WO2006019133A1 - 有機積層膜を形成するための塗液、電界効果トランジスタの製造方法、および電界効果トランジスタ - Google Patents

有機積層膜を形成するための塗液、電界効果トランジスタの製造方法、および電界効果トランジスタ Download PDF

Info

Publication number
WO2006019133A1
WO2006019133A1 PCT/JP2005/015063 JP2005015063W WO2006019133A1 WO 2006019133 A1 WO2006019133 A1 WO 2006019133A1 JP 2005015063 W JP2005015063 W JP 2005015063W WO 2006019133 A1 WO2006019133 A1 WO 2006019133A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic molecule
layer
coating liquid
molecule
Prior art date
Application number
PCT/JP2005/015063
Other languages
English (en)
French (fr)
Inventor
Tohru Nakagawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/599,096 priority Critical patent/US7560301B2/en
Priority to EP05772679.6A priority patent/EP1737027B1/en
Priority to JP2006531849A priority patent/JP4167287B2/ja
Publication of WO2006019133A1 publication Critical patent/WO2006019133A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/478Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a layer of composite material comprising interpenetrating or embedded materials, e.g. TiO2 particles in a polymer matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene

Definitions

  • the present invention relates to a coating liquid for forming a laminated film of an organic semiconductor layer and an organic insulating layer, a method for producing a field effect transistor using the same, and a field effect transistor.
  • a field effect transistor (hereinafter sometimes referred to as “FET”) is an electronic element that controls a current value flowing between a source electrode and a drain electrode by a voltage of a gate electrode.
  • an FET in which both a gate insulating layer and a semiconductor layer that is adjacent to the gate insulating layer and functions as a channel region are formed of an organic material may be referred to as an organic field effect transistor.
  • a thin film of organic material can be formed on a substrate near room temperature and has mechanical flexibility. For this reason, organic FETs can be formed on soft plastic substrates that do not have heat resistance, and are expected as core components for next-generation portable information devices.
  • Methods for forming an organic thin film on a substrate include a vacuum deposition method and a solution coating method. Since the solution coating method can form organic thin films under atmospheric pressure, organic field-effect transistors (hereinafter sometimes referred to as “organic FETs”) are manufactured at lower costs compared to vacuum deposition methods using vacuum equipment. It is expected to be able to.
  • organic FETs organic field-effect transistors
  • Examples of conventional techniques for forming an organic semiconductor layer (and an organic insulating layer) by a solution coating method include the following three methods.
  • Japanese Patent Publication No. 2003-518754 discloses a method of forming the first layer using an organic material that does not dissolve in the second solution.
  • a semiconductor film is formed by applying xylene or a chloroform solution in which polyalkylthiophene is dissolved to a base material, and then a propyl alcohol solution in which polyvinyl phenol is dissolved is formed on the film. By applying, a semiconductor layer and an insulating layer are formed.
  • Japanese Patent Application Laid-Open No. 2003-258260 proposes a method of forming a gate electrode made of tantalum, aluminum, titanium, niobium, etc. and then anodizing the electrode to form a dense and thin insulating film. Has been. An organic semiconductor layer is formed on the insulating film.
  • the gate insulating film is formed by anodizing the gate electrode. Therefore, dust can adhere to the gate insulating film in this step. There is sex.
  • an object of the present invention is to provide a coating liquid that can easily produce a laminated film of an organic insulating layer and an organic semiconductor layer.
  • Another object of the present invention is to provide a field effect transistor including an organic insulating layer and an organic semiconductor layer, and a method for manufacturing the field effect transistor.
  • the coating liquid of the present invention is a coating liquid containing a solvent and first and second organic molecules dissolved in the solvent, wherein the first organic molecule is a semiconductor material or a semiconductor material.
  • the second organic molecule is an insulator material or an insulator material precursor, and the first organic molecule and the second organic molecule are not compatible with each other.
  • the method of the present invention for producing a field effect transistor comprising an organic semiconductor layer and an organic insulating layer adjacent to the organic semiconductor layer includes:
  • the first organic molecule is a semiconductor material or a precursor of a semiconductor material
  • the second organic molecule is an insulator material or a precursor of an insulator material
  • the first organic molecule and the second precursor are not compatible with each other.
  • the "main component” means a component having a content of 80% by weight or more.
  • the field effect transistor manufactured by the above manufacturing method is a field effect transistor of the present invention. Constitutes one side of the data.
  • the field effect transistor of the present invention is a field effect transistor including an organic semiconductor layer and an organic insulating layer adjacent to the organic semiconductor layer, wherein the organic semiconductor layer is a semiconductor material.
  • the first organic molecule as a main component, and the organic insulating layer is a second organic molecule as a main component, which is an insulator material, and the organic semiconductor layer and the organic insulating layer.
  • the ratio of the first organic molecule gradually decreases toward the outer surface of the organic insulating layer from the interface with the layer, and the interface between the organic semiconductor layer and the organic insulating layer is reduced.
  • the ratio of the second organic molecule gradually decreases, and the first organic molecule and the second organic molecule are not compatible with each other. . Note that “decreasing gradually” means decreasing without increasing.
  • the gate insulating layer and the semiconductor layer can be formed at the same time, an organic FET can be manufactured at low cost with few steps.
  • the semiconductor layer and the gate insulating layer exist in the continuous organic thin film, it is possible to realize high carrier mobility with few impurity levels for trapping carriers. .
  • FIG. 1A is a cross-sectional view schematically showing an example of one step in the method for forming a laminated film with the coating liquid of the present invention.
  • FIG. 1B is a cross-sectional view schematically showing an example of a process following FIG. 1A.
  • FIG. 1C is a cross-sectional view schematically showing an example of a process following FIG. 1B.
  • FIG. 2A is a cross-sectional view showing an example of the structure of a field effect transistor.
  • FIG. 2B is a cross-sectional view showing the structure of another example of the field effect transistor.
  • FIG. 3 is a diagram showing the structure of poly (3-perfluorooctylthiophene).
  • FIG. 4 is a diagram showing an example of SIMS measurement of a film prepared with the coating liquid of the present invention.
  • FIG. 5 is a diagram showing an example of SIMS measurement of a film produced by a conventional method.
  • FIG. 6 is a diagram showing a state in which sulfier perfluorooctaneamide-added pentacene is converted to pentacene by heat treatment.
  • the coating liquid of the present invention contains a solvent and first and second organic molecules dissolved in the solvent.
  • the first organic molecule is a semiconductor material or a precursor of the semiconductor material.
  • the second organic molecule is an insulator material or a precursor to the insulator material.
  • the first organic molecule and the second organic molecule are not compatible with each other. According to this coating solution, a laminated film of an organic semiconductor layer and an organic insulating layer can be formed.
  • the precursor of the semiconductor material or the precursor of the insulator material refers to a material that becomes a semiconductor material or an insulator material by heat treatment, baking, light irradiation, chemical treatment, or the like.
  • incompatible means that two types of organic molecules try to separate without being mixed with each other.
  • not compatible means that even when the first organic molecule and the second organic molecule are mixed together, the organic molecules do not mix at the molecular level, and the first organic molecule does not mix with time. Separation into an aggregate of one organic molecule and an aggregate of a second organic molecule.
  • the compatibility can be defined thermodynamically. That is, when the following formula (1) holds, it can be defined that the first organic molecule and the second organic molecule are not compatible.
  • a G G- (nl X gl + n2 X g2)> 0 (1)
  • gl and g2 are Gibbs free energies per mole of the first and second organic molecules, respectively.
  • G is Gibbs' free energy in a hypothetical state in which nl moles of first organic molecules and n2 moles of second organic molecules are completely mixed.
  • a G is the change in Gibbs free energy before and after mixing.
  • R is the gas constant
  • T is the absolute temperature of the system
  • N nl + n2.
  • is equal to the amount of heat generated when the first organic molecule and the second organic molecule are mixed under a constant pressure. If heat is generated when mixing, ⁇ ⁇ is negative. If heat is absorbed, ⁇ ⁇ ⁇ ⁇ is positive. Therefore, in the case of two kinds of organic molecules that are both liquid, ⁇ ⁇ at the time of mixing can be easily obtained. Also, when the organic molecule is a polymer and is solid at normal temperature and pressure, but the monomer is liquid, the value of ⁇ can be approximated by the calorific value when the monomers of the respective organic molecules are mixed. Therefore, when the monomers of the first and second organic molecules are liquid, the compatibility of the first and second organic molecules can often be determined by comparing the compatibility of the monomers.
  • the monomer of the first organic molecule and the monomer of the second organic molecule are both liquid, it is simply determined without using Equation (2) whether or not they are compatible. It is also possible to do this. First, the first organic molecule monomer and the second organic molecule monomer, which have been weighed in advance, are placed in a separating funnel and mixed by stirring for a certain period of time, and then allowed to stand for a certain period of time. If the mixture after standing is divided into two upper and lower layers, the two monomers may not be compatible with each other.
  • each of the two separated liquids is carefully transferred to separate containers and the weight of each liquid is measured.
  • the initial weight of the lower density monomer and the weight of the upper layer liquid, and the initial weight of the higher density monomer and the lower layer Compare the weight of each liquid. When these weights are almost equal, it can be said that there is no compatibility between the monomer of the first organic molecule and the monomer of the second organic molecule.
  • the present inventor has developed a laminated film in which the first organic molecule and the second organic molecule are separated into respective layers by applying the coating liquid onto a substrate and removing the solvent. Can be formed at once I found out.
  • this coating solution is used, the gate insulating layer and the semiconductor layer of the organic FET can be formed simultaneously by a single solution application. Therefore, by using this coating liquid, it is possible to prevent dust from adhering to the interface between the gate insulating layer and the semiconductor layer.
  • Nonpolar groups include, for example, hydrocarbon groups ((CH 2), n is a natural number, for example, a natural number of 3 to 20), and fluorocarbon groups ((CF
  • N is a natural number, for example, a natural number of 3 to 10).
  • one of the first organic molecule and the second organic molecule may contain at least one group selected from a hydrocarbon group and a fluorocarbon group force.
  • the organic molecule may contain at least one polar group.
  • the hydrocarbon group include an alkyl group having about 3 to 20 carbon atoms
  • examples of the fluorocarbon group include a perfluoroalkyl group having about 3 to 10 carbon atoms.
  • it is preferable that the one organic molecule does not contain a polar group.
  • the polar group of the other organic molecule may be at least one group selected from a hydroxyl group, a carboxyl group and an amino group.
  • the group contained in the organic molecule may be a side chain of the organic molecule or a part of the main chain.
  • one of the first organic molecule and the second organic molecule contains a hydrocarbon group and does not contain a fluorocarbon group, and the other organic molecule does not contain a fluorocarbon group.
  • the hydrocarbon group include alkyl groups having about 3 to 20 carbon atoms
  • examples of the fluorocarbon group include perfluoroalkyl groups having about 3 to about L0 carbon atoms.
  • the first organic molecule (semiconductor material) containing a hydrocarbon group includes, for example, a polythiophene derivative containing a hydrocarbon group, and specifically includes poly (3-alkylthiophene), poly (thiophene), and polythiophene derivatives. (9,9-dialkylfluorene-kobithiophene).
  • the first organic molecule (semiconductor material) containing a fluorocarbon group includes, for example, a polythiophene derivative containing a fluorocarbon group, and specifically, a poly (3-fluoroalkylthiophene). ).
  • a polycyclic aromatic compound provided with a functional group that increases solubility in a solution may be used as the first organic molecule.
  • Polycyclic aromatic compounds to which a sulfieramide group is added do not have semiconductor properties. However, when heat treatment is performed at a temperature of 100 ° C or higher after film formation, the sulfiferacetamide group is eliminated by the Diels-Alder reverse reaction, and a polycyclic aromatic molecule having semiconductor characteristics is formed. .
  • examples of the second organic molecule (insulator material) containing a hydrocarbon group include hydrocarbon-based resin, and specifically, polystyrene, polyethylene, polybutadiene, and the like.
  • examples of the second organic molecule (insulator material) containing a fluorocarbon group include a fluorocarbon-based resin, and specifically, polytetrafluoroethylene and the like.
  • the first organic molecule may be a polythiophene derivative! /.
  • the second organic molecule may be polystyrene.
  • the first organic molecule may be a pentacene derivative.
  • the second organic molecule may be polystyrene.
  • the solvent of the coating solution a solvent capable of dissolving both the first organic molecule and the second organic molecule is used.
  • a solvent having the characteristics of these two types of organic molecules can be used as the solvent.
  • one of the first organic molecule and the second organic molecule is a nonpolar molecule and the other is a polar molecule, for example, chloroform, higher alcohol, acetone, and tetrahydrofuran can be used as the solvent.
  • both the first organic molecule and the second organic molecule are nonpolar molecules, for example, black mouth form, higher alcohol, jetyl ether, and tetrahydrofuran can be used.
  • Examples of preferable combinations of the first organic molecule Z and the second organic molecule Z solvent include, for example, the above-described polythiophene derivative Z-polystyrene Z-chloroform, the above-described pentacene derivative z-polystyrene Z-chromoform, Polythiophene derivatives Z polystyrene Z tetrahydrofuran, pentacene derivatives Z polystyrene Z tetrahydrofuran.
  • the coating liquid of the present invention includes a solvent and organic molecules A and B dissolved in the solvent.
  • the organic molecule A is a semiconductor material or a precursor of a semiconductor material.
  • Organic molecule B is an insulator material or a precursor of an insulator material.
  • This coating liquid is a liquid that separates into a first layer mainly composed of organic molecules A and a second layer mainly composed of organic molecules B when the solvent is removed by natural drying, for example. .
  • the content of organic molecule A in the first layer is 50% by weight or more (preferably 60% by weight or more) in the vicinity of the interface between the first layer and the second layer, and is outside the first layer. It increases toward the surface.
  • the organic molecule A content in the vicinity of the surface of the first layer farther from the second layer is, for example, 90% by weight or more (preferably 95% by weight or more).
  • the organic molecule B content in the second layer is 50% by weight or more (preferably 60% by weight or more) in the vicinity of the interface between the first layer and the second layer, and the second layer Increases towards the outer surface of the.
  • the organic molecule B content in the vicinity of the surface of the second layer farther from the first layer is, for example, 90% by weight or more (preferably 95% by weight or more).
  • the organic molecule A the organic molecule exemplified as the first organic molecule can be used.
  • the organic molecule B includes a second organic molecule and The organic molecules exemplified above can be used.
  • the vicinity of the interface means the lOnm region from the interface
  • the vicinity of the surface means the lOnm region from the surface.
  • FIG. 1 schematically shows a method for producing a laminated film of an organic semiconductor layer and an organic insulating layer using the coating liquid of the present invention.
  • a coating liquid 20 containing a solvent 13 and first and second organic molecules 11 and 12 dissolved in the solvent 13 is applied (step (i)).
  • the coating liquid 20 is applied on the substrate 10.
  • it may be applied on the substrate on which the gate electrode is formed.
  • spin coating method, dipping method, ink jet method, screen printing method, brush coating method, roll coater method, and doctor blade method can be used for coating.
  • the coating liquid 20 includes a first organic molecule 11, a second organic molecule 12, and a solvent 13.
  • first organic molecule 11, the second organic molecule 12, and the solvent 13, those described above are used.
  • the first organic molecule 11 and the second organic molecule 12 are not compatible, but both are soluble in the solvent 13. In the solvent 13, the first organic molecule 11 and the second organic molecule 12 are freely mixed.
  • the first layer 14 mainly composed of the first organic molecule 11 and the first layer 14 are adjacent to the first layer 14.
  • a second layer 15 mainly composed of two organic molecules 12 is formed (step (ii)).
  • the method for removing the solvent 13 is not limited. For example, natural drying, drying by heating, or drying by reduced pressure may be used.
  • FIG. 1B shows a state in which a part of the solvent 13 has volatilized over time.
  • the concentration of the first organic molecule 11 and the second organic molecule 12 increases, and the distance between the first organic molecule 11 and the second organic molecule 12 decreases accordingly.
  • the first organic molecule 11 and the second organic molecule 12 are gathered separately from each other, rather than being freely mixed, so that the free energy of the whole solution becomes smaller. Therefore, as shown in FIG. 1B, the same kind of organic molecules are gathered in various places of the coating liquid 20.
  • the first organic molecules 11 and the second organic molecules 11 and 2 The organic molecules 12 form a first layer 14 and a second layer 15, respectively.
  • the coating liquid of the present invention by using the coating liquid of the present invention, the insulating layer and the semiconductor layer can be formed simultaneously. Therefore, compared to the case where each layer is formed individually by the conventional method, the number of steps can be reduced when the coating liquid of the present invention is used, and dirt is attached to the interface between the insulating layer and the semiconductor layer. Can be suppressed.
  • the first organic molecule may be a semiconductor material! /, Or may be a precursor of the semiconductor material.
  • the first organic molecule is a precursor of a semiconductor material
  • a first layer containing a precursor of the semiconductor material as a main component is formed on the substrate.
  • the precursor (first organic molecule) in this layer is treated to make the first layer an organic semiconductor layer.
  • the semiconductor layer is formed by subjecting the first organic molecule to at least one treatment selected from heat treatment, firing, light irradiation, and chemical treatment power.
  • the second organic molecule may be a precursor of an insulator material. Also in this case, after forming the second layer containing the second organic molecule as a main component, the second organic molecule in the layer is processed to make the second layer an organic insulating layer.
  • the insulating layer is formed by subjecting the second organic molecule to at least one treatment selected from heat treatment, baking, light irradiation, and chemical treatment ability.
  • FIG. 1 shows a case where the second organic molecule 12 is deposited in the vicinity of the substrate 10 and the first organic molecule 11 is deposited far from the substrate 10 as an example.
  • the first organic molecule 11 may be deposited near the substrate 10 and the second organic molecule 12 may be deposited thereon.
  • Which of the two types of organic molecules is arranged on the substrate side depends on the first and second organic molecules, the substrate, and the atmosphere to which the substrate is exposed. There is no general rule for deriving how two organic molecules separate, but it can be expected to some extent depending on the polarity of the organic molecules and the substrate and the working environment in which the coating solution is applied. That is, those with polarity can easily gather together, and those without polarity can easily gather together.
  • the atmosphere is considered to be non-polar.
  • the first organic molecule is a non-polar molecule
  • the second organic molecule is a polar molecule
  • the substrate surface has polarity
  • the coating liquid of the present invention is applied in an air atmosphere.
  • the second organic molecule and the base material are both polar
  • the second organic molecule is likely to be placed near the substrate.
  • the first organic molecule and the air atmosphere are both nonpolar, the first organic molecule can be easily placed in contact with the air. Therefore, under the above assumptions, the second organic molecules are easily arranged near the substrate, and the first organic molecules are easily arranged far from the substrate.
  • the FET of the present invention includes an organic semiconductor layer and an organic insulating layer adjacent to the organic semiconductor layer. At least a part of the organic semiconductor layer functions as a channel region.
  • the source electrode and the drain electrode are disposed in contact with the organic semiconductor layer.
  • the organic semiconductor layer and the organic insulating layer are layers formed by the coating liquid described above.
  • the organic semiconductor layer is a layer mainly composed of the first organic molecule that is an organic semiconductor material (preferably 95% by weight or more), and the organic insulating layer is a second organic molecule that is an insulator material. Is a layer having a main component (preferably 95% by weight or more).
  • the interfacial force between the organic semiconductor layer and the organic insulating layer is also directed toward the outer surface of the organic insulating layer, and the proportion of the first organic molecule gradually decreases.
  • the ratio of the second organic molecule gradually decreases from the interface between the organic semiconductor layer and the organic insulating layer toward the outer surface of the organic semiconductor layer.
  • the content of the first organic molecule in the organic semiconductor layer is 50 wt% or more (preferably 60 wt% or more) near the interface between the organic semiconductor layer and the organic insulating layer. It is preferred that it is 95% by weight or more in the vicinity of the outer surface.
  • the content of the second organic molecule in the organic insulating layer is 50% by weight or more (preferably 60% by weight or more) in the vicinity of the interface between the organic semiconductor layer and the organic insulating layer, and in the vicinity of the outer surface of the organic insulating layer. It is preferably 95% by weight or more.
  • the vicinity of the interface means a region of lOnm from the interface
  • the vicinity of the surface means a region of lOnm from the surface.
  • the organic semiconductor layer exhibits properties as an organic semiconductor layer.
  • the organic semiconductor layer exhibits properties as an organic semiconductor layer.
  • a small amount of organic semiconductor material is contained in the organic insulating layer, it exhibits properties as an organic insulating layer.
  • the concentration change of the constituent molecules in the direction from the interface between the semiconductor layer and the insulating layer toward the semiconductor layer was produced by coating the semiconductor layer and the insulating layer separately. If compared to Be calm.
  • the carrier trap density in a region where the element concentration change is slow or strong is smaller than that in a region where the concentration change is steep. Therefore, the trap state density at the interface between the semiconductor layer and the insulating layer of the FET of the present invention is smaller than that produced by separately applying the semiconductor layer and the insulating layer, and the carrier mobility of the FET is also improved. To do.
  • the FET of the present invention is not limited to other components as long as the organic semiconductor layer and the organic insulating layer are those described above.
  • the FET of the present invention may be a bottom gate type FET or a top gate type FET.
  • a top gate type FET can be configured.
  • a bottom gate type FET can be configured.
  • FIG. 2A An example of a bottom gate type FET is shown in FIG. 2A, and an example of a top gate type FET is shown in FIG. 2B.
  • the FET 20a in FIG. 2A and the FET 20b in FIG. 2B each include a substrate 21, a gate electrode 22, an organic insulating layer 23, an organic semiconductor layer 24, a source electrode 25, and a drain electrode 26.
  • the gate electrode 22 is formed on the substrate 21.
  • the organic insulating layer 23 is formed so as to cover the gate electrode 22.
  • the organic semiconductor layer 24 is stacked on the organic insulating layer 23.
  • the source electrode 25 and the drain electrode 26 are formed on the organic semiconductor layer 24.
  • a source electrode 25 and a drain electrode 26 are formed on the substrate 21.
  • the organic semiconductor layer 24 is formed so as to cover the source electrode 25 and the drain electrode 26.
  • the organic insulating layer 23 is stacked on the organic semiconductor layer 24.
  • the gate electrode 22 is formed on the organic insulating layer 23.
  • the organic insulating layer 23 and the organic semiconductor layer 24 are formed using the coating liquid of the present invention.
  • members used in known organic FETs can be applied.
  • the method of the present invention for manufacturing a field effect transistor is the above-described method for manufacturing a laminated film of an organic semiconductor layer and an organic insulating layer (that is, the above manufacturing method including steps (i) and (ii) )including.
  • the organic FET manufactured by this manufacturing method is one of the FETs of the present invention. It is.
  • Example 1 an example in which a polythiophene derivative (poly (3-perfluorooctylthiophene)) is used as the first organic molecule and polystyrene is used as the second organic molecule will be described.
  • Poly (3-perfluorooctylthiophene) shown in Fig. 3 synthesizes 3-perfluorooctylthiophene, and uses this as a starting material to synthesize 2,5-dibu-mouthed 3-perfluorooctylthiophene.
  • the synthesis method of 3-perfluorooctylthiophene, 2,5 jib mouth mouth 3 perfluorooctylthiophene, and poly (3-perfluorooctylthiophene) is shown in this order.
  • the unfiltered solid is placed in a Soxhlet extractor, and the monomers and salts are extracted with methanol, then the catalyst and oligomers are extracted with hexane, and finally the poly (3- Perfluorooctylthiophene) was extracted.
  • the solvent was removed from the extracted chloroform solution by an evaporator to obtain solid poly (3-perfluorooctylthiophene).
  • the coating solution was prepared using poly (3-perfluorooctylthiophene) as the first organic molecule, which is a semiconductor material, and polystyrene as the second organic molecule, which is an insulator material.
  • 3-Perfluorooctylthiophene (3-perfluorooctylthiophene) monomer 2.
  • OOg and polystyrene monomer styrene (4.00 g) were placed in a separatory funnel and stirred for 1 hour. Let stand for hours. After standing, the solution in the separatory funnel was separated into two layers. The specific gravity of 3-perfluorooctylthiophene is greater than that of styrene. Therefore, it can be assumed that the lower layer of the separated liquid is 3-perfluorooctylthiophene and the upper layer is styrene. These two liquids were carefully separated and weighed for each.
  • the liquid weight of the upper layer was 4.00 g, and the liquid weight of the lower layer was 2.00 g. Since the weight of the upper and lower liquids is equal to that of styrene and 3-perfluorooctylthiophene before mixing, it can be assumed that these two liquids are not compatible. Therefore, it can be assumed that there is no compatibility between poly (3-perfluorooctylthiophene), which is a liquid polymer, and polystyrene.
  • the poly (3 perfluorooctyl thiol off) was prepared so that the polystyrene was 3 wt%.
  • the two materials and tetrahydrofuran were mixed so that the water content was 3 wt%, and the mixture was stirred for 1 hour to prepare the coating liquid (C1) of Example 1.
  • the coating liquid (C1) was a transparent and uniform liquid. From this, it was confirmed that both polystyrene and poly (3-perfluorooctylthiophene) were dissolved in tetrahydrofuran.
  • a chromium film having a thickness of lnm was formed on one side of a quartz glass substrate having a size of 50 mm square and a thickness of 0.5 mm, and a gold film having a thickness of lOOnm was formed thereon. These were formed by vacuum sputtering.
  • the coating solution (C1) was applied to this substrate by spin coating.
  • Spin coating was performed by dropping the coating liquid (C1) onto the substrate, rotating the substrate at 500 rpm for 5 seconds, and further rotating the substrate at 40 OOrpm for 30 seconds.
  • the substrate coated with the coating liquid (C1) was dried at room temperature of 25 ° C. for 1 hour.
  • a source electrode and a drain electrode having gold power were produced by vacuum electron beam evaporation using a shadow mask.
  • the gate length was 100 m and the gate width was 3 mm.
  • a polystyrene layer as a gate insulating layer and a poly (3-perfluorooctylthiophene) layer as a semiconductor layer were separately formed by a coating method to produce an organic FET.
  • a chromium film and a gold film were formed on a quartz substrate.
  • a black mouth form solution in which only 3 wt% of polystyrene was dissolved was spin-coated and then dried at room temperature of 25 ° C. for 1 hour.
  • a perfluorooctane solution in which only 3 wt% of poly (3-perfluorooctylthiophene) was dissolved was spin-coated and dried at room temperature of 25 ° C. for 1 hour. Since polystyrene does not dissolve in perfluorooctane, the phenomenon of mutual dissolution, in which the polystyrene film dissolves into the solution during the application of the semiconductor material, did not occur.
  • the spin coating conditions were the same as the spin coating conditions for the coating liquid (C1). Thereafter, a source electrode and a drain electrode were formed by using an electron beam evaporation method. In this way, a comparative FET was fabricated.
  • the concentration distribution in the depth direction of the fluorine element, carbon element, and gold element in the film is secondarily determined. Determined by ion mass spectrometry (SIMS). The concentration distribution in the depth direction was determined by repeating the operations of measuring the element concentration on the film surface, then shaving the film surface by a certain amount by argon sputtering, and measuring the element concentration again.
  • SIMS ion mass spectrometry
  • the depth at the time of measurement was determined from the sputtering rate of argon sputtering (the thickness of the film scraped off within a unit time).
  • the sputtering rate was calculated by the following method. First, the thickness of a single polystyrene film produced by spin coating was measured in advance with a film thickness meter, and then the time required to completely scrape the film under the same sputtering conditions as in SIMS measurement was measured. From the film thickness and the time required for sputtering, the thickness of the film that was scraped off by argon sputtering within a unit time was calculated. For the film of poly (3-perfluorooctylthiophene) alone, the sputtering rate was calculated by the same method.
  • FIG. 4 is a graph showing the SIMS measurement results of the laminated film prepared with the coating liquid (C1).
  • the horizontal axis of the graph represents the argon sputtering time
  • the vertical axis represents the concentrations of fluorine, carbon, and gold elements.
  • the element concentration on the vertical axis is normalized by the maximum value of each element. Since the amount of film scraped off by sputtering is proportional to the sputtering time, the sputtering time on the horizontal axis corresponds to the depth of the surface force of the film facing the inside of the film. Therefore, in the following description, for convenience, the surface of the film exposed by sputtering for t minutes is described as “depth for t”. As shown in Fig.
  • the concentration of each element increases or decreases abruptly as the sputtering time elapses in the range 31 (4 to 10 minutes) and range 32 (14 to 17 minutes) in Fig. 4. But otherwise it was constant.
  • the concentration of elemental fluorine decreased in range 31 to zero.
  • the elemental carbon concentration increased in range 31 and decreased to 0 in range 32.
  • the gold element concentration increased from 0 in the range 32 to a constant value.
  • the sputtering time values at which the concentration of fluorine element, carbon element, or gold element is half the maximum value are 6 minutes, 16 minutes, and 16 minutes, respectively. Minutes.
  • the fluorine element is derived from a constituent element of poly (3-perfluorooctylthiophene), and the carbon element is derived from a constituent element of both poly (3-perfluorooctylthiophene) and polystyrene.
  • Gold is derived from a gold electrode formed on a quartz glass substrate. Considering these facts, the composition in the film was estimated as follows. [0088] After 14 minutes of argon sputtering, the gold element was detected, and the carbon element decreased accordingly. Therefore, it can be assumed that the film was removed by argon sputtering and the gold electrode of the substrate appeared on the surface.
  • the concentration of gold and carbon elements did not change rapidly in a stepped manner with respect to changes in sputtering time.
  • the shape of the film surface becomes uneven due to sputtering, and the film exists on the substrate surface.
  • gold in the lower part appears on the surface in the concave portion of the film. Therefore, in this measurement, it is presumed that the formed film was completely removed by the sputtering in the half-life time of 16 minutes.
  • the film formed in the example exists between 0 to 16 minutes in FIG. From the change in the elemental concentration of fluorine, it can be inferred that most of poly (3-perfluorooctylthiophene) is present up to a depth of 6 minutes, which is the half-life, and does not exist thereafter. On the other hand, the concentration of carbon element is considered to increase after the half-life of 6 minutes. If polystyrene is present at a depth of up to 6 minutes, similar to poly (3-perfluorooctylthiophene), the carbon element concentration should decrease at depths of 6 minutes and thereafter. On the contrary, it increased.
  • the total thickness of the spin coat film is 170 nm, and the area from the film surface to a depth of about 50 ⁇ m. It was estimated that there was a poly (3-perfluorooctylthiophene) layer and a polystyrene layer in the region from a depth of around 50 nm to a depth of around 170 nm.
  • the transistor characteristics were measured using Semiconductor 1 Parameter 1 Analyzer 1 4155B (Semiconductor Parameter Analyzer 4155B) (Agilent Technology). Specifically, a voltage of 80 V is stored between the source electrode and the drain electrode, the gate voltage is changed in the range of 50 to 50 V, and the current value between the source and drain is proportional to the square of the gate voltage. Thus, the carrier mobility was derived using the following equation.
  • I Source-drain current.
  • V Gate voltage.
  • Mobility.
  • Dielectric constant of vacuum.
  • t thickness of the insulating layer.
  • the mobility of the fabricated organic FET was 0.02 cm 2 ZVs, and the ratio of the ON current to the OFF current between the source and drain was 10 5 .
  • FIG. 5 is a graph showing the SIMS measurement result of the spin coat film before forming the source / drain electrodes, as in FIG. 4, and shows the correlation between the sputtering time and the concentration of a predetermined element. .
  • the shape of the graph in Fig. 5 is almost the same as the graph in Fig. 4, and only the region 41 (sputtering time: 4 to 7 minutes) where the fluorine element concentration and carbon element concentration change rapidly is the same as the graph in Fig. 4. Different.
  • Range 41 in FIG. 5 was shorter than range 31 (4-10 minutes) in FIG. This indicates that the rate of change of the fluorine element concentration and the carbon element concentration in the film thickness direction in the film of FIG. 5 is larger than that of the film of FIG. This indicates that the boundary between the insulating layer and the semiconductor layer is clearer in the film of the comparative example formed by separately applying the gate insulating layer and the semiconductor layer than in the film of the example. Moreover, the mobility of the FET of the comparative example is 0.005 cm 2 ZVs, Compared with the case where the layer and the semiconductor layer were formed at the same time, it was lower.
  • the gate insulating layer and the semiconductor layer could be produced at the same time.
  • Example 2 an example will be described in which a pentacene derivative (sulfer perfluorooctane amide-added pentacene) is used as the first organic molecule and polystyrene is used as the second organic molecule.
  • Sulfier perfluorooctane amide-added pentacene is a precursor of semiconductor materials.
  • Pentacene with sulfinylperfluorooctaneamide was synthesized by reacting pentacene with sulfinylperfluorooctaneamide.
  • Sulfier perfluorooctanamide was synthesized by perfluorooctaneamide force. The synthesis methods of sulfur perfluorooctane amide and carofentacene with sulfier perfluorooctane amide are shown below in order.
  • the polarity of sulfaperfluorooctaneamide-attached pentacene should have the polarity of both sulfierperfluorooctaneamide and pentacene.
  • the polarity of polystyrene molecules can be approximated by the polarity of styrene.
  • pentacene does not dissolve in most organic solvents, it can be assumed that it does not dissolve in styrene.
  • these two compounds and black mouth form are placed in a container so that the amount of sulfur pentafluoroacetanamide-attached pentacene is 3 wt% and polystyrene is 3 wt%.
  • the coating liquid (C2) of Example 2 was produced.
  • the coating solution (C2) was a transparent solution, and the above two kinds of organic molecules were uniformly dissolved in the black mouth form.
  • An organic FET was produced in the same manner as in Example 1 except that the coating liquid (C2) was used instead of the coating liquid (C1).
  • the coating liquid (C2) forms a first layer that mainly has Sulfier perfluorooctaneamide addition pentacene force and a second layer that mainly has polystyrene force. It was.
  • the organic FET was heat-treated at 180 ° C for 2 minutes in a dry nitrogen atmosphere.
  • sulfinyl perfluorooctaneamide is desorbed from the pentacene with sulfierperfluorooctaneamide, and an organic semiconductor layer composed mainly of pentacene as a semiconductor material is formed.
  • Example 2 In the same manner as in Example 1, the element concentration change in the depth direction was measured for the spin coat film (organic semiconductor layer Z organic insulating layer) before producing the source-drain electrode. In addition, the characteristics of the prepared organic FET were evaluated.
  • the carrier mobility of the fabricated organic FET was 0.01 cm 2 / Vs, and the ratio of the ON current to the OFF current between the source and drain was 10 5 .
  • Example 3 an example will be described in which sulfinyl perfluorooctane amide-added pentacene described in Example 2 is used as the first organic molecule, and polybulal alcohol is used as the second organic molecule.
  • the coating liquid (C3) of Example 3 was prepared by dissolving in a solvent so that the S. fluorperfluorooctane amide addition pentacene force was S3wt% and the polybutyl alcohol was 3wt%.
  • As the solvent a mixed solvent of tetrahydrofuran and 2,2,2-trifluoroalcohol (1: 1 by volume) was used.
  • An organic FET was produced in the same manner as in Example 2 except that the coating liquid (C3) was used instead of the coating liquid (C2).
  • an organic FET of a comparative example was produced as follows. First, thin chrome on a quartz substrate A film and a gold thin film were formed. Next, a water / ethanol mixed solution (volume ratio of 1: 4) in which only 3 wt% of polyvinyl alcohol is dissolved is spin-coated, dried at room temperature (25 ° C) for 1 hour, A black mouth form solution in which only 3 wt% of pentacene with fluorooctaneamide was dissolved was spin-coated and dried at room temperature (25 ° C.) for 1 hour.
  • a polybulualcohol film (gate insulating layer) and a sulfur perfluorooctaneamide-added pentacene film (a layer to be a semiconductor layer) were sequentially formed by a solution coating method. Thereafter, a source electrode and a drain electrode were formed using an electron beam evaporation method.
  • SIMS measurement was performed even on a film in which a polybulualcohol layer and a sulfaperperfluorooctaneamide-coated pentacene layer were sequentially formed by a spin coating method. As a result, it was confirmed that even in the comparative film, a layer of sulfur perfluorinated octatanamide-added pentacene was laminated on the layer of polybutyl alcohol.
  • the black mouth form solution in which Sulfier perfluorooctane amide-added pentacene was dissolved was applied on the polybutyl alcohol layer, mutual dissolution did not occur. This can be presumed to be due to the inability to dissolve in the black mouth form solution because polybulual alcohol is water-soluble.
  • the carrier mobility of the organic FET produced using the coating liquid (C3) was 0.005 cm 2 ZVs, and the ratio of the ON current to the OFF current between the source and drain was 10 4 .
  • the mobility of the FET of the comparative example is 0.001 cm 2 / Vs, and the ratio of the ON current to the OFF current is 10 4 o
  • the carrier mobility of the organic FET of the present invention produced using the coating liquid (C3) was larger than the mobility of the organic FET of the comparative example. This is presumably because the interface order density force between the insulating layer and the semiconductor layer in the organic FET of the present invention is lower than the interface order density of the organic FET of the comparative example.
  • the interface order density between the insulating layer and the semiconductor layer can be kept low, and as a result, an organic FET having a high carrier mobility is produced. did it.
  • Example 4 an example in which the sulfinyl perfluorooctaneamide-added pentacene described in Example 2 is used as the first organic molecule and polyacetic acid bule is used as the second organic molecule will be described.
  • the coating liquid (C4) of Example 4 was prepared by dissolving in a solvent so that the S. fluorperfluorooctane amide addition pentacene force S3 wt% and polyvinyl acetate 3 wt%.
  • a solvent a mixed solvent of tetrahydrofuran and 2,2,2-trifluoroalcohol (volume ratio of 1: 1) was used.
  • An organic FET was produced in the same manner as in Example 2 except that the coating liquid (C4) was used instead of the coating liquid (C2).
  • SIMS measurement was performed on the film prepared using the coating liquid (C4). As a result, a layer of pentacene with sulfur perfluorooctanamide was formed on the polyacetate bur layer.
  • the mobility of the organic FET produced using the coating solution (C4) was 0.005 cm 2ZVs, and the ratio of the ON current to the OFF current between the source and drain was 10 4 .
  • Example 5 an example in which a pentacene derivative (6, 13 bis (perfluorooctyl) pentacene) is used as the first organic molecule and polystyrene is used as the second organic molecule will be described.
  • a pentacene derivative (6, 13 bis (perfluorooctyl) pentacene) is used as the first organic molecule and polystyrene is used as the second organic molecule
  • reaction solution was washed with pure water, dehydrated with sodium sulfate, and concentrated.
  • the concentrated solution was dissolved in toluene and purified by column chromatography.
  • silica Si Koji Gel C-200: Wako Pure Chemical Industries, Ltd.
  • toluene was used as a developing phase.
  • 6 13-bis (perfluorooctyl) pentacene was recrystallized using toluene.
  • a coating liquid (C5) was prepared using the obtained 6,13-bis (perfluorooctyl) pentacene. Specifically, a coating liquid (C5) was prepared by dissolving both in tetrahydrofuran so that 6,13-bis (perfluorooctyl) pentacene was 3 wt% and polystyrene was 3 wt%. A FET was prepared and evaluated in the same manner as in Example 1 except that the coating liquid (C5) was used. Also, as in Example 1, measure the change in the element concentration in the depth direction for the spin coat film (organic semiconductor layer Z organic insulating layer) before the source-drain electrode fabrication.
  • Example 6 an example in which a top gate type FET is manufactured will be described.
  • Cytop (trade name, manufactured by Asahi Glass Co., Ltd., A grade) having a polythiophene derivative (poly (3-octylthiophene)) as the first organic molecule and a fluoroalkyl chain as the second organic molecule. was used.
  • a chromium film having a thickness of lnm was formed on one side of a quartz glass substrate having a size of 50 mm square and a thickness of 0.5 mm, and a gold film having a thickness of lOOnm was formed thereon. These are vacuum sputtering methods Formed.
  • the metal film was patterned by a photolithography method to form a source electrode and a drain electrode.
  • the channel length was 100 m and the channel width was 3 mm.
  • the chromium film plays the role of bringing the gold film and the substrate into close contact.
  • the coating solution (C6) was applied to this substrate by spin coating as in Example 1.
  • the substrate coated with the coating liquid (C6) was dried at room temperature for 1 hour.
  • a gate electrode was formed at a position considering the arrangement of the source-drain electrodes.
  • the gate electrode was formed by evaporating gold by electron beam evaporation using a shadow mask. In this way, a top-gate organic FET was fabricated.
  • the change in element concentration in the depth direction was measured. As a result, it was found that there was a Cytop layer on the surface side of the film and a poly (3-octylthiophene) layer on the quartz substrate side.
  • the mobility of the fabricated organic FET is 0.005 cm 2 / Vs.
  • the ratio of ON current to OFF current was 10 4 .
  • the coating liquid was applied onto the substrate by spin coating, but the screen printing method, inkjet method, dipping method, brush coating method, roll coater method, doctor blade method, You can also apply the coating solution using other methods.
  • the coating liquid of the present invention can be used as a material for forming a laminated film in which an organic semiconductor layer and an organic insulating layer are laminated.
  • This coating solution is preferably used as a material for forming a semiconductor layer and an insulating layer of a field effect transistor.
  • the present invention can be used for a field effect transistor and an electronic device using the same, and is particularly preferably used for a field effect transistor formed on a flexible substrate such as plastic and an electronic device using the same.
  • Examples of the electronic apparatus to which the present invention is applied include an organic electoluminescence display, a liquid crystal display, and electronic paper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

