WO2005124912A1 - 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法 - Google Patents

液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法 Download PDF

Info

Publication number
WO2005124912A1
WO2005124912A1 PCT/JP2005/011468 JP2005011468W WO2005124912A1 WO 2005124912 A1 WO2005124912 A1 WO 2005124912A1 JP 2005011468 W JP2005011468 W JP 2005011468W WO 2005124912 A1 WO2005124912 A1 WO 2005124912A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid composition
membrane
cerium
manganese
compound
Prior art date
Application number
PCT/JP2005/011468
Other languages
English (en)
French (fr)
Inventor
Hisao Kawazoe
Eiji Endoh
Hideki Nakagawa
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35510029&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005124912(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to DE602005025213T priority Critical patent/DE602005025213D1/de
Priority to AT05752908T priority patent/ATE491237T1/de
Priority to JP2006514857A priority patent/JP3897059B2/ja
Priority to EP05752908A priority patent/EP1760812B1/en
Priority to KR1020067024566A priority patent/KR100970358B1/ko
Priority to CA2567305A priority patent/CA2567305C/en
Publication of WO2005124912A1 publication Critical patent/WO2005124912A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/16Membrane materials having positively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Liquid composition Liquid composition, method for producing the same, and method for producing membrane electrode assembly for polymer electrolyte fuel cell
  • the present invention relates to a method for producing a membrane electrode assembly for a solid polymer fuel cell capable of obtaining a high output voltage over a long period when the initial output voltage is high, and a liquid composition suitable for the method. .
  • a fuel cell is a cell that directly converts the reaction energy of a gas as a raw material into electric energy.
  • a hydrogen-oxygen fuel cell has a reaction product of only water in principle and has a negative effect on the global environment. rare.
  • polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have developed polymer electrolyte membranes with high ionic conductivity, can operate at room temperature, and have high output densities. With increasing social demands for global environmental issues, great expectations are placed on power sources for mobile vehicles such as electric vehicles and small-sized cogeneration systems.
  • a proton-conductive ion exchange membrane is generally used as a solid polymer electrolyte.
  • an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is used. Excellent in basic characteristics.
  • gas-diffusing electrode layers are disposed on both sides of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (air or the like) serving as an oxidizing agent are each supplied to an anode. And power to the power sword.
  • Patent Document 2 There is known a method of supporting catalytic metal particles in a molecular electrolyte membrane to decompose hydrogen peroxide (see Patent Document 2).
  • these techniques are techniques for decomposing the hydrogen peroxide generated, and are not intended to suppress the decomposition of the ion exchange membrane itself.
  • an ion exchange membrane which is a perfluorocarbon polymer having a sulfonic acid group has been known as a polymer having much higher stability against radicals than a hydrocarbon polymer.
  • polymer electrolyte fuel cells using ion-exchange membranes that also possess these perfluorocarbon polymer properties are expected to be used as power sources in the automotive and residential markets, etc. Is accelerating. In these applications, operation with particularly high efficiency is required, so that operation at higher voltage is desired and at the same time low cost is desired. In addition, low humidification or non-humidification operation is often required due to the efficiency of the entire fuel cell system.
  • extrusion molding is used as a method for producing an electrolyte membrane for a fuel cell as described above.
  • a method of forming a film There are a method of forming a film, a method of forming a cast film using a solution of a resin constituting the electrolyte membrane, and the like.
  • a liquid composition containing a resin constituting a membrane such as a fluorocarbon polymer having a sulfonic acid group, is used for the production of a membrane material, as well as for repairing, recovering, and further repairing an already produced membrane.
  • a coating agent see, for example, Patent Documents 3 and 4).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-118591 (Claim 1, page 2, lines 2 to 9)
  • Patent Document 2 JP-A-6-103992 (Means for solving the problem, page 2, lines 33 to 37)
  • Patent Document 3 JP-A-2003-183467 (page 2, lines 15 to 32)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-75978 (page 5, lines 24-41)
  • Non-patent Document 1 New Energy, Sponsored by the National Institute of Advanced Industrial Science and Technology (AIST), 2000 Solid State Fuel Cell R & D Achievement Report, 56 pages, 16-24
  • the present invention when a polymer electrolyte fuel cell is put to practical use in a vehicle-mounted or residential market, power generation can be performed with a sufficiently high energy efficiency, and the humidification temperature (dew point) of the supplied gas can be increased. Lower than the temperature! ⁇ ⁇ Operation with low or no humidification, close to cell temperature! ⁇ Humidification at temperature
  • the purpose of this membrane is to provide a membrane for polymer electrolyte fuel cells that has high power generation performance in both high humidification operation and stable power generation for a long period of time. It is an object of the present invention to provide a method for producing a composition and a liquid composition useful therefor. Means for solving the problem
  • the present invention is characterized in that it contains trivalent or tetravalent cerium and one or more selected from divalent or trivalent manganese power and a polymer compound having a cation exchange group. Provide a liquid composition.
  • the composition also includes a liquid (solvent or dispersion medium) that can dissolve or disperse a polymer compound having a cation exchange group.
  • a liquid solvent or dispersion medium
  • examples of the solvent or dispersion medium include alcohols, water and the like.
  • cerium or manganese in the product is in an ionic state. May be present, or may be present in a state of being dispersed as a compound such as an oxide or a hydroxide. When it exists in the state of cerium or manganese ion, it may be ion-exchanged with the proton of the cation exchange group of the polymer compound.
  • the present invention also relates to the above-mentioned method for producing a liquid composition, wherein the polymer compound having a cation exchange group is dissolved or dispersed in a liquid, and then the cell compound and the manganese compound are dissolved.
  • a method for producing a liquid composition characterized by mixing at least one selected from the group consisting of:
  • the liquid here indicates a solvent or a dispersion medium.
  • the present invention provides a method for producing a membrane obtained by casting the above-mentioned liquid composition, and a force sword and an anode having a catalyst layer containing a catalyst and a polymer electrolyte.
  • a method for producing a membrane electrode assembly for a solid polymer fuel cell comprising a solid polymer electrolyte membrane disposed between the anode and the anode, wherein the solid polymer electrolyte membrane is produced by the above-described membrane production method.
  • To provide a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell comprising:
  • the present invention provides a power source and an anode having a catalyst layer containing a catalyst and a polymer electrolyte, and a solid polymer electrolyte membrane provided between the power source and the anode.
  • a method for producing a membrane electrode assembly for a molecular fuel cell comprising: dispersing the catalyst in the liquid composition described above; and coating the dispersion to form at least one of the force source and the anode.
  • the present invention provides a method for producing a membrane electrode assembly for a polymer electrolyte fuel cell.
  • the electrolyte membrane obtained according to the present invention has excellent resistance to hydrogen peroxide or hydrogen peroxide radicals.
  • the reason for this is not clear, but the interaction between the cerium ion (trivalent or tetravalent) or manganese ion (divalent or trivalent) and the residue from which the proton of the cation exchange group has dissociated (eg SO-) Effectively improves radical resistance of hydrogen peroxide or hydrogen peroxide
  • the electrolyte membrane obtained by the production method of the present invention contains cerium or manganese. V. ⁇ ⁇ Compared to the method of immersing the electrolyte membrane in a solution containing these ions and compounds, it is considered that these ions and compounds can be easily, accurately and uniformly compounded in the membrane. Can be
  • the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane of the present invention Excellent durability and stable power generation over a long period of time.
  • the high molecular compound having a cation exchange group before containing cerium or manganese is particularly limited as long as it has a function of dissociating the cation exchange group to generate a proton.
  • the cation exchange group include a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a carboxylic acid group, and a ketoimide group, and a sulfonic acid group having high acidity and high chemical stability is particularly preferable.
  • the present invention will be described using a polymer compound having a sulfonic acid group as an example.
  • the liquid composition of the present invention can be obtained by dissolving or dispersing a cerium or manganese compound in a liquid in which a polymer compound having a sulfonic acid group is uniformly dissolved or dispersed.
  • the cerium or manganese compound can be used whether it is soluble or insoluble in the solvent in the liquid composition.
  • a water-soluble salt is used in combination with water in order for the components to be present.
  • a cerium compound or a manganese compound which is insoluble in water but is soluble in another solvent is contained in the liquid composition together with the other solvent, a film obtained by coating the liquid composition can be obtained.
  • a cerium compound or a manganese compound can be uniformly present, which is preferable.
  • a cerium compound or a manganese conjugate which is insoluble in a solvent in the liquid composition When a cerium compound or a manganese conjugate which is insoluble in a solvent in the liquid composition is used, it is necessary to disperse particles of these compounds uniformly and well in the liquid composition. Therefore, in this case, a dispersion of the compound is prepared, and a sulfonic acid group is added. It is preferable to prepare a liquid composition by mixing with a solution or dispersion of a polymer compound having the compound. In addition, a soluble salt of cerium or manganese is dissolved in a solution or dispersion of a polymer compound having a sulfonic acid group, and a separately prepared compound is added to the solution to react with the soluble salt. Then, the reaction product can be contained in the liquid composition.
  • cerium compound to be contained in the liquid composition various compounds such as a water-soluble cerium salt, a water-insoluble cerium salt, and insoluble compounds such as oxides and hydroxides can be used.
  • the valence of cerium is +3 or +4.
  • + Salts containing trivalent cerium ions include, for example, cerium acetate (Ce (CHCOO)
  • Salts containing cerium sulfate include, for example, cerium sulfate (Ce (SO 3) 4 ⁇ 0), diammonium nitrate- ⁇
  • Cerium acetyl acetate is an organometallic complex of cerium.
  • Nart (Ce (CH COCHCOCH) ⁇ 3 ⁇ ⁇ ) and the like.
  • cerium may be contained in an ionic state or a compound state. The same applies when manganese is included instead of cerium.
