WO2006024211A1 - Procede pour produire un profile de rouleau et rouleau pour supprimer une forme d'onde de poids fort - Google Patents

Procede pour produire un profile de rouleau et rouleau pour supprimer une forme d'onde de poids fort Download PDF

Info

Publication number
WO2006024211A1
WO2006024211A1 PCT/CN2005/000982 CN2005000982W WO2006024211A1 WO 2006024211 A1 WO2006024211 A1 WO 2006024211A1 CN 2005000982 W CN2005000982 W CN 2005000982W WO 2006024211 A1 WO2006024211 A1 WO 2006024211A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
function
roll gap
convexity
negative
Prior art date
Application number
PCT/CN2005/000982
Other languages
English (en)
Chinese (zh)
Inventor
Shanqing Li
Jianyong Xu
Lianqin Feng
Ping Wu
Jun Chen
Yihu Li
Xuewei Ye
Zhenglian Jiang
Kangjian Wang
Jianru Zhu
Original Assignee
Baoshan Iron & Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35999693&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006024211(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Baoshan Iron & Steel Co., Ltd. filed Critical Baoshan Iron & Steel Co., Ltd.
Priority to JP2007528560A priority Critical patent/JP2008511444A/ja
Priority to DE112005002080.0T priority patent/DE112005002080C5/de
Priority to AT0934405A priority patent/AT503606B1/de
Publication of WO2006024211A1 publication Critical patent/WO2006024211A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/024Rolls for bars, rods, rounds, tubes, wire or the like

Definitions

  • the present invention relates to metallurgical production techniques, and more particularly to a roll design and a «5 high-order wave. Background technique
  • the metal In the process of rolling the flat material, the metal is plastically deformed by the action of the pair of rolls and the processed metal to achieve the desired shape.
  • the surface of the strip being rolled is not a flat surface but is undulating. This undulation, also known as flatness, has a direct correspondence with the change in crown before and after rolling.
  • the so-called crown that is, the thickness difference or thickness difference distribution of the cross section of the strip steel, in this specification, unless otherwise specified, the crown generally refers to the thickness difference distribution of the cross section of the strip, and the cross section is high or low.
  • the position of the point is called the convexity position.
  • Figure 1 shows a typical strip cross section, which can be represented by a power function, that is, the cross section contour is superimposed by a constant, a linear function, a second power function, and a high power function. Accordingly, the cross-sectional thickness difference of the second power function portion or its distribution is called quadratic convexity, and the cross-sectional thickness difference of the higher power function portion or its distribution is called high-order convexity.
  • roll gap control methods include roll roll shape, bending roll, roll crossover, and roll swaying.
  • roll roll shape Currently widely used in the HC series rolling mills and CVC series rolling mills, they use different methods to control the roll gap.
  • the HC series rolling mills generally do not use a special roll shape, but change the roll by the long stroke of the roll.
  • the contact condition is adopted to achieve the purpose of controlling the roll gap;
  • the CVC series rolling mill adopts a roll with a roll shape of "S" or "bottle” and the upper and lower rolls are inverted, so that the small stroke of the roll can be combined with the roll shape by the roll.
  • Figure 2 shows the shape of the roll gap (the area indicated by black in the figure) at different relative positions of the rolls, wherein the uppermost figure shows the roll gap when the upper and lower rolls are aligned.
  • the shape of the middle shows the shape of the roll gap when the upper roll moves axially to the right and the lower roll moves axially to the left.
  • the lower drawing shows the axial movement of the upper roll to the left.
  • the secondary wave shape is generally regulated by means of work roll bending, intermediate roll bending and intermediate roll swaying. It can be seen from equation (3) that the unloaded roll gap function generated by the conventional CVC roll during the turbulence is a standard quadratic curve, so theoretically it can only improve the secondary wave shape, and the work roll bends the middle and the middle.
  • the roll bending roll also has the ability to improve the secondary wave shape. Therefore, the control method of the above-mentioned control mode is repeated, and the ability of the roll to adjust the shape of the plate is not fully utilized.
  • Austrian patent AT410765B discloses another roll having an ability to adjust the high-order crown, the roll shape of which is a superposition of a sinusoidal function and a linear function.
  • each roll shape can only overcome certain high-order defects when the roll is moved, and the high-speed roll gap cannot be dynamically adjusted online.
  • ⁇ . ⁇ ⁇ " is the shape of the roll to be determined.
  • the shape of the roll to be determined is determined by the maximum and minimum roll diameter difference AD, the basic roll roll diameter extreme position e, for example for the three power series -
  • the roll shape parameter is determined by the following formula:
  • the above roller can continuously adjust the secondary convexity and the high-order convexity of the roll gap, but the secondary convexity and the high-order convexity are still coupled together, so that the secondary convexity or the high-order convexity cannot be separately performed. Adjustment. In addition, the maximum and minimum roll diameter difference ⁇ £> and the basic roll shape roll extreme value position 6 cannot be determined according to the requirements of the process before the roll is designed. Summary of the invention
  • An object of the present invention is to provide a roll-shaped design method in which a roll according to the design can independently and continuously adjust a high-order wave shape.
  • a roll design method comprising the following steps:
  • variable roll gap function determining the coefficient of the corresponding variable roll gap function according to the predetermined high-order convexity of the roll in the forward movement and the negative movement maximum position, wherein the variable roll gap function is a power greater than 2 Function
  • the roll profile is determined according to the roll stroke of the roll, the length, and the roll gap function at the maximum position of the forward movement and the negative movement.
  • variable roll gap function S2+(x) when the roll is at the maximum position of the forward movement and the negative movement is in the following form -
  • S2_ (x) g 22 _ . x 2 + g 24 _ . ⁇ 4 + g 26 I. X 6 + g 2S _ .
  • X is the axial position coordinate of the roll, g 22+ , g 24+ , g 26+ , g28+, g22., g 24- g 2 6- and g28. It is in the positive direction and negative direction according to the preset roll. The coefficient of high-order convexity determination when moving the maximum position.
  • x is the axial position coordinate of the roll and y is the diameter of the roll at the coordinate X, a.
  • a which is a coefficient set according to the unilateral inclination of the strip surface
  • b is the roll stroke of the roll
  • L is the roll roll length
  • c) _v0 - a. .
  • Another object of the present invention is to provide a roll which can independently and continuously adjust a high-order wave shape.
  • the above object of the present invention is achieved by the following technical solutions:
  • the roll gap function is a sum of a basic roll gap function and a variable roll gap function when the roll is in a forward movement or a negative movement maximum position, wherein the basic roll gap function is a quadratic power function, and the coefficient thereof According to the preset quadratic convexity, the variable roll gap function is a power function with a power greater than 2, and the coefficient is determined according to a preset high-order convexity at a maximum position of the forward movement and the negative movement.
  • S2_(x) g 22 _ - X 2 + g 24 — ⁇ ⁇ ⁇ + g 26 _ ⁇ x 6 + g 2S _ ⁇ x s
  • X is the axial position coordinate of the roll
  • g 22+ , g 24+ , G26+, g28+, g22., g24., g 2 6- and g28. are coefficients determined according to the preset high-order crown when the roll is in the forward position and the negative position is moved to the maximum position.
