WO2005098914A1 - レーザ加工方法及び加工対象物 - Google Patents

レーザ加工方法及び加工対象物 Download PDF

Info

Publication number
WO2005098914A1
WO2005098914A1 PCT/JP2005/003515 JP2005003515W WO2005098914A1 WO 2005098914 A1 WO2005098914 A1 WO 2005098914A1 JP 2005003515 W JP2005003515 W JP 2005003515W WO 2005098914 A1 WO2005098914 A1 WO 2005098914A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
modified region
region
cutting line
along
Prior art date
Application number
PCT/JP2005/003515
Other languages
English (en)
French (fr)
Inventor
Takeshi Sakamoto
Kenichi Muramatsu
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP05719830A priority Critical patent/EP1742252B1/en
Priority to US10/594,892 priority patent/US7592237B2/en
Priority to KR1020067022482A priority patent/KR101283228B1/ko
Publication of WO2005098914A1 publication Critical patent/WO2005098914A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/002Crimping or bending the workpieces at the joining area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to a laser processing method used for cutting a substrate on which a laminated portion including a plurality of functional elements is formed, and an object to be processed.
  • Patent Document 1 As this type of conventional technology, the following laser processing method is described in Patent Document 1 below. That is, by attaching a member that protects the surface of a flat workpiece to be processed, and irradiating the laser beam with the back surface of the workpiece as the laser beam incident surface, the inside of the workpiece is cut along the planned cutting line. A cutting start region is formed by the modified region. Subsequently, a stretchable film is attached to the back surface of the workpiece, and the stretchable film is stretched to separate a plurality of parts generated by cutting the workpiece from the cutting start region. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-1076
  • a substrate is used as a processing object to be cut by the laser processing method as described above.
  • a silicon substrate for example, a silicon substrate and a laminated portion (for example, an insulating film such as a low-K film, a TEG, or a conductive film made of a metal material) formed on the surface of the substrate including a plurality of functional elements.
  • a laminated portion for example, an insulating film such as a low-K film, a TEG, or a conductive film made of a metal material
  • a modified region is formed inside the substrate, and the modified region is stacked with the substrate using the modified region as a cutting starting region. It is preferable to cut the part. This is because if the modified region is formed inside the laminated part, there is a risk of adverse effects such as contamination and heat effects on the functional elements included in the laminated part.
  • the present invention has been made in view of such circumstances, and when cutting a substrate on which a laminated portion including a plurality of functional elements is formed into a plurality of chips having functional elements, At the same time, it is an object of the present invention to provide a laser processing method and an object to be processed that enable highly accurate cutting of a laminated portion.
  • a laser processing method irradiates a laser beam with a converging point inside a substrate on which a multilayer portion including a plurality of functional elements is formed.
  • a laser processing method for forming a modified region as a starting point of cutting inside a substrate along a planned cutting line of the substrate wherein the first method for cutting the substrate and the laminated portion into a plurality of blocks is provided.
  • the first modified region is more likely to cause cracks in the substrate than the second modified region.
  • the first modified region is more likely to crack the substrate than the second modified region.
  • an expanded tape expandable film
  • the cutting of is started.
  • cutting is started step by step from a large block to a small chip, it is evenly distributed to the parts along the first and second scheduled cutting lines (that is, the part to be the cutting surface of the chip).
  • the tensile stress acts, and as a result, the laminated portion together with the substrate can be accurately cut along the first and second scheduled cutting lines.
  • this laser processing method enables high-precision cutting of the laminated portion together with the substrate when the substrate on which the laminated portion including a plurality of functional elements is formed is cut into a plurality of chips having functional elements.
  • the step of forming the first modified region and the step of forming the second modified region are in no particular order.
  • the first modified region and the second modified region provide multiphoton absorption or equivalent light absorption inside the substrate by irradiating the laser beam with the focusing point inside the substrate. It is formed by generating.
  • the functional element is, for example, a semiconductor operating layer or a photo diode formed by crystal growth. It means a light receiving element such as a diode, a light emitting element such as a laser diode, or a circuit element formed as a circuit.
  • the laser processing method includes the steps of attaching an expandable film to the back surface of the substrate on which the first modified region and the second modified region are formed, and expanding the expandable film, It is preferable that the method further includes a step of starting cutting from the substrate and the laminated portion to the block with the first modified region as a starting point and then starting cutting from the block to the chip with the second modified region as a starting point. .
  • an equal tensile stress acts on the portions along the first and second scheduled cutting lines.
  • the laminated portion can be cut along with the substrate along the first and second scheduled cutting lines with high accuracy.
  • the second scheduled cutting line passes between adjacent first scheduled cutting lines. As a result, it is possible to start cutting from the block to the chip along the second scheduled cutting line after starting the cutting to the block sandwiched between the adjacent first scheduled cutting lines.
  • the first planned cutting line and the second planned cutting line may be substantially parallel, or the first planned cutting line and the second planned cutting line. It may intersect with the line.
  • the substrate may be a semiconductor substrate, and the first modified region and the second modified region may include a melt processing region.
  • a modified region including a melt processing region may be formed as the first modified region and the second modified region.
  • the formation density of the first modified region in the portion along the first scheduled cutting line of the substrate and the portion in the portion along the second scheduled cutting line of the substrate By making the formation density of the second modified region different, the first modified region can be easily cracked in the substrate as compared with the second modified region.
  • the formation interval of the modified region formed by the irradiation of one pulse of laser light is set to The part along the planned cutting line and the part along the second scheduled cutting line should be different. Les.
  • the first modified region is continuously formed in the portion along the first planned cutting line.
  • the second modified region may be intermittently formed in the portion along the second scheduled cutting line.
  • the number of columns of the first modified region in the portion along the first scheduled cutting line should be larger than the number of columns of the second modified region in the portion along the second scheduled cutting line. Les.
  • the formation density of the modified region in the portion along the planned cutting line of the substrate means the ratio of the modified region to the portion along the planned cutting line of the substrate.
  • the size of the first modified region in the portion along the first scheduled cutting line of the substrate and the portion along the second scheduled cutting line of the substrate By making the size of the second modified region different, it is possible to make the first modified region more susceptible to cracking in the substrate than the second modified region. Specifically, for example, when forming the first modified region along the first planned cutting line, the energy of the laser beam is increased, and the first modification mainly in the thickness direction of the substrate is performed. When the second modified region is formed along the second planned cutting line, the energy of the laser beam is decreased, mainly in the thickness direction of the substrate. The size of the second reforming region may be reduced.
  • the formation position of the first modified region in the portion along the first scheduled cutting line of the substrate and the portion along the second scheduled cutting line of the substrate By making the formation position of the second modified region different, it is possible to make the first modified region more easily cracked in the substrate than the second modified region. Specifically, for example, the distance from the laser light incident surface of the substrate to the modified region along the planned cutting line is changed along the portion along the first planned cutting line and the second planned cutting line. Different from the part.
  • a processing object is a processing object that includes a substrate and a laminated portion that includes a plurality of functional elements and is formed on the surface of the substrate.
  • a first modified region formed inside the substrate along a first planned cutting line for cutting into blocks of the second block and a second for cutting the block into a plurality of chips having functional elements And a second modified region formed inside the substrate along the line to be cut, and the first modified region is more likely to crack the substrate than the second modified region. It is characterized by this.
  • the first modified region is more likely to crack the substrate than the second modified region, and therefore, for example, an expanded tape is applied to the back surface of the substrate.
  • the cutting from the substrate and the stacked portion to the block is started, and then the cutting from the block to the chip is started using the second modified region as a starting point.
  • a uniform tensile stress will act on the portions along the first and second planned cutting lines, so that the layers are laminated together with the substrate.
  • the force S can be accurately cut along the first and second scheduled cutting lines.
  • the present invention enables high-precision cutting of a laminated portion together with a substrate when a substrate on which a laminated portion including a plurality of functional elements is formed is cut into a plurality of chips having functional elements.
  • FIG. 1 is a plan view of an object to be processed in a laser cage by a laser cage method according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of the workpiece shown in FIG.
  • FIG. 3 is a plan view of an object to be processed after laser caking by the laser caking method according to the present embodiment.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of the workpiece shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line V—V of the workpiece shown in FIG.
  • FIG. 6 is a plan view of a workpiece to be cut by the laser processing method according to the present embodiment.
  • FIG. 7 is a graph showing the relationship between electric field strength and crack spot size in the laser processing method according to the present embodiment.
  • FIG. 8 is a cross-sectional view of an object to be processed in the first step of the laser caching method according to the present embodiment.
  • FIG. 9 A sectional view of the object to be processed in the second step of the laser processing method according to the present embodiment.
  • FIG. 10 A cross-sectional view of the workpiece in the third step of the laser caching method according to the present embodiment.
  • FIG. 12 A view showing a photograph of a cross section of a part of a silicon wafer cut by the laser cage method according to the present embodiment.
  • FIG. 15 is a partial cross-sectional view taken along line XV—XV of the workpiece shown in FIG.
  • FIG. 16 It is a diagram for explaining the laser care method of the first embodiment.
  • (A) is a state in which a protective tape is applied to the workpiece
  • (b) is a laser beam applied to the workpiece. Irradiated.
  • (A) is a state in which an expanded tape is attached to a processing object
  • (b) is a state in which ultraviolet rays are irradiated to the protective tape. It is in a state of being.
  • (A) is a state in which the protective tape is peeled off from the object to be processed, and (b) is a state in which the expanded tape is expanded. is there.
  • FIG. 19 A sectional view showing a state in which a modified region is formed in accordance with the line to be cut in the laser cage method of the first embodiment.
  • FIG. 20 A first plan view for explaining an expanding process of the expanding tape in the laser cafe method of the first embodiment.
  • FIG. 21 A second plan view for explaining an expanding tape expanding step in the laser cage method of the first embodiment.
  • FIG. 23 A diagram showing a photograph of a cutting state of a processing object.
  • (A) shows a case where the processing object is not cut into a plurality of semiconductor chips step by step, and (b) shows a processing object. This is a case of cutting into multiple semiconductor chips stepwise.
  • FIG. 24 It is a diagram showing a photograph of the cutting state of the semiconductor chip.
  • (A) shows a case where the workpiece is not cut into multiple semiconductor chips step by step, and (b) shows a plurality of workpieces. In this case, the semiconductor chip is cut in stages.
  • FIG. 25 A plan view of an object to be processed in the laser cage method of the second embodiment.
  • FIG. 26 is a first plan view for explaining an expanding tape expanding step in the laser cage method of the second embodiment.
  • FIG. 27 is a second plan view for explaining an expanding tape expanding step in the laser cage method of the second embodiment.
  • FIG. 28 is a plan view of an object to be processed in the laser caching method of the third embodiment.
  • FIG. 29 is a first plan view for explaining an expanding tape expanding step in the laser cage method of the third embodiment.
  • FIG. 30 is a second plan view for explaining an expanding tape expansion step in the laser cage method of the third embodiment.
  • FIG. 31 is a third plan view for explaining an expanding process of the expanding tape in the laser cafe method of the third embodiment.
  • FIG. 32 is a plan view of an object to be processed in the laser caching method of the fourth embodiment.
  • FIG. 33 is a first plan view for explaining an expanding tape expansion step in the laser carriage method of the fourth embodiment.
  • FIG. 34 is a second plan view for explaining the expanding process of the expanding tape in the laser cafe method of the fourth embodiment.
  • FIG. 35 is a third plan view for explaining an expanding tape expansion step in the laser carriage method of the fourth embodiment.
  • FIG. 36 is a cross-sectional view showing a state in which a modified region is formed according to a line to be cut in the first modification of the laser caching method of the first embodiment.
  • FIG. 37 is a cross-sectional view showing a state in which a modified region is formed according to a planned cutting line in a second modification of the laser caching method of the first embodiment.
  • FIG. 38 is a first table showing conditions for forming a modified region for varying the ease of cracking of a substrate depending on the planned cutting line.
  • FIG. 39 is a second table showing the formation conditions of the modified region for varying the ease of cracking of the substrate depending on the planned cutting line.
  • the absorption band gap of the material is optically transparent when the photon energy force S is smaller than the band gap E.
  • the intensity of the laser beam is determined by the peak power density (W / cm 2 ) at the condensing point of the laser beam.
  • the intensity of the laser beam is high when the peak density is 1 X 10 8 (W / cm 2 ) or more.
  • Photon absorption occurs.
  • the peak power density is calculated by (energy per pulse of laser beam at the focal point) ⁇ (laser beam beam cross-sectional area X pulse width).
  • the intensity of the laser beam is determined by the electric field intensity (W / cm 2 ) at the condensing point of the laser beam.
  • FIG. 1 there is a scheduled cutting line 5 for cutting the workpiece 1 on the surface 3 of the wafer-like (flat plate) workpiece 1.
  • the fixed line 5 is an imaginary line extending straight.
  • the modified region 7 is irradiated with the laser beam L by aligning the condensing point P inside the workpiece 1 under the condition that multiphoton absorption occurs.
  • the condensing point P is a location where the laser light L is condensed.
  • the planned cutting line 5 is not limited to a straight line but may be a curved line, or may be a line actually drawn on the workpiece 1 without being limited to a virtual line.
  • the condensing point P is moved along the planned cutting line 5. .
  • the modified region 7 is formed inside the workpiece 1 along the planned cutting line 5, and this modified region 7 becomes the cutting start region 8.
  • the cutting start region 8 means a region that becomes a starting point of cutting when the workpiece 1 is cut.
  • the cut starting point region 8 may be formed by continuously forming the modified region 7 or may be formed by intermittently forming the modified region 7.
