JP2005012203A - レーザ加工方法 - Google Patents

レーザ加工方法 Download PDF

Info

Publication number
JP2005012203A
JP2005012203A JP2004157965A JP2004157965A JP2005012203A JP 2005012203 A JP2005012203 A JP 2005012203A JP 2004157965 A JP2004157965 A JP 2004157965A JP 2004157965 A JP2004157965 A JP 2004157965A JP 2005012203 A JP2005012203 A JP 2005012203A
Authority
JP
Japan
Prior art keywords
region
workpiece
cutting
laser
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004157965A
Other languages
English (en)
Inventor
Kenji Fukumitsu
憲志 福満
Fumitsugu Fukuyo
文嗣 福世
Naoki Uchiyama
直己 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2004157965A priority Critical patent/JP2005012203A/ja
Publication of JP2005012203A publication Critical patent/JP2005012203A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 硬度が高い加工対象物であっても効率の良い切断を可能にするレーザ加工方法を提供する。
【解決手段】 切断予定ライン5に沿って加工対象物1の表面3に溝59を形成した後、加工対象物1の裏面21をレーザ光入射面として加工対象物1の内部に集光点Pを合わせて多光子吸収が生じる条件でレーザ光Lを照射し、切断予定ライン5に沿って改質領域7による切断起点領域8を形成する。このように、加工対象物1の内部に切断起点領域8が形成されると、自然に或いは比較的小さな力で切断起点領域8を起点として割れが発生し、その割れが溝59の底面59aと裏面21とに到達する。したがって、加工対象物1の硬度が高い場合であっても、ブレードによりフルカットする方法に比べ、切断予定ライン5に沿って加工対象物1を効率良く切断することが可能になる。
【選択図】 図21

