WO2006006702A1 - 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法 - Google Patents

有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法 Download PDF

Info

Publication number
WO2006006702A1
WO2006006702A1 PCT/JP2005/013171 JP2005013171W WO2006006702A1 WO 2006006702 A1 WO2006006702 A1 WO 2006006702A1 JP 2005013171 W JP2005013171 W JP 2005013171W WO 2006006702 A1 WO2006006702 A1 WO 2006006702A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zeolite
catalyst composition
exhaust gas
particles
Prior art date
Application number
PCT/JP2005/013171
Other languages
English (en)
French (fr)
Other versions
WO2006006702B1 (ja
Inventor
Tomoo Ikoma
Takanobu Sakurai
Yoshiki Nakano
Original Assignee
Nikki-Universal Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki-Universal Co., Ltd. filed Critical Nikki-Universal Co., Ltd.
Priority to CN2005800304951A priority Critical patent/CN101018604B/zh
Priority to EP05766375.9A priority patent/EP1787720B1/en
Priority to JP2006529191A priority patent/JP5069467B2/ja
Priority to US11/572,095 priority patent/US8575054B2/en
Priority to KR1020077003591A priority patent/KR101126063B1/ko
Publication of WO2006006702A1 publication Critical patent/WO2006006702A1/ja
Publication of WO2006006702B1 publication Critical patent/WO2006006702B1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum

Definitions

  • the present invention relates to a catalyst composition for directly converting and purifying exhaust gas containing an organic nitrogen compound, ammonia, or a combination thereof to N, a catalyst containing the catalyst composition, and
  • Exhaust gas containing organic nitrogen compounds and ammonia (hereinafter referred to as nitrogen-based exhaust gas) often has a bad odor and is often harmful to the human body.
  • a noble metal-supported catalyst such as platinum or palladium has been used for treating nitrogen-based exhaust gas.
  • these catalysts have a high decomposition rate of organic nitrogen compounds and ammonia, the selectivity of NO such as NO and NO is high, so the generated NO is further converted to N by a denitration catalyst.
  • Patent Document 1 There has been reported a catalyst in which the above metal is sulfated and supported (see Patent Document 1). However, with this catalyst, it is necessary to add a volatile sulfur compound to the exhaust gas in order to keep the metal sulfated during the reaction.
  • This catalyst converts acrylonitrile to N with high selectivity.
  • Patent Document 1 JP-A-8-173766
  • Patent Document 2 JP 2001-293480 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-58019
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-167306
  • the present invention has been made in view of the above circumstances, and in the purification of nitrogen-based exhaust gas, nitrogen-containing compounds such as organic nitrogen-containing compounds and ammonia are decomposed at a relatively low temperature, NO, Selectively convert to N while suppressing the formation of by-products such as HCN, NH, CO, etc.
  • the present invention provides the following.
  • a catalyst composition for purifying exhaust gas containing an organic nitrogen compound, ammonia, or a combination thereof is provided.
  • the sum of the weights of one or more selected from the group consisting of Pt, Pd, Ru, Rh, Ir and their alloy strength with respect to the sum of the weights of cuprates and zeolites is in the range of lppm to 500ppm.
  • the catalyst composition according to (6) is in the range of lppm to 500ppm.
  • An inorganic oxide particle selected from the group consisting of silica, titanium, and alumina carrying one or more selected from the group consisting of Pt, Pd, Ru, Rh, Ir, and alloys thereof.
  • Zeolite has a SiO ZA1 O molar ratio of 3 to 70, and the zeolite is in a proton type, or
  • a catalyst layer comprising the catalyst composition according to any one of (11), formed on the catalyst support;
  • Catalyst for purifying exhaust gas containing organic nitrogen compounds, ammonia, or combinations thereof Catalyst for purifying exhaust gas containing organic nitrogen compounds, ammonia, or combinations thereof.
  • (13) including a step of mixing copper oxide particles and zeolite particles
  • a method for producing a catalyst composition for purifying exhaust gas containing an organic nitrogen compound, ammonia, or a combination thereof is a method for producing a catalyst composition for purifying exhaust gas containing an organic nitrogen compound, ammonia, or a combination thereof.
  • a catalyst manufacturing method for purifying exhaust gas containing organic nitrogen compounds, ammonia, or a combination thereof is a catalyst manufacturing method for purifying exhaust gas containing organic nitrogen compounds, ammonia, or a combination thereof.
  • At least one selected from the group consisting of copper oxide powder, zeolite powder and Pt, Pd, Ru, Rh, Ir and alloys thereof is used for exhaust gas containing organic nitrogen compounds, ammonia, or a combination thereof.
  • An exhaust gas treatment method comprising:
  • FIG. 1 shows N yields at reaction temperatures of 300 to 450 ° C. for catalysts I, II, VII and VIII of the present invention and catalysts A and F of comparative examples.
  • FIG. 2 shows N yields at 300 to 450 ° C. for Catalyst IX of the present invention and Catalyst E of Comparative Example.
  • FIG. 3 shows N yield from ammonia at 300-400 ° C. for catalysts II, XI, and XII of the present invention.
  • the catalyst composition of the present invention contains copper oxide and zeolite, and is preferably formed by mixing copper oxide particles and zeolite particles.
  • prepared copper oxide particles it is possible to easily control the powder characteristics such as the average particle size and particle size distribution of the cuprate particles, thereby improving the catalyst performance. can do.
  • the copper oxide refers to an oxide containing copper, and includes a copper-containing composite oxide.
  • copper oxide represented by the composition formula of CuO (0.45 ⁇ x ⁇ l. 1) can be mentioned, typically C uO and CuO.
  • a combination of cuprates having a plurality of compositions may be used.
  • a commercially available product can be used, and a mixture of an acid compound including a copper oxide compound may be used.
  • a copper oxide compound may be used.
  • CuO in hopcalite may be used.
  • the shape of the cuprate oxide particles used in the present invention includes a spherical shape, a hemispherical shape, a cubic shape, a flake shape, etc., with no particular limitation.
  • the average particle size of the cuprate is 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and particles of 5 ⁇ m or less are preferred. Yes.
  • the average particle size in this specification refers to the particle size of secondary particles.
  • NO, N O, HCN, NH can be controlled by controlling the contact state with the zeolite particles by changing the average particle size of the cuprate particles.
  • the zeolite used in the present invention may be a natural product or a synthetic product without particular limitation.
  • natural zeolites include mordenite, erionite, fuerite, and chapasite.
  • Synthetic products include X-type zeolite; Y-type zeolite; MFI-type zeolite such as ZSM 5; L-type zeolite; A-type zeolite;
  • Typical examples of zeolites include vertical zeolites available as UZ LZY-84, silicalites available as UFI MFI-40, and beta zeolites available as UOP BETA-ZEOLI TE zeolite.
  • An example is mordenite available as USM LSM-8.
  • mordenite, MFI type and j8 type zeolites, and the force is also a component of silica and alumina molar ratio (SiO)
  • ZA1 O molar ratio is 3 or more, preferably 5 or more, 70 or less, more preferably 5 to 50, especially
  • the zeolite used in the present invention may be a proton type or a substitution type described below.
  • zeolite a mixture of proton type zeolite and substitution type zeolite may be used.
  • proton-type zeolite refers to zeolite that has at least part of ion-exchangeable cation sites occupied by H +.
  • prototype of mordenite is H-mordenite and ZSM as an example of MFI type.
  • the proton type of 5 is H—ZS In the case of M5 and ⁇ -type zeolite, it is expressed as ⁇ - ⁇ zeolite.
  • SiO content of ion-exchanged Na ion or K ion (these alkali metal elements are represented by M)
  • the molar ratio to the amount is 0 to 0.1, preferably
  • Proton type zeolite of 0 to 0.05, more preferably 0 to 0.03 improves N selectivity.
  • Substituted zeolite is a zeolite in which at least a part of ion-exchangeable cation sites are occupied by cations other than protons (substituted cations) such as NH + and metal cations.
  • the substituted cation is a metal cation
  • it is expressed as a metal-substituted zeolite.
  • proton-type Y-type zeolite is expressed as HY-type zeolite
  • Fe-type thione occupies cation sites
  • Y-type zeolite is expressed as Fe-Y-type zeolite
  • NH + occupies cation sites.
  • Zeolite is expressed as NH-Y type zeolite.
  • zeolites substituted with Fe cations are expressed as Fe-zeolite.
  • all zeolites substituted with Cu and Co cations are written as Cu-zeolite and Co-zeolite, respectively.
  • substituted metal that occupies the ion-exchangeable cation site of the metal-substituted zeolite
  • Group 8 metals such as Fe
  • Group 9 metals such as Co and Rh
  • Group 10 metals such as Ni and Pd
  • Group 11 elements such as Cu and Ag.
  • Preferred substitution metals are Fe, Cu, Ni, Co and combinations thereof.
  • catalysts using alkali metal-substituted zeolites such as Na and K or alkaline earth metal-substituted zeolites such as Mg and Ca are Fe, Cu, Co and Ni.
  • these alkali metal or alkaline earth metal substituted zeolites are 1.0% by weight or less, preferably 0 to 0.5% by weight as metal oxides relative to the catalyst composition. It is preferable to limit the content to 0 to 0.3% by weight.
  • examples of the metal-substituted zeolite preferably used in the present invention include zeolites substituted with any of Fe, Cu, Ni, and Co. These zeolites may be used alone or in combination. Also good.
  • the amount of the substituted metal ion of Fe, Cu, Ni, or Co is appropriately selected depending on the SiO ZA1 O molar ratio of the zeolite.
  • the total amount of substitution ions is in the range of l-6wt% with respect to the weight of zeolite.
  • the average particle size of the zeolite particles used in the present invention is 0.
  • the ratio of (average particle diameter of zeolite particles) / (average particle diameter of copper oxide particles) is not limited, but is typically 10 or more, preferably 20 or more, 200 or less, preferably 100 or less. is there. This average particle size ratio is selected to promote contact between the zeolite particles and the copper oxide particles in the catalyst layer.
  • the weight of the cuprate with respect to the sum of the weight of the cuprate and zeolite is not particularly limited as long as the effect of the present invention can be obtained, but 0.1 wt% Above, preferably 0.5 wt% or more, more preferably 1.0% or more, further preferably 2. Owt% or more, 40 wt% or less, preferably 30 wt% or less. If it is less than the above range, the decomposition activity of organic nitrogen compounds and ammonia, which are the object of the present invention, is not sufficient, or to N
  • the catalyst composition of the present invention may contain one or more precious metals.
  • noble metals include Pt, Pd, Ru, Rh, Ir, alloys thereof, or mixtures thereof.
  • the noble metal in the catalyst composition or catalyst there are no particular restrictions on the form of the noble metal in the catalyst composition or catalyst, and it may be supported on oxalate and Z or zeolite, or heat resistant such as silica, alumina, silica 'alumina, titania, etc.
  • the particles supported on the conductive inorganic oxide particles may exist in a mixed state with the zeolite particles.
  • These heat-resistant inorganic oxide particles are spherical or hemispherical and have an average particle diameter of 1 to 30 ⁇ m, and the precious metal is preferably loaded in a range of 0.01 to 2.0% by weight as a metal component. Those are preferred.
  • the weight ratio of the noble metal in the catalyst composition of the present invention is 1 ppm or more, preferably 2 ppm or more, more preferably 5 ppm or more, 1 OOOppm or less, based on the total weight of the cuprate and zeolite. Preferably it is 500 ppm or less, More preferably, it is 200 ppm or less.
  • the catalyst composition of the present invention containing a noble metal component in the above range is 250-600 ° C, preferably 300-500. C, more preferably 300-450. C, more preferably 300-400.
  • C temperature range In the range, organic nitrogen compounds and Z or ammonia contained in the exhaust gas are converted to N at a high selectivity and high boiling point components such as carbonaceous unburned components and tar.
  • the catalyst composition containing the noble metal component is a long-term treatment when treating exhaust gas containing about 1-200 ppm of an acidic component such as SO.
  • the addition of the noble metal to the catalyst composition can be performed using various known means.
  • the precious metal may be supported after mixing the cuprate oxide and zeolite.
  • a noble metal may be previously supported on a cuprate and then mixed with zeolite particles.
  • precious metal after precious metal is supported on zeolite beforehand, it may be mixed with copper oxide particles.
  • the noble metal after the noble metal is supported on a substance other than the cuprate and zeolite, the substance may be mixed with the cuprate and zeolite.
  • the substance supporting the noble metal may or may not have catalytic activity for the organic nitrogen compound or ammonia, but is preferably heat resistant.
  • Examples of such substances include silica, alumina, silica'alumina, and titer.
  • the catalyst composition formed by mixing Pt or Ru particles on silica or titanium particles with copper oxide and zeolite particles decomposes organic nitrogen compounds almost completely.
  • Another embodiment of the catalyst composition of the present invention may include a manganate salt!
  • CO production can be suppressed by adding manganate.
  • the weight of manganese oxide is 0.1 lwt% or more and 10wt% or less with respect to the sum of the weight of cuprate and zeolite. preferable. If it is less than the above range, the effects of manganate may be difficult to detect, and if it exceeds the above range, formation of NO and N 2 O may be promoted.
  • manganese oxide means manganese.
  • Manganese oxides include manganese oxides represented by the composition formula MnO (0.9 ⁇ x ⁇ 2.1), such as MnO, Mn O, and Mn. o.
  • a plurality of manganic acid compounds may be used in combination.
  • the average valence of the compound is not particularly limited, but is typically 2.5 or more, preferably 2.9 or more, and 4.1 or less.
  • Manganese oxide may be supplied in the form of a mixture with other metal acids. For example, using MnO in hopcalite as manganate
  • the catalyst composition of the present invention contains copper oxide and zeolite as essential components, but other components such as alumina, silica, titanium dioxide, zirconium, etc., as long as the desired catalytic action is not inhibited.
  • a refractory inorganic oxide may further be included.
  • the acid content is preferably limited to 1.0% by weight or less, more preferably 0 to 0.5% by weight, and still more preferably 0 to 0.3% by weight.
  • the catalyst composition of the present invention includes a cuprate salt and a proton type zeolite, and the cuprate salt relative to the sum of the weight of the cuprate salt and the proton type zeolite.
  • Object weight Force is in the range of 2.0—20wt%.
  • the catalyst composition of the present invention includes a copper oxide, a proton type zeolite, and a noble metal, and the copper oxide is added to the sum of the weight of the copper oxide and the proton type zeolite.
  • the weight is in the range of 0.5-10% and the sum of the precious metal weights is in the range of 2-500 ppm.
  • the catalyst composition of the present invention comprises copper oxide, SiO
  • the weight of the copper oxide is in the range of 2 to 30 wt%, and the sum of the weight of the noble metal is 2 to 2% of the sum of the weight of the copper oxide and the proton type zeolite. It is in the range of 500ppm.
  • the catalyst composition of the present invention comprises copper oxide, SiO
  • the catalyst composition of the present invention includes a copper oxide, a proton type zeolite, and a noble metal, and the copper oxide is added to the sum of the weight of the cuprate and the proton type zeolite.
  • the weight is in the range of 1.0-10% and the sum of the weights of the precious metals is in the range of 2-500 ppm.
  • the noble metal is supported on silica particles, titer particles, alumina particles, or a mixture thereof, and the particles are mixed with cuprate particles and proton type zeolite particles.
  • the catalyst composition of the present invention has a copper oxide, SiO ZA1 O molar ratio of 5-50.
  • the weight of the precious metal is in the range of 2 to 500 ppm.
  • the noble metal is Pt or Ru, and is supported on silica particles, titer particles or a mixture thereof, and the particles are mixed with cuprate particles and proton type zeolite particles.
  • the catalyst composition of the present invention comprises copper oxide and at least one metal-substituted zeolite of Fe, Cu, Ni, Co, and the weight of the cuprate and metal-substituted zeolite.
  • the weight of copper oxide is 1.0 to 15wt%.
  • the catalyst composition of the present invention comprises copper oxide, one or more metal-substituted zeolites of Fe, Cu, Ni, and Co, and a noble metal.
  • the weight of copper oxide is in the range of 1.0-10wt%, and the weight of precious metal is in the range of 2 to 500ppm with respect to the sum of weight.
  • the noble metal is supported on silica particles, titer particles, alumina particles, or a mixture thereof, and the particles are mixed with cuprate particles and proton type zeolite particles.
  • the catalyst composition of the present invention comprises copper oxide, one or more metal-substituted zeolites of Fe, Cu, Ni, and Co, and a noble metal.
  • the weight of the copper oxide is in the range of 1.0-30 wt% with respect to the sum of the weights.
  • the SiO ZA1 O molar ratio of the metal-substituted zeolite is 5 to 50, and the sum of the weights of the noble metals is 2 to 500ppm range
  • the catalyst composition of the present invention comprises one or more metal-substituted zeolites of copper oxide, Fe, Cu, Ni, Co and MnO, and the weight of the copper oxide and the metal-substituted zeolite is
  • the weight of copper oxide is in the range of 1.0-10 wt%, and the weight of manganese oxide is in the range of 0.5 wt% -10 wt%.
  • the catalyst composition of the present invention includes one or more metal-substituted zeolites of copper oxide, Fe, Cu, Ni, and Co, and MnO.
  • Type zeolite of copper oxide, Fe, Cu, Ni, and Co, and MnO.
  • the weight of copper oxide is in the range of 1.0-10 wt%, and the weight of manganate is 0.5 wt% —
  • the copper oxide and manganese oxide are components of hopcalite.
  • the catalyst composition of the present invention is produced by mixing copper oxide particles and zeolite particles. Any known means such as dry mixing and wet mixing can be used without any particular limitation on the mixing means. By using dry mixing, a powdery catalyst composition can be produced, and by using wet mixing, a slurry-like catalyst composition can be produced. In mixing, components other than copper oxide and zeolite may be mixed together, or after mixing the copper oxide particles and zeolite particles, other components may be mixed. Other components include binder components, noble metal-supported silica particles, noble metal-supported titer particles, and noble metal-supported alumina particles. The average particle diameter of these noble metal-supported particles is generally in the range of 0.5 to 20 / ⁇ ⁇ .
  • the binder examples thereof include colloidal silica, alumina sol, silicate sol, and boehmite.
  • the catalyst composition of the present invention may be in the form of a powder, a pellet, or a slurry.
  • the present invention also relates to a catalyst in which a catalyst layer containing the above-described catalyst composition is formed on a catalyst support (both structural bodies!).
  • a typical catalyst has a form in which a catalyst layer is formed on a catalyst support surface using a catalyst composition containing copper oxide and zeolite. Therefore, in the catalyst layer, the copper oxide particles and the zeolite particles exist in a mixed state, and are fixed with an appropriate binder between the particles and between the particles and the support.
  • the thickness of the catalyst layer is generally in the range of 10 to: LOOO / zm.
  • the shape of the catalyst support to be used is not particularly limited, and a shape having a large contact area with a gas having a small differential pressure generated during gas flow is preferable.
  • Preferred shapes include saws, two cams, corrugates, metal foams, sheets, meshes, fibers, knives, and filters.
  • Examples of the support material include hopcalite, cordierite, alumina, silica'alumina, carbon fiber, metal fiber, glass fiber, ceramic fiber, and stainless steel.
  • As the material for the support a material excellent in corrosion resistance and heat resistance is preferable.
  • a mixture of copper oxide particles and zeolite particles is formed.
  • this catalyst composition may be used as the mixture.
  • Water and optionally a binder are added to the mixture and kneaded to form a slurry.
  • the catalyst composition may be used as a slurry in a subsequent process.
  • the step of mixing the copper oxide particles and the zeolite particles and the step of forming the slurry may be performed sequentially, continuously, or simultaneously. If necessary, manganate and Z or precious metal may be added to the mixing step and Z or slurrying step.
  • This slurry is applied to a catalyst support and dried. There are no particular restrictions on the coating method, and any known method including washcoat or datebing can be used. These operations can be repeated as necessary to adjust the thickness of the catalyst layer.
  • the present invention also relates to an exhaust gas purification apparatus using the above-described catalyst.
  • the exhaust gas purifying apparatus has an exhaust gas flow path, and includes a first catalyst region in which the catalyst of the present invention is accommodated and a second catalyst region in which a noble metal-supported catalyst is accommodated.
  • the second catalyst zone (rear stage) is downstream from the first catalyst zone (front stage).
  • Another catalyst region may be provided in the flow path.
  • As the noble metal-supported catalyst accommodated in the second catalyst region various known catalysts, for example, a platinum catalyst (expressed as PtZAl 2 O) supported on alumina can be used.
  • the noble metal-supported catalyst preferably has a hydrocarbon acidifying ability.
  • a region containing an adsorbent or decomposition catalyst for capturing or decomposing the catalyst poison component in the exhaust gas may be further provided in the flow channel upstream of the region containing the catalyst of the present invention.
  • the life of the catalyst of the present invention can be increased. It can be significantly improved.
  • Organic nitrogen compounds that can be treated with the catalyst of the present invention include: -tolyl such as acetonitrile and acrylonitrile; amides such as formamide and dimethylformamide; amines such as methylamine, ethylamine, dimethylamine, jetylamine, trimethylamine, and triethylamine; protein Amino acids; alkanolamines such as ethanolamine; heterocyclic compounds such as pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, pyrrolidone; ammonia such as quaternary ammonia compounds; Um compounds; imide compounds and urethane compounds having applications as paint components and fiber components.
  • Organic nitrogen compounds are compounds containing at least one nitrogen atom in the molecule! Uh.
  • An exhaust gas containing an organic nitrogen compound and Z or ammonia is used for the production process of these compounds, various processes using these compounds as raw materials and solvents, and various processes in which these compounds become by-products. Occurs in the process.
  • the exhaust gas can be roasted coffee; wastewater treatment; processing of plants and animals; food processing; production of synthetic fibers, synthetic rubbers and synthetic resins having nitrile as a polymer unit; organic nitrogen compounds as solvents or paints It occurs in the coating process using paints that are included as components; in the coating process (for example, electrodeposition process) or baking process of polyimide paint.
  • any exhaust gas in addition to organic nitrogen compounds, organic solvents, other organic compounds, or thermal decomposition products usually coexist.
  • organic compounds such as cellulose, hemicellulose, fatty acids, and caffeine are mixed in addition to organic nitrogen compounds such as proteins, amino acids, and these heat-denatured components.
  • the catalyst of the present invention can be used for the treatment of exhaust gas containing other organic compound components in addition to these organic nitrogen compounds and Z or ammonia.
  • the catalyst of the present invention is small! /, A space velocity (for example, SV is 3, OOOhr " 1 ; SV is a ratio of a gas volume passing through to a catalyst volume per unit time) and a space velocity.
  • SV 50, 000-100, OOOhr-, but also shows high decomposition rate of organic nitrogen compounds and Z or ammonia, and high N selectivity, as well as NO, NO, NH, HCN, nitrogen-containing
  • intermediates eg, amines, imines, imides, etc.
  • undesirable by-products such as CO can be reduced.
  • SV refers to the volume ratio of exhaust gas that passes per hour to the volume including the space part of the Her-cam body.
  • SV represents the volume ratio of exhaust gas that passes through per hour with respect to the volume of the packed bed.
  • the organic component in the exhaust gas is oxidized to form CO.
  • the catalyst of the present invention is 250 ° C or higher, preferably 300 ° C or higher, more preferably 300 ° C or higher and 600 ° C or lower, preferably 500 ° C or lower, more preferably 450 ° C or lower, even more preferably. Is 300-400 ° C, and when it comes into contact with exhaust gas containing organic nitrogen compound and Z or ammonia as a nitrogen content of 1-1000 wt ppm, these components are decomposed efficiently and high N selectivity is obtained .
  • Na-type mordenite (UOP SCM-5, SiO 2 / Al 2 O molar ratio 10.7, average particle size 5.
  • the ratio of CuO represented by (hereinafter, unless otherwise specified, the ratio of each component is expressed as a ratio to the sum of the weight of CuO + the weight of zeolite) was 2.2 wt%.
  • Catalysts II and II are the same as Catalyst I except that the amounts of SCM5 and CuO powders are selected. I was manufactured.
  • Catalyst IV was produced in the same manner as Catalyst I except that the amount of CuO powder was 0.52 g. The percentage of CuO in catalyst IV was 2.2 wt%.
  • Catalyst V was produced in the same manner as Catalyst IV except that 0.19 g of hopcalite powder was used instead of CuO powder and the amount of Fe-mordenite was changed to 25.5 g.
  • the ratio of CuO in catalyst V was 0.2 wt%.
  • the hopcalite used was manufactured by Sud Chemie, the composition of which was as follows, and the average particle size was 7.3 m.
  • MnO 72.6 wt%
  • CuO 21. lwt%
  • K2O 3.7 wt%.
  • Catalyst VI was prepared in the same manner as Catalyst V except that the amount of hopcalite powder was 0.56 g and 25.2 g of Cu-mordenite was used instead of 25.5 g of Fe-monoredenite. The proportion of CuO in catalyst VI was 0.5 wt%.
  • Catalyst VII was prepared in the same manner as Catalyst V except that the amount of Cu-zeolite and hopcalite was selected so that the CuO ratio was 0.8 wt%.
  • a slurry was prepared using 17.5 g of 0.04 wt%), 525 g of alumina sol, and 460 g of deionized water. Using this slurry, a catalyst vm was produced in the same manner as Catalyst I.
  • Catalyst IX was prepared in the same manner as Catalyst I except that the weights of ZSM5 and CuO were selected.
  • Catalyst X Select the amount of CuO powder, manganese oxide powder (manufactured by Crows) and the aforementioned NH-SCM5 so that the CuO ratio is 6.3 wt% and the manganese oxide ratio is 0.7 wt%.
  • a slurry was prepared using 35 g of 0.04 wt%), 105 g of alumina sol, and 240 g of deionized water. Using this slurry, Catalyst XII was produced in the same manner as Catalyst I.
  • the ratio of CuO is 13wt%, and the same H-type mordenite (U Z, L ZM8) used in Catalyst XIII is 87wt%, except that the amount of CuO powder and proton type zeolite is selected. Catalyst XIV was produced.
  • Catalyst XV was prepared in the same manner as Catalyst XIV.
  • Pt-supported TiO powder Pt support amount: 0.04 wt% was used.
  • Catalyst XVI was prepared in the same manner as Catalyst XV, except that
  • Catalyst XVII was produced in the same manner as Catalyst XV, except that Zeolite ⁇ ) manufactured by UOP was used.
  • the catalyst XIX was produced in the same manner as the catalyst XV, except that the catalyst (Zeolist, CBV-3020) was used.
  • the catalyst XIX was produced in the same manner as the catalyst XV, except that the catalyst (Ceolist CBV-5524) was used.
  • composition of catalyst I XX is shown in Table 1 below.
  • the ratio of each component is expressed as wt% with respect to the sum of the weight of CuO and zeolite.
  • each component is expressed as a ratio to the sum of the weight of CuO and zeolite.
  • Catalyst A was prepared in the same manner as Catalyst IV, except that all CuO was replaced with Fe-mordenite. [0078] Catalyst B
  • Catalyst B was prepared in the same manner as Catalyst V except that all of the Fe-mordenite was replaced with hopcalite.
  • Catalyst C was produced in the same manner as Catalyst V using a mixed slurry of 25.6 g of commercially available denitration catalyst (manufactured by Catalyst Kasei Co., Ltd.), 2.lg of Hopcalite, 32 g of silica sol, and 20 g of water.
  • MnO powder 1.3g, NH—SCM5 25g, alumina sol 28g, water 26g
  • Catalyst D was produced in the same manner as Catalyst I.
  • Catalyst E was prepared in the same manner as Catalyst A, except that all Fe-mordenite was replaced with CU-ZSM5.
  • Catalyst F was produced in the same manner as Catalyst D, except that a Pt-supported alumina catalyst was used instead of Cu-mordenite.
  • Catalyst H was produced in the same manner as Catalyst XV, except that Na-type mordenite of Z-642NAA) was used.
  • composition of catalyst A-I is shown in Table 2 below.
  • catalyst D and E using only respective Cu- ZSM5 and Pt / Al 2 0 3 as an active ingredient.
  • Catalyst B ⁇ Pi C is present as a component of hopcalite.
  • a gas containing dimethylformamide is circulated through each of the above-mentioned Hercam type catalysts to increase the catalytic activity.
  • the composition of the gas used is as follows.
  • reaction temperatures were 300 ° C, 350 ° C, 400 ° C, and 450 ° C.
  • NO and NO chemiluminescence method
  • Decomposition rate of DMF, conversion rate of DMF to N, and yield of each product are calculated by the following formulas.
  • the decomposition rate, residual rate, yield, and selectivity are expressed in mol%.
  • DMF decomposition rate (%) -3 ⁇ 4 ⁇ ) ⁇ ⁇ 0 °
  • the production amount of “other N-containing components” was calculated by the following method. First, a Pt catalyst is further installed at the catalyst outlet, and DMF remaining in the gas after passing through the catalyst of the present invention, generated NH, and “other N-containing components” are converted to N, NO, and NO. It was. This Pt
  • the rate (Pt) is determined by DM with Pt catalyst.
  • N Yield ⁇ (1 ⁇ Yield (Pt) + N 2 0 Yield ( ⁇ ⁇ - ⁇ ⁇ , Yield + N 2 0 Yield /0.8 (DMF Residual Ratio + NH 3 Yield) [0106] N Yield is The following formula was used.
  • Fig. 1 shows the N yield of the catalysts I, II, VII and VIII of the present invention and the comparative catalysts A and F at a reaction temperature of 300 to 450 ° C.
  • the catalyst of the present invention containing copper oxide and zeolite is capable of decomposing almost 100% of DMF at 350 ° C. to 450 ° C., and NH 3, ⁇ , ⁇ ⁇ ,That
  • the catalyst of the present invention exhibits excellent performance in the treatment of nitrogen-based exhaust gas.
  • the DMF decomposition rate at 300 ° C of the catalyst of the present invention mixed with copper oxide and zeolite (catalyst IX) is 100%, while Cu- ZSM5 (catalyst) is an ion exchanged with Cu. E) is 79%, which indicates that the catalyst of the present invention is more active. Furthermore, the N selectivity at 300-350 ° C of the catalyst IX of the present invention is 76-98%.
  • the catalyst E of Comparative Example shows 32-47%, which indicates that the selectivity of the catalyst of the present invention is superior.
  • the catalyst IX of the present invention is about 27% at 300 350 ° C.
  • the catalyst E of Comparative Example has 18 28% Met. From this result, it can be seen that the use of the catalyst of the present invention can also suppress the generation of CO.
  • the catalyst of the present invention has a high selectivity with a very low NO, NO, and CO generation amount even when the decomposition rate of the organic nitrogen compound is almost 100%.
  • a gas containing ammonia was circulated through the aforementioned catalyst, and the catalytic activity was evaluated.
  • the used yarns are as follows.
  • Table 7 shows the results of comparing the DMF decomposability of catalyst compositions with different types of zeolite.
  • Catalyst XII using H-mordenite (SiO 2 / Al 2 O molar ratio 10.7) is 300 to 450
  • the catalyst H using Na-mordenite (SiO 2 / Al 2 O molar ratio 10.7) is converted to DMF by 100% decomposition and converted to 84.2-97. 1% N2.
  • Catalyst G using H-mordenite with a SiO 2 / Al 2 O molar ratio of 240 is also the same as catalyst H.
  • the conversion rate to N is low.
  • catalyst XVIII using 13-type zeolite decompose 100% of organic nitrogen compounds that have a high conversion rate to N.
  • catalyst XIX using H-ZSM decompose 100% of organic nitrogen compounds that have a high conversion rate to N.
  • a gas having the above composition was passed through the catalyst at SV20000 hr and at a temperature of 350 ° C., and the catalyst after operating for 500 hours was evaluated 00
  • reaction temperature Upper; 300 ° C, Lower 350 ° C
  • Catalysts containing Pt XV decomposes organic nitrogen compounds with little decrease in activity even in the presence of so

