護リレー装置10Bは、A相が故障相であると判定できる。
したがって、保護リレー装置10Bは、地絡故障および短絡故障の区別はできないが、少なくともA相が故障相であることを正しく判定できる。B相およびC相についても同様である。そのため、1相地絡故障、および2相短絡故障時においては、保護リレー装置10Bは、故障相を正しく判定できる。なお、保護リレー装置10Bは、2相地絡故障時には3相故障と判定する可能性はあるものの、変圧器8の内部故障に対する保護動作としては、実施の形態1に従う保護リレー装置10と同様となる。
<機能構成>
保護リレー装置10Bの機能構成は、図7中の地絡検出部311を削除した構成に相当する。実施の形態3に従う故障相判定部は、第1差動リレー演算部307の出力結果と、第2差動リレー演算部309の出力結果とに基づいて、電力系統の故障相を判定する。具体的には、第1差動リレー演算部307における、第1相(例えば、A相)に対応する比率差動リレー要素(例えば、比率差動リレー要素104)が動作し、かつ第2差動リレー演算部309における、第1相および第3相(例えば、C相)にそれぞれに対応する2つの比率差動リレー要素(例えば、比率差動リレー要素101,103)が動作した場合に、実施の形態3に従う故障相判定部は、第1相に故障が発生したと判定する。
<利点>
実施の形態3によると、実施の形態1よりも簡易な構成で、実施の形態1とほぼ同等の利点を有する。
実施の形態4.
上述した実施の形態3では、通常の差電流を用いる比率差動リレー要素の出力、およびΔ演算後の差電流を用いる比率差動リレー要素の出力に基づいて故障相を判定する構成について説明した。実施の形態4では、Δ演算後の差電流を用いる比率差動リレー要素の代わりに、Δ演算後の差電流の振幅値が一定以上であるか否かを判定する回路を用いて、故障相を判定する構成について説明する。
<故障判定方式>
図11は、実施の形態4に従う故障判定方式を説明するための図である。図11を参照して、保護リレー装置10Cは、比率差動リレー要素104~106と、インラッシュ判定回路108~110と、振幅判定回路151~153と、ANDゲート211~213,221~223とを含む。
保護リレー装置10Cの構成は、図8中の保護リレー装置10Aの地絡検出回路107を削除した構成に相当する。地絡検出回路107の削除に伴い、保護リレー装置10Aにおける複数の論理ゲート(例えば、ANDゲート124~126、およびORゲート171~173)も削除されている。
ANDゲート211は、振幅判定回路151,153の各出力値と、比率差動リレー要素104の出力値とのAND演算を行なう。具体的には、振幅判定回路151,153によりΔ演算後の差電流の振幅値が閾値K1よりも大きいと判定され、かつ比率差動リレー要素104が動作した場合に、ANDゲート211は、A相の内部地絡故障を示す信号(すなわち、出力値”1”)をANDゲート221に出力する。ANDゲート212,213についても同様である。
ANDゲート221は、ANDゲート211と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ANDゲート211の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート221は、A相に故障が発生していることを示す信号Daを出力する。ANDゲート222,223についても同様である。典型的には、信号Da~Dcの少なくとも1つが出力されると、開放指令により遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。
<機能構成>