  • x is the axial position coordinate of the roll
  • y is the diameter of the roll at the coordinate X
  • 3 ⁇ 4 is the reference diameter of the roll
  • b is the roll stroke of the roll
  • L is the roll roll length
  • J(jc) ; (c)- a . .
  • the secondary wave shape and the high-order wave shape are respectively controlled by the axial roll of the bending roll and the roll, thereby fully exerting the roll swaying plate.
  • the potential of the shape control means has significantly improved the shape quality.
  • Figure 1 shows a typical strip cross-sectional shape.
  • Figures 2a to 2c show the shape of the roll gap of the upper and lower rolls at different relative positions.
  • FIG. 3 is a flow chart of a roll design method in accordance with a preferred embodiment of the present invention.
  • Figures 4a and 4b show the convexity of the variable roll gap when the maximum position is moved forward and negative, respectively.
  • the secondary wave shape of the strip can be completely controlled by the work roll bending roll and the intermediate roll bending roll, etc., so that it is possible to consider the axial yaw of the roll having a suitable roll shape to the high wave shape. Perform independent control.
  • the inventors of the present invention have proposed a new roll design method and a roll profile which first selects a variable roll gap which is changed by a fixed basic roll gap function and which varies with the direction of the tilt. The function of the roll gap function is then determined according to the roll gap function, so that the axial roll of the roll can be used exclusively for the control of high-order waves.
  • the basic roll gap function takes the form of a second power function
  • the variable roll gap function includes two functions when the roll is in the forward position and the maximum position in the negative direction, all of which are in the form of a power function with a power of more than two.
  • the power is selected according to the convexity feature.
  • the secondary crown, the high degree of convexity and the corresponding axial position coordinates of the sheet can be designed according to the process parameters such as the quality requirements of the sheet, the production condition and the characteristics of the rolling mill (that is, the roll gap shape curve is determined) The coordinates and/or derivative values of a particular point), whereby the desired roll gap shape can be conveniently determined.
  • the roll shape of the upper and lower rolls is also in the form of a power function.
  • the shape of the roll gap depends on the roll shape and relative position of the upper and lower rolls, that is, there is a certain mathematical relationship between them, so the shape of the roll gap at the maximum position of the positive and negative directions is determined to be equivalent to the known roll curve. With enough coordinates, you can reverse the roll shape function of the upper and lower rolls.
  • step 1 the basic roll gap function S l (x) is first determined.
  • this embodiment assumes that the quadratic convexity curve has a bilaterally symmetrical shape, so the basic roll gap function S l (x) is expressed as:
  • S ⁇ (x) g 12 - x 2 (7a)
  • X is the axial position coordinate of the roll
  • step 2 the variable roll gap function S2+(x) when the roll is at the maximum position of the forward movement is determined.
  • the convexity when moving to the maximum position in the forward direction is a symmetric distribution as shown in FIG. 4a, in which the abscissa is the axial coordinate of the roll, the ordinate is the roll gap value, and the high point is at the roll.
  • the half width is located at the half width of the roll gap, and the first derivative of the convexity curve at these convex positions is 0. Therefore, the following form of the 8th power function is selected as the variable roll gap function.
  • step 3 the variable roll gap function S2.(x) when the roll is at the maximum position of the negative movement is determined.
  • the convexity at the maximum position of the negative movement is a symmetric distribution as shown in Fig. 4b, in which the abscissa is the axial coordinate of the roll, the ordinate is the roll gap value, and the low point is at the roll.
  • the half width of the slit is high and the high point is at the width of the roll gap 1/4, and the first derivative of the crown curve at these convex positions It is 0, so here the 8th power function form of the following form is selected as the variable roll gap function S2.(x):
  • the basic secondary roll gap function S1(x) is respectively added to the variable roll gap functions S2 + (x) and S2_(x) when the roll is at the maximum position of the forward movement and the negative movement, and the roll is obtained.
  • g 2+ , g4+ , g 6+ , g 8 + is the power coefficient of the roll gap function S+(x) when the roll is at the maximum position of the forward movement, g 2- g 4- g 6 ., g 8 .
  • step 5 proceed to step 5, according to the relationship between the roll gap functions S+(x) and S.(x) and the roll shape function y(x), by the roller
  • the slit functions S+(x) and S_(x) solve for the power term coefficients of the roll shape function.
  • is the axial position coordinate of the roll
  • y is the diameter of the roll at the coordinate X
  • a Q is the roll diameter at the roll axial coordinate of 0.
  • it is generally taken as the reference diameter of the roll, which is determined by the structure of the rolling mill itself. 3, which represents the slope of the linear change of the roll shape.
  • it is generally set according to the condition that the maximum roll diameter and the minimum roll diameter difference of the roll are the smallest.
  • the other power factor coefficients are solved according to the relationship between the roll gap function and the roll shape function. This is further described below.
  • the roll gap functions S + (x) and S. (x) collectively contain 8 coefficients g 2+ , g 4+ , g 6+ , g 8+ , g 2 -, g 4 _, g 6 ., g 8 ., therefore at coefficient a.
  • the roll shape function also contains 8 power factor coefficients to be determined.
  • variable roll gap shape is determined by the high-order convexity extreme value and its position, and the roll-shaped curve is obtained by the roll gap shape
  • the rolls designed in accordance with the method of the present invention can be individually controlled for high degree crowning by turbulence.
  • the simple higher-order convexity situation as shown in FIGS. 4a and 4b is aimed, but this is only for the convenience of description and understanding, and actually the idea and principle of the present invention can be fully promoted.
  • a more complex power function is needed for the roll gap function, and the number and calculation of the number of simultaneous equations required to determine the roll gap function and the roll shape function will be more .