 本発明の電界効果トランジスタの製造方法は、溶媒13と、溶媒13に溶解された第1および第2の有機分子11および12とを含む塗液20を塗布する工程と、塗布された塗液20中の溶媒13を除去することによって、第1の有機分子11を主成分とする第1の層と、第1の層に隣接し、第2の有機分子12を主成分とする第2の層とを形成する工程とを含む。第1の有機分子11は、半導体材料または半導体材料の前駆体であり、第2の有機分子12は、絶縁体材料または絶縁体材料の前駆体である。第1の有機分子11と第2の有機分子12とは互いに相溶性が無い。

Description

有機積層膜を形成するための塗液、電界効果トランジスタの製造方法、 および電界効果トランジスタ
技術分野
[0001] 本発明は、有機半導体層と有機絶縁層との積層膜を形成するための塗液、および それを用いた電界効果トランジスタの製造方法、ならびに電界効果トランジスタに関 する。
背景技術
[0002] 電界効果トランジスタ(Field Effect Transistor。以下、「FET」と記す場合があ る)は、ソース電極とドレイン電極との間を流れる電流値をゲート電極の電圧によって 制御する電子素子である。
[0003] 本明細書では、ゲート絶縁層と、ゲート絶縁層に隣接しチャネル領域として機能す る半導体層との両方が有機材料によって構成される FETを、有機電界効果トランジ スタという場合がある。有機材料の薄膜は室温付近で基板上に形成可能であり、また 機械的柔軟性もある。そのため、有機 FETは、耐熱性がなく柔らかいプラスチック基 板に形成することが可能であり、次世代の携帯情報機器用の基幹部品として期待さ れている。
[0004] 有機薄膜を基板上に形成する方法には、真空蒸着法と溶液塗布法とがある。溶液 塗布法は、常圧雰囲気下で有機薄膜を形成できるので、真空装置を用いる真空蒸 着法に比べて低コストで有機電界効果トランジスタ(以下、「有機 FET」と記す場合が ある)を作ることができるものと期待されている。
[0005] 現在までに、溶液塗布法を用いた様々な有機 FETが開発されて ヽるが、現時点に ぉ ヽて実用化されて ヽるものはまだ少な ヽ。溶液塗布法によって絶縁層と半導体層 とを形成する場合、有機絶縁体材料および有機半導体材料の一方が溶解された第 1の溶液を塗布し乾燥させて第 1の層を形成したのち、他方の材料が溶解された第 2 の溶液を第 1の層に塗布し乾燥させて第 2の層を形成する。このような溶液塗布法で は、相互溶解が生じる場合がある。 [0006] 相互溶解とは、第 1の層に第 2の溶液を塗布したときに、第 1の層が第 2の溶液中に 溶け出す現象をいう。一般に、有機絶縁体材料および有機半導体材料をよく溶かす 溶媒は似ているため、相互溶解を防止するためには、有機絶縁体材料、有機半導体 材料および溶媒の適切な組み合わせを選ぶ必要がある。
[0007] 溶液塗布法によって有機半導体層(および有機絶縁層)を形成する従来技術とし ては、たとえば以下の 3つが挙げられる。
[0008] 特公表 2003— 518754号公報(WO01Z047043)では、第 2の溶液へ溶解しな い有機材料を用いて第 1の層を形成する方法を開示している。特許文献 1では、例え ば、ポリアルキルチオフェンが溶解したキシレンまたはクロ口ホルム溶液を基材に塗 布して半導体膜を形成した後、この膜上に、ポリビニルフエノールが溶解したプロピ ルアルコール溶液を塗布することによって、半導体層と絶縁層とを形成して 、る。
[0009] 米国特許出願公開第 2003Z0136964号明細書では、通常は有機溶剤に溶解し にくい低分子半導体材料である多環式芳香族に極性基を付加して有機溶剤に溶け 易くし、これを用いて溶液塗布法で膜を形成する方法が提案されている。形成された 膜中の有機材料は、熱処理によって極性基が除去され、もとの多環式芳香族分子に 変換される。
[0010] 特開 2003— 258260号公報では、タンタル、アルミニウム、チタン、ニオブなどのゲ ート電極を形成した後、その電極を陽極酸化して緻密で薄!、絶縁膜を形成する方法 が提案されている。その絶縁膜の上に、有機半導体層が形成される。
[0011] FETでは、電荷 (電子およびホール)は、絶縁層と半導体層との界面近傍を流れる ので、その界面に存在する不純物準位が少ないほど FETの特性は向上する。不純 物準位発生の原因には、界面に存在する原子の未結合手 (ダングリングボンド)や結 晶構造の乱れ、絶縁層および半導体層を作る過程にぉ 、て界面に付着したゴミの存 在等がある。
[0012] 特公表 2003— 518754号公報(WO01Z047043)に記載された方法、および米 国特許出願公開第 2003Z0136964号明細書に記載された方法では、有機絶縁 体材料を含む溶液を塗布したのち乾燥させることによって絶縁層を形成し、その絶縁 層上に、有機半導体材料を含む溶液を塗布する。しかし、この方法では、溶液の乾 燥に時間が力かるので、その過程で絶縁層上にゴミが付着する恐れがある。
[0013] また、特開 2003— 258260号公報に記載された方法では、ゲート電極を陽極酸化 することによってゲート絶縁膜を形成しているので、この工程でゲート絶縁膜上にゴミ が付着する可能性がある。
[0014] また、上記従来の方法では、絶縁層と半導体層とを個別に形成する必要があるた め、工程の数が多力つた。
発明の開示
[0015] このような状況において、本発明は、有機絶縁層と有機半導体層との積層膜を簡 単に製造できる塗液を提供することを目的の 1つとする。また、本発明は、有機絶縁 層と有機半導体層とを含む電界効果トランジスタ、およびその製造方法を提供するこ とを目的の 1つとする。
[0016] 本発明の塗液は、溶媒と、前記溶媒に溶解された第 1および第 2の有機分子とを含 む塗液であって、前記第 1の有機分子が、半導体材料または半導体材料の前駆体 であり、前記第 2の有機分子が、絶縁体材料または絶縁体材料の前駆体であり、前 記第 1の有機分子と前記第 2の有機分子とは互いに相溶性が無い。
[0017] また、有機半導体層と前記有機半導体層に隣接する有機絶縁層とを含む電界効 果トランジスタを製造するための本発明の方法は、
(i)溶媒と、前記溶媒に溶解された第 1および第 2の有機分子とを含む塗液を塗布 する工程と、
(ii)塗布された前記塗液中の前記溶媒を除去することによって、前記第 1の有機分 子を主成分とする第 1の層と、第 1の層に隣接し、前記第 2の有機分子を主成分とす る第 2の層とを形成する工程とを含み、
前記第 1の有機分子が、半導体材料または半導体材料の前駆体であり、前記第 2 の有機分子が、絶縁体材料または絶縁体材料の前駆体であり、前記第 1の有機分子 と前記第 2の有機分子とは互いに相溶性が無 、。
[0018] なお、この明細書において「主成分」とは、含有率が 80重量%以上である成分を意 味する。
[0019] 上記製造方法で製造された電界効果トランジスタは、本発明の電界効果トランジス タの 1つの側面を構成する。
[0020] また、他の観点では、本発明の電界効果トランジスタは、有機半導体層と前記有機 半導体層に隣接する有機絶縁層とを含む電界効果トランジスタであって、前記有機 半導体層が、半導体材料である第 1の有機分子を主成分とする層であり、前記有機 絶縁層が、絶縁体材料である第 2の有機分子を主成分とする層であり、前記有機半 導体層と前記有機絶縁層との界面カゝら前記有機絶縁層の外側表面に向カゝつて、前 記第 1の有機分子の割合が徐々に減少しており、前記有機半導体層と前記有機絶 縁層との界面力も前記有機半導体層の外側表面に向力つて、前記第 2の有機分子 の割合が徐々に減少しており、前記第 1の有機分子と前記第 2の有機分子とは互い に相溶性が無い。なお、「徐々に減少している」とは、増加することなく減少することを 意味する。
[0021] 本発明によれば、ゲート絶縁層と半導体層とを同時に形成できるので、少ないステ ップで安価に有機 FETを製造できる。また、本発明によれば、ゲート絶縁層と半導体 層との界面にゴミなどが付着することを抑制できる。そのため、本発明によれば、高い 特性 (たとえば高 ヽ移動度)のトランジスタを形成できる。
[0022] また、本発明の電界効果トランジスタでは、連続した有機薄膜中に半導体層とゲー ト絶縁層とが存在するため、キャリアが捕捉される不純物準位が少なぐ高いキャリア 移動度を実現できる。
図面の簡単な説明
[0023] [図 1A]図 1Aは、本発明の塗液によって積層膜を形成する方法について、一工程の 一例を模式的に示す断面図である。
[図 1B]図 1Bは、図 1 Aに続く工程の一例を模式的に示す断面図である。
[図 1C]図 1Cは、図 1Bに続く工程の一例を模式的に示す断面図である。
[図 2A]図 2Aは、電界効果トランジスタの一例の構造を示す断面図である。
[図 2B]図 2Bは、電界効果トランジスタの他の一例の構造を示す断面図である。
[図 3]図 3は、ポリ(3—パーフルォロォクチルチオフェン)の構造を示す図である。
[図 4]図 4は、本発明の塗液で作製された膜の SIMS測定の一例を示す図である。
[図 5]図 5は、従来の方法で作製された膜の SIMS測定の一例を示す図である。 [図 6]図 6は、サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンが熱処理によつ てペンタセンに変換される様子を示す図である。
発明を実施するための最良の形態
[0024] 以下、本発明の実施の形態について説明する。
[0025] く塗液〉
本発明の塗液は、溶媒と、その溶媒に溶解された第 1および第 2の有機分子とを含 む。第 1の有機分子は、半導体材料または半導体材料の前駆体である。第 2の有機 分子は、絶縁体材料または絶縁体材料の前駆体である。第 1の有機分子と第 2の有 機分子とは互いに相溶性が無い。この塗液によれば、有機半導体層と有機絶縁層と の積層膜を形成できる。
[0026] 半導体材料の前駆体、または、絶縁体材料の前駆体とは、熱処理、焼成、光照射、 化学処理などの処理によって、半導体材料、または、絶縁体材料になるものをいう。
[0027] また、「相溶性が無い」とは、 2種類の有機分子が互いに混ざり合わずに分離しょう とすることを意味する。換言すれば、「相溶性が無い」とは、第 1の有機分子と第 2の 有機分子とを一緒に混ぜ合わせても、それぞれの有機分子が分子レベルで混合せ ず、時間の経過と共に第 1の有機分子の集合体と第 2の有機分子の集合体とに分離 することをいう。
[0028] なお、相溶性は、熱力学的に定義することが可能である。すなわち、以下の式(1) が成り立つ場合には、第 1の有機分子と第 2の有機分子とは相溶性が無いと定義で きる。
[0029] A G = G- (nl X gl +n2 X g2) >0· · · (1)
ここで、 glおよび g2は、それぞれ、第 1の有機分子および第 2の有機分子の 1モル当 たりのギッブス(Gibbs)の自由エネルギーである。 Gは、 nlモルの第 1の有機分子と n2モルの第 2の有機分子とが完全に混合した仮想的な状態のギッブスの自由エネ ルギ一である。 A Gは、混合前後におけるギッブスの自由エネルギーの変化である。
[0030] A Gは、混合前後におけるェンタルピー変化 Δ Ηと混合エントロピー A Sとを用いて 以下の式(2)で記述できる。
[0031] Δ Θ= Δ Η— T A S= A H+RT(nl X ln(nl/N) +n2 X ln (n2/N) •••(2)
ただし、 Rは気体定数であり、 Tは系の絶対温度であり、 N=nl +n2である。
[0032] 第 1の有機分子と第 2の有機分子とが高分子であって、その分子量がある程度大き い場合、上記式(2)の右辺の第 2項は小さくなるので、 Δ Ηの値によって相溶性を調 ベることができる。
[0033] ここで Δ Ηは、定圧下で第 1の有機分子と第 2の有機分子とを混合したときに発生 する熱量に等しい。混合したときに発熱する場合は Δ Ηがマイナスであり、吸熱する 場合は Δ Ηがプラスである。従って、ともに液体である 2種類の有機分子の場合、混 合時の Δ Ηは容易に求めることができる。また、有機分子が高分子であって常温常 圧で固体であるがそのモノマーが液体の場合、 Δ Ηの値は、それぞれの有機分子の モノマー同士を混合した場合の発熱量で近似できる。したがって、第 1および第 2の 有機分子のモノマーが液体である場合には、モノマー同士の相溶性を比較すること によって、第 1および第 2の有機分子の相溶性を判断できることが多い。
[0034] 第 1の有機分子のモノマーと第 2の有機分子のモノマーとがともに液体の場合、そ れらが相溶性を有する力否かを、式 (2)を使わずに簡易的に判断することも可能であ る。まず、あらかじめ重量を計量しておいた第 1の有機分子のモノマーと第 2の有機 分子のモノマーとを分液ロートに入れて一定時間攪拌して混合し、その後、一定時間 静置する。静置後混合液が上下 2層に分かれる場合には、 2つのモノマー同士には 相溶性が無 、可能性がある。
[0035] 相溶性が無いかどうかを厳密に判断するためには、分離した 2つの液体をそれぞれ 注意深く別々の容器に移し、それぞれの液体の重量を測定する。そして、第 1の有機 分子のモノマーと第 2の有機分子のモノマーのうち、密度の低い方のモノマーの初期 重量と上層の液体の重量、および、密度の高い方のモノマーの初期重量と下層の液 体の重量とをそれぞれ比較する。これらの重量がほぼ等しい場合には、第 1の有機 分子のモノマーと第 2の有機分子のモノマーとの間には相溶性が無いと言え、異なる 場合には相溶性があると言える。
[0036] 本発明者は、上記塗液を基板上に塗布して溶媒を除去することによって、第 1の有 機分子と第 2の有機分子とがそれぞれの層に分離している積層膜を一度に形成でき ることを見出した。この塗液を用いた場合、 1回の溶液塗布によって有機 FETのゲー ト絶縁層と半導体層とを同時に形成できる。そのため、この塗液を用いることによって 、ゲート絶縁層と半導体層との界面にゴミが付着することを防止できる。また、適切な 有機分子を選択することによって、従来の溶液塗布法で問題となることがあった相互 溶解を抑制できる可能性がある。
[0037] なお、第 1の有機分子と第 2の有機分子とがそれぞれどのような性質を持っていると きに互いに相溶性が無いの力 すなわち 2層に分離するのかについては、不明な点 が多い。したがって、実際に個々の組み合わせについて実験によって確認すること が好ましい。但し、以下の場合には相分離が起こりやすいことが分力つている。
[0038] 即ち、極性を有する有機分子と無極性の有機分子との間には相分離が起こりやす い。有機分子が極性を持っためには、水酸基、サルフィエル基、アミノ基、カルボキシ ル基などの極性基を含有することが必要である。また、有機分子が非極性であるため には、非極性基を含有することが必要である。非極性基としては、たとえば、炭化水 素基((CH ) 、 nは自然数であり、たとえば 3〜20の自然数)や、フッ化炭素基((CF
2 n 2
) 、 nは自然数であり、たとえば 3〜10の自然数)が挙げられる。