保護リレー装置10Cの機能構成は、図9中の地絡検出部311を削除した構成に相当する。実施の形態4に従う故障相判定部は、第1差動リレー演算部307の出力結果と、判定部315の判定結果とに基づいて、電力系統の故障相を判定する。具体的には、第1差動リレー演算部307における、第1相(例えば、A相)に対応する比率差動リレー要素(例えば、比率差動リレー要素104)が動作し、かつ第1相および第3相(例えば、C相)にそれぞれに対応する2つの振幅判定回路(例えば、振幅判定回路151,153)によりΔ演算後の差電流の振幅値が閾値K1よりも大きいと判定された場合に、実施の形態4に従う故障相判定部は、第1相に故障が発生したと判定する。
<利点>
実施の形態4によると、CT飽和時における精度は実施の形態3よりも劣るものの、CT飽和を特に考慮する必要が無い場合には実施の形態3よりも簡易な構成で、実施の形態3と同等の利点を有する。
実施の形態5.
上述した実施の形態1では、通常の差電流を用いる比率差動リレー要素の出力、およびΔ演算後の差電流を用いる比率差動リレー要素の出力に基づいて故障相を判定する構成について説明した。実施の形態5では、通常の差電流を用いる比率差動リレー要素の代わりに、当該差電流の振幅値が一定以上の場合に出力する回路を用いて、故障相を判定する構成について説明する。
<故障判定方式>
図12は、実施の形態5に従う故障判定方式を説明するための図である。図12を参照して、保護リレー装置10Dは、比率差動リレー要素101~103と、インラッシュ判定回路108~110と、振幅判定回路231~232と、ANDゲート241~246,251~253と、ORゲート261~263とを含む。
保護リレー装置10Dの構成は、図5中の保護リレー装置10の比率差動リレー要素104~106を、それぞれ振幅判定回路231~233に置き換えた構成に相当する。なお、ANDゲート241~246は、図5中のANDゲート121~126にそれぞれ対応している。また、ORゲート261~263は図5中のORゲート131~133にそれぞれ対応しており、ANDゲート251~253は、図5中のANDゲート141~143にそれぞれ対応している。
振幅判定回路231,232,233は、それぞれ差電流Ida,Idb,Idcの振幅値が閾値K2よりも大きいか否かを判定する。例えば、差電流Idaが閾値K2よりも大きい場合に、振幅判定回路231は出力値“1”をANDゲート241,244,246に出力する。当該振幅値が閾値K2以下である場合に、振幅判定回路232は出力値“0”をANDゲート241,244,246に出力する。振幅判定回路232,233についても同様である。
ANDゲート241は、比率差動リレー要素101,103の各出力値と、振幅判定回路231の出力値と、地絡検出回路107の出力値とのAND演算を行なう。具体的には、振幅判定回路231により差電流Idaの振幅値が閾値K2よりも大きいと判定され、かつ比率差動リレー要素101,103が動作し、かつ地絡検出回路107により地絡故障が検出された場合に、ANDゲート241は、A相の内部地絡故障を示す信号(すなわち、出力値”1”)をORゲート261に出力する。ANDゲート242,243についても同様である。
ANDゲート244は、比率差動リレー要素231,232の各出力値と、地絡検出回路107の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、比率差動リレー要素231,232が動作し、かつ地絡検出回路107により地絡故障が検出されていない場合に、ANDゲート244は、AB相の短絡故障を示す信号(すなわち、出力値”1”)をORゲート261,262に出力する。ANDゲート245,246についても同様である。
ORゲート261は、ANDゲート241,244,246の各出力値のOR演算を行なう。具体的には、これらの各出力値の少なくとも1つが”1”である場合には、ORゲート261は、A相に故障が発生していることを示す信号(すなわち、出力値“1”)をANDゲート251に出力する。ORゲート262,263についても同様である。