  • the laser processing method does not form the modified region 7 by causing the workpiece 1 to generate heat when the workpiece 1 absorbs the laser light L.
  • the modified region 7 is formed by allowing the laser beam L to pass through the workpiece 1 and causing multiphoton absorption inside the workpiece 1. Therefore, since the laser beam L is hardly absorbed by the surface 3 of the workpiece 1, the surface 3 of the workpiece 1 is not melted.
  • this is a case in which the workpiece 1 is naturally cracked in the cross-sectional direction (thickness direction) of the caulking object 1 starting from the cutting origin region 8, and as a result, the workpiece 1 is cut.
  • the thickness of the workpiece 1 is small, this can be achieved by forming the cutting start region 8 by the modified region 7 in one row, and when the thickness of the workpiece 1 is large. This can be achieved by forming the cutting start region 8 by the modified region 7 formed in a plurality of rows in the thickness direction. Even in the case of natural cracking, the part where the cutting start region 8 is formed so that the crack does not run on the surface 3 of the portion corresponding to the portion where the cutting start region 8 is not formed at the part to be cut.
  • the cleaving can be controlled well.
  • the thickness of the workpiece 1 such as a silicon wafer tends to be thin, such a cleaving method with good controllability is very effective.
  • the modified region is a crack region including one or more cracks
  • the laser beam is irradiated under the condition that the electric field intensity at the focal point is 1 ⁇ 10 8 (W / cm 2 ) or more and the nose width is 1 ⁇ s or less.
  • the magnitude of the pulse width is a condition that allows a crack region to be formed only inside the workpiece without causing extra damage to the surface of the workpiece while causing multiphoton absorption.
  • a phenomenon called optical damage due to multiphoton absorption occurs inside the workpiece.
  • This optical damage induces thermal strain inside the workpiece, thereby forming a crack region inside the workpiece.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (WZcm 2 ).
  • the pulse width is preferably Ins—200 ns, for example.
  • the formation of crack regions by multiphoton absorption is described, for example, in “The Glass Substrate by Harmonic Solid-State Lasers” on pages 23 to 28 of the 45th Laser Thermal Kayakken Proceedings (December 1998). "Internal marking”.
  • the present inventor obtained the relationship between the electric field strength and the size of the crack by experiment.
  • the experimental conditions are as follows.
  • the laser beam quality is TEM
  • the laser beam is highly condensing and can be focused to the wavelength of the laser beam.
  • FIG. 7 is a graph showing the results of the experiment.
  • the horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density.
  • the vertical axis shows the size of the crack part (crack spot) formed inside the workpiece by 1 pulse of laser light. Crack spot force S gathers to form a crack region. The size of the crack spot is the size of the maximum length of the crack spot shape.
  • the data indicated by the black circles in the graph is when the condenser lens (C) has a magnification of 100 and the numerical aperture (NA) is 0.80.
  • the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55.
  • the peak power density is about lO ⁇ WZcm 2 ) It can be seen that a crack spot is generated inside the workpiece and the crack spot increases as the peak power density increases.
  • the inside of the workpiece is locally heated by multiphoton absorption.
  • the melt treatment region is a region once solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-changed region or a region where the crystal structure has changed.
  • the melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure. That is, for example, a region where a single crystal structure is changed to an amorphous structure, a region where a single crystal structure is changed to a polycrystalline structure, a region where a single crystal structure is changed to a structure including an amorphous structure and a polycrystalline structure are included.
  • the melt processing region has, for example, an amorphous silicon structure.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (W / cm 2 ).
  • the pulse width is preferably Ins—200 ns, for example.
  • the inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer.
  • the experimental conditions are as follows.
  • Oscillation form Q switch pulse Repeat frequency: 100kHz
  • FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by laser processing under the above conditions.
  • a melt processing region 13 is formed inside the silicon wafer 11.
  • the size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 ⁇ m.
  • FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection component on the front side and the back side of the silicon substrate is removed to show the transmittance only inside. The above relationship is shown for each of the silicon substrate thickness t force 50 zm, 100 zm, 200 zm, 500 zm, and 1000 xm.
  • the thickness of a silicon substrate is 500 II m or less at an Nd: YAG laser wavelength of 1064 nm
  • the melt processing region 13 by multiphoton absorption is formed near the center of the silicon wafer 11, that is, at a portion of 175 zm from the surface.
  • the transmittance is 90% or more with reference to a silicon wafer having a thickness of 200 zm, so that the laser light is hardly absorbed inside the silicon wafer 11, and almost all is transmitted.
  • melt processing region 13 due to multiphoton absorption Means formed.
  • the formation of the melt processing region by multiphoton absorption is, for example, “Evaluation of processing characteristics of silicon by picosecond pulse laser” on pages 72 to 73 of the 66th Annual Meeting Summary (April 2000). It is described in.
  • the silicon wafer generates a crack in the cross-sectional direction starting from the cutting start region formed by the melting treatment region, and the crack reaches the front and back surfaces of the silicon wafer. As a result, it is cut.
  • the cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously or may grow when force is applied to the silicon wafer.
  • the cracks grow from a state in which the melt processing region forming the cutting start region melts and grows. In some cases, cracks grow when the solidified region that forms the region is melted again.
  • the melt processing region is formed only inside the silicon wafer, and the melt processing region is formed only inside the cut surface after cutting as shown in FIG.
  • the cutting start region is formed by the melt processing region inside the workpiece, unnecessary cracking off the cutting start region line is less likely to occur at the time of cleaving, so that cleaving control is facilitated.
  • the focusing point inside the workpiece eg glass
  • the pulse width is made extremely short and multiphoton absorption occurs inside the object, the energy due to the multiphoton absorption is not converted into thermal energy, and the ionic valence changes inside the object to be processed.
  • a permanent structural change such as crystallization or polarization orientation is induced to form a refractive index changing region.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (WZcm 2 ).
  • the node width is preferably, for example, Ins or less, and more preferably lps or less.
  • the formation of the refractive index change region by multiphoton absorption is described in, for example, “The Femtosecond Laser Irradiation into the Glass” on pages 105-1111 of the 42nd Laser Thermal Processing Workshop Proceedings (November 1997). Photo-induced structure formation ”.
  • a cutting origin region in a direction along the (111) plane (first cleavage plane) or the (110) plane (second cleavage plane). is preferably formed.
  • a substrate having a zinc-blende structure III-V group compound semiconductor such as GaAs it is preferable to form the cutting origin region in the direction along the (110) plane.
  • a substrate having a hexagonal crystal structure such as sapphire (Al 2 O 3)
  • the cutting start region is formed in a direction along the (1120) plane (eight plane) or the (1100) plane (M plane) with the (0001) plane (C plane) as the main plane.
  • FIG. 14 is a plan view of the object to be processed in the laser processing method of the first embodiment
  • FIG. 15 is a partial cross-sectional view of the object to be processed shown in FIG. 14 along the XV-XV line.
  • the workpiece 1 includes a substrate 4 made of silicon, and a laminated portion 16 that includes a plurality of functional elements 15 and is formed on the surface 3 of the substrate 4. ing.
  • the functional element 15 is laminated on the interlayer insulating film 17a so as to cover the wiring layer 19a, the interlayer insulating film 17a laminated on the surface 3 of the substrate 4, the wiring layer 19a disposed on the interlayer insulating film 17a, and the wiring layer 19a.
  • the insulating film 17b includes an interlayer insulating film 17b and a wiring layer 19b disposed on the interlayer insulating film 17b.
  • the wiring layer 19a and the substrate 4 are electrically connected by a conductive plug 20a that penetrates the interlayer insulating film 17a.
  • the wiring layer 19b and the wiring layer 19a are connected to the conductive plug 20b that penetrates the interlayer insulating film 17b. Therefore, it is electrically connected.
  • the functional element 15 includes a plurality of force interlayer insulating films 17a and 17b formed in a matrix in a direction parallel to and perpendicular to the orientation flat (orientation flat) 6 of the substrate 4. It is formed across the adjacent functional elements 15 and 15 so as to cover the entire surface 3 of the substrate 4.
  • the cache object 1 configured as described above is cut for each functional element 15 as follows. First, as shown in FIG. 16 (a), the protective tape 22 is attached to the workpiece 1 so as to cover the laminated portion 16. Subsequently, as shown in FIG. 16B, the workpiece 1 is fixed on the mounting table 61 of the laser processing apparatus 60 with the back surface 21 of the substrate 4 facing upward. At this time, since the protective tape 22 prevents the laminated portion 16 from coming into direct contact with the mounting table 61, each functional element 15 can be protected.
  • the cutting lines 5a, 5b, 5c, 5d are set in a lattice shape so as to pass between the adjacent functional elements 15, 15. More specifically, as shown in FIG. 14, a plurality of cutting lines 5a extending in a direction perpendicular to the orientation flat 6 so as to pass between the functional elements 15 and 15 at intervals of a plurality of rows of functional elements. Set a plurality of scheduled cutting lines 5b extending in a direction parallel to the orientation flat 6 so as to pass between the functional elements 15 and 15 with intervals corresponding to a plurality of rows of functional elements.
  • a plurality of scheduled cutting lines 5c extending in a direction perpendicular to the orientation flat 6 are set so as to pass between the functional elements 15 and 15 where the scheduled cutting line 5a is not set, and the scheduled cutting line 5b is set.
  • a plurality of scheduled cutting lines 5d extending in a direction parallel to the orientation flat 6 so as to pass between the functional elements 15 and 15 are set.
  • the back surface 21 of the substrate 4 is used as the laser light incident surface, and the condensing point P is aligned inside the substrate 4.
  • the condensing point P is scanned along each of the planned cutting lines 5a to 5d by the movement of the mounting table 61.
  • the condensing point P along the planned cutting line 5a is scanned three times while changing the distance from the back surface 21 where the converging point P is aligned, and the condensing point P along the planned cutting line 5b is scanned.
  • the second scan is performed twice while changing the distance from the rear surface 21 at the position where the condensing point P is aligned (the condensing point P is scanned only once along the scheduled cutting lines 5c and 5d).
  • each modified region 7a-7d is a melt processing region.
  • the formation interval of the modified regions formed by irradiation with one pulse of laser light is 4 am-7 ⁇ m, and the substrate 4 is likely to be cracked.
  • the formation interval is not more than lzm, and it is difficult for the substrate 4 to crack.
  • the modified region formed by irradiation with one pulse of laser light has the same formation interval and the same size, but the modified regions 7c, 7b, Since the number of the reformed regions increases in the order of the reformed region 7a, the substrate 4 is likely to be cracked in the order of the reformed region 7c, the reformed region 7b, and the reformed region 7a.
  • the modified region 7c is more easily modified than the modified region 7d
  • the modified region 7b is more modified than the modified region 7c
  • the modified region 7a is more easily modified than the modified region 7b. It has been.
  • a tape applicator (not shown) is used on the back surface 21 of the substrate 4 of the workpiece 1 to form a circle. Affix the shape of expandable tape (expandable film) 23.
  • the expanded tape 23 is fixed to the tape fixing frame 24 by attaching an outer peripheral portion of the expanding tape 23 to a ring-shaped tape fixing frame 24.
  • the workpiece 1 having the expanded tape 23 attached to the back surface 21 of the substrate 4 is conveyed to the film expansion device 70, and the tape fixing frame 24 is attached to the ring.
  • the workpiece 1 is mounted on the film expansion device 70 by being sandwiched between the ring-shaped receiving member 71 and the ring-shaped pressing member 72.
  • the protective tape 22 is irradiated with ultraviolet rays to reduce its adhesive strength, and the protective tape 22 is peeled off from the laminated portion 16 of the workpiece 1 as shown in FIG.
  • the expansion process of the expanded tape 23 will be described in more detail. As shown in FIG. 20, the workpiece 1 to which the expanded tape 23 is attached is attached to the film expansion device 70 (not shown), and the pressing member 73 (not shown) is raised to expand the expanded tape. 23 is expanded evenly in the radial direction.
  • each block la is cut into a plurality of blocks lb along the planned cutting line 5b (that is, by cracking starting from the modified region 7b). Is done.
  • each block lb is cut into a plurality of blocks lc along the planned cutting line 5c (that is, by cracking starting from the modified region 7c).
  • each block lc is cut into a plurality of semiconductor chips 25 along the planned cutting line 5d (that is, when cracking occurs starting from the modified region 7d).
  • the workpiece 1 is cut into the plurality of semiconductor chips 25 in stages because the modified region 7c is more than the modified region 7d, the modified region 7b is more than the modified region 7c, This is because the modified region 7a is a modified region in which the substrate 4 is more likely to crack than the modified region 7b.
  • the cutting from block la to block lb along the planned cutting line 5b may be started before the cutting from the workpiece 1 to the block la along the planned cutting line 5a is completed. is there. The same applies to the cutting along the other scheduled cutting lines 5c and 5d.
  • the modified regions 7a-7d having different easiness to generate cracks in the substrate 4 are formed along the scheduled cutting lines 5a-5d. doing. Therefore, when the expanded tape 23 is attached to the back surface 21 of the substrate 4 and expanded, the workpiece 1 is cut into a plurality of semiconductor chips 25 in stages. Such stepwise cutting causes a uniform tensile stress to act on the portion along each scheduled cutting line 5a-5d (that is, the portion that becomes the cut surface of the semiconductor chip 25), and as a result, together with the substrate 4 Scheduled cutting line 5a— Interlayer insulating films 17a and 17b on 5d are scheduled to be cut 5a It will be cut accurately along 1d. Therefore, in the laser processing method of the first embodiment, when the substrate 4 on which the stacked portion 16 including the plurality of functional elements 15 is formed is cut into the plurality of semiconductor chips 25 including the functional elements 15, Enables high-precision cutting of the stack 16.
  • the stacked portion 16 can be accurately It may not be able to cut well. This is because of the modified region 7a-7d (that is, the modified region 7a that is difficult to cause cracks in the substrate 4) that can cause a large tensile stress to act on the portion along the planned cutting line 5a-5d when the expand tape 23 is expanded. — Means that 7d) should be formed.
  • the laminated portion 16 is formed together with the substrate 4. It is difficult to accurately cut along the planned lines 5a-5d. This is because it is almost impossible to apply a uniform tensile stress to all the portions along the cutting lines 5a-5d. Therefore, it is difficult to cut the laminated portion 16 together with the substrate 4 along the scheduled cutting lines 5a to 5d. Further, as the relative size of the semiconductor chip 25 to the substrate 4 becomes smaller, Due to the expansion of the expanded tape 23, it becomes difficult to cut and separate the substrate 4 and the laminated portion 16, and there may be a portion that is not cut.
  • the modified regions 7c and 7d that are difficult to cause cracks are formed in the substrate 4 that cuts the laminated portion 16 with high accuracy. Even so, the cutting of each block lb force into a plurality of blocks lc and the cutting from each block lc into a plurality of semiconductor chips 25 are performed with high accuracy. This is because the relative size of the block lc increases with respect to the block lb, and the relative size of the semiconductor chip 25 increases with respect to the block lc. This is because a uniform ⁇ I tension stress is likely to act on the portion.
  • the processing object 1 in the case where the processing object 1 is not cut into the plurality of semiconductor chips 25 in stages and the case where the processing object 1 is cut in stages (the laser processing method of the first embodiment) and Let's look at the cutting state of the semiconductor chip 25.
  • the case where the cutting is not performed stepwise is a case where the modified region 7 is formed under the same forming conditions along the planned cutting lines 5a-5d.
  • the laser processing method of the second embodiment is different from the laser processing method of the first embodiment in the way of forming the modified region on the substrate 4 of the workpiece 1.
  • a planned cutting line 5a extending in a direction perpendicular to and parallel to the orientation flat 6 so as to pass between the functional elements 15 and 15 with an interval corresponding to a plurality of rows of functional elements.
  • functional elements 15 and 15 in which the line 5a to be cut is not set.
  • Set a plurality of planned cutting lines 5b extending in a direction perpendicular to the orientation flat 6 so as to pass between them, and a direction parallel to the orientation flat 6 so as to pass between the functional elements 15 and 15 where the planned cutting lines 5a are not set.
  • Set multiple cutting lines 5c that extend to.
  • a modified region 7a shown in FIG. 19 (a) is formed inside the substrate 4 along the planned cutting line 5a. Further, the modified region 7b shown in FIG. 19 (b) is formed inside the substrate 4 along the planned cutting line 5b, and the modified region shown in FIG. 19 (c) is formed along the planned cutting line 5c. 7c is formed inside the substrate 4.
  • each modified region 7a-7c As shown in Fig. 26 (a), the object 1 to which the expanded tape 23 is attached is attached to a film expansion device 70 (not shown). Then, the pressing member 73 (not shown) is raised to expand the expanded tape 23 evenly in the radial direction.
  • each block la is cut into a plurality of blocks lb along the planned cutting line 5b (that is, by cracking starting from the modified region 7b).
  • each block lb is cut into a plurality of semiconductor chips 25 along the planned cutting line 5c (that is, when cracks are generated starting from the modified region 7c).
  • the workpiece 1 is cut in stages into the plurality of semiconductor chips 25 because the modified region 7b is formed in the modified region 7b rather than the modified region 7c, and the modified region 7a is formed in the modified region 7b. This is because it is a modified region in which cracks are likely to occur.
  • the cutting from block la to block lb along the planned cutting line 5b is started before the cutting from workpiece 1 to block la along the planned cutting line 5a is completed. There is also. The same applies to the cutting along the planned cutting line 5c.
  • the workpiece 1 is cut into a plurality of semiconductor chips 25 in a stepwise manner as in the laser caching method of the first embodiment. It will be. As a result, a uniform tensile stress acts on the portion along each planned cutting line 5a-5c (that is, the portion that becomes the cut surface of the semiconductor chip 25). Line 5a scheduled to cut interlayer insulation film 17a, 17b on 5c 1. It can be cut along 5c with high accuracy. Therefore, the laser processing method of the second embodiment also uses the substrate 4 together with the substrate 4 when cutting the substrate 4 on which the laminated portion 16 including the plurality of functional elements 15 is formed into the plurality of semiconductor chips 25 having the functional elements 15. Enables high-precision cutting of the stack 16.
  • the laser processing method of the third embodiment differs from the laser processing method of the first embodiment in the manner of expanding the expanded tape 23.
  • a plurality of scheduled cutting lines 5a extending in a direction perpendicular to the orientation flat 6 are set so as to pass between the functional elements 15 and 15 with intervals corresponding to a plurality of rows of functional elements.
  • a plurality of cutting lines 5b extending in a direction parallel to the orientation flat 6 are set so as to pass between the functional elements 15 and 15 with an interval corresponding to a plurality of rows of functional elements.
  • a plurality of scheduled cutting lines 5c extending in a direction perpendicular to the orientation flat 6 are set so that the scheduled cutting line 5a is set and passes between the functional elements 15 and 15.
  • Set multiple cutting lines 5d that extend in the direction parallel to orientation flat 6 so as to pass between functional elements 15 and 15 that are not set.
  • a modified region 7a shown in FIG. 19 (a) is formed inside the substrate 4, and along the planned cutting line 5b, FIG. 19 (b)
  • the modified region 7b shown is formed inside the substrate 4.
  • a modified region 7c shown in FIG. 19 (c) is formed inside the substrate 4 along the planned cutting line 5c
  • a modified region shown in FIG. 19 (d) is formed along the planned cutting line 5d. 7d is formed inside the substrate 4.
  • each modified region 7a-7d As shown in FIG. 29, a rectangular expanding tape 23 is attached to the back surface 21 of the substrate 4 of the workpiece 1.
  • the expanded tape 23 is expanded in a direction parallel to the orientation flat 6, and cracks are generated along the line 5a to be cut (that is, starting from the modified region 7a).
  • the workpiece 1 is cut into a plurality of blocks la, and then the expanded tape 23 is expanded in a direction perpendicular to the orientation flat 6 as shown in FIG.
  • Each block la into multiple blocks lb along the line (that is, by cracking starting from the modified region 7b) Disconnect.
  • the expanded tape 23 is expanded in a direction parallel to the orientation flat 6, and cracks are generated along the planned cutting line 5c (that is, starting from the modified region 7c).
  • Each block lb is cut into a plurality of blocks lc, and then the expanded tape 23 is expanded in a direction perpendicular to the orientation flat 6 as shown in FIG. 31 (b).
  • Each block lc is cut into a plurality of semiconductor chips 25 along the line (that is, by generating a crack starting from the modified region 7d).
  • the pressing member having a curved upper surface around the direction perpendicular to the orientation flat 6 is raised and bent into each block lb. You can apply stress.
  • the pressing member having the upper surface curved around the direction parallel to the orientation flat 6 is lifted, and bending stress is applied to each block lc. May be applied.
  • FIG. 1 of JP-A-2002-184723 See, for example, FIG. 1 of JP-A-2002-184723.
  • the workpiece 1 is cut into a plurality of semiconductor chips 25 in a stepwise manner, similarly to the laser processing method of the first embodiment. become.
  • a uniform tensile stress is applied to the portion along each planned cutting line 5a—5d (that is, the portion that becomes the cut surface of the semiconductor chip 25).
  • the interlayer insulating films 17a and 17b on 5d can be accurately cut along the planned cutting lines 5a and 5d. Therefore, the laser processing method of the third embodiment also uses the substrate 4 together with the substrate 4 when cutting the substrate 4 on which the laminated portion 16 including the plurality of functional elements 15 is formed into the plurality of semiconductor chips 25 having the functional elements 15. Enables high-precision cutting of the stack 16.
  • the laser processing method of the fourth embodiment is different from the laser casing method of the first embodiment in how to form a modified region of the workpiece 1 on the substrate 4 and how to expand the expanded tape 23. .
  • the functional elements 15, 15 are spaced apart from each other by a plurality of rows of functional elements.
  • Set multiple scheduled cutting lines 5c extending in the direction.
  • a plurality of scheduled cutting lines 5b extending in a direction perpendicular to the orientation flat 6 are set so that the scheduled cutting line 5a is set and passes between the functional elements 15 and 15.
  • Set multiple cutting lines 5d that extend in the direction parallel to orientation flat 6 so as to pass between functional elements 15 and 15 that are not set.
  • the modified region 7a shown in FIG. 19 (a) is formed inside the substrate 4, and along the planned cutting line 5b, the modified region 7a is shown in FIG. 19 (b).
  • the modified region 7b shown is formed inside the substrate 4.
  • a modified region 7c shown in FIG. 19 (c) is formed inside the substrate 4 along the planned cutting line 5c
  • a modified region shown in FIG. 19 (d) is formed along the planned cutting line 5d. 7d is formed inside the substrate 4.
  • a rectangular expanded tape 23 is attached to the back surface 21 of the substrate 4 of the workpiece 1 and the expanded tape 23 is attached to the orientation tape 23. Extend in a direction parallel to Hula 6. Then, as shown in FIG. 34 (a), the workpiece 1 is cut into a plurality of blocks la along the planned cutting line 5a (that is, by cracking starting from the modified region 7a). Subsequently, as shown in FIG. 34 (b), each block la is cut into a plurality of blocks lb along the planned cutting line 5b (that is, when cracks are generated starting from the modified region 7b).
  • the workpiece 1 is cut in stages into a plurality of blocks lb because the modified region 7a is more likely to cause cracks in the substrate 4 than the modified region 7b. Because it is. Note that the cutting from the block la to the block lb along the planned cutting line 5b may be started before the cutting from the workpiece 1 to the block la along the planned cutting line 5a is completely completed. is there.
  • each block lb is cut into a plurality of blocks lc along the planned cutting line 5c (that is, by cracking starting from the modified region 7c).
  • Fig. 35 (b) cracks occur along the planned cutting line 5d (that is, starting from the modified region 7d).
  • each block lc is cut into a plurality of semiconductor chips 25.
  • each block lb is cut in stages into a plurality of semiconductor chips 25 because the modified region 7c is more likely to crack the substrate 4 than the modified region 7d. Because. Note that the cutting from the block lc to the semiconductor chip 25 along the planned cutting line 5d is started before the cutting to the block lb force along the planned cutting line 5c is completely finished. There is also.
  • the workpiece 1 is cut into a plurality of semiconductor chips 25 in a stepwise manner, similarly to the laser processing method of the first embodiment. become.
  • a uniform tensile stress is applied to the portion along each planned cutting line 5a—5d (that is, the portion that becomes the cut surface of the semiconductor chip 25).
  • the interlayer insulating films 17a and 17b on 5d can be accurately cut along the planned cutting lines 5a and 5d. Therefore, the laser processing method of the fourth embodiment also uses the substrate 4 together with the substrate 4 when cutting the substrate 4 on which the stacked portion 16 including the plurality of functional elements 15 is formed into the plurality of semiconductor chips 25 having the functional elements 15. Enables high-precision cutting of the stack 16.
  • the present invention is not limited to the first embodiment to the fourth embodiment described above.
  • multi-photon absorption is generated inside the substrate 4 to form the respective modified regions 7a-7d.
  • light equivalent to multi-photon absorption is formed inside the substrate 4.
  • each modified region 7a-7d can be formed by absorption.
  • the force is the case where the modified regions 7a and 7d are formed inside the substrate 4 using the back surface 21 of the substrate 4 as the laser light incident surface.
  • Each modified region 7a-7d may be formed inside the substrate 4 as an incident surface.
  • the use of the rear surface 21 of the substrate 4 as the laser light incident surface is particularly effective when a member (for example, TEG) that reflects the laser light L exists on the line 5 to be cut of the laminated portion 16.
  • TEG for example, TEG
  • the surface 3 of the substrate 4 is irradiated with the laser light.
  • Each modified region 7a-7d may be formed inside the substrate 4 as an incident surface.
  • the modified regions 7a-7d may be formed as follows.
  • the modified regions 7 b are formed in two rows inside the substrate 4.
  • the energy of the laser light L at the time of formation is large, so the size in the thickness direction of the substrate 4 is mainly large.
  • the substrate 4 whose size in the thickness direction of the substrate 4 is mainly small is difficult to crack.
  • one row of modified regions 7c is formed inside the substrate 4, and along the planned cutting line 5d, FIG. As shown in d), the modified region 7d is formed in one row inside the substrate 4.
  • the formation interval of the modified regions formed by irradiation with one pulse of laser light is 4 ⁇ m-7 ⁇ m, and cracks are likely to occur in the substrate 4.
  • the formation interval is 1 ⁇ or less, and it is difficult for the substrate 4 to crack.
  • the modified region 7b and the modified region 7c are mainly equal in size in the thickness direction of the substrate 4 because the energy of the laser beam L at the time of formation is the same.
  • the modified region 7c is more likely to crack the substrate 4 than the modified region 7d
  • the modified region 7b is more likely to be modified than the modified region 7c
  • the modified region 7a is more likely to be cracked than the modified region 7b. It becomes a quality area.
  • the modified region 7a is located at a position close to the back surface 21 in the substrate 4 (at a position where the back surface 21 reaches a crack).
  • one row of modified regions 7b is formed in the substrate 4 at a position farther away from the back surface 21 than the modified region 7a.
  • one row of modified regions 7c is formed in the substrate 4 at a position farther from the back surface 21 than the modified region 7b.
  • the inner surface of the substrate 4 is more distant from the rear surface 21 than the modified region 7c (to the central portion in the thickness direction of the substrate 4).
  • the quality region 7d is formed in one row.
  • the modified region 7c is more susceptible to cracking of the substrate 4 than the modified region 7d
  • the modified region 7b is more likely to be modified than the modified region 7c
  • the modified region 7a is more susceptible to cracking than the modified region 7b. It becomes a quality area.
  • the thickness of the substrate 4 is thin if the formation positions of the modified regions 7a-7d in one row in the thickness direction of the substrate 4 are changed to make the cracks easily generated on the substrate 4 from each other. This is especially useful in cases (for example, less than 100 xm).
  • any one of the formation conditions (1) and (7) shown in FIG. 38 and FIG. 39 is appropriately selected and the modified region 7 is formed under different formation conditions according to the cutting scheduled line 5, The ease with which the substrate 4 is cracked can be varied depending on the line 5 to be cut.
  • the formation conditions (1)-(7) are the conditions when the substrate 4 is made of silicon and the thickness is 300 ⁇ m.
  • HC (half-cut) modified region formed on the back surface 21 side of the substrate 4, and the formation causes a crack along the planned cutting line 5 on the back surface 21.
  • Dividing and reforming area Expansion of the expanded tape 23 causes the substrate 4 to mainly generate cracks along the line 5 to be cut.
  • Quality reforming region formed on the surface 3 side of the substrate 4, and by expanding the expanded tape 23, a crack is generated along the planned cutting line 5 in the laminated portion 16.
  • Time difference reforming region The time required to cut the workpiece 1 along the planned cutting line 5 after the expansion tape 23 starts to expand, formed between the split reforming region and the quality reforming region. Adjust.
  • the condensing point position means the distance from the back surface 21 at the position where the condensing point P of the laser beam L is aligned, and energy means each modified region. It means the energy of laser beam L when forming.
  • the remaining width means the distance (the distance along the thickness direction of the substrate 4) between the back surface side end portion of the opposing quality reforming region and the front surface side end portion of the time difference reforming region.
  • the end on the back surface side of the quality reforming region is the “average position in the thickness direction of the substrate 4” of the end on the back surface 21 side of the quality reforming region formed along the planned cutting line 5.
  • the surface side edge of the time difference modified region is the surface 3 of the time difference modified region formed along the planned cutting line 5.
  • the remaining width is the difference between the back surface side end of the opposing quality reforming region and the surface side end of the split reforming region. Distance.
  • the cutting time means the time required from the start of expansion of the expanded tape 23 to the cutting of the workpiece 1 along the planned cutting line 5.
  • the expanding tape 23 was expanded in the radial direction at a speed of 5 mm / s.
  • the present invention enables high-precision cutting of a laminated portion together with a substrate when a substrate on which a laminated portion including a plurality of functional elements is formed is cut into a plurality of chips having functional elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