[0039] したがって、第 1の有機分子および第 2の有機分子のいずれか一方の有機分子が 、炭化水素基およびフッ化炭素基力 選ばれる少なくとも 1つの基を含有していても よぐ他方の有機分子が少なくとも 1つの極性基を含有していてもよい。炭化水素基と しては、たとえば、炭素数が 3〜20程度のアルキル基が挙げられ、フッ化炭素基とし ては、炭素数が 3〜10程度のパーフルォロアルキル基が挙げられる。ここで、上記一 方の有機分子は、極性基を含有しないことが好ましい。上記他方の有機分子が有す る極性基は、水酸基、カルボキシル基およびアミノ基力 選ばれる少なくとも 1つの基 であってもよい。
[0040] なお、この明細書において、有機分子に含まれる基は、有機分子の側鎖であっても よいし、主鎖の一部であってもよい。
[0041] また、フッ化炭素基を含有する有機分子と炭化水素基を含有する有機分子との組 み合わせでも、 2層に分離する。フッ化炭素基も炭化水素基も共に非極性であるが、 両者の間には相溶性が無ぐ 2層に分離することが分力つている (J. Vac. Sci. Technol. B、 1994年、 P2215— 2218)。
[0042] したがって、第 1の有機分子および第 2の有機分子のいずれか一方の有機分子が 、炭化水素基を含有しフッ化炭素基を含有せず、他方の有機分子がフッ化炭素基を 含有してもよい。炭化水素基としては、たとえば、炭素数が 3〜20程度のアルキル基 が挙げられ、フッ化炭素基としては、炭素数が 3〜: L0程度のパーフルォロアルキル基 が挙げられる。
[0043] 炭化水素基を含有する第 1の有機分子 (半導体材料)としては、たとえば、炭化水 素基を含有するポリチォフェン誘導体が挙げられ、具体的には、ポリ(3—アルキルチ ォフェン)、ポリ(9, 9ージアルキルフルオレンーコービチォフェン)が挙げられる。ま た、フッ化炭素基を含有する第 1の有機分子 (半導体材料)としては、たとえば、フッ 化炭素基を含有するポリチォフェン誘導体が挙げられ、具体的には、ポリ(3—フルォ ロアルキルチオフェン)が挙げられる。
[0044] また、第 1の有機分子として、溶液への溶解性を増大させる官能基を付与した多環 式芳香族化合物を用いてもょ 、。多環式芳香族化合物とサルフィエルァセトアミド基 (R— CO— N = S = 0 :Rは官能基)とをDiels—Alder反応させると、両者は、 C— N 結合および C S結合によって結合することが知られている(Cは芳香族中の炭素で あり、 Nおよび Sはサルフィエルァセトアミド基中の元素である)。従って、サルフィエル ァセトアミド基中の Rを、炭化水素基またはフッ化炭素基にすることによって、極性が 小さ 、第 1の有機分子が得られる。サルフィエルアミド基が付加した多環式芳香族化 合物は、半導体の特性を有さない。しかし、膜形成後に、 100°C以上の温度で熱処 理すると、 Diels— Alderの逆反応によってサルフィエルァセトアミド基が脱離し、半 導体特性を有する多環式芳香族分子が形成される。
[0045] 一方、炭化水素基を含有する第 2の有機分子 (絶縁体材料)としては、たとえば、炭 化水素系榭脂が挙げられ、具体的には、ポリスチレン、ポリエチレン、ポリブタジエン 等が挙げられる。また、フッ化炭素基を含有する第 2の有機分子 (絶縁体材料)として は、たとえば、フッ化炭素系榭脂が挙げられ、具体的には、ポリテトラフルォロェチレ ン等が挙げられる。
[0046] 上述したように、第 1の有機分子はポリチォフェン誘導体であってもよ!/、。この場合、 第 2の有機分子はポリスチレンであってもよ 、。
[0047] また、上述したように、第 1の有機分子はペンタセン誘導体であってもよ 、。この場 合、第 2の有機分子はポリスチレンであってもよい。
[0048] 塗液の溶媒には、第 1の有機分子と第 2の有機分子とを共に溶解できる溶媒が用 いられる。たとえば、溶媒には、これら 2種類の有機分子の特性を併せ持つている溶 媒を使用できる。第 1の有機分子および第 2の有機分子の一方が無極性分子で、他 方が極性分子である場合には、例えば、クロ口ホルム、高級アルコール、アセトン、お よびテトラヒドロフランなどが溶媒として利用できる。また、第 1の有機分子および第 2 の有機分子の双方が無極性分子である場合には、例えば、クロ口ホルム、高級アル コール、ジェチルエーテル、およびテトラヒドロフランなどが利用できる。
[0049] 第 1の有機分子 Z第 2の有機分子 Z溶媒の好ましい組み合わせの例としては、たと えば、上述したポリチォフェン誘導体 Zポリスチレン Zクロ口ホルム、上述したペンタ セン誘導体 zポリスチレン Zクロ口ホルム、ポリチォフェン誘導体 Zポリスチレン Zテト ラヒドロフラン、ペンタセン誘導体 Zポリスチレン Zテトラヒドロフランが挙げられる。
[0050] 別の観点では、本発明の塗液は、溶媒と、その溶媒に溶解された有機分子 Aおよ び Bとを含む。有機分子 Aは、半導体材料または半導体材料の前駆体である。有機 分子 Bは、絶縁体材料または絶縁体材料の前駆体である。この塗液は、たとえば自 然乾燥で溶媒を除去したときに、有機分子 Aを主成分とする第 1の層と、有機分子 B を主成分とする第 2の層とに分離する液体である。第 1の層における有機分子 Aの含 有率は、第 1の層と第 2の層との界面近傍において 50重量%以上 (好ましくは 60重 量%以上)であり、第 1の層の外側表面に向かって増大する。第 1の層の表面のうち 第 2の層から遠い側の表面の近傍における有機分子 Aの含有率は、たとえば 90重量 %以上 (好ましくは 95重量%以上)である。また、第 2の層における有機分子 Bの含 有率は、第 1の層と第 2の層との界面近傍において 50重量%以上 (好ましくは 60重 量%以上)であり、第 2の層の外側表面に向かって増大する。第 2の層の表面のうち 第 1の層から遠い側の表面の近傍における有機分子 Bの含有率は、たとえば 90重量 %以上 (好ましくは 95重量%以上)である。有機分子 Aには、第 1の有機分子として 例示された有機分子を用いることができる。また、有機分子 Bには、第 2の有機分子と して例示された有機分子を用いることができる。なお、この段落において、界面近傍と は界面から lOnmの領域を意味し、表面の近傍とは表面から lOnmの領域を意味す る。
[0051] <半導体層と絶縁層との積層膜の製造方法 >
有機半導体層と有機絶縁層との積層膜を本発明の塗液を用いて製造する方法を、 図 1に模式的に示す。
[0052] まず、図 1Aに示すように、溶媒 13と、溶媒 13に溶解された第 1および第 2の有機分 子 11および 12とを含む塗液 20を塗布する(工程 (i) )。図 1では、塗液 20を基板 10 上に塗布した場合を示している力 FETの種類によってはゲート電極が形成された 基板上に塗布される場合もある。塗液 20の塗布方法に限定はなぐたとえば、スピン コート法、ディップ法、インクジェット法、スクリーンプリント法、はけ塗り法、ロールコー ター法、およびドクターブレード法と 、つた方法で塗布できる。
[0053] 塗液 20は、第 1の有機分子 11と、第 2の有機分子 12と、溶媒 13とを含む。第 1の有 機分子 11、第 2の有機分子 12および溶媒 13には、上述したものが用いられる。第 1 の有機分子 11と第 2の有機分子 12とは相溶性が無いが、これらは共に溶媒 13には 溶解する。溶媒 13中で第 1の有機分子 11と第 2の有機分子 12とは自由に混合して いる。
[0054] 次に、塗布された塗液 20中の溶媒 13を除去することによって、第 1の有機分子 11 を主成分とする第 1の層 14と、第 1の層 14に隣接し、第 2の有機分子 12を主成分と する第 2の層 15とを形成する(工程 (ii) )。溶媒 13の除去方法に限定はなぐたとえば 、自然乾燥でもよいし、加熱による乾燥でもよいし、減圧による乾燥でもよい。
[0055] 図 1Bは、時間経過とともに溶媒 13の一部が揮発した状態を示す。溶媒 13が揮発 すると第 1の有機分子 11および第 2の有機分子 12の濃度が高くなり、これに伴い第 1 の有機分子 11と第 2の有機分子 12との距離が近づく。この時、第 1の有機分子 11と 第 2の有機分子 12とは、自由に混合しているよりも、互いに別々に集まった方が溶液 全体の自由エネルギーが小さくなる。従って、図 1Bに示すように、塗液 20の所々で、 同じ種類の有機分子が集合するようになる。さらに、時間が経過して溶媒 13のほとん どが揮発して無くなった時には、図 1Cに示すように、第 1の有機分子 11および第 2の 有機分子 12は、それぞれ、第 1の層 14および第 2の層 15を形成する。
[0056] このように、本発明の塗液を用いることによって、絶縁層と半導体層とを同時に形成 できる。そのため、従来の方法でそれぞれの層を個別に形成する場合と比較して、本 発明の塗液を用いた場合、工程数を削減でき、また、絶縁層と半導体層との界面に 汚れが付着することを抑制できる。
[0057] なお、第 1の有機分子は半導体材料であってもよ!/、し、半導体材料の前駆体であつ てもよい。第 1の有機分子が半導体材料の前駆体である場合、基板上には、半導体 材料の前駆体を主成分とする第 1の層が形成される。その後、この層中の前駆体 (第 1の有機分子)を処理することによって第 1の層を有機半導体層とする。たとえば、第 1の有機分子に対して、熱処理、焼成、光照射およびィ匕学処理力 選ばれる少なくと も 1つの処理を施すことによって半導体層を形成する。
[0058] 同様に、第 2の有機分子は、絶縁体材料の前駆体であってもよい。この場合も、第 2 の有機分子を主成分とする第 2の層を形成したのち、その層中の第 2の有機分子を 処理することによって、第 2の層を有機絶縁層とする。たとえば、第 2の有機分子に対 して、熱処理、焼成、光照射およびィ匕学処理力 選ばれる少なくとも 1つの処理を施 すことによって絶縁層を形成する。
[0059] 図 1には、一例として、第 2の有機分子 12が基板 10の近傍に堆積し、第 1の有機分 子 11が基板 10から遠方に堆積している場合を示している。しかし、条件によっては、 基板 10近傍に第 1の有機分子 11が堆積し、その上に第 2の有機分子 12が堆積する 場合がある。 2種類の有機分子のどちらが基板側に配置されるかは、第 1および第 2 の有機分子、基板、および基板が曝されている雰囲気によって決まる。 2種類の有機 分子がどのように分離する力を導出する一般的な規則はないが、有機分子および基 板のそれぞれの極性、および、塗液を塗布する作業環境によってある程度は予想で きる。即ち、極性を持ったもの同士は互いに集合しやすぐまた、極性を持たないもの 同士は互いに集合しやす 、。基板が曝されて 、る雰囲気が通常の大気雰囲気の場 合、雰囲気は非極性であると考えられる。
[0060] ここで、第 1の有機分子が非極性分子であり、第 2の有機分子が極性分子であり、 基板表面が極性を有し、大気雰囲気で本発明の塗液を塗布する場合を仮定し、どの ように層が形成されるかを検討する。第 2の有機分子および基材はともに極性を有す るので、第 2の有機分子は基板近傍に配置されやすい。また、第 1の有機分子および 大気雰囲気はともに非極性なので、第 1の有機分子は大気と接するように配置されや すい。従って、上記仮定の条件では、基板の近傍に第 2の有機分子が配置されやす ぐ基板の遠方に第 1の有機分子が配置されやすい。
[0061] <電界効果トランジスタ >
本発明の FETは、有機半導体層とその有機半導体層に隣接する有機絶縁層とを 含む。有機半導体層の少なくとも一部はチャネル領域として機能する。ソース電極お よびドレイン電極は、有機半導体層に接触するように配置されて 、る。
[0062] 有機半導体層および有機絶縁層は、上述した塗液によって形成される層である。
そのため、有機半導体層は、有機半導体材料である第 1の有機分子を主成分 (好ま しくは 95重量%以上)とする層であり、有機絶縁層は、絶縁体材料である第 2の有機 分子を主成分 (好ましくは 95重量%以上)とする層である。有機半導体層と有機絶縁 層との界面力も有機絶縁層の外側表面に向力つて、第 1の有機分子の割合が徐々 に減少している。また、有機半導体層と有機絶縁層との界面カゝら有機半導体層の外 側表面に向かって、第 2の有機分子の割合が徐々に減少している。
[0063] 有機半導体層における第 1の有機分子の含有率は、有機半導体層と有機絶縁層と の界面近傍にぉ 、て 50重量%以上 (好ましくは 60重量%以上)であり、有機半導体 層の外側表面の近傍で 95重量%以上であることが好ま 、。有機絶縁層における 第 2の有機分子の含有率は、有機半導体層と有機絶縁層との界面近傍において 50 重量%以上 (好ましくは 60重量%以上)であり、有機絶縁層の外側表面の近傍で 95 重量%以上であることが好ましい。なお、この段落において、界面近傍とは界面から lOnmの領域を意味し、表面の近傍とは表面から lOnmの領域を意味する。
[0064] なお、有機半導体層に少量の有機絶縁体材料が含まれていても有機半導体層とし ての性質を示す。また、有機絶縁層に少量の有機半導体材料が含まれていても有機 絶縁体層としての性質を示す。
[0065] 本発明の FETでは、半導体層と絶縁層との界面から半導体層へ向カゝぅ方向におけ る構成分子の濃度変化は、半導体層と絶縁層とを別々に塗布して作製した場合に比 ベて穏やかである。一般に、元素濃度変化が緩や力な領域におけるキャリアの捕捉 準位密度は、濃度変化が急峻な領域に比べて小さくなる。従って、本発明の FETの 半導体層と絶縁層との界面における捕捉準位密度は、半導体層と絶縁層とを別々に 塗布して作製した場合に比べて小さくなり、 FETのキャリア移動度も向上する。
[0066] 本発明の FETは、有機半導体層および有機絶縁層が上述したものであればよぐ 他の構成部分に限定はない。たとえば、本発明の FETは、ボトムゲート型の FETで あってもよいし、トップゲート型の FETであってもよい。有機半導体層が有機絶縁層よ りも基板側に配置される場合には、トップゲート型の FETを構成できる。また、有機絶 縁層が有機半導体層よりも基板側に配置される場合にはボトムゲート型の FETを構 成できる。
[0067] ボトムゲート型の FETの一例を図 2Aに示し、トップゲート型の FETの一例を図 2B に示す。図 2Aの FET20aおよび図 2Bの FET20bは、それぞれ、基板 21、ゲート電 極 22、有機絶縁層 23、有機半導体層 24、ソース電極 25およびドレイン電極 26を備 える。
[0068] FET20aにおいて、ゲート電極 22は基板 21上に形成されている。有機絶縁層 23 は、ゲート電極 22を覆うように形成されている。有機半導体層 24は、有機絶縁層 23 上に積層されている。ソース電極 25およびドレイン電極 26は、有機半導体層 24上に 形成されている。
[0069] 一方、 FET20bにおいて、基板 21上には、ソース電極 25およびドレイン電極 26が 形成されている。有機半導体層 24は、ソース電極 25およびドレイン電極 26を覆うよう に形成されている。有機絶縁層 23は、有機半導体層 24上に積層されている。ゲート 電極 22は、有機絶縁層 23上に形成されている。
[0070] 有機絶縁層 23および有機半導体層 24は、本発明の塗液を用いて形成される。そ の他の部分には、たとえば、公知の有機 FETで用いられている部材を適用できる。
[0071] <電界効果トランジスタの製造方法 >
電界効果トランジスタを製造するための本発明の方法は、有機半導体層と有機絶 縁層との積層膜を製造するための上記方法 (すなわち、工程 (i)および (ii)を含む上 記製造方法)を含む。この製造方法で製造された有機 FETは、本発明の FETの 1つ である。
実施例
[0072] 以下、本発明の実施例について説明する力 本発明は以下の実施例に限定され ない。
[0073] (実施例 1)
実施例 1では、第 1の有機分子としてポリチォフェン誘導体 (ポリ(3 パーフルォロ ォクチルチオフェン))を用い、第 2の有機分子としてポリスチレンを用いた一例につ いて説明する。
[0074] (1)ポリ(3 パーフルォロォクチルチオフェン)の合成方法
図 3に示すポリ(3—パーフルォロォクチルチオフェン)は、 3—パーフルォロォクチ ルチオフェンを合成し、これを出発物質として 2, 5 ジブ口モー 3 パーフルォロォ クチルチオフェンを合成し、これを重合することによって作製した。以下、順に、 3—パ 一フルォロォクチルチオフェン、 2, 5 ジブ口モー 3 パーフルォロォクチルチオフ ェン、ポリ(3—パーフルォロォクチルチオフェン)の合成方法を示す。
[0075] (1 a) 3 パーフルォロォクチルチオフェンの合成方法
銅粉末 10gと、 3—ィォドチォフェン 10. 5gと、 3 パーフルオロー n—ォクチルイォ ダイド 32. 8gと、 N, N ジメチルホルムアミド 60mlとの混合液中において、乾燥窒 素雰囲気下、 120°Cで 20時間反応を進行させた。得られた反応溶液を濾過した後、 濾過液を 18vol%の塩酸、 20vol%のチォ硫酸ナトリウム水溶液で順に洗った後、硫 酸マグネシウム粉末を入れて濾過液を乾燥した。得られた生成物から、蒸留法によつ て、 3—パーフルォロォクチルチオフェンを抽出した。
[0076] (l -b) 2, 5 ジブ口モー 3 パーフルォロチォフェンの合成方法
次に、 70ミリモルの 3 パーフルォロォクチルチオフェンをテトラヒドロフラン 100ml に溶かし、 N—プロモコハク酸イミド 154ミリモルをカ卩えた後、室温で 2時間攪拌した。 その後、溶媒をエバポレータで除去した。次に、 250mlのへキサンをカ卩えて、 N ブ ロモコハク酸イミドを沈殿させた後、濾過した。得られた濾過液力もエバポレータによ つて溶媒を除去し、残った溶液を、 120°C、 2. 7Pa (0. 02torr)の条件で蒸留精製 した。この結果、 2, 5 ジブ口モー 3 パーフルォロチォフェンが得られた。 [0077] (1 c)ポリ(3 パーフルォロォクチルチオフェン)の合成方法
2, 5 ジブ口モー 3 パーフルォロチォフェン 3. 12ミリモルをテトラヒドロフラン 18 mlに溶解した。ここにメチルマグネシウムブロマイドのブチルエーテル溶液 (濃度 1. OM)を入れ、還流条件下で 1時間反応させた。次に、この溶液に塩化〔1, 3 ビス( ジフエ-ルホスフイノ)プロパン〕ニッケル(II)を 16. 9mg加え、還流条件下で 2時間反 応させた。反応した溶液を 150mlのメタノール中に溶かし、濾過した。濾過されずに 残った固体をソクスレー抽出器に入れ、メタノールによってモノマーと塩とを抽出し、 次に、へキサンによって触媒とオリゴマーとを抽出し、最後に、クロ口ホルムによってポ リ(3—パーフルォロォクチルチオフェン)を抽出した。抽出したクロ口ホルム溶液から 、エバポレータによって溶媒を除去し、固体状のポリ(3—パーフルォロォクチルチオ フェン)を得た。
[0078] (2)塗液の作製
塗液は、半導体材料である第 1の有機分子としてポリ(3 パーフルォロォクチルチ ォフェン)を用い、絶縁体材料である第 2の有機分子としてポリスチレンを用いて作製 した。
[0079] 塗液を作製する前に、これらの物質の相溶性を以下のようにして調べた。まず、ポリ
(3—パーフルォロォクチルチオフェン)のモノマーである 3—パーフルォロォクチル チォフェン 2. OOgとポリスチレンのモノマーであるスチレン 4. 00gを分液ロートに入 れて 1時間攪拌した後、 1時間静置した。静置後、分液ロート内の溶液は 2層に別れ た。 3—パーフルォロォクチルチオフェンの比重はスチレンの比重よりも大きい。その ため、分離した液体の下層は 3—パーフルォロォクチルチオフェンであり上層はスチ レンであると推測できる。これらの 2液を注意深く分離した後、それぞれの重量を測定 した。上層の液体重量は 4. 00g、下層の液体重量は 2. 00gであった。上層の液体 および下層の液体の重量は、それぞれ、混合前のスチレンおよび 3—パーフルォロ ォクチルチオフェンに等しいことから、これらの 2つの液体は相溶性が無いものと推測 できる。従って、これら液体のポリマーであるポリ(3—パーフルォロォクチルチオフエ ン)とポリスチレンとの間には相溶性が無いと推測できる。
[0080] 次に、ポリスチレンが 3wt%となるように且つポリ(3 パーフルォロォクチルチオフ ェン)が 3wt%となるように、両物質とテトラヒドロフランとを混ぜ合わせ、 1時間攪拌し て実施例 1の塗液 (C1)を作製した。塗液 (C1)は、透明で均一な液体であった。この ことから、ポリスチレンおよびポリ(3—パーフルォロォクチルチオフェン)はともにテト ラヒドロフランに溶解することを確認できた。
[0081] (3)有機 FETの作製
大きさ 50mm角、厚さ 0. 5mmの石英ガラス基板の片面に、厚さ lnmのクロムの膜 を形成し、その上に、厚さ lOOnmの金の膜を形成した。これらは、真空スパッタ法で 形成した。
[0082] 次に、この基板に、スピンコート法によって上記塗液 (C1)を塗布した。スピンコート は、基板に塗液 (C1)を滴下後、基板を 500rpmで 5秒間回転させ、さらに基板を 40 OOrpmで 30秒間回転させて行った。次に、塗液 (C1)が塗布された基板を 25°Cの 室温で 1時間乾燥した。その後、シャドーマスクを用いた真空電子ビーム蒸着法によ つて、金力もなるソース電極およびドレイン電極を作製した。ゲート長は 100 mとし、 ゲート幅は 3mmとした。
[0083] また、比較例として、ゲート絶縁層であるポリスチレン層と半導体層であるポリ(3— パーフルォロォクチルチオフェン)層とを別々に塗布法によって形成し、有機 FETを 作製した。まず、石英基板にクロムの膜と金の膜とを形成した。次に、ポリスチレン 3w t%のみが溶解したクロ口ホルム溶液をスピンコートした後、室温 25°Cで 1時間乾燥さ せた。次に、ポリ(3—パーフルォロォクチルチオフェン) 3wt%のみが溶解したパー フルォロオクタン溶液をスピンコートし、 25°Cの室温で 1時間乾燥した。ポリスチレン はパーフルォロオクタンには溶解しな 、ので、半導体材料塗布時にお 、てポリスチレ ン膜が溶液に溶け出す相互溶解の現象は起こらなカゝつた。なお、スピンコートの条件 は、塗液 (C1)のスピンコートの条件と同一とした。その後、電子ビーム蒸着法を用い てソース電極とドレイン電極とを形成した。このようにして比較例の FETを作製した。
[0084] (4)スピンコート膜および有機 FETの評価
(4 a)スピンコ一ト膜の組成分析
スピンコートによって形成した膜について、ソース電極とドレイン電極とを形成する 前に、膜中のフッ素元素、炭素元素、および、金元素の深さ方向の濃度分布を二次 イオン質量分析法 (SIMS)によって求めた。深さ方向の濃度分布は、膜表面の元素 濃度を測定した後、アルゴンスパッタリングで膜の表面を一定量削り、再び元素濃度 を測定するという操作を繰り返すことによって求めた。
[0085] 測定時の深さは、アルゴンスパッタリングのスパッタリングレート(単位時間内に削り 取られる膜の厚さ)から求めた。スパッタリングレートは、以下の方法によって算出した 。まず、スピンコート法で作製したポリスチレン単独の膜の厚さを予め膜厚計で測定し 、次に、その膜を、 SIMS測定と同じスパッタリング条件で完全に削り取るのに要した 時間を測定した。膜厚とスパッタリングに要する時間とから、単位時間内にアルゴンス ノ ッタリングで削り取られる膜の厚さを算出した。ポリ(3—パーフルォロォクチルチオ フェン)単独の膜についても、スパッタリングレートを同様の方法で算出した。
[0086] 図 4は、塗液 (C1)で作製された積層膜の SIMSの測定結果を示すグラフである。
グラフの横軸はアルゴンスパッタリングの時間を示し、縦軸はフッ素、炭素、および、 金元素の濃度を示す。縦軸の元素濃度は、それぞれの元素の最大値で規格化して いる。スパッタリングによって削り取られる膜の量はスパッタリング時間に比例するの で、横軸のスパッタリング時間は膜の最表面力 膜の内部に向力う深さに対応してい る。そこで、以後の説明では、便宜上、 t分のスパッタリングによって露出した膜の表 面を、 "t分の深さ"と記述する。図 4から分力るように、それぞれの元素濃度は、図 4の 範囲 31 (4〜10分)ぉょび範囲32 (14〜17分)において、スパッタリング時間の経過 とともに急激に増カロもしくは減少し、それ以外では一定であった。フッ素元素濃度は、 範囲 31で減少して 0になった。炭素元素濃度は、範囲 31では増大し、範囲 32では 減少して 0となった。金元素濃度は、範囲 32で 0から増大して一定値となった。フッ素 元素、炭素元素、または、金元素の濃度が、最大値の半分の値になるスパッタリング 時間の値 (以下、これらを「半減時間」という場合がある)は、それぞれ 6分、 16分、 16 分であった。
[0087] フッ素元素は、ポリ(3—パーフルォロォクチルチオフェン)の構成元素に由来し、炭 素元素はポリ(3—パーフルォロォクチルチオフェン)とポリスチレンの両方の構成元 素に由来する。また、金は、石英ガラス基板に形成した金電極に由来する。これらの ことを考慮して、膜中の組成を以下のように推測した。 [0088] アルゴンスパッタリング 14分以降、金元素が検出され、これに伴い炭素元素が減少 することから、膜がアルゴンスパッタリングによって除去されて基板の金電極が表面に 現れてきたものと推測できる。金元素および炭素元素の濃度は、スパッタリング時間 の変化に対して階段状に急激に変化することはな力つた。これは、 SIMS分析では 膜表面に存在する元素と表面内部に存在する元素力 の信号を同時検出されること に加え、スパッタリングによって膜表面の形状が凹凸になり、基板表面に膜が存在し てもその膜の凹部では下部にある金が表面に現れるためだと推測できる。そこで、今 回の測定においては、金の半減時間である 16分において、形成した膜が完全にス ノ ッタリングによって除去されたものと推測される。
[0089] 従って、実施例で形成した膜は、図 4において 0〜16分の深さの間に存在する。フ ッ素の元素濃度の変化から、ポリ(3—パーフルォロォクチルチオフェン)のほとんど は、半減時間である 6分の深さまでに存在し、それ以降は存在しないと推測できる。 一方、炭素元素の濃度は半減時間である 6分を境に増大していると考えられる。もし 、ポリスチレンがポリ(3—パーフルォロォクチルチオフェン)と同様に 6分までの深さ に存在するとすれば、 6分以降の深さで炭素元素濃度は減少するはずであるが、図 4 では逆に増大した。このことから、 6分までの深さにはポリスチレンはほとんど存在しな いものと推測できる。以上のことから、膜の最表面力も 6分の深さまでの成分のほとん どがポリ(3—パーフルォロォクチルチオフェン)で、 6〜16分の膜のほとんどがポリス チレンであると推測できる。
[0090] ポリ(3—パーフルォロォクチルチオフェン)およびポリスチレンのスパッタリングレー トと、上述の解析から、スピンコート膜全体の膜厚は 170nmであり、膜表面から 50η m近傍の深さまでの領域にはポリ(3—パーフルォロォクチルチオフェン)の層が存在 し、 50nm近傍の深さから 170nm近傍の深さまでの領域にはポリスチレンの層が存 在していると推測された。
[0091] SIMSによる上記の分析結果から、本発明の塗液を用いることによって、半導体層 であるポリ(3—パーフルォロォクチルチオフェン)の層と、絶縁層であるポリスチレン の層とを同時に形成できた。また、これらの 2層からなる膜は、別の観点では、ゲート 電極近傍では絶縁体材料の密度が高くゲート電極遠方では半導体材料の密度が高 い 1つの有機薄膜である。
[0092] (4 b)トランジスタ特性の評価
トランジスタ特性は、セミコンダクタ一'ノ ラメータ一'アナライザ一' 4155B (Semico nductor Parameter Analyzer 4155B) (Agilent Technology社製)を用いて 測定した。具体的には、ソース電極とドレイン電極との間に 80Vの電圧をカ卩え、ゲート 電圧を 50〜50Vの範囲で変化させ、ソース ドレイン間の電流値とゲート電圧の 自乗の値とが比例する領域にぉ 、て、以下の式を用いてキャリアの移動度を導出し た。
I = μ XWX ε X ε XV 2/ (2 X L X t)
d 0 g
但し、 I:ソース—ドレイン電流。 V:ゲート電圧。 μ:移動度。
d g
L:ソース ドレイン間のチャネル長 = 100 ( m)。
W:ソース ドレイン間のチャネル幅 = 3 (mm)。
ε:絶縁層の比誘電率 = 2. 5。 ε :真空の誘電率。 t:絶縁層の厚さ。
0
[0093] 作製した有機 FETの移動度は 0. 02cm2ZVsであり、ソース—ドレイン間の ON電 流と OFF電流との比は 105であった。
[0094] 次に、ゲート絶縁層であるポリスチレン膜と半導体層であるポリ(3 パーフルォロォ クチルチオフェン)膜とを別々に塗布法によって形成した比較例の有機 FETにつ ヽ て評価した。その結果を以下に示す。
[0095] 図 5は、図 4と同様に、ソース ドレイン電極を形成する前のスピンコート膜の SIMS の測定結果を示すグラフであり、スパッタリング時間と所定の元素の濃度との相関を 示している。図 5のグラフの形状は図 4のグラフとほぼ同じであり、フッ素元素濃度お よび炭素元素濃度が急激に変化する範囲 41 (スパッタリング時間 :4〜7分)の領域 のみが図 4のグラフと異なった。
[0096] 図 5の範囲 41は図 4の範囲 31 (4〜10分)に比べて短かった。これは、図 5の膜に おける、フッ素元素濃度および炭素元素濃度の膜厚方向の変化率が、図 4の膜より も大きいことを示している。このことは、ゲート絶縁層と半導体層とを別々に塗布して 形成した比較例の膜では、絶縁層と半導体層との境界が、実施例の膜に比べて明 確であることを示す。また、比較例の FETの移動度は 0. 005cm2ZVsであり、絶縁 層および半導体層を同時に形成した場合に比べて低くなつた。その理由の 1つとして 、比較例で作製した FETの絶縁層と半導体層との界面における汚れが、本発明の塗 液 (C1)を用いて絶縁層と半導体層とを同時に作製する場合に比べて大きいことが 考えられる。また、他の理由として、比較例における界面では構成元素が不連続に変 化するために捕捉準位密度が高くなることが考えられる。このように、比較例の FET の界面準位密度は、本発明の塗液 (C1)を用いて形成された FETのそれに比べて 高ぐその結果、比較例の FETのキャリアの移動度が低下したものと推測できる。
[0097] 以上のように、本発明の塗液を用いることによって、ゲート絶縁層と半導体層とを同 時に作製できた。
[0098] (実施例 2)
実施例 2では、第 1の有機分子としてペンタセン誘導体 (サルフィエルパーフルォロ オクタンアミド付加ペンタセン)を用い、第 2の有機分子としてポリスチレンを用いた一 例について説明する。サルフィエルパーフルォロオクタンアミド付加ペンタセンは、半 導体材料の前駆体である。
[0099] (1)サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンの合成方法
サルフィニルパーフルォロオクタンアミド付カ卩ペンタセンは、ペンタセンとサルフィニ ルパーフルォロオクタンアミドとを反応させることによって合成した。サルフィエルパー フルォロオクタンアミドは、パーフルォロオクタンアミド力 合成した。以下、サルフィ- ルパーフルォロオクタンアミド、およびサルフィエルパーフルォロオクタンアミド付カロべ ンタセンの合成方法を順に示す。
[0100] (1 a)サルフィエルパーフルォロオクタンアミドの合成方法
パーフルォロオクタンアミド(CF (CF ) CONH ) 46gを n—へキサン 300ml中に溶
3 2 7 2
解し、得られた溶液に、乾燥窒素雰囲気中で、トリメチルクロロシラン 15mlを少しず つ滴下し、攪拌しながら 2時間反応させた。反応終了後、エバポレータで反応溶液中 のへキサデカンを除去することによって、 N, N—ビス(トリメチルシリル)パーフルォロ オクタンアミドを得た。
[0101] 次に、乾燥窒素雰囲気中で、 N, N—ビス(トリメチルシリル)パーフルォロオクタンァ ミド 12gに塩ィ匕チォ-ル (SOC1 ) 2. 4gを少しずつ加え、攪拌しながら 2時間反応さ せた。その後、蒸留してサルフィエルパーフルォロオクタンアミドを得た。
[0102] (1 -b)サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンの合成方法
サルフィエルパーフルォロオクタンアミド 3g、ペンタセン 0. 5g、クロ口ホルム 30ml、 メチルトリオキソレニウム 0. 005gの混合溶液を還流条件下で攪拌しながら 48時間反 応させた。反応生成物をフラッシュクロマトグラフィーで分離して、サルフィエルパーフ ルォロオクタンアミド付加ペンタセンを得た。
[0103] (2)塗液の作製
サルフィニルパーフルォロオクタンアミド付カ卩ペンタセンとポリスチレンとは共に固体 である力 以下の方法で両分子の相溶性を推測することが可能である。
[0104] すなわち、サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンの分子の極性は 、サルフィエルパーフルォロオクタンアミドとペンタセンの両方の分子の極性を有する はずである。また、ポリスチレンの分子の極性はスチレンの極性で近似できる。一方、 ペンタセンはほとんどの有機溶媒に溶解しな 、ことから、スチレンにも溶解しな 、もの と推測できる。従って、サルフィエルパーフルォロオクタンアミドとスチレンとの間に相 溶性が無 、場合、サルフィエルパーフルォロオクタンアミド付加ペンタセンとスチレン およびポリスチレンとの間にも相溶性が無いと考えることができる。そこで、サルフィ- ルパーフルォロオクタンアミドとスチレンとの相溶性を実施例 1と同様の方法で評価し た。その結果、これら 2つの化合物の間には相溶性が無いことが分力つた。従って、 サルフィエルパーフルォロオクタンアミドとポリスチレンとの間には相溶性が無いもの と考えた。
[0105] 次に、サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンが 3wt%となるように 且つポリスチレンが 3wt%となるように、これら 2つの化合物とクロ口ホルムとを容器に 入れて 1時間混合し、実施例 2の塗液 (C2)を作製した。塗液 (C2)は、透明な溶液で あり、上記 2種類の有機分子がクロ口ホルムに均一に溶解して 、た。
[0106] (3)有機 FETの作製
塗液 (C1)の代わりに塗液 (C2)を用いることを除き、実施例 1と同様の方法で有機 FETを作製した。塗液 (C2)によって、主にサルフィエルパーフルォロオクタンアミド 付加ペンタセン力もなる第 1の層と、主にポリスチレン力もなる第 2の層とが形成され た。
[0107] ソース電極およびドレイン電極を形成した後、有機 FETを、乾燥窒素雰囲気中で、 180°Cで 2分間熱処理した。この熱処理によって、図 6に示すように、サルフィエルパ 一フルォロオクタンアミド付カ卩ペンタセンからサルフィニルパーフルォロオクタンアミド が脱離し、半導体材料であるペンタセンを主成分とする有機半導体層が形成された
[0108] (4)スピンコート膜および有機 FETの評価結果
実施例 1と同様に、ソース—ドレイン電極作製前のスピンコート膜 (有機半導体層 Z 有機絶縁層)について、深さ方向の元素濃度変化を測定した。また、作製した有機 F ETの特性を評価した。
[0109] SIMSによる元素分析から、スピンコート膜全体の厚さは lOOnmであり、膜表面か ら 40nmの深さ近傍まではサルフィエルパーフルォロオクタンアミド付カ卩ペンタセンの 層が存在し、 40nmの深さ近傍から lOOnmの深さ近傍まではポリスチレンの膜が存 在することが分かった。
[0110] また、作製した有機 FETのキャリアの移動度は 0. 01cm2/Vsであり、ソース—ドレイ ン間の ON電流と OFF電流との比は 105であった。
[0111] 以上のように、本発明の塗液を用いることによって、絶縁層と半導体層とを同時に 作製できた。
[0112] (実施例 3)
実施例 3では、第 1の有機分子として実施例 2で説明したサルフィニルパーフルォロ オクタンアミド付加ペンタセンを用い、第 2の有機分子としてポリビュルアルコールを 用いた一例にっ 、て説明する。
[0113] 実施例 3の塗液(C3)は、サルフィエルパーフルォロオクタンアミド付加ペンタセン 力 S3wt%となるように且つポリビュルアルコールが 3wt%となるように溶媒に溶解させ て作製した。溶媒には、テトラヒドロフランと 2, 2, 2—トリフルォロアルコールとの混合 溶媒 (体積比率で 1: 1)を用いた。塗液 (C2)の代わりに塗液 (C3)を用いることを除き 、実施例 2と同様の方法で有機 FETを作製した。
[0114] また、比較例の有機 FETを、以下のようにして作製した。まず、石英基板にクロム薄 膜と金薄膜とを形成した。次に、ポリビニルアルコール 3wt%のみが溶解した水とェ タノールとの混合溶液 (体積比で 1 :4)をスピンコートし、室温(25°C)で 1時間乾燥さ せ、その後、サルフィエルパーフルォロオクタンアミド付カ卩ペンタセン 3wt%のみが溶 解したクロ口ホルム溶液をスピンコートし、室温(25°C)で 1時間乾燥した。このように、 ポリビュルアルコールの膜 (ゲート絶縁層)とサルフィエルパーフルォロオクタンアミド 付加ペンタセンの膜 (半導体層となる層)とを溶液塗布法によって順番に形成した。 その後、電子ビーム蒸着法を用いてソース電極とドレイン電極とを形成した。
[0115] 塗液 (C3)を用いて形成した膜について SIMS測定を行った。その結果、この膜で は、ポリビニルアルコールの層の上にサルフィニルパーフルォロオクタンアミド付カロべ ンタセンの層が形成されていることが確認できた。
[0116] また、ポリビュルアルコールの層とサルフィエルパーフルォロオクタンアミド付カ卩ペン タセンの層とを順にスピンコート法で作製した膜にっ 、ても SIMS測定を行った。そ の結果、比較例の膜でも、ポリビュルアルコールの層の上にサルフィエルパーフルォ 口オクタンアミド付加ペンタセンの層が積層されて 、ることが確認できた。比較例の膜 に関して、ポリビュルアルコールの層の上に、サルフィエルパーフルォロオクタンアミ ド付加ペンタセンが溶解したクロ口ホルム溶液を塗布した時に、相互溶解が生じなか つた。これは、ポリビュルアルコールが水溶性であるため、クロ口ホルム溶液に溶け出 すことが無力つたためであると推測できる。
[0117] 塗液 (C3)を用いて作製した有機 FETのキャリア移動度は 0. 005cm2ZVsであり、 ソース ドレイン間の ON電流と OFF電流との比は 104であった。これに対して、比較 例の FETの移動度は 0. 001cm2/Vsであり、 ON電流と OFF電流との比は 104であ つた o
[0118] 塗液 (C3)を用いて作製された本発明の有機 FETのキャリア移動度は、比較例の 有機 FETの移動度よりも大きカゝつた。これは、本発明の有機 FETにおける絶縁層と 半導体層との界面順位密度力 比較例の有機 FETの界面順位密度よりも低 、ため であると推測される。
[0119] 以上のように、本発明の塗液を用いることによって、絶縁層と半導体層との界面順 位密度を低く抑えることができ、その結果、キャリア移動度の大きい有機 FETを作製 できた。
[0120] (実施例 4)
実施例 4では、第 1の有機分子として実施例 2で説明したサルフィニルパーフルォロ オクタンアミド付加ペンタセンを用い、第 2の有機分子としてポリ酢酸ビュルを用いた 一例について説明する。
[0121] 実施例 4の塗液 (C4)は、サルフィエルパーフルォロオクタンアミド付加ペンタセン 力 S3wt%となるように且つポリ酢酸ビニルが 3wt%となるように溶媒に溶解させて作製 した。溶媒には、テトラヒドロフランと 2, 2, 2—トリフルォロアルコールとの混合溶媒( 体積比率で 1:1)を用いた。塗液 (C2)の代わりに塗液 (C4)を用いることを除き、実 施例 2と同様の方法で有機 FETを作製した。
[0122] 塗液 (C4)を用いて作製した膜にっ 、て SIMS測定を行った。その結果、ポリ酢酸 ビュルの層の上に、サルフィエルパーフルォロオクタンアミド付カ卩ペンタセンの層が 形成されていた。また、塗液 (C4)を用いて作製した有機 FETの移動度は 0. 005cm 2ZVsであり、ソース ドレイン間の ON電流と OFF電流のとの比は 104であった。
[0123] (実施例 5)
実施例 5では、第 1の有機分子としてペンタセン誘導体 (6, 13 ビス (パーフルォ ロォクチル)ペンタセン)を用い、第 2の有機分子としてポリスチレンを用いた一例につ いて説明する。
[0124] 6, 13 ビス(パーフルォロォクチル)ペンタセンは以下の方法で合成した。まず、 4 Omlのジェチルエーテル中に、パーフルォロォクチルイオダイド(CF (CF ) I) 5gと、
3 2 7 フエ-ルマグネシウムブロミド(C H MgBr)のジェチルエーテル溶液(濃度 3M) 3ml
6 5
とを添加し、 50°C、窒素雰囲気中で攪拌しながら 30分間反応させた。この反応に よって、パーフルォロォクチルマグネシウムブロミド(CF (CF ) MgBr)が形成された
3 2 7
[0125] 次に、反応溶液を窒素雰囲気中で— 50°Cに保ちながら、 6, 13 ペンタセンキノン を 0. 6g添加し、その後、 4時間かけて温度を少しずつ室温まであげていつた。次に、 反応溶液に、飽和塩化スズに溶解した 30vol%の塩酸水溶液を 5ml程度滴下した後 、 60°Cで 2時間加熱した。これによつて、 6, 13 ビス(パーフルォロォクチル)ペンタ センが形成された。
[0126] 次に、反応溶液を純水で洗浄したのち、硫酸ナトリウムで脱水し、濃縮した。その濃 縮液をトルエンで溶解し、カラムクロマトグラフィーによって精製した。カラムクロマトグ ラフィーでは、充填剤としてシリカ(ヮコ一ゲル C— 200:和光純薬工業株式会社)を 用い、展開相としてトルエンを用いた。次に、溶媒を濃縮した後、トルエンを用いて 6, 13 -ビス(パーフルォロォクチル)ペンタセンを再結晶化させた。
[0127] 得られた 6, 13—ビス(パーフルォロォクチル)ペンタセンを用いて塗液(C5)を作 製した。具体的には、 6, 13—ビス (パーフルォロォクチル)ペンタセンが 3wt%となる ように且つポリスチレンが 3wt%となるように両者をテトラヒドロフランに溶解して塗液 ( C5)を作製した。そして、塗液 (C5)を用いることを除いて実施例 1と同様の方法で F ETを作製し、評価した。また、実施例 1と同様に、ソース—ドレイン電極作製前のスピ ンコート膜 (有機半導体層 Z有機絶縁層)について、深さ方向の元素濃度変化を測 し 7こ。
[0128] SIMS測定から、塗液 (C5)を用いて形成された膜では、ポリスチレンの層の上に、 6, 13—ビス(パーフルォロォクチル)ペンタセンの層が形成されて!ヽることが確認さ れた。また、作製した有機 FETの移動度は 0. lcm2ZVsであり、ソース—ドレイン間 の ON電流と OFF電流との比は 104であった。
[0129] (実施例 6)
実施例 6では、トップゲート型の FETを作製した一例について説明する。実施例 6 では、第 1の有機分子としてポリチォフェン誘導体 (ポリ(3—ォクチルチオフェン))を 用い、第 2の有機分子としてフルォロアルキル鎖を有するサイトップ (商品名。旭硝子 株式会社製。 Aグレード)を用いた。
[0130] (1)塗液の作製
ポリ(3—ォクチルチオフェン)力 lwt%となるように、且つ、サイトップが 1 %となる ように、これらをテトラヒドロフランに溶解し、塗液 (C6)を作製した。
[0131] (2)有機 FETの作製
大きさ 50mm角、厚さ 0. 5mmの石英ガラス基板の片面に、厚さ lnmのクロムの膜 を形成し、その上に、厚さ lOOnmの金の膜を形成した。これらは、真空スパッタ法で 形成した。
[0132] 次に、フォトリソグラフィ一法によって上記金属膜をパターユングし、ソース電極およ びドレイン電極を形成した。チャネル長は 100 m、チャネル幅は 3mmとした。なお 、この電極において、クロム膜は、金の膜と基板とを密着させる役割を果たしている。
[0133] 次に、この基板に、実施例 1と同様に、スピンコート法によって上記塗液 (C6)を塗 布した。次に、塗液 (C6)が塗布された基板を室温で 1時間乾燥した。次に、ソース— ドレイン電極の配置を考慮した位置にゲート電極を形成した。ゲート電極は、シャドー マスクを用いた電子ビーム蒸着法によって金を蒸着することによって形成した。このよ うにして、トップゲート型の有機 FETを作製した。
[0134] (3)スピンコート膜および有機 FETの評価結果
ゲート電極作製前のスピンコート膜 (有機半導体層 Z有機絶縁層)について、深さ 方向の元素濃度変化を測定した。その結果、膜の表面側にはサイトップの層が存在 し、石英基板側にはポリ(3—ォクチルチオフェン)の層が存在していることが分かつ た。
[0135] また、作製した有機 FETの移動度は 0. 005cm2/Vsであり、ソース—ドレイン間の
ON電流と OFF電流との比は 104であった。
[0136] なお、実施例 1〜6において、スピンコート法によって塗液を基板上に塗布したが、 スクリーン印刷法やインクジェット法、ディップ法、はけ塗り法、ロールコーター法、ドク ターブレード法と 、つた他の方法を用いて塗液を塗布してもよ 、。
産業上の利用可能性
[0137] 本発明の塗液は、有機半導体層と有機絶縁層とが積層された積層膜を形成するた めの材料として利用できる。この塗液は、電界効果トランジスタの半導体層および絶 縁層を形成する材料として好ましく用いられる。また、本発明は、電界効果トランジス タおよびそれを用いた電子機器に利用でき、特に、プラスチックなどのフレキシブル 基板上に形成される電界効果トランジスタおよびそれを用いた電子機器に好ましく用 いられる。本発明が適用される電子機器としては、たとえば、有機エレクト口ルミネッセ ンスディスプレイ、液晶ディスプレイ、電子ペーパーが挙げられる。

Claims

請求の範囲
[1] 溶媒と、前記溶媒に溶解された第 1および第 2の有機分子とを含む塗液であって、 前記第 1の有機分子が、半導体材料または半導体材料の前駆体であり、 前記第 2の有機分子が、絶縁体材料または絶縁体材料の前駆体であり、 前記第 1の有機分子と前記第 2の有機分子とは互いに相溶性が無い塗液。
[2] 前記第 1の有機分子および前記第 2の有機分子のいずれか一方の有機分子が、 炭化水素基およびフッ化炭素基力 選ばれる少なくとも 1つの基を含有し、他方の有 機分子が少なくとも 1つの極性基を含有する請求項 1に記載の塗液。
[3] 前記一方の有機分子が極性基を含有しな!ヽ請求項 2に記載の塗液。
[4] 前記極性基が水酸基、カルボキシル基およびアミノ基力 選ばれる少なくとも 1つの 基である請求項 2に記載の塗液。
[5] 前記第 1の有機分子および前記第 2の有機分子のいずれか一方の有機分子が、 炭化水素基を含有しフッ化炭素基を含有せず、他方の有機分子がフッ化炭素基を 含有する請求項 1に記載の塗液。
[6] 前記第 1の有機分子がポリチォフェン誘導体である請求項 1に記載の塗液。
[7] 前記第 2の有機分子がポリスチレンである請求項 6に記載の塗液。
[8] 前記第 1の有機分子がペンタセン誘導体である請求項 1に記載の塗液。
[9] 前記第 2の有機分子がポリスチレンである請求項 8に記載の塗液。
[10] 有機半導体層と前記有機半導体層に隣接する有機絶縁層とを含む電界効果トラン ジスタの製造方法であって、
(i)溶媒と、前記溶媒に溶解された第 1および第 2の有機分子とを含む塗液を塗布 する工程と、
(ii)塗布された前記塗液中の前記溶媒を除去することによって、前記第 1の有機分 子を主成分とする第 1の層と、第 1の層に隣接し、前記第 2の有機分子を主成分とす る第 2の層とを形成する工程とを含み、
前記第 1の有機分子が、半導体材料または半導体材料の前駆体であり、 前記第 2の有機分子が、絶縁体材料または絶縁体材料の前駆体であり、 前記第 1の有機分子と前記第 2の有機分子とは互いに相溶性が無い、電界効果ト ランジスタの製造方法。
[11] 前記第 1の有機分子が半導体材料の前駆体であり、
前記第 1の層中の前記第 1の有機分子を処理して前記第 1の層を有機半導体層と する工程をさらに含む請求項 10に記載の製造方法。
[12] 請求項 10に記載の製造方法によって製造された電界効果トランジスタ。
[13] 有機半導体層と前記有機半導体層に隣接する有機絶縁層とを含む電界効果トラン ジスタであって、
前記有機半導体層が、半導体材料である第 1の有機分子を主成分とする層であり、 前記有機絶縁層が、絶縁体材料である第 2の有機分子を主成分とする層であり、 前記有機半導体層と前記有機絶縁層との界面から前記有機絶縁層の外側表面に 向かって、前記第 1の有機分子の割合が徐々に減少しており、
前記有機半導体層と前記有機絶縁層との界面から前記有機半導体層の外側表面 に向かって、前記第 2の有機分子の割合が徐々に減少しており、
前記第 1の有機分子と前記第 2の有機分子とは互いに相溶性が無い、電界効果ト ランジスタ。
PCT/JP2005/015063 2004-08-20 2005-08-18 有機積層膜を形成するための塗液、電界効果トランジスタの製造方法、および電界効果トランジスタ WO2006019133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/599,096 US7560301B2 (en) 2004-08-20 2005-08-18 Coating liquid for forming organic layered film, method of manufacturing field effect transistor, and field effect transistor
EP05772679.6A EP1737027B1 (en) 2004-08-20 2005-08-18 Coating liquid for forming organic multilayer film, method for manufacturing field effect transistor, and field effect transistor
JP2006531849A JP4167287B2 (ja) 2004-08-20 2005-08-18 電界効果トランジスタの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-240468 2004-08-20
JP2004240468 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006019133A1 true WO2006019133A1 (ja) 2006-02-23

Family

ID=35907516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015063 WO2006019133A1 (ja) 2004-08-20 2005-08-18 有機積層膜を形成するための塗液、電界効果トランジスタの製造方法、および電界効果トランジスタ

Country Status (6)

Country Link
US (1) US7560301B2 (ja)
EP (1) EP1737027B1 (ja)
JP (1) JP4167287B2 (ja)
KR (1) KR101003868B1 (ja)
CN (1) CN100499047C (ja)
WO (1) WO2006019133A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179905A (ja) * 2004-12-20 2006-07-06 Palo Alto Research Center Inc 相分離複合膜およびその調製方法
JP2006344895A (ja) * 2005-06-10 2006-12-21 Asahi Kasei Corp 縮合多環芳香族化合物を含有する混合物,縮合多環芳香族化合物薄膜,及びその製造方法
JP2008249968A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp アクティブマトリクス方式の表示装置及びその製造方法
WO2009031583A1 (ja) * 2007-09-04 2009-03-12 Tokyo Electron Limited 半導体装置の製造方法及び半導体装置
WO2009084584A1 (ja) * 2007-12-27 2009-07-09 Sony Corporation 半導体薄膜の形成方法および薄膜半導体装置の製造方法
JP2009177135A (ja) * 2007-12-27 2009-08-06 Sony Corp 薄膜半導体装置、表示装置、および電子機器
JP2009231678A (ja) * 2008-03-25 2009-10-08 Jsr Corp 絶縁膜形成用組成物、絶縁膜の製造方法、及びそれによって得られる絶縁膜
JP2009543323A (ja) * 2006-06-29 2009-12-03 ケンブリッジ エンタープライズ リミティド 配合ポリマー電界効果トランジスタ
JP2010518641A (ja) * 2007-02-13 2010-05-27 エルジー・ケム・リミテッド チアゾロチアゾール誘導体を用いた有機トランジスタおよびその製造方法
WO2013122174A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
WO2013122173A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
WO2014115823A1 (ja) * 2013-01-28 2014-07-31 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法、ならびに有機半導体材料
WO2016031968A1 (ja) * 2014-08-29 2016-03-03 国立大学法人東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
WO2016143774A1 (ja) * 2015-03-11 2016-09-15 富士フイルム株式会社 有機半導体液組成物、有機半導体素子及びその作製方法
WO2017159703A1 (ja) * 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265380B2 (en) * 2005-03-25 2007-09-04 Osaka University Ambipolar organic thin-film field-effect transistor and making method
DE102006059369A1 (de) * 2006-12-15 2008-06-26 Industrial Technology Research Institute, Chutung Fotoelement
GB2458940B (en) * 2008-04-03 2010-10-06 Cambridge Display Tech Ltd Organic thin film transistors
EP2467353B1 (en) 2009-08-21 2016-01-13 The University Of South Dakota Fluorinated aromatic materials and their use in optoelectronics
KR101943232B1 (ko) * 2014-09-25 2019-01-28 후지필름 가부시키가이샤 유기 전계 효과 트랜지스터, 유기 반도체 결정의 제조 방법, 및 유기 반도체 소자
CN109841735B (zh) * 2017-09-30 2020-11-06 Tcl科技集团股份有限公司 Tft的制备方法、用于制备tft的墨水及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179542A (ja) * 2002-11-28 2004-06-24 National Institute Of Advanced Industrial & Technology 有機薄膜トランジスタ及びその製造方法
JP2005243822A (ja) * 2004-02-25 2005-09-08 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2394881A1 (en) 1999-12-21 2001-06-28 Plastic Logic Limited Solution processed devices
CN1149606C (zh) 2001-03-13 2004-05-12 华南理工大学 一种场致发射阴极
GB2374202A (en) * 2001-04-03 2002-10-09 Seiko Epson Corp Patterning method
GB0109295D0 (en) * 2001-04-12 2001-05-30 Univ Cambridge Tech Optoelectronic devices and a method for producing the same
WO2002091460A2 (en) * 2001-05-08 2002-11-14 Koninklijke Philips Electronics N.V. Method of manufacturing an interconnection in an electoronic device
US6963080B2 (en) 2001-11-26 2005-11-08 International Business Machines Corporation Thin film transistors using solution processed pentacene precursor as organic semiconductor
JP3823916B2 (ja) * 2001-12-18 2006-09-20 セイコーエプソン株式会社 表示装置及び電子機器並びに表示装置の製造方法
JP2003258260A (ja) 2002-02-28 2003-09-12 Nippon Hoso Kyokai <Nhk> 有機tftおよびその作製方法
GB0318817D0 (en) * 2003-08-11 2003-09-10 Univ Cambridge Tech Method of making a polymer device
DE10340643B4 (de) * 2003-09-03 2009-04-16 Polyic Gmbh & Co. Kg Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179542A (ja) * 2002-11-28 2004-06-24 National Institute Of Advanced Industrial & Technology 有機薄膜トランジスタ及びその製造方法
JP2005243822A (ja) * 2004-02-25 2005-09-08 Seiko Epson Corp 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ回路、電子デバイスおよび電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1737027A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179905A (ja) * 2004-12-20 2006-07-06 Palo Alto Research Center Inc 相分離複合膜およびその調製方法
JP2006344895A (ja) * 2005-06-10 2006-12-21 Asahi Kasei Corp 縮合多環芳香族化合物を含有する混合物,縮合多環芳香族化合物薄膜,及びその製造方法
US9614158B2 (en) 2006-06-29 2017-04-04 Cambridge Enterprise Limited Blended polymer FETs
US8518738B2 (en) 2006-06-29 2013-08-27 Cambridge Enterprise Limited Blended polymer FETs
JP2009543323A (ja) * 2006-06-29 2009-12-03 ケンブリッジ エンタープライズ リミティド 配合ポリマー電界効果トランジスタ
JP2010518641A (ja) * 2007-02-13 2010-05-27 エルジー・ケム・リミテッド チアゾロチアゾール誘導体を用いた有機トランジスタおよびその製造方法
JP2008249968A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp アクティブマトリクス方式の表示装置及びその製造方法
WO2009031583A1 (ja) * 2007-09-04 2009-03-12 Tokyo Electron Limited 半導体装置の製造方法及び半導体装置
US8298880B2 (en) 2007-09-04 2012-10-30 Tokyo Electron Limited Method for manufacturing coating film with coating liquid
WO2009084584A1 (ja) * 2007-12-27 2009-07-09 Sony Corporation 半導体薄膜の形成方法および薄膜半導体装置の製造方法
JP2009177136A (ja) * 2007-12-27 2009-08-06 Sony Corp 半導体薄膜の形成方法および薄膜半導体装置の製造方法
JP2009177135A (ja) * 2007-12-27 2009-08-06 Sony Corp 薄膜半導体装置、表示装置、および電子機器
JP2009231678A (ja) * 2008-03-25 2009-10-08 Jsr Corp 絶縁膜形成用組成物、絶縁膜の製造方法、及びそれによって得られる絶縁膜
WO2013122174A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
WO2013122173A1 (ja) * 2012-02-17 2013-08-22 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
JPWO2013122174A1 (ja) * 2012-02-17 2015-05-18 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法
US9067857B2 (en) 2012-02-17 2015-06-30 Asahi Glass Company, Limited Fluorine-containing aromatic compound and manufacturing method therefor
US9087996B2 (en) 2012-02-17 2015-07-21 Asahi Glass Company, Limited Fluorine-containing aromatic compound and production method thereof
WO2014115823A1 (ja) * 2013-01-28 2014-07-31 旭硝子株式会社 含フッ素芳香族化合物及びその製造方法、ならびに有機半導体材料
WO2016031968A1 (ja) * 2014-08-29 2016-03-03 国立大学法人東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
JPWO2016031968A1 (ja) * 2014-08-29 2017-04-27 国立大学法人 東京大学 半導体膜の製造方法、半導体膜及び電界効果トランジスタ
US10256164B2 (en) 2014-08-29 2019-04-09 The University Of Tokyo Semiconductor film and field effect transistor having semiconductor and polymer portions stacked adjacent each other
WO2016143774A1 (ja) * 2015-03-11 2016-09-15 富士フイルム株式会社 有機半導体液組成物、有機半導体素子及びその作製方法
JPWO2016143774A1 (ja) * 2015-03-11 2017-06-22 富士フイルム株式会社 有機半導体液組成物、有機半導体素子及びその作製方法
WO2017159703A1 (ja) * 2016-03-16 2017-09-21 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
CN108780844A (zh) * 2016-03-16 2018-11-09 富士胶片株式会社 有机半导体组合物、有机薄膜晶体管的制造方法及有机薄膜晶体管
JPWO2017159703A1 (ja) * 2016-03-16 2019-01-10 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
CN108780844B (zh) * 2016-03-16 2022-04-29 富士胶片株式会社 有机半导体组合物、有机薄膜晶体管的制造方法及有机薄膜晶体管
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
JP7257440B2 (ja) 2020-12-08 2023-04-13 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Also Published As

Publication number Publication date
US20070215902A1 (en) 2007-09-20
JPWO2006019133A1 (ja) 2008-05-08
KR20070050397A (ko) 2007-05-15
EP1737027A4 (en) 2010-12-08
EP1737027A1 (en) 2006-12-27
CN100499047C (zh) 2009-06-10
US7560301B2 (en) 2009-07-14
JP4167287B2 (ja) 2008-10-15
CN1950933A (zh) 2007-04-18
KR101003868B1 (ko) 2010-12-30
EP1737027B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP4167287B2 (ja) 電界効果トランジスタの製造方法
JP4920963B2 (ja) 相分離複合膜の調製方法
EP2077590B1 (en) Field-effect transistor
CN102089870B (zh) 栅极绝缘材料、栅极绝缘膜及有机场效应型晶体管
CN105190901B (zh) 场效应晶体管
JP6106114B2 (ja) 有機薄膜トランジスタ及びその製造方法
JP2014162054A (ja) 相分離構造を含む構造体の製造方法、及びパターン形成方法、並びにトップコート材料
JP2009290187A (ja) 自己組織化単分子膜の形成方法及び構造体、電界効果型トランジスタ
WO2004027889A1 (ja) パターン表面をテンプレートとして用いる材料とその製法
JPWO2006019157A1 (ja) 半導体素子及びその製造方法
Sizov et al. Self-assembled interface monolayers for organic and hybrid electronics
KR100817933B1 (ko) 플루오로알킬렌옥시기가 치환된 페닐에틸실란 화합물 및 이를 중합한 고분자
JP2006245559A (ja) 電界効果トランジスタ及びその製造方法
JP6548572B2 (ja) パターン形成方法及び対象物の被処理面の改質方法
JP2007188923A (ja) 電界効果型トランジスタおよびそれを用いた画像表示装置
JP2006080056A (ja) 両末端に脱離反応性の異なる異種官能基を有する有機化合物を用いた有機薄膜および該有機薄膜の製造方法
US20100090200A1 (en) Organic thin film transistors
JP4000836B2 (ja) 膜パターンの形成方法
WO2007132845A1 (ja) 有機半導体デバイス及びその製造方法
WO2018168004A1 (ja) 金属微粒子分散体、導電性インク、および電子デバイス
KR101831858B1 (ko) 반도체 조성물
WO2007125899A1 (ja) 有機薄膜トランジスタ
JP2012109586A (ja) 微細加工構造及び電子デバイス
JP2019117884A (ja) 積層構造体およびその製造方法
JP2006036723A (ja) π電子共役系分子含有ケイ素化合物及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006531849

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005772679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005772679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599096

Country of ref document: US

Ref document number: 2007215902

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067021490

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580014055.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005772679

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10599096

Country of ref document: US