WO2005070972A1 - Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung - Google Patents

Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2005070972A1
WO2005070972A1 PCT/EP2005/000595 EP2005000595W WO2005070972A1 WO 2005070972 A1 WO2005070972 A1 WO 2005070972A1 EP 2005000595 W EP2005000595 W EP 2005000595W WO 2005070972 A1 WO2005070972 A1 WO 2005070972A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
conductive polymer
product
conductivity
stage
Prior art date
Application number
PCT/EP2005/000595
Other languages
English (en)
French (fr)
Inventor
Bernhard Wessling
Original Assignee
Ormecon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ormecon Gmbh filed Critical Ormecon Gmbh
Priority to KR1020067015215A priority Critical patent/KR101138295B1/ko
Priority to CA002553467A priority patent/CA2553467A1/en
Priority to JP2006550052A priority patent/JP5236879B2/ja
Priority to EP05706959.3A priority patent/EP1706431B1/de
Priority to US10/597,170 priority patent/US7683124B2/en
Publication of WO2005070972A1 publication Critical patent/WO2005070972A1/de
Priority to US12/701,111 priority patent/US8344062B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a stable dispersion which contains particles of intrinsically conductive polymers, a process for the production thereof and the use thereof for the production of moldings, films or coatings.
  • Conductive polymers which are also called “intrinsically conductive polymers” or “organic metals”, are substances which are composed of low molecular weight compounds (monomers) and which are at least oligomeric by polymerization, ie contain at least 3 monomer units which are bound by chemical bonding are linked, have a conjugated ⁇ -electron system in the neutral (non-conductive) state and can be converted into an ionic form which is conductive by oxidation, reduction or protonation (which is often referred to as "doping").
  • the conductivity is at least 1 (AS / cm.
  • doping by oxidation iodine, peroxides, Lewis and protonic acids or in the case of doping by reduction, for example sodium, potassium, calcium are used as doping agents.
  • Conductive polymers can be chemically extraordinary. be composed differently. Examples of monomers are acetylene, benzene, naphthalene, pyrrpl, aniline ⁇ thiophene, phenylene sulfide, peri-naphthalene and others, and also their derivatives, such as sulfo-aniline, ethylenedioxythiophene, thienothiophene and others, and their alkyl or alkoxy Derivatives or derivatives with other side groups, such as sulfonate, phenyl and other side groups, have proven successful. Combinations of the above monomers can also be used as the monomer.
  • aniline and phenylene sulfide are linked and these AB dimers are then used as monomers.
  • pyrrole, thiophene or alkylthiophenes, ethylenedioxythiophene, thienothiophene, aniline, phenylene sulfide and. others joined together to form AB structures and these are then converted into oligomers or polymers.
  • two or more, e.g. B. three different monomers are polymerized together.
  • the transition from the state of a non-metallic to an at least partially metallic conductor was brought about by a one-stage rubbing or dispersion process after the synthesis of the intrinsically conductive polymer was completed, the process engineering basis of which is described in EP-A-0 700 573.
  • the dispersion process also increases the conductivity without significantly changing the chemical composition of the conductive polymer used.
  • the procedure is, for example, that aniline is polymerized in aqueous hