WO2006025169A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2006025169A1
WO2006025169A1 PCT/JP2005/013954 JP2005013954W WO2006025169A1 WO 2006025169 A1 WO2006025169 A1 WO 2006025169A1 JP 2005013954 W JP2005013954 W JP 2005013954W WO 2006025169 A1 WO2006025169 A1 WO 2006025169A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
heat
drain pan
refrigeration apparatus
Prior art date
Application number
PCT/JP2005/013954
Other languages
English (en)
French (fr)
Inventor
Toshimitsu Kamada
Shun Yoshioka
Haruo Nakata
Shinichirou Kobayashi
Teruo Kido
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005278722A priority Critical patent/AU2005278722B2/en
Priority to US11/632,499 priority patent/US20080035318A1/en
Priority to EP05767439A priority patent/EP1780492B1/en
Priority to AT05767439T priority patent/ATE534878T1/de
Publication of WO2006025169A1 publication Critical patent/WO2006025169A1/ja
Priority to AU2008207453A priority patent/AU2008207453A1/en
Priority to AU2008207451A priority patent/AU2008207451A1/en
Priority to AU2008207452A priority patent/AU2008207452A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/36Drip trays for outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Definitions

  • the present invention relates to a refrigeration apparatus configured using heat exchange having a heat exchange surface.
  • the method of providing the frost prevention layer is a method of preventing frost formation by increasing the water slidability and water repellency of the heat exchange surface.
  • Patent Document 1 discloses a ratio of 3 to 70 parts by weight of a specific organopolysiloxane having a silanol group with respect to 100 parts by weight of a specific organopolysiloxane. Is applied to the heat exchange surface and cured. The method by which a coating film is formed is disclosed.
  • the anti-frost layer is provided in this way, the water slidability and water repellency of the heat exchange surface are increased.
  • the heat exchanger operates as an evaporator in this state, condensed water droplets quickly flow down on the heat exchange surface, so that the amount of frost formation on the heat exchange surface can be reduced.
  • FIG. 15 is a cross-sectional view schematically showing the configuration of the heat exchanger.
  • the heat exchanger ⁇ 42 is a so-called cross fin and tube heat exchanger, and includes a large number of plate fins 43 and a heat exchange pipe 45.
  • the plate fins 43 form a heat exchange surface, and are arranged side by side along a direction orthogonal to the air flow direction 44 in a state of being spaced apart from each other.
  • the plate fins 43 are arranged such that their longitudinal directions extend along the vertical direction, and a fin row is formed. In FIG. 15, two rows of fins are arranged along the flow direction 44.
  • the heat exchange pipe 45 is arranged in a meandering manner and passes through the plate fins 43, and the refrigerant circulates inside the heat exchange pipe 45.
  • the heat exchange pipe 45 has a plurality of portions extending along a direction orthogonal to the air flow direction 44. The respective portions are arranged over the lower end force upper end portion of the plate fin 43 and are arranged at equal intervals along the longitudinal direction of the plate fin 43.
  • the surface of the plate fin 43 is provided with, for example, the above-described frost prevention layer, and the sliding and water repellency of the plate fin 43 is increased.
  • a drain pan 46 for receiving and discharging water droplets flowing down from the heat exchanger 42 is disposed below the heat exchanger 42.
  • the upper surface 46a of the drain pan 46 is inclined to discharge water. Since the heat exchanger 42 is arranged almost horizontally with respect to the drain pan 46 with the upper surface 46a inclined, the lower end of heat exchange, that is, the lower end of the plate fin 43 and the upper surface 46a of the drain pan 46 are partially Touching.
  • the water droplets 48 that condense on the plate fin 43 flow down as indicated by an arrow 47.
  • the water droplets 48 that have flowed down may freeze up at the contact portion between the lower end of the plate fin 43 and the upper surface 46a of the drain pan 46.
  • the frost 51 grows upward from the lower end of the plate fin 43. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-323298
  • the present invention provides a refrigeration apparatus capable of reducing the amount of frost formation when operating heat exchange as an evaporator.
  • a refrigeration apparatus including a heat exchanger and a drain pan is provided.
  • the heat exchanger includes a heat exchange surface, and performs heat exchange between air flowing over the heat exchange surface and a heat medium flowing through the inside.
  • the drain pan is disposed below the heat exchanger. A gap is provided between the lower end of the heat exchanger and the upper surface of the drain pan.
  • a refrigeration apparatus including a heat exchanger ⁇ and a drain pan.
  • the heat exchanger includes a heat exchange surface, and performs heat exchange between air flowing over the heat exchange surface and a heat medium flowing through the inside.
  • the drain pan is disposed below the heat exchanger.
  • the heat exchanger is arranged such that a lower end portion thereof is in partial contact with the upper surface of the drain pan.
  • a protrusion is provided at the lower end of the heat exchanger ⁇ , and the partial contact between the lower end of the heat exchanger ⁇ and the upper surface of the drain pan is such that the tip of the protrusion contacts the upper surface of the drain pan. Is done by doing.
  • a refrigeration apparatus including a heat exchanger.
  • the heat exchanger includes a heat exchange surface, and performs heat exchange between air flowing on the heat exchange surface and a heat medium flowing inside.
  • a lower portion of the heat exchanger is provided with a high-temperature portion that raises the temperature of water droplets that are condensed and flow down on the heat exchange surface when the heat exchanger operates as an evaporator to 0 ° C. or more. Yes.
  • a refrigeration apparatus including a heat exchanger.
  • the heat exchanger has a heat exchange surface, and air that circulates on the heat exchange surface and a heat medium that circulates inside the heat exchanger. Exchange heat between the bodies.
  • the heat exchanger is a cross fin and tube type heat exchanger including a plurality of fins forming the heat exchange surface and a heat exchange pipe through which the heat medium flows.
  • a protrusion is provided at the lower end of some of the plurality of fins, and the protrusion protrudes downward compared to the lower end of the remaining fins.
  • a refrigeration apparatus including a heat exchanger and a drain pan
  • the heat exchanger includes a heat exchange surface, and performs heat exchange between air flowing on the heat exchange surface and a heat medium flowing inside.
  • the drain pan is disposed below the heat exchanger. The upper surface of the drain pan is subjected to water slidability and water repellency treatment.
  • a refrigeration apparatus including a heat exchanger and a drain pan
  • the heat exchanger includes a heat exchange surface, and performs heat exchange between air flowing on the heat exchange surface and a heat medium flowing inside.
  • the drain pan is disposed below the heat exchanger. The top surface of the drain pan is subjected to a hydrophilic treatment.
  • FIG. 1 is a cross-sectional view showing a part of an outdoor heat exchanger used in an air conditioner according to a first embodiment.
  • FIG. 2 is a circuit diagram showing a refrigerant circuit of the air conditioner.
  • FIG. 3 is a sectional view showing a part of an outdoor heat exchanger according to a second embodiment.
  • FIG. 4 is a rear view of the outdoor heat exchanger as viewed from the downstream in the air flow direction.
  • FIG. 5 (a) is a cross-sectional view showing an inclined portion formed in the outdoor heat exchanger
  • (b) and (c) are cross-sectional views showing protruding portions formed in the outdoor heat exchanger.
  • FIG. 6 is a rear view showing a state in which a part of the outdoor heat exchanger according to the third embodiment is viewed in the downstream force in the flow direction.
  • FIG. 7 is a sectional view showing a part of an outdoor heat exchanger according to a fourth embodiment.
  • FIG. 8 is a cross-sectional view showing a high-temperature part provided for outdoor heat exchange.
  • FIG. 9 is a cross-sectional view showing a first modified example of the high temperature part.
  • FIG. 10 is a cross-sectional view showing a second modification of the high temperature part.
  • FIG. 11 is a circuit diagram showing a refrigerant circuit in a third modification of the high temperature part.
  • FIG. 12 is a cross-sectional view showing a part of the outdoor heat exchanger.
  • FIG. 13 is a rear view showing a state in which an outdoor heat exchanger according to a fifth embodiment is viewed from the downstream in the air flow direction.
  • FIG. 14 is a sectional view showing a part of an outdoor heat exchanger according to a fifth embodiment.
  • FIG. 15 is a sectional view showing a part of conventional heat exchange.
  • FIG. 1 is a cross-sectional view showing a part of an outdoor heat exchanger 2 used in the air conditioner 1 according to the first embodiment of the present invention
  • FIG. 2 is a circuit diagram showing a refrigerant circuit of the air conditioner 1. is there.
  • the outdoor heat exchanger 2, the expansion valve 9, the indoor heat exchanger 10, the four-way switching valve 11, and the compressor 12 are connected by refrigerant piping.
  • the refrigerant circuit is configured.
  • the four-way switching valve 11 is set as indicated by a solid line in FIG. In this state, the refrigerant as the heat medium discharged from the compressor 12 circulates in the order of the four-way switching valve 11, the outdoor heat exchanger 2, the expansion valve 9, the indoor heat exchanger 10, and the four-way switching valve 11. Then, it is sucked into the compressor 12.
  • the outdoor heat exchanger 2 operates as a condenser
  • the indoor heat exchanger 10 operates as an evaporator.
  • the gas refrigerant exchanges heat with the outdoor air to become a liquid refrigerant, whereby the refrigerant radiates heat to the outdoor air.
  • liquid refrigerant exchanges heat with room air and evaporates to become gas refrigerant, whereby the indoor air is absorbed by the refrigerant and cooled.
  • the four-way switching valve 11 is set as indicated by a broken line in FIG.
  • the refrigerant discharged from the compressor 12 is circulated and compressed in the order of the four-way switching valve 11, the indoor heat exchanger 10, the expansion valve 9, the outdoor heat exchanger 2, and the four-way switching valve 11. Inhaled by machine 12.
  • the indoor heat exchanger 10 operates as a condenser
  • the outdoor heat exchanger 2 operates as an evaporator.
  • indoor heat exchange ⁇ 10 which acts as a condenser
  • the gas refrigerant condenses by exchanging heat with the indoor air.
  • the indoor air is heated by the heat radiation of the refrigerant.
  • the outdoor heat exchanger 2 that operates as an evaporator, the liquid refrigerant exchanges heat with the outdoor air and evaporates to become a gas refrigerant, whereby the refrigerant absorbs heat from the outdoor air.
  • the outdoor heat exchanger 2 is a so-called cross fin and tube heat exchanger, and includes a large number of plate fins 3 and one heat exchange pipe 5.
  • Each of the pre-fins 3 forms a heat exchange surface, and is arranged in parallel along a direction perpendicular to the air flow direction 4 in a state of being spaced apart from each other.
  • the heat exchange pipe 5 is arranged in a meandering manner and penetrates through the plate fins 3, and refrigerant flows through the heat exchange pipe 5! /.
  • the plate fins 3 are arranged such that their longitudinal directions extend along the vertical direction, and constitute a fin row.
  • the number of fin rows arranged in two rows along the flow direction 4 may be one row or three or more rows.
  • the heat exchange pipe 5 has a plurality of portions extending along a direction orthogonal to the air flow direction 4. The respective portions are arranged from the lower end portion to the upper end portion of the plate fin 3 and are arranged at equal intervals along the longitudinal direction of the plate fin 3.
  • a coating film having water slidability and water repellency is formed on the surface of the plate fin 3, and the surface water slidability and water repellency of the plate fin 3 are increased.
  • the plate fins 3 include all plate-like fins such as flat fins, slit fins, and waffle fins, for example.
  • a drain pan 6 for receiving water droplets flowing down from the outdoor heat exchanger 2 and discharging them to the outside is disposed below the outdoor heat exchanger 2.
  • the upper surface 6a of the drain pan 6 is inclined to discharge the water 7 flowing down from the outdoor heat exchanger 2.
  • the outdoor heat exchanger 2 is arranged substantially horizontally with respect to the drain pan 6 with the upper surface 6a inclined.
  • a gap is provided over the entire lower end portion of the outdoor heat exchanger 2, that is, between the lower end portion 3a of the plate fin 3 and the upper surface 6a of the drain pan 6. Therefore, the water droplets 8 condensed when the outdoor heat exchanger 2 operates as an evaporator flow down on the surface of the plate fin 3 and from the lower end 3a of the plate fin 3 to the upper surface 6a of the drain pan 6. Fall. Since there is no contact portion between the outdoor heat exchanger 2 and the drain pan 6 in this way, the water droplets 8 that have flowed down accumulate in the contact portion between the outdoor heat exchanger 2 and the drain pan 6, so that frost from the water droplets is plate fins. 3 is prevented from growing upward from the lower end 3a. [0025] According to the first embodiment, the following effects can be obtained.
  • the first embodiment may be modified as follows.
  • the heat exchange efficiency of the outdoor heat exchanger 2 is reduced by the air flowing through the gap.
  • a shielding member may be provided on the upper surface of the drain pan 6 in order to reduce the amount of air flowing through the gap.
  • the shielding member is provided outside the plate fin 3 so as not to contact the plate fin 3.
  • the configuration of the second embodiment is the same as the configuration of the first embodiment except that the shape of the outdoor heat exchanger 2 and the positional relationship between the outdoor heat exchanger 2 and the drain pan 6 are changed. Detailed description of the same parts as those in the first embodiment will be omitted.
  • FIG. 3 is a cross-sectional view showing a part of the outdoor heat exchanger 2 according to the second embodiment of the present invention
  • FIG. 4 shows the outdoor heat exchanger 2 viewed in the downstream force in the air flow direction 4. It is a rear view which shows a state.
  • the outdoor heat exchanger 2 according to the second embodiment is arranged such that the lower end part thereof is in partial contact with the upper surface 6 a of the drain pan 6. Therefore, the lower end portion of the outdoor heat exchanger 2 is supported by the drain pan 6.
  • the upper surface 6a of the drain pan 6 is inclined, and the outdoor heat exchanger 2 is in contact with the upper surface of the upper surface 6a.
  • the outdoor heat exchanger 2 and the drain pan 6 come into contact with each other in the region R on the left side.
  • the lower end portion of the outdoor heat exchanger 2 that is, the partial contact between the lower end portion of the plate fin 3 and the upper surface 6 a of the drain pan 6 is formed at the lower end portion of the plate fin 3. This is done by the tip of the inclined portion 3b as the protruding portion coming into contact with the upper surface 6a of the drain pan 6. That is, the upper surface 6a of the drain pan 6 is inclined to discharge water and Since the heat exchanger 2 is installed almost horizontally, the lower end portion of the outdoor heat exchanger 2 is in partial contact with the upper surface 6a of the drain pan 6.
  • the inclined portion 3b is inclined along the air flow direction 4. As shown in Fig.
  • the inclined portion 3b of the plate fin 3 in the left row also tilts the outer force downward toward the center, and the inclined portion 3b of the plate fin 3 in the right row also forces the central force outward. It is inclined upward.
  • the inclined portion 3b can be formed by obliquely cutting the lower end portion of the plate fin 3.
  • the shape of the plate fins 3 on the upstream side of the air flow is the same as the shape of the plate fins 3 on the downstream side of the air flow, that is, the right side.
  • the upstream inclined portion 3b and the downstream inclined portion 3b are arranged such that the inclined surfaces face in opposite directions.
  • the inclined portion 3b at the lower end of the plate fin 3 contacts the upper surface 6a of the drain pan 6 at its tip! Lower end force S
  • the contact area between the plate fin 3 and the upper surface 6a of the drain pan 6 is smaller than when contacting the upper surface 6a of the S drain pan 6.
  • FIGS. 5A to 5C are cross-sectional views showing other shapes of the protrusions formed in the outdoor heat exchanger 2.
  • FIG. The protrusion shown in FIG. 5 (a) is such that the inclined portion 3c of the upstream plate fin 3 in the flow direction 4 and the inclined portion 3c of the downstream plate fin 3 constitute one connected inclined portion. Is formed. That is, the two inclined portions 3c are formed so that the inclined surface of the upstream inclined portion 3c and the inclined surface of the downstream inclined portion 3c are located on the same plane.
  • the tip force of the inclined portion 3 c of the plate fin 3 in the downstream direction is in contact with the upper surface 6 a of the drain pan 6.
  • the protrusion 3d shown in FIG. 5 (b) is located downstream of the plate fin 3 in the flow direction 4 and has a rectangular shape. Such a protrusion 3d is provided at the lower end of each plate fin 3.
  • the plate fin 3 is formed by cutting a part of the plate fin 3 into a rectangular shape. In the case of such a protruding portion 3d, the contact area between the plate fin 3 and the upper surface 6a of the drain pan 6 is reduced by shortening the length along the flow direction 4 at the contact portion between the outdoor heat exchanger 2 and the drain pan 6. Can be small.
  • the protrusion 3e shown in FIG. 5 (c) has a semicircular cross section formed at the lower end of each plate fin 3. As shown in FIG.
  • the inclined portions 3b and 3c as the projecting portions are formed by obliquely cutting the lower end portion of the plate fin 3, and therefore can be easily formed.
  • FIG. 6 is a rear view showing a part of the outdoor heat exchanger 2 according to the third embodiment of the present invention as viewed from the downstream force in the air circulation direction 4.
  • a protruding portion that protrudes downward is formed at the lower end of some of the plate fins 3L as compared to the lower end of the remaining plate fins 3S.
  • two types of plate fins 3L and 3S having different lengths in the upward and downward directions (referred to as “3” when collectively referring to two types of plate fins) are used in advance.
  • 3 two types of plate fins 3L and 3S having different lengths in the upward and downward directions
  • plate fins 3L having a long vertical length is arranged.
  • plate fins 3S and plate fins 3L are alternately arranged.
  • the tip of the protruding portion formed at the lower end of some plate fins 3L is the drain.
  • partial contact between the outdoor heat exchanger 2 and the drain pan 6 is realized as in the second embodiment.
  • the contact area between the outdoor heat exchanger 2 and the drain pan 6 can be made smaller than when all the plate fins 3 in the contact region R are in contact with the drain pan 6. Accordingly, the amount of water accumulated at the contact portion between the outdoor heat exchanger 2 and the drain pan 6 is reduced, and thereby the amount of ice 13 adhering to the contact portion is also reduced.
  • the third embodiment there is a plate fin 3S between the lower ends of adjacent plate fins 3L, and thus there is a passage through which air flows at the lower end of the outdoor heat exchanger 2. growing.
  • the airflow resistance of the passage is reduced and the wind speed is increased.
  • the surface temperature of the plate fin 3 is increased. Therefore, it is difficult for the condensed water to freeze at the lower part of the plate fin 3.
  • the passage through which the air flows is large, so the passage is not blocked!
  • the contact area between the outdoor heat exchanger 2 and the drain pan 6 can be reduced as compared with the case where all the plate fins in the contact region R are in contact with the drain pan 6 as in the prior art.
  • the amount of ice 13 adhering to the contact portion between the lower end portion of the outdoor heat exchanger 2 and the upper surface 6a of the drain pan 6 is reduced, so that the contact portion force also reduces the amount of frost that grows upward.
  • the protruding portion can be easily formed because it is formed by using two types of plate fins 3L and 3S having different vertical lengths.
  • the third embodiment may be modified as follows.
  • Hydrophilic treatment may be applied to the surface of the protruding portion of the plate fin 3L having a large fin pitch, that is, the plate fin 3L having a long vertical length.
  • the protruding portion of the plate fin 3L is a portion that has a short length in the vertical direction and protrudes downward from the plate fin 3S.
  • the hydrophilic treatment can be performed by applying a hydrophilic treatment agent such as polyacrylic acid to the plate fin 3.
  • the water repellency treatment and water repellency treatment may be performed after the hydrophilic treatment, or vice versa.
  • the condensed water spreads thinly relative to the surface of the pre-fin 3. Even when the condensed water freezes, the ice formed by the freezing is low in the height from the surface of the plate fin 3, that is, the amount that grows by force toward the adjacent plate fin 3 is small. Become ice. Therefore, the passage through which air flows is not blocked, and the increase in ventilation resistance can be mitigated.
  • FIG. 7 is a cross-sectional view showing a part of the outdoor heat exchanger 2 according to the fourth embodiment.
  • the outdoor heat exchanger 2 includes a high temperature part 14 at the lower part thereof.
  • High The hot section 14 raises the temperature of the condensed water droplet 8 flowing down on the surface of the plate fin 3 to 0 degree or more when the outdoor heat exchanger 2 is operating as an evaporator.
  • the heat exchange pipe 5 is not provided under the plate fin 3 of the outdoor heat exchanger 2, and is formed only by the plate fin 3.
  • the high-temperature portion 14 formed only by such plate fins 3 is heat-extracted to the through-holes 15 formed in the plate fins 3 so that the heat exchange pipes 5 penetrate the plate fins 3. Formed when pipe 5 is not threaded.
  • the heat exchange pipe 5 is not inserted into the first and second two through holes 15 from the lower end of each plate fin 3. Therefore, in the outdoor heat exchange 2, the region W1 from the lower end portion of the plate fin 3 to the vicinity of the uppermost through hole 15 in the through hole 15 through which the heat exchange pipe 5 is not passed is the high temperature portion 14.
  • the heat exchange is mainly performed in the remaining area W2 excluding the area W1.
  • the high-temperature section 14 is provided with a heat exchange pipe 5, so that when the outdoor heat exchange 2 operates as an evaporator, the heat exchange pipe 5 is provided in the upper region W2 where the heat exchange pipe 5 is provided. In comparison, the temperature of the high temperature part 14 becomes higher.
  • the size of the region W1 where the heat exchange pipe 5 is not provided is appropriately set so that at least the temperature of the lower end portion of the plate fin 3 is 0 ° C. or more.
  • FIG. 8 is a cross-sectional view for explaining another configuration example of the high temperature part.
  • the surface of the region W1 corresponding to the high temperature portion 14a in the plate fin 3 is subjected to a hydrophilic treatment.
  • the hydrophilic treatment on the surface of the high temperature portion 14a in this way the water droplets 8 that have reached the high temperature portion 14a with the upward force flowing down also spread thinly on the surface of the high temperature portion 14a, and adjacent water droplets 8 gather together.
  • it spreads thinly on the surface of the high temperature part 14a and becomes a thin film 7 of water.
  • the growth of water droplets 8 on the surface of the high temperature portion 14a can be suppressed, so that an increase in ventilation resistance can be suppressed and the surface temperature of the high temperature portion 14a can be increased.
  • FIG. 9 is a rear view showing still another configuration example of the high temperature part.
  • the high temperature part 14b shown in Fig. 9 The distance between the lower end of the plate fin 3 and the lowermost heat exchange pipe 5 should be larger than the pitch of the heat exchange pipe 5 (the interval between the pipes 5 along the longitudinal direction of the plate fin 3). Thus, only the plate fins 3 are formed.
  • the high temperature portion 14b no through hole is formed in the region W1 of the plate fin 3.
  • the high temperature portion 14b functions in the same manner as the high temperature portion 14 shown in FIG.
  • the surface may be subjected to a hydrophilic treatment in the same manner as the high temperature part 14a shown in FIG.
  • FIG. 10 is a cross-sectional view showing still another configuration example of the high temperature part.
  • the heater 16 is disposed in contact with the lower end surface of the outdoor heat exchanger 2, and the lower portion of the plate fin 3 is heated by the heater 16.
  • the region W1 heated to 0 ° or more by the heater 16 becomes the high temperature portion 14c.
  • This high temperature part 14c also functions similarly to the high temperature part 14 shown in FIG.
  • the temperature of the high temperature portion 14c in FIG. 10 can be higher than that of the other high temperature portions 14, 14a, 14b.
  • the surface may be subjected to a hydrophilic treatment in the same manner as the high temperature portion 14a shown in FIG.
  • FIG. 11 is a circuit diagram showing a refrigerant circuit diagram in still another configuration example of the high temperature section
  • FIG. 12 is a cross-sectional view showing a part of the outdoor heat exchanger 2.
  • the outdoor heat exchanger 2 is divided into an upper heat exchange section 2a and a lower heat exchange section 2b, and the upper heat exchange section 2a and the lower heat exchange section 2b are connected via an expansion valve 9. .
  • the refrigerant is supplied in the order of the lower heat exchange unit 2b, the expansion valve 9, and the upper heat exchange unit 2a
  • the lower heat exchange unit 2b operates as a condenser
  • the upper heat exchange unit 2a Operates as an evaporator.
  • the high temperature section 14d shown in FIG. 11 is composed of a lower heat exchange section 2b that operates as a condenser.
  • the compressor 12, the four-way switching valve 11, the indoor heat exchanger 10, the lower heat exchange unit 2b, the expansion valve 9, and the upper heat exchange unit 2a are refrigerant pipes.
  • the refrigerant circuit is configured by connecting with.
  • the four-way selector valve 11 is set as indicated by a solid line in FIG. In this state, the refrigerant discharged from the compressor 12 passes through the four-way switching valve 11, the indoor heat exchanger 10, the lower heat exchange unit 2b, the expansion valve 9, the upper heat exchange unit 2a, and the four-way switching valve 11 In this order, the refrigerant is circulated and sucked into the compressor 12.
  • the indoor heat exchange and the lower heat exchange unit 2b operate as a condenser, and the upper heat exchange unit 2a operates as an evaporator.
  • Indoor heat exchanger operating as a condenser 10 the gas refrigerant is condensed by exchanging heat with the room air, whereby the room air is heated by the heat radiation of the cooling medium. Further, since the refrigerant also dissipates heat in the lower heat exchanging portion 2b that operates as a condenser, the lower heat exchanging portion 2b functions as the high temperature portion 14d.
  • the liquid refrigerant exchanges heat with the outdoor air and evaporates to become a gas refrigerant, whereby the refrigerant absorbs heat from the outdoor air.
  • the four-way switching valve 11 is set as indicated by a broken line in FIG.
  • the refrigerant discharged from the compressor 12 is the four-way switching valve 11, the upper heat exchange unit 2 a, the expansion valve 9, the lower heat exchange unit 2 b, the indoor heat exchanger 10, and the four-way switching valve 11. It is circulated in the order of 12 compressors.
  • the upper heat exchange unit 2a operates as a condenser
  • the lower heat exchange unit 2b and the indoor heat exchange operate as an evaporator.
  • the gas refrigerant exchanges heat with the outdoor air to become a liquid refrigerant, whereby the refrigerant dissipates heat to the outdoor air.
  • the indoor heat exchanger 10 operating as an evaporator
  • the liquid refrigerant exchanges heat with room air and evaporates to become a gas refrigerant, whereby the room air is absorbed by the refrigerant and cooled.
  • the lower heat exchanging section 2b operating as an evaporator, the liquid refrigerant exchanges heat with the outdoor air and evaporates to become a gas refrigerant, so that the outdoor air is cooled.
  • the air conditioner 1 can perform the cooling operation, although unnecessary heat exchange is performed in the lower heat exchange unit 2b.
  • the high temperature portion 14d functions in the same manner as the high temperature portion 14 shown in FIG. Also in the high temperature portion 14d, that is, the lower heat exchange portion 2b, the surface may be subjected to a hydrophilic treatment, similarly to the high temperature portion 14a shown in FIG.
  • the water droplet 8 condensed by the high-temperature soot 14a, 14b, 14c, 14d is 0
  • the water droplets 8 will not freeze at the lower end of the outdoor heat exchanger 2 because it is heated more than 1 degree. As a result, it is possible to prevent frost from growing above the lower end portion force of the outdoor heat exchanger 2, so that the amount of frost formation in the outdoor heat exchanger 2 can be reduced.
  • the high temperature portion 14c formed by heating the lower part of the outdoor heat exchanger ⁇ 2 with the heater 16 is easily implemented because the heater 16 only needs to be installed in the outdoor heat exchanger 2 it can. Furthermore, since it is possible to raise the temperature of the high temperature portion 14c compared to the high temperature portions 14, 14a, 14b formed only by the plate fins 3, it is possible to quickly heat the water droplets to 0 degrees or more. it can.
  • the fourth embodiment may be modified as follows.
  • the high-temperature part 14 is a force formed only by the plate fins 3 due to the extubated structure. In the state where the heat exchange pipe 5 is passed through the part that should be the high-temperature part in the plate fin 3, the refrigerant does not flow through the heat exchange pipe 5. A high temperature part may be formed. In this case, since the heat exchange pipe 5 penetrates the plate fin 3, the strength of the outdoor heat exchange 2 structure can be improved.
  • the upper surface 6a of the drain pan 6 is subjected to water slidability and water repellency treatment.
  • the water- and water-repellent treatment is performed using a drain pan 6 with a water- and water-repellent coating. It is performed by being formed on the upper surface 6a. Therefore, the water flowing down from the outdoor heat exchange 2 flows smoothly on the upper surface 6a without accumulating on the upper surface 6a of the drain pan 6.
  • a drain port 17 is formed in the central portion in the longitudinal direction of the outdoor heat exchanger 2, and the upper surface 6 a extends from both longitudinal ends of the drain pan 6 to the central drain port 17. Inclined toward Since the drain port 17 is formed at the center, the distance from the uppermost portion of the inclined upper surface 6a to the drain port 17 is larger than when the drain port is formed at the longitudinal end of the drain pan 6. It becomes shorter and can be drained smoothly. The upper surface 6a can be drained more quickly by being subjected to water slidability and water repellency treatment.
  • the upper surface 6a of the drain pan 6 shown in FIG. 14 is inclined from the upstream to the downstream so that the downstream side in the air flow direction 4 is lowered.
  • the uppermost force of the inclined upper surface 6a is also the distance to the lowermost portion. Becomes shorter and drains smoothly.
  • the surface 6a can be drained more quickly by being subjected to water slidability and water repellency treatment.
  • the top surface 6a of the drain pan 6 is treated with water and water repellency, the water flowing from the outdoor heat exchanger ⁇ 2 flows smoothly without accumulating on the top surface 6a of the drain pan 6. can do.
  • the upper surface 6a of the drain pan 6 is subjected to water slidability and water repellency treatment, and the distance from the uppermost part to the lowermost part of the upper surface 6a can be shortened to drain the water more quickly.
  • the top surface 6a of the drain pan 6 is subjected to a hydrophilic treatment.
  • a hydrophilic treatment is performed by applying a hydrophilic treatment agent such as polyacrylic acid to the upper surface 6a. Therefore, outdoor heat exchanger 2 The water flowing down smoothly flows on the upper surface 6a of the drain pan 6.
  • the upper surface 6a of the drain pan 6 is subjected to a hydrophilic treatment, the water flowing down from the outdoor heat exchanger 2 flows smoothly on the upper surface 6a of the drain pan 6, so that it can be quickly drained. Further, the upper surface 6a of the drain pan 6 is subjected to a hydrophilic treatment, and drainage can be performed more quickly by shortening the distance from the uppermost part to the lowermost part of the upper surface 6a.
  • the present invention has been described by taking a heat pump type air conditioner, which is a kind of refrigeration apparatus, as an example.
  • the present invention may be applied to, for example, a refrigerator or a freezer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 空気調和装置は、表面に滑水性及び撥水性処理が施されたプレートフィンを有する室外熱交換器と、該室外熱交換器の下方に配置されるドレンパンとを備える。室外熱交換器の下端部とドレンパンの上面との間には、その全体にわたって間隙が設けられている。室外熱交換器が蒸発器として動作しているときに凝縮する水滴は、プレートフィンの下端部からドレンパンに落下する。プレートフィンとドレンパンとが接触していないので、接触部分に氷が付着することがなく、接触部分に付着した氷から霜が成長することが防止される。

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、熱交換面を備える熱交 を用いて構成される冷凍装置に関する。
背景技術
[0002] 一般的に、熱交 を蒸発器として動作させる冷凍装置では、熱交^^と熱交換 を行う空気の温度が低い場合、又は蒸発器での蒸発温度が低い場合、熱交換器の 熱交換面上に霜が発生する。霜の発生により熱交換器の熱交換能力が低下し、その 結果、冷凍装置の冷凍能力も低下する。
[0003] 例えば、冷凍装置の一種であるヒートポンプ方式の空気調和装置では、その暖房 運転時に外気温度が低下すると、蒸発器として動作している室外熱交換器における 蒸発温度が低下し、この室外熱交換器に着霜する。この着霜により室外熱交換器の 蒸発能力が低下し、その結果、空気調和装置の暖房能力が低下する。そのため、空 気調和装置では、室外熱交換器に付着した霜を取り除くための除霜運転が適宜行 われる。し力しながら、除霜運転が行われると、その除霜運転の方式によって異なる ことがあるが、空気調和装置の暖房運転が休止されたり、空気調和装置の暖房能力 が低下したりすることから、暖房快感度が低下するという問題がある。そのため、熱交 換器における着霜を遅らせて冷凍運転 (冷凍装置の代表例であるヒートポンプ方式 の空気調和装置の場合は特に暖房運転)の延長を図ること、及び除霜運転時間の 短縮を図ることが課題となって 、る。
[0004] このような課題に応えるものとして、着霜防止層が熱交換面に設けられることによつ て、蒸発器として動作して!/ヽる熱交換器の着霜量を低減する方法が提案されて!ヽる
。この着霜防止層が設けられる方法は、熱交換面の滑水性及び撥水性を大きくして 着霜を防止する方法である。
[0005] 着霜防止層が設けられる方法として、例えば特許文献 1には、特定のオルガノポリ シロキサンの 100重量部に対して、シラノール基を有する特定のオルガノポリシロキ サンを 3〜70重量部の割合にて含有する組成物が、熱交換面に塗布されて硬化す ることによって塗膜が形成される方法が開示されている。このように着霜防止層が設 けられると、熱交換面の滑水性及び撥水性が大きくなる。この状態で熱交換器が蒸 発器として動作する際には、凝縮した水滴が熱交換面上を速やかに流れ落ちること から、熱交換面における着霜量が低減され得る。
[0006] 図 15は、熱交^^の構成の概略を示す断面図である。熱交^^ 42は、いわゆるク ロスフィンアンドチューブ型熱交換器であり、多数のプレートフィン 43と、熱交換パイ プ 45とを備えている。各プレートフィン 43は熱交換面を形成し、互いに間隔が空いた 状態で、空気の流通方向 44に直交する方向に沿って並設される。各プレートフィン 4 3は、それらの長手方向が上下方向に沿ってそれぞれ延びように配置され、フィン列 が形成されている。図 15において、フィン列は流通方向 44に沿って 2列配列されて いる。従来、熱交換パイプ 45は、蛇行して配置されるとともに各プレートフィン 43を貫 通しており、熱交換パイプ 45の内部には冷媒が流通している。熱交換パイプ 45は、 空気の流通方向 44に直交する方向に沿って延びる複数の箇所を有する。前記各箇 所は、プレートフィン 43の下端部力 上端部にわたって配置され、且つプレートフィ ン 43の長手方向に沿って等間隔に配置されている。プレートフィン 43の表面には例 えば上述した着霜防止層が設けられており、プレートフィン 43の滑水性及び撥水性 が大きくなつている。
[0007] 熱交翻42の下方には、熱交翻42から流下する水滴を受けて排出するための ドレンパン 46が配置されている。ドレンパン 46の上面 46aは、水を排出するために傾 斜している。上面 46aが傾斜したドレンパン 46に対して熱交換器 42はほぼ水平に配 置されることから、熱交 の下端部、即ちプレートフィン 43の下端部とドレンパ ン 46の上面 46aとは、部分的に接触している。
[0008] このような熱交換器 42では、熱交換器 42が蒸発器として動作する際、プレートフィ ン 43上で凝縮する水滴 48は、矢印 47で示すように流下する。このとき、プレートフィ ン 43の下端部とドレンパン 46の上面 46aとの接触部分では、流下した水滴 48がたま つて凍ることがある。プレートフィン 43の下端部に氷 49ができてしまうと、氷 49上に流 下した水滴 48が凍ることによって、矢印 50で示すように、霜 51がプレートフィン 43の 下端部から上方に成長する。このように、熱交翻42の下端部にできた氷 49から霜 51が成長することから、従来の熱交換器 42を用いた冷凍装置には、プレートフィン 4 3の表面の滑水性及び撥水性を大きくしたことによる着霜量の低減効果が充分に得 られないという問題がある。
特許文献 1:特開 2002— 323298号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、熱交 を蒸発器として動作させるときの着霜量を低減することができ る冷凍装置を提供するものである。
課題を解決するための手段
[0010] 本発明の一態様では、熱交^^と、ドレンパンとを備える冷凍装置が提供される。
前記熱交換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通 する熱媒体の間で熱交換を行う。前記ドレンパンは、前記熱交換器の下方に配置さ れる。前記熱交換器の下端部と前記ドレンパンの上面との間には、その全体にわた つて間隙が設けられている。
[0011] 本発明の別の態様では、熱交^^と、ドレンパンとを備える冷凍装置が提供される
。前記熱交換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部を流 通する熱媒体の間で熱交換を行う。前記ドレンパンは、前記熱交換器の下方に配置 される。前記熱交換器は、その下端部が前記ドレンパンの上面に対して部分的に接 触するように配置されている。前記熱交^^の下端部には突出部が設けられ、前記 熱交^^の下端部と前記ドレンパンの上面との部分的な接触は、前記突出部の先 端が前記ドレンパンの上面に接触することによって行われている。
[0012] 本発明の更に別の態様では、熱交換器を備える冷凍装置が提供される。前記熱交 換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒 体の間で熱交換を行う。前記熱交換器の下部には、該熱交換器が蒸発器として動作 したときに、前記熱交換面上で凝縮して流下する水滴の温度を 0度以上に上昇させ る高温部が設けられている。
[0013] 本発明の更に別の態様では、熱交換器を備える冷凍装置が提供される。前記熱交 換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒 体の間で熱交換を行う。前記熱交換器は、前記熱交換面を形成する複数のフィンと 、内部を前記熱媒体が流通する熱交換パイプとを備えるクロスフィンアンドチューブ 型熱交換器である。前記複数のフィンの内の一部のフィンの下端部には突出部が設 けられ、該突出部は、残余のフィンの下端部に比べて下方へ突出している。
[0014] 本発明の更に別の態様では、熱交^^と、ドレンパンとを備える冷凍装置が提供さ れる。前記熱交換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部 を流通する熱媒体の間で熱交換を行う。前記ドレンパンは、前記熱交換器の下方に 配置される。前記ドレンパンの上面には滑水性及び撥水性処理が施されて 、る。
[0015] 本発明の更に別の態様では、熱交^^と、ドレンパンとを備える冷凍装置が提供さ れる。前記熱交換器は熱交換面を備え、該熱交換面上を流通する空気、及び内部 を流通する熱媒体の間で熱交換を行う。前記ドレンパンは、前記熱交換器の下方に 配置される。前記ドレンパンの上面には親水処理が施されて 、る。
図面の簡単な説明
[0016] [図 1]第 1の実施形態に係る空気調和装置に用いられる室外熱交換器の一部分を示 す断面図。
[図 2]空気調和装置の冷媒回路を示す回路図。
[図 3]第 2の実施形態に係る室外熱交換器の一部分を示す断面図。
[図 4]室外熱交換器を空気の流通方向の下流から見た状態を示す背面図。
[図 5] (a)は、室外熱交換器に形成される傾斜部を示す断面図、(b)及び (c)は、室 外熱交換器に形成される突出部を示す断面図。
[図 6]第 3の実施形態に係る室外熱交換器の一部分を流通方向の下流力 見た状態 を示す背面図。
[図 7]第 4の実施形態に係る室外熱交換器の一部分を示す断面図。
[図 8]室外熱交^^に備えられる高温部を示す断面図。
[図 9]高温部の第 1の変更例を示す断面図。
[図 10]高温部の第 2の変更例を示す断面図。
[図 11]高温部の第 3の変更例における冷媒回路を示す回路図。
[図 12]室外熱交換器の一部分を示す断面図。 [図 13]第 5の実施形態に係る室外熱交換器を空気の流通方向の下流から見た状態 を示す背面図。
[図 14]第 5の実施形態に係る室外熱交換器の一部分を示す断面図。
[図 15]従来の熱交翻の一部分を示す断面図。
発明を実施するための最良の形態
[0017] 以下、本発明を冷凍装置の一種であるヒートポンプ方式の空気調和装置に具体ィ匕 した一実施形態を図面に基づいて詳細に説明する。
[0018] (第 1の実施形態)
図 1は、本発明の第 1の実施形態に係る空気調和装置 1に用いられる室外熱交換 器 2の一部分を示す断面図であり、図 2は空気調和装置 1の冷媒回路を示す回路図 である。
[0019] 空気調和装置 1では、図 2に示すように、室外熱交換器 2、膨張弁 9、室内熱交換 器 10、四路切換弁 11、及び圧縮機 12が冷媒配管により接続されることによって、冷 媒回路が構成されている。空気調和装置 1の冷房運転時には、四路切換弁 11は、 図 2中に実線で示されるように設定される。この状態で、圧縮機 12から吐出された熱 媒体としての冷媒は、四路切換弁 11、室外熱交換器 2、膨張弁 9、室内熱交換器 10 、及び四路切換弁 11の順番で循環して圧縮機 12に吸入される。このような冷媒の循 環によって、室外熱交換器 2は凝縮器として動作し、室内熱交換器 10は蒸発器とし て動作する。凝縮器として動作する室外熱交換器 2では、ガス冷媒が室外空気と熱 交換を行って液冷媒になり、これによつて冷媒は室外空気に対して放熱する。蒸発 器として動作する室内熱交 では、液冷媒が室内空気と熱交換を行って蒸発 してガス冷媒になり、これによつて室内空気が冷媒により吸熱されて冷却される。
[0020] 一方、空気調和装置 1の暖房運転時には、四路切換弁 11は、図 2中に破線で示さ れるように設定される。この状態で、圧縮機 12から吐出された冷媒は、四路切換弁 1 1、室内熱交換器 10、膨張弁 9、室外熱交換器 2、及び四路切換弁 11の順番で循環 して圧縮機 12に吸入される。このような冷媒の循環によって、室内熱交 10が凝 縮器として動作し、室外熱交換器 2が蒸発器として動作する。凝縮器として動作する 室内熱交^^ 10では、ガス冷媒が室内空気と熱交換を行って凝縮し、これによつて 室内空気は冷媒の放熱により加熱される。蒸発器として動作する室外熱交換器 2で は、液冷媒が室外空気と熱交換を行って蒸発してガス冷媒になり、これによつて冷媒 は室外空気から吸熱する。
[0021] 室外熱交^^ 2は、図 1に示すように、いわゆるクロスフィンアンドチューブ型熱交 換器であり、多数のプレートフィン 3と、一つの熱交換パイプ 5とを備えている。各プレ 一トフイン 3は熱交換面を形成し、互いに間隔が空いた状態で、空気の流通方向 4に 直交する方向に沿って並設される。熱交換パイプ 5は、蛇行して配置されるとともに 各プレートフィン 3を貫通しており、熱交換パイプ 5の内部には冷媒が流通して!/、る。
[0022] 室外熱交換器 2において、各プレートフィン 3は、それらの長手方向が上下方向に 沿って延びるように配置され、フィン列を構成している。図 1において、フィン列は流 通方向 4に沿って 2列配列されている力 フィン列の数は、 1列でもよいし、 3列以上で もよい。熱交換パイプ 5は、空気の流通方向 4に直交する方向に沿って延びる複数の 箇所を有する。前記各箇所は、プレートフィン 3の下端部から上端部にわたって配置 され、且つプレートフィン 3の長手方向に沿って等間隔に配置されている。プレートフ イン 3の表面には、滑水性及び撥水性を有する塗膜が形成されており、プレートフィン 3の表面の滑水性及び撥水性が大きくなつている。プレートフィン 3は、例えばフラット フィン、スリットフィン、及びワッフルフィンのような板状のフィンを全て含む。
[0023] 室外熱交 2の下方には、室外熱交 2から流下する水滴を受けて外部へ排 出するためのドレンパン 6が配置されている。ドレンパン 6の上面 6aは、室外熱交換 器 2から流下した水 7を排出するために傾斜して 、る。上面 6aが傾斜したドレンパン 6 に対して、室外熱交 2はほぼ水平に配置される。