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明は、有機窒素化合物を含む排ガス(窒素系排ガス)を浄化する際に、該化合物を比較的低温で分解して、これをN2に転化して無害化し得る、触媒組成物、該触媒組成物を含む触媒、該触媒の製造方法、該触媒を含む排ガス浄化装置を提供する。  銅酸化物粒子及びゼオライト粒子を混合することによって形成される触媒組成物を用いることにより、有機窒素化合物及び/又はアンモニアを高選択的にN2に変換できる。本発明の触媒組成物は、さらにマンガン酸化物及び/又は貴金属を含んでもよい。

Description

明 細 書
有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法 技術分野
[0001] 本発明は、有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガス を直接 Nに転化して、浄化するための触媒組成物、該触媒組成物を含む触媒、及
2
び、該排ガス処理方法に関する。
背景技術
[0002] 有機窒素化合物やアンモニアを含有する排ガス (以下、窒素系排ガスと表記する) は悪臭を有することが多ぐ人体に有害であることも多いため、その処理が求められ ている。
[0003] 従来、窒素系排ガスの処理には、白金又はパラジウム等の貴金属担持触媒が用い られてきた。これらの触媒は有機窒素化合物及びアンモニアの分解率は高 、ものの 、 NO、 NO等の NOの選択率が高いため、生成した NOをさらに脱硝触媒で Nに
2 2 還元する必要がある。
[0004] N選択性が高い触媒としては、以下の報告例がある。まず、シリカ担体上に Cu等
2
の金属を硫酸化して担持した触媒が報告されている(特許文献 1を参照)。しかし、こ の触媒では、反応中に金属を硫酸化した状態で保持するため、排ガスに揮発性硫黄 化合物を添加する必要がある。
[0005] 次に、チタ-ァ及び Z又はチタ-ァ'シリカにバナジウム酸ィ匕物、タングステン酸ィ匕 物、及びパラジウムを担持した触媒が報告されており、バナジウム酸ィ匕物及びタンダ ステン酸ィ匕物に代えて銅化合物を使用できることも記載されている(特許文献 2)。し かし、銅化合物を用いると活性が劣るとされており、さらなる改良が求められている。
[0006] さらに、 Cuィ匕合物を Al O及びゼォライト等の担体に担持した触媒も記載されて!ヽ
2 3
る(特許文献 3を参照)。この触媒はアクリロニトリルを高い選択率で Nに転化するとさ
2
れているが、より高い N選択率を有し、かつ簡便な方法で作成できる触媒が求めら
2
れている。
[0007] さらに、ディーゼルエンジンの排ガスの NOx処理用として、酸化銅と ZSM5及び Z 又はゼォライト j8と、マグネシウム、カルシウム、銀の少なくとも 1種の元素の酸ィ匕物を 含む NO浄ィ匕用触媒が報告されている (特許文献 4を参照)。この触媒を有機窒素 化合物の分解処理に適用すると、副生成物である COや NHの生成が増え、 Nへの
3 2 転化率が低下する t ヽぅ問題がある。
特許文献 1:特開平 8— 173766号公報
特許文献 2:特開 2001— 293480号公報
特許文献 3 :特開 2004— 58019号公報
特許文献 4:特開 2004— 167306号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は上記の事情に鑑みなされたものであり、窒素系排ガスの浄ィ匕において、 有機窒素含有ィ匕合物やアンモニアなどの含窒素化合物を比較的低温で分解し、 N O、 HCN、 NH、 CO等の副生成物の生成を抑制しつつ、 Nへ選択的に転化する、
3 2 即ち高 N選択性の触媒組成物、該触媒組成物を含む触媒、及び排ガス処理方法を
2
提供する。
課題を解決するための手段
[0009] 本発明者らはこれらの課題を解決すべく鋭意検討を進めた結果、銅酸化物粒子及 びゼオライト粒子を混合して形成される触媒組成物を用いることにより、高い N選択
2 性が得られることを見出し、本発明を完成させた。
[0010] 即ち、本発明は、以下のものを提供する。
(1) 有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕 するための、銅酸化物及びゼォライトを含む触媒組成物。
(2) 銅酸化物粒子及びゼォライト粒子を混合することにより形成される、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕する ための触媒組成物。
(3) 銅酸ィ匕物及びゼォライトの重量の和に対する銅酸ィ匕物の重量が 0. lwt%から 40wt%の範囲にある(1)又は(2)に記載の触媒組成物。
(4) マンガン酸ィ匕物をさらに含む(1) (3)の何れかに記載の触媒組成物。 (5) 銅酸ィ匕物及びゼォライトの重量の和に対するマンガン酸ィ匕物の重量が 0. lwt %から 10wt%の範囲にある(4)に記載の触媒組成物。
(6) Pt、 Pd、 Ru、 Rh、 Ir、及びそれらの合金からなる群より選択される 1種以上をさ らに含む(1)一(5)の何れかに記載の触媒組成物。
(7) 銅酸ィ匕物及びゼォライトの重量の和に対する Pt、 Pd、 Ru、 Rh、 Ir及びそれら の合金力もなる群より選択される 1種以上の重量の和が lppmから 500ppmの範囲に ある(6)に記載の触媒組成物。
(8) Pt、 Pd、 Ru、 Rh、 Ir、及びそれらの合金からなる群より選択される 1種以上を担 持したシリカ、チタ-ァ、アルミナよりなる群から選択される無機酸化物粒子を混合し てなる、(6)又は(7)に記載の触媒組成物。
(9)ゼォライトの SiO ZA1 Oモル比が 3〜70であり、該ゼオライトがプロトン型、又は
2 2 3
第 8属金属、第 9属金属、第 10属金属、第 11属金属のいずれかでイオン交換された ゼォライトの 1種又は 2種以上である、 (1)一(8)の何れかに記載の触媒組成物。
(10)ゼォライトの SiO ZA1 Oモル比が 5〜50である、 (1)一(9)の何れかに記載の
2 2 3
触媒組成物。
(11)ゼォライトがプロトン型であって、モルデナイト、 MFI, j8型のいずれ力 1種又は 2種以上である、 (1)一(10)の何れかに記載の触媒組成物。
(12) 触媒支持体;及び、
該触媒支持体上に形成された、 (1)一(11)の何れかに記載の触媒組成物を含む 触媒層;
を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた めの触媒。
(13) 酸化銅粒子及びゼォライト粒子を混合する工程を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた め触媒組成物の製造方法。
(14) 酸化銅粒子、ゼォライト粒子並びに Pt, Pd, Ru, Rh、 Ir及びそれらの合金か らなる群より選択される 1種以上を担持した、シリカ粒子及び Z又はチタ-ァ粒子を混 合して混合物を形成し;
該混合物をスラリーとし;
該スラリーを触媒支持体上に塗布して触媒層を形成する;
工程を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた めの触媒製造方法。
(15) 有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを、銅 酸化物粉末、ゼォライト粉末並びに Pt, Pd, Ru, Rh、 Ir及びそれらの合金からなる 群より選択される 1種以上を担持した、シリカ粒子及び Z又はチタ-ァ粒子を混合す ることにより形成される触媒組成物を含む触媒と 250— 600°Cにおいて接触させ、 N
2 に変換する工程;
を含む、排ガス処理方法。
図面の簡単な説明
[0011] [図 1]図 1は、本発明の触媒 I、 II、 VIIおよび VIII、並びに比較例の触媒 Aおよび Fにつ いて、反応温度 300〜450°Cにおける N収率を示す。
2
[図 2]図 2は、本発明の触媒 IX及び比較例の触媒 Eについて、 300〜450°Cにおける N収率を示す。
2
[図 3]図 3は、本発明の触媒 II、 XI、及び XIIについて、 300— 400°Cにおけるアンモニ ァからの N収率を示す。
2
発明を実施するための最良の形態
[0012] 本発明の触媒組成物は銅酸化物及びゼォライトを含み、好ましくは、銅酸化物粒 子及びゼォライト粒子を混合することにより形成される。予め準備した銅酸ィ匕物粒子 を使用することにより、銅酸ィ匕物粒子の平均粒径及び粒度分布等の粉体特性を容易 に制御することが可能となり、それによつて触媒性能を向上することができる。それに 加え、含浸法や共沈法等の通常用いられる方法と比較して、簡便な方法で同等又は それ以上の性能の触媒を製造することができる。
[0013] 本明細書で銅酸化物とは銅を含む酸化物を指し、銅含有複合酸化物を含む。例え ば、 CuO (0. 45≤x≤l. 1)の組成式で表される酸化銅が挙げられ、典型的には C uO及び Cu Oである。複数の組成の銅酸ィ匕物を組み合わせて使用してもよい。銅酸
2
化物は市販のものを使用することができ、銅酸ィ匕物を含む酸ィ匕物の混合物を用いて もよい。例えば、ホプカライト中の CuOを使用してもよい。
[0014] 本発明で用いられる銅酸ィ匕物粒子の形状に特に制限はなぐ球形、半球形、立方 体、りん片状などが含まれる。該銅酸ィ匕物の平均粒径は、触媒性能の観点カゝら平均 粒径が 0. 01 μ m以上、好ましくは 0. 05 μ m以上であり、 5 μ m以下の粒子が好まし い。なお特に断らない限り、本明細書で平均粒径とは 2次粒子の粒径を指す。何れ の理論にも拘束されるものではないが、銅酸ィ匕物粒子の平均粒径を変化させること によってゼォライト粒子との接触状態を制御することにより、 NO、 N O, HCN、 NH
2 3
、及び CO等の好ましくない成分の生成を抑制しつつ、高い N選択率を実現している
2
とも考免られる。
[0015] 本発明に使用されるゼオライトに特に制限はなぐ天然品であっても合成品であつ てもよい。例えば、天然品のゼォライトとして、モルデナイト、エリオナイト、フエリエライ ト、シャパサイトが挙げられる。合成品としては、 X型ゼオライト; Y型ゼオライト; ZSM 5等の MFI型ゼオライト; L型ゼオライト; A型ゼオライト; β型ゼオライト;が挙げられ る。代表的なゼォライトとしては、 UOP社製 LZY—84として入手可能な ΗΥ型ゼオラ イト、 UOP社製 MFI— 40として入手可能なシリカライト、 UOP社製 BETA— ZEOLI TEゼォライトとして入手可能な β型ゼオライト、 UOP社製 LSM— 8として入手可能 なモルデナイトが例示される。これらゼォライトのうち、モルデナイト、 MFI型および j8 型のゼォライトであって、し力もその構成成分であるシリカとアルミナのモル比(SiO
2
ZA1 Oモル比)が、 3以上、好ましくは 5以上、 70以下、より好ましくは 5〜50、特に
2 3
好ましくは 5〜30のゼォライトを使用すると、有機窒素化合物の分解率が高ぐ NO、 N O, NH、 COの生成が少なぐ Nへの転化率が高い触媒が得られる。
2 3 2
[0016] 本発明で用いられるゼォライトはプロトン型であってもよぐ以下に述べる置換型で あってもよい。ゼォライトとして、プロトン型ゼオライトと置換型ゼオライトとの混合物を 使用してもよい。ここでプロトン型ゼオライトとは、イオン交換可能なカチオンサイトの 少なくとも一部が H+で占有されているゼォライトを指し、たとえばモルデナイトのプロト ン型は H—モルデナイトと、 MFI型の 1例としての ZSM— 5のプロトン型は、 H— ZS M5と、 β型ゼオライトの場合、 Η— βゼォライトと表示する。イオン交換された Naィ オンあるいは Kイオン(これらアルカリ金属元素を Mで表す)の含有量の、 SiO含有
2 量に対するモル比(酸化物としてのモル比、すなわち M OZSiO )が 0〜0. 1、好ま
2 2
しくは 0〜0. 05、より好ましくは 0〜0. 03のプロトン型ゼオライトが、 N選択率の向上
2
のために、本発明の触媒成分として、特に好ましく使用される。
[0017] 置換型ゼオライトとは、イオン交換可能なカチオンサイトの少なくとも一部がプロトン 以外のカチオン (置換カチオン)、例えば NH +や金属カチオンで占有されているゼォ
4
ライトを指す。以下、置換カチオンが金属カチオンである場合、金属置換ゼォライトと 表記する。本明細書では、プロトン型 Y型ゼオライトは HY型ゼオライトと表記し、 Fe力 チオンがカチオンサイトを占有する Y型ゼオライトを Fe—Y型ゼオライトと表記し、 NH +がカチオンサイトを占有する Y型ゼオライトは NH—Y型ゼオライトと表記する。他の
4 4
ゼォライトについても同様に表記する。また Feカチオンで置換されたゼオライト全般 を Fe-ゼォライトと表記する。同様に Cuや Coカチオンで置換したゼォライト全般をそ れぞれ Cu-ゼォライト、 Co-ゼォライトと表記する。
[0018] 金属置換型ゼオライトのイオン交換可能なカチオンサイトを占有する置換金属に特 に制限はなく、 Fe等の 8族金属; Co及び Rh等の 9族金属; Ni及び Pd等の 10族金属 ; Cu及び Ag等の 11族元素が挙げられる。好ましい置換金属は Fe、 Cu、 Ni、 Co及 びそれらの組み合わせである。
[0019] 本発明において、金属置換ゼォライトのうち、 Na, Kなどのアルカリ金属置換ゼオラ イト、あるいは Mg, Caなどのアルカリ土類金属置換ゼォライトを使用した触媒は、 Fe 、 Cu、 Co、 Niの金属置換ゼォライトを使用した触媒に比べて、有機窒素化合物の N
2 転ィ匕率が低いため、これらアルカリ金属またはアルカリ土類金属置換ゼォライトは、 触媒組成物に対して、金属酸化物として 1. 0重量%以下、好ましくは 0〜0. 5重量 %、より好ましくは 0〜0. 3重量%になるように制限することが好ましい。
[0020] したがって本発明で好ましく用いられる金属置換型ゼオライトとして、 Fe、 Cu, Ni、 Coの 、ずれかで置換されたゼオライトが例示され、これらのゼォライトは単独で用い てもよく組み合わせて用いてもよい。 Fe、 Cu, Ni、 Coのいずれかの置換金属イオン の量はゼオライトの SiO ZA1 Oモル比に依存して適宜選択されるが、一般的には、 ゼォライトの重量に対し置換イオンの総量が l— 6wt%の範囲にある。
[0021] 本発明で使用されるゼオライト粒子の平均粒径は、銅酸化物粒子の平均粒径が 0.
01〜1 μ mの範囲にある場合、典型的には 1 μ m以上、好ましくは 2 μ m以上、 50 μ m以下、好ましくは 30 μ m以下である。(ゼオライト粒子の平均粒径) / (銅酸化物粒 子の平均粒径)の比に制限はないが、典型的には 10以上、好ましくは 20以上であり 、 200以下、好ましくは 100以下である。この平均粒径の比は、触媒層中でゼォライト 粒子と銅酸化物粒子との接触を促進するよう選択される。
[0022] 本発明の触媒組成物において、銅酸ィ匕物及びゼォライトの重量の総和に対する銅 酸ィ匕物の重量は、本発明の効果が得られる限り特に制限はないが、 0. lwt%以上、 好ましくは 0. 5wt%以上、より好ましくは 1. 0 %以上、さらに好ましくは 2. Owt% 以上であり、 40wt%以下、好ましくは 30wt%以下である。上記範囲未満では、本発 明の目的である有機窒素化合物やアンモニアの分解活性が十分でない場合や Nへ
2 の転ィ匕が不十分になる場合がある。また上記範囲を超えると、 NOの生成が促進さ れる結果、 Nへの転化が不十分になる場合がある。
2
[0023] 本発明の触媒組成物は、貴金属の 1種以上を含んでもよい。貴金属としては、 Pt、 Pd、 Ru、 Rh、 Ir、それらの合金、又はそれらの混合物が挙げられる。
[0024] 触媒組成物または触媒中における貴金属の形態に特に制限はなぐ銅酸ィヒ物及 び Z又はゼォライトに担持されていてもよぐあるいはシリカ、アルミナ、シリカ 'アルミ ナ、チタニアなどの耐熱性無機酸ィ匕物粒子に担持した粒子がゼォライト粒子との混 合状態で存在しても良い。
[0025] これら耐熱性無機酸化物粒子は球状あるいは半球状で、平均粒径は 1〜30 μ m が好ましぐ前記貴金属を金属分として 0. 01〜2. 0重量%の範囲で担持したものが 好ましい。
[0026] 本発明の触媒組成物中の貴金属の重量割合は、銅酸ィ匕物及びゼォライトの重量 の総和に対して、 lppm以上、好ましくは 2ppm以上、さらに好ましくは 5ppm以上、 1 OOOppm以下、好ましくは 500ppm以下、さらに好ましくは 200ppm以下である。
[0027] 前記範囲で貴金属成分を含む本発明の触媒組成物は、 250— 600°C、好ましくは 300— 500。C、より好ましくは 300— 450。C、さらに好ましくは 300— 400。Cの温度範 囲にお 、て、排ガス中に含まれる有機窒素化合物及び Zまたはアンモニアを高 、選 択率で Nへ転化するとともに、炭素質の未燃焼成分あるいはタール等の高沸点成分
2
が触媒上に残留することを防ぎ、かつ炭化水素成分由来の中間生成物 (例えば CO など)の副生を抑制するのに有用である。しかも該貴金属成分を含む触媒組成物は 、 SOなど酸性成分を l— 200ppm程度含む排ガスを処理する場合において、長期
2
間使用中に発生する触媒劣化による COや NHなど副生成物の増加傾向を抑制し、
3
有機窒素化合物やアンモニアの Nへの転化率の低下を抑制する、すなわち活性低
2
下の抑制に特に効果を発揮する。
[0028] 触媒組成物への貴金属の添カ卩は、各種公知の手段を用いて行うことができる。例 えば、銅酸ィ匕物及びゼォライトを混合した後に貴金属を担持してもよい。別の態様で は、予め銅酸ィ匕物に貴金属を担持した後に、これをゼオライト粒子と混合してもよい。 さらに別の態様では、予めゼォライトに貴金属を担持した後に、これを銅酸化物粒子 とを混合してもよい。さらに別の態様では、銅酸ィ匕物及びゼォライト以外の物質に貴 金属を担持した後、その物質を銅酸ィ匕物及びゼォライトと混合してもよい。貴金属を 担持する物質は有機窒素化合物またはアンモニアに触媒活性を有していてもよぐ 有していなくてもよいが、耐熱性であることが好ましい。このような物質として、シリカ、 アルミナ、シリカ'アルミナ、チタ-ァなどが挙げられる。なかでもシリカあるいはチタ- ァ粒子に Ptあるいは Ruを担持した粒子を酸化銅およびゼォライト粒子を混合してな る触媒組成は、特に有機窒素化合物をほぼ完全に分解するとともに、 Nへ
2 高い割合 で転化する効果に優れる。
[0029] 本発明の触媒組成物の別の態様としては、マンガン酸ィ匕物を含んでもよ!ヽ。マンガ ン酸ィ匕物を添加することにより、 COの生成を抑制できる場合がある。本発明の触媒 組成物がマンガン酸ィ匕物を含む場合、銅酸ィ匕物及びゼォライトの重量の総和に対し てマンガン酸化物の重量は、 0. lwt%以上、 10wt%以下であることが好ましい。上 記範囲未満ではマンガン酸ィ匕物の効果が検出し難い場合があり、上記範囲を超える と NOや N Oの生成が促進されることがある。ここでマンガン酸化物とは、マンガンを
2
含む酸化物を指し、マンガン含有複合酸化物も含まれる。マンガン酸化物としては組 成式 MnO (0. 9≤x≤2. 1)で表される酸化マンガン、例えば MnO、 Mn O、 Mn oが挙げられる。複数のマンガン酸ィ匕物を組み合わせて使用してもよい。マンガン酸
2
化物の平均原子価に特に制限はないが、典型的には 2. 5以上、好ましくは 2. 9以上 であり、 4. 1以下である。マンガン酸化物は、他の金属の酸ィヒ物との混合物の形態 で供給されてもよい。例えば、マンガン酸ィ匕物としてホプカライト中の MnOを使用で
2 きる。
[0030] 本発明の触媒組成物は、銅酸化物及びゼォライトを必須成分とするが、 目的の触 媒作用を阻害しない限り、これら以外の成分、例えばアルミナ、シリカ、チタ二了、ジ ルコユアなど耐火性無機酸化物をさらに含んでもよい。一方 Na 0、 K O, CaO、 Mg
2 2
oなどアルカリ金属酸ィ匕物あるいはアルカリ土類金属酸ィ匕物の含有は、有機窒素化 合物の分解率を低下させ、さらには長期間の使用中、活性低下による COの上昇原 因になるため、酸ィ匕物として 1. 0重量%以下、より好ましくは 0〜0. 5重量%、さらに 好ましくは 0〜0. 3重量%に制限することが好ましい。
[0031] 以下、本発明の触媒組成物の例示的な組成について説明する。
[0032] 本発明の一の態様では、本発明の触媒組成物は、銅酸ィ匕物及びプロトン型ゼオラ イトを含み、銅酸ィ匕物及びプロトン型ゼオライトの重量の和に対する銅酸ィ匕物の重量 力 2.0— 20wt%の範囲にある。
[0033] 別の態様では、本発明の触媒組成物は、銅酸化物、プロトン型ゼオライト、及び貴 金属を含み、銅酸ィ匕物及びプロトン型ゼオライトの重量の和に対し、銅酸化物の重量 は 0. 5— 10 %の範囲にあり、貴金属の重量の和は 2〜500ppmの範囲にある。
[0034] 別の態様では、本発明の触媒組成物は、銅酸化物、 SiO
2 ZA1 Oモル比が 5〜50 2 3
のプロトン型ゼオライト、及び貴金属を含み、銅酸ィ匕物及びプロトン型ゼオライトの重 量の和に対し、銅酸化物の重量は 2〜30wt%の範囲にあり、貴金属の重量の和は 2 〜500ppmの範囲にある。
[0035] 別の態様では、本発明の触媒組成物は、銅酸化物、 SiO
2 ZA1 Oモル比が 5〜50 2 3
であって、モルデナイト、 MFI、 j8型のいずれ力 1種または 2種以上のプロトン型ゼォ ライト、及び貴金属を含み、銅酸ィ匕物及びプロトン型ゼオライトの重量の和に対し、銅 酸化物の重量は 2〜30wt%の範囲にあり、貴金属の重量の和は 2〜500ppmの範 囲にある。 [0036] 別の態様では、本発明の触媒組成物は、銅酸化物、プロトン型ゼオライト、及び貴 金属を含み、銅酸ィ匕物及びプロトン型ゼオライトの重量の和に対し、銅酸化物の重量 は 1. 0— 10 %の範囲にあり、貴金属の重量の和は 2〜500ppmの範囲にある。 貴金属はシリカ粒子、チタ-ァ粒子、アルミナ粒子、またはそれらの混合物に担持さ れており、該粒子が銅酸ィ匕物粒子およびプロトン型ゼオライト粒子と混合されて ヽる。
[0037] 別の態様では、本発明の触媒組成物は、銅酸化物、 SiO ZA1 Oモル比が 5〜50
2 2 3
であって、モルデナイト、 MFI、 j8型のいずれ力 1種または 2種以上のプロトン型ゼォ ライト、及び貴金属を含み、銅酸ィ匕物及びプロトン型ゼオライトの重量の和に対し、銅 酸化物の重量は 1. 0〜30wt%の範囲にあり、貴金属の重量の和は 2〜500ppmの 範囲にある。貴金属は Ptまたは Ruであって、シリカ粒子、チタ-ァ粒子またはそれら の混合物に担持されており、該粒子が銅酸ィ匕物粒子およびプロトン型ゼオライト粒子 と混合されている。
[0038] 別の態様では、本発明の触媒組成物は銅酸化物及び Fe、 Cu, Ni、 Coの 1種以上 の金属置換型ゼオライトを含み、銅酸ィ匕物及び金属置換型ゼオライトの重量の和に 対し、銅酸化物の重量は 1. 0— 15wt%である。
[0039] 別の態様では、本発明の触媒組成物は銅酸化物、 Fe、 Cu, Ni、 Coの 1種以上の 金属置換型ゼオライト、及び貴金属を含み、銅酸化物及び金属置換型ゼオライトの 重量の和に対し、銅酸化物の重量は 1. 0— 10wt%の範囲にあり、貴金属の重量の 和は 2〜500ppmの範囲にある。貴金属はシリカ粒子、チタ-ァ粒子、アルミナ粒子 、またはそれらの混合物に担持されており、該粒子は銅酸ィ匕物粒子およびプロトン型 ゼォライト粒子と混合されて 、る。
[0040] 別の態様では、本発明の触媒組成物は銅酸化物、 Fe、 Cu, Ni、 Coの 1種以上の 金属置換型ゼオライト、及び貴金属を含み、銅酸化物及び金属置換型ゼオライトの 重量の和に対し、銅酸化物の重量は 1. 0— 30wt%の範囲にあり、金属置換型ゼォ ライトの SiO ZA1 Oモル比は 5〜50であり、貴金属の重量の和は 2〜500ppmの範
2 2 3
囲にある。貴金属はシリカ粒子、チタ-ァ粒子、アルミナ粒子、またはそれらの混合物 に担持されており、該粒子は銅酸ィ匕物粒子および金属置換型ゼオライト粒子と混合 されている。 [0041] 別の態様では、本発明の触媒組成物は銅酸化物、 Fe、 Cu, Ni、 Coの 1種以上の 金属置換型ゼオライト及び MnOを含み、銅酸化物及び金属置換型ゼオライトの重
2
量の和に対し、銅酸化物の重量は 1. 0— 10wt%の範囲にあり、マンガン酸化物の 重量は 0. 5wt%— 10wt%の範囲にある。
[0042] さらに別の態様では、本発明の触媒組成物は銅酸化物、 Fe、 Cu, Ni、 Coの 1種以 上の金属置換型ゼオライト及び MnOを含み、銅酸ィ匕物及び金属置換型ゼオライト
2
の重量の和に対し、銅酸化物の重量は 1. 0— 10wt%の範囲にあり、マンガン酸ィ匕 物の重量は 0. 5wt%—
Figure imgf000012_0001
前記銅酸化物及びマンガン酸化物 はホプカライトの成分である。
[0043] 本発明の触媒組成物は、銅酸化物粒子及びゼォライト粒子を混合することにより製 造される。混合手段に特に制限はなぐ乾式混合及び湿式混合等任意の公知手段 を用いることができる。乾式混合を用いることにより、粉体状の触媒組成物を製造する ことができ、湿式混合を用いることにより、スラリー状の触媒組成物を製造することが できる。混合の際、銅酸化物及びゼォライト以外の成分を併せて混合してもよぐ銅 酸ィ匕物粒子及びゼォライト粒子を混合した後に他の成分を混合してもよ 、。他の成 分としては、バインダー成分、貴金属担持シリカ粒子、貴金属担持チタ-ァ粒子、貴 金属担持アルミナ粒子が挙げられる。これらの貴金属担持粒子の平均粒径は、一般 に 0. 5〜20 /ζ πιの範囲にある。バインダーとして各種公知のバインダーを用いること ができ、その例としてコロイダルシリカ、アルミナゾル、ケィ酸ゾル、ベーマイトが挙げ られる。この様に、本発明の触媒組成物は粉体状であってもよぐペレット状であって も、スラリー状であってもよい。
[0044] 本発明は、前述の触媒組成物を含む触媒層を触媒支持体 (構造体とも!ヽぅ)上に形 成した触媒にも関する。典型的な触媒は、触媒支持体表面上に、銅酸化物及びゼォ ライトを含む触媒組成物を用いて触媒層を形成した形態のものである。したがって該 触媒層中において、銅酸化物粒子及びゼォライト粒子は混合状態で存在し、粒子間 および粒子と支持体の間は適当なバインダーで固定されている。触媒層の厚さは、 概して 10〜: LOOO /z mの範囲にある。使用する触媒支持体の形状に特に制限はなく 、ガス流通時に発生する差圧が小さぐガスとの接触面積が大きい形状が好ましい。 好ましい形状には、ノ、二カム、コルゲート、発泡金属、シート、メッシュ、繊維、ノィプ 、フィルターが含まれる。支持体の材質に特に制限はなぐホプカライト、コージェライ ト、アルミナ、シリカ'アルミナ、炭素繊維、金属繊維、ガラス繊維、セラミック繊維、ス テンレス等の金属が挙げられる。支持体の材質としては、耐腐食性及び耐熱性に優 れたものが好ましい。
[0045] 以下、本発明の触媒の例示的な製造方法を説明する。まず、銅酸化物粒子及びゼ オライト粒子の混合物を形成する。前述の触媒組成物が粉体状である場合、この触 媒組成物を該混合物として用いてもよい。該混合物に水と、場合によりバインダーと を加えて混練し、スラリーとする。前述の触媒組成物がスラリー状である場合、該触媒 組成物を該スラリーとして後の工程に用いてもよい。なお、銅酸化物粒子及びゼオラ イト粒子を混合する工程とスラリー化する工程を逐次的に行っても、連続的に行って も、同時に行ってもよい。必要に応じ、マンガン酸ィ匕物及び Zまたは貴金属を、混合 工程及び Zまたはスラリー化工程にぉ 、て添加してもよ 、。このスラリーを触媒支持 体に塗布し、乾燥する。塗布方法に特に制限はなぐゥォッシュコートゃデイツビング を含む公知の方法を用いることができる。必要に応じてこれら操作を繰り返して、触 媒層の厚さを調整することができる。
[0046] 本発明は、前述の触媒を用いた排ガス浄ィ匕装置にも関する。本排ガス浄化装置は 排ガス流路を有し、該流路中に、本発明の触媒が収容された第一の触媒領域、及び 、貴金属担持触媒が収容された第二の触媒領域を備え、第一の触媒領域 (前段)よ り第二の触媒領域 (後段)が下流にある。該流路中に、さらに別の触媒領域を設置し てもよい。第二の触媒領域に収容される貴金属担持触媒として各種公知の触媒、た とえばアルミナに担持した白金触媒 (PtZAl Oで表す。)を用いることができる。該