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

L'invention concerne un procédé de conception d'un profilé de rouleau, dans lequel une forme d'onde de poids fort peut être réglée de manière continue, et indépendante selon le rouleau à concevoir. Le procédé de l'invention comprend les étapes suivantes : (1) détermination d'un coefficient d'une fonction d'intervalle de rouleau fondamentale selon une convexité de second ordre préréglée, ladite fonction étant une fonction quadratique ; (2) détermination des coefficients des fonctions des intervalles de rouleaux variables correspondants sur la base d'une convexité prioritaire des rouleaux préréglés, lorsqu'ils sont en position élevée lors d'un déplacement positif et en déplacement négatif, les fonctions d'intervalles de rouleaux variables étant des fonctions de puissance présentant une puissance supérieure à 2 ; (3) ajout de la fonction d'intervalle de rouleaux fondamentale aux fonctions d'intervalles de rouleaux variables, lorsque les rouleaux sont en positions les plus grandes en déplacement positif et en déplacement négatif, ce qui permet d'obtenir des fonctions d'intervalles de rouleaux lorsque les rouleaux sont dans la position la plus grande en déplacement positif et en déplacement négatif ; et (4) détermination d'une courbe du profilé du rouleau sur la base d'une course de jeu et d'une longueur du rouleau et les fonctions d'intervalles du rouleau, lorsque le rouleau est en position la plus grande en déplacement positif et en position négative.
PCT/CN2005/000982 2004-08-30 2005-07-04 Procede pour produire un profile de rouleau et rouleau pour supprimer une forme d'onde de poids fort WO2006024211A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007528560A JP2008511444A (ja) 2004-08-30 2005-07-04 ローラー形の設計方法及び高次波形抑制型ローラー
DE112005002080.0T DE112005002080C5 (de) 2004-08-30 2005-07-04 Verfahren zum Design eines Walzenprofils und Stahlwalze mit einer in Form einer Polynomfunktion ausgedrückten Kurve des Walzenprofils
AT0934405A AT503606B1 (de) 2004-08-30 2005-07-04 Verfahren zum design von walzenprofil und walze zur unterdrückung nichtquadratischer wellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410054097.0 2004-08-30
CNB2004100540970A CN100333845C (zh) 2004-08-30 2004-08-30 一种辊形设计方法和抑制高次浪形的轧辊

Publications (1)

Publication Number Publication Date
WO2006024211A1 true WO2006024211A1 (fr) 2006-03-09

Family

ID=35999693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000982 WO2006024211A1 (fr) 2004-08-30 2005-07-04 Procede pour produire un profile de rouleau et rouleau pour supprimer une forme d'onde de poids fort

Country Status (5)

Country Link
JP (1) JP2008511444A (fr)
CN (1) CN100333845C (fr)
AT (1) AT503606B1 (fr)
DE (1) DE112005002080C5 (fr)
WO (1) WO2006024211A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699040A (zh) * 2012-06-06 2012-10-03 北京科技大学 一种辊缝凸度随板带宽度线性变化的辊形设计方法
CN112170501A (zh) * 2020-09-16 2021-01-05 太原理工大学 一种轧辊磨损凸度和热凸度的预测方法
CN114951300A (zh) * 2022-04-24 2022-08-30 北京科技大学 一种高强度板带断面轮廓和高次浪形协同控制的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544848C (zh) * 2008-05-22 2009-09-30 攀钢集团攀枝花钢铁研究院有限公司 控制hc/hcw/uc/ucmw轧机辊间接触压力峰值的方法及轧辊
DE102010014867A1 (de) * 2009-04-17 2010-11-18 Sms Siemag Ag Verfahren zum Bereitstellen mindestens einer Arbeitswalze zum Walzen eines Walzguts
CN101637782B (zh) * 2009-09-08 2012-03-14 攀钢集团钢铁钒钛股份有限公司 Hc轧机冷轧电工钢边部减薄控制方法
CN102527727B (zh) * 2012-01-13 2014-04-16 燕山大学 一种可柔性调节辊型曲线的轧辊
DE102012212532B4 (de) * 2012-07-18 2016-12-15 Achenbach Buschhütten GmbH & Co. KG Walzgerüst mit konturierten Walzen
CN104722585A (zh) * 2015-03-13 2015-06-24 李慧峰 板带轧机不对称板形的补偿方法
CN105798253B (zh) * 2016-06-06 2017-08-04 重庆大学 一种异型坯连铸二冷辊缝调整方法
CN108435797B (zh) * 2018-03-19 2020-02-07 包头钢铁(集团)有限责任公司 轧辊表面曲线的确定方法和轧辊
CN112139254B (zh) * 2019-06-27 2022-09-09 上海梅山钢铁股份有限公司 一种减少精轧换规浪形的控制方法
CN114632820B (zh) * 2022-03-04 2023-11-10 南京工程学院 冷轧用工作辊辊形设计方法及超薄铝箔冷轧板形控制方法
CN114700368B (zh) * 2022-03-07 2023-05-05 北京科技大学 一种消除板带局部高点的工作辊辊形及设计方法
CN116159869B (zh) * 2023-01-04 2023-08-25 北京科技大学 具有局部边浪控制能力的变凸度工作辊辊形及设计方法
CN117574582B (zh) * 2024-01-16 2024-04-19 东北大学 热轧用高次曲线融合正弦函数的支撑辊辊形设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2044910U (zh) * 1989-03-14 1989-09-27 北京科技大学 轧辊
JPH07148512A (ja) * 1993-11-26 1995-06-13 Kobe Steel Ltd 圧延方法
JPH0938705A (ja) * 1995-07-28 1997-02-10 Kobe Steel Ltd ワークロール移動式圧延機
JP2000015308A (ja) * 1998-07-08 2000-01-18 Nippon Steel Corp 圧延方法
JP2003326308A (ja) * 2002-05-13 2003-11-18 Jfe Steel Kk 圧延方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712043C2 (de) * 1987-04-09 1995-04-13 Schloemann Siemag Ag Walzgerüst mit axial verschiebbaren Walzen
EP0401685B2 (fr) * 1989-06-05 2000-03-08 Kawasaki Steel Corporation Cage de laminoir à rouleaux multiples
JP3348503B2 (ja) * 1994-02-25 2002-11-20 石川島播磨重工業株式会社 圧延機用のワークロールとロールシフト式圧延機
US6119500A (en) * 1999-05-20 2000-09-19 Danieli Corporation Inverse symmetrical variable crown roll and associated method
US6158260A (en) * 1999-09-15 2000-12-12 Danieli Technology, Inc. Universal roll crossing system
DE10039035A1 (de) * 2000-08-10 2002-02-21 Sms Demag Ag Walzgerüst mit einem CVC-Walzenpaar
DE10041181A1 (de) * 2000-08-18 2002-05-16 Betr Forsch Inst Angew Forsch Mehrgrößen-Planheitsregelungssystem
US6314776B1 (en) * 2000-10-03 2001-11-13 Alcoa Inc. Sixth order actuator and mill set-up system for rolling mill profile and flatness control
AT410765B (de) * 2001-09-12 2003-07-25 Voest Alpine Ind Anlagen Walzgerüst zur herstellung von walzband
JP3786065B2 (ja) * 2002-09-05 2006-06-14 石川島播磨重工業株式会社 圧延ロール及びそれを用いる圧延機
DE102004020132A1 (de) * 2003-12-23 2005-07-28 Sms Demag Ag Verfahren und Walzgerüst zur mehrfachen Profilbeeinflussung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2044910U (zh) * 1989-03-14 1989-09-27 北京科技大学 轧辊
JPH07148512A (ja) * 1993-11-26 1995-06-13 Kobe Steel Ltd 圧延方法
JPH0938705A (ja) * 1995-07-28 1997-02-10 Kobe Steel Ltd ワークロール移動式圧延機
JP2000015308A (ja) * 1998-07-08 2000-01-18 Nippon Steel Corp 圧延方法
JP2003326308A (ja) * 2002-05-13 2003-11-18 Jfe Steel Kk 圧延方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699040A (zh) * 2012-06-06 2012-10-03 北京科技大学 一种辊缝凸度随板带宽度线性变化的辊形设计方法
CN112170501A (zh) * 2020-09-16 2021-01-05 太原理工大学 一种轧辊磨损凸度和热凸度的预测方法
CN114951300A (zh) * 2022-04-24 2022-08-30 北京科技大学 一种高强度板带断面轮廓和高次浪形协同控制的方法