[0024] 第 1の実施形態では、室外熱交換器 2の下端部、即ちプレートフィン 3の下端部 3a とドレンパン 6の上面 6aとの間には、その全体にわたって隙間が設けられている。した がって、室外熱交換器 2が蒸発器として動作する際に凝縮した水滴 8は、プレートフィ ン 3の表面上を流下してプレートフィン 3の下端部 3aからドレンパン 6の上面 6a上に 落下する。このように室外熱交翻2とドレンパン 6との接触部分がないことから、流 下した水滴 8が室外熱交 2とドレンパン 6との接触部分にたまることがなぐよつて 水滴による霜がプレートフィン 3の下端部 3aから上方に成長することが防止される。 [0025] 第 1の実施形態によれば、以下のような効果を得ることができる。
(1)第 1の実施形態では、室外熱交翻 2とドレンパン 6との接触部分がないことか ら、プレートフィン 3の表面上を流下した水滴 8が前記接触部分にたまることがなぐよ つて水滴による霜がプレートフィン 3の下端部 3aから上方に成長することが防止され る。これによつて、室外熱交翻2の着霜量を低減することができる。
[0026] 第 1の実施形態は以下のように変更してもよい。
• 第 1の実施形態では、室外熱交 2とドレンパン 6との間の全体にわたって隙 間が設けられていることから、この隙間を空気が流通することにより室外熱交 2の 熱交換効率が低下する可能性がある。したがって、前記隙間を流通する空気量を低 減するために、ドレンパン 6の上面に遮蔽部材が設けられてもよい。遮蔽部材は、プ レートフィン 3に接触しないように、プレートフィン 3の外方に設けられる。
[0027] (第 2の実施形態)
次に、本発明の第 2の実施形態を、図 3〜図 5を参照しながら説明する。第 2の実施 形態の構成は、室外熱交換器 2の形状と、室外熱交換器 2及びドレンパン 6の位置関 係とを変更した以外は第 1の実施形態の構成と同様であることから、第 1の実施形態 と同様の部分についてはその詳細な説明を省略する。
[0028] 図 3は、本発明の第 2の実施形態に係る室外熱交換器 2の一部分を示す断面図で あり、図 4は室外熱交換器 2を空気の流通方向 4の下流力 見た状態を示す背面図 である。
図 4に示すように、第 2の実施形態に係る室外熱交換器 2は、その下端部がドレン パン 6の上面 6aに対して部分的に接触するように配置されている。そのため、室外熱 交換器 2の下端部は、ドレンパン 6により支持されている。ドレンパン 6の上面 6aは傾 斜しており、この上面 6aの上部に室外熱交換器 2が接触している。図 4においては、 その左方の領域 Rの部分で、室外熱交 2とドレンパン 6とが接触して ヽる。
[0029] さらに第 2の実施形態では、室外熱交 2の下端部、即ちプレートフィン 3の下端 部とドレンパン 6の上面 6aとの部分的な接触は、プレートフィン 3の下端部に形成され た突出部としての傾斜部 3bの先端がドレンパン 6の上面 6aに接触することによって 行われる。即ち、ドレンパン 6の上面 6aは水を排出するために傾斜すると共に、室外 熱交 2がほぼ水平に設置されていることから、室外熱交 2の下端部はドレン パン 6の上面 6aに対して部分的に接触する。傾斜部 3bは、空気の流通方向 4に沿つ て傾斜している。図 3に示すように、左側の列のプレートフィン 3の傾斜部 3bは、外側 力も中央に向かって下方へ傾斜し、右側の列のプレートフィン 3の傾斜部 3bは、中央 力も外側に向力つて上方へ傾斜している。傾斜部 3bは、プレートフィン 3の下端部が 斜めに切断されることによって形成され得る。
[0030] 図 3に示される室外熱交換器 2では、空気流の上流側、即ち左側のプレートフィン 3 の形状と、空気流の下流側、即ち右側のプレートフィン 3の形状とが同じであり、上流 の傾斜部 3bと下流の傾斜部 3bとは、傾斜面が互いに反対方向を向くように配置され ている。
[0031] このように第 2の実施形態では、プレートフィン 3の下端部の傾斜部 3bがその先端 にてドレンパン 6の上面 6aに接触して!/、ることから、プレートフィン 3の平坦な下端部 力 Sドレンパン 6の上面 6aに接触する場合に比べて、プレートフィン 3とドレンパン 6の 上面 6aとの接触面積が小さくなる。そして、室外熱交 2が蒸発器として動作する 際に凝縮した水滴 8は、図 3に矢印 A1で示されるように流下した後、そのままドレンパ ン 6に落下するか、矢印 A2で示されるように傾斜部 3bの傾斜面に沿って移動してそ の途中でドレンパン 6に落下する力 又は傾斜部 3bの先端まで移動してドレンパン 6 に到達する。したがって、室外熱交^^ 2とドレンパン 6との接触部分にたまる水の量 が減少し、これによつて接触部分の氷の量も減少する。
[0032] 図 5 (a)〜 (c)は、室外熱交換器 2に形成される突出部の別の形状を示す断面図で ある。図 5 (a)に示される突出部は、流通方向 4の上流側のプレートフィン 3の傾斜部 3cと、下流側のプレートフィン 3の傾斜部 3cとが 1つの連結した傾斜部を構成するよう に形成されている。つまり、上流側の傾斜部 3cの傾斜面と、下流側の傾斜部 3cの傾 斜面とが同一平面上に位置するように、 2つの傾斜部 3cが形成されている。この別例 では、下流方向のプレートフィン 3の傾斜部 3cの先端力 ドレンパン 6の上面 6aに接 触している。
[0033] 図 5 (b)に示される突出部 3dは、各プレートフィン 3において流通方向 4の下流側に 位置し、矩形状をなしている。このような突出部 3dは、各プレートフィン 3の下端部か ら該プレートフィン 3の一部が矩形状に切除されることによって形成されている。この ような突出部 3dの場合、室外熱交 2とドレンパン 6との接触部分における流通方 向 4に沿った長さが短くなることによって、プレートフィン 3とドレンパン 6の上面 6aとの 接触面積を小さくすることができる。
[0034] 図 5 (c)に示される突出部 3eは、各プレートフィン 3の下端部に形成された断面半 円形状をなしている。
第 2の実施形態によれば、以下のような効果を得ることができる。
[0035] (1)第 2の実施形態では、室外熱交換器 2の傾斜部 3b, 3c及び突出部 3d, 3eがド レンパン 6の上面 6aに接触して 、ることから、従来のように室外熱交 2の下端部 がその全体にわたって平坦であり、且つ該下端部がドレンパン 6の上面 6aに接触す る場合に比べて、プレートフィン 3とドレンパン 6の上面 6aとの接触面積を小さくするこ とができる。これによつて、室外熱交^^ 2の下端部とドレンパン 6の上面 6aとの接触 部分にできる氷の量が減少し、該接触部分から上方に成長する霜の量を減少させる ことができる。
[0036] (2)突出部としての傾斜部 3b, 3cは、プレートフィン 3の下端部を斜めに切断するこ とにより形成されることから、容易に形成することができる。
[0037] (第 3の実施形態)
次に、本発明の第 3の実施形態を、図 6を参照しながら説明する。第 3の実施形態 の構成は、室外熱交換器 2の形状を変更した以外は第 2の実施形態の構成と同様で あることから、第 2の実施形態と同様の部分についてはその詳細な説明を省略する。
[0038] 図 6は、本発明の第 3の実施形態に係る室外熱交換器 2の一部分を、空気の流通 方向 4の下流力 見た状態を示す背面図である。
第 3の実施形態では、一部のプレートフィン 3Lの下端部に、残余のプレートフィン 3 Sの下端部に比べて下方へ突出する突出部が形成されている。具体的には、上下方 向の長さが異なる 2種類のプレートフィン 3L, 3S (2種類のプレートフィンを総称する ときは、参照符号「3」を用いる。)を用いて、予め定められた枚数の上下方向の長さ が短いプレートフィン 3Sごとに、 1枚の上下方向の長さが長いプレートフィン 3Lが配 列される。図 6では、プレートフィン 3Sとプレートフィン 3Lとが交互に配列されている。 [0039] このように第 3の実施形態では、一部のプレートフィン 3Lの下端部に形成された突 出部の先端、つまり上下方向の長さが長いプレートフィン 3Lの下端部の先端がドレ ンパン 6の上面 6aに接触することによって、第 2の実施形態と同様に、室外熱交換器 2とドレンパン 6との部分的な接触を実現している。これによつて、接触領域 R内の全 てのプレートフィン 3がドレンパン 6に接触する場合に比べて、室外熱交^^ 2とドレ ンパン 6との接触面積を小さくすることができる。したがって、室外熱交 2とドレン パン 6との接触部分にたまる水の量が減少し、これによつて該接触部分に付着する氷 13の量も減少する。
[0040] また、第 3の実施形態では、隣接するプレートフィン 3Lの下端部間にプレートフィン 3Sが存在して 、な 、ことから、室外熱交 2の下端部での空気が流通する通路が 大きくなる。これによつて、通路の通風抵抗が小さくなつて風速が上がり、その結果、 プレートフィン 3の表面温度が上がる。したがって、プレートフィン 3の下部で凝縮水が 凍結し難くなる。さらに、プレートフィン 3の下端部で凝縮水が凍結して氷 13がプレー トフイン 3に付着しても、空気が流通する通路が大き 、ので通路が閉塞しな!、。
[0041] 第 3の実施形態によれば、以下のような効果を得ることができる。
(1)第 3の実施形態では、接触領域 R内で上下方向の長さが長いプレートフィン 3L の下端部のみがドレンパン 6の上面 6aに接触している。そのため、従来のように接触 領域 R内の全てのプレートフィンがドレンパン 6に接触する場合に比べて、室外熱交 翻 2とドレンパン 6との接触面積を小さくすることができる。これによつて、室外熱交 2の下端部とドレンパン 6の上面 6aとの接触部分に付着する氷 13の量が減少す るので、該接触部分力も上方に成長する霜の量を減少させることができる。さらに、突 出部は、上下方向の長さが異なる 2種類のプレートフィン 3L, 3Sを用いることによつ て形成されて ヽることから、容易に形成することができる。
[0042] (2)第 3の実施形態では、隣接するプレートフィン 3Lの下端部間にプレートフィン 3 Sが存在していないことから、室外熱交 2の下端部での空気が流通する通路が 大きくなり、これによつて通路の通風抵抗が小さくなつて風速が上がり、その結果、プ レートフィン 3の表面温度が上がる。したがって、プレートフィン 3の下部で凝縮水が 凍結しにくくなつて霜の発生が抑制され、室外熱交 2の着霜量を減少させること ができる。
[0043] (3)第 3の実施形態では、室外熱交換器 2の下端部での空気が流通する通路が大 きくなることから、上下方向の長さが長いプレートフィン 3Lの下端部で凝縮水が凍結 して氷 13がプレートフィン 3Lに付着しても通路が閉塞されず、通風抵抗の増加を緩 禾ロすることができる。
[0044] 第 3の実施形態は以下のように変更してもよ 、。
• フィンピッチが大きい部分、即ち上下方向の長さが長いプレートフィン 3Lの突出 部の表面に親水処理が施されてもよい。プレートフィン 3Lの突出部とは、プレートフィ ン 3Lにお!/、て、上下方向の長さが短 、プレートフィン 3Sよりも下方へ突出して!/、る部 分である。親水処理は、例えばプレートフィン 3がアルミニウムにより形成されていると きはポリアクリル酸などの親水処理剤のプレートフィン 3への塗布によって行われるこ とができる。また、プレートフィン 3に滑水性及び撥水性処理と親水処理とが施される 場合、親水処理が施されてから滑水性及び撥水性処理が施されてもよいし、その逆 でもよい。このように突出部の表面に親水処理が施されていることから、凝縮水はプレ 一トフイン 3の表面に対して薄く広がる。また、凝縮水が凍結したときでも、該凍結によ つて形成される氷は、プレートフィン 3の表面からの高さが低い氷、つまり隣接するプ レートフィン 3に向力つて成長する量が小さい氷になる。したがって、空気が流通する 通路が閉塞されず、通風抵抗の増加を緩和できる。
[0045] · 第 3の実施形態では、室外熱交換器 2がドレンパン 6に接触している場合につい て説明されているが、第 1の実施形態と同様に、室外熱交翻 2とドレンパン 6との間 には、その全体にわたって隙間が設けられてもよい。
[0046] (第 4の実施形態)
次に、本発明の第 4の実施形態を、図 7〜図 12を参照しながら説明する。第 4の実 施形態の構成は、室外熱交換器 2の構造を変更した以外は第 2の実施形態の構成と 同様であることから、第 2の実施形態と同様の部分についてはその詳細な説明を省 略する。
[0047] 図 7は、第 4の実施形態に係る室外熱交換器 2の一部分を示す断面図である。