  • cerium content In the case of cerium compounds, the molar ratio in terms of cerium atoms is the cerium content. More preferably from 0.7 to 20 mole 0/0, more preferred properly is from 1 to 15 mol 0/0.
  • cerium content is smaller than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured.
  • the content is higher than this range, sufficient conductivity of hydrogen ions cannot be secured, and the membrane resistance increases, resulting in an increase in power generation characteristics. May be reduced.
  • Examples of the raw material manganese compound to be contained in the liquid composition include various compounds such as a water-soluble manganese salt, a water-insoluble manganese salt, and insoluble compounds such as oxides and hydroxides. Can be used.
  • the valence of manganese is +2 or +3. + Specific examples of salts containing divalent manganese ions include, for example, manganese acetate (Mn (CH COO) ⁇ 4 ⁇ ⁇
  • salts containing manganese ions include, for example, manganese acetate (Mn (CHCOO) .2O)
  • the content of manganese ions or manganese compounds are from 0.5 to 45 mole 0/0 of moles of SO- in the polymer compound having a sulfonic acid group thing
  • the molar ratio in terms of manganese atoms is the manganese content. More preferably 1 to 30 mol%, more preferably 1. 5 to 20 mole 0/0.
  • the manganese content is smaller than this range, sufficient stability against hydrogen peroxide or peroxide radicals may not be ensured. On the other hand, if the content is larger than this range, sufficient conductivity of hydrogen ions cannot be ensured, and the film resistance may increase and the power generation characteristics may decrease.
  • the cerium compound or manganese compound used is particularly preferably a carbonate.
  • Many carbonates are generally poorly soluble in water.However, in the case of cerium carbonate and manganese carbonate, if water is contained in a solution or dispersion of a polymer compound having a sulfonic acid group, Dissolves easily while generating carbon dioxide gas. Further, when a liquid composition is prepared using a cerium or manganese carbonate, applied by a normal casting method or the like, and the solvent is removed by drying, an electrolyte membrane is obtained. Since no other aeron species remain, washing with water is not required. like this
  • Carbonates are also preferred from the viewpoint of membrane production.
  • a method for obtaining the liquid composition of the present invention, and an electrolyte membrane is obtained using the obtained liquid composition.
  • the method is not particularly limited, and includes, for example, the following method. First, a polymer compound having a sulfonic acid group is dissolved or dispersed in a solvent. To this, water and cerium carbonate or manganese carbonate are added and mixed well to obtain a liquid composition. Then, the obtained liquid composition is cast into a film and dried to obtain an electrolyte membrane.
  • the amount of water contained in the liquid composition is appropriately set depending on the ion exchange capacity and concentration of the polymer compound having a sulfonic acid group, and the amount of cerium or manganese added. If water is not used, it may take a long time to dissolve the carbonate. Therefore, particularly when carbonate is used, it is preferable to include water in the liquid composition.
  • the solid content concentration is not particularly limited.
  • the concentration and viscosity can be adjusted so that ordinary cast coating can be performed.
  • the solid content concentration is 5 to 50% by mass relative to the total mass of the liquid composition, particularly 10 to 35%. Preferably, there is.
  • the electrolyte membrane according to the present invention can also be a laminated membrane.
  • a membrane obtained by casting the liquid composition of the present invention does not contain ions or compounds of cerium or manganese. It is also possible to manufacture by stacking films.
  • the polymer compound having a sulfonic acid group before containing cerium or manganese is not particularly limited, but has an ion exchange capacity of 0.5 to 3.0 meq. Fats are preferred 0.7 to 2.5 meq Zg dry fats are more preferred 1.0 to 2.5 meq Zg dry fats are particularly preferred. If the ion exchange capacity is too low, sufficient conductivity of hydrogen ions cannot be secured when the sulfonic acid groups are ion-exchanged with cerium ions or manganese ions, and the membrane resistance increases and the power generation characteristics deteriorate. There is a risk. If the ion exchange capacity is too high, the water resistance and strength of the membrane may be reduced.
  • the polymer compound is preferably a fluoropolymer, especially a perfluorocarbon polymer having a sulfonic acid group (which may contain an oxygen atom having an ether bond). Is preferred.
  • perfluorovinyli conjugate examples include, more specifically, compounds represented by the following formulas (i) to (iii).
  • q represents an integer of 1 to 8
  • r represents an integer of 1 to 8
  • t represents an integer of 1 to 3.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) r — S0 3 H...
  • CF 2 CF (OCF 2 CF (CF 3 )) t O (CF 2 ) 2 — S0 3 H...
  • a perfluorocarbon polymer having a sulfonic acid group When a perfluorocarbon polymer having a sulfonic acid group is used, a polymer obtained by fluorinating after polymerization to have the terminal of the polymer fluorinated may be used. When the terminal of the polymer is fluorinated, the durability is improved due to better stability against hydrogen peroxide and peroxide radicals.
  • a compound other than the perfluorocarbon polymer having a sulfonic acid group can be used.
  • a polymer compound having an aromatic ring in the main chain and a side chain and having a structure in which a sulfonate group is introduced into the aromatic ring, and having an ion exchange capacity of 0.5 to 3.0 meq. Is preferably used.
  • the following polymer compounds can be used.
  • Sulfonated polyarylene sulfonated polybenzozoxazole, sulfonated polybenzothiazole, sulfonated polybenzoimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylene Lensenolefon, Snollefonidani Polyphenylene Sulfide, Snorrefonidani Polyphenylene Sulfoxide, sulfonated polyphenylene-sulfide, sulfonated polyphenylenesulfide, sulfonated polyether ketone, sulfonated polyetheretherketone, sulfonated polyetherketoneketone , Sulfonated polyimide and the like.
  • the polymer electrolyte fuel cell having the electrolyte membrane of the present invention has, for example, the following configuration. That is, the electrolyte membrane of the present invention is provided with a membrane electrode assembly in which an anode having a catalyst layer containing a catalyst and an ion exchange resin and a force sword are arranged on both surfaces. Membrane electrode contact In the combined anode and power source, a gas diffusion layer made of carbon or carbon paper is preferably arranged outside the catalyst layer (the side opposite to the membrane). On both sides of the membrane / electrode assembly, grooves serving as passages for fuel gas or oxidizing gas are formed, separators are arranged, and a stack in which a plurality of membrane / electrode assemblies are stacked via a router is formed. Has a configuration in which hydrogen gas is supplied and oxygen or air is supplied to the power source side. The reaction of H ⁇ 2H + + 2e— occurs in the anode, and 1/20 + 2H +
  • the electrolyte membrane of the present invention can also be used for a direct methanol fuel cell that supplies methanol instead of fuel gas to the anode side.
  • the above-mentioned catalyst layer is obtained according to a usual method, for example, as follows. First, a solution of a conductive carbon black powder carrying fine particles of a platinum catalyst or platinum alloy catalyst and a solution of a perfluorocarbon polymer having a sulfonate group are mixed to obtain a uniform dispersion. A gas diffusion electrode is formed by such a method to obtain a membrane electrode assembly.
  • the first method is a method in which the above-mentioned dispersion liquid is applied to both sides of an electrolyte membrane and dried, and then both sides are brought into close contact with two carbon cloths or carbon paper.
  • the dispersion is applied to two sheets of carbon cloth or carbon paper and dried, and then sandwiched from both sides of the ion exchange membrane so that the surface to which the dispersion is applied is in close contact with the ion exchange membrane.
  • the carbon cloth or carbon paper has a function as a gas diffusion layer and a function as a current collector for uniformly diffusing the gas into the layer containing the catalyst.
  • a method of applying the above-mentioned dispersion liquid to a separately prepared base material to form a catalyst layer, bonding it to an electrolyte membrane by a method such as transfer, peeling the base material, and sandwiching the base material with the gas diffusion layer. can also be used.
  • the ion exchange resin contained in the catalyst layer is not particularly limited, but is preferably a high molecular compound having a sulfonic acid group, and is preferably a perfluorocarbon polymer having a sulfonic acid group. More preferably, there is.
  • the ion exchange resin in the catalyst layer may contain cerium or manganese in an ionic state or in a compound state as in the case of the electrolyte membrane of the present invention. Such a resin can be used for both the anode and the power source, and the decomposition of the resin is effectively suppressed, so that the polymer electrolyte fuel cell is further provided with durability.
  • an ion-exchange resin containing no cerium or manganese may be used, and only the ion-exchange resin in the catalyst layer may contain cerium or manganese.
  • the catalyst layer may be formed in the same manner as described above using a dispersion of the catalyst in the liquid composition of the present invention as a coating liquid.
  • the force sword and the anode can be prepared using the liquid composition of the present invention, or both the force sword and the anode can be prepared using a liquid composition.
  • a liquid composition having different contents of cerium or manganese may be used between the force sword and the anode, and adjustment may be made such that the contents of cerium or manganese of the force sword and the anode are different.
  • the anode contains cerium in an amount of 10 to 30 mol% of the SO— group contained in the polymer compound having a sulfonic acid group,
  • the force Sword 3 Since L0 mole 0/0 contains cerium of the degradation of the ion exchange resin in the catalyst layer also can be effectively suppressed, and even more preferably a point force of durability.
  • the anode contains 15 to 45 mol% of SO_ groups contained in the polymer compound having a sulfonic acid group.
  • Cancer includes, in force cathode preferably contains a manganese 5-15 mol 0/0.
  • the content of cerium or manganese indicates, in the case of a cerium compound or manganese compound, a ratio in terms of moles converted to the number of moles of cerium or manganese.
  • the electrolyte membrane obtained by the present invention may be a membrane that is only a polymer compound having sulfonic acid groups and containing cerium or manganese in the form of ions or compounds, but may contain other components. It may be.
  • a membrane reinforced by a fiber, woven fabric, nonwoven fabric, porous body, or the like of other resin such as polytetrafluoroethylene (hereinafter, referred to as PTFE) or perfluoroalkyl ether is used in the present invention. It can also be applied to a method of forming a film using a liquid composition.
  • the whole membrane When the electrolyte membrane is reinforced, the whole membrane may be reinforced, but the periphery of the membrane may be reinforced in a frame shape with a film, a sheet, or the like. Reinforcement of the membrane in a frame shape increases the strength of the peripheral part and improves handling.
  • the entire membrane may be reinforced with a high porosity reinforcing material and only the peripheral portion has a low porosity or no porosity!