Description

本発明は、半導体材料基板、圧電材料基板やガラス基板等の加工対象物の切断に使用されるレーザ加工方法に関する。
近年、SAWフィルタ用としてITD電極等をパターン形成したタンタル酸リチウム基板(特許文献1参照)や、発光素子用としてGaN等のIII−V族化合物半導体を結晶成長させたサファイア基板(特許文献2参照)等、硬度が高い加工対象物を高精度に切断する技術が求められている。
このような加工対象物を切断するための従来一般的な方法として、ブレードにより加工対象物をフルカットする方法や、或いは、ブレードにより加工対象物の表面に溝を形成した後(ハーフカット)、その溝に沿って加工対象物を割って切断する方法等がある。
なお、特許文献3には、次のような窒化物半導体素子の製造方法が記載されている。すなわち、基板上に窒化物半導体が形成されてなる半導体ウェハを加工対象物とし、その基板において窒化物半導体が形成された面と反対側の面に溝を形成する。続いて、その反対側の面側からレーザ光を照射して溝の底面又はその内側にブレイク・ラインを形成する。そして、ローラによりブレイク・ラインに沿って荷重をかけ、半導体ウェハを切断して窒化物半導体素子を得る。
特許第3290140号公報 特許第2780618号公報 特開平11−177137号公報
しかしながら、特に、上述したような硬度が高い加工対象物については、ブレードによる切削に多大な時間を要するばかりか、ブレードの摩耗が激しくブレードを頻繁に交換しなければならないため、加工対象物の切断効率が悪化してしまうという問題がある。
そこで、本発明は、このような事情に鑑みてなされたものであり、硬度が高い加工対象物であっても効率の良い切断を可能にするレーザ加工方法を提供することを目的とする。
上記目的を達成するために、本発明に係るレーザ加工方法は、ウェハ状の加工対象物の一方の面に加工対象物の切断予定ラインに沿って溝を形成する工程と、溝を形成した後、加工対象物の他方の面をレーザ光入射面として加工対象物の内部に集光点を合わせてレーザ光を照射し、加工対象物の内部に改質領域を形成し、この改質領域によって、切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成する工程とを備えることを特徴とする。
このレーザ加工方法においては、切断予定ラインに沿って加工対象物の一方の面に溝を形成した後に、切断予定ラインに沿って加工対象物の内部に改質領域による切断起点領域を形成する。このように、加工対象物の内部に切断起点領域が形成されると、自然に或いは比較的小さな力を加えることで、切断起点領域を起点として割れが発生し、その割れが溝の底面と加工対象物の他方の面とに到達する。したがって、加工対象物の硬度が高い場合であっても、ブレードによりフルカットする方法や、加工対象物の表面に溝のみを形成して割断する方法に比べ、切断予定ラインに沿って加工対象物を効率良く切断することが可能になる。しかも、切断起点領域の形成に際しては、加工対象物の他方の面側から加工対象物の内部にレーザ光を集光させるため、形成した溝の形状に拘わらず、切断起点領域を加工対象物の内部に確実に形成することができる。これは、例えば溝の形成にブレードを用い、形成した溝の底面形状が平滑でない場合に極めて有効である。
なお、切断起点領域とは、加工対象物が切断される際に切断の起点となる領域を意味する。この切断起点領域は、改質領域が連続的に形成されることで形成される場合もあるし、改質領域が断続的に形成されることで形成される場合もある。
また、切断起点領域を形成した後、加工対象物において切断予定ラインに沿った切断予定部分にストレスを生じさせる工程を更に備えてもよい。上述したように、加工対象物の内部に切断起点領域を形成すると、切断起点領域を起点とした割れが自然に発生して加工対象物が切断される場合もあるが、加工対象物の厚さや硬度、溝の深さ等によっては自然に切断されない場合もある。このような場合に、切断予定部分にストレスを生じさせると、切断起点領域を起点とした割れを溝の底面と加工対象物の裏面とに確実に到達させることができ、切断予定ラインに沿って加工対象物を切断すること可能になる。そして、このようなストレスを生じさせる工程を備えることで、一方の面に形成する溝のサイズ(特に、深さ方向)を小さくすることが可能となり、結果として加工対象物の効率の良い切断を達成できる。
なお、「切断予定ラインに沿った切断予定部分にストレスを生じさせる」とは、切断予定部分に引張応力や曲げ応力、或いはせん断応力等を生じさせたり、切断予定部分に温度差を与えて熱応力を生じさせたりすることである。そして、切断予定部分のみに選択的にストレスを生じさせる場合に限らず、例えば、加工対象物全体にストレスを生じさせた結果として、切断予定部分にストレスが生じるような場合も含む。
また、切断予定部分にストレスを生じさせる際には、加工対象物の一方の面又は他方の面に取り付けられた拡張可能部材を拡張させることで、切断予定部分にストレスを生じさせることが好ましい。これにより、切断予定部分にストレスを容易に生じさせることができ、加工対象物を切断予定ラインに沿って容易に切断することが可能になる。
また、加工対象物の一方の面に拡張可能部材が取り付けられる場合において、切断起点領域を形成する際には、切断起点領域を起点として溝の底面に割れが到達するように切断起点領域を形成することが好ましく、一方、加工対象物の他方の面に拡張可能部材が取り付けられる場合において、切断起点領域を形成する際には、切断起点領域を起点として他方の面に割れが到達するように切断起点領域を形成することが好ましい。このように、切断起点領域の形成において、切断起点領域を起点とした割れを拡張可能部材側に到達させると、拡張可能部材の拡張による加工対象物の割断精度をより一層向上させることができる。
また、加工対象物は半導体基板を有し、半導体基板の内部に形成される改質領域は溶融処理領域を含む場合がある。この溶融処理領域は上述した改質領域の一例であるため、この場合にも、加工対象物の硬度に拘わらず、切断予定ラインに沿って加工対象物を効率良く切断することが可能になる。
また、加工対象物は半導体基板を有し、半導体基板の内部に形成される改質領域は、溶融処理領域と、その溶融処理領域に対してレーザ光入射面の反対側に位置する微小空洞とを含む場合がある。この溶融処理領域及び微小空洞は上述した改質領域の一例であるため、この場合にも、加工対象物の硬度に拘わらず、切断予定ラインに沿って加工対象物を効率良く切断することが可能になる。
さらに、本発明に係るレーザ加工方法は、ウェハ状の加工対象物の一方の面に加工対象物の切断予定ラインに沿って溝を形成する工程と、溝を形成した後、加工対象物の一方の面に拡張可能部材を取り付ける工程と、拡張可能部材を取り付けた後、加工対象物の他方の面をレーザ光入射面として加工対象物の内部に集光点を合わせてレーザ光を照射し、加工対象物の内部に改質領域を形成し、この改質領域によって、切断予定ラインに沿ってレーザ光入射面から所定距離内側に切断起点領域を形成する工程と、切断起点領域を形成した後、加工対象物の一方の面に取り付けられた拡張可能部材を拡張させることで、切断予定部分にストレスを生じさ、加工対象物を切断予定ラインに沿って切断する工程とを備えることを特徴とする。
このレーザ加工方法においても、上述したレーザ加工方法と同様の理由から、硬度が高い加工対象物であっても効率良く切断することが可能になる。しかも、切断予定ラインに沿って溝が形成された加工対象物の一方の面に拡張可能部材を取り付けて、その拡張可能部材を拡張させるため、加工対象物には溝が広げられるように力が作用し、その結果、切断予定ラインに沿って形成された切断起点領域との協働により、加工対象物を切断予定ラインに沿って容易に切断することが可能になる。
本発明によれば、硬度が高い加工対象物であっても効率良く切断することが可能になる。
以下、本発明に係るレーザ加工方法の好適な実施形態について、図面を参照して詳細に説明する。本発明に係るレーザ加工方法においては、加工対象物の内部に改質領域を形成する。そして、加工対象物の内部に改質領域を形成するためにレーザ光による多光子吸収を利用する。そこで、最初に、多光子吸収により改質領域を形成するためのレーザ加工方法について説明する。
材料の吸収のバンドギャップEよりも光子のエネルギーhνが小さいと光学的に透明となる。よって、材料に吸収が生じる条件はhν>Eである。しかし、光学的に透明でも、レーザ光の強度を非常に大きくするとnhν>Eの条件(n=2,3,4,・・・)で材料に吸収が生じる。この現象を多光子吸収という。パルス波の場合、レーザ光の強度はレーザ光の集光点のピークパワー密度(W/cm)で決まり、例えばピークパワー密度が1×10(W/cm)以上の条件で多光子吸収が生じる。ピークパワー密度は、(集光点におけるレーザ光の1パルス当たりのエネルギー)÷(レーザ光のビームスポット断面積×パルス幅)により求められる。また、連続波の場合、レーザ光の強度はレーザ光の集光点の電界強度(W/cm)で決まる。