Also Published As

Publication number Publication date
DE112005002080B4 (de) 2009-04-09
CN100333845C (zh) 2007-08-29
JP2008511444A (ja) 2008-04-17
CN1743090A (zh) 2006-03-08
AT503606A1 (de) 2007-11-15
DE112005002080C5 (de) 2016-05-25
DE112005002080T5 (de) 2007-07-12
AT503606B1 (de) 2008-02-15

Similar Documents

Publication Publication Date Title
WO2006024211A1 (fr) Procede pour produire un profile de rouleau et rouleau pour supprimer une forme d'onde de poids fort
WO2006099817A1 (fr) Galet servant a la fois a faconner une tole et a assurer le cylindrage standard libre
CN108405630B (zh) 一种带钢板形的控制方法及装置
CN107457273A (zh) 热连轧精轧机的板形控制方法及热连轧精轧机
JP4645950B2 (ja) ロールシフト圧延機
JP4960009B2 (ja) 圧延ロール、圧延機および圧延方法
CN114700368B (zh) 一种消除板带局部高点的工作辊辊形及设计方法
CN1062495C (zh) 一种轴向移动改变辊缝凸度并可变辊缝形状的轧辊辊型
JP2008504128A (ja) ロールスタンドにおいてストリップを圧延するための方法
KR101146928B1 (ko) 프로파일에 미치는 영향을 증대시키는 방법 및 그를 위한롤 스탠드
KR101030942B1 (ko) 가변성 중심 거리를 갖는 롤러 레벨러
CN211027521U (zh) 一种自适应带钢宽度变化的支撑辊
JPH069686B2 (ja) 多ロ−ル圧延スタンド
JPH0275403A (ja) 冷間圧延法と圧延ロール
KR101187363B1 (ko) 변위 전략을 스트립 폭의 함수로서 최적화시키는 방법 및그를 위한 압연기
JPH0696161B2 (ja) 形材のウエブ厚み圧下用ロール
CN116159869B (zh) 具有局部边浪控制能力的变凸度工作辊辊形及设计方法
JPH091203A (ja) 形鋼の圧延装置およびその装置を用いた形鋼の圧延方法
RU2042450C1 (ru) Способ изготовления несимметричных поверхностей двойной кривизны
JP2000102806A (ja) 圧延機
JPS62282710A (ja) 圧延方法
JPS639884B2 (fr)
CN117139375A (zh) 一种改善板带同板差的变凸度工作辊及其辊形设计方法
CN117574582A (zh) 热轧用高次曲线融合正弦函数的支撑辊辊形及其设计方法
CN114951300A (zh) 一种高强度板带断面轮廓和高次浪形协同控制的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050020800

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 93442005

Country of ref document: AT

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A9344/2005

Country of ref document: AT

RET De translation (de og part 6b)

Ref document number: 112005002080

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 05759547

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607