 複数の機能素子を含む積層部が形成された基板を、機能素子を有する複数のチップに切断するに際し、基板と共に積層部の高精度な切断を可能にするレーザ加工方法を提供する。  このレーザ加工方法では、基板4に対する割れの発生させ易さが互いに異なる改質領域を各切断予定ライン5a~5dに沿って形成している。そのため、エキスパンドテープを基板4の裏面に貼り付けて拡張させると、加工対象物1は複数の半導体チップに段階的に切断されることになる。このような段階的な切断は、各切断予定ライン5a~5dに沿った部分に均等な引張応力を作用させ、その結果、基板4と共に切断予定ライン5a~5d上の層間絶縁膜が精度良く切断されることになる。

Description

明 細 書
レーザ加工方法及び加ェ対象物
技術分野
[0001] 本発明は、複数の機能素子を含む積層部が形成された基板を切断するために使 用されるレーザ加工方法、及び加工対象物に関する。
背景技術
[0002] 従来におけるこの種の技術として、下記の特許文献 1には次のようなレーザ加工方 法が記載されている。すなわち、平板状の加工対象物にその表面を保護する部材を 装着し、加工対象物の裏面をレーザ光入射面としてレーザ光を照射することで、切断 予定ラインに沿って加工対象物の内部に改質領域による切断起点領域を形成する。 続いて、加工対象物の裏面に伸張性のフィルムを装着し、その伸張性のフィルムを 伸張させることで、切断起点領域を起点として加工対象物が切断されて生じた複数 の部分を互いに分離する。
特許文献 1:特開 2004-1076号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、上述したようなレーザ加工方法により切断すべき加工対象物として、基板
(例えば、シリコン基板)と、複数の機能素子を含んで基板の表面に形成された積層 部(例えば、 low— K膜等の絶縁膜、 TEG、或いは金属材料等からなる導電膜)とを 具備するものがある。このような加工対象物を、機能素子を有する複数のチップに切 断しょうとする場合には、基板の内部に改質領域を形成し、その改質領域を切断起 点領域として、基板と共に積層部を切断することが好ましい。それは、積層部の内部 に改質領域を形成すると、積層部に含まれる機能素子に汚染や熱影響等の悪影響 を及ぼすおそれがあるからである。
[0004] 近時、複数の機能素子を含む積層部が形成された基板を、機能素子を有する複数 のチップに切断する技術が重要視されており、基板の内部に形成した改質領域を切 断起点領域として、基板と共に積層部をより高精度に切断する技術が望まれている。 [0005] そこで、本発明は、このような事情に鑑みてなされたものであり、複数の機能素子を 含む積層部が形成された基板を、機能素子を有する複数のチップに切断するに際し 、基板と共に積層部の高精度な切断を可能にするレーザ加工方法、及び加工対象 物を提供することを目的とする。
課題を解決するための手段
[0006] 上記目的を達成するために、本発明に係るレーザ加工方法は、複数の機能素子を 含む積層部が表面に形成された基板の内部に集光点を合わせてレーザ光を照射す ることで、基板の切断予定ラインに沿って、切断の起点となる改質領域を基板の内部 に形成するレーザ加工方法であって、基板及び積層部を複数のブロックに切断する ための第 1の切断予定ラインに沿って第 1の改質領域を形成する工程と、ブロックを、 機能素子を有する複数のチップに切断するための第 2の切断予定ラインに沿って第 2の改質領域を形成する工程とを含み、第 1の改質領域は、第 2の改質領域に比べ て基板に割れを発生させ易いものであることを特徴とする。
[0007] このレーザカ卩ェ方法においては、第 1の改質領域の方が第 2の改質領域よりも基板 に割れを発生させ易いものであるため、例えば、エキスパンドテープ(拡張可能フィル ム)を基板の裏面に貼り付けて拡張させると、第 1の改質領域を起点として基板及び 積層部からブロックへの切断が開始された後に、第 2の改質領域を起点としてブロッ クからチップへの切断が開始される。このように、大きなブロックから小さなチップへと 段階的に切断が開始されると、第 1及び第 2の切断予定ラインに沿った部分 (すなわ ち、チップの切断面となる部分)に均等な引張応力が作用することとなり、その結果、 基板と共に積層部を第 1及び第 2の切断予定ラインに沿って精度良く切断することが できる。従って、このレーザ加工方法は、複数の機能素子を含む積層部が形成され た基板を、機能素子を有する複数のチップに切断するに際し、基板と共に積層部の 高精度な切断を可能にする。なお、第 1の改質領域を形成する工程と第 2の改質領 域を形成する工程とは順不同である。また、第 1の改質領域及び第 2の改質領域は、 基板の内部に集光点を合わせてレーザ光を照射することで、多光子吸収或いはそれ と同等の光吸収を基板の内部で生じさせることにより形成される。
[0008] ここで、機能素子とは、例えば、結晶成長により形成された半導体動作層、フォトダ ィオード等の受光素子、レーザダイオード等の発光素子、回路として形成された回路 素子等を意味する。
[0009] また、上記レーザ加工方法は、第 1の改質領域及び第 2の改質領域が形成された 基板の裏面に拡張可能フィルムを取り付ける工程と、拡張可能フィルムを拡張させる ことで、第 1の改質領域を起点として基板及び積層部からブロックへの切断を開始さ せた後、第 2の改質領域を起点としてブロックからチップへの切断を開始させる工程 とを更に含むことが好ましい。上述したように、大きなブロックから小さなチップへと段 階的に切断が開始されると、第 1及び第 2の切断予定ラインに沿った部分に均等な引 張応力が作用することとなるため、基板と共に積層部を第 1及び第 2の切断予定ライ ンに沿って精度良く切断することができる。
[0010] また、上記レーザ加工方法においては、第 2の切断予定ラインは隣り合う第 1の切 断予定ラインの間を通っていることが好ましい。これにより、隣り合う第 1の切断予定ラ インに挟まれたブロックへの切断を開始させた後に、第 2の切断予定ラインに沿って 当該ブロックからチップへの切断を開始させることができる。
[0011] なお、上記レーザカ卩ェ方法においては、第 1の切断予定ラインと第 2の切断予定ラ インとは略平行であってもよいし、第 1の切断予定ラインと第 2の切断予定ラインとは 交差していてもよい。
[0012] また、上記レーザカ卩ェ方法においては、基板は半導体基板であり、第 1の改質領域 及び第 2の改質領域は溶融処理領域を含む場合がある。基板が半導体基板であると 、第 1の改質領域及び第 2の改質領域として、溶融処理領域を含む改質領域が形成 される場合がある。
[0013] また、上記レーザカ卩ェ方法においては、基板の第 1の切断予定ラインに沿った部分 における第 1の改質領域の形成密度と、基板の第 2の切断予定ラインに沿った部分 における第 2の改質領域の形成密度とを異ならせることで、第 1の改質領域を、第 2の 改質領域に比べて基板に割れを発生させ易いものにすることができる。具体的には 、例えば、切断予定ラインに沿って改質領域を形成する際のレーザ光がパルス波の 場合、 1パルスのレーザ光の照射により形成される改質領域の形成間隔を、第 1の切 断予定ラインに沿った部分と第 2の切断予定ラインに沿った部分とで異ならせればよ レ、。或いは、 1パルスのレーザ光の照射により形成される改質領域の形成間隔を同 等にした場合でも、第 1の切断予定ラインに沿った部分では第 1の改質領域を連続 的に形成するのに対し、第 2の切断予定ラインに沿った部分では第 2の改質領域を 断続的に形成すればよい。或いは、第 1の切断予定ラインに沿った部分における第 1 の改質領域の列数を、第 2の切断予定ラインに沿った部分における第 2の改質領域 の列数よりも多くすればょレ、。
[0014] ここで、基板の切断予定ラインに沿った部分における改質領域の形成密度とは、基 板の切断予定ラインに沿った部分に対して改質領域が占める割合を意味する。
[0015] また、上記レーザ加工方法においては、基板の第 1の切断予定ラインに沿った部分 における第 1の改質領域の大きさと、基板の第 2の切断予定ラインに沿った部分にお ける第 2の改質領域の大きさとを異ならせることで、第 1の改質領域を、第 2の改質領 域に比べて基板に割れを発生させ易いものにすることができる。具体的には、例えば 、第 1の切断予定ラインに沿って第 1の改質領域を形成する際にはレーザ光のエネ ルギーを大きくして、主に基板の厚さ方向における第 1の改質領域の大きさ大きくす るのに対し、第 2の切断予定ラインに沿って第 2の改質領域を形成する際にはレーザ 光のエネルギーを小さくして、主に基板の厚さ方向における第 2の改質領域の大きさ を小さくすればよい。
[0016] また、上記レーザカ卩ェ方法においては、基板の第 1の切断予定ラインに沿った部分 における第 1の改質領域の形成位置と、基板の第 2の切断予定ラインに沿った部分 における第 2の改質領域の形成位置とを異ならせることで、第 1の改質領域を、第 2の 改質領域に比べて基板に割れを発生させ易いものにすることができる。具体的には 、例えば、基板のレーザ光入射面から、切断予定ラインに沿った改質領域までの距 離を、第 1の切断予定ラインに沿った部分と第 2の切断予定ラインに沿った部分とで 異ならせればよい。
[0017] 更に、本発明に係る加工対象物は、基板と、複数の機能素子を含んで基板の表面 に形成された積層部とを具備する加工対象物であって、基板及び積層部を複数のブ ロックに切断するための第 1の切断予定ラインに沿って基板の内部に形成された第 1 の改質領域と、ブロックを、機能素子を有する複数のチップに切断するための第 2の 切断予定ラインに沿って基板の内部に形成された第 2の改質領域とを備え、第 1の改 質領域は、第 2の改質領域に比べて基板に割れを発生させ易いものであることを特 徴とする。
[0018] この加工対象物においては、第 1の改質領域の方が第 2の改質領域よりも基板に 割れを発生させ易いものであるため、例えば、エキスパンドテープを基板の裏面に貼 り付けて拡張させると、第 1の改質領域を起点として基板及び積層部からブロックへ の切断が開始された後に、第 2の改質領域を起点としてブロックからチップへの切断 が開始される。このように、大きなブロックから小さなチップへと段階的に切断が開始 されると、第 1及び第 2の切断予定ラインに沿った部分に均等な引張応力が作用する こととなるため、基板と共に積層部を第 1及び第 2の切断予定ラインに沿って精度良く 切断すること力 Sできる。
発明の効果
[0019] 本発明は、複数の機能素子を含む積層部が形成された基板を、機能素子を有する 複数のチップに切断するに際し、基板と共に積層部の高精度な切断を可能にする。 図面の簡単な説明
[0020] [図 1]本実施形態に係るレーザカ卩ェ方法によるレーザカ卩ェ中の加工対象物の平面図 である。
[図 2]図 1に示す加工対象物の II一 II線に沿っての断面図である。
[図 3]本実施形態に係るレーザカ卩ェ方法によるレーザカ卩ェ後の加工対象物の平面図 である。
[図 4]図 3に示す加工対象物の IV— IV線に沿っての断面図である。
[図 5]図 3に示す加工対象物の V— V線に沿っての断面図である。
[図 6]本実施形態に係るレーザ加工方法により切断された加工対象物の平面図であ る。
[図 7]本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさ との関係を示すグラフである。
[図 8]本実施形態に係るレーザカ卩ェ方法の第 1工程における加工対象物の断面図で ある。 園 9]本実施形態に係るレーザ加工方法の第 2工程における加工対象物の断面図で ある。
園 10]本実施形態に係るレーザカ卩ェ方法の第 3工程における加工対象物の断面図 である。
園 11]本実施形態に係るレーザカ卩ェ方法の第 4工程における加工対象物の断面図 である。
園 12]本実施形態に係るレーザカ卩ェ方法により切断されたシリコンウェハの一部にお ける断面の写真を表した図である。
園 13]本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の 内部の透過率との関係を示すグラフである。
園 14]第 1実施形態のレーザカ卩ェ方法における加工対象物の平面図である。
[図 15]図 14に示す加工対象物の XV— XV線に沿っての部分断面図である。
園 16]第 1実施形態のレーザカ卩ェ方法を説明するための図であり、 (a)は、加工対象 物に保護テープを貼り付けた状態、(b)は、加工対象物にレーザ光を照射している 状態である。
園 17]第 1実施形態のレーザカ卩ェ方法を説明するための図であり、 (a)は、加工対象 物にエキスパンドテープを貼り付けた状態、 (b)は、保護テープに紫外線を照射して いる状態である。
園 18]第 1実施形態のレーザカ卩ェ方法を説明するための図であり、 (a)は、加工対象 物から保護テープを剥がした状態、 (b)は、エキスパンドテープを拡張させた状態で ある。
園 19]第 1実施形態のレーザカ卩ェ方法において切断予定ラインに応じて改質領域を 形成した状態を示す断面図である。
園 20]第 1実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 1の平面図である。
園 21]第 1実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 2の平面図である。
園 22]第 1実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 3の平面図である。
[図 23]加工対象物の切断状態の写真を表した図であり、(a)は、加工対象物を複数 の半導体チップに段階的に切断しなかった場合、(b)は、加工対象物を複数の半導 体チップに段階的に切断した場合である。
園 24]半導体チップの切断状態の写真を表した図であり、 (a)は、加工対象物を複数 の半導体チップに段階的に切断しなかった場合、(b)は、加工対象物を複数の半導 体チップに段階的に切断した場合である。
園 25]第 2実施形態のレーザカ卩ェ方法における加工対象物の平面図である。
園 26]第 2実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 1の平面図である。
園 27]第 2実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 2の平面図である。
園 28]第 3実施形態のレーザカ卩ェ方法における加工対象物の平面図である。
園 29]第 3実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 1の平面図である。
園 30]第 3実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 2の平面図である。
園 31]第 3実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 3の平面図である。
園 32]第 4実施形態のレーザカ卩ェ方法における加工対象物の平面図である。
園 33]第 4実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 1の平面図である。
園 34]第 4実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 2の平面図である。
園 35]第 4実施形態のレーザカ卩ェ方法におけるエキスパンドテープの拡張工程を説 明するための第 3の平面図である。
園 36]第 1実施形態のレーザカ卩ェ方法の第 1変形例において切断予定ラインに応じ て改質領域を形成した状態を示す断面図である。 [図 37]第 1実施形態のレーザカ卩ェ方法の第 2変形例において切断予定ラインに応じ て改質領域を形成した状態を示す断面図である。
[図 38]基板に対する割れの発生させ易さを切断予定ラインに応じて異ならせるため の改質領域の形成条件を示す第 1の表である。
[図 39]基板に対する割れの発生させ易さを切断予定ラインに応じて異ならせるため の改質領域の形成条件を示す第 2の表である。
符号の説明
[0021] 1…カロェ対象物、 la, lb, lc…ブロック、 3…表面、 4…基板、 5, 5a, 5b, 5c, 5d …切断予定ライン、 7, 7a, 7b, 7c, 7d…改質領域、 8…切断起点領域、 13…溶融 処理領域、 15…機能素子、 16…積層部、 21…裏面、 23…エキスパンドテープ (拡 張可能フィルム)、 25…半導体チップ、 L…レーザ光、 P…集光点。
発明を実施するための最良の形態
[0022] 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。本実 施形態のレーザカ卩ェ方法では、加工対象物の内部に改質領域を形成するために多 光子吸収という現象を利用する。そこで、最初に、多光子吸収により改質領域を形成 するためのレーザ加工方法にっレ、て説明する。
[0023] 材料の吸収のバンドギャップ Eよりも光子のエネルギー 力 S小さいと光学的に透
G
明となる。よって、材料に吸収が生じる条件は >E である。しかし、光学的に透明
G
でも、レーザ光の強度を非常に大きくすると nh v >E の条件(n= 2
G , 3, 4, · · ·)で 材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強 度はレーザ光の集光点のピークパワー密度 (W/cm2)で決まり、例えばピークパヮ 一密度が 1 X 108 (W/cm2)以上の条件で多光子吸収が生じる。ピークパワー密度 は、(集光点におけるレーザ光の 1パルス当たりのエネルギー) ÷ (レーザ光のビーム スポット断面積 Xパルス幅)により求められる。また、連続波の場合、レーザ光の強度 はレーザ光の集光点の電界強度 (W/cm2)で決まる。
[0024] このような多光子吸収を利用する本実施形態に係るレーザカ卩ェ方法の原理につい て、図 1一図 6を参照して説明する。図 1に示すように、ウェハ状(平板状)の加工対象 物 1の表面 3には、加工対象物 1を切断するための切断予定ライン 5がある。切断予 定ライン 5は直線状に延びた仮想線である。本実施形態に係るレーザ加工方法では 、図 2に示すように、多光子吸収が生じる条件で加工対象物 1の内部に集光点 Pを合 わせてレーザ光 Lを照射して改質領域 7を形成する。なお、集光点 Pとは、レーザ光 L が集光する箇所のことである。また、切断予定ライン 5は、直線状に限らず曲線状で あってもよいし、仮想線に限らず加工対象物 1に実際に引かれた線であってもよい。
[0025] そして、レーザ光 Lを切断予定ライン 5に沿って (すなわち、図 1の矢印 A方向に)相 対的に移動させることにより、集光点 Pを切断予定ライン 5に沿って移動させる。これ により、図 3—図 5に示すように、改質領域 7が切断予定ライン 5に沿って加工対象物 1の内部に形成され、この改質領域 7が切断起点領域 8となる。ここで、切断起点領 域 8とは、加工対象物 1が切断される際に切断の起点となる領域を意味する。この切 断起点領域 8は、改質領域 7が連続的に形成されることで形成される場合もあるし、 改質領域 7が断続的に形成されることで形成される場合もある。
[0026] 本実施形態に係るレーザ加工方法は、加工対象物 1がレーザ光 Lを吸収することに より加工対象物 1を発熱させて改質領域 7を形成するものではない。加工対象物 1に レーザ光 Lを透過させ加工対象物 1の内部に多光子吸収を発生させて改質領域 7を 形成している。よって、加工対象物 1の表面 3ではレーザ光 Lがほとんど吸収されない ので、加工対象物 1の表面 3が溶融することはない。
[0027] 加工対象物 1の内部に切断起点領域 8を形成すると、この切断起点領域 8を起点と して割れが発生し易くなるため、図 6に示すように、比較的小さな力で加工対象物 1を 切断することができる。よって、加工対象物 1の表面 3に不必要な割れを発生させるこ とな 加工対象物 1を高精度に切断することが可能になる。
[0028] この切断起点領域 8を起点とした加工対象物 1の切断には、次の 2通りが考えられ る。 1つは、切断起点領域 8形成後、加工対象物 1に人為的な力が印加されることに より、切断起点領域 8を起点としてカ卩ェ対象物 1が割れ、加工対象物 1が切断される 場合である。これは、例えばカ卩ェ対象物 1の厚さが大きい場合の切断である。人為的 な力が印加されるとは、例えば、加工対象物 1の切断起点領域 8に沿って加工対象 物 1に曲げ応力やせん断応力を加えたり、加工対象物 1に温度差を与えることにより 熱応力を発生させたりすることである。他の 1つは、切断起点領域 8を形成することに より、切断起点領域 8を起点としてカ卩ェ対象物 1の断面方向(厚さ方向)に向かって自 然に割れ、結果的に加工対象物 1が切断される場合である。これは、例えば加工対 象物 1の厚さが小さい場合には、 1列の改質領域 7により切断起点領域 8が形成され ることで可能となり、加工対象物 1の厚さが大きい場合には、厚さ方向に複数列形成 された改質領域 7により切断起点領域 8が形成されることで可能となる。なお、この自 然に割れる場合も、切断する箇所において、切断起点領域 8が形成されていない部 位に対応する部分の表面 3上にまで割れが先走ることがなぐ切断起点領域 8を形成 した部位に対応する部分のみを割断することができるので、割断を制御よくすること ができる。近年、シリコンウェハ等の加工対象物 1の厚さは薄くなる傾向にあるので、 このような制御性のよい割断方法は大変有効である。
[0029] さて、本実施形態に係るレーザ加工方法において、多光子吸収により形成される改 質領域としては、次の(1)一 (3)の場合がある。
[0030] (1)改質領域が 1つ又は複数のクラックを含むクラック領域の場合
加工対象物(例えばガラスや LiTaO力 なる圧電材料)の内部に集光点を合わせ
3
て、集光点における電界強度が 1 X 108 (W/cm2)以上で且つノ レス幅が 1 μ s以下 の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつ つ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラッ ク領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収によ る光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱 ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界 強度の上限値としては、例えば 1 X 1012 (WZcm2)である。パルス幅は例えば Ins— 200nsが好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第 45回 レーザ熱カ卩ェ研究会論文集(1998年. 12月)の第 23頁一第 28頁の「固体レーザー 高調波によるガラス基板の内部マーキング」に記載されている。
[0031] 本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は 次ぎの通りである。
[0032] (A)加工対象物:パイレックス(登録商標)ガラス (厚さ 700 μ m)
(B)レーザ 光源:半導体レーザ励起 Nd: YAGレーザ
波長: 1064nm
レーザ光スポット断面積: 3. 14 X 10— 8cm2
発振形態: Qスィッチパルス
繰り返し周波数: 100kHz
ノ ノレス幅: 30ns
出力:出力く lmj/パルス
レーザ光品質: TEM
00
偏光特性:直線偏光
(C)集光用レンズ
レーザ光波長に対する透過率: 60パーセント
(D)加工対象物が載置される載置台の移動速度: 100mm/秒
[0033] なお、レーザ光品質が TEM とは、集光性が高くレーザ光の波長程度まで集光可
00
能を意味する。
[0034] 図 7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レー ザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は 1パ ルスのレーザ光により加工対象物の内部に形成されたクラック部分 (クラックスポット) の大きさを示している。クラックスポット力 S集まりクラック領域となる。クラックスポットの 大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ 中の黒丸で示すデータは集光用レンズ (C)の倍率が 100倍、開口数 (NA)が 0. 80 の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ (C)の倍率が 50 倍、開口数 (NA)が 0. 55の場合である。ピークパワー密度が lO^WZcm2)程度 力も加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに 従いクラックスポットも大きくなることが分かる。
[0035] 次に、クラック領域形成による加工対象物の切断のメカニズムについて、図 8—図 1 1を参照して説明する。図 8に示すように、多光子吸収が生じる条件で加工対象物 1 の内部に集光点 Pを合わせてレーザ光 Lを照射して切断予定ラインに沿って内部に クラック領域 9を形成する。クラック領域 9は 1つ又は複数のクラックを含む領域である 。このように形成されたクラック領域 9が切断起点領域となる。図 9に示すように、クラッ ク領域 9を起点として (すなわち、切断起点領域を起点として)クラックがさらに成長し 、図 10に示すように、クラックが加工対象物 1の表面 3と裏面 21とに到達し、図 11に 示すように、加工対象物 1が割れることにより加工対象物 1が切断される。加工対象物 1の表面 3と裏面 21とに到達するクラックは自然に成長する場合もあるし、加工対象 物 1に力が印加されることにより成長する場合もある。
[0036] (2)改質領域が溶融処理領域の場合
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集 光点における電界強度が 1 X 108 (W/cm2)以上で且つパルス幅が 1 μ s以下の条 件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所 的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。 溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融 状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域 ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造 において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、 単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化し た領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を 意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶 質シリコン構造である。電界強度の上限値としては、例えば 1 X 1012 (W/cm2)であ る。パルス幅は例えば Ins— 200nsが好ましい。
[0037] 本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により 確認した。実験条件は次の通りである。
[0038] (A)カ卩ェ対象物:シリコンウエノ、(厚さ 350 z m、外径 4インチ)
(B)レーザ
光源:半導体レーザ励起 Nd: YAGレーザ
波長: 1064nm
レーザ光スポット断面積: 3. 14 X 10— 8cm2
発振形態: Qスィッチパルス 繰り返し周波数: 100kHz
ノ ノレス幅: 30ns
出力: 20μ】Ζノ ルス
レーザ光品質: ΤΕΜ
00
偏光特性:直線偏光
(C)集光用レンズ
倍率: 50倍
Ν. Α. :0.55
レーザ光波長に対する透過率: 60パーセント
(D)加工対象物が載置される載置台の移動速度: 100mm/秒
[0039] 図 12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における 断面の写真を表した図である。シリコンウェハ 11の内部に溶融処理領域 13が形成さ れている。なお、上記条件により形成された溶融処理領域 13の厚さ方向の大きさは 1 00 μ m程度である。
[0040] 溶融処理領域 13が多光子吸収により形成されたことを説明する。図 13は、レーザ 光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコ ン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示し てレヽる。シリコン基板の厚さ t力 50 zm、 100 zm、 200 zm、 500 zm、 1000 xmの 各々について上記関係を示した。
[0041] 例えば、 Nd:YAGレーザの波長である 1064nmにおいて、シリコン基板の厚さが 5 00 II m以下の場合、シリコン基板の内部ではレーザ光が 80%以上透過することが分 かる。図 12に示すシリコンウェハ 11の厚さは 350 zmであるので、多光子吸収による 溶融処理領域 13はシリコンウェハ 11の中心付近、つまり表面から 175 zmの部分に 形成される。この場合の透過率は、厚さ 200 zmのシリコンウェハを参考にすると、 90 %以上なので、レーザ光がシリコンウェハ 11の内部で吸収されるのは僅かであり、ほ とんどが透過する。このことは、シリコンウェハ 11の内部でレーザ光が吸収されて、溶 融処理領域 13がシリコンウェハ 11の内部に形成(つまりレーザ光による通常の加熱 で溶融処理領域が形成)されたものではなぐ溶融処理領域 13が多光子吸収により 形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶 接学会全国大会講演概要第 66集(2000年 4月)の第 72頁一第 73頁の「ピコ秒パル スレーザによるシリコンの加工特性評価」に記載されてレ、る。
[0042] なお、シリコンウェハは、溶融処理領域によって形成される切断起点領域を起点と して断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面と に到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達する この割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより 成長する場合もある。そして、切断起点領域からシリコンウェハの表面と裏面とに割れ が自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融してレヽ る状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融 している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、ど ちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断 面には、図 12のように内部にのみ溶融処理領域が形成されている。このように、加工 対象物の内部に溶融処理領域によって切断起点領域を形成すると、割断時、切断 起点領域ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。
[0043] (3)改質領域が屈折率変化領域の場合
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強 度が 1 X 108 (W/cm2)以上で且つパルス幅が Ins以下の条件でレーザ光を照射す る。パルス幅を極めて短くして、多光子吸収をカ卩ェ対象物の内部に起こさせると、多 光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部には イオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率 変化領域が形成される。電界強度の上限値としては、例えば 1 X 1012 (WZcm2)で ある。ノ^レス幅は例えば Ins以下が好ましぐ lps以下がさらに好ましい。多光子吸収 による屈折率変化領域の形成は、例えば、第 42回レーザ熱加工研究会論文集(19 97年. 11月)の第 105頁一第 111頁の「フェムト秒レーザー照射によるガラス内部へ の光誘起構造形成」に記載されている。
[0044] 以上、多光子吸収により形成される改質領域として(1)一 (3)の場合を説明したが、 ウェハ状の加工対象物の結晶構造やその劈開性などを考慮して切断起点領域を次 のように形成すれば、その切断起点領域を起点として、より一層小さな力で、し力も精 度良く加工対象物を切断することが可能になる。