このような多光子吸収を利用する本実施形態に係るレーザ加工方法の原理について、図1〜図6を参照して説明する。図1に示すように、ウェハ状(平板状)の加工対象物1の表面3には、加工対象物1を切断するための切断予定ライン5がある。切断予定ライン5は直線状に延びた仮想線である。本実施形態に係るレーザ加工方法では、図2に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを照射して改質領域7を形成する。なお、集光点Pとは、レーザ光Lが集光する箇所のことである。また、切断予定ライン5は、直線状に限らず曲線状であってもよいし、仮想線に限らず加工対象物1に実際に引かれた線であってもよい。
そして、レーザ光Lを切断予定ライン5に沿って(すなわち、図1の矢印A方向に)相対的に移動させることにより、集光点Pを切断予定ライン5に沿って移動させる。これにより、図3〜図5に示すように、改質領域7が切断予定ライン5に沿って加工対象物1の内部に形成され、この改質領域7が切断起点領域8となる。本実施形態に係るレーザ加工方法は、加工対象物1がレーザ光Lを吸収することにより加工対象物1を発熱させて改質領域7を形成するものではない。加工対象物1にレーザ光Lを透過させ加工対象物1の内部に多光子吸収を発生させて改質領域7を形成している。よって、加工対象物1の表面3ではレーザ光Lがほとんど吸収されないので、加工対象物1の表面3が溶融することはない。
加工対象物1の内部に切断起点領域8を形成すると、この切断起点領域8を起点として割れが発生し易くなるため、図6に示すように、比較的小さな力で加工対象物1を切断することができる。よって、加工対象物1の表面3に不必要な割れを発生させることなく、加工対象物1を高精度に切断することが可能になる。
この切断起点領域8を起点とした加工対象物1の切断には、次の2通りが考えられる。1つは、切断起点領域8形成後、加工対象物1に人為的な力が印加されることにより、切断起点領域8を起点として加工対象物1が割れ、加工対象物1が切断される場合である。これは、例えば加工対象物1の厚さが大きい場合の切断である。人為的な力が印加されるとは、例えば、加工対象物1の切断起点領域8に沿って加工対象物1に曲げ応力やせん断応力を加えたり、加工対象物1に温度差を与えることにより熱応力を発生させたりすることである。他の1つは、切断起点領域8を形成することにより、切断起点領域8を起点として加工対象物1の断面方向(厚さ方向)に向かって自然に割れ、結果的に加工対象物1が切断される場合である。これは、例えば加工対象物1の厚さが小さい場合には、1列の改質領域7により切断起点領域8が形成されることで可能となり、加工対象物1の厚さが大きい場合には、厚さ方向に複数列形成された改質領域7により切断起点領域8が形成されることで可能となる。なお、この自然に割れる場合も、切断する箇所において、切断起点領域8が形成されていない部位に対応する部分の表面3上にまで割れが先走ることがなく、切断起点領域8を形成した部位に対応する部分のみを割断することができるので、割断を制御よくすることができる。近年、シリコンウェハ等の加工対象物1の厚さは薄くなる傾向にあるので、このような制御性のよい割断方法は大変有効である。
さて、本実施形態に係るレーザ加工方法において、多光子吸収により形成される改質領域としては、次の(1)〜(4)の場合がある。
(1)改質領域が1つ又は複数のクラックを含むクラック領域の場合
加工対象物(例えばガラスやLiTaOからなる圧電材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。このパルス幅の大きさは、多光子吸収を生じさせつつ加工対象物の表面に余計なダメージを与えずに、加工対象物の内部にのみクラック領域を形成できる条件である。これにより、加工対象物の内部には多光子吸収による光学的損傷という現象が発生する。この光学的損傷により加工対象物の内部に熱ひずみが誘起され、これにより加工対象物の内部にクラック領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。なお、多光子吸収によるクラック領域の形成は、例えば、第45回レーザ熱加工研究会論文集(1998年.12月)の第23頁〜第28頁の「固体レーザー高調波によるガラス基板の内部マーキング」に記載されている。
本発明者は、電界強度とクラックの大きさとの関係を実験により求めた。実験条件は次ぎの通りである。
(A)加工対象物:パイレックス(登録商標)ガラス(厚さ700μm)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:出力<1mJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
なお、レーザ光品質がTEM00とは、集光性が高くレーザ光の波長程度まで集光可能を意味する。
図7は上記実験の結果を示すグラフである。横軸はピークパワー密度であり、レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。縦軸は1パルスのレーザ光により加工対象物の内部に形成されたクラック部分(クラックスポット)の大きさを示している。クラックスポットが集まりクラック領域となる。クラックスポットの大きさは、クラックスポットの形状のうち最大の長さとなる部分の大きさである。グラフ中の黒丸で示すデータは集光用レンズ(C)の倍率が100倍、開口数(NA)が0.80の場合である。一方、グラフ中の白丸で示すデータは集光用レンズ(C)の倍率が50倍、開口数(NA)が0.55の場合である。ピークパワー密度が1011(W/cm)程度から加工対象物の内部にクラックスポットが発生し、ピークパワー密度が大きくなるに従いクラックスポットも大きくなることが分かる。
次に、クラック領域形成による加工対象物の切断のメカニズムについて、図8〜図11を参照して説明する。図8に示すように、多光子吸収が生じる条件で加工対象物1の内部に集光点Pを合わせてレーザ光Lを照射して切断予定ラインに沿って内部にクラック領域9を形成する。クラック領域9は1つ又は複数のクラックを含む領域である。このように形成されたクラック領域9が切断起点領域となる。図9に示すように、クラック領域9を起点として(すなわち、切断起点領域を起点として)クラックがさらに成長し、図10に示すように、クラックが加工対象物1の表面3と裏面21とに到達し、図11に示すように、加工対象物1が割れることにより加工対象物1が切断される。加工対象物1の表面3と裏面21とに到達するクラックは自然に成長する場合もあるし、加工対象物1に力が印加されることにより成長する場合もある。
(2)改質領域が溶融処理領域の場合
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより加工対象物の内部は多光子吸収によって局所的に加熱される。この加熱により加工対象物の内部に溶融処理領域が形成される。溶融処理領域とは一旦溶融後再固化した領域や、まさに溶融状態の領域や、溶融状態から再固化する状態の領域であり、相変化した領域や結晶構造が変化した領域ということもできる。また、溶融処理領域とは単結晶構造、非晶質構造、多結晶構造において、ある構造が別の構造に変化した領域ということもできる。つまり、例えば、単結晶構造から非晶質構造に変化した領域、単結晶構造から多結晶構造に変化した領域、単結晶構造から非晶質構造及び多結晶構造を含む構造に変化した領域を意味する。加工対象物がシリコン単結晶構造の場合、溶融処理領域は例えば非晶質シリコン構造である。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。
本発明者は、シリコンウェハの内部で溶融処理領域が形成されることを実験により確認した。実験条件は次の通りである。
(A)加工対象物:シリコンウェハ(厚さ350μm、外径4インチ)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
レーザ光スポット断面積:3.14×10−8cm
発振形態:Qスイッチパルス
繰り返し周波数:100kHz
パルス幅:30ns
出力:20μJ/パルス
レーザ光品質:TEM00
偏光特性:直線偏光
(C)集光用レンズ
倍率:50倍
N.A.:0.55
レーザ光波長に対する透過率:60パーセント
(D)加工対象物が載置される載置台の移動速度:100mm/秒
図12は、上記条件でのレーザ加工により切断されたシリコンウェハの一部における断面の写真を表した図である。シリコンウェハ11の内部に溶融処理領域13が形成されている。なお、上記条件により形成された溶融処理領域13の厚さ方向の大きさは100μm程度である。
溶融処理領域13が多光子吸収により形成されたことを説明する。図13は、レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。ただし、シリコン基板の表面側と裏面側それぞれの反射成分を除去し、内部のみの透過率を示している。シリコン基板の厚さtが50μm、100μm、200μm、500μm、1000μmの各々について上記関係を示した。