  • the polymer electrolyte fuel cell provided with the membrane electrode assembly obtained by the present invention has excellent durability even at a high temperature, and therefore can be operated at 100 ° C or more to generate power.
  • fuel gas When using hydrogen obtained by reforming ethanol, natural gas, gasoline, etc., even if a trace amount of carbon monoxide is contained, the electrode catalyst is poisoned and the output of the fuel cell tends to decrease. If the operating temperature is set to 100 ° C or higher, poisoning can be suppressed. When the operating temperature is set to 120 ° C or more, the effect of suppressing the more favorable poisoning becomes higher.
  • the liquid composition of the present invention is also preferably used for various sensors such as a water electrolysis membrane, a humidity sensor, and a signal transmission medium, which are useful only for producing an electrolyte membrane for a fuel cell and a catalyst layer. Use it.
  • solution A 300 g, 420 g of ethanol and 280 g of water were charged into a 2 L-year-old autoclave, sealed, mixed and stirred with a double helical blade at 105 ° C for 6 hours to obtain a uniform liquid. (Hereinafter referred to as solution A). Solution A had a solid content concentration of 30% by mass.
  • solution B 40 g of this polyetheretherketone having a sulfonic acid group is dissolved in 360 g of N-methyl-2-pyrrolidone (NMP) to obtain a 10% by mass solution (hereinafter referred to as solution B).
  • NMP N-methyl-2-pyrrolidone
  • liquid composition C Obtained a uniform transparent liquid composition (hereinafter, referred to as liquid composition C).
  • the solid content concentration of the obtained liquid composition C was 30.2 mass 0 /. Met.
  • This composition was cast-coated on a 100 m ethylene-tetrafluoroethylene copolymer (ETFE) sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd.) using a die coater, and preliminarily dried at 80 ° C. for 10 minutes. After drying at 120 ° C for 10 minutes, annealing was further performed at 150 ° C for 30 minutes to obtain a solid polymer electrolyte membrane having a thickness of 50 m.
  • EFE ethylene-tetrafluoroethylene copolymer
  • a membrane having a size of 5 cm ⁇ 5 cm was cut out, allowed to stand in dry nitrogen for 16 hours, weighed accurately, and impregnated in a 0.1N HC1 aqueous solution to obtain cerium. A liquid from which ions were completely extracted was obtained. This solution was measured by inductively coupled plasma (ICP) emission spectrometry to determine the amount of cerium in the polymer electrolyte membrane.
  • ICP inductively coupled plasma
  • the coating liquid was applied on a polypropylene base film using a bar coater, and then dried in a dryer at 80 ° C for 30 minutes to prepare a catalyst layer.
  • the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of the base film alone before the formation of the catalyst layer and the mass of the base film after the formation of the catalyst layer. It was 2 o
  • 2AZcm 2 to correspond to that of hydrogen (utilization ratio 70%) and subjected supply air (% utilization 40) to the anode and force cathode, respectively, the cell temperature 90 ° C
  • the anode gas had a dew point of 60 ° C
  • the power source gas had a dew point of 60 ° C. Operation was performed for 100 hours in an open circuit state without power generation, and the voltage change during that time was measured. Before and after the test, hydrogen was supplied to the anode and nitrogen was supplied to the power source, and the amount of hydrogen gas leaking from the anode to the power source through the membrane was analyzed to determine the degree of membrane degradation. Table 1 shows the results.
  • a membrane electrode assembly was produced in the same manner as described above, incorporated into a power generation cell, and subjected to a durability test under low humidification operating conditions.
  • the test conditions under atmospheric pressure, hydrogen (70% utilization) to supply Z Air (40% utilization), of the polymer electrolyte fuel cell at a current density of 0. 2A / cm 2 at a cell temperature of 80 ° C
  • Initial characteristic evaluation and durability evaluation were performed. Hydrogen and air are humidified so that the dew point is 80 ° C on the anode side and the dew point is 50 ° C on the power source side, and they are supplied into the cell.
  • the cell voltage at the beginning of operation and the elapsed time after the start of operation And the cell voltage were measured. Table 2 shows the results.
  • Example 2 In the same manner as in Example 1, a film having a cerium content of 5 mol% was obtained. Next, a membrane catalyst layer assembly was obtained using this membrane in the same manner as in Example 1, and further a membrane electrode assembly was obtained. When the same evaluation as in Example 1 was performed for this membrane / electrode assembly, the results shown in Tables 1 to 3 were obtained.
  • Example 4 In the same manner as in Example 1, a film having a cerium content of 1.7 mol% was obtained. Next, a membrane catalyst layer assembly was obtained using this membrane in the same manner as in Example 1, and further a membrane electrode assembly was obtained. When the same evaluation as in Example 1 was performed for this membrane / electrode assembly, the results shown in Tables 1 to 3 were obtained. [0064] [Example 4]
  • a manganese content of 10 mol% was obtained in the same manner as in Example 1 except that 422 mg of manganese was used.
  • a membrane catalyst layer assembly is obtained in the same manner as in Example 1 using this membrane to further obtain a membrane electrode assembly.
  • the results shown in Tables 1 to 3 are obtained.
  • this liquid composition is 8.3%.
  • This composition is cast at room temperature on a PTFE substrate and dried at 100 ° C for 10 hours in a nitrogen atmosphere to evaporate NMP and water to obtain a 50 m thick film.
  • This film, the content of cerium is 10 mole 0/0 by the same ICP measurements as in Example 1.
  • a film was cast without adding anything to the solution A to obtain a solid polymer electrolyte membrane.
  • a membrane catalyst layer assembly was obtained in the same manner as in Example 1 except that this membrane was used as an electrolyte membrane, and further a membrane electrode assembly was obtained. The same evaluation as in Example 1 was performed on this membrane / electrode assembly, and the results are shown in Tables 1 to 3.
  • Example 5 a membrane / catalyst layer assembly is obtained and a membrane / electrode assembly is obtained in the same manner as in Example 5, except that the solution B is used without adding cerium carbonate and water.
  • this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
  • Example 1 100 g of solution A was combined with 249 mg of cerium carbonate hydrate (Ce (CO) '8H O). , And manganese carbonate hydrate (MnCO ⁇ ⁇ 0, manganese content is 41 ⁇ 4 of the total mass)
  • Solution A is cast-coated on a 100 m ETFE sheet (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd.) using a die coater, pre-dried at 80 ° C for 10 minutes, and then dried at 120 ° C for 10 minutes. Then, annealing was performed at 150 ° C. for 30 minutes to obtain an electrolyte membrane having a thickness of 50 / ⁇ and a size of 5 cm ⁇ 5 cm.
  • a 100 m ETFE sheet trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd.
  • an anode catalyst layer was prepared as follows using the liquid composition C having a cerium content of 10 mol% prepared in Example 1.
  • Five gram of distilled water was mixed with 1.0 g of a catalyst powder (made by N. Kymchiatnet) in which platinum was supported on a carbon carrier (specific surface area: 800 m 2 / g) so that 50% of the total mass of the catalyst was contained.
  • a catalyst powder made by N. Kymchiatnet
  • a carbon carrier specific surface area: 800 m 2 / g
  • This coating solution was applied on a polypropylene base film using a bar coater, and then dried in a dryer at 80 ° C for 30 minutes to form a perfluorocarbon polymer in the catalyst layer.
  • the anode catalyst layer containing 10 mol 0/0 of cerium-containing Murrell one SO- group was prepared.
  • the amount of platinum per unit area contained in the catalyst layer was calculated to be 0.5 mg / cm (?
  • a force sword catalyst layer containing no cerium was prepared in the same manner as the anode catalyst layer except that the solution A was used instead of the liquid composition C.
  • the anode catalyst layer and the force sword catalyst layer formed on the above-described base film were respectively disposed on both sides of the electrolyte membrane prepared using the solution A, and the catalyst layer was formed by hot pressing. Is transferred to the membrane and is contained in the perfluorocarbon polymer in the catalyst layer — SO " An anode catalyst layer containing 10 mol 0/0 of cerium group, a force cathode catalyst layer containing no cerium was bonded on both surfaces of the polymer electrolyte membrane to obtain a membrane-catalyst layer assembly.
  • the electrode area was 16 cm 2 .
  • Example 1 From this membrane catalyst layer assembly, a membrane electrode assembly was further obtained in the same manner as in Example 1. An open circuit test similar to that of Example 1 was performed on this membrane electrode assembly. The results are shown in Table 1. In addition, a membrane electrode assembly similar to the above was fabricated and assembled into a power generation cell, and a durability test was performed under the same low-humidification and high-humidification operating conditions as in Example 1 to obtain the results shown in Tables 2 and 3. It becomes.
  • Example 9 A liquid composition having a cerium content of 20 mol% was prepared in the same manner as in Example 1 except that OOg was charged. Except that this liquid composition was used to form the anode catalyst layer, the SO— group contained in the perfluorocarbon polymer in the catalyst layer was the same as in Example 9.
  • An anode catalyst layer containing 3 to 20 mole 0/0 of cerium, a force cathode catalysts layer containing no cerium obtain a membrane-catalyst layer assembly joined on both surfaces of the polymer electrolyte membrane.
  • a membrane / electrode assembly was further obtained from this membrane / catalyst layer assembly in the same manner as in Example 1.
  • An open circuit test similar to that of Example 1 was performed on this membrane electrode assembly. The results are shown in Table 1.
  • a membrane electrode assembly similar to the above was fabricated and assembled into a power generation cell, and a durability test was performed under the same low-humidification and high-humidification operating conditions as in Example 1 to obtain the results shown in Tables 2 and 3. It becomes.
  • a liquid composition having a manganese content of 20 mol% was prepared in the same manner as in Example 1 except for the charging. Except that this liquid composition was used for forming the anode catalyst layer, the same as in Example 8, except that the perfluorocarbon polymer in the catalyst layer contained 20 mol% of —SO— groups.
  • a manganese-containing anode catalyst layer and a manganese-containing cathode catalyst layer are bonded to both surfaces of a polymer electrolyte membrane to obtain a membrane catalyst layer assembly.
  • the electrolyte membrane obtained from the electrolyte liquid composition of the present invention has extremely excellent durability against hydrogen peroxide or peroxide radicals generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell provided with the membrane electrode assembly having the electrolyte membrane of the present invention has long-term durability in both low humidification power generation and high humidification power generation.
  • the application was filed on June 22, 2004, filed in Japanese Patent Application No. 2004-183712, filed on July 12, 2004, filed in Japanese Patent Application No. 2004-204704, and filed on September 13, 2004
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2004-265176, incorporated herein by reference, are incorporated herein by reference as the disclosure of the specification of the present invention.