ANDゲート251は、ORゲート261と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ORゲート261の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート251は、A相に故障が発生していることを示す信号Daを出力する。ANDゲート252,253についても同様である。典型的には、信号Da~Dcの少なくとも1つが出力されると、開放指令により遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。
<機能構成>
図13は、実施の形態5に従う保護リレー装置10Dの機能構成の一例を示すブロック図である。図13を参照して、保護リレー装置10Dの機能構成は、保護リレー装置10の故障判定部20を故障判定部20Dに置き換えたものである。故障判定部20Dは、第2差動リレー演算部309と、故障相判定部313Dと、信号出力部314と、判定部317とを含む。なお、第1電流算出部303Dは、第1電流算出部303と実質的に同一の機能を有する。第1電流算出部303Dは、各相における通常の差電流Ida,Idb,Idcを算出する。
判定部317は、各相に対応して設けられ、当該相におけるΔ演算前の差電流の振幅値が閾値K2よりも大きいか否かを判定する振幅判定回路を含む。具体的には、判定部317は、A相における差電流Idaの振幅値が閾値K2よりも大きいか否かを判定する振幅判定回路231と、B相における差電流Idbの振幅値が閾値K2よりも大きいか否かを判定する振幅判定回路232と、C相における差電流Idcの振幅値が閾値K2よりも大きいか否かを判定する振幅判定回路233とを含む。
故障相判定部313Dは、第2差動リレー演算部309の出力結果と、判定部317の判定結果と、地絡検出部311の検出結果とに基づいて、電力系統の故障相を判定する。
具体的には、第1相(例えば、A相)に対応する振幅判定回路(例えば、振幅判定回路231)により通常の差電流の振幅値が閾値K2よりも大きいと判定され、かつ第2差動リレー演算部309における、第1相および第3相(例えば、C相)に対応する2つの比率差動リレー要素(例えば、比率差動リレー要素101,103)が動作したとの条件G3を満たす場合に、故障相判定部313Dは第1相に故障が発生したと判定する。より具体的には、当該条件G3を満たし、かつ地絡検出部311により地絡故障が検出された場合に、故障相判定部313Dは第1相に地絡故障が発生したと判定する。この場合、故障相判定部313DはANDゲート241~243に対応する。
また、第1相および第2相(例えば、B相)にそれぞれ対応する2つの振幅判定回路(例えば、振幅判定回路231,232)により通常の差電流の振幅値が閾値K2よりも大きいと判定され、かつ地絡故障が検出されない場合に、故障相判定部313Dは第1相および第2相に短絡故障が発生したと判定する。
<利点>
実施の形態5によると、通常の差電流を用いる比率差動リレー要素の代わりに、通常の差電流の振幅値が閾値K2よりも大きいか否かを判定する回路を用いる。この場合、外部故障時にCT飽和で問題になる可能性があるのは、図4より短絡外部故障での不要出力であるが、この不要出力は故障相表示の結果に影響しない。そのため、実施の形態1よりも簡易な構成で、実施の形態1と同等の利点を有する。
実施の形態6.
上述した実施の形態5では、地絡検出回路107を用いて、地絡故障と短絡故障とを区別する構成について説明した。実施の形態6では、地絡検出回路107を用いずに故障相を判定する構成について説明する。
<故障判定方式>
図14は、実施の形態6に従う故障判定方式を説明するための図である。図14を参照して、保護リレー装置10Eは、比率差動リレー要素101~103と、インラッシュ判定回路108~110と、振幅判定回路231~232と、ANDゲート271~273,281~283とを含む。
保護リレー装置10Eの構成は、図12中の保護リレー装置10Dの地絡検出回路107を削除した構成に相当する。地絡検出回路107の削除に伴い、保護リレー装置10Dにおける複数の論理ゲート(例えば、ANDゲート244~246、およびORゲート261~263)も削除されている。