例えば、Nd:YAGレーザの波長である1064nmにおいて、シリコン基板の厚さが500μm以下の場合、シリコン基板の内部ではレーザ光が80%以上透過することが分かる。図12に示すシリコンウェハ11の厚さは350μmであるので、多光子吸収による溶融処理領域13はシリコンウェハ11の中心付近、つまり表面から175μmの部分に形成される。この場合の透過率は、厚さ200μmのシリコンウェハを参考にすると、90%以上なので、レーザ光がシリコンウェハ11の内部で吸収されるのは僅かであり、ほとんどが透過する。このことは、シリコンウェハ11の内部でレーザ光が吸収されて、溶融処理領域13がシリコンウェハ11の内部に形成(つまりレーザ光による通常の加熱で溶融処理領域が形成)されたものではなく、溶融処理領域13が多光子吸収により形成されたことを意味する。多光子吸収による溶融処理領域の形成は、例えば、溶接学会全国大会講演概要第66集(2000年4月)の第72頁〜第73頁の「ピコ秒パルスレーザによるシリコンの加工特性評価」に記載されている。
なお、シリコンウェハは、溶融処理領域によって形成される切断起点領域を起点として断面方向に向かって割れを発生させ、その割れがシリコンウェハの表面と裏面とに到達することにより、結果的に切断される。シリコンウェハの表面と裏面に到達するこの割れは自然に成長する場合もあるし、シリコンウェハに力が印加されることにより成長する場合もある。そして、切断起点領域からシリコンウェハの表面と裏面とに割れが自然に成長する場合には、切断起点領域を形成する溶融処理領域が溶融している状態から割れが成長する場合と、切断起点領域を形成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合とのいずれもある。ただし、どちらの場合も溶融処理領域はシリコンウェハの内部のみに形成され、切断後の切断面には、図12のように内部にのみ溶融処理領域が形成されている。このように、加工対象物の内部に溶融処理領域によって切断起点領域を形成すると、割断時、切断起点領域ラインから外れた不必要な割れが生じにくいので、割断制御が容易となる。
(3)改質領域が溶融処理領域及び微小空洞の場合
加工対象物(例えばシリコンのような半導体材料)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1μs以下の条件でレーザ光を照射する。これにより、加工対象物の内部には溶融処理領域と微小空洞とが形成される場合がある。なお、電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns〜200nsが好ましい。
図14に示すように、シリコンウェハ11の表面3側からレーザ光Lを入射させた場合、微小空洞14は、溶融処理領域13に対して裏面21側に形成される。図14では、溶融処理領域13と微小空洞14とが離れて形成されているが、溶融処理領域13と微小空洞14とが連続して形成される場合もある。つまり、多光子吸収によって溶融処理領域13及び微小空洞14が対になって形成される場合、微小空洞14は、溶融処理領域13に対してシリコンウェハ11におけるレーザ光入射面の反対側に形成されることになる。
このように、シリコンウェハ11にレーザ光Lを透過させシリコンウェハ11の内部に多光子吸収を発生させて溶融処理領域13を形成した場合に、それぞれの溶融処理領域13に対応した微小空洞14が形成される原理については必ずしも明らかではない。ここでは、溶融処理領域13及び微小空洞14が対になった状態で形成される原理に関して本発明者らが想定する2つの仮説を説明する。
本発明者らが想定する第1の仮説は次の通りである。すなわち、図15に示すように、シリコンウェハ11の内部の集光点Pに焦点を合わせてレーザ光Lを照射すると、集光点Pの近傍に溶融処理領域13が形成される。従来は、このレーザ光Lとして、レーザ光源から照射されるレーザ光Lの中心部分の光(図15中、L4及びL5に相当する部分の光)を使用することとしていた。これは、レーザ光Lのガウシアン分布の中心部分を使用するためである。
本発明者らはレーザ光Lがシリコンウェハ11の表面3に与える影響をおさえるためにレーザ光Lを広げることとした。その一手法として、レーザ光源から照射されるレーザ光Lを所定の光学系でエキスパンドしてガウシアン分布の裾野を広げて、レーザ光Lの周辺部分の光(図15中、L1〜L3及びL6〜L8に相当する部分の光)のレーザ強度を相対的に上昇させることとした。このようにエキスパンドしたレーザ光Lをシリコンウェハ11に透過させると、既に説明したように集光点Pの近傍では溶融処理領域13が形成され、その溶融処理領域13に対応した部分に微小空洞14が形成される。つまり、溶融処理領域13と微小空洞14とはレーザ光Lの光軸(図15中の一点鎖線)に沿った位置に形成される。微小空洞14が形成される位置は、レーザ光Lの周辺部分の光(図15中、L1〜L3及びL6〜L8に相当する部分の光)が理論上集光される部分に相当する。
このようにレーザ光Lの中心部分の光(図15中、L4及びL5に相当する部分の光)と、レーザ光Lの周辺部分の光(図15中、L1〜L3及びL6〜L8に相当する部分の光)とがそれぞれ集光される部分がシリコンウェハ11の厚さ方向において異なるのは、レーザ光Lを集光するレンズの球面収差によるものと考えられる。本発明者らが想定する第1の仮説は、この集光位置の差が何らかの影響を及ぼしているのではないかというものである。
本発明者らが想定する第2の仮説は、レーザ光Lの周辺部分の光(図15中、L1〜L3及びL6〜L8に相当する部分の光)が集光される部分は理論上のレーザ集光点であるから、この部分の光強度が高く微細構造変化が起こっているためにその周囲が実質的に結晶構造が変化していない微小空洞14が形成され、溶融処理領域13が形成されている部分は熱的な影響が大きく単純に溶解して再固化したというものである。
ここで、溶融処理領域13は上記(2)で述べた通りのものであるが、微小空洞14は、その周囲が実質的に結晶構造が変化していないものである。シリコンウェハ11がシリコン単結晶構造の場合には、微小空洞14の周囲はシリコン単結晶構造のままの部分が多い。
本発明者らは、シリコンウェハ11の内部で溶融処理領域13及び微小空洞14が形成されることを実験により確認した。実験条件は次の通りである。
(A)加工対象物:シリコンウェハ(厚さ100μm)
(B)レーザ
光源:半導体レーザ励起Nd:YAGレーザ
波長:1064nm
繰り返し周波数:40kHz
パルス幅:30nsec
パルスピッチ:7μm
加工深さ:8μm
パルスエネルギー:50μJ/パルス
(C)集光用レンズ
NA:0.55
(D)加工対象物が載置される載置台の移動速度:280mm/sec
図16は、上記条件でのレーザ加工により切断されたシリコンウェハ11の切断面の写真を表した図である。図16において(a)と(b)とは同一の切断面の写真を異なる縮尺で示したものである。同図に示すように、シリコンウェハ11の内部には、1パルスのレーザ光Lの照射により形成された溶融処理領域13及び微小空洞14の対が、切断面に沿って(すなわち、切断予定ラインに沿って)所定のピッチで形成されている。
なお、図16に示す切断面の溶融処理領域13は、シリコンウェハ11の厚さ方向(図中の上下方向)の幅が13μm程度で、レーザ光Lを移動する方向(図中の左右方向)の幅が3μm程度である。また、微小空洞14は、シリコンウェハ11の厚さ方向の幅が7μm程度で、レーザ光Lを移動する方向の幅が1.3μm程度である。溶融処理領域13と微小空洞14との間隔は1.2μm程度である。
(4)改質領域が屈折率変化領域の場合
加工対象物(例えばガラス)の内部に集光点を合わせて、集光点における電界強度が1×10(W/cm)以上で且つパルス幅が1ns以下の条件でレーザ光を照射する。パルス幅を極めて短くして、多光子吸収を加工対象物の内部に起こさせると、多光子吸収によるエネルギーが熱エネルギーに転化せずに、加工対象物の内部にはイオン価数変化、結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化領域が形成される。電界強度の上限値としては、例えば1×1012(W/cm)である。パルス幅は例えば1ns以下が好ましく、1ps以下がさらに好ましい。多光子吸収による屈折率変化領域の形成は、例えば、第42回レーザ熱加工研究会論文集(1997年.11月)の第105頁〜第111頁の「フェムト秒レーザー照射によるガラス内部への光誘起構造形成」に記載されている。
以上、多光子吸収により形成される改質領域として(1)〜(4)の場合を説明したが、ウェハ状の加工対象物の結晶構造やその劈開性などを考慮して切断起点領域を次のように形成すれば、その切断起点領域を起点として、より一層小さな力で、しかも精度良く加工対象物を切断することが可能になる。
すなわち、シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場合は、(111)面(第1劈開面)や(110)面(第2劈開面)に沿った方向に切断起点領域を形成するのが好ましい。また、GaAsなどの閃亜鉛鉱型構造のIII−V族化合物半導体からなる基板の場合は、(110)面に沿った方向に切断起点領域を形成するのが好ましい。さらに、サファイア(Al)などの六方晶系の結晶構造を有する基板の場合は、(0001)面(C面)を主面として(1120)面(A面)或いは(1100)面(M面)に沿った方向に切断起点領域を形成するのが好ましい。