2 3
貴金属担持触媒は、炭化水素の酸ィ匕能を有することが好ましい。後段に貴金属担持 触媒を設置することにより、前段力 流入する未反応の炭化水素及び Z又は coを 酸化し、有害成分の排出を防ぐことができる。
[0047] 本発明の触媒が収容された領域よりも上流の流路中に、排ガス中の触媒毒成分を 捕獲または分解するための吸着剤または分解触媒が収容された領域をさらに設けて も良い。例えば有機窒素化合物とともに有機シリコンが含まれる排ガスの処理には、 貴金属が担持されたアルミナ粒子とゼォライト粒子との 1: 99-70: 30 (重量比)の混 合物を含む触媒を本発明の触媒よりも上流に設けることにより、本発明の触媒の寿命 を著しく向上させることができる。
[0048] 本発明の触媒で処理できる有機窒素化合物には、ァセトニトリル、アクリロニトリル等 の-トリル;ホルムアミド、ジメチルホルムアミド等のアミド;メチルァミン、ェチルァミン、 ジメチルァミン、ジェチルァミン、トリメチルァミン、トリェチルァミン等のァミン;蛋白質; アミノ酸;エタノールァミン等のアルカノールァミン;ピロール、イミダゾール、ピラゾー ル、ピリジン、ピラジン、ピリミジン、ピリダジン、ピロリドン等の複素環式ィ匕合物;第四 級アンモ-ゥム化合物などのアンモ-ゥム化合物;塗料成分や繊維成分としての用 途を有するイミド化合物やウレタン化合物が挙げられる。なお、有機窒素化合物とは 、分子中に少なくとも 1つの窒素原子を含有する化合物を!、う。
[0049] 有機窒素化合物及び Z又はアンモニアを含有する排ガスは、これらの化合物の製 造工程、これら化合物を原料や溶媒として使用する各種の工程、及びこれらの化合 物が副生成物となる各種の工程で発生する。例えば、該排ガスは、コーヒー焙煎;排 水処理;植物や動物の処理加工;食品加工;二トリルを重合単位として有する合成繊 維、合成ゴム、合成樹脂の製造;有機窒素化合物を溶媒または塗料成分として含む 塗料を用いた塗布工程;ポリイミドゃアクリル系塗料などの塗装工程 (例えば電着工 程)や焼付工程で発生する。いずれの排ガスにも、有機窒素化合物以外に有機溶剤 やその他の有機化合物あるいは熱分解生成物が共存するのが通常である。例えば コーヒー焙煎力 発生する排ガス中には、蛋白質やアミノ酸、これらの熱変性成分な どの有機窒素化合物以外に、セルロース、へミセルロース、脂肪酸、カフェインなどの 有機化合物が混在する。本発明の触媒は、これら有機窒素化合物及び Z又はアン モ-ァに加えてその他の有機化合物成分を含有する排ガスの処理に用いることがで きる。
[0050] 本発明の触媒は、小さ!/、空間速度 (例えば SVが 3, OOOhr"1; SVは単位時間あたり の触媒体積に対する通過するガス体積の比である)だけでなぐ大き 、空間速度 (例 えば SV= 50, 000-100, OOOhr— でも、有機窒素化合物及び Z又はアンモニア の高い分解率、並びに高 N選択性を示すと共に、 NO、 NO、 NH、 HCN、含窒素 中間体 (例えばァミン、ィミン、イミドなど)及び CO等の望ましくない副生成物の生成 を低減することができる。なおハ-カム状触媒の場合、 SVは、そのハ-カム体の空間 部分を含む体積に対する 1時間あたり通過する排ガスの体積比をいう。また押出成型 品等の粒状触媒が充填された触媒層の場合、 SVは、充填層の体積に対する 1時間 あたり通過する排ガスの体積比を 、う。
[0051] 本発明の触媒で処理される排ガスには、排ガス中の有機成分を酸化して COとして
2 除去するため、少なくとも酸ィ匕反応に必要な量の酸素が含まれることが好ましい。
[0052] 本発明の触媒を 250°C以上、好ましくは 300°C以上、より好ましくは 300°C以上 60 0°C以下、好ましくは 500°C以下、より好ましくは 450°C以下、さらに好ましくは 300— 400°Cで、有機窒素化合物及び Z又はアンモニアを窒素分として 1〜1000重量 pp m含有する排ガスと接触させる場合、これら成分を効率的に分解するとともに、高い N選択率が得られる。
2
実施例
[0053] 以下、実施例に基づき本発明をより詳細に説明するが、本発明が以下の実施例に 制限されるものではない。
[0054] NH モルデナイト(NH SCM5)_の
4 4 ¾S
Na型モルデナイト(UOP社製 SCM— 5、 SiO /Al Oモル比 10. 7、平均粒径 5.
2 2 3
6 ,u m) ^600g,塩ィ匕アンモニゥムを 300g,及び脱ィ才ン水 2300gを混合し、 80°C で 3時間撹拌した。次いで吸引ろ過し、 1回あたり 2リットルの水で 2回洗浄後、回収し た濾物を 150°Cにて 5時間乾燥器にて乾燥して、 NH—モルデナイト (NH— SCM
4 4
5)を得た。
[金属置換ゼォライトの調製]
Fe モルデナイトの調製
42. 7gの塩化第二鉄 4水和物を 1557gの脱イオン水に溶解し、さらに 404gの NH
4 モルデナイト(前掲の NH— SCM5)を加えた。この液に、撹拌下で pHを計測しな
4
力 28%アンモニア水をカ卩えて pH8. 0とし、撹拌を続けた後、吸引濾過した。濾別 された固体を脱イオン水で洗浄した後、 150°Cで 5時間乾燥し、さらにマツフル炉中 で空気下において 500°Cで 2時間焼成し、 Fe モルデナイトを得た。 [0055] Cu—モルデナイトの調製
1. 4gの硝酸銅 3水和物を 389gの脱イオン水に溶解し、 28%アンモニア水をカロえ て pHを 10. 5〜: L 1に調製した。この液に lOlgの NH—モルデナイト(前掲の NH -
4 4
SCM5)を加え撹拌した後、吸引濾過した。濾別された固体を脱イオン水で洗浄した 後、 150°Cで 5時間乾燥し、さらにマツフル炉中で空気下において 500°Cで 2時間焼 成し、 Cu—モルデナイトを得た。
[0056] Cu— ZSM5の調製
酢酸銅の 4.0gを水 500ccに溶解し、 80。Cに保持して、これに NH— MFト 40 (UOP
4
社製ゼオライト、 SiO ZA1 Oモル比 40) 29gを加えて、 3時間撹拌した。ろ過、洗浄
2 2 3
を行う。回収したろ物を 150°Cで 3時間乾燥した。回収した粉末を上記と同じ溶液、 方法にて再度イオン交換を行った。 2回のイオン交換の後、 500°Cで 4時間焼成し、 CU—ZSM5を調製した。
[触媒の製造]
<実施例 >
触媒 I
前述の NH— SCM5粉末 25gと CuO粉末(ケミライト社製、平均粒径 0. 52 ^ πι) 0
4
. 56gとを乳鉢で均一になるよう混合し、得られた混合物にバインダーとしてのアルミ ナゾル 28g及び脱イオン水 26gをカ卩え、十分に混練して、スラリーを得た。このスラリ 一を用いてセラミックコルゲート状ノヽ-カム支持体 (二チアス製、直径 21 φ χ長さ 50m m、セル数 200セル/平方インチ)にゥォッシュコートし、乾燥機で 150°Cにおいて 2時 間乾燥し、さらにマツフル炉で空気下 500°Cにおいて 1時間焼成し、触媒 Iを得た。
[0057] 触媒 Iの
(CuOの重量) Z (CuOの重量 +ゼォライトの重量) X 100 (%)
で表される CuOの割合 (以下、特に断らない限り、各成分の割合は(CuOの重量 + ゼォライトの重量)の和に対する割合として表記する)は、 2. 2wt%であった。
[0058] 触媒 II及び III
CuOの割合が 6. 9wt% (触媒 II)及び 12. 3wt% (触媒 III)となるよう前掲の NH—
4
SCM5粉末及び CuO粉末の量を選択した点を除き、触媒 Iと同様にして触媒 II及び II Iを製造した。
[0059] 触媒 IV
NH—SCM5に代えて 25. 2gの Fe—モルデナイト粉末(平均粒径 4. 2 /z m)を用
4
い、 CuO粉末の量を 0. 52gとした点を除き、触媒 Iと同様にして触媒 IVを製造した。 触媒 IVにおける CuOの割合は、 2. 2wt%であった。
[0060] 触媒 V
CuO粉末に代えて 0. 19gのホプカライト粉末を用い、 Fe—モルデナイトの量を 25 . 5gにした点を除き、触媒 IVと同様にして触媒 Vを製造した。触媒 Vにおける CuOの 割合は 0. 2wt%であった。なお使用したホプカライトはズードケミー社製であり、その 組成は以下の通りであり、平均粒径は 7. 3 mであった。
[0061] MnO : 72. 6wt% ;CuO : 21. lwt% ;K O : 3. 7wt%.
2 2
触媒 VI
ホプカライト粉末の量を 0. 56gとし、 25. 5gの Fe—モノレデナイトに代えて 25. 2gの Cu—モルデナイトを使用した点を除き、触媒 Vと同様にして触媒 VIを製造した。触媒 VIにおける CuOの割合は 0. 5wt%であった。
[0062] 触媒 VII
CuOの割合が 0. 8wt%となるよう Cu—ゼオライト及びホプカライトの量を選択した 点を除き、触媒 Vと同様にして触媒 VIIを製造した。
[0063] 触媒 VIII
前掲の NH— SCM5を 487g、 CuO粉末を 10. 5g、 Pt担持 SiO粉末(Pt担持量:
4 2
0. 04wt%)を 17. 5g、アルミナゾルを 525g、及び脱イオン水を 460g用いてスラリ 一を作成した。このスラリーを用い、触媒 Iと同様にして触媒 vmを製造した。
[0064] 触媒 IX
NH— SCM5に代えて H— ZSM5 (UOP社製、 H— MFI40、 SiO /Al Oモル
4 2 2 3 比 40 (H—ZSM5と同等品);平均粒径 2. 8 m)を、アルミナゾルに代えてシリカゾ ルを用い、触媒における CuOの割合が 6. Owt%となるよう、 H—ZSM5及び CuOの 重量を選択した点を除き、触媒 Iと同様にして触媒 IXを製造した。
[0065] 触媒 X CuOの割合が 6. 3wt%、酸化マンガンの割合が 0. 7wt%となるよう CuO粉末、酸 化マンガン粉末 (カラス社製)および前述の NH— SCM5の量を選択し、触媒 Vと同
4
様にして触媒 Xを製造した。
[0066] 触媒 XI
CuOの割合が 1. 7wt%となるよう前述の Fe—ゼオライト、前述のホプカライトの量 を選択し、バインダーとしてアルミナゾルに代えて 32gのシリカゾルを使用した点を除 き、触媒 Vと同様にして触媒 XIを製造した。
[0067] 触媒 ΧΠ
前掲の NH— SCM5を 105g、 CuO粉末を 14. 0g、 Pt担持 TiO粉末(Pt担持量:
4 2
0. 04wt%)を 35g、アルミナゾル 105g、脱イオン水 240gを用いてスラリーを作成し た。このスラリーを用い、触媒 Iと同様にして触媒 XIIを製造した
触媒 xm
CuOの割合が 24wt%、 SiO
2 ZA1 Oモル比が 18の H型モルデナイト(UOP社製 2 3
、 LZM8)が 76wt%の割合で、 CuO粉末とプロトン型ゼオライトの量を選択した以外 は触媒 Iと同様にして、触媒 ΧΙΠを製造した。
[0068] 触媒 XIV
CuOの割合が 13wt%、触媒 XIIIで用いたと同じの H型モルデナイト (UOP社製、 L ZM8)が 87wt%の割合で、 CuO粉末とプロトン型ゼオライトの量を選択した以外は 触媒 Iと同様にして、触媒 XIVを製造した。
[0069] 触媒 XV
CuO粉末と前掲の H型モルデナイト (UOP社製、 LZM8)を触媒 XIVと同様の割合 で用い、これに Pt担持の TiO粉末(Pt担持量: 0. 04wt%)を更に添カ卩した以外は
2
触媒 XIVと同様にして、触媒 XVを製造した。
[0070] 触媒 XVI
Pt担持 TiO粉末の代わりに、 Pt担持の SiO粉末(Pt担持量: 0. 04wt%)を用い
2 2
た以外は触媒 XVと同様にして、触媒 XVIを製造した。
[0071] 触媒 XVII
CuO粉末と前掲の H型モルデナイト (UOP社製、 LZM8)を同様の割合で用い、こ れに Pd担持の Al O粉末 (Pd担持量: 0. 04wt%)を更に添加した以外は触媒 XVと
2 3
同様にして、触媒 XVIIを製造した。
[0072] 触媒 XVIII
触媒 XVの H型モルデナイトの代わりに、 SiO /Al Oモル比 25の β型ゼォライト(
2 2 3
UOP社製、ゼォライト β )を用いた以外は触媒 XVと同様にして、触媒 XVIIを製造し た。
[0073] 触媒 XIX
触媒 XVの Η型モルデナイトの代わりに、 SiO /Al Oモル比 30の MFI型ゼォライ
2 2 3
ト(ゼオリスト社製、 CBV— 3020)を用いた以外は触媒 XVと同様にして、触媒 XIXを 製造した。
[0074] 触媒 XX
触媒 XVの H型モルデナイトの代わりに、 SiO /Al Oモル比 50の MFI型ゼォライ
2 2 3
ト(ゼオリスト社製、 CBV— 5524)を用いた以外は触媒 XVと同様にして、触媒 XIXを 製造した。
[0075] 触媒 I XXについて、組成を以下の表 1に示す。各成分の割合は、 CuO及びゼォ ライトの重量の和に対する wt%として表記する。
[0076] [表 1]
ゼォライトの CuO及びゼ才ライト以外の ゼォライトの種類(上段〕
匪 CuOの重量 Si02ZAI203比(モ 活性成分の種類 (上段) 及び重量 (下段)
ル) 及び重量〔下段)
H-モルデナイト
I 2.2 10.7
97.fi
H -モルデナイト
11 6.9 10,7
93.1
H-モルデナイト
III 12.3 10.7 - 87.フ
Fe-モルデナイト
IV 2.2 10.7 一
97.8
士∞
Fe-モルデナイト Mn02
V 0.2 10.7
99.8 0.5
Cu -モルデナイト Mn02
VI 0.5 10.7
99,5 1.6
Fe-モルデナイト MnOz
VII 0.8 10.7
99.2 2.7
H-モルデナイト Pt/Si02
VHI 2 2 10.7
97.8 0.01
H-2S 5
IX 6.0 40.Q - 94.0
H—モルデナイト Mn02
X 6 3 10.7
93.7 0.7
Fe-モルデナイト nO?
XI 1 7 10—7
98.3 6.0
H-モルデナイト PtZTi02