ANDゲート271は、比率差動リレー要素101,103の各出力値と、振幅判定回路231の出力値とのAND演算を行なう。具体的には、振幅判定回路231により差電流Idaの振幅値が閾値K2よりも大きいと判定され、かつ比率差動リレー要素101,103が動作した場合に、ANDゲート271は、A相の内部地絡故障を示す信号(すなわち、出力値”1”)をANDゲート281に出力する。ANDゲート272,273についても同様である。
ANDゲート281は、ANDゲート271と、インラッシュ判定回路108の出力の論理レベルを反転した値とのAND演算を行なう。具体的には、ANDゲート271の出力値が“1”であり、かつインラッシュ判定回路108により変圧器8がインラッシュ状態ではないと判定された場合には、ANDゲート281は、A相に故障が発生していることを示す信号Daを出力する。ANDゲート282,283についても同様である。典型的には、信号Da~Dcの少なくとも1つが出力されると、開放指令により遮断器2および遮断器3が開放され、変圧器8は電力系統から分離される。
<機能構成>
保護リレー装置10Eの機能構成は、図13中の地絡検出部311を削除した構成に相当する。実施の形態6に従う故障相判定部は、判定部317の判定結果と、第2差動リレー演算部309の出力結果とに基づいて、電力系統の故障相を判定する。具体的には、第1相(例えば、A相)に対応する振幅判定回路(例えば、振幅判定回路231)により通常の差電流の振幅値が閾値K2よりも大きいと判定され、かつ第2差動リレー演算部309における、第1相および第3相(例えば、C相)に対応する2つの比率差動リレー要素(例えば、比率差動リレー要素101,103)が動作した場合に、実施の形態6に従う故障相判定部は、第1相に故障が発生したと判定する。
<利点>
実施の形態6によると、実施の形態5よりも簡易な構成で、実施の形態5と同等の利点を有する。
その他の実施の形態.
(1)上述した実施の形態では、Δ演算の際に、IdaΔ=Ida-Idb、IdbΔ=Idb-Idc、IdcΔ=Idc-Idaとの演算方式を採用していたが、当該構成に限られない。例えば、IdaΔ=Ida-Idc、IdbΔ=Idb-Ida、IdcΔ=Idc-Idbとの演算方式を採用する構成であってもよい。この場合、Δ演算後の抑制電流IraΔ,IrbΔ,IrcΔは、それぞれ“(|I1a-I1c|+|I2a-I2c|)”,“(|I1b-I1a|+|I2b-I2a|)”,“(|I1c-I1b|+|I2c-I2b|)”となる。
(2)上述した実施の形態では、Y-Y-Δ巻線の変圧器に基づいて説明したが、Y-Δ巻線の変圧器に同様の考え方を適用してもよい。
(3)上述の実施の形態として例示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能である。また、上述した実施の形態において、他の実施の形態で説明した処理および構成を適宜採用して実施する場合であってもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
2,3 遮断器、4,5 電流変成器、8 変圧器、10,10A,10B,10C,10D,10E 保護リレー装置、11,12 交流電源、20,20A,20D 故障判定部、30 状態判定部、40 出力制御部、51 補助変成器、52 変換部、70 演算処理部、71 バス、72 CPU、73 ROM、74 RAM、75 DI回路、76 DO回路、77 入力インターフェイス、101~106 比率差動リレー要素、107 地絡検出回路、108~110 インラッシュ判定回路、151~153,231~233 振幅判定回路、301 電流入力部、303,303D 第1電流算出部、305,305A 第2電流算出部、307 第1差動リレー演算部、309 第2差動リレー演算部、311 地絡検出部、313,313A,313D 故障相判定部、314 信号出力部、315,317 判定部。