なお、上述した切断起点領域を形成すべき方向(例えば、単結晶シリコン基板における(111)面に沿った方向)、或いは切断起点領域を形成すべき方向に直交する方向に沿って基板にオリエンテーションフラットを形成すれば、そのオリエンテーションフラットを基準とすることで、切断起点領域を形成すべき方向に沿った切断起点領域を容易且つ正確に基板に形成することが可能になる。
[第1実施形態]
次に、第1実施形態に係るレーザ加工方法について説明する。なお、図19〜図22は、図18に示すXIX−XIX線に沿っての部分断面図である。
図17に示すように、加工対象物1は、タンタル酸リチウム等の圧電基板であり、その表面(一方の面)3には、多数のSAWフィルタ素子51がフォトリソグラフィ技術によって形成されている。各SAWフィルタ素子51は、図18に示すように、ITD電極52を表面波の伝搬方向に並設させたトランスバーサル型のフィルタであり、各ITD電極52は、細線状の金属膜53によって並列に接続されている。また、各SAWフィルタ素子51は、細線状の金属膜54によって矩形状に仕切られており、この金属膜54に対しては、ITD電極52を接続する金属膜53の一部が近接配置されている。
このような電極構成を採用することで、加工対象物1が急激な温度変化にさらされて焦電効果により焦電荷が発生しても、金属膜53を介して焦電荷が瞬時に移動するため、ITD電極52の放電破壊を防止することができる。
以上のように構成された加工対象物1を以下のようにして金属膜54に沿って格子状に切断する。まず、加工対象物1の金属膜54上に切断予定ライン5を設定し(図18参照)、この加工対象物1に対する切断予定ライン5の位置データを記憶手段(例えば、コンピュータのメモリ等)に保存する。
続いて、ダイシングソーを用いて加工対象物1の表面3に溝を形成する(溝形成工程)。すなわち、図19に示すように、加工対象物1の裏面(他方の面)21に保護フィルム56を貼り付けて、表面3を上方に向けて加工対象物1をダイシングソーの載置台57上に真空チャック等で固定する。そして、記憶手段に記憶された切断予定ライン5の位置データに基づいて加工対象物1に対してブレード58を相対移動させ、加工対象物1の表面3に溝を形成する。なお、ブレード58は、例えば、刃先がダイヤモンドにより形成された回転ブレードである。
これにより、加工対象物1の表面3には、図20に示すように、切断予定ライン5に沿って所定深さの溝59が形成される。また、同時に加工対象物1の表面3から金属膜54と金属膜53の一部とが除去されて、SAWフィルタ素子51について所望の動作が得られることになる。
溝形成工程の後、レーザ加工装置を用いて加工対象物1の内部に切断起点領域を形成する(切断起点領域形成工程)。すなわち、図21に示すように、加工対象物1の裏面21から保護フィルム56を取り除き、加工対象物1の表面3に保護フィルム61を貼り付けて、裏面21を上方に向けて加工対象物1をレーザ加工装置の載置台62上に真空チャック等で固定する。そして、裏面21をレーザ光入射面として加工対象物1の内部に集光点Pを合わせて、上述した多光子吸収が生じる条件でレーザ光Lを照射し、同時に、記憶手段に記憶された切断予定ライン5の位置データに基づいて加工対象物1に対して集光点Pを相対移動させる。
これにより、加工対象物1の裏面21と溝59の底面59aとの間の切断予定部分60には、切断予定ライン5に沿って改質領域7により切断起点領域8が形成される。このように、溝形成工程と切断起点領域形成工程とにおいて切断予定ライン1についての同じ位置データを使用することで、溝59と切断起点領域8との位置ずれを防止することができる。
切断起点領域形成工程の後、フィルム拡張装置を用いて切断予定部分60にストレスを生じさせる(ストレス印加工程)。すなわち、図22に示すように、加工対象物1の表面3から保護フィルム61を取り除き、加工対象物1の裏面21に拡張フィルム(拡張可能部材)63を貼り付けて、拡張フィルム63を外方側にエキスパンドし、切断予定部分60に引張応力やせん断応力等のストレスを生じさせる。
これにより、切断起点領域8を起点として割れ64が発生し、この割れ64が溝59の底面59aと加工対象物1の裏面21とに到達して、加工対象物1が切断予定ライン5に沿って複数のチップ66に切断される。なお、拡張フィルム63の拡張に伴い各チップ66が互いに離間するため、各チップ66を容易且つ確実にピックアップすることが可能になる。
以上のように、第1実施形態に係るレーザ加工方法においては、切断予定ライン5に沿って加工対象物1の表面3に溝59を形成した後に、切断予定ライン5に沿って加工対象物1の内部に改質領域7による切断起点領域8を形成する。そのため、例えば、加工対象物1の表面3に溝59のみを形成したものに比べ、より小さな力で拡張フィルム63を拡張させて加工対象物1を個々のチップ66に切断することができる。したがって、上述したタンタル酸リチウムその他の酸化物単結晶(水晶、ニオブ酸リチウム、サファイア等)或いは光透過性セラミックス等、硬度の高い加工対象物1であっても、ブレード58によりフルカットする方法や、加工対象物1の表面3に溝59のみを形成して割断する方法に比べ、切断予定ライン5に沿って加工対象物1を効率良く切断することが可能になる。
また、溝形成工程においては、ブレード58により溝59を形成するため、溝59の底面59aに多数のマイクロクラックが発生し得る。そのため、切断起点領域形成工程において加工対象物1の表面3側からレーザ光Lを照射すると、マイクロクラックにより散乱等が生じ、加工対象物1の内部にレーザ光Lを効率良く集光することができない。しかしながら、本実施形態のレーザ加工方法においては、加工対象物1の裏面21側から加工対象物1の内部にレーザ光Lを集光させるため、形成した溝59の形状に拘わらず、切断起点領域8を加工対象物1の内部に確実に形成することができる。なお、切断起点領域8を起点とした割れ64は前述のマイクロクラックと連結し易くなるため、当該マイクロクラックは、割れ64が溝59の底面59a内に確実に収まるのを促進させる。
さらに、溝形成工程及び切断起点領域形成工程の後にストレス印加工程を備えているため、溝59の深さや幅を小さくすることが可能となる。したがって、加工対象物1の切断時間のより一層の短縮化や、溝59の形成による切削屑の減少化を達成できる。しかも、溝59の幅を小さくすることで、加工対象物1から得られるチップ66の数を増加させることができる。
[第2実施形態]
次に、第2実施形態に係るレーザ加工方法について説明する。なお、図24〜図28は、図23に示すXXIV−XXIV線に沿っての部分断面図である。
図23及び図24に示すように、加工対象物1は、シリコンからなる基板71と、複数の機能素子72を含んで基板71の表面71aに形成された積層部73と、基板71の裏面71bに形成されたダイボンド樹脂層74とを備えている。ダイボンド樹脂層74は、紫外線や赤外線等の電磁波の照射により或いは加熱により、粘着性を有するようになるもの又は粘着度を増大させるものであり、チップパッケージに固定する際の接着剤として機能する。なお、基板71の裏面71bには、ダイボンド樹脂層74に代わって、金やアルミニウム等の金属膜或いは有機膜が形成される場合もある。
機能素子72は、基板71の表面71aに積層された層間絶縁膜76と、層間絶縁膜76上に配置された配線層77と、配線層77を覆うように層間絶縁膜76上に積層された層間絶縁膜78と、層間絶縁膜78上に配置された配線層79とを有している。配線層77と基板71とは、層間絶縁膜76を貫通する導電性プラグ81によって電気的に接続され、配線層79と配線層77とは、層間絶縁膜78を貫通する導電性プラグ82によって電気的に接続されている。
なお、機能素子72は、基板71のオリエンテーションフラット71cに平行な方向及び垂直な方向にマトリックス状に多数形成されているが、層間絶縁膜76,78は、基板71の表面71a全体を覆うように隣り合う機能素子72,72間に渡って形成されている。
以上のように構成された加工対象物1を以下のようにして機能素子72毎に切断する。まず、加工対象物1に対し、隣り合う機能素子72,72間を通るように切断予定ライン5を格子状に設定し(図23参照)、この加工対象物1に対する切断予定ライン5の位置データを記憶手段に保存する。
続いて、ダイシングソーを用いて加工対象物1の裏面(一方の面)21に溝を形成する(溝形成工程)。すなわち、図25に示すように、加工対象物1の表面(他方の面)3に保護フィルム56を貼り付けて、裏面21を上方に向けて加工対象物1をダイシングソーの載置台57上に真空チャック等で固定する。そして、記憶手段に記憶された切断予定ライン5の位置データに基づいて加工対象物1に対してブレード58を相対移動させ、加工対象物1の裏面21に溝を形成する。これにより、加工対象物1の裏面21には、図26に示すように、切断予定ライン5に沿って所定深さの溝59が形成される。なお、保護フィルム56の代えて、加工対象物1の表面3に、ガラスや樹脂等からなるプレート状の保護部材を両面テープや粘着剤等により取り付けてもよい。