XII 1 1.7 10.7
8S.3 0.01
H-モルデナイト
x nr 24.0 ί
76. 0 ―
H-モルデナイト
XIV 13.0 18
87. 0 ―
H-モルデナイト PtZTi〇2
X V 13.0 18
87. 0 0.014
H-モルデナイト Pt/Si02
XVI 13.0 18
87. 0 0.01 4
H-モルデナイト Pd/AI203 vn 13.0 18
87. 0 0.01
H— βゼォライ卜 PtZTiOS
13.0 25
87. 0 0 014
PtZTi。2
XK T 3.0
30 0.014
H -ZSM Pt/Ti02
X X 1 3.0
87. 0 50 O.OU
*各成分の重量は、 CuO及びゼォライトの重量の和に対する割合 )として表示した.
*触媒 V-VII及び XIの Mn02はホプカライトの成分として存在する—
<比較例>
触媒 A
CuOを全て Fe—モルデナイトで代替した点を除き、触媒 IVと同様にして触媒 Aを 製造した。 [0078] 触媒 B
Fe—モルデナイトを全てホプカライトで代替した点を除き、触媒 Vと同様にして触媒 Bを製造した。
[0079] 触媒 C
市販の脱硝触媒 (触媒化成社製)の粉砕品 25. 6g、ホプカライト 2. lg、シリカゾル 32gおよび水 20gの混合スラリーを使用し、触媒 Vと同様にして触媒 Cを製造した。
[0080] 触媒 D
MnO粉末を 1. 3g、 NH— SCM5を 25g、アルミナゾルを 28g、および水 26gでス
2 4
ラリーを作成し、触媒 Iと同様にして触媒 Dを製造した。
[0081] 触媒 E
Fe—モルデナイトを全て CU— ZSM5で置き換えた点を除き、触媒 Aと同様にして 触媒 Eを製造した。
[0082] 触媒 F
Cu—モルデナイトに代えて Pt担持アルミナ触媒を用いた点を除き、触媒 Dと同様 にして触媒 Fを製造した。
[0083] 触媒 G
触媒 XVの H型モルデナイトの代わりに、 SiO 0 (東ソー製、 HSZ
2 ZA1 Oモル比 24
2 3
-690HOA)の H型モルデナイトを用いた以外は触媒 XVと同様にして、触媒 Gを製 し 7こ。
[0084] 触媒 H
触媒 XVの H型モルデナイトの代わりに、 SiO ZA1 Oモル比 18 (東ソ一社製、 HS
2 2 3
Z-642NAA)の Na型モルデナイトを用いた以外は触媒 XVと同様にして、触媒 Hを 製造した。
[0085] 触媒 I
硝酸銅 20. Ogと硝酸マグネシウム 14. Ogを脱イオン水 100gに溶解した溶液に、 H —ZSM5ゼォライト(UOP社製 H— MFI40、 SiO /Al Oモル比 40)粉末 61gおよ
2 2 3
び j8型ゼオライト(ゼオリスト社製、 CBV- 3020, SiO /Al Oモル比 30)粉末 22.
2 2 3
6gを投入し、十分攪拌した後、乾燥機中にて 120°C、 10時間乾燥した。得られた粉 末をメノウ乳鉢で更に粉砕し、得られた粉末を空気下、 500°Cで 2時間焼成して、 Cu Oと MgOを含有するゼオライト粉末を得た。得られた粉末 21.6gとシリカバインダー 25.9gを脱イオン水 31gに投入し、スラリーを調製した。このスラリーを触媒 Iの製造 に使用したと同じコルゲート状ノヽ-カムにゥォッシュコートして、 150°Cで 2時間乾燥 した後、空気下で 500°C、 1時間焼成することにより触媒 Iを得た。
得られたノヽ-カム担持触媒 (触媒 1)1リットルあたりの組成は以下のとおりであった; CuO:6.3g;MgO:2. lg;ゼォライト 80.4g (内訳: H— ZSM5:63.5g、 j8 :16.9 g);CuO:ゼォライト(重量比) =7.3:92.7; MgO含有率 (CuOとゼオライトの合計 に対する重量%):2.4%.
触媒 A-Iの組成を以下の表 2に示す。
[0086] [表 2] 表 2 触媒組成 (比較例)
Figure imgf000022_0001
A- Cで 、 の CuO ラ の の に
として表示した.
触媒 D及び Eでは、活性成分としてそれぞれ Cu- ZSM5及び Pt/Al203のみを使用した.
*触媒 B及ぴ Cの Mn02はホプカライトの成分として存在する.
[0087] [評価例 1]
前述の各ハ-カム型触媒にジメチルホルムアミドを含むガスを流通し、触媒活性を (平価した。使用したガスの組成は以下の通りである。
[0088] ジメチルホルムアミド(DMF) 3000ppm
O 10mol%
2
水 lmol%
窒素 残部
3¥は10000111:—1とし、反応温度を 300°C、 350°C、 400°C、及び 450°Cとした。
[0089] 詳細な測定条件は以下の通りである。まず、リアクターに触媒を充填し、 N流通下
2 で所定温度まで加熱した。ガスの各成分の流量を調整し、所定のガス組成としてから 、測定を開始した。サンプリングは、リアクターの入口及び出口で行った。各種成分の 定量は、それぞれ以下の方法を用いた。
[0090] NO及び NO:化学発光法
2
CO :定電位電解法
NH 、 CO、及び N O :ガスクロマトグラフィー(TCD)
3 2 2
DMF、その他の生成物:ガスクロマトグラフィー(FID)
DMFの分解率、 DMFの Nへの転化率及び各生成物の収率は、以下の式により
2
求めた。なお特に断らない限り、分解率、残存率、収率、選択率はモル%で表記する
[0091] [数 1]
, ,、 出口 DMF濃度、 ι ηΛ
DMF分解率 (%) = - ¾Μ ) Χ ΐ 0°
[0092] [数 2] , ,、 出口 DMF濃度 1 Λη
D 1JM删F残グ 存什率→ (、%/ο)ノ =― x pDMFifS X 1 0
[0093] [数 3]
, ナ ,。ハ 出口 CO濃度 ,
CO収率 (%) = Λ¾¾^' [0094] [数 4]
—出口 co2濃度
CO,収率 (%) 100
¾MF濃度 χ 3
[0095] [数 5] 出口 NH3濃度
NH3収率 (%) :100
入口 DMF濃度
[0096] [数 6] 出口 NO濃度
NO収率 (%) ; 100
入口 DMF濃度
[0097] [数 7]
^ /n /、 出口 N02濃度 1 ΛΛ
NOu2収X率十 (%) =入口 DMF ^濃-^度x lOO
[0098] [数 8]
NO 率 (%) =NO収率 + N02収率
[0099] [数 9] 出口 N20濃度 χ 2
N,0収率 (%) x l OO
入口 DMF濃度 リアクター通過後のガス中に含まれる NH , NO , N O以外の含窒素有機化合物(
3 2
「その他の N含有成分」と表記する)の生成量は、以下の方法で算出した。まず、触媒 出口にさらに Pt触媒を設置し、本発明の触媒通過後のガス中に残存する DMF、生 成した NH、及び「その他の N含有成分」を N 、 NO及び N Oに転ィヒさせた。この Pt
3 2 2
触媒通過後のガスを前述の方法で分析し、 NO収率及び N O収率を求めた。以下 この収率を NO収率(Pt)及び N O収率(Pt)と表記する。 NO収率(Pt)及び N O収
2 2 率(Pt)には、本発明の触媒により生成した NO及び N Oに加え、 Pt触媒により DM
2
F、 NH、及び「その他の N含有成分」から生じた NO及び N Oが寄与する。
3 2
[0101] [数 10]
NO^収率 (Pt) + N 0収率 (Pt) (%)
^Νί^収率十 N20収率) + (Pt触媒で生成した NOx収率ト Pt触媒で生成した N20収率) [0102] なお、 Pt触媒により、 DMF、 NH、及び「その他の N含有成分」の窒素の 80%が N
3
O及び N Oに転ィ匕し、 20%が Nに転ィ匕したと仮定した。
2 2
[0103] [数 11]
Pt触媒で生成した NOx収率 +Pt触媒で生成した N20収率 (%)
=(DMF残存率 +NH3収率 +その他の N含有成分収率) χ θ.8
[0104] 上の二つの式より、その他の Ν含有成分収率を以下の式で算出した。
[0105] [数 12] その他の Ν含有成分収率 (%)
={(1^^収率 (Pt) + N20収率 (Ρ^- ίΝΟ,収率 + N20収率 /0.8 (DMF残存率十 NH3収率) [0106] N収率は、以下の式で求めた。
2
[0107] [数 13] (2収申 (%) = 100- (NO,収率 + N20収率 + H,収率 + DMF残存率 +その他の N含有成分収率)
[0108] 評価結果を以下の表 3及び 4に示す。また本発明の触媒 I、 II、 VIIおよび VIII、並び に比較例の触媒 Aおよび Fについて、反応温度 300〜450°Cでの N収率を図 1に示
2
す。
[0109] [表 3]
Figure imgf000026_0001
表 4 DMF含有ガスに対する触媒反応における窒素系生成物の収率
(反応温度 400°Cの場合)
Figure imgf000027_0001
表 3、表 4および図 1に示すように、酸化銅とゼォライトを含む本発明の触媒は、 35 0°C〜450°Cにおいて、 DMFをほぼ 100%分解するとともに、 NH ,ΝΟ、 Ν Ο,その
3 2 他 Ν含有成分および COの生成が抑制され、 Nへの転ィヒ率が極めて高い触媒である ことがわかる。例えば、触媒 I— IV, VII, IX— XIでは、 Nへの転化率は 90%以上で
2
ある。
[0112] これに比べて、酸化銅を含まずゼォライトのみの触媒 (触媒 A及び D)は、 350°Cに おいて NHまたは N含有成分が多量に生成し、 N選択性が極めて低い。ゼォライト
3 2
を含まな!/ヽ酸化銅系触媒 (触媒 Bおよび C)および貴金属系触媒 (触媒 F)は、 NO及 び Zまたは N O選択率が高ぐ N選択性が低い。また MgOを含有する比較例の触
2 2
媒 Iは、 350°Cにおけて NHを多量に生成し、 N収率性が低い。
3 2
[0113] 従って、本発明の触媒は、窒素系排ガスの処理において優れた性能を示すといえ る。
[0114] 次に、銅酸化物及びゼォライトを混合した本発明の触媒 (触媒 IX)の評価結果と、 C uでイオン交換された比較例の触媒 (触媒 E)の評価結果を比較した (表 5及び図 2)。
[0115] [表 5]
Figure imgf000029_0001
まず、銅酸化物及びゼォライトを混合した本発明の触媒 (触媒 IX)の 300°Cにおけ る DMF分解率が 100%であるのに対し、 Cuでイオン交換したゼォライトである Cu— ZSM5 (触媒 E)は 79%であり、本発明の触媒の方が高活性であることがわかる。さら に、本発明の触媒 IXの 300— 350°Cにおける N選択率が 76— 98%であるのに対し
、比較例の触媒 Eでは 32— 47%であり、本発明の触媒の方が選択性も優れているこ とがわかる。 DMFの炭化水素成分に起因する COの選択率に関しても、本発明の触 媒 IXは 300 350°Cで約 2 7%であるのに対し、比較例の触媒 Eでは、 18 28% であった。この結果から、本発明の触媒を用いると COの発生も抑制できることがわか る。
[0117] 以上より明らかなように、本発明の触媒は、有機窒素化合物の分解率がほぼ 100 %という条件であっても NO 、 N O, COの生成量が極めて低ぐ高選択率で Nへ転
2 2 ィ匕することがでさる。
[評価例 2]
前述の触媒にアンモニアを含むガスを流通し、触媒活性を評価した。使用したガス の糸且成は以下の通りである。
[0118] アンモニア 5000ppm
O 10mol%
2
水 2mol%
窒素 残部
測定条件は、評価例 1と同様であった。
[0119] 触媒 II、 XI及び XIIの評価結果を以下の表 6及び図 3に示す。
[0120] [表 6]
表 6 NH3含有ガスに対する触媒性能の評価結果
Figure imgf000030_0001
[0121] 表 6及び表 3に示されるように、本発明の触媒はアンモニアを極めて高い選択率で Nへ転ィ匕することが明らかである。
2
ゼォライトの種類を変えた触媒組成の DMF分解性を比較した結果を表 7に示す。
[0122] [表 7] 表 含有ガスに対する触媒性能の評価結果
Figure imgf000031_0001
[0123] H—モルデナイト(SiO /Al Oモル比 10. 7)を使用した触媒 XIIは、 300〜450
2 2 3
度において DMFを 100%分解して、これを 84. 2-97. 1%N2に転化するのに対し 、 Na—モルデナイト(SiO /Al Oモル比 10. 7)を使用した触媒 Hは、 DMFを 100
2 2 3
%分解するが、 Nへの転化率は 52. 6-71. 8%であり、一方 NOと N Oの収率が
2 2
増加する。
[0124] また SiO /Al Oモル比 240の H—モルデナイトを使用した触媒 Gも、触媒 Hと同
2 2 3
様、 Nへの転化率は低い。
2
[0125] 一方 13型ゼオライトを使用した触媒 XVIII、 H— ZSMを使用した触媒 XIXおよび触 媒 XXは、 Nへの転化率が高ぐ有機窒素化合物を 100%分解するとともに、 NH ,
2 3
NO 、 N O, COなどの副生成物をほとんど生成することなぐ Nへ高率で転化する 2 2
性能を発揮することが示されて 、る。
[評価例 3]加速耐久試験
触媒 XIVと触媒 XVについて、以下の評価を行った; 通したガス組成;
ジメチルホルムアミド(DMF) 3000ppm
O 10mol%
2
水 lmol%
S02 2ppm
窒素 残部
上記組成のガスを SV20000hr 、温度 350°Cにて触媒に流通し、 500時間運転し た後の触媒について、評価例 00
1の条件にて、 DMFの分解試験を実施した。 500時間 O L D C
後の触媒の活性試験結果は以下のとおりであった;
注;反応温度:上段; 300°C、下段 350°C
DMF分解率(%) N収率(%) CO収率(%)
2
触媒 XIV 49. 8 2. 7
100 14. 6
触媒 XV 100 0· 6
100 2. 7
Ptを含む触媒 XVは so存在下でも活性の低下が少なぐ有機窒素化合物の分解率
2
が高く維持され、 N転ィ匕率の低下も少ないことが明らかである。 Ptの存在により、特
2
に 300°Cという比較的低い温度での N収率向上や CO収率低減に効果的である。