Claims (10)

  1. 3相の電力系統に設けられた変圧器を保護するための保護リレー装置であって、
    前記変圧器の1次巻線を流れる1次電流と、前記変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流および第1抑制電流を算出する第1電流算出部と、
    互いに異なる2相の各々における前記第1差電流に基づいて、各相における第2差電流を算出し、互いに異なる2相の各々における前記1次電流および前記2次電流に基づいて、各相における第2抑制電流を算出する第2電流算出部と、
    各相に対応して設けられ、当該相における前記第1差電流および前記第1抑制電流に基づいて比率差動演算を実行する第1差動リレー要素と、
    各相に対応して設けられ、当該相における前記第2差電流および前記第2抑制電流に基づいて比率差動演算を実行する第2差動リレー要素と、
    前記電力系統の故障相を判定する故障相判定部とを備え、
    第1相、第2相および第3相のうちの前記第1相に対応する前記第1差動リレー要素が動作し、かつ前記第1相および前記第3相にそれぞれ対応する2つの前記第2差動リレー要素が動作したとの条件を満たす場合に、前記故障相判定部は前記第1相に故障が発生したと判定する、保護リレー装置。
  2. 地絡故障を検出する地絡検出部をさらに備え、
    前記条件を満たし、かつ前記地絡故障が検出された場合に、前記故障相判定部は前記第1相に地絡故障が発生したと判定する、請求項1に記載の保護リレー装置。
  3. 前記第1相および前記第2相にそれぞれ対応する前記第1差動リレー要素が動作し、かつ前記地絡故障が検出されない場合に、前記故障相判定部は前記第1相および前記第2相の短絡故障が発生したと判定する、請求項2に記載の保護リレー装置。
  4. 3相の電力系統に接続された変圧器を保護するための保護リレー装置であって、
    前記変圧器の1次巻線を流れる1次電流と、前記変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流および第1抑制電流を算出する第1電流算出部と、
    互いに異なる2相の各々における前記第1差電流に基づいて、各相における第2差電流を算出する第2電流算出部と、
    各相に対応して設けられ、当該相における前記第1差電流および前記第1抑制電流に基づいて比率差動演算を実行する差動リレー要素と、
    各相に対応して設けられ、当該相における前記第2差電流の振幅値が閾値よりも大きいか否かを判定する振幅判定部と、
    前記電力系統の故障相を判定する故障相判定部とを備え、
    第1相、第2相および第3相のうちの前記第1相に対応する前記差動リレー要素が動作し、かつ前記第1相および第3相にそれぞれ対応する2つの前記振幅判定部により前記第2差電流の振幅値が前記閾値よりも大きいと判定されたとの条件を満たす場合に、前記故障相判定部は前記第1相に故障が発生したと判定する、保護リレー装置。
  5. 地絡故障を検出する地絡検出部をさらに備え、
    前記条件を満たし、かつ前記地絡故障が検出された場合に、前記故障相判定部は前記第1相に地絡故障が発生したと判定する、請求項4に記載の保護リレー装置。
  6. 前記第1相および前記第2相にそれぞれ対応する前記差動リレー要素が動作し、かつ前記地絡故障が検出されない場合に、前記故障相判定部は前記第1相および前記第2相の短絡故障が発生したと判定する、請求項5に記載の保護リレー装置。
  7. 3相の電力系統に接続された変圧器を保護するための保護リレー装置であって、
    前記変圧器の1次巻線を流れる1次電流と、前記変圧器の2次巻線を流れる2次電流とに基づいて、各相における第1差電流を算出する第1電流算出部と、
    互いに異なる2相の各々における前記第1差電流に基づいて、各相における第2差電流を算出し、互いに異なる2相の各々における前記1次電流および前記2次電流に基づいて、各相における抑制電流を算出する第2電流算出部と、
    各相に対応して設けられ、当該相における前記第1差電流の振幅値が閾値よりも大きいか否かを判定する振幅判定部と、
    各相に対応して設けられ、当該相における前記第2差電流および前記抑制電流に基づいて比率差動演算を実行する差動リレー要素と、
    前記電力系統の故障相を判定する故障相判定部とを備え、
    第1相、第2相および第3相のうちの前記第1相に対応する前記振幅判定部により前記第1差電流の振幅値が前記閾値よりも大きいと判定され、かつ前記第1相および第3相にそれぞれ対応する2つの前記差動リレー要素が動作したとの条件を満たす場合に、前記故障相判定部は前記第1相に故障が発生したと判定する、保護リレー装置。
  8. 地絡故障を検出する地絡検出部をさらに備え、
    前記条件を満たし、かつ前記地絡故障が検出された場合に、前記故障相判定部は前記第1相に地絡故障が発生したと判定する、請求項7に記載の保護リレー装置。
  9. 前記第1相および前記第2相にそれぞれ対応する2つの前記振幅判定部により前記第1差電流の振幅値が前記閾値よりも大きいと判定され、かつ前記地絡故障が検出されない場合に、前記故障相判定部は前記第1相および前記第2相の短絡故障が発生したと判定する、請求項8に記載の保護リレー装置。
  10. 各相に対応して設けられ、当該相における前記第1差電流の基本波成分に対する第2高調波成分の含有率に基づいて前記変圧器がインラッシュ状態であるか否かを判定するインラッシュ判定部と、
    前記故障相判定部の判定結果と前記インラッシュ判定部の判定結果とに基づいて、故障信号を出力する信号出力部と、
    前記信号出力部により前記故障信号が出力された場合に、前記電力系統に設けられた遮断器へ開放指令を出力する出力制御部とをさらに備え、
    前記故障相判定部により前記第1相に故障が発生したと判定され、かつ前記第1相に対応する前記インラッシュ判定部により前記変圧器がインラッシュ状態ではないと判定された場合に、前記信号出力部は、前記第1相に故障が発生していることを示す前記故障信号を出力する、請求項1~請求項9のいずれか1項に記載の保護リレー装置。
JP2018187338A 2018-10-02 2018-10-02 保護リレー装置 Active JP7117963B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018187338A JP7117963B2 (ja) 2018-10-02 2018-10-02 保護リレー装置
KR1020190016655A KR102115243B1 (ko) 2018-10-02 2019-02-13 보호 릴레이 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187338A JP7117963B2 (ja) 2018-10-02 2018-10-02 保護リレー装置