溝形成工程の後、レーザ加工装置を用いて加工対象物1の内部に切断起点領域を形成する(切断起点領域形成工程)。すなわち、図27に示すように、加工対象物1の表面3から保護フィルム56を取り除き、加工対象物1の裏面21に拡張フィルム(拡張可能部材)63を貼り付けて、表面3を上方に向けて加工対象物1をレーザ加工装置の載置台62上に真空チャック等で固定する。そして、表面3をレーザ光入射面として加工対象物1の内部に集光点Pを合わせて、上述した多光子吸収が生じる条件でレーザ光Lを照射し、同時に、記憶手段に記憶された切断予定ライン5の位置データに基づいて加工対象物1に対して集光点Pを相対移動させる。なお、層間絶縁膜76,78は、レーザ光Lに対して透過性を有する材料(SiOやSiN等)からなっている。
これにより、加工対象物1の表面3と溝59の底面59aとの間の切断予定部分60には、切断予定ライン5に沿って改質領域7により切断起点領域8が形成される。このように、溝形成工程と切断起点領域形成工程とにおいて切断予定ライン1についての同じ位置データを使用することで、溝59と切断起点領域8との位置ずれを防止することができる。なお、基板71はシリコンからなる半導体基板であるため、改質領域7は溶融処理領域である。
切断起点領域形成工程の後、フィルム拡張装置を用いて切断予定部分60にストレスを生じさせる(ストレス印加工程)。すなわち、図28に示すように、加工対象物1の裏面21に貼り付けられた拡張フィルム63を外方側にエキスパンドし、切断予定部分60に引張応力やせん断応力等のストレスを生じさせる。
これにより、切断起点領域8を起点として割れ64が発生し、この割れ64が溝59の底面59aと加工対象物1の表面3とに到達して、加工対象物1が切断予定ライン5に沿って複数のチップ66に切断される。なお、拡張フィルム63の拡張に伴い各チップ66が互いに離間するため、各チップ66を容易且つ確実にピックアップすることが可能になる。
以上のように、第2実施形態に係るレーザ加工方法においては、切断予定ライン5に沿って加工対象物1の裏面21に溝59を形成した後に、切断予定ライン5に沿って加工対象物1の内部に改質領域7による切断起点領域8を形成する。したがって、第1実施形態に係るレーザ加工方法と同様の理由から、硬度の高い加工対象物1であっても、ブレード58によりフルカットする方法や、加工対象物1の裏面21に溝59のみを形成して割断する方法に比べ、切断予定ライン5に沿って加工対象物1を効率良く切断することが可能になる。
また、ストレス印加工程においては、切断予定ライン5に沿って溝59が形成された加工対象物1の裏面21に拡張フィルム63を貼り付けて、その拡張フィルム63を拡張させるため、加工対象物1には溝59が広げられるように力が作用し、その結果、切断予定ライン5に沿って形成された切断起点領域8との協働により、加工対象物1を切断予定ライン5に沿って容易に切断することが可能になる。
本発明は上記実施形態には限定されない。例えば、第1及び第2実施形態に係るレーザ加工方法は、加工対象物1の内部で多光子吸収を生じさせて改質領域7を形成した場合であったが、加工対象物1の内部で多光子吸収と同等の光吸収を生じさせて改質領域7を形成することができる場合もある。
また、第2実施形態に係るレーザ加工方法は、シリコンからなる基板71の内部に改質領域7として溶融処理領域を形成する場合であったが、改質領域7として溶融処理領域及び微小空洞を形成してもよい。
また、第1及び第2実施形態に係るレーザ加工方法の溝形成工程ではブレード58により溝59を形成したが、エッチング等、他の方法により溝59を形成してもよい。また、加工対象物1の厚さや硬度、溝59の深さ等によっては、切断起点領域8の形成と同時に(或いは、その後に)、切断起点領域8を起点として割れ64が自然に発生して加工対象物1が切断される場合がある。このような場合には、拡張フィルム63を拡張させるといったストレス印加工程が不要になるため、加工対象物1の更に効率の良い切断が可能となる。
また、溝形成工程及び切断起点領域形成工程の後にストレス印加工程を備える場合でも、切断起点領域8を起点として自然に発生する割れ64を加工対象物1の裏面21又は溝59の底面59aのいずれか一方に到達させてもよい。このような制御は、例えば、切断予定部分60の厚さ方向における中心位置から裏面21又は底面59aのいずれか一方に偏倚させて改質領域7を形成することで可能になる。特に、割れ64を拡張フィルム63側の面に到達させると(加工対象物1の表面3側に拡張フィルム63を貼り付ける場合もある)、拡張フィルム63の拡張による加工対象物1の割断精度をより一層向上させることができる。
なお、「切断予定部分60の厚さ方向における中心位置から加工対象物1の裏面21側に偏倚させて改質領域7を形成する」とは、切断起点領域8を構成する改質領域7が、切断予定部分60の厚さ方向における厚さ(すなわち、裏面21と底面59aとの距離)の半分の位置から裏面21側に偏倚して形成されることを意味する。つまり、切断予定部分60の厚さ方向における改質領域7の幅の中心位置が、切断予定部分60の厚さ方向における中心位置から裏面21側に偏倚して位置している場合を意味し、改質領域7の全ての部分が切断予定部分60の厚さ方向における中心位置に対して裏面21側に位置している場合のみに限る意味ではない。溝59の底面59a側に偏倚させて改質領域7を形成する場合についても同様である。
また、溝形成工程後の加工対象物1において、切断予定部分60の厚さ方向における厚さが比較的厚い場合には、図29に示すように、切断起点領域形成工程おいて、切断予定ライン5に沿って切断予定部分60に改質領域7を複数列形成することが好ましい。これは、拡張フィルム63の拡張により、加工対象物1を切断予定ライン5に沿って容易に切断することが可能になると共に、加工対象物1の積層部73を切断予定ライン5に沿ってより一層精度良く切断することが可能になるからである。
本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の平面図である。 図1に示すII−II線に沿っての断面図である。 本実施形態に係るレーザ加工方法によるレーザ加工後の加工対象物の平面図である。 図3に示すIV−IV線に沿っての断面図である。 図3に示すV−V線に沿っての断面図である。 本実施形態に係るレーザ加工方法により切断された加工対象物の平面図である。 本実施形態に係るレーザ加工方法における電界強度とクラックスポットの大きさとの関係を示すグラフである。 本実施形態に係るレーザ加工方法の第1工程における加工対象物の断面図である。 本実施形態に係るレーザ加工方法の第2工程における加工対象物の断面図である。 本実施形態に係るレーザ加工方法の第3工程における加工対象物の断面図である。 本実施形態に係るレーザ加工方法の第4工程における加工対象物の断面図である。 本実施形態に係るレーザ加工方法により切断されたシリコンウェハの一部における断面の写真を表した図である。 本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 本実施形態に係るレーザ加工方法により溶融処理領域及び微小空洞が形成されたシリコンウェハの断面図である。 本実施形態に係るレーザ加工方法により溶融処理領域及び微小空洞が形成される原理を説明するためのシリコンウェハの断面図である。 本実施形態に係るレーザ加工方法により溶融処理領域及び微小空洞が形成されたシリコンウェハの切断面の写真を表した図である。 第1実施形態に係るレーザ加工方法における加工対象物の平面図である。 図17に示す加工対象物の要部拡大平面図である。 第1実施形態に係るレーザ加工方法における溝形成工程中の状態を示す断面図である。 第1実施形態に係るレーザ加工方法における溝形成工程後の状態を示す断面図である。 第1実施形態に係るレーザ加工方法における切断起点領域形成工程中の状態を示す断面図である。 第1実施形態に係るレーザ加工方法におけるストレス印加工程中の状態を示す断面図である。 第2実施形態に係るレーザ加工方法における加工対象物の平面図である。 図23に示すXXIV−XXIV線に沿っての部分断面図である。 第2実施形態に係るレーザ加工方法における溝形成工程中の状態を示す断面図である。 第2実施形態に係るレーザ加工方法における溝形成工程後の状態を示す断面図である。 第2実施形態に係るレーザ加工方法における切断起点領域形成工程中の状態を示す断面図である。 第2実施形態に係るレーザ加工方法におけるストレス印加工程中の状態を示す断面図である。 切断予定ラインに沿って切断予定部分に改質領域が複数列形成された状態を示す断面図である。
符号の説明
1…加工対象物、3…表面、5…切断予定ライン、7…改質領域、8…切断起点領域、11…シリコンウェハ(半導体基板)、13…溶融処理領域、14…微小空洞、21…裏面、59…溝、59a…底面、60…切断予定部分、63…拡張フィルム(拡張可能部材)、64…割れ、L…レーザ光、P…集光点。