[0045] すなわち、シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場合は 、(111)面 (第 1劈開面)や(110)面 (第 2劈開面)に沿った方向に切断起点領域を 形成するのが好ましい。また、 GaAsなどの閃亜鉛鉱型構造の III一 V族化合物半導体 力 なる基板の場合は、 (110)面に沿った方向に切断起点領域を形成するのが好ま しい。さらに、サファイア (Al O )などの六方晶系の結晶構造を有する基板の場合は
2 3
、 (0001)面 (C面)を主面として(1120)面 (八面)或いは(1100)面 (M面)に沿った 方向に切断起点領域を形成するのが好ましい。
[0046] なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板にお ける(111)面に沿った方向)、或いは切断起点領域を形成すべき方向に直交する方 向に沿って基板にオリエンテーションフラットを形成すれば、そのオリエンテーション フラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域 を容易且つ正確に基板に形成することが可能になる。
[0047] [第 1実施形態]
次に、本発明の第 1実施形態について説明する。図 14は、第 1実施形態のレーザ 加工方法における加工対象物の平面図であり、図 15は、図 14に示す加工対象物の XV— XV線に沿っての部分断面図である。
[0048] 図 14及び図 15に示すように、加工対象物 1は、シリコンからなる基板 4と、複数の機 能素子 15を含んで基板 4の表面 3に形成された積層部 16とを備えている。機能素子 15は、基板 4の表面 3に積層された層間絶縁膜 17aと、層間絶縁膜 17a上に配置さ れた配線層 19aと、配線層 19aを覆うように層間絶縁膜 17a上に積層された層間絶 縁膜 17bと、層間絶縁膜 17b上に配置された配線層 19bとを有している。配線層 19a と基板 4とは、層間絶縁膜 17aを貫通する導電性プラグ 20aによって電気的に接続さ れ、配線層 19bと配線層 19aとは、層間絶縁膜 17bを貫通する導電性プラグ 20bによ つて電気的に接続されている。
[0049] なお、機能素子 15は、基板 4のオリエンテーションフラット (オリフラ) 6に平行な方向 及び垂直な方向にマトリックス状に多数形成されている力 層間絶縁膜 17a, 17bは 、基板 4の表面 3全体を覆うように隣り合う機能素子 15, 15間に渡って形成されてい る。
[0050] 以上のように構成されたカ卩ェ対象物 1を以下のようにして機能素子 15毎に切断す る。まず、図 16 (a)に示すように、積層部 16を覆うように加工対象物 1に保護テープ 2 2を貼り付ける。続いて、図 16 (b)に示すように、基板 4の裏面 21を上方に向けて加 ェ対象物 1をレーザ加工装置 60の載置台 61上に固定する。このとき、積層部 16が 載置台 61に直接接触することが保護テープ 22によって避けられるため、各機能素子 15を保護することができる。
[0051] そして、隣り合う機能素子 15, 15間を通るように切断予定ライン 5a, 5b, 5c, 5dを 格子状に設定する。より詳細には、図 14に示すように、機能素子複数列分の間隔を とって機能素子 15, 15間を通るようにオリフラ 6と垂直な方向に延在する切断予定ラ イン 5aを複数本設定し、機能素子複数列分の間隔をとつて機能素子 15, 15間を通 るようにオリフラ 6と平行な方向に延在する切断予定ライン 5bを複数本設定する。更 に、切断予定ライン 5aが設定されていない機能素子 15, 15間を通るようにオリフラ 6 と垂直な方向に延在する切断予定ライン 5cを複数本設定し、切断予定ライン 5bが設 定されてレ、なレ、機能素子 15, 15間を通るようにオリフラ 6と平行な方向に延在する切 断予定ライン 5dを複数本設定する。
[0052] このように切断予定ライン 5a— 5dを設定した後、図 16 (b)に示すように、基板 4の 裏面 21をレーザ光入射面として基板 4の内部に集光点 Pを合わせて、パルス波であ るレーザ光 Lを多光子吸収が生じる条件で照射しながら、載置台 61の移動により各 切断予定ライン 5a— 5dに沿って集光点 Pをスキャンする。なお、切断予定ライン 5aに 沿っての集光点 Pのスキャンは、集光点 Pを合わせる位置の裏面 21からの距離を変 えて 3回行い、切断予定ライン 5bに沿っての集光点 Pのスキャンは、集光点 Pを合わ せる位置の裏面 21からの距離を変えて 2回行う(切断予定ライン 5c, 5dに沿っての 集光点 Pのスキャンは 1回のみ行う)。
[0053] これにより、切断予定ライン 5aに沿っては、図 19 (a)に示すように改質領域 7aが基 板 4の内部に 3列形成され、切断予定ライン 5bに沿っては、図 19 (b)に示すように改 質領域 7bが基板 4の内部に 2列形成される。更に、切断予定ライン 5cに沿っては、 図 19 (c)に示すように改質領域 7cが基板 4の内部に 1列形成され、切断予定ライン 5 dに沿っては、図 19 (d)に示すように改質領域 7dが基板 4の内部に 1列形成される。 なお、基板 4はシリコンからなる半導体基板であるため、各改質領域 7a— 7dは溶融 処理領域である。
[0054] ところで、改質領域 7a— 7cは、 1パルスのレーザ光の照射により形成される改質領 域の形成間隔が 4 a m— 7 μ mであり、基板 4に割れを発生させ易いものとなっている のに対し、改質領域 7dは、当該形成間隔が l z m以下であり、基板 4に割れを発生さ せ難いものとなっている。また、改質領域 7a— 7cにおいては、 1パルスのレーザ光の 照射により形成される改質領域の形成間隔、及び改質領域の大きさは同じものの、 改質領域 7c、改質領域 7b、改質領域 7aの順に改質領域の列数が増加するため、改 質領域 7c、改質領域 7b、改質領域 7aの順に基板 4に割れを発生させ易いものとな つていく。以上により、改質領域 7dよりも改質領域 7cが、改質領域 7cよりも改質領域 7bが、改質領域 7bよりも改質領域 7aが基板 4に割れを発生させ易い改質領域となつ ている。
[0055] 各改質領域 7a— 7dを形成した後、図 17 (a)に示すように、加工対象物 1の基板 4 の裏面 21に、テープ貼付機(図示せず)を用いて、円形状のエキスパンドテープ (拡 張可能フィルム) 23を貼り付ける。このエキスパンドテープ 23は、その外周部分がリン グ状のテープ固定枠 24に貼り付けられて、このテープ固定枠 24に固定されている。
[0056] 続いて、図 17 (b)に示すように、基板 4の裏面 21にエキスパンドテープ 23が貼り付 けられた加工対象物 1をフィルム拡張装置 70に搬送し、テープ固定枠 24をリング状 の受け部材 71とリング状の押え部材 72とで挟持することで、加工対象物 1をフィルム 拡張装置 70に装着する。この状態で保護テープ 22に紫外線を照射して、その粘着 力を低下させ、図 18 (a)に示すように、加工対象物 1の積層部 16から保護テープ 22 を剥がす。
[0057] そして、図 18 (b)に示すように、受け部材 71の内側に配置された円柱状の押圧部 材 73をエキスパンドテープ 23の下側から上昇させ、エキスパンドテープ 23を拡張さ せていく。これにより、改質領域 7a— 7dを起点として割れを生じさせ、基板 4及び積 層部 16を切断予定ライン 5a— 5dに沿って切断し、機能素子 15を有する複数の半導 体チップ 25を得ると共に、切断により得られた各半導体チップ 25を互いに離間させ る。
[0058] ここで、エキスパンドテープ 23の拡張工程についてより詳細に説明する。図 20に示 すように、エキスパンドテープ 23が貼り付けられた加工対象物 1をフィルム拡張装置 7 0 (図示せず)に装着し、押圧部材 73 (図示せず)を上昇させて、エキスパンドテープ 23をその径方向に均等に拡張させていく。
[0059] すると、図 21 (a)に示すように、切断予定ライン 5aに沿って(つまり、改質領域 7aを 起点として割れが発生することで)加工対象物 1が複数のブロック laに切断され、続 いて、図 21 (b)に示すように、切断予定ライン 5bに沿って(つまり、改質領域 7bを起 点として割れが発生することで)各ブロック laが複数のブロック lbに切断される。更に 、図 22 (a)に示すように、切断予定ライン 5cに沿って(つまり、改質領域 7cを起点とし て割れが発生することで)各ブロック lbが複数のブロック l cに切断され、続いて、図 2 2 (b)に示すように、切断予定ライン 5dに沿って(つまり、改質領域 7dを起点として割 れが発生することで)各ブロック lcが複数の半導体チップ 25に切断される。
[0060] このように加工対象物 1が複数の半導体チップ 25に段階的に切断されるのは、改 質領域 7dよりも改質領域 7cが、改質領域 7cよりも改質領域 7bが、改質領域 7bよりも 改質領域 7aが基板 4に割れを発生させ易い改質領域となっているからである。なお、 切断予定ライン 5bに沿ってのブロック laからブロック lbへの切断は、切断予定ライン 5aに沿っての加工対象物 1からブロック laへの切断が完全に終了する前に開始され る場合もある。このことは、他の切断予定ライン 5c, 5dに沿っての切断についても同 様である。
[0061] 以上説明したように、第 1実施形態のレーザ加工方法においては、基板 4に対する 割れの発生させ易さが互いに異なる改質領域 7a— 7dを各切断予定ライン 5a— 5dに 沿って形成している。そのため、エキスパンドテープ 23を基板 4の裏面 21に貼り付け て拡張させると、加工対象物 1は複数の半導体チップ 25に段階的に切断されること になる。このような段階的な切断は、各切断予定ライン 5a— 5dに沿った部分 (すなわ ち、半導体チップ 25の切断面となる部分)に均等な引張応力を作用させ、その結果、 基板 4と共に切断予定ライン 5a— 5d上の層間絶縁膜 17a, 17bが切断予定ライン 5a 一 5dに沿って精度良く切断されることになる。従って、第 1実施形態のレーザ加工方 法は、複数の機能素子 15を含む積層部 16が形成された基板 4を、機能素子 15を有 する複数の半導体チップ 25に切断するに際し、基板 4と共に積層部 16の高精度な 切断を可能にする。
[0062] また、切断予定ライン 5a— 5d上の積層部 16の種類や積層数によっては、切断予 定ライン 5a— 5dに沿った部分に大きな引張応力を作用させないと、当該積層部 16 を精度良く切断することができない場合がある。これは、エキスパンドテープ 23の拡 張時に、切断予定ライン 5a— 5dに沿った部分に大きな引張応力を作用させ得る改 質領域 7a— 7d (すなわち、基板 4に割れを発生させ難い改質領域 7a— 7d)を形成 すべきことを意味する。
[0063] ところが、同等の形成条件で改質領域 7a— 7dを形成した場合、レ、くら基板 4に割れ を発生させ難い改質領域 7a— 7dを形成したとしても、基板 4と共に積層部 16を切断 予定ライン 5a— 5dに沿って精度良く切断することは困難である。これは、切断予定ラ イン 5a— 5dに沿った部分の全てに対して均等な引張応力を作用させるのは殆ど不 可能だからである。従って、基板 4と共に積層部 16を切断予定ライン 5a— 5dに沿つ て精度良く切断することは困難であり、しかも、基板 4に対する半導体チップ 25の相 対的な大きさが小さくなればなるほど、エキスパンドテープ 23の拡張による基板 4及 び積層部 16の切断及び分離が困難となり、切断されない部分が生じる場合もある。
[0064] し力 ながら、第 1実施形態のレーザカ卩ェ方法の使用によってカ卩ェ対象物 1を複数 の半導体チップ 25に段階的に切断すると、上述した問題を解決することができる。
[0065] すなわち、加工対象物 1やブロック laといった比較的大きなものを切断する場合に は、基板 4に割れを発生させ易い改質領域 7a, 7bを形成したとしても切断予定ライン 5a, 5b上の積層部 16を精度良く切断することができる。これは、切断予定ライン 5a, 5bに沿った部分の断面積が比較的大きい分、切断に要する引張応力が増加するた めと考えられる。また、切断すべき加工対象物 1やブロック laが比較的大きい分、ェ キスパンドテープ 23に貼り付く面積も大きくなり、その結果、引張応力が強く作用した 状態で加工対象物 1から複数のブロック laへの切断、及び各ブロック laから複数の ブロック lbへの切断が行われるためとも考えられる。 [0066] そして、切断し難い積層部 16が基板 4上に形成されている場合に、当該積層部 16 を精度良く切断すベぐ基板 4に割れを発生させ難い改質領域 7c, 7dを形成したとし ても、各ブロック lb力ら複数のブロック l cへの切断、及び各ブロック lcから複数の半 導体チップ 25への切断は精度良く行われることになる。これは、ブロック lbに対して はブロック lcの相対的な大きさが大きくなり、ブロック lcに対しては半導体チップ 25 の相対的な大きさが大きくなるため、切断予定ライン 5c, 5dに沿った部分に均等な § I張応力が作用し易いからである。
[0067] ここで、加工対象物 1を複数の半導体チップ 25に段階的に切断しなかった場合と、 段階的に切断した場合 (第 1実施形態のレーザ加工方法)とにおける加工対象物 1 及び半導体チップ 25の切断状態について見てみる。なお、段階的に切断しなかった 場合とは、切断予定ライン 5a— 5dに沿って同等の形成条件で改質領域 7を形成した 場合である。
[0068] まず、加工対象物 1の切断状態について見てみると、段階的に切断しなかった場合 には、図 23 (a)に示すように、加工対象物 1が半導体チップ 25に切断されない部分 が生じる場合があった。一方、段階的に切断した場合には、図 23 (b)に示すように、 加工対象物 1の全体が半導体チップ 25に確実に切断された。
[0069] 次に、半導体チップ 25の切断状態について見てみると、段階的に切断しなかった 場合には、図 24 (a)に示すように、半導体チップ 25において、膜剥がれが生じる等、 層間絶縁膜 17a, 17bが精度良く切断されない場合があった。一方、段階的に切断 した場合には、図 24 (b)に示すように、半導体チップ 25において、層間絶縁膜 17a, 17bが精度良く切断された。
[0070] [第 2実施形態]
次に、本発明の第 2実施形態について説明する。第 2実施形態のレーザ加工方法 は、加工対象物 1の基板 4に対する改質領域の形成の仕方において、第 1実施形態 のレーザ加工方法と異なっている。
[0071] すなわち、図 25に示すように、機能素子複数列分の間隔をとつて機能素子 15, 15 間を通るようにオリフラ 6と垂直な方向及び平行な方向に延在する切断予定ライン 5a を複数本設定する。更に、切断予定ライン 5aが設定されていない機能素子 15, 15 間を通るようにオリフラ 6と垂直な方向に延在する切断予定ライン 5bを複数本設定し 、切断予定ライン 5aが設定されていない機能素子 15, 15間を通るようにオリフラ 6と 平行な方向に延在する切断予定ライン 5cを複数本設定する。
[0072] そして、切断予定ライン 5aに沿っては、図 19 (a)に示す改質領域 7aを基板 4の内 部に形成する。更に、切断予定ライン 5bに沿っては、図 19 (b)に示す改質領域 7bを 基板 4の内部に形成し、切断予定ライン 5cに沿っては、図 19 (c)に示す改質領域 7c を基板 4の内部に形成する。
[0073] 各改質領域 7a— 7cを形成した後、図 26 (a)に示すように、エキスパンドテープ 23 が貼り付けられた加工対象物 1をフィルム拡張装置 70 (図示せず)に装着し、押圧部 材 73 (図示せず)を上昇させて、エキスパンドテープ 23をその径方向に均等に拡張 させていく。
[0074] すると、図 26 (b)に示すように、切断予定ライン 5aに沿って(つまり、改質領域 7aを 起点として割れが発生することで)加工対象物 1が複数のブロック laに切断される。 更に、図 27 (a)に示すように、切断予定ライン 5bに沿って(つまり、改質領域 7bを起 点として割れが発生することで)各ブロック laが複数のブロック lbに切断され、続いて 、図 27 (b)に示すように、切断予定ライン 5cに沿って(つまり、改質領域 7cを起点とし て割れが発生することで)各ブロック lbが複数の半導体チップ 25に切断される。