Abstract

 3価又は4価のセリウム、及び2価又は3価のマンガンからなる群から選ばれる1種以上と、陽イオン交換基を有する高分子化合物とを含む液状組成物により、電解質膜を作製する。好ましくは水とセリウム又はマンガンの炭酸塩と陽イオン交換基を有する高分子化合物とを含む液状組成物でキャスト製膜したものを電解質膜として膜電極接合体を作製する。高いエネルギー効率での発電が可能であり、供給ガスの露点によらず、高い発電性能を有し、かつ長期間に渡って安定した発電が可能な固体高分子形燃料電池用膜電極接合体を提供できる。

Description

液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合 体の製造方法
技術分野
[0001] 本発明は、初期の出力電圧が高ぐ長期に渡って高い出力電圧が得られる固体高 分子形燃料電池用膜電極接合体の製造方法と、そのための好適な液状組成物に関 する。
背景技術
[0002] 燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する 電池であり、水素'酸素燃料電池は、その反応生成物が原理的に水のみであり地球 環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体 高分子形燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常 温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への 社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージエネレーシ ヨンシステムの電源として大きな期待が寄せられて 、る。
[0003] 固体高分子形燃料電池では、通常、固体高分子電解質としてプロトン伝導性のィ オン交換膜が使用され、特にスルホン酸基を有するパーフルォロカーボン重合体か らなるイオン交換膜が基本特性に優れている。固体高分子形燃料電池では、イオン 交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸 ィ匕剤となる酸素を含むガス (空気等)を、それぞれアノード及び力ソードに供給するこ とにより発電を行う。
[0004] 固体高分子形燃料電池の力ソードにおける酸素の還元反応は過酸ィ匕水素 (H O )
2 2 を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物 ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、ァ ノードには、力ソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又 は過酸ィ匕物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子 電解質膜とする場合は、ラジカルに対する安定性に乏しぐ長期間にわたる運転〖こ お!、ては大きな問題となって!/、た。
[0005] 例えば、固体高分子形燃料電池が初めて実用化されたのは、米国のジェミニ宇宙 船の電源として採用された時であり、この時にはスチレンージビュルベンゼン重合体 をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問 題があった。この様な問題を改善する技術としては、高分子電解質膜中に過酸化水 素を接触分解できる遷移金属酸化物又はフエノール性水酸基を有する化合物を添 加する方法 (特許文献 1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過 酸化水素を分解する方法 (特許文献 2参照)が知られている。しかし、これらの技術は 、生成する過酸ィ匕水素を分解する技術であり、イオン交換膜自体の分解の抑制を試 みるものではないため、初期的には改善の効果があるものの、長期間にわたる耐久 性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があ つた o
[0006] 一方、炭化水素系の重合体に対し、ラジカルに対する安定性が格段に優れる重合 体として、スルホン酸基を有するパーフルォロカーボン重合体力 なるイオン交換膜 が知られている。近年、これらのパーフルォロカーボン重合体力もなるイオン交換膜 を用いた固体高分子形燃料電池は、自動車用、住宅用市場等の電源として期待さ れ、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効 率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コストィ匕 が望まれている。また、燃料電池システム全体の効率の点力ゝら低加湿又は無加湿で の運転が要求されることも多 、。
[0007] しかし、スルホン酸基を有するパーフルォロカーボン重合体力もなるイオン交換膜 を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、 低加湿又は無加湿での運転条件にぉ 、ては、電圧劣化が大き 、ことが報告されて いる(非特許文献 1参照)。すなわち、低加湿又は無加湿での運転条件においては、 スルホン酸基を有するパーフルォロカーボン重合体力 なるイオン交換膜においても 過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられ る。
[0008] また、上述のような燃料電池用の電解質膜の製造方法としては、押出し成形により 製膜する方法、当該電解質膜を構成する榭脂の溶液を用いてキャスト製膜する方法 等がある。大型の薄膜を工業的に生産する場合はキャスト製膜は有効である。また、 スルホン酸基を有するフルォロカーボン重合体のような膜を構成する榭脂を含む液 状組成物は、膜材料の製造に使用されるほか、既に製造された膜の修復、回収、さ らにはコーティング剤として、きわめて有用であるという報告もされている(例えば特許 文献 3、特許文献 4参照)。
[0009] 特許文献 1 :特開 2001— 118591号公報 (請求項 1、 2頁 2〜9行)
特許文献 2 :特開平 6— 103992号公報(問題を解決するための手段、 2頁 33〜37 行)
特許文献 3:特開 2003— 183467号公報(2頁 15〜32行)
特許文献 4:特開 2004— 75978号公報(5頁 24〜41行)
非特許文献 1:新エネルギー,産業技術総合開発機構主催 平成 12年度固体高分 子形燃料電池研究開発成果報告会要旨集、 56頁 16〜24行
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、車載用、住宅用市場等への固体高分子形燃料電池の実用化において 、十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度 (露点)が セル温度よりも低!ヽ低加湿又は無加湿での運転、セル温度に近!ヽ温度で加湿する 高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわたって 安定した発電が可能な固体高分子形燃料電池用膜を提供することを目的とし、当該 膜の製造方法及びそのために有用な液状組成物を提供することを目的とする。 課題を解決するための手段
[0011] 本発明は、 3価又は 4価のセリウム、及び 2価又は 3価のマンガン力 なる群力 選 ばれる 1種以上と、陽イオン交換基を有する高分子化合物とを含むことを特徴とする 液状組成物を提供する。
[0012] 上記組成物には、陽イオン交換基を有する高分子化合物を溶解又は分散できる液 体 (溶媒又は分散媒)も含まれる。当該溶媒又は分散媒としては、例えば、アルコー ル類、水等が挙げられる。また、糸且成物中でセリウム又はマンガンは、イオンの状態 で存在してもよいし、酸化物、水酸ィ匕物等の化合物として分散している状態で存在し ていてもよい。セリウム又はマンガン力イオンの状態で存在している場合、高分子化 合物の陽イオン交換基のプロトンとイオン交換されて 、てもよ 、。
[0013] また、本発明は、上述の液状組成物の製造方法であって、陽イオン交換基を有す る高分子化合物を液体中に溶解又は分散させた後、セリゥム化合物及びマンガンィ匕 合物からなる群力 選ばれる 1種以上をこれに混合することを特徴とする液状組成物 の製造方法を提供する。ここでいう液体は、溶媒又は分散媒を示す。
[0014] また、本発明は、上述の液状組成物をキャスト製膜することにより得る膜の製造方法 、並びに触媒及び高分子電解質を含む触媒層を有する力ソード及びアノードと、前 記力ソードと前記アノードとの間に配置される固体高分子電解質膜からなる固体高分 子形燃料電池用膜電極接合体の製造方法であって、前記固体高分子電解質膜を 上述の膜の製造方法により作製することを特徴とする固体高分子形燃料電池用膜電 極接合体の製造方法を提供する。
[0015] さらに本発明は、触媒及び高分子電解質を含む触媒層を有する力ソード及びァノ ードと、前記力ソードと前記アノードとの間に配置される固体高分子電解質膜からなる 固体高分子形燃料電池用膜電極接合体の製造方法であって、上述の液状組成物 に前記触媒を分散させ、塗工することにより前記力ソード及び前記アノードの少なくと も一方を作製することを特徴とする固体高分子形燃料電池用膜電極接合体の製造 方法を提供する。
発明の効果
[0016] 本発明により得られる電解質膜は、過酸ィ匕水素又は過酸ィ匕物ラジカルに対して優 れた耐性を有する。この理由は明確ではないが、セリウムイオン(3価又は 4価)又は マンガンイオン(2価又は 3価)と陽イオン交換基のプロトンが解離した残基 (例えば、 SO―)との相互作用が、過酸ィ匕水素又は過酸ィ匕物ラジカル耐性を効果的に向上
3
させていると推定される。そして、セリウム化合物又はマンガンィ匕合物の状態で膜中 に含有される場合でも、わずかな解離により生じるセリウムイオン又はマンガンイオン と SO—等との相互作用があり得ると考えられる。
3
[0017] また、本発明の製造方法により得られる電解質膜は、セリウムやマンガンを含んで V、な ヽ電解質膜に対してこれらのイオンや化合物を含む液に浸漬して処理する等の 方法に比べ、これらのイオンや化合物を膜中に簡便に、精度よくかつ均一に配合で きると考えられる。
[0018] 本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有 するため、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電 池は、耐久性に優れ、長期にわたって安定な発電が可能である。
発明を実施するための最良の形態
[0019] 本発明においてセリウム又はマンガンを含有させる前の陽イオン交換基を有する高 分子化合物としては、陽イオン交換基が解離してプロトンを生成する機能を有して ヽ ればよぐ特に限定されない。陽イオン交換基の具体例としては、スルホン酸基、スル ホンイミド基、ホスホン酸基、カルボン酸基、ケトイミド基等があり、特に酸性度が強ぐ 化学的安定性の高いスルホン酸基が好ましい。以下、スルホン酸基を有する高分子 化合物を例にとり本発明について説明する。
[0020] 本発明の液状組成物は、スルホン酸基を有する高分子化合物を均一に溶解又は 分散させた液に対しセリウム又はマンガンの化合物を溶解又は分散させることにより 得ることができる。ここでセリウム又はマンガンの化合物としては、液状組成物中の溶 媒に可溶のものでも不溶のものでも使用できる力 スルホン酸基を有する高分子化 合物をイオン交換し、より均一にこれらの成分を存在させるためには水溶性の塩を水 と組み合わせて使用することが好ま U、。
[0021] 水溶性の塩を使用し、液状組成物中に水を含有させた場合、セリウム又はマンガン は液状組成物中でイオンの状態で存在し、高分子化合物のスルホン酸基(一 SO H
3
)がセリウムイオン又はマンガンイオンによりイオン交換されると考えられる。また、水 には不溶でも他の溶媒に可溶のセリウム化合物又はマンガンィ匕合物を当該他の溶 媒とともに液状組成物中に含有させると、その液状組成物を塗工して得られる膜にお いてセリウム化合物又はマンガンィ匕合物が均一に存在させられるので好ましい。
[0022] また、液状組成物中の溶媒に不溶性のセリウム化合物又はマンガンィ匕合物を使用 する場合、液状組成物中でこれらの化合物の粒子を均一に良好に分散させることが 必要である。そのため、この場合は当該化合物の分散液を作製し、スルホン酸基を 有する高分子化合物の溶液又は分散液と混合して液状組成物を調製することが好 ましい。また、あら力じめセリウム又はマンガンの可溶性の塩を、スルホン酸基を有す る高分子化合物の溶液又は分散液に溶解し、これに別途用意した化合物を加え、上 記可溶性の塩と反応させて、反応生成物を液状組成物に含有させることも可能であ る。
[0023] 液状組成物に含有させる原料のセリウム化合物としては、水溶性のセリウム塩、非 水溶性のセリウム塩、酸化物や水酸化物などの不溶性化合物など、各種の化合物が 使用できる。セリウムの価数は + 3価又は +4価である。 + 3価のセリウムイオンを含 む塩を具体的に挙げると、例えば、酢酸セリウム (Ce (CH COO) ·Η Ο)、塩化セリ
3 3 2
ゥム(CeCl · 6Η 0)、硝酸セリウム(Ce (NO ) · 6Η 0)、硫酸セリウム(Ce (SO )
3 2 3 3 2 2 4 3
•8H 0)、炭酸セリウム(Ce (CO ) · 8Η O)等が挙げられる。 +4価のセリウムィォ
2 2 3 3 2
ンを含む塩としては、例えば、硫酸セリウム(Ce (SO ) ·4Η 0)、硝酸二アンモ-ゥ
4 2 2
ムセリウム(Ce (NH ) (NO ) )、硫酸四アンモニゥムセリウム(Ce (NH ) (SO ) ·4
4 2 3 6 4 4 4 4
Η Ο)等が挙げられる。またセリウムの有機金属錯塩としてはセリウムァセチルァセト
2
ナート(Ce (CH COCHCOCH ) · 3Η Ο)等が挙げられる。
3 3 3 2
[0024] 例えば水溶性の 3価のセリウム塩を使用した場合、スルホン酸基がセリウムイオンに より完全にイオン交換されると、 Ce3+が 3個の SO—と結合する力 本発明の液状
3
組成物においては、完全にイオン交換されていなくてもよい。本発明の液状組成物 ではセリウムがイオンの状態で又は化合物の状態で含まれていればよい。セリウムの かわりにマンガンが含まれる場合も同様である。
[0025] 本発明の液状組成物中の、 3価又は 4価のセリウムの含有量は、スルホン酸基を有 する高分子化合物中の SO—のモル数の 0. 3〜30モル0 /0であることが好ましい(
3
以下、この割合を「セリウムの含有率」という)。セリウム化合物の場合は、セリウム原子 換算のモル比がセリウムの含有率である。より好ましくは 0. 7〜20モル0 /0、さらに好ま しくは 1〜 15モル0 /0である。
[0026] セリウムの含有率がこの範囲よりも小さいと、過酸化水素又は過酸化物ラジカルに 対する十分な安定性が確保できな 、おそれがある。また含有率がこの範囲よりも大き いと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特 性が低下するおそれがある。