Claims (8)

  1. ウェハ状の加工対象物の一方の面に前記加工対象物の切断予定ラインに沿って溝を形成する工程と、
    前記溝を形成した後、前記加工対象物の他方の面をレーザ光入射面として前記加工対象物の内部に集光点を合わせてレーザ光を照射し、前記加工対象物の内部に改質領域を形成し、この改質領域によって、前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成する工程とを備えることを特徴とするレーザ加工方法。
  2. 前記切断起点領域を形成した後、前記加工対象物において前記切断予定ラインに沿った切断予定部分にストレスを生じさせる工程を更に備えることを特徴とする請求項1記載のレーザ加工方法。
  3. 前記切断予定部分にストレスを生じさせる際には、前記加工対象物の前記一方の面又は前記他方の面に取り付けられた拡張可能部材を拡張させることで、前記切断予定部分にストレスを生じさせることを特徴とする請求項2記載のレーザ加工方法。
  4. 前記加工対象物の前記一方の面に前記拡張可能部材が取り付けられる場合において、前記切断起点領域を形成する際には、前記切断起点領域を起点として前記溝の底面に割れが到達するように前記切断起点領域を形成することを特徴とする請求項3記載のレーザ加工方法。
  5. 前記加工対象物の前記他方の面に前記拡張可能部材が取り付けられる場合において、前記切断起点領域を形成する際には、前記切断起点領域を起点として前記他方の面に割れが到達するように前記切断起点領域を形成することを特徴とする請求項3記載のレーザ加工方法。
  6. 前記加工対象物は半導体基板を有し、前記半導体基板の内部に形成される前記改質領域は溶融処理領域を含むことを特徴とする請求項1〜5のいずれか一項記載のレーザ加工方法。
  7. 前記加工対象物は半導体基板を有し、前記半導体基板の内部に形成される前記改質領域は、溶融処理領域と、その溶融処理領域に対して前記レーザ光入射面の反対側に位置する微小空洞とを含むことを特徴とする請求項1〜5のいずれか一項記載のレーザ加工方法。
  8. ウェハ状の加工対象物の一方の面に前記加工対象物の切断予定ラインに沿って溝を形成する工程と、
    前記溝を形成した後、前記加工対象物の前記一方の面に拡張可能部材を取り付ける工程と、
    前記拡張可能部材を取り付けた後、前記加工対象物の他方の面をレーザ光入射面として前記加工対象物の内部に集光点を合わせてレーザ光を照射し、前記加工対象物の内部に改質領域を形成し、この改質領域によって、前記切断予定ラインに沿って前記レーザ光入射面から所定距離内側に切断起点領域を形成する工程と、
    切断起点領域を形成した後、前記加工対象物の前記一方の面に取り付けられた拡張可能部材を拡張させることで、前記切断予定部分にストレスを生じさ、前記加工対象物を切断予定ラインに沿って切断する工程とを備えることを特徴とするレーザ加工方法。
JP2004157965A 2003-05-29 2004-05-27 レーザ加工方法 Pending JP2005012203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157965A JP2005012203A (ja) 2003-05-29 2004-05-27 レーザ加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003152880 2003-05-29
JP2004157965A JP2005012203A (ja) 2003-05-29 2004-05-27 レーザ加工方法