第 4の実施形態では、室外熱交換器 2は、その下部に高温部 14を備えている。高 温部 14は、室外熱交翻2が蒸発器として動作しているときに、プレートフィン 3の表 面上を流下する凝縮した水滴 8の温度を 0度以上に上昇させる。高温部 14では、室 外熱交^^ 2のプレートフィン 3の下部に熱交換パイプ 5が設けられておらず、プレー トフイン 3のみで形成されている。このようなプレートフィン 3のみで形成される高温部 1 4は、抜管構造、即ち熱交換パイプ 5がプレートフィン 3を貫通するためにプレートフィ ン 3に形成されて ヽる貫通孔 15に熱交換パイプ 5が揷通されな ヽことで形成される。
[0048] 図 7に示す構成例では、各プレートフィン 3の下端部から 1番目及び 2番目の 2つの 貫通孔 15に熱交換パイプ 5が挿通されていない。したがって、室外熱交 2では、 プレートフィン 3の下端部から、熱交換パイプ 5が揷通されていない貫通孔 15の内、 最も上方に位置する貫通孔 15の近傍までの領域 W1が高温部 14として機能し、領 域 W1を除いた残余の領域 W2で主に熱交換が行われる。高温部 14には熱交換パ イブ 5が設けられて 、な 、ことから、室外熱交翻2が蒸発器として動作して 、るとき 、熱交換パイプ 5が設けられている上部の領域 W2に比べて高温部 14の温度は高く なる。このとき、少なくともプレートフィン 3の下端部の温度が 0度以上になるように、熱 交換パイプ 5が設けられない領域 W1の大きさが適当に設定される。
[0049] このように高温部 14が設けられることによって、室外熱交 2が蒸発器として動作 しているときに凝縮した水滴 8が下方に流下したとき、下部の高温部 14によって水滴 8の温度は 0度以上になる。したがって、流下した水滴 8が室外熱交換器 2の下端部 で凍ることはない。
[0050] 図 8は、高温部の他の構成例を説明するための断面図である。図 8に示す高温部 1 4aでは、プレートフィン 3における高温部 14aに相当する領域 W1の表面に親水処理 が施されている。このように高温部 14aの表面に親水処理が施されることによって、上 方力も流下して高温部 14aに到達した水滴 8は高温部 14aの表面で薄く広がり、隣接 する水滴 8どうしが集合して高温部 14aの表面に薄く広がり、水の薄膜 7となる。これ によって高温部 14aの表面で水滴 8が成長することが抑えられることから、通風抵抗 の増大を抑制することができ、高温部 14aの表面温度を上昇させることが可能となる
[0051] 図 9は、高温部のさらに他の構成例を示す背面図である。図 9に示す高温部 14bは 、プレートフィン 3の下端と、最も下方に位置する熱交換パイプ 5との距離を、熱交換 パイプ 5のピッチ(プレートフィン 3の長手方向に沿ったパイプ 5の間隔)に比べて大き くすることによって、プレートフィン 3のみで形成されている。高温部 14bにおいて、プ レートフィン 3の領域 W1には貫通孔が形成されていない。この高温部 14bは、図 7に 示される高温部 14と同様に機能する。高温部 14bにおいても、図 8に示される高温 部 14aと同様に、表面に親水処理が施されてもよい。
[0052] 図 10は、高温部のさらに他の構成例を示す断面図である。図 10の例では、室外熱 交 2の下端面に接触した状態でヒータ 16が配置され、プレートフィン 3の下部が そのヒータ 16によって加熱される。ヒータ 16により 0度以上に加熱される領域 W1が高 温部 14cになる。この高温部 14cも、図 7に示す高温部 14と同様に機能する。ただし 、ヒータ 16により積極的に加熱されていることから、図 10の高温部 14cの温度は他の 高温部 14, 14a, 14bよりも高くすることが可能である。高温部 14cにおいても、図 8 に示される高温部 14aと同様に、表面に親水処理が施されてもよい。
[0053] 図 11は、高温部のさらに他の構成例における冷媒回路図を示す回路図であり、図 12は室外熱交換器 2の一部分を示す断面図である。室外熱交換器 2は、上側熱交 換部 2aと下側熱交換部 2bとに区分され、上側熱交換部 2aと下側熱交換部 2bとが膨 張弁 9を介して接続されている。そして、下側熱交換部 2b、膨張弁 9、上側熱交換部 2aの順番で冷媒が供給されることによって、下側熱交換部 2bが凝縮器として動作す ると共に、上側熱交換部 2aが蒸発器として動作する。図 11に示される高温部 14dは 、凝縮器として動作する下側熱交換部 2bで構成されて 、る。
[0054] 図 11に示される空気調和装置 1では、圧縮機 12、四路切換弁 11、室内熱交換器 10、下側熱交換部 2b、膨張弁 9、及び上側熱交換部 2aが冷媒配管で接続されて冷 媒回路が構成されている。空気調和装置 1の暖房運転時には、四路切換弁 11は図 11中に実線で示されるように設定される。この状態で、圧縮機 12から吐出された冷 媒は、四路切換弁 11、室内熱交換器 10、下側熱交換部 2b、膨張弁 9、上側熱交換 部 2a、及び四路切換弁 11の順番で循環して圧縮機 12に吸入される。このような冷 媒の循環によって、室内熱交 及び下側熱交換部 2bが凝縮器として動作し、 上側熱交換部 2aが蒸発器として動作する。凝縮器として動作する室内熱交換器 10 では、ガス冷媒が室内空気と熱交換を行って凝縮され、これによつて室内空気は冷 媒の放熱によって加熱される。また、凝縮器として動作する下側熱交換部 2bでも冷 媒が放熱することから、下側熱交換部 2bは高温部 14dとして機能する。蒸発器として 動作する上側熱交換部 2aでは、液冷媒は室外空気と熱交換を行って蒸発してガス 冷媒になり、これによつて冷媒は室外空気から吸熱する。
[0055] 一方、空気調和装置 1の冷房運転時には、四路切換弁 11は図 11中に破線で示さ れるように設定される。この状態で、圧縮機 12から吐出された冷媒は、四路切換弁 1 1、上側熱交換部 2a、膨張弁 9、下側熱交換部 2b、室内熱交換器 10、及び四路切 換弁 11の順番で循環して圧縮機 12〖こ吸入される。このような冷媒の循環によって、 上側熱交換部 2aは凝縮器として動作し、下側熱交換部 2b及び室内熱交 は 蒸発器として動作する。凝縮器として動作する上側熱交換部 2aでは、ガス冷媒が室 外空気と熱交換を行って液冷媒になり、これによつて冷媒は室外空気に対して放熱 する。蒸発器として動作する室内熱交換器 10では、液冷媒が室内空気と熱交換を行 つて蒸発してガス冷媒になり、これによつて室内空気は冷媒によって吸熱されて冷却 される。蒸発器として動作する下側熱交換部 2bでは、液冷媒が室外空気と熱交換を 行って蒸発してガス冷媒となることから、室外空気を冷却する。このように、下側熱交 換部 2bでは無駄な熱交換が行われるものの、空気調和装置 1は冷房運転を行うこと ができる。
[0056] この高温部 14dは、図 7に示される高温部 14と同様に機能する。この高温部 14d、 即ち下側熱交換部 2bにおいても、図 8に示す高温部 14aと同様に、表面に親水処理 が施されてもよい。
[0057] 第 4の実施形態によれば、以下の効果を得ることができる。
(1)第 4の実施形態では、室外熱交 2が蒸発器として動作しているときに凝縮 した水滴 8力 S下方に流下したとき、高温咅 14a, 14b, 14c, 14dによって水滴 8 は 0度以上に加熱されることから、室外熱交翻2の下端部で水滴 8が凍ることがな い。これによつて、室外熱交 2の下端部力 上方に霜が成長することを防止する ことができるので、室外熱交換器 2の着霜量を低減することができる。
[0058] (2)プレートフィン 3のみで形成された高温部 14, 14bは、抜管構造、又はプレート フィン 3の下端と、最も下方に位置する熱交換パイプ 5との距離を変更することによつ て、容易に実施されることができる。
[0059] (3)表面に親水処理が施された高温部 14aでは、高温部 14aの表面で水滴 8が成 長することが抑えられ、通風抵抗の増大が抑制されるので、高温部 14aの表面温度 を上昇させることが可能となる。これによつて、高温部 14aでの水滴 8の温度上昇をよ り促進することができる。
[0060] (4)ヒータ 16で室外熱交^^ 2の下部を加熱することにより形成される高温部 14c は、室外熱交 2にヒータ 16が設置されるだけでよいことから、容易に実施できる。 更に、プレートフィン 3のみで形成される高温部 14, 14a, 14b〖こ比べて、高温部 14c の温度を高くすることが可能であることから、速やかに水滴を 0度以上に加熱すること ができる。
[0061] (5)室外熱交 2を上下に区分して得られた下側熱交換部 2bによって構成され る高温部 14dは、プレートフィン 3のみで形成される高温部 14, 14a, 14bに比べて、 高温部 14dの温度を高くすることが可能であることから、速やかに水滴を 0度以上に カロ熱することがでさる。
[0062] 第 4の実施形態は以下のように変更してもよ 、。
• 高温部 14は抜管構造によってプレートフィン 3のみで形成されている力 プレー トフイン 3において高温部とすべき部位に熱交換パイプ 5を貫通させた状態で、この 熱交換パイプ 5に冷媒を流通させないことで高温部が形成されてもよい。この場合、 熱交換パイプ 5がプレートフィン 3を貫通して 、ることから、室外熱交 2の構造の 強度を向上させることができる。
[0063] (第 5の実施形態)
次に、本発明の第 5の実施形態を、図 13及び図 14を参照しながら説明する。第 5 の実施形態の構成は、ドレンパン 6の構成を変更した以外は第 1の実施形態の構成 と同様であることから、第 1の実施形態と同様の部分についてはその詳細な説明を省 略する。
[0064] 第 5の実施形態では、ドレンパン 6の上面 6aに滑水性及び撥水性処理が施されて いる。滑水性及び撥水性処理は、滑水性及び撥水性を有する塗膜がドレンパン 6の 上面 6aに形成されることによって行われる。したがって、室外熱交 2から流下し た水はドレンパン 6の上面 6aにたまることなぐ該上面 6a上をスムーズに流れる。
[0065] 図 13に示されるドレンパン 6では、室外熱交換器 2の長手方向の中央部に排水口 1 7が形成され、上面 6aはドレンパン 6の長手方向の両端部から中央部の排水口 17に 向かって傾斜している。中央部に排水口 17が形成されたことによって、ドレンパン 6 の長手方向の端部に排水口が形成される場合に比べて、傾斜している上面 6aの最 上部から排水口 17までの距離が短くなり、スムーズに排水することができる。この上 面 6aに滑水性及び撥水性処理が施されることによって、より速やかに排水することが できる。
[0066] また、図 14に示されるドレンパン 6の上面 6aは、空気の流通方向 4の下流側が低く なるように、上流から下流に向力つて傾斜している。上面 6aが流通方向 4に沿って傾 斜することによって、上面 6aが流通方向 4に直交する方向に沿って傾斜する場合に 比べて、傾斜している上面 6aの最上部力も最下部までの距離が短くなり、スムーズに 排水することができる。この上面 6aに滑水性及び撥水性処理が施されることによって 、より速やかに排水することができる。
[0067] 第 5の実施形態によれば、以下の効果を得ることができる。
(1)ドレンパン 6の上面 6aに滑水性及び撥水性処理が施されることによって、室外 熱交^^ 2から流下した水はドレンパン 6の上面 6aにたまることなくスムーズに流れる ので、速やかに排水することができる。また、ドレンパン 6の上面 6aに滑水性及び撥 水性処理が施されると共に、上面 6aの最上部から最下部までの距離を短くすること によって、より速やかに排水することができる。
[0068] (第 6の実施形態)
次に、本発明の第 6の実施形態を説明する。第 6の実施形態の構成は、ドレンパン 6の構成を変更した以外は第 5の実施形態の構成と同様であることから、第 5の実施 形態と同様の部分についてはその詳細な説明を省略する。
[0069] 第 6の実施形態では、ドレンパン 6の上面 6aに親水処理が施されている。親水処理 は、例えばドレンパン 6がアルミニウムにより形成されている場合、ポリアクリル酸など の親水処理剤の上面 6aへの塗布によって行われる。したがって、室外熱交換器 2か ら流下した水はドレンパン 6の上面 6a上をスムーズに流れる。
[0070] 第 6の実施形態によれば、以下の効果を得ることができる。
(1)ドレンパン 6の上面 6aに親水処理が施されることによって、室外熱交^^ 2から 流下した水はドレンパン 6の上面 6a上をスムーズに流れるので、速やかに排水するこ とができる。また、ドレンパン 6の上面 6aに親水処理が施されると共に、上面 6aの最 上部から最下部までの距離を短くすることによって、より速やかに排水することができ る。
[0071] 上記各実施形態では、本発明は、冷凍装置の一種であるヒートポンプ方式の空気 調和装置を例にとって説明されているが、例えば冷蔵庫又は冷凍庫に適用されても よい。