[0027] また、液状組成物に含有させる原料のマンガンィ匕合物としては、水溶性のマンガン 塩、非水溶性のマンガン塩、酸化物や水酸化物などの不溶性化合物など、各種の化 合物が使用できる。マンガンの価数は + 2価又は + 3価である。 + 2価のマンガンィ オンを含む塩を具体的に挙げると、例えば、酢酸マンガン(Mn (CH COO) ·4Η Ο
3 2 2
)、塩化マンガン(MnCl ·4Η 0)、硝酸マンガン(Μη (ΝΟ ) · 6Η 0)、硫酸マンガ
2 2 3 2 2
ン(MnSO · 5Η 0)、炭酸マンガン(MnCO ·ηΗ O)等が挙げられる。 + 3価のマ
4 2 3 2
ンガンイオンを含む塩としては、例えば、酢酸マンガン(Mn (CH COO) · 2Η O)等
3 3 2 が挙げられる。またマンガンの有機金属錯塩としてはマンガンァセチルァセトナート(
Mn (CH COCHCOCH ) )等が挙げられる。
3 3 2
[0028] 本発明の液状組成物中の、マンガンイオン又はマンガン化合物の含有量は、スル ホン酸基を有する高分子化合物中の SO—のモル数の 0. 5〜45モル0 /0であること
3
が好ましい(以下、この割合を「マンガンの含有率」という)。マンガンィ匕合物の場合は
、マンガン原子換算のモル比がマンガンの含有率である。より好ましくは 1〜30モル %、さらに好ましくは 1. 5〜20モル0 /0である。
[0029] マンガンの含有率がこの範囲よりも小さいと、過酸化水素又は過酸化物ラジカルに 対する十分な安定性が確保できな 、おそれがある。また含有率がこの範囲よりも大き いと、水素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特 性が低下するおそれがある。
[0030] 本発明の液状組成物を製造する際、使用されるセリウム化合物又はマンガン化合 物としては、特に炭酸塩が好ましい。炭酸塩は、一般的に水に難溶解性であるものが 多いが、炭酸セリウム、炭酸マンガンの場合は、スルホン酸基を有する高分子化合物 の溶液又は分散液に水を含有させておくと、容易に、炭酸ガスを発生しながら溶解 する。また、液状組成物を、セリウム又はマンガンの炭酸塩を用いて作製し、通常の キャスト法などで塗工し、溶媒を乾燥除去して電解質膜を得ると、当該電解質膜中に は SO—基以外のァ-オン種は残存しないため、水洗を必要としない。このような
3
膜の製造の観点からも炭酸塩は好ま 、。
[0031] 本発明の液状組成物を得る方法及び得られた液状組成物を用いて電解質膜を得 る方法は特に限定されないが、例えば以下の方法が挙げられる。まず、スルホン酸基 を有する高分子化合物を溶媒に溶解又は分散させる。これに水とセリウムの炭酸塩 又はマンガンの炭酸塩を添加してよく混合し、液状組成物を得る。そして、得られた 液状組成物をキャスト製膜して乾燥させることで電解質膜を得る方法である。
[0032] 液状組成物中に含有させる水の量は、スルホン酸基を有する高分子化合物のィォ ン交換容量や濃度、添加するセリウム又はマンガンの量により適宜設定される。水を 使用しないと、炭酸塩の溶解に時間がカゝかる場合があるので、特に炭酸塩を使用す る場合は液状組成物に水を含有させることが好まし ヽ。
[0033] 本発明の液状組成物は、固形分濃度は特に限定されない。通常のキャスト塗工が 可能なように、濃度、粘度を調製することができるが、この観点から固形分濃度は液 状組成物全質量に対する質量比で 5〜50%、特に 10〜35%であることが好ましい。
[0034] 本発明による電解質膜は積層膜とすることもでき、例えば、本発明の液状組成物を キャスト製膜して得られる膜に、セリウムやマンガンのイオン又は化合物を含まな 、ィ オン交換膜を積層して作製することも可能である。
[0035] 本発明にお 、てセリウム又はマンガンを含有させる前のスルホン酸基を有する高分 子化合物としては特に限定されないが、イオン交換容量は 0. 5〜3. 0ミリ当量 Zg乾 燥榭脂であることが好ましぐ 0. 7〜2. 5ミリ当量 Zg乾燥榭脂であることがより好まし ぐ 1. 0〜2. 5ミリ当量 Zg乾燥榭脂であることが特に好ましい。イオン交換容量が低 すぎるとスルホン酸基がセリウムイオン又はマンガンイオンでイオン交換されたとき水 素イオンの十分な伝導性を確保することができず、膜抵抗が増大して発電特性が低 下するおそれがある。またイオン交換容量が高すぎると膜の耐水性や強度が低下す るおそれがある。また、耐久性の観点力 当該高分子化合物は含フッ素重合体であ ることが好ましく、特にスルホン酸基を有するパーフルォロカーボン重合体 (エーテル 結合性の酸素原子を含んでいてもよい)が好ましい。パーフルォロカーボン重合体と しては特に限定されないが、 CF =CF- (OCF CFX) — O - (CF ) —SO PTC
2 2 m P 2 n 3 表されるパーフルォロビュル化合物(mは 0〜3の整数を示し、 nは 1〜12の整数を示 し、 pは 0又は 1を示し、 Xはフッ素原子又はトリフルォロメチル基を示す。 )に基づく重 合単位と、テトラフルォロエチレンに基づく重合単位とを含む共重合体であることが好 ましい,
上記パーフルォロビニルイ匕合物の好ま 、例をより具体的に示すと、下記式 (i)〜( iii)で表される化合物が挙げられる。ただし、下記式中、 qは 1〜8の整数、 rは 1〜8の 整数、 tは 1〜3の整数を示す。
式 1
[0037] CF2 = CFO (CF2) q— S〇3H … ( i)
CF2 = CFOCF2CF (CF3) O (CF2) r— S03H … (ii) CF2 = CF (OCF2CF (CF3)) tO (CF2) 2— S03H … (iii)
[0038] スルホン酸基を有するパーフルォロカーボン重合体を用いる場合、重合後にフッ素 化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の 末端がフッ素化されていると、より過酸化水素や過酸化物ラジカルに対する安定性が 優れるため耐久性が向上する。
[0039] また、セリウム又はマンガンを含有させる前のスルホン酸基を有する高分子化合物 として、スルホン酸基を有するパーフルォロカーボン重合体以外のものも使用でき、 例えば高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホ ン酸基が導入された構造を有する高分子化合物であって、イオン交換容量が 0.5〜 3.0ミリ当量 Zg乾燥榭脂である高分子化合物が好ましく使用できる。具体的には、 例えば下記の高分子化合物が使用できる。
[0040] スルホン化ポリアリーレン、スルホン化ポリべンゾォキサゾール、スルホン化ポリベン ゾチアゾール、スルホン化ポリべンゾイミダゾール、スルホン化ポリスルホン、スルホン ィ匕ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリ フエ二レンスノレホン、スノレホンィ匕ポリフエ二レン才キシド、スノレホンィ匕ポリフエ二レンス ルホキシド、スルホン化ポリフエ-レンサルファイド、スルホン化ポリフエ-レンスルフィ ドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、 スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等。
[0041] 本発明の電解質膜を有する固体高分子形燃料電池は、例えば以下のような構成 である。すなわち、本発明の電解質膜の両面に、触媒とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードが配置された膜電極接合体を備える。膜電極接 合体のアノード及び力ソードは、好ましくは触媒層の外側 (膜と反対側)にカーボンク ロスやカーボンペーパー等カゝらなるガス拡散層が配置される。膜電極接合体の両面 には、燃料ガス又は酸化剤ガスの通路となる溝が形成されセパレータが配置され、セ ノルータを介して膜電極接合体が複数積層されたスタックを構成し、アノード側には 水素ガスが供給され、力ソード側には酸素又は空気が供給される構成である。ァノー ドにおいては H→2H+ + 2e—の反応が起こり、力ソードにおいては 1/20 + 2H+
2 2
+ 2e"→H Oの反応が起こり、化学エネルギーが電気エネルギーに変換される。
2
[0042] また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直 接メタノール燃料電池にも使用できる。
[0043] 上述の触媒層は通常の手法に従い、例えば以下のようにして得られる。まず、白金 触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末とスルホ ン酸基を有するパーフルォロカーボン重合体の溶液を混合し均一な分散液を得て、 例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。
[0044] 第 1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を 2枚のカー ボンクロス又はカーボンペーパーで密着する方法である。第 2の方法は、上記分散液 を 2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布され た面が上記イオン交換膜と密着するように、上記イオン交換膜の両面から挟みこむ方 法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により 均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有す るものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転 写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟 み込む方法も使用できる。
[0045] 触媒層中に含まれるイオン交換榭脂は特に限定されな 、が、スルホン酸基を有す る高分子化合物であることが好ましく、スルホン酸基を有するパーフルォロカーボン 重合体であることがより好ましい。触媒層中のイオン交換榭脂は、本発明の電解質膜 と同様にセリウム又はマンガンをイオンの状態で又は化合物の状態で含んでいてもよ い。このような榭脂は、アノードにも力ソードにも用いることができ、榭脂の分解は効果 的に抑制されるので、固体高分子形燃料電池はさらに耐久性が付与される。また、 電解質膜としてはセリウム又はマンガンを含まないイオン交換榭脂を使用し、触媒層 中のイオン交換榭脂のみセリウム又はマンガンを含有させることもできる。
[0046] 触媒層中にセリウム又はマンガンのイオン又は化合物を含有させる場合、本発明の 液状組成物に触媒を分散させたものを塗工液として上記同様の方法で触媒層を形 成すればよい。この場合、力ソード及びアノードのいずれか一方のみを本発明の液 状組成物を使用して作製することもできるし、力ソード、アノードともに液状組成物を 使用して作製することもできる。このとき、力ソードとアノードとでは、セリウム又はマン ガンの含有量が異なる液状組成物を使用して、力ソードとアノードのセリウム又はマン ガンの含有量が異なるように調節をすることもできる。特にアノードにはスルホン酸基 を有する高分子化合物に含まれる - SO—基の 10〜30モル%のセリウムが含まれ、
3
力ソードには 3〜: L0モル0 /0のセリウムが含まれると触媒層中のイオン交換樹脂の分解 も効果的に抑制することが出来るので、耐久性向上の点力 更に好ましい。
[0047] 同様の理由から、マンガンのイオン又は化合物を含有させる場合にはアノードには スルホン酸基を有する高分子化合物に含まれる SO _基の 15〜45モル%のマン
3
ガンが含まれ、力ソードには 5〜 15モル0 /0のマンガンが含まれることが好ましい。なお 、ここでセリウム又はマンガンの含有量とは、セリウム化合物又はマンガン化合物の場 合は、セリウム又はマンガンのモル数に換算したモル数での割合を示して ヽる。
[0048] 本発明により得られる電解質膜は、セリウム又はマンガンをイオン又は化合物の状 態で含む、スルホン酸基を有する高分子化合物のみ力 なる膜であってもよいが、他 の成分を含んでいてもよい。例えば、ポリテトラフルォロエチレン(以下、 PTFEという) やパーフルォロアルキルエーテル等の他の榭脂等の繊維、織布、不織布、多孔体等 により補強されている膜を、本発明の液状組成物を用いて製膜する方法にも適用で きる。なお、電解質膜を補強する場合、膜全体を補強してもよいが、膜の周辺近くを 額縁状にフィルム、シート等で補強してもよい。額縁状に膜を補強すると、周辺部の 強度が増すため取扱い性が向上する。膜全体を空隙率の高い補強材で補強し周辺 部のみ空隙率が低 、か又は空隙のな!、補強材で補強してもよ 、。
[0049] 本発明により得られる膜電極接合体を備える固体高分子型燃料電池は、高温でも 耐久性に優れるため、 100°C以上で運転し、発電することができる。燃料ガスとしてメ タノール、天然ガス、ガソリン等を改質して得られる水素を使用する場合、一酸化炭 素が微量でも含まれると電極触媒が被毒して燃料電池の出力が低下しやすくなる。 運転温度を 100°C以上にすると被毒を抑制することが可能となる。運転温度を 120 °C以上にするとより好ましぐ被毒を抑制する効果がより高くなる。
[0050] また、本発明の液状組成物は、燃料電池用の電解質膜、触媒層の作製に有用な だけでなぐ水電解用の膜や湿度センサー等の各種センサー、信号伝達媒体等にも 好ましく使用でさる。
実施例
[0051] 以下、本発明を具体的に実施例(例 1〜5、 8〜11)及び比較例(例 6〜7)を用いて 説明するが、本発明はこれらに限定されない。
[0052] [スルホン酸基を有するパーフルォロカーボン重合体の溶液の調製]
CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重合体 (イオン交換容
2 2 2 2 3 2 2 3
量 1. 1ミリ当量/ g乾燥樹月旨) 300gとエタノーノレ 420gと水 280gとを 2L才ートクレー ブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混合撹拌して均一な液( 以下、溶液 Aという)を得た。溶液 Aの固形分濃度は 30質量%であった。
[0053] [スルホン酸基を有する芳香族重合体の溶液の調製]
粒状の市販のポリエーテルエーテルケトン(英国 Victrex社製、 PEEK—450P) 6 Ogを 98質量%の硫酸 1200gに室温で少量ずつ添カ卩し、室温で 60時間撹拌するこ とにより、ポリエーテルエーテルケトンにスルホン酸基が導入された高分子化合物の 均一な溶液を得た。次にこの溶液を、 5Lの蒸留水に冷却しながら徐徐に滴下するこ とで、スルホン酸基を有するポリエーテルエーテルケトンを析出させ、濾過して分離し た。次いでこれを蒸留水で洗浄液が中性になるまで洗浄し、その後 80°C真空下で 2 4時間乾燥して、 48gのスルホン酸基を有するポリエーテルエーテルケトンを得た。ィ オン交換容量は 1. 6ミリ当量 Zg乾燥樹脂であった。
[0054] 次にこのスルホン酸基を有するポリエーテルエーテルケトン 40gを N メチル 2— ピロリドン (NMP) 360gに溶解して 10質量%の溶液 (以下、溶液 Bと 、う)を得る。
[0055] [例 1]