[0075] このように加工対象物 1が複数の半導体チップ 25に段階的に切断されるのは、改 質領域 7cよりも改質領域 7bが、改質領域 7bよりも改質領域 7aが基板 4に割れを発 生させ易い改質領域となっているからである。なお、切断予定ライン 5bに沿ってのブ ロック laからブロック lbへの切断は、切断予定ライン 5aに沿っての加工対象物 1から ブロック laへの切断が完全に終了する前に開始される場合もある。このことは、切断 予定ライン 5cに沿っての切断についても同様である。
[0076] 以上説明したように、第 2実施形態のレーザ加工方法においても、第 1実施形態の レーザカ卩ェ方法と同様に、加工対象物 1は複数の半導体チップ 25に段階的に切断 されることになる。これにより、各切断予定ライン 5a— 5cに沿った部分 (すなわち、半 導体チップ 25の切断面となる部分)には均等な引張応力が作用することとなるため、 基板 4と共に切断予定ライン 5a— 5c上の層間絶縁膜 17a, 17bを切断予定ライン 5a 一 5cに沿って精度良く切断することができる。従って、第 2実施形態のレーザ加工方 法も、複数の機能素子 15を含む積層部 16が形成された基板 4を、機能素子 15を有 する複数の半導体チップ 25に切断するに際し、基板 4と共に積層部 16の高精度な 切断を可能にする。
[0077] [第 3実施形態]
次に、本発明の第 3実施形態について説明する。第 3実施形態のレーザ加工方法 は、エキスパンドテープ 23の拡張の仕方において、第 1実施形態のレーザ加工方法 と異なっている。
[0078] すなわち、図 28に示すように、機能素子複数列分の間隔をとつて機能素子 15, 15 間を通るようにオリフラ 6と垂直な方向に延在する切断予定ライン 5aを複数本設定し 、機能素子複数列分の間隔をとつて機能素子 15, 15間を通るようにオリフラ 6と平行 な方向に延在する切断予定ライン 5bを複数本設定する。更に、切断予定ライン 5aが 設定されてレ、なレ、機能素子 15, 15間を通るようにオリフラ 6と垂直な方向に延在する 切断予定ライン 5cを複数本設定し、切断予定ライン 5bが設定されていない機能素子 15, 15間を通るようにオリフラ 6と平行な方向に延在する切断予定ライン 5dを複数本 設定する。
[0079] そして、切断予定ライン 5aに沿っては、図 19 (a)に示す改質領域 7aを基板 4の内 部に形成し、切断予定ライン 5bに沿っては、図 19 (b)に示す改質領域 7bを基板 4の 内部に形成する。更に、切断予定ライン 5cに沿っては、図 19 (c)に示す改質領域 7c を基板 4の内部に形成し、切断予定ライン 5dに沿っては、図 19 (d)に示す改質領域 7dを基板 4の内部に形成する。
[0080] 各改質領域 7a— 7dを形成した後、図 29に示すように、加工対象物 1の基板 4の裏 面 21に矩形状のエキスパンドテープ 23を貼り付ける。そして、まず、図 30 (a)に示す ように、エキスパンドテープ 23をオリフラ 6と平行な方向に拡張させて、切断予定ライ ン 5aに沿って(つまり、改質領域 7aを起点として割れを発生させることで)加工対象 物 1を複数のブロック laに切断し、続いて、図 30 (b)に示すように、エキスパンドテー プ 23をオリフラ 6と垂直な方向に拡張させて、切断予定ライン 5bに沿って(つまり、改 質領域 7bを起点として割れを発生させることで)各ブロック laを複数のブロック lbに 切断する。
[0081] 更に、図 31 (a)に示すように、エキスパンドテープ 23をオリフラ 6と平行な方向に拡 張させて、切断予定ライン 5cに沿って(つまり、改質領域 7cを起点として割れを発生 させることで)各ブロック lbを複数のブロック lcに切断し、続いて、図 31 (b)に示すよ うに、エキスパンドテープ 23をオリフラ 6と垂直な方向に拡張させて、切断予定ライン 5dに沿って(つまり、改質領域 7dを起点として割れを発生させることで)各ブロック lc を複数の半導体チップ 25に切断する。
[0082] なお、エキスパンドテープ 23のオリフラ 6と平行な方向への 2回目の拡張において は、オリフラ 6と垂直な方向を中心として湾曲した上面を有する押圧部材を上昇させ て、各ブロック lbに曲げ応力を作用させてもよレ、。また、エキスパンドテープ 23のオリ フラ 6と垂直な方向への 2回目の拡張においては、オリフラ 6と平行な方向を中心とし て湾曲した上面を有する押圧部材を上昇させて、各ブロック lcに曲げ応力を作用さ せてもよい。このような押圧部材については、例えば、特開 2002— 184723号公報の 図 1を参照されたい。
[0083] 以上説明したように、第 3実施形態のレーザ加工方法においても、第 1実施形態の レーザ加工方法と同様に、加工対象物 1は複数の半導体チップ 25に段階的に切断 されることになる。これにより、各切断予定ライン 5a— 5dに沿った部分 (すなわち、半 導体チップ 25の切断面となる部分)には均等な引張応力が作用することとなるため、 基板 4と共に切断予定ライン 5a— 5d上の層間絶縁膜 17a, 17bを切断予定ライン 5a 一 5dに沿って精度良く切断することができる。従って、第 3実施形態のレーザ加工方 法も、複数の機能素子 15を含む積層部 16が形成された基板 4を、機能素子 15を有 する複数の半導体チップ 25に切断するに際し、基板 4と共に積層部 16の高精度な 切断を可能にする。
[0084] [第 4実施形態]
次に、本発明の第 4実施形態について説明する。第 4実施形態のレーザ加工方法 は、加工対象物 1の基板 4に対する改質領域の形成の仕方、及びエキスパンドテー プ 23の拡張の仕方において、第 1実施形態のレーザカ卩ェ方法と異なっている。
[0085] すなわち、図 32に示すように、機能素子複数列分の間隔をとつて機能素子 15, 15 間を通るようにオリフラ 6と垂直な方向に延在する切断予定ライン 5aを複数本設定し 、機能素子複数列分の間隔をとつて機能素子 15, 15間を通るようにオリフラ 6と平行 な方向に延在する切断予定ライン 5cを複数本設定する。更に、切断予定ライン 5aが 設定されてレ、なレ、機能素子 15, 15間を通るようにオリフラ 6と垂直な方向に延在する 切断予定ライン 5bを複数本設定し、切断予定ライン 5cが設定されていない機能素子 15, 15間を通るようにオリフラ 6と平行な方向に延在する切断予定ライン 5dを複数本 設定する。
[0086] そして、切断予定ライン 5aに沿っては、図 19 (a)に示す改質領域 7aを基板 4の内 部に形成し、切断予定ライン 5bに沿っては、図 19 (b)に示す改質領域 7bを基板 4の 内部に形成する。更に、切断予定ライン 5cに沿っては、図 19 (c)に示す改質領域 7c を基板 4の内部に形成し、切断予定ライン 5dに沿っては、図 19 (d)に示す改質領域 7dを基板 4の内部に形成する。
[0087] 各改質領域 7a— 7dを形成した後、図 33に示すように、加工対象物 1の基板 4の裏 面 21に矩形状のエキスパンドテープ 23を貼り付け、このエキスパンドテープ 23をオリ フラ 6と平行な方向に拡張させる。すると、図 34 (a)に示すように、切断予定ライン 5a に沿って(つまり、改質領域 7aを起点として割れが発生することで)加工対象物 1が複 数のブロック laに切断され、続いて、図 34 (b)に示すように、切断予定ライン 5bに沿 つて(つまり、改質領域 7bを起点として割れが発生することで)各ブロック laが複数の ブロック lbに切断される。
[0088] このように加工対象物 1が複数のブロック lbに段階的に切断されるのは、改質領域 7bよりも改質領域 7aが基板 4に割れを発生させ易い改質領域となっているからであ る。なお、切断予定ライン 5bに沿ってのブロック laからブロック lbへの切断は、切断 予定ライン 5aに沿っての加工対象物 1からブロック laへの切断が完全に終了する前 に開始される場合もある。
[0089] 次に、エキスパンドテープ 23をオリフラ 6と垂直な方向に拡張させる。すると、図 35 ( a)に示すように、切断予定ライン 5cに沿って(つまり、改質領域 7cを起点として割れ が発生することで)各ブロック lbが複数のブロック lcに切断され、続いて、図 35 (b)に 示すように、切断予定ライン 5dに沿って(つまり、改質領域 7dを起点として割れが発 生することで)各ブロック lcが複数の半導体チップ 25に切断される。
[0090] このように各ブロック lbが複数の半導体チップ 25に段階的に切断されるのは、改質 領域 7dよりも改質領域 7cが基板 4に割れを発生させ易い改質領域となっているから である。なお、切断予定ライン 5dに沿ってのブロック lcから半導体チップ 25への切 断は、切断予定ライン 5cに沿ってのブロック lb力 ブロック lcへの切断が完全に終 了する前に開始される場合もある。
[0091] 以上説明したように、第 4実施形態のレーザ加工方法においても、第 1実施形態の レーザ加工方法と同様に、加工対象物 1は複数の半導体チップ 25に段階的に切断 されることになる。これにより、各切断予定ライン 5a— 5dに沿った部分 (すなわち、半 導体チップ 25の切断面となる部分)には均等な引張応力が作用することとなるため、 基板 4と共に切断予定ライン 5a— 5d上の層間絶縁膜 17a, 17bを切断予定ライン 5a 一 5dに沿って精度良く切断することができる。従って、第 4実施形態のレーザ加工方 法も、複数の機能素子 15を含む積層部 16が形成された基板 4を、機能素子 15を有 する複数の半導体チップ 25に切断するに際し、基板 4と共に積層部 16の高精度な 切断を可能にする。
[0092] 本発明は、上述した第 1実施形態一第 4実施形態に限定されるものではない。例え ば、上記各実施形態は、基板 4の内部で多光子吸収を生じさせて各改質領域 7a— 7 dを形成する場合であつたが、基板 4の内部で多光子吸収と同等の光吸収を生じさ せて各改質領域 7a— 7dを形成することができる場合もある。
[0093] また、上記各実施形態は、基板 4の裏面 21をレーザ光入射面として各改質領域 7a 一 7dを基板 4の内部に形成する場合であった力 基板 4の表面 3をレーザ光入射面 として各改質領域 7a— 7dを基板 4の内部に形成してもよい。基板 4の裏面 21をレー ザ光入射面とするのは、積層部 16の切断予定ライン 5上にレーザ光 Lを反射する部 材 (例えば、 TEG)が存在する場合に特に有効である。し力しながら、積層部 16の切 断予定ライン 5上にレーザ光 Lを反射する部材が存在せず、レーザ光 Lが積層部 16 を透過する場合には、基板 4の表面 3をレーザ光入射面として各改質領域 7a— 7dを 基板 4の内部に形成してもよい。
[0094] また、例えば第 1実施形態において、基板 4に対する割れの発生させ易さが互いに 異なる改質領域 7a— 7dを各切断予定ライン 5a— 5dに沿って形成するために、次の ように各改質領域 7a— 7dを形成してもよレ、。
[0095] すなわち、切断予定ライン 5aに沿っては、図 36 (a)に示すように改質領域 7aを基 板 4の内部に 2列形成し、切断予定ライン 5bに沿っては、図 36 (b)に示すように改質 領域 7bを基板 4の内部に 2列形成する。ただし、改質領域 7aは、その形成時のレー ザ光 Lのエネルギーが大きいため、主に基板 4の厚さ方向における大きさが大きぐ 基板 4に割れを発生させ易いものとなっているのに対し、改質領域 7bは、その形成 時のレーザ光 Lのエネルギーが小さいため、主に基板 4の厚さ方向における大きさが 小さぐ基板 4に割れを発生させ難いものとなっている
[0096] そして、切断予定ライン 5cに沿っては、図 36 (c)に示すように改質領域 7cを基板 4 の内部に 1列形成し、切断予定ライン 5dに沿っては、図 36 (d)に示すように改質領 域 7dを基板 4の内部に 1列形成する。ただし、改質領域 7a— 7cは、 1パルスのレー ザ光の照射により形成される改質領域の形成間隔が 4 μ m— 7 μ mであり、基板 4に 割れを発生させ易いものとなっているのに対し、改質領域 7dは、当該形成間隔が 1 μ ηι以下であり、基板 4に割れを発生させ難いものとなっている。なお、改質領域 7b と改質領域 7cとについては、それらの形成時のレーザ光 Lのエネルギーが同等であ るため、主に基板 4の厚さ方向における大きさは同等となっている。
[0097] 以上により、改質領域 7dよりも改質領域 7cが、改質領域 7cよりも改質領域 7bが、 改質領域 7bよりも改質領域 7aが基板 4に割れを発生させ易い改質領域となる。
[0098] また、切断予定ライン 5aに沿っては、図 37 (a)に示すように基板 4の内部において 裏面 21に近い位置に (裏面 21に割れが達するような位置に)改質領域 7aを 1列形成 し、切断予定ライン 5bに沿っては、図 37 (b)に示すように基板 4の内部において改質 領域 7aに比べて裏面 21から離れた位置に改質領域 7bを 1列形成する。そして、切 断予定ライン 5cに沿っては、図 37 (c)に示すように基板 4の内部において改質領域 7bに比べて裏面 21から離れた位置に改質領域 7cを 1列形成し、切断予定ライン 5d に沿っては、図 37 (d)に示すように基板 4の内部において改質領域 7cに比べて裏面 21から離れた位置に(基板 4の厚さ方向における中央部分に)改質領域 7dを 1列形 成する。 [0099] これにより、改質領域 7dよりも改質領域 7cが、改質領域 7cよりも改質領域 7bが、改 質領域 7bよりも改質領域 7aが基板 4に割れを発生させ易い改質領域となる。このよう に、基板 4の厚さ方向における 1列の改質領域 7a— 7dの形成位置を変えて、基板 4 に対する割れの発生させ易さを互いに異ならせるのは、基板 4の厚さが薄い場合 (例 えば、 100 x m以下の場合)に特に有効である。
[0100] また、図 38及び図 39に示す形成条件(1)一(7)のいずれかを適宜選択し、切断予 定ライン 5に応じて異なる形成条件で改質領域 7を形成すれば、基板 4に対する割れ の発生させ易さを切断予定ライン 5に応じて異ならせることができる。なお、形成条件 (1)一 (7)は、基板 4がシリコンからなり、その厚さが 300 μ mであるときの条件である
[0101] 図 38及び図 39における各改質領域の作用は以下の通りである。
HC (ハーフカット)改質領域:基板 4の裏面 21側に形成され、その形成により裏面 2 1に切断予定ライン 5に沿った割れを発生させる。
分断改質領域:エキスパンドテープ 23の拡張により基板 4に切断予定ライン 5に沿 つた割れをメインとなって発生させる。
品質改質領域:基板 4の表面 3側に形成され、エキスパンドテープ 23の拡張により 積層部 16に切断予定ライン 5に沿った割れを発生させる。
時間差改質領域:分断改質領域と品質改質領域との間に形成され、エキスパンド テープ 23の拡張が開始されてから切断予定ライン 5に沿って加工対象物 1が切断さ れるまでに要する時間を調整する。
[0102] なお、図 38及び図 39において、集光点位置とは、レーザ光 Lの集光点 Pを合わせ る位置の裏面 21からの距離を意味し、エネルギーとは、各改質領域を形成する際の レーザ光 Lのエネルギーを意味する。
[0103] 更に、残り幅とは、対向する品質改質領域の裏面側端部と時間差改質領域の表面 側端部との距離 (基板 4の厚さ方向に沿っての距離)を意味する。ここで、品質改質 領域の裏面側端部とは、切断予定ライン 5に沿って形成された品質改質領域の裏面 21側の端部の「基板 4の厚さ方向における平均的位置」を意味し、時間差改質領域 の表面側端部とは、切断予定ライン 5に沿って形成された時間差改質領域の表面 3 側の端部の「基板 4の厚さ方向における平均的位置」を意味する。なお、形成条件(1 ), (7)では、時間差改質領域が形成されないため、残り幅は、対向する品質改質領 域の裏面側端部と分断改質領域の表面側端部との距離である。
[0104] また、切断時間とは、エキスパンドテープ 23の拡張が開始されてから切断予定ライ ン 5に沿って加工対象物 1が切断されるまでに要する時間を意味する。ここでは、 5m m/sの速度でエキスパンドテープ 23を径方向に拡張させた。
産業上の利用可能性
[0105] 本発明は、複数の機能素子を含む積層部が形成された基板を、機能素子を有する 複数のチップに切断するに際し、基板と共に積層部の高精度な切断を可能にする。