Claims

請求の範囲
[1] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交換器と、
前記熱交換器の下方に配置されるドレンパンとを備える冷凍装置において、 前記熱交換器の下端部と前記ドレンパンの上面との間には、その全体にわたって 間隙が設けられていることを特徴とする冷凍装置。
[2] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交換器と、
前記熱交^^の下方に配置されるドレンパンとを備え、
前記熱交換器は、その下端部が前記ドレンパンの上面に対して部分的に接触する ように配置されて 、る冷凍装置にぉ 、て、
前記熱交^^の下端部には突出部が設けられ、前記熱交^^の下端部と前記ド レンパンの上面との部分的な接触は、前記突出部の先端が前記ドレンパンの上面に 接触することによって行われていることを特徴とする冷凍装置。
[3] 前記熱交換器は、前記熱交換面を形成する複数のフィンと、内部を前記熱媒体が 流通する熱交換パイプとを備えるクロスフィンアンドチューブ型熱交^^であり、 前記突出部は前記各フィンの下端部に設けられ、且つ前記空気の流通方向に対し て傾斜する傾斜部であることを特徴とする請求項 2に記載の冷凍装置。
[4] 前記熱交換器は、前記熱交換面を形成する複数のフィンと、内部を前記熱媒体が 流通する熱交換パイプとを備えるクロスフィンアンドチューブ型熱交^^であり、 前記突出部は、前記複数のフィンの内の一部のフィンの下端部に設けられ、且つ 残余のフィンの下端部に比べて下方へ突出していることを特徴とする請求項 2に記載 の冷凍装置。
[5] 前記突出部の表面に親水処理が施されていることを特徴とする請求項 4に記載の 冷凍装置。
[6] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交 を備える冷凍装置において、
前記熱交換器の下部には、該熱交換器が蒸発器として動作したときに、前記熱交 換面上で凝縮して流下する水滴の温度を 0度以上に上昇させる高温部が設けられて Vヽることを特徴とする冷凍装置。
[7] 前記熱交換器は、前記熱交換面を形成する複数のフィンと、内部を前記熱媒体が 流通する熱交換パイプとを備えるクロスフィンアンドチューブ型熱交^^であり、 前記高温部は、前記フィンのみで形成されて 、ることを特徴とする請求項 6に記載 の冷凍装置。
[8] 前記熱交 はヒータを備え、該ヒータは、前記熱交^^の下端面に接触した状 態で配置され、前記ヒータが前記熱交換器の下部を加熱することにより前記高温部 が形成されて 、ることを特徴とする請求項 6に記載の冷凍装置。
[9] 前記熱交 は、上側熱交換部と下側熱交換部とに区分されると共に、膨張弁を 備え、前記上側熱交換部と前記下側熱交換部とが前記膨張弁を介して接続され、前 記下側熱交換部、前記膨張弁、及び前記上側熱交換部の順番で熱媒体が供給され ることによって、前記下側熱交換部が凝縮器として動作すると共に、前記上側熱交換 部が蒸発器として動作し、
前記高温部は、凝縮器として動作する前記下側熱交換部で形成されて 、ることを 特徴とする請求項 6に記載の冷凍装置。
[10] 前記高温部の表面に親水処理が施されて 、ることを特徴とする請求項 6〜9の 、ず れか 1項に記載の冷凍装置。
[11] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交 を備える冷凍装置において、
前記熱交換器は、前記熱交換面を形成する複数のフィンと、内部を前記熱媒体が 流通する熱交換パイプとを備えるクロスフィンアンドチューブ型熱交^^であり、 前記複数のフィンの内の一部のフィンの下端部には突出部が設けられ、該突出部 は、残余のフィンの下端部に比べて下方へ突出していることを特徴とする冷凍装置。
[12] 前記熱交^^の下部の表面に親水処理が施されて 、ることを特徴とする請求項 11 に記載の冷凍装置。
[13] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交換器と、 前記熱交換器の下方に配置されるドレンパンとを備える冷凍装置において、 前記ドレンパンの上面に滑水性及び撥水性処理が施されていることを特徴とする冷 凍装置。
[14] 熱交換面を備え、該熱交換面上を流通する空気、及び内部を流通する熱媒体の 間で熱交換を行う熱交換器と、
前記熱交換器の下方に配置されるドレンパンとを備える冷凍装置において、 前記ドレンパンの上面に親水処理が施されていることを特徴とする冷凍装置。
[15] 前記熱交換面が滑水性及び撥水性を有する請求項 1〜14のいずれか 1項に記載 の冷凍装置。
PCT/JP2005/013954 2004-07-30 2005-07-29 冷凍装置 WO2006025169A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2005278722A AU2005278722B2 (en) 2004-07-30 2005-07-29 Refrigeration unit
US11/632,499 US20080035318A1 (en) 2004-07-30 2005-07-29 Refrigeration Unit
EP05767439A EP1780492B1 (en) 2004-07-30 2005-07-29 Refrigeration unit
AT05767439T ATE534878T1 (de) 2004-07-30 2005-07-29 Kühleinheit
AU2008207453A AU2008207453A1 (en) 2004-07-30 2008-08-21 Refrigeration unit
AU2008207451A AU2008207451A1 (en) 2004-07-30 2008-08-21 Refrigeration unit
AU2008207452A AU2008207452A1 (en) 2004-07-30 2008-08-21 Refrigeration unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-224898 2004-07-30
JP2004224898A JP2006046694A (ja) 2004-07-30 2004-07-30 冷凍装置

Publications (1)

Publication Number Publication Date
WO2006025169A1 true WO2006025169A1 (ja) 2006-03-09

Family

ID=35999830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013954 WO2006025169A1 (ja) 2004-07-30 2005-07-29 冷凍装置

Country Status (8)

Country Link
US (1) US20080035318A1 (ja)
EP (1) EP1780492B1 (ja)
JP (1) JP2006046694A (ja)
KR (1) KR20070026835A (ja)
CN (1) CN1989388A (ja)
AT (1) ATE534878T1 (ja)
AU (4) AU2005278722B2 (ja)
WO (1) WO2006025169A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901015A1 (fr) * 2006-05-12 2007-11-16 Goff Michel Paul Marcel Le Batterie a air surchauffe dans le cadre d'un groupe frigorifique, pompe a chaleur.
JP2008086693A (ja) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd 乾燥装置
JP2010230304A (ja) * 2009-03-04 2010-10-14 Sumitomo Light Metal Ind Ltd 空気調和機用フィン・アンド・チューブ式熱交換器
JP2016013806A (ja) * 2014-07-03 2016-01-28 本田技研工業株式会社 車両用空調装置
CN106949752A (zh) * 2017-04-14 2017-07-14 南京师范大学 一种管壳式冷凝换热器
JP2018035975A (ja) * 2016-08-30 2018-03-08 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
US20200088432A1 (en) * 2017-03-31 2020-03-19 Daikin Industries, Ltd. Heat exchanger and air conditioner
JPWO2021095752A1 (ja) * 2019-11-12 2021-05-20