Publications (2)

Publication Number Publication Date
JP2020058142A JP2020058142A (ja) 2020-04-09
JP7117963B2 true JP7117963B2 (ja) 2022-08-15

Family

ID=70107863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187338A Active JP7117963B2 (ja) 2018-10-02 2018-10-02 保護リレー装置

Country Status (2)

Country Link
JP (1) JP7117963B2 (ja)
KR (1) KR102115243B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292193B2 (ja) * 2019-12-03 2023-06-16 三菱電機株式会社 保護リレー装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186169A (ja) 2000-12-11 2002-06-28 Toshiba Corp 変圧器保護継電装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59149729A (ja) * 1983-02-15 1984-08-27 株式会社東芝 差動継電器
JPS62244218A (ja) 1986-04-14 1987-10-24 株式会社東芝 変圧器保護用差動継電装置
JPH01259720A (ja) * 1988-04-06 1989-10-17 Mitsubishi Electric Corp 変圧器保護リレー
JP5068200B2 (ja) * 2008-02-29 2012-11-07 三菱電機株式会社 電流差動保護リレー
JP2013055735A (ja) * 2011-09-01 2013-03-21 Mitsubishi Electric Corp 変圧器保護継電器
CN104218543B (zh) * 2013-05-30 2016-12-28 南京南瑞继保电气有限公司 电流源型变流器差动保护方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186169A (ja) 2000-12-11 2002-06-28 Toshiba Corp 変圧器保護継電装置

Also Published As

Publication number Publication date
KR102115243B1 (ko) 2020-05-27
KR20200038164A (ko) 2020-04-10
JP2020058142A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
CA2614245C (en) An apparatus and method for identifying a loss of a current transformer signal in a power system
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
MXPA02005294A (es) Sistema para proteccion diferencial de transformador de potencia.
US10714924B2 (en) Ground fault overvoltage relay device
JP4199065B2 (ja) 保護継電装置
JP7117963B2 (ja) 保護リレー装置
KR102057201B1 (ko) 고장 판정 장치, 및 보호 계전 장치
US4819119A (en) Faulted phase selector for single pole tripping and reclosing schemes
Kasztenny et al. Generator protection and CT saturation problems and solutions
JP7292193B2 (ja) 保護リレー装置
JP2003134659A (ja) 配電線地絡電流増幅装置
WO2022149256A1 (ja) 零相電流差動リレー
JP3652584B2 (ja) 低圧接地電路の漏電検出保護方法と装置
KR101648512B1 (ko) 저항성 지락 전류 검출 모터 보호계전기
KR100479692B1 (ko) 변압기 보호용 충격 압력계전 시스템의 오동작 방지장치
JP2957187B2 (ja) 計器用変圧器の2次回路断線検出装置
JP7408029B1 (ja) 零相電流差動リレーおよび三相変圧器の保護方法
Kasztenny et al. New algorithm for generator differential protection
JPS63290122A (ja) 遮断器用過電流引外し装置
JP2002078190A (ja) 地絡方向判別方法および地絡方向継電装置
JPH0837730A (ja) 母線保護継電装置
KR200299879Y1 (ko) 변압기 보호용 충격 압력계전 시스템의 오동작 방지장치
KR101923568B1 (ko) 디지털 선택지락 계전기 및 이의 오동작 방지방법
CN116093936A (zh) 一种基于Hausdorff距离的直流系统换相失败预测控制系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220802

R150 Certificate of patent or registration of utility model

Ref document number: 7117963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150