300mLガラス製丸底フラスコに、溶液 Aを 100gと、炭酸セリウム水和物(Ce (CO ) · 8Η 0) 1. OOgとを仕込み、ポリテトラフルォロエチレン (PTFE)製半月板翼にて
3 2
、室温で 8時間撹拌した。撹拌開始より CO発生による気泡が発生した力 最終的に
2
は均一な透明の液状組成物を得た(以下、液状組成物 Cという)。得られた液状組成 物 Cの固形分濃度は 30. 2質量0 /。であった。この組成物を 100 mのエチレンーテト ラフルォロエチレンコポリマー(ETFE)シート(商品名:ァフレックス 100N、旭硝子社 製)上に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後、 120°Cで 10 分乾燥し、さらに 150°C、 30分のァニールを施し、膜厚 50 mの固体高分子電解質 膜を得た。
[0056] この高分子電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16 時間放置した後、質量を精秤し 0. 1規定の HC1水溶液中に含浸して、セリウムイオン を完全に抽出した液を得た。この液を誘導結合プラズマ (ICP)発光分析にて測定す ることで、高分子電解質膜中のセリウムを定量したところ、セリウム量は膜の質量に対 して 1. 5%であり、セリウムの含有率は 10モル%であった。
[0057] 次に、白金がカーボン担体 (比表面積 800m2Zg)に触媒全質量の 50%含まれる ように担持された触媒粉末 (ェヌ 'ィーケムキャット社製) 1. 0gに、蒸留水 5. lgを混 合した。この混合液に CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重
2 2 2 2 3 2 2 3 合体 (イオン交換容量 l . 1ミリ当量 Zg乾燥榭脂)をエタノールに分散させた固形分 濃度 9質量%の液 5. 6gを混合した。この混合物をホモジナイザー(商品名:ポリトロ ン、キネマチ力社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。
[0058] この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基 材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、 触媒層に含まれる単位面積あたりの白金の量を算出したところ、 0. 5mgZcm2であ つた o
[0059] 次に、上述のセリウムを含む高分子電解質膜を用い、この膜の両面に上述の基材 フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により触媒層を膜 に転写してアノード触媒層及び力ソード触媒層を高分子電解質膜の両面にそれぞれ 接合した、膜触媒層接合体を得た。なお、電極面積は 16cm2であった。 [0060] この膜触媒層接合体を厚さ 350 μ mのカーボンクロス力もなるガス拡散層 2枚の間 に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、加速試験として開 回路試験 (OCV試験)を行った。試験は、常圧で、電流密度 0. 2AZcm2に相当す る水素 (利用率 70%)及び空気 (利用率 40%)をそれぞれアノード及び力ソードに供 給し、セル温度は 90°C、アノードガスの露点は 60°C、力ソードガスの露点は 60°Cとし て、発電は行わずに開回路状態で 100時間運転し、その間の電圧変化を測定した。 また、試験前後にアノードに水素、力ソードに窒素を供給し、膜を通してアノードから 力ソードにリークする水素ガス量を分析し、膜の劣化の程度を調べた。結果を表 1に 示す。
[0061] 次に、また上記同様に膜電極接合体を作製して発電用セルに組み込み、低加湿で の運転条件における耐久性試験を行った。試験条件は、常圧にて、水素 (利用率 70 %)Z空気 (利用率 40%)を供給し、セル温度 80°Cにおいて電流密度 0. 2A/cm2 における固体高分子形燃料電池の初期特性評価及び耐久性評価を実施した。ァノ 一ド側は露点 80°C、力ソード側は露点 50°Cとなるようにそれぞれ水素及び空気を加 湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電 圧との関係を測定した。結果を表 2に示す。また、上記のセルの評価条件において、 力ソード側の露点を 80°Cに変更した以外は同様にして、運転初期のセル電圧及び 運転開始後の経過時間とセル電圧との関係を測定した。評価結果を表 3に示す。
[0062] [例 2]
例 1において炭酸セリウム水和物(Ce (CO ) · 8Η O)の量を 498mgにした以外
2 3 3 2
は例 1と同様にして、セリウムの含有率が 5モル%の膜を得た。次に、この膜を用いて 例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得た。この膜電極接 合体について例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとなった。
[0063] [例 3]
例 1において炭酸セリウム水和物(Ce (CO ) · 8Η O)の量を 166mgとした以外は
2 3 3 2
例 1と同様にして、セリウムの含有率が 1. 7モル%の膜を得た。次に、この膜を用いて 例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得た。この膜電極接 合体について例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとなった。 [0064] [例 4]
例 1で用いた炭酸セリウム水和物のかわりに炭酸マンガン水和物(MnCO ·ηΗ Ο
3 2
、マンガンの含有量が全質量の 41〜46%) 422mgを使用した以外は例 1と同様にし て、マンガンの含有率が 10モル%の膜を得た。次に、この膜を用いて例 1と同様にし て膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体にっ ヽて例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとなる。
[0065] [例 5]
300mLガラス製丸底フラスコに、溶液 Bを 100gと、水を 20gと、炭酸セリウム(Ce (
2
CO ) · 8Η Ο)とを 484mg仕込み、 PTFE製半月板翼にて、 70°Cで 8時間撹拌する
3 3 2
。撹拌の途中、 CO発生による気泡が発生するが、最終的には均一な透明液が得ら
2
れる。この液状組成物の固形分濃度は 8. 3%である。この組成物を用いて室温で P TFE製基材にキャスト製膜し、窒素雰囲気で 100°Cで 10時間乾燥して NMPと水を 蒸発させることにより、厚さ 50 mの膜が得られる。この膜は、例 1と同様の ICP測定 によりセリウムの含有率が 10モル0 /0となる。
[0066] 次に、この膜を用いて例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体 を得る。この膜電極接合体について例 1と同様の評価を行うと、表 1〜3に示す結果 のとおりとなる。
[0067] [例 6]
溶液 Aに何も加えずにキャスト製膜して固体高分子電解質膜を得た。電解質膜とし てこの膜を用いた以外は例 1と同様にして膜触媒層接合体を得て、さらに膜電極接 合体を得た。この膜電極接合体について例 1と同様の評価を行ったところ、表 1〜3 に示す結果のとおりとなった。
[0068] [例 7]
例 5において、炭酸セリウムと水を加えず溶液 Bをそのまま使用する以外は例 5と同 様にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体につ V、て例 1と同様に評価を行うと、表 1〜 3に示す結果のとおりとなる。
[0069] [例 8]
例 1において溶液 Aを 100gと、炭酸セリウム水和物(Ce (CO ) ' 8H O) 249mgと 、さらに炭酸マンガン水和物(MnCO ·ηΗ 0、マンガンの含有量が全質量の 41〜4
3 2
6%) 170mgとを仕込んだ以外は例 1と同様にして液状組成物を得て、膜中のパー フルォロカーボン重合体に含まれる SO—基の 2. 5モル0 /0のセリウムと、 3. 75モ
3
ル%のマンガンを含有する膜を得た。次に、この膜を用いて例 1と同様にして膜触媒 層接合体を得てさらに膜電極接合体を得た。この膜電極接合体について例 1と同様 の評価を行ったところ、表 1〜3に示す結果のとおりとなった。
[0070] [例 9]
溶液 Aを 100 mの ETFEシート(商品名:ァフレックス 100N、旭硝子社製)上に、 ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後、 120°Cで 10分乾燥し、 さらに 150°C、 30分のァニールを施し、膜厚 50 /ζ πι、 5cm X 5cmの大きさの電解質 膜を得た。
[0071] 次に、例 1において作製したセリウムの含有率が 10モル%である液状組成物 Cを用 いて以下のとおりアノード触媒層を作製した。白金がカーボン担体 (比表面積 800m2 /g)に触媒全質量の 50%含まれるように担持された触媒粉末 (ェヌ 'ィーケムキヤッ トネ土製) 1. 0gに、蒸留水 5. lgを混合した。この混合液に上記液状組成物 Cをェタノ ールで希釈して、固形分濃度を 9質量%とした液 5. 6gを混合した。この混合物をホ モジナイザーを使用して混合、粉砕させ、アノード触媒層形成用塗工液を作製した。
[0072] この塗工液をポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 80 °Cの乾燥器内で 30分間乾燥させて、触媒層中のパーフルォロカーボン重合体に含 まれる一 SO—基の 10モル0 /0のセリウムを含有するアノード触媒層を作製した。なお
3
、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルムの質量を 測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出したところ、 0. 5mg/ cm (?あつ 7こ。
[0073] 一方、上記液状組成物 Cにかわりに上記溶液 Aを用いた以外はアノード触媒層と 同様にして、セリウムを含有しない力ソード触媒層を作製した。
[0074] 次に、溶液 Aを用いて作製した電解質膜の両面に、上述の基材フィルム上に形成 されたアノード触媒層と、力ソード触媒層をそれぞれ配置し、ホットプレス法により触 媒層を膜に転写して、触媒層中のパーフルォロカーボン重合体に含まれる— SO " 基の 10モル0 /0のセリウムを含有するアノード触媒層と、セリウムを含有しない力ソード 触媒層を高分子電解質膜の両面にそれぞれ接合した、膜触媒層接合体を得た。な お、電極面積は 16cm2であった。
[0075] この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得た。この膜電極 接合体について例 1と同様の開回路試験を行った。結果を表 1に示す。また、上記同 様の膜電極接合体を作製して発電用セルに組み込み、例 1と同様の低加湿及び高 加湿での運転条件における耐久性試験を行うと表 2、 3に示す結果のとおりとなる。
[0076] [例 10]
例 1における液状組成物 Cの作製において炭酸セリウム水和物(Ce (CO ) · 8Η
2 3 3 2
0) 2. OOgを仕込んだ以外は、例 1と同様にして、セリウムの含有率が 20モル%であ る液状組成物を作製した。この液状組成物をアノード触媒層の形成に使用した以外 は、例 9と同様にして触媒層中のパーフルォロカーボン重合体に含まれる SO—基
3 の 20モル0 /0のセリウムを含有するアノード触媒層と、セリウムを含有しない力ソード触 媒層を高分子電解質膜の両面にそれぞれ接合した膜触媒層接合体を得た。
[0077] この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得た。この膜電極 接合体について例 1と同様の開回路試験を行った。結果を表 1に示す。また、上記同 様の膜電極接合体を作製して発電用セルに組み込み、例 1と同様の低加湿及び高 加湿での運転条件における耐久性試験を行うと表 2、 3に示す結果のとおりとなる。
[0078] [例 11]
例 1における液状組成物 Cの作製にぉ 、て炭酸セリウム水和物のかわりに炭酸マン ガン水和物(MnCO ·ηΗ 0、マンガンの含有量が全質量の 41〜46%) 844mgを
3 2
仕込んだ以外は、例 1と同様にして、マンガンの含有率が 20モル%である液状組成 物を作製した。この液状組成物をアノード触媒層の形成に使用した以外は、例 8と同 様にして触媒層中のパーフルォロカーボン重合体に含まれる— SO—基の 20モル%
3
のマンガンを含有するアノード触媒層と、マンガンを含有しな ヽカソード触媒層を高 分子電解質膜の両面にそれぞれ接合した膜触媒層接合体を得る。
[0079] この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得る。この膜電極 接合体について例 1と同様に評価を行うと、表 1〜3に示す結果のとおりとなる。 [0080] [表 1]
Figure imgf000019_0001
[0081] [表 2]
Figure imgf000019_0002
[0082] [表 3]
初期の出力 耐久性 出力電 S E (V)
電圧 (V) 500時間後 2000時間後
例 1 0. 78 0. 78 0. 78
例 2 0. 78 0. 78 0. 77
例 3 0. 78 0. 77 0. 77
例 4 0. 78 0. 77 0. 77
例 5 0. 76 0. 75 0. 74
例 6 0. 77 0. 73 0. 70
例 7 0. 74 0. 65 0. 60
例 8 0. 78 0. 77 0. 77
例 9 0. 78 0. 77 0. 76
例 1 0 0. 78 0. 7 7 0. 76
例 1 1 0. 78 0. 77 0. 77
[0083] 上記実施例及び比較例の結果より、加速試験である高温 ·低加湿の開回路試験( OCV試験)においては、従来の電解質膜は劣化して水素リークが増大していたが、 本発明の電解質膜は格段に優れた耐久性を示すことが認められる。
産業上の利用可能性
[0084] 本発明の電解質液状組成物より得られた電解質膜は、燃料電池の発電により生成 される過酸化水素又は過酸化物ラジカルに対する耐久性が極めて優れて 、る。した がって、本発明の電解質膜を有する膜電極接合体を備える固体高分子形燃料電池 は、低加湿発電、高加湿発電のいずれにおいても長期の耐久性を有する。 なお、 2004年 6月 22曰に出願された曰本特許出願 2004— 183712号、 2004年 7月 12曰〖こ出願された曰本特許出願 2004— 204704号、および 2004年 9月 13曰 に出願された日本特許出願 2004— 265176号の明細書、特許請求の範囲、図面 及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるもの である。