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857103B2 (en) 2013-11-04 2018-01-02 Lg Electronics Inc. Refrigerator having a condensation loop between a receiver and an evaporator
JP4376276B2 (ja) 2007-06-06 2009-12-02 木村工機株式会社 熱交換コイル
KR101228314B1 (ko) * 2007-09-07 2013-01-31 삼성전자주식회사 열교환기
JP2010038486A (ja) * 2008-08-07 2010-02-18 Daikin Ind Ltd 分離型空気調和機の室外ユニット
JP5401685B2 (ja) * 2008-12-25 2014-01-29 三菱電機株式会社 空気調和機の室外機
JP2010236826A (ja) * 2009-03-31 2010-10-21 Kuken Kogyo Co Ltd フィンコイル装置
JP5592233B2 (ja) * 2010-10-27 2014-09-17 シャープ株式会社 空気調和機
FR2966914B1 (fr) 2010-10-29 2015-02-20 Electricite De France Systeme d'echange thermique entre de l'air situe a l'interieur d'un espace et de l'air situe a l'exterieur de l'espace
KR20120054321A (ko) * 2010-11-19 2012-05-30 엘지전자 주식회사 히트 펌프
KR101257087B1 (ko) * 2011-01-11 2013-04-19 엘지전자 주식회사 원격 제어 장치와, 이를 포함하는 공기 조화 시스템, 및 공기 조화 시스템의 실외기 원격 제어 방법
CN102692099A (zh) * 2011-03-21 2012-09-26 珠海格力电器股份有限公司 换热器
KR101260455B1 (ko) * 2011-07-21 2013-05-07 포항공과대학교 산학협력단 극소수성 표면 가공 방법 및 극소수성 표면을 가지는 증발기
US9958194B2 (en) * 2011-10-03 2018-05-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus with a heating unit for melting frost occurring in a heat exchanger
JP5744219B2 (ja) * 2011-10-03 2015-07-08 三菱電機株式会社 室外機
KR20130092249A (ko) * 2012-02-10 2013-08-20 엘지전자 주식회사 히트 펌프
ITBO20120131A1 (it) * 2012-03-14 2013-09-15 Valmex S P A Scambiatore di calore particolarmente adatto all'uso come evaporatore
WO2013183136A1 (ja) * 2012-06-07 2013-12-12 株式会社日立製作所 空気熱交換器
JP5772748B2 (ja) * 2012-07-23 2015-09-02 株式会社デンソー 蒸発器
CN103225977A (zh) * 2013-04-03 2013-07-31 顾香 高效换热器
CN103234308A (zh) * 2013-04-03 2013-08-07 陆亚洲 翅片换热器
US10267527B2 (en) 2013-06-04 2019-04-23 Mitsubishi Electric Corporation Outdoor unit for an air-conditioning device
CN103292617A (zh) * 2013-06-08 2013-09-11 张家港市江南利玛特设备制造有限公司 一种翅片式换热器
KR102174385B1 (ko) * 2014-01-27 2020-11-04 엘지전자 주식회사 냉장고
EP2868997B1 (en) * 2013-11-04 2020-09-30 LG Electronics Inc. Refrigerator
CN104266286B (zh) * 2014-09-11 2017-05-31 青岛海尔空调器有限总公司 桌面空调
JP6336101B2 (ja) * 2014-10-08 2018-06-06 三菱電機株式会社 除湿装置
CN104501478B (zh) * 2014-12-29 2016-09-28 苏州苏试试验仪器股份有限公司 一种环境试验箱用蒸发器
JPWO2017017789A1 (ja) * 2015-07-28 2018-02-22 三菱電機株式会社 熱交換器及び冷凍サイクル装置
WO2017017813A1 (ja) * 2015-07-29 2017-02-02 三菱電機株式会社 室外ユニット
CN108351189A (zh) * 2015-10-23 2018-07-31 开利公司 疏水性换热器
CN105783575A (zh) * 2016-05-17 2016-07-20 李国胜 换热片以及室内温度调节系统
DE102016111543A1 (de) * 2016-06-23 2017-12-28 Keuro Besitz Gmbh & Co. Edv-Dienstleistungs Kg Sägeblatt für eine Kreissäge, Verfahren zum Herstellen eines Sägeblatts und Kreissägemaschine
CN106123424A (zh) * 2016-08-11 2016-11-16 成都中装能源科技有限公司 一种蓄冰装置
JP6939088B2 (ja) * 2017-05-24 2021-09-22 株式会社デンソーエアクール 熱交換器
JP2021105454A (ja) * 2018-04-16 2021-07-26 三菱電機株式会社 ヒートシンク及び空気調和装置
JP2020012629A (ja) * 2019-07-05 2020-01-23 サムスン ヘビー インダストリーズ カンパニー リミテッド 結氷防止気化装置
CN113558437B (zh) * 2021-07-30 2022-04-15 郑州轻工业大学 一种无温度波动的冷藏陈列柜控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430137B2 (ja) * 1973-11-20 1979-09-28
JPS5899667A (ja) * 1981-12-10 1983-06-14 松下精工株式会社 熱交換器
JPS6068365U (ja) * 1983-10-14 1985-05-15 富士電機株式会社 フインチユ−ブ形蒸発器
JPH04309794A (ja) * 1991-04-04 1992-11-02 Kubota Corp 熱交換器
JPH0519715Y2 (ja) * 1987-06-23 1993-05-24
JPH0718564B2 (ja) * 1986-10-17 1995-03-06 株式会社日立製作所 空気調和機
JPH0861691A (ja) * 1994-08-24 1996-03-08 Sanyo Electric Co Ltd 空気調和機
JP2501931Y2 (ja) * 1991-12-05 1996-06-19 ダイキン工業株式会社 冷凍冷蔵装置
JPH09159313A (ja) * 1995-12-08 1997-06-20 Fujitsu General Ltd 熱交換器
WO2003004947A1 (fr) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Pompe de chaleur
JP2003120952A (ja) * 2001-10-11 2003-04-23 Hitachi Ltd ドレンパン付き空気調和機
JP2004176984A (ja) * 2002-11-26 2004-06-24 Daikin Ind Ltd 熱交換装置及び冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2876631A (en) * 1956-05-24 1959-03-10 Pierce John B Foundation Fin structure
JPS4883436A (ja) * 1972-02-09 1973-11-07
CN1003053B (zh) * 1985-05-24 1989-01-11 三菱电机株式会社 热交换器
JPH06257893A (ja) * 1993-03-03 1994-09-16 Showa Alum Corp 熱交換器
JP3287100B2 (ja) * 1993-05-19 2002-05-27 株式会社デンソー 空気調和装置のクーリングユニットおよび排水ケース
US5842355A (en) * 1995-03-22 1998-12-01 Rowe International, Inc. Defrost control system for a refrigerator
JP3177428B2 (ja) * 1995-10-11 2001-06-18 三洋電機株式会社 低温ショーケース
US6276443B1 (en) * 1999-11-29 2001-08-21 Lendell Martin, Sr. Air conditioning coil
JP2002323298A (ja) * 2001-04-26 2002-11-08 Sumitomo Light Metal Ind Ltd 難着霜性の機能性装置
US6729152B2 (en) * 2001-10-24 2004-05-04 Carrier Corporation Thermal shield for evaporator with plastic outer covering
JP3876706B2 (ja) * 2001-12-19 2007-02-07 三菱電機株式会社 空気調和機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5430137B2 (ja) * 1973-11-20 1979-09-28
JPS5899667A (ja) * 1981-12-10 1983-06-14 松下精工株式会社 熱交換器
JPS6068365U (ja) * 1983-10-14 1985-05-15 富士電機株式会社 フインチユ−ブ形蒸発器
JPH0718564B2 (ja) * 1986-10-17 1995-03-06 株式会社日立製作所 空気調和機
JPH0519715Y2 (ja) * 1987-06-23 1993-05-24
JPH04309794A (ja) * 1991-04-04 1992-11-02 Kubota Corp 熱交換器
JP2501931Y2 (ja) * 1991-12-05 1996-06-19 ダイキン工業株式会社 冷凍冷蔵装置
JPH0861691A (ja) * 1994-08-24 1996-03-08 Sanyo Electric Co Ltd 空気調和機
JPH09159313A (ja) * 1995-12-08 1997-06-20 Fujitsu General Ltd 熱交換器
WO2003004947A1 (fr) * 2001-07-02 2003-01-16 Sanyo Electric Co., Ltd. Pompe de chaleur
JP2003120952A (ja) * 2001-10-11 2003-04-23 Hitachi Ltd ドレンパン付き空気調和機
JP2004176984A (ja) * 2002-11-26 2004-06-24 Daikin Ind Ltd 熱交換装置及び冷凍装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901015A1 (fr) * 2006-05-12 2007-11-16 Goff Michel Paul Marcel Le Batterie a air surchauffe dans le cadre d'un groupe frigorifique, pompe a chaleur.
JP2008086693A (ja) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd 乾燥装置
JP2010230304A (ja) * 2009-03-04 2010-10-14 Sumitomo Light Metal Ind Ltd 空気調和機用フィン・アンド・チューブ式熱交換器
JP2016013806A (ja) * 2014-07-03 2016-01-28 本田技研工業株式会社 車両用空調装置
JP2018035975A (ja) * 2016-08-30 2018-03-08 株式会社ケーヒン・サーマル・テクノロジー 蓄冷機能付きエバポレータ
US20200088432A1 (en) * 2017-03-31 2020-03-19 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11828477B2 (en) * 2017-03-31 2023-11-28 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN106949752A (zh) * 2017-04-14 2017-07-14 南京师范大学 一种管壳式冷凝换热器
JPWO2021095752A1 (ja) * 2019-11-12 2021-05-20
JP7330285B2 (ja) 2019-11-12 2023-08-21 三菱電機株式会社 熱交換ユニットおよび冷凍サイクル装置

Also Published As

Publication number Publication date
EP1780492B1 (en) 2011-11-23
ATE534878T1 (de) 2011-12-15
US20080035318A1 (en) 2008-02-14
CN1989388A (zh) 2007-06-27
AU2008207453A1 (en) 2008-09-11
EP1780492A4 (en) 2010-07-21
AU2008207451A1 (en) 2008-09-11
JP2006046694A (ja) 2006-02-16
KR20070026835A (ko) 2007-03-08
AU2008207452A1 (en) 2008-09-11
AU2005278722A1 (en) 2006-03-09
EP1780492A1 (en) 2007-05-02
AU2005278722B2 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
WO2006025169A1 (ja) 冷凍装置
US8973647B2 (en) Heat exchanger and air conditioner having the same
CN107407534A (zh) 热交换器及空气调节机
EP3091322B1 (en) Fin and tube-type heat exchanger and refrigeration cycle device provided therewith
JP6701371B2 (ja) 熱交換器及び冷凍サイクル装置
JPWO2018003123A1 (ja) 熱交換器及び冷凍サイクル装置
JP4659863B2 (ja) 熱交換器ユニット及びこれを使用する空気調和機の室内機
US10557652B2 (en) Heat exchanger and air conditioner
JP7112053B2 (ja) 熱交換器及びそれを用いた冷凍サイクル装置
JP2000074588A (ja) 空気調和機用フィンチューブ型熱交換器
JP6692495B2 (ja) 熱交換器及び冷凍サイクル装置
JP2006046695A (ja) 冷凍装置
JP2014163633A (ja) 冷却器、および冷蔵庫
JP2004271113A (ja) 熱交換器
JP2005024187A (ja) ヒートポンプ用室外熱交換器
JP2010091145A (ja) 熱交換器
WO2020121517A1 (ja) 室内機および空気調和機
JP2010060183A (ja) 空気調和機
JPH10274493A (ja) 熱交換器
JP2006046698A (ja) 冷凍装置
JP2006046697A (ja) 冷凍装置
KR101669970B1 (ko) 공기조화장치
WO2018040034A1 (zh) 微通道换热器及风冷冰箱
JPH06117788A (ja) 熱交換器
JP2004108671A (ja) 蒸発器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005278722

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 11632499

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580024341.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077001512

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005767439

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005278722

Country of ref document: AU

Date of ref document: 20050729

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005278722

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020077001512

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005767439

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632499

Country of ref document: US