Claims

請求の範囲
[1] 複数の機能素子を含む積層部が表面に形成された基板の内部に集光点を合わせ てレーザ光を照射することで、前記基板の切断予定ラインに沿って、切断の起点とな る改質領域を前記基板の内部に形成するレーザ加工方法であって、
前記基板及び前記積層部を複数のブロックに切断するための第 1の切断予定ライ ンに沿って第 1の改質領域を形成する工程と、
前記ブロックを、前記機能素子を有する複数のチップに切断するための第 2の切断 予定ラインに沿って第 2の改質領域を形成する工程とを含み、
前記第 1の改質領域は、前記第 2の改質領域に比べて前記基板に割れを発生させ 易いものであることを特徴とするレーザ加工方法。
[2] 前記第 1の改質領域及び前記第 2の改質領域が形成された前記基板の裏面に拡 張可能フィルムを取り付ける工程と、
前記拡張可能フィルムを拡張させることで、前記第 1の改質領域を起点として前記 基板及び前記積層部から前記ブロックへの切断を開始させた後、前記第 2の改質領 域を起点として前記ブロックから前記チップへの切断を開始させる工程とを更に含む ことを特徴とする請求項 1記載のレーザ加工方法。
[3] 前記第 2の切断予定ラインは隣り合う前記第 1の切断予定ラインの間を通っているこ とを特徴とする請求項 1又は 2記載のレーザ加工方法。
[4] 前記第 1の切断予定ラインと前記第 2の切断予定ラインとは略平行であることを特徴 とする請求項 1又は 2記載のレーザカ卩ェ方法。
[5] 前記第 1の切断予定ラインと前記第 2の切断予定ラインとは交差していることを特徴 とする請求項 1又は 2記載のレーザカ卩ェ方法。
[6] 前記基板は半導体基板であり、前記第 1の改質領域及び前記第 2の改質領域は溶 融処理領域を含むことを特徴とする請求項 1一 5のいずれか一項記載のレーザカロェ 方法。
[7] 前記基板の前記第 1の切断予定ラインに沿った部分における前記第 1の改質領域 の形成密度と、前記基板の前記第 2の切断予定ラインに沿った部分における前記第 2の改質領域の形成密度とを異ならせることで、前記第 1の改質領域を、前記第 2の 改質領域に比べて前記基板に割れを発生させ易いものにすることを特徴とする請求 項 1一 6のいずれか一項記載のレーザ加工方法。
[8] 前記基板の前記第 1の切断予定ラインに沿った部分における前記第 1の改質領域 の大きさと、前記基板の前記第 2の切断予定ラインに沿った部分における前記第 2の 改質領域の大きさとを異ならせることで、前記第 1の改質領域を、前記第 2の改質領 域に比べて前記基板に割れを発生させ易いものにすることを特徴とする請求項 1一 7 のいずれか一項記載のレーザ加工方法。
[9] 前記基板の前記第 1の切断予定ラインに沿った部分における前記第 1の改質領域 の形成位置と、前記基板の前記第 2の切断予定ラインに沿った部分における前記第
2の改質領域の形成位置とを異ならせることで、前記第 1の改質領域を、前記第 2の 改質領域に比べて前記基板に割れを発生させ易いものにすることを特徴とする請求 項 1一 8のいずれか一項記載のレーザ加工方法。
[10] 基板と、複数の機能素子を含んで前記基板の表面に形成された積層部とを具備す る加工対象物であって、
前記基板及び前記積層部を複数のブロックに切断するための第 1の切断予定ライ ンに沿って前記基板の内部に形成された第 1の改質領域と、
前記ブロックを、前記機能素子を有する複数のチップに切断するための第 2の切断 予定ラインに沿って前記基板の内部に形成された第 2の改質領域とを備え、 前記第 1の改質領域は、前記第 2の改質領域に比べて前記基板に割れを発生させ 易いものであることを特徴とする加工対象物。
PCT/JP2005/003515 2004-03-30 2005-03-02 レーザ加工方法及び加工対象物 WO2005098914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05719830A EP1742252B1 (en) 2004-03-30 2005-03-02 Laser processing method
US10/594,892 US7592237B2 (en) 2004-03-30 2005-03-02 Laser processing method and object to be processed
KR1020067022482A KR101283228B1 (ko) 2004-03-30 2005-03-02 레이저 가공 방법 및 가공 대상물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004100516A JP4536407B2 (ja) 2004-03-30 2004-03-30 レーザ加工方法及び加工対象物
JP2004-100516 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005098914A1 true WO2005098914A1 (ja) 2005-10-20

Family

ID=35125352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003515 WO2005098914A1 (ja) 2004-03-30 2005-03-02 レーザ加工方法及び加工対象物

Country Status (8)

Country Link
US (1) US7592237B2 (ja)
EP (1) EP1742252B1 (ja)
JP (1) JP4536407B2 (ja)
KR (1) KR101283228B1 (ja)
CN (1) CN100466185C (ja)
MY (1) MY165400A (ja)
TW (1) TWI344403B (ja)
WO (1) WO2005098914A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142114A (ja) * 2005-11-17 2007-06-07 Denso Corp レーザダイシング方法およびレーザダイシング装置
JP2007165848A (ja) * 2005-11-16 2007-06-28 Denso Corp 半導体チップの製造方法
JP2008087026A (ja) * 2006-10-02 2008-04-17 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
US7754583B2 (en) 2005-11-18 2010-07-13 Hamamatsu Photonics K.K. Laser processing method
JP2012004321A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
JP2012004316A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
JP2012004315A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
ATE493226T1 (de) 2002-03-12 2011-01-15 Hamamatsu Photonics Kk Verfahren zum schneiden eines bearbeiteten objekts
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
DE60315515T2 (de) 2003-03-12 2007-12-13 Hamamatsu Photonics K.K., Hamamatsu Laserstrahlbearbeitungsverfahren
ES2523432T3 (es) * 2003-07-18 2014-11-25 Hamamatsu Photonics K.K. Chip semiconductor cortado
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP4598407B2 (ja) * 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
KR101336523B1 (ko) 2004-03-30 2013-12-03 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 반도체 칩
JP4536407B2 (ja) 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
JP4694795B2 (ja) * 2004-05-18 2011-06-08 株式会社ディスコ ウエーハの分割方法
CN100548564C (zh) * 2004-08-06 2009-10-14 浜松光子学株式会社 激光加工方法及半导体装置
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
WO2007055010A1 (ja) 2005-11-10 2007-05-18 Renesas Technology Corp. 半導体装置の製造方法および半導体装置
JP2013080972A (ja) * 2005-11-10 2013-05-02 Renesas Electronics Corp 半導体装置の製造方法
JP2007165850A (ja) * 2005-11-16 2007-06-28 Denso Corp ウェハおよびウェハの分断方法
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) * 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP4767711B2 (ja) * 2006-02-16 2011-09-07 株式会社ディスコ ウエーハの分割方法
JP5183892B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
EP1875983B1 (en) 2006-07-03 2013-09-11 Hamamatsu Photonics K.K. Laser processing method and chip
JP4954653B2 (ja) 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
EP2065120B1 (en) * 2006-09-19 2015-07-01 Hamamatsu Photonics K.K. Laser processing method
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
KR101428824B1 (ko) * 2006-10-04 2014-08-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공방법
DE102007033242A1 (de) * 2007-07-12 2009-01-15 Jenoptik Automatisierungstechnik Gmbh Verfahren und Vorrichtung zum Trennen einer Planplatte aus sprödbrüchigem Material in mehrere Einzelplatten mittels Laser
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP4402708B2 (ja) 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
US7951688B2 (en) * 2007-10-01 2011-05-31 Fairchild Semiconductor Corporation Method and structure for dividing a substrate into individual devices
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
KR100993088B1 (ko) * 2008-07-22 2010-11-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
TW201007830A (en) * 2008-08-15 2010-02-16 Zen Voce Corp Jump-cut method for arrayed workpiece
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
KR101009653B1 (ko) * 2008-10-24 2011-01-19 주식회사 에피밸리 3족 질화물 반도체 발광소자
US20100102352A1 (en) * 2008-10-24 2010-04-29 Epivalley Co., Ltd. III-Nitride Semiconductor Light Emitting Device
JP5254761B2 (ja) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
JP5241527B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5426885B2 (ja) * 2009-01-16 2014-02-26 オリンパスメディカルシステムズ株式会社 半導体装置、半導体装置の製造方法、半導体装置の製造装置
EP2394775B1 (en) 2009-02-09 2019-04-03 Hamamatsu Photonics K.K. Workpiece cutting method
KR101769158B1 (ko) 2009-04-07 2017-08-17 하마마츠 포토닉스 가부시키가이샤 레이저 가공 장치 및 레이저 가공 방법
JP5491761B2 (ja) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 レーザ加工装置
JP2011201759A (ja) * 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法
JP5623807B2 (ja) * 2010-07-09 2014-11-12 株式会社ディスコ 光デバイスウエーハの分割方法
JP5657302B2 (ja) * 2010-08-04 2015-01-21 株式会社ディスコ 切削方法
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
JP2012146876A (ja) * 2011-01-13 2012-08-02 Hamamatsu Photonics Kk レーザ加工方法
JP5846764B2 (ja) * 2011-06-01 2016-01-20 株式会社ディスコ ウエーハの加工方法
CN102496602B (zh) * 2011-12-26 2014-03-19 成都先进功率半导体股份有限公司 一种芯片切割方法
JP6147982B2 (ja) * 2012-10-09 2017-06-14 株式会社ディスコ ウエーハの加工方法
KR101994930B1 (ko) 2012-11-05 2019-07-01 삼성전자주식회사 일체형 단위 반도체 칩들을 갖는 반도체 패키지
JP6045361B2 (ja) * 2013-01-17 2016-12-14 株式会社ディスコ ウエーハの加工方法
KR20140123129A (ko) 2013-04-10 2014-10-22 삼성전자주식회사 반도체 패키지
CN110120446B (zh) * 2013-10-29 2023-02-28 亮锐控股有限公司 分离发光器件的晶片的方法
US9773941B2 (en) 2013-10-29 2017-09-26 Koninklijke Philips N.V. Separating a wafer of light emitting devices
US9718170B2 (en) 2013-11-15 2017-08-01 Snap-On Incorporated Socket drive improvement
US11806843B2 (en) 2013-11-15 2023-11-07 Snap-On Incorporated Socket drive improvement
JP6452490B2 (ja) * 2015-02-25 2019-01-16 キヤノン株式会社 半導体チップの生成方法
JP6502874B2 (ja) * 2015-04-07 2019-04-17 東芝メモリ株式会社 半導体装置の製造方法
JP2017046225A (ja) * 2015-08-27 2017-03-02 株式会社ディスコ Bawデバイス及びbawデバイスの製造方法
DE102017100015A1 (de) * 2017-01-02 2018-07-05 Schott Ag Verfahren zum Trennen von Substraten
JP6957091B2 (ja) * 2017-06-23 2021-11-02 株式会社ディスコ ウェーハの加工方法
JP6579397B2 (ja) * 2017-08-30 2019-09-25 日亜化学工業株式会社 発光素子の製造方法
US10516075B2 (en) 2017-09-11 2019-12-24 Nichia Corporation Method of manufacturing a light emitting element
JP6656597B2 (ja) * 2017-09-11 2020-03-04 日亜化学工業株式会社 発光素子の製造方法
JP7058905B2 (ja) * 2017-09-22 2022-04-25 株式会社ディスコ チップの製造方法
KR20200059756A (ko) 2018-11-21 2020-05-29 서울바이오시스 주식회사 발광 소자 및 이를 포함하는 발광 모듈
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP7330771B2 (ja) * 2019-06-14 2023-08-22 株式会社ディスコ ウエーハの生成方法およびウエーハの生成装置
CN112536535A (zh) * 2020-12-09 2021-03-23 苏州工业园区纳米产业技术研究院有限公司 绝缘体硅片的切割方法及芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107647A (ja) * 1981-12-21 1983-06-27 Nec Corp 半導体装置の製造方法
JPH0265156A (ja) * 1988-08-30 1990-03-05 Nec Kansai Ltd 半導体ペレットの製造方法
JP2003266185A (ja) * 2002-03-12 2003-09-24 Hamamatsu Photonics Kk レーザ加工方法
JP2004001076A (ja) * 2002-03-12 2004-01-08 Hamamatsu Photonics Kk レーザ加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970819A (en) * 1974-11-25 1976-07-20 International Business Machines Corporation Backside laser dicing system
JP4659300B2 (ja) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP2002172479A (ja) * 2000-09-20 2002-06-18 Seiko Epson Corp レーザ割断方法、レーザ割断装置、液晶装置の製造方法並びに液晶装置の製造装置
KR100786179B1 (ko) * 2002-02-02 2007-12-18 삼성전자주식회사 비금속 기판 절단 방법 및 장치
ATE493226T1 (de) 2002-03-12 2011-01-15 Hamamatsu Photonics Kk Verfahren zum schneiden eines bearbeiteten objekts
US8268704B2 (en) * 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
JP4684544B2 (ja) * 2003-09-26 2011-05-18 株式会社ディスコ シリコンから形成された半導体ウエーハの分割方法及び装置
JP4536407B2 (ja) 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
US7288480B2 (en) * 2004-04-23 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit and method for manufacturing the same, CPU, memory, electronic card and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107647A (ja) * 1981-12-21 1983-06-27 Nec Corp 半導体装置の製造方法
JPH0265156A (ja) * 1988-08-30 1990-03-05 Nec Kansai Ltd 半導体ペレットの製造方法
JP2003266185A (ja) * 2002-03-12 2003-09-24 Hamamatsu Photonics Kk レーザ加工方法
JP2004001076A (ja) * 2002-03-12 2004-01-08 Hamamatsu Photonics Kk レーザ加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1742252A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165848A (ja) * 2005-11-16 2007-06-28 Denso Corp 半導体チップの製造方法
JP2007142114A (ja) * 2005-11-17 2007-06-07 Denso Corp レーザダイシング方法およびレーザダイシング装置
US7754583B2 (en) 2005-11-18 2010-07-13 Hamamatsu Photonics K.K. Laser processing method
US8124500B2 (en) 2005-11-18 2012-02-28 Hamamatsu Photonics K.K. Laser processing method
JP2008087026A (ja) * 2006-10-02 2008-04-17 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP2012004321A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
JP2012004316A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法
JP2012004315A (ja) * 2010-06-16 2012-01-05 Showa Denko Kk レーザ加工方法

Also Published As

Publication number Publication date
KR20070005707A (ko) 2007-01-10
TW200602143A (en) 2006-01-16
EP1742252A4 (en) 2009-01-14
US20070287267A1 (en) 2007-12-13
JP4536407B2 (ja) 2010-09-01
MY165400A (en) 2018-03-21
TWI344403B (en) 2011-07-01
EP1742252B1 (en) 2013-02-13
US7592237B2 (en) 2009-09-22
KR101283228B1 (ko) 2013-07-11
EP1742252A1 (en) 2007-01-10
CN100466185C (zh) 2009-03-04
JP2005286218A (ja) 2005-10-13
CN1938826A (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
JP4536407B2 (ja) レーザ加工方法及び加工対象物
JP4776994B2 (ja) 加工対象物切断方法
JP4907984B2 (ja) レーザ加工方法及び半導体チップ
JP4917257B2 (ja) レーザ加工方法
JP4781661B2 (ja) レーザ加工方法
JP4954653B2 (ja) レーザ加工方法
JP4198123B2 (ja) レーザ加工方法
JP4197693B2 (ja) レーザ加工方法及び半導体装置
JP5138219B2 (ja) レーザ加工方法
WO2008035679A1 (fr) Procédé de traitement au laser et appareil de traitement au laser
JP5322418B2 (ja) レーザ加工方法及びレーザ加工装置
JPWO2005098915A1 (ja) レーザ加工方法及び半導体チップ
WO2008004394A1 (fr) Procédé de travail par laser
WO2006011372A1 (ja) レーザ加工方法
JP4409840B2 (ja) 加工対象物切断方法
JP5177992B2 (ja) 加工対象物切断方法
JP2005012203A (ja) レーザ加工方法
JP5122161B2 (ja) 加工対象物切断方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580010859.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005719830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067022482

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005719830

Country of ref document: EP

Ref document number: 1020067022482

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10594892

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594892

Country of ref document: US