Claims

請求の範囲
[I] 3価又は 4価のセリウム、及び 2価又は 3価のマンガン力 なる群力 選ばれる 1種以 上と、陽イオン交換基を有する高分子化合物とを含むことを特徴とする液状組成物。
[2] 陽イオン交換基はスルホン酸基である請求項 1に記載の液状組成物。
[3] 水が含まれる請求項 1又は 2に記載の液状組成物。
[4] 前記高分子化合物は、スルホン酸基を有するパーフルォロカーボン重合体 (エー テル性酸素原子を含んで 、てもよ 、)力 なる請求項 2又は 3に記載の液状組成物。
[5] 3価又は 4価のセリウム力 前記高分子化合物中の SO—のモル数の 0. 3〜30モ
3
0 /0含まれる請求項 2〜4のいずれかに記載の液状組成物。
[6] 2価又は 3価のマンガン力 前記高分子化合物中の SO—のモル数の 0. 5〜45
3
モル%含まれる請求項 2〜4のいずれかに記載の液状組成物。
[7] 前記高分子化合物は、イオン交換容量が 0. 5〜3. 0ミリ当量 Zg乾燥榭脂である 請求項 2〜6の 、ずれかに記載の液状組成物。
[8] 前記高分子化合物は、テトラフルォロエチレンに基づく繰り返し単位と CF =CF-
2
(OCF CFX) — O— (CF ) -SO Hで表されるパーフルォロビニル化合物(Xは
2 m p 2 n 3
フッ素原子又はトリフルォロメチル基であり、 mは 0〜3の整数を示し、 nは 1〜12の整 数を示し、 pは 0又は 1を示す。 )に基づく繰り返し単位とを含む共重合体である請求 項 2〜7の 、ずれかに記載の液状組成物。
[9] 請求項 1〜8のいずれかに記載の液状組成物の製造方法であって、陽イオン交換 基を有する高分子化合物を液体中に溶解又は分散させた後、セリウム化合物及びマ ンガンィ匕合物力もなる群力も選ばれる 1種以上をこれに混合することを特徴とする液 状組成物の製造方法。
[10] 前記液体には水が含まれ、かつ前記セリウム化合物及び前記マンガンィ匕合物から なる群力 選ばれる 1種以上は、炭酸塩である請求項 9に記載の液状組成物の製造 方法。
[II] 請求項 1〜8のいずれかに記載の液状組成物をキャスト製膜することを特徴とする 膜の製造方法。
[12] 陽イオン交換基を有する高分子化合物を、水を含む液体中に溶解又は分散させた 後、セリウムの炭酸塩又はマンガンの炭酸塩を溶解させて前記液状組成物を得る請 求項 11に記載の膜の製造方法。
[13] 触媒及び高分子電解質を含む触媒層を有する力ソード及びアノードと、前記カソー ドと前記アノードとの間に配置される固体高分子電解質膜からなる固体高分子形燃 料電池用膜電極接合体の製造方法であって、前記固体高分子電解質膜を請求項 1 1又は 12の方法により作製することを特徴とする固体高分子形燃料電池用膜電極接 合体の製造方法。
[14] 触媒及び高分子電解質を含む触媒層を有する力ソード及びアノードと、前記カソー ドと前記アノードとの間に配置される固体高分子電解質膜からなる固体高分子形燃 料電池用膜電極接合体の製造方法であって、請求項 1〜8の!、ずれかに記載の液 状組成物に前記触媒を分散させ、塗工することにより前記力ソード及び前記アノード の少なくとも一方の触媒層を作製することを特徴とする固体高分子形燃料電池用膜 電極接合体の製造方法。
[15] 請求項 1〜8のいずれかに記載の液状組成物に前記触媒を分散させ、塗工するこ とにより前記力ソード及び前記アノードの少なくとも一方の触媒層を作製する請求項 1 3に記載の固体高分子形燃料電池用膜電極接合体の製造方法。
PCT/JP2005/011468 2004-06-22 2005-06-22 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法 WO2005124912A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE602005025213T DE602005025213D1 (de) 2004-06-22 2005-06-22 Flüssige zusammensetzung, verfahren zu deren herstellung und verfahren zur herstellung einer membranelektrodenbaugruppe für polymerelektrolyt-brennstoffzelle
AT05752908T ATE491237T1 (de) 2004-06-22 2005-06-22 Flüssige zusammensetzung, verfahren zu deren herstellung und verfahren zur herstellung einer membranelektrodenbaugruppe für polymerelektrolyt- brennstoffzelle
JP2006514857A JP3897059B2 (ja) 2004-06-22 2005-06-22 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
EP05752908A EP1760812B1 (en) 2004-06-22 2005-06-22 Liquid composition, process for its production, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
KR1020067024566A KR100970358B1 (ko) 2004-06-22 2005-06-22 액상 조성물, 그 제조 방법 및 고체 고분자형 연료 전지용막 전극 접합체의 제조 방법
CA2567305A CA2567305C (en) 2004-06-22 2005-06-22 Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-183712 2004-06-22
JP2004183712 2004-06-22
JP2004204704 2004-07-12
JP2004-204704 2004-07-12
JP2004265176 2004-09-13
JP2004-265176 2004-09-13

Publications (1)

Publication Number Publication Date
WO2005124912A1 true WO2005124912A1 (ja) 2005-12-29

Family

ID=35510029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011468 WO2005124912A1 (ja) 2004-06-22 2005-06-22 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法

Country Status (7)

Country Link
US (5) US7943249B2 (ja)
EP (1) EP1760812B1 (ja)
JP (2) JP3897059B2 (ja)
AT (1) ATE491237T1 (ja)
CA (1) CA2567305C (ja)
DE (1) DE602005025213D1 (ja)
WO (1) WO2005124912A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012520A (ja) * 2005-07-01 2007-01-18 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2007188706A (ja) * 2006-01-12 2007-07-26 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体
JP2007194121A (ja) * 2006-01-20 2007-08-02 Toyota Central Res & Dev Lab Inc 膜電極接合体及び固体高分子型燃料電池
JP2008513951A (ja) * 2004-09-20 2008-05-01 スリーエム イノベイティブ プロパティズ カンパニー 燃料電池の耐久性
EP1926165A1 (en) * 2006-11-22 2008-05-28 Asahi Glass Company Ltd. Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
JP2008159573A (ja) * 2006-11-08 2008-07-10 Gm Global Technology Operations Inc オーバーコートを有する燃料電池基板
JP2008186715A (ja) * 2007-01-30 2008-08-14 Asahi Glass Co Ltd 固体高分子形燃料電池およびその運転方法
WO2008132875A1 (ja) * 2007-04-25 2008-11-06 Japan Gore-Tex Inc. 固体高分子形燃料電池用高分子電解質膜の製造方法、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2008288140A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 燃料電池
JP2009514172A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー セリウム塩添加物を有する高い耐久性の燃料電池構成要素
JP2009514174A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー 酸化セリウム添加物を有する高い耐久性の燃料電池構成要素
JP2010212247A (ja) * 2010-04-14 2010-09-24 Toyota Central R&D Labs Inc 膜電極接合体及び固体高分子型燃料電池
JP2011503300A (ja) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー ヘテロポリ酸を含むポリマー電解質
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
US7943249B2 (en) * 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US8852823B2 (en) 2009-08-26 2014-10-07 GM Global Technology Operations LLC Sodium stannate additive to improve the durability of PEMS for H2/air fuel cells
WO2015108193A1 (ja) * 2014-01-20 2015-07-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
JP2016505193A (ja) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー 貴金属粒子と酸性アイオノマー成分とを含むコロイド分散体ならびにそれらの製造および使用の方法
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
WO2016163322A1 (ja) * 2015-04-06 2016-10-13 旭硝子株式会社 液状組成物、固体高分子電解質膜、触媒層および膜電極接合体の製造方法
WO2020022191A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 燃料電池のカソード触媒層および燃料電池
JP2021184356A (ja) * 2020-05-22 2021-12-02 トヨタ自動車株式会社 燃料電池用の積層体