Publications (1)

Publication Number Publication Date
JP2005012203A true JP2005012203A (ja) 2005-01-13

Family

ID=34106783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157965A Pending JP2005012203A (ja) 2003-05-29 2004-05-27 レーザ加工方法

Country Status (1)

Country Link
JP (1) JP2005012203A (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086509A (ja) * 2004-08-17 2006-03-30 Denso Corp 半導体基板の分断方法
JP2007087973A (ja) * 2005-09-16 2007-04-05 Rohm Co Ltd 窒化物半導体素子の製法およびその方法により得られる窒化物半導体発光素子
JP2007134454A (ja) * 2005-11-09 2007-05-31 Toshiba Corp 半導体装置の製造方法
JP2007235008A (ja) * 2006-03-03 2007-09-13 Denso Corp ウェハの分断方法およびチップ
JP2008078440A (ja) * 2006-09-22 2008-04-03 Dowa Holdings Co Ltd 発光素子及びその製造方法
JP2009290148A (ja) * 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2010239163A (ja) * 2003-07-18 2010-10-21 Hamamatsu Photonics Kk 半導体チップ
JP2012028734A (ja) * 2010-06-24 2012-02-09 Toshiba Mach Co Ltd ダイシング方法
JP2012146724A (ja) * 2011-01-07 2012-08-02 Disco Abrasive Syst Ltd 光デバイスウェーハの加工方法および光デバイス
JP2012199399A (ja) * 2011-03-22 2012-10-18 Panasonic Corp レーザ加工方法及びレーザ加工装置
WO2013039150A1 (ja) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 レーザ加工方法
WO2013039012A1 (ja) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
US20130082358A1 (en) * 2010-03-05 2013-04-04 Disco Corporation Single crystal substrate with multilayer film, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
WO2013141032A1 (ja) * 2012-03-23 2013-09-26 シャープ株式会社 半導体発光素子、半導体発光素子の製造方法、半導体発光装置及び基板
JP2015005558A (ja) * 2013-06-19 2015-01-08 株式会社ディスコ ウエーハの加工方法
JP2015005648A (ja) * 2013-06-21 2015-01-08 株式会社ディスコ ウエーハの加工方法
JP2015207604A (ja) * 2014-04-17 2015-11-19 株式会社ディスコ ウェーハの加工方法
CN106601876A (zh) * 2015-10-19 2017-04-26 映瑞光电科技(上海)有限公司 一种led芯片结构及其制作方法
US20170190000A1 (en) * 2005-09-08 2017-07-06 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2018098379A (ja) * 2016-12-14 2018-06-21 株式会社ディスコ インターポーザの製造方法
WO2018230297A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー 半導体装置およびその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239163A (ja) * 2003-07-18 2010-10-21 Hamamatsu Photonics Kk 半導体チップ
US8852698B2 (en) 2003-07-18 2014-10-07 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
JP2006086509A (ja) * 2004-08-17 2006-03-30 Denso Corp 半導体基板の分断方法
US20170190000A1 (en) * 2005-09-08 2017-07-06 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
JP2007087973A (ja) * 2005-09-16 2007-04-05 Rohm Co Ltd 窒化物半導体素子の製法およびその方法により得られる窒化物半導体発光素子
JP2007134454A (ja) * 2005-11-09 2007-05-31 Toshiba Corp 半導体装置の製造方法
JP2007235008A (ja) * 2006-03-03 2007-09-13 Denso Corp ウェハの分断方法およびチップ
JP2008078440A (ja) * 2006-09-22 2008-04-03 Dowa Holdings Co Ltd 発光素子及びその製造方法
JP2009290148A (ja) * 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd ウエーハの分割方法
US20130082358A1 (en) * 2010-03-05 2013-04-04 Disco Corporation Single crystal substrate with multilayer film, manufacturing method for single crystal substrate with multilayer film, and element manufacturing method
JP2012028734A (ja) * 2010-06-24 2012-02-09 Toshiba Mach Co Ltd ダイシング方法
JP2012146724A (ja) * 2011-01-07 2012-08-02 Disco Abrasive Syst Ltd 光デバイスウェーハの加工方法および光デバイス
JP2012199399A (ja) * 2011-03-22 2012-10-18 Panasonic Corp レーザ加工方法及びレーザ加工装置
WO2013039012A1 (ja) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2013063453A (ja) * 2011-09-16 2013-04-11 Hamamatsu Photonics Kk レーザ加工方法
WO2013039150A1 (ja) * 2011-09-16 2013-03-21 浜松ホトニクス株式会社 レーザ加工方法
TWI594832B (zh) * 2011-09-16 2017-08-11 Hamamatsu Photonics Kk Laser processing method
WO2013141032A1 (ja) * 2012-03-23 2013-09-26 シャープ株式会社 半導体発光素子、半導体発光素子の製造方法、半導体発光装置及び基板
JPWO2013141032A1 (ja) * 2012-03-23 2015-08-03 シャープ株式会社 半導体発光素子、半導体発光素子の製造方法、半導体発光装置及び基板
JP2015005558A (ja) * 2013-06-19 2015-01-08 株式会社ディスコ ウエーハの加工方法
JP2015005648A (ja) * 2013-06-21 2015-01-08 株式会社ディスコ ウエーハの加工方法
JP2015207604A (ja) * 2014-04-17 2015-11-19 株式会社ディスコ ウェーハの加工方法
CN106601876A (zh) * 2015-10-19 2017-04-26 映瑞光电科技(上海)有限公司 一种led芯片结构及其制作方法
JP2018098379A (ja) * 2016-12-14 2018-06-21 株式会社ディスコ インターポーザの製造方法
WO2018230297A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー 半導体装置およびその製造方法
JP2019004053A (ja) * 2017-06-15 2019-01-10 株式会社デンソー 半導体装置およびその製造方法
US11145515B2 (en) 2017-06-15 2021-10-12 Denso Corporation Manufacturing method of semiconductor device with attached film

Similar Documents

Publication Publication Date Title
JP4907984B2 (ja) レーザ加工方法及び半導体チップ
JP4536407B2 (ja) レーザ加工方法及び加工対象物
JP4954653B2 (ja) レーザ加工方法
JP4829781B2 (ja) レーザ加工方法及び半導体チップ
JP5138219B2 (ja) レーザ加工方法
JP4198123B2 (ja) レーザ加工方法
JP4917257B2 (ja) レーザ加工方法
JP4200177B2 (ja) レーザ加工方法及び半導体装置
JP4781661B2 (ja) レーザ加工方法
JP4908652B2 (ja) 切断起点領域が形成された基板
JP4776994B2 (ja) 加工対象物切断方法
JP4907965B2 (ja) レーザ加工方法
JP4762653B2 (ja) レーザ加工方法及びレーザ加工装置
JP2005012203A (ja) レーザ加工方法
JP5322418B2 (ja) レーザ加工方法及びレーザ加工装置
WO2008035679A1 (fr) Procédé de traitement au laser et appareil de traitement au laser
JP5177992B2 (ja) 加工対象物切断方法
JP5122161B2 (ja) 加工対象物切断方法
JP2004351477A (ja) レーザ加工方法