Claims

請求の範囲
[I] 有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕する ための、銅酸ィ匕物及びゼォライトを含む触媒組成物。
[2] 銅酸化物粒子及びゼォライト粒子を混合することにより形成される、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕する ための触媒組成物。
[3] 銅酸ィ匕物及びゼォライトの重量の和に対する銅酸ィ匕物の重量が 0. lwt%力 40 wt%の範囲にある請求項 1又は 2に記載の触媒組成物。
[4] マンガン酸ィ匕物をさらに含む請求項 1― 3の何れかに記載の触媒組成物。
[5] 銅酸ィ匕物及びゼォライトの重量の和に対するマンガン酸ィ匕物の重量が 0. lwt%か ら 10wt%の範囲にある請求項 4に記載の触媒組成物。
[6] Pt、 Pd、 Ru、 Rh、 Ir、及びそれらの合金力もなる群より選択される 1種以上をさらに 含む請求項 1 5の何れかに記載の触媒組成物。
[7] 銅酸化物及びゼォライトの重量の和に対する Pt、 Pd、 Ru、 Rh、 Ir及びそれらの合 金からなる群より選択される 1種以上の重量の和が lppmから 500ppmの範囲にある 請求項 6に記載の触媒組成物。
[8] Pt、 Pd、 Ru、 Rh、 Ir、及びそれらの合金からなる群より選択される 1種以上を担持 したシリカ、チタ-ァ、アルミナよりなる群から選択される無機酸化物粒子を混合して なる、請求項 6又は 7に記載の触媒組成物。
[9] ゼォライトの SiO ZA1 Oモル比が 3〜70であり、該ゼオライトがプロトン型、又は第
2 2 3
8属金属、第 9属金属、第 10属金属、第 11属金属のいずれかでイオン交換されたゼ オライトの 1種又は 2種以上である、請求項 1 8の何れかに記載の触媒組成物。
[10] ゼォライトの SiO ZA1 Oモル比が 5〜50である、請求項 1—9の何れかに記載の
2 2 3
触媒組成物。
[II] ゼォライトがプロトン型であって、モルデナイト、 MFI, j8型のいずれ力 1種又は 2種 以上である、請求項 1 10の何れかに記載の触媒組成物。
[12] 触媒支持体;及び、
該触媒支持体上に形成された、請求項 1 11の何れかに記載の触媒組成物を含 む触媒層;
を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた めの触媒。
[13] 酸化銅粒子及びゼォライト粒子を混合する工程を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた め触媒組成物の製造方法。
[14] 酸化銅粒子、ゼォライト粒子並びに Pt, Pd, Ru, Rh、 Ir及びそれらの合金力 なる 群力 より選択される 1種以上を担持した、シリカ粒子及び Z又はチタ-ァ粒子を混 合して混合物を形成し;
該混合物をスラリーとし;
該スラリーを触媒支持体上に塗布して触媒層を形成する;
工程を含む、
有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを浄ィ匕するた めの触媒製造方法。
[15] 有機窒素化合物、アンモニア、又はそれらの組み合わせを含む排ガスを、銅酸ィ匕 物粉末、ゼォライト粉末並びに Pt, Pd, Ru, Rh、 Ir及びそれらの合金力 なる群より 選択される 1種以上を担持した、シリカ粒子及び Z又はチタ-ァ粒子を混合すること により形成される触媒組成物を含む触媒と 250— 600°Cにおいて接触させ、 Nに変
2 換する工程;
を含む、排ガス処理方法。
PCT/JP2005/013171 2004-07-15 2005-07-15 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法 WO2006006702A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800304951A CN101018604B (zh) 2004-07-15 2005-07-15 含有有机氮化合物废气的净化用催化剂及该废气的净化方法
EP05766375.9A EP1787720B1 (en) 2004-07-15 2005-07-15 Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas
JP2006529191A JP5069467B2 (ja) 2004-07-15 2005-07-15 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
US11/572,095 US8575054B2 (en) 2004-07-15 2005-07-15 Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas
KR1020077003591A KR101126063B1 (ko) 2004-07-15 2005-07-15 유기 질소 화합물 함유 배기가스의 정화용 촉매 및 동배기가스의 정화 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004208279 2004-07-15
JP2004-208279 2004-07-15

Publications (2)

Publication Number Publication Date
WO2006006702A1 true WO2006006702A1 (ja) 2006-01-19
WO2006006702B1 WO2006006702B1 (ja) 2006-03-30