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
JP2006099999A (ja) * 2004-09-28 2006-04-13 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5095089B2 (ja) * 2005-05-31 2012-12-12 株式会社豊田中央研究所 固体高分子電解質、並びに、固体高分子型燃料電池及びその製造方法
CA2614876A1 (en) * 2005-07-12 2007-01-18 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US8652705B2 (en) * 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
EP1944819B1 (en) * 2005-10-31 2013-04-24 Asahi Glass Company, Limited Method for producing membrane electrode assembly for solid polymer fuel cell
US8663866B2 (en) * 2006-03-13 2014-03-04 E I Du Pont De Nemours And Company Stable proton exchange membranes and membrane electrode assemblies
US8722569B2 (en) 2006-03-13 2014-05-13 E I Du Pont De Nemours And Company Peroxide decomposition catalyst particles
US8999434B2 (en) * 2006-06-09 2015-04-07 Asahi Glass Company, Limited Process for producing membrane/ electrode assembly for polymer electrolyte fuel cells
EP1911796A1 (en) * 2006-10-12 2008-04-16 Solvay Solexis S.p.A. Fluoropolymer composition
US9083049B2 (en) * 2006-10-16 2015-07-14 GM Global Technology Operations LLC Additives for fuel cell layers
US7593823B2 (en) * 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
US8110320B2 (en) * 2006-12-29 2012-02-07 3M Innovative Properties Company Method of making durable polymer electrolyte membranes
WO2009001560A1 (ja) 2007-06-25 2008-12-31 Panasonic Corporation 燃料電池、膜-電極接合体、及び膜-触媒層接合体
WO2009022728A1 (ja) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
WO2009086354A1 (en) * 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
US8685580B2 (en) * 2008-06-20 2014-04-01 GM Global Technology Operations LLC Fuel cell with an electrolyte stabilizing agent and process of making the same
US20110165497A1 (en) * 2010-01-06 2011-07-07 Gm Global Technology Operations, Inc. Method for Mitigating Fuel Cell Chemical Degradation
EP2642569B1 (en) * 2011-01-07 2015-03-25 Panasonic Corporation Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell
EP2739682B1 (en) * 2011-08-04 2016-10-19 3M Innovative Properties Company Low equivalent weight polymers
CN103782433B (zh) 2011-08-26 2016-12-28 旭硝子株式会社 固体高分子电解质膜及固体高分子型燃料电池用膜电极接合体
CN103814413B (zh) * 2011-09-21 2017-07-18 东丽株式会社 高分子电解质组合物成型体和使用它的固体高分子型燃料电池
WO2018222609A1 (en) 2017-05-31 2018-12-06 The Board Of Trustees Of The Leland Stanford Junior University Ultrastable rechargeable manganese battery with solid-liquid-gas reactions
KR102575409B1 (ko) * 2017-12-28 2023-09-05 현대자동차주식회사 연료전지용 전해질막의 제조방법 및 이를 포함하는 막-전극 접합체의 제조방법
CN113166297B (zh) * 2018-12-07 2023-07-28 Agc株式会社 液体组合物、固体高分子电解质膜、膜电极接合体、固体高分子型燃料电池
KR20200077014A (ko) * 2018-12-20 2020-06-30 현대자동차주식회사 화학적으로 내구성이 향상된 막-전극 접합체의 전해질막 및 이의 제조방법
CN117683310B (zh) * 2024-02-02 2024-04-30 国家电投集团氢能科技发展有限公司 一种复合物、离子交换膜及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (ja) * 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池
JP2000106203A (ja) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd 固体高分子電解質膜及び燃料電池用電極及び固体高分子電解質型燃料電池
JP2000231928A (ja) * 1999-02-10 2000-08-22 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2001185164A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd イオン交換体ポリマー溶液及び固体高分子電解質型燃料電池用電極の製造方法
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003123777A (ja) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004288620A (ja) * 2002-12-10 2004-10-14 Basf Ag 膜電極組立品の製造方法
JP2005014859A (ja) * 2003-06-30 2005-01-20 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582971B2 (ja) * 1975-07-14 1983-01-19 呉羽化学工業株式会社 シンキヨウイオンコウカンマク オヨビ ソノセイゾウホウホウ
JPS5215487A (en) * 1975-07-29 1977-02-05 Kureha Chem Ind Co Ltd Improved process for producing ion exchange membranes
US4279791A (en) * 1980-05-08 1981-07-21 Standard Brands Incorporated Recovery of cerium from polymer dispersions
BE1006774A3 (fr) 1993-02-24 1994-12-06 Univ Bruxelles MEMBRANE BIPOLAIRE, PROCEDE POUR SON OBTENTION ET UTILISATION DE CELLE-CI POUR LA PRODUCTION DE BASES ET D'ACIDES OU POUR LA REGULATION DU pH D'UNE SOLUTION AQUEUSE.
US5955556A (en) * 1995-11-06 1999-09-21 Alliedsignal Inc. Method of manufacturing fluoropolymers
JPH1092444A (ja) 1996-09-13 1998-04-10 Japan Gore Tex Inc 電気化学反応装置用固体高分子電解質複合体及びそれを用いた電気化学反応装置
US6221248B1 (en) 1998-03-23 2001-04-24 Ionics Incorporated Styrene sulfonate cation exchange membrane
DE19919988A1 (de) * 1999-04-30 2000-11-02 Univ Stuttgart Protonenleitende Keramik-Polymer-Kompositmembran für den Temperaturbereich bis 300 DEG C
EP1164651A1 (en) 2000-06-12 2001-12-19 Asahi Glass Co., Ltd. Electrode catalyst for polymer electrolyte fuel cell and method for its production
US6630263B1 (en) * 2000-11-20 2003-10-07 Plug Power Inc. Fuel cell systems and methods
JP4032738B2 (ja) 2000-12-26 2008-01-16 旭硝子株式会社 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
JP4848587B2 (ja) 2001-01-26 2011-12-28 旭硝子株式会社 固体高分子型燃料電池用電解質材料とその製造方法、及び固体高分子型燃料電池
EP1263073A1 (en) 2001-05-31 2002-12-04 Asahi Glass Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
US6939640B2 (en) 2001-09-21 2005-09-06 E. I. Dupont De Nemours And Company Anode electrocatalysts for coated substrates used in fuel cells
JP2003183467A (ja) 2001-12-17 2003-07-03 Asahi Kasei Corp スルホン酸基含有フルオロカーボン重合体溶解組成物及びその溶解方法
JP2004018573A (ja) 2002-06-13 2004-01-22 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜
JP4096764B2 (ja) 2002-06-17 2008-06-04 ダイキン工業株式会社 含フッ素結晶性ポリマー分散体製造方法
CN1289574C (zh) * 2002-07-08 2006-12-13 旭硝子株式会社 离子交换体聚合物分散液及其制造方法和用途
US7112386B2 (en) * 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP2004134294A (ja) 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 固体高分子電解質
JP4032386B2 (ja) 2002-11-29 2008-01-16 株式会社日立製作所 電動ディスクブレーキ
JP4239584B2 (ja) 2002-12-24 2009-03-18 日産自動車株式会社 筒内直接噴射式火花点火エンジンの点火時期制御装置
JP4217076B2 (ja) 2003-01-21 2009-01-28 Juki株式会社 電子部品供給カセット用テープリール支持装置
US20040164321A1 (en) 2003-02-26 2004-08-26 Dialog Semiconductor Vertical charge transfer active pixel sensor
JP4854914B2 (ja) 2003-03-03 2012-01-18 凸版印刷株式会社 Icカード及びその情報表示方法
JP4278133B2 (ja) 2003-04-21 2009-06-10 株式会社豊田中央研究所 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
JP4871591B2 (ja) 2003-05-13 2012-02-08 旭硝子株式会社 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP2005019732A (ja) 2003-06-26 2005-01-20 Kyocera Corp 配線基板およびこれを用いた電子装置
WO2005001971A1 (ja) 2003-06-30 2005-01-06 Sumitomo Chemical Company, Limited 高分子電解質複合膜、その製造方法及びその用途
JP4276035B2 (ja) * 2003-09-17 2009-06-10 株式会社豊田中央研究所 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
JP4574149B2 (ja) 2003-09-17 2010-11-04 株式会社豊田中央研究所 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
JPWO2005041330A1 (ja) 2003-10-24 2007-11-29 旭硝子株式会社 固体高分子型燃料電池用膜・電極接合体及びその製造方法
JP5021885B2 (ja) 2003-11-13 2012-09-12 東芝燃料電池システム株式会社 燃料電池
US7537857B2 (en) 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
DE602005023287D1 (de) 2004-03-04 2010-10-14 Asahi Glass Co Ltd Zusammengesetzte elektrolytische membran, katalytische schichtmembranbaugruppe, membranelektrodenbaugruppe und polymerelektrolytische brennstoffzelle
KR20060131922A (ko) * 2004-04-02 2006-12-20 아사히 가라스 가부시키가이샤 고체 고분자형 연료 전지용 전해질 재료, 전해질막 및막전극 접합체
CA2571138C (en) 2004-06-22 2014-02-11 Asahi Glass Company, Limited Electrolyte membrane for polymer electolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP3897059B2 (ja) * 2004-06-22 2007-03-22 旭硝子株式会社 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
US7572534B2 (en) * 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
JP2006134678A (ja) * 2004-11-05 2006-05-25 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池及び燃料電池システム
CN100388545C (zh) * 2004-11-11 2008-05-14 三菱重工业株式会社 固体高分子电解质膜电极组合体及使用该组合体的固体高分子电解质型燃料电池
JP4810868B2 (ja) * 2005-04-19 2011-11-09 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP5095089B2 (ja) * 2005-05-31 2012-12-12 株式会社豊田中央研究所 固体高分子電解質、並びに、固体高分子型燃料電池及びその製造方法
CA2614876A1 (en) 2005-07-12 2007-01-18 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US8628871B2 (en) * 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (ja) * 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池
JP2000106203A (ja) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd 固体高分子電解質膜及び燃料電池用電極及び固体高分子電解質型燃料電池
JP2000231928A (ja) * 1999-02-10 2000-08-22 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2001185164A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd イオン交換体ポリマー溶液及び固体高分子電解質型燃料電池用電極の製造方法
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003123777A (ja) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004288620A (ja) * 2002-12-10 2004-10-14 Basf Ag 膜電極組立品の製造方法
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005014859A (ja) * 2003-06-30 2005-01-20 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US9331354B2 (en) 2004-06-22 2016-05-03 Asahi Glass Company, Limited Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10153506B2 (en) 2004-06-22 2018-12-11 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US8546004B2 (en) 2004-06-22 2013-10-01 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US7943249B2 (en) * 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10916790B2 (en) 2004-06-22 2021-02-09 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP2008513951A (ja) * 2004-09-20 2008-05-01 スリーエム イノベイティブ プロパティズ カンパニー 燃料電池の耐久性
JP2007012520A (ja) * 2005-07-01 2007-01-18 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2009514174A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー 酸化セリウム添加物を有する高い耐久性の燃料電池構成要素
JP2016129139A (ja) * 2005-10-28 2016-07-14 スリーエム イノベイティブ プロパティズ カンパニー 酸化セリウム添加物を有する高い耐久性の燃料電池構成要素
JP2009514172A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー セリウム塩添加物を有する高い耐久性の燃料電池構成要素
JP2007188706A (ja) * 2006-01-12 2007-07-26 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体
JP4514718B2 (ja) * 2006-01-20 2010-07-28 株式会社豊田中央研究所 膜電極接合体及び固体高分子型燃料電池
JP2007194121A (ja) * 2006-01-20 2007-08-02 Toyota Central Res & Dev Lab Inc 膜電極接合体及び固体高分子型燃料電池
US8187765B2 (en) 2006-01-20 2012-05-29 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell
JP2008159573A (ja) * 2006-11-08 2008-07-10 Gm Global Technology Operations Inc オーバーコートを有する燃料電池基板
EP1926165A1 (en) * 2006-11-22 2008-05-28 Asahi Glass Company Ltd. Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
US9711817B2 (en) 2006-11-22 2017-07-18 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
JP2008186715A (ja) * 2007-01-30 2008-08-14 Asahi Glass Co Ltd 固体高分子形燃料電池およびその運転方法
WO2008132875A1 (ja) * 2007-04-25 2008-11-06 Japan Gore-Tex Inc. 固体高分子形燃料電池用高分子電解質膜の製造方法、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2008288140A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 燃料電池
JP2011503300A (ja) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー ヘテロポリ酸を含むポリマー電解質
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
US8852823B2 (en) 2009-08-26 2014-10-07 GM Global Technology Operations LLC Sodium stannate additive to improve the durability of PEMS for H2/air fuel cells
JP2010212247A (ja) * 2010-04-14 2010-09-24 Toyota Central R&D Labs Inc 膜電極接合体及び固体高分子型燃料電池
JP2016505193A (ja) * 2012-08-29 2016-02-18 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー 貴金属粒子と酸性アイオノマー成分とを含むコロイド分散体ならびにそれらの製造および使用の方法
JP2019050207A (ja) * 2014-01-20 2019-03-28 Agc株式会社 液状組成物、触媒層形成用塗工液および固体高分子形燃料電池用膜電極接合体の製造方法
JPWO2015108193A1 (ja) * 2014-01-20 2017-03-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
US10283800B2 (en) 2014-01-20 2019-05-07 AGC Inc. Liquid composition, method for its production, and method for producing membrane/electrode assembly for polymer electrolyte fuel cell
WO2015108193A1 (ja) * 2014-01-20 2015-07-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
CN107408428A (zh) * 2015-04-06 2017-11-28 旭硝子株式会社 液态组合物、固体高分子电解质膜、催化剂层和膜电极接合体的制造方法
JPWO2016163322A1 (ja) * 2015-04-06 2018-02-08 旭硝子株式会社 液状組成物、固体高分子電解質膜、触媒層および膜電極接合体の製造方法
CN107408428B (zh) * 2015-04-06 2019-11-12 Agc株式会社 液态组合物、固体高分子电解质膜、催化剂层和膜电极接合体的制造方法
WO2016163322A1 (ja) * 2015-04-06 2016-10-13 旭硝子株式会社 液状組成物、固体高分子電解質膜、触媒層および膜電極接合体の製造方法
US11495816B2 (en) 2015-04-06 2022-11-08 AGC Inc. Methods for producing liquid composition, polymer electrolyte membrane, catalyst layer, and membrane/electrode assembly
WO2020022191A1 (ja) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 燃料電池のカソード触媒層および燃料電池
US11799092B2 (en) 2018-07-25 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Cathode catalyst layer of fuel cells, and fuel cell
JP2021184356A (ja) * 2020-05-22 2021-12-02 トヨタ自動車株式会社 燃料電池用の積層体
JP7396196B2 (ja) 2020-05-22 2023-12-12 トヨタ自動車株式会社 燃料電池用の積層体

Also Published As

Publication number Publication date
CA2567305A1 (en) 2005-12-29
JP3897059B2 (ja) 2007-03-22
US10153506B2 (en) 2018-12-11
JP5287969B2 (ja) 2013-09-11
JPWO2005124912A1 (ja) 2008-04-17
US20060019140A1 (en) 2006-01-26
US20130309596A1 (en) 2013-11-21
US8546004B2 (en) 2013-10-01
US20110212383A1 (en) 2011-09-01
US9331354B2 (en) 2016-05-03
JP2012092345A (ja) 2012-05-17
US20190067722A1 (en) 2019-02-28
US10916790B2 (en) 2021-02-09
EP1760812B1 (en) 2010-12-08
CA2567305C (en) 2013-10-08
US20160197370A1 (en) 2016-07-07
EP1760812A4 (en) 2008-02-13
US7943249B2 (en) 2011-05-17
EP1760812A1 (en) 2007-03-07
DE602005025213D1 (de) 2011-01-20
ATE491237T1 (de) 2010-12-15

Similar Documents

Publication Publication Date Title
US10916790B2 (en) Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP4997971B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP5247974B2 (ja) 固体高分子形水素・酸素燃料電池用電解質膜の製造方法
JP2006099999A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP4972867B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2007031718A5 (ja)
KR100970358B1 (ko) 액상 조성물, 그 제조 방법 및 고체 고분자형 연료 전지용막 전극 접합체의 제조 방법
JP2007188706A (ja) 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514857

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2005752908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005752908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2567305

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067024566

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580019944.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067024566

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005752908

Country of ref document: EP