Family

ID=35784034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013171 WO2006006702A1 (ja) 2004-07-15 2005-07-15 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法

Country Status (8)

Country Link
US (1) US8575054B2 (ja)
EP (1) EP1787720B1 (ja)
JP (1) JP5069467B2 (ja)
KR (1) KR101126063B1 (ja)
CN (1) CN101018604B (ja)
IN (1) IN2007CH00672A (ja)
TW (1) TWI409104B (ja)
WO (1) WO2006006702A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075311A1 (ja) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
WO2009141872A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP2010519039A (ja) * 2007-02-27 2010-06-03 ビーエーエスエフ、カタリスツ、エルエルシー 選択的アンモニア酸化用の二官能性触媒
JP2010540230A (ja) * 2007-09-28 2010-12-24 ビーエーエスエフ、カタリスツ、エルエルシー 電力施設におけるアンモニアの触媒的酸化方法
JP2013535317A (ja) * 2010-07-15 2013-09-12 ビーエーエスエフ ソシエタス・ヨーロピア NOxの選択的還元用の銅含有ZSM−34、OFF及び/又はERIゼオライト系材料
WO2015099024A1 (ja) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 アンモニア分解触媒
CN114632524A (zh) * 2022-05-18 2022-06-17 中国环境科学研究院 一种用于石化废水处理的铜-锰/三氧化二铝催化剂及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005411A1 (de) * 2004-02-03 2005-08-18 Degussa Ag Hydrophobe Fällungskieselsäure für Entschäumerformulierungen
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
EP2517773B2 (en) 2007-04-26 2019-08-07 Johnson Matthey Public Limited Company Copper/LEV-zeolite SCR catalyst
FR2920758B1 (fr) * 2007-09-07 2009-11-13 Inst Francais Du Petrole Materiau cristallise a porosite hierarchisee et comprenant du silicium
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US10632423B2 (en) * 2008-11-03 2020-04-28 Basf Corporation Bimetallic catalysts for selective ammonia oxidation
US10583424B2 (en) * 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
CN101905156B (zh) * 2009-06-04 2013-02-13 唐幸福 一种高效固定源脱硝整体型催化剂
TWI414356B (zh) * 2009-12-31 2013-11-11 Univ Nat Yunlin Sci & Tech 結合氧化亞銅與沸石之吸附觸媒的製造方法
JP5616382B2 (ja) * 2012-03-05 2014-10-29 株式会社豊田中央研究所 酸化触媒及びそれを用いた排ガス浄化方法
CN102773008B (zh) * 2012-07-18 2014-06-25 常州大学 一种处理炼油废气中高浓度氨氮的方法
CN102772997B (zh) * 2012-07-18 2014-06-11 常州大学 一种处理化工废气中高浓度氨氮的方法
CN102776034B (zh) * 2012-07-18 2014-01-15 常州大学 一种处理焦化煤气中高浓度氨氮的方法
CN102772996B (zh) * 2012-07-18 2014-01-15 常州大学 一种处理化肥厂废气中氨氮处理方法
WO2015011819A1 (ja) * 2013-07-25 2015-01-29 三菱電機株式会社 脱臭装置
RU2678303C2 (ru) 2014-04-07 2019-01-25 Хальдор Топсеэ А/С Способ получения металлообменных микропористых материалов посредством твердофазного ионного обмена
JP6393591B2 (ja) * 2014-11-12 2018-09-19 日立造船株式会社 アルデヒド分解触媒および排ガス処理設備ならびに排ガス処理方法
US9901900B2 (en) 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
ITUB20154976A1 (it) * 2015-10-16 2017-04-16 Lavazza Luigi Spa Procedimento per il trattamento degli effluenti gassosi sviluppati in un impianto di tostatura del caffe.
CN107913596B (zh) * 2016-10-09 2020-05-05 中国石油化工股份有限公司 含氰废气催化氧化脱氰方法
CN106807432A (zh) * 2017-02-06 2017-06-09 无锡威孚环保催化剂有限公司 一种用于NO氧化的Pt‑Pd双金属催化剂及其制备方法
CN109569272B (zh) * 2017-09-28 2021-11-30 中国石油化工股份有限公司 含氰废气处理方法
CN108816275B (zh) * 2018-04-19 2021-02-05 南京红太阳生物化学有限责任公司 一种用于合成气制吡啶碱的催化剂及制备方法和应用
CN111346502B (zh) * 2018-12-20 2022-03-11 中国石油化工股份有限公司 一种不完全再生烟气的处理方法
US11911747B2 (en) * 2018-12-27 2024-02-27 Nikki-Universal Co., Ltd. Catalyst for ammonia decomposition and exhaust gas treatment method
CN111215130B (zh) * 2019-11-28 2023-03-21 浙江师范大学 一种用于消除二乙胺的催化剂及其制备方法
CN110918117B (zh) * 2019-11-28 2023-03-21 浙江师范大学 一种用于消除含氮有机物的催化剂及其制备方法
JP6956826B2 (ja) * 2020-04-03 2021-11-02 株式会社キャタラー 排ガス浄化触媒装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334A (ja) * 1992-06-16 1994-01-11 Kurabo Ind Ltd 除塵脱硝フィルター
JPH07284670A (ja) 1994-04-18 1995-10-31 Nippon Chem Ind Co Ltd 酸化分解性脱臭触媒
JPH07328440A (ja) * 1994-06-14 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd アンモニア分解用触媒
JPH08173766A (ja) 1994-10-14 1996-07-09 Haldor Topsoe As オフガス中のアンモニアの分解方法
JPH08309152A (ja) * 1995-05-19 1996-11-26 Mitsubishi Heavy Ind Ltd 排ガスの浄化方法
EP0800855A1 (en) 1996-04-11 1997-10-15 Sara Lee/DE N.V. Method for the catalytic oxidation of off-gases
JPH09299461A (ja) * 1996-05-16 1997-11-25 Matsushita Electric Ind Co Ltd 脱臭体
JP2001293480A (ja) 2000-04-14 2001-10-23 Nec Corp 廃水処理方法及び当該方法を用いた廃水処理装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811188B2 (ja) * 1991-05-16 1996-02-07 松下電器産業株式会社 脱臭用触媒体
DE4116362A1 (de) 1991-05-18 1992-11-19 Solvay Catalysts Gmbh Verfahren zur entfernung des ammoniakgehaltes in gasen
JPH05115751A (ja) * 1991-10-24 1993-05-14 Tokyo Gas Co Ltd ガス燃焼排ガスの処理方法および該方法に用いられる触媒
US5254327A (en) * 1992-04-03 1993-10-19 Intevep, S.A. Zeolitic catalyst of MFI type, its preparation and use
JP3321214B2 (ja) * 1992-11-16 2002-09-03 エヌ・イーケムキャット株式会社 排気ガス浄化用触媒
JPH08332388A (ja) * 1995-06-06 1996-12-17 Sakai Chem Ind Co Ltd アンモニア分解剤
JPH10249165A (ja) 1997-03-07 1998-09-22 Masaru Ichikawa アンモニア含有ガスの処理方法
EP0888808B1 (en) * 1997-07-02 2004-10-06 Tosoh Corporation Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
CN100457238C (zh) * 1998-02-22 2009-02-04 无锡威孚力达催化净化器有限责任公司 用于净化内燃机尾气和/或工业废气的催化剂及其制备
AU2002364694A1 (en) 2001-11-09 2003-06-30 Engelhard Corporation Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
JP4096052B2 (ja) 2002-07-31 2008-06-04 独立行政法人産業技術総合研究所 廃ガス中に含まれるニトリル化合物の分解処理方法
JP2004167306A (ja) 2002-11-18 2004-06-17 Ict:Kk 排ガス浄化用触媒および排ガス浄化方法
JP4791049B2 (ja) * 2005-02-16 2011-10-12 ニチアス株式会社 エアフィルタ用シート及びその製造方法並びにエアフィルタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334A (ja) * 1992-06-16 1994-01-11 Kurabo Ind Ltd 除塵脱硝フィルター
JPH07284670A (ja) 1994-04-18 1995-10-31 Nippon Chem Ind Co Ltd 酸化分解性脱臭触媒
JP3485350B2 (ja) * 1994-04-18 2004-01-13 日本化学工業株式会社 酸化分解性脱臭触媒
JPH07328440A (ja) * 1994-06-14 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd アンモニア分解用触媒
JPH08173766A (ja) 1994-10-14 1996-07-09 Haldor Topsoe As オフガス中のアンモニアの分解方法
JPH08309152A (ja) * 1995-05-19 1996-11-26 Mitsubishi Heavy Ind Ltd 排ガスの浄化方法
EP0800855A1 (en) 1996-04-11 1997-10-15 Sara Lee/DE N.V. Method for the catalytic oxidation of off-gases
JPH09299461A (ja) * 1996-05-16 1997-11-25 Matsushita Electric Ind Co Ltd 脱臭体
JP2001293480A (ja) 2000-04-14 2001-10-23 Nec Corp 廃水処理方法及び当該方法を用いた廃水処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1787720A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974704B1 (ko) * 2007-02-27 2019-05-02 바스프 카탈리스트 엘엘씨 선택적 암모니아 산화를 위한 이원기능 촉매
JP2010519039A (ja) * 2007-02-27 2010-06-03 ビーエーエスエフ、カタリスツ、エルエルシー 選択的アンモニア酸化用の二官能性触媒
JP2015166083A (ja) * 2007-02-27 2015-09-24 ビーエーエスエフ コーポレーション 選択的アンモニア酸化用の二官能性触媒
KR20160079935A (ko) * 2007-02-27 2016-07-06 바스프 카탈리스트 엘엘씨 선택적 암모니아 산화를 위한 이원기능 촉매
JP2010540230A (ja) * 2007-09-28 2010-12-24 ビーエーエスエフ、カタリスツ、エルエルシー 電力施設におけるアンモニアの触媒的酸化方法
JP5384368B2 (ja) * 2007-12-12 2014-01-08 日揮ユニバーサル株式会社 アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
WO2009075311A1 (ja) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法
WO2009141872A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
JP2013535317A (ja) * 2010-07-15 2013-09-12 ビーエーエスエフ ソシエタス・ヨーロピア NOxの選択的還元用の銅含有ZSM−34、OFF及び/又はERIゼオライト系材料
WO2015099024A1 (ja) 2013-12-26 2015-07-02 日揮ユニバーサル株式会社 アンモニア分解触媒
JPWO2015099024A1 (ja) * 2013-12-26 2017-03-23 日揮ユニバーサル株式会社 アンモニア分解触媒
KR20160102474A (ko) 2013-12-26 2016-08-30 니키 유니바사루 가부시키가이샤 암모니아 분해 촉매
CN114632524A (zh) * 2022-05-18 2022-06-17 中国环境科学研究院 一种用于石化废水处理的铜-锰/三氧化二铝催化剂及其制备方法

Also Published As

Publication number Publication date
CN101018604A (zh) 2007-08-15
TW200615048A (en) 2006-05-16
IN2007CH00672A (ja) 2007-08-24
KR20070033473A (ko) 2007-03-26
EP1787720A1 (en) 2007-05-23
US8575054B2 (en) 2013-11-05
US20070286786A1 (en) 2007-12-13
JPWO2006006702A1 (ja) 2008-07-31
CN101018604B (zh) 2010-12-08
WO2006006702B1 (ja) 2006-03-30
EP1787720A4 (en) 2011-08-31
KR101126063B1 (ko) 2012-03-29
TWI409104B (zh) 2013-09-21
JP5069467B2 (ja) 2012-11-07
EP1787720B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2006006702A1 (ja) 有機窒素化合物含有排ガスの浄化用触媒、および同排ガスの浄化方法
CN113559877B (zh) 非pgm氨泄漏催化剂
DK3088080T3 (en) Ammonia Decomposition Catalyst
EP1166856B1 (en) Exhaust gas purifying catalyst
US5783515A (en) Catalyst for treating exhaust gases containing dioxines, production process for the catalyst and method of treating the exhaust gases
US5457268A (en) Selective oxidation catalysts for halogenated organics
KR20150129851A (ko) 배기가스를 처리하기 위한 촉매로서 알루미노실리케이트 또는 실리코알루미노포스페이트 분자 체/망간 팔면체 분자 체
KR20130041943A (ko) 질소 산화물의 선택적인 환원을 위한 구리 함유 zsm-34, 오프레타이트 및/또는 에리오나이트 제올라이트 물질
JPH05261289A (ja) 窒素酸化物接触還元用触媒
US11911747B2 (en) Catalyst for ammonia decomposition and exhaust gas treatment method
KR20040010605A (ko) 기체중의 n2o 함량을 감소시키는 방법 및 선택된 촉매
JPH05245372A (ja) 窒素酸化物接触還元用触媒
JPH07213911A (ja) 窒素酸化物接触還元用触媒
JP3453239B2 (ja) 窒素酸化物接触還元用触媒
JPH0768180A (ja) 窒素酸化物接触還元用触媒
JPH06320008A (ja) 窒素酸化物接触還元用触媒
JPH05317650A (ja) 窒素酸化物接触還元用触媒
JPH0417091B2 (ja)
JPH07121361B2 (ja) 窒素酸化物の接触還元用触媒
JPH07155554A (ja) 窒素酸化物の接触還元方法
JPH08332388A (ja) アンモニア分解剤
JPH0768174A (ja) 窒素酸化物接触還元用触媒
JPH0716470A (ja) 窒素酸化物還元触媒およびその製造方法、ならびに窒素酸化物除去方法
JPH0952048A (ja) 窒素酸化物接触還元用触媒
JPH07289851A (ja) 窒素酸化物の接触還元方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

B Later publication of amended claims

Effective date: 20050105

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11572095

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006529191

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005766375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005766375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077003591

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 672/CHENP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580030495.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020077003591

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005766375

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11572095

Country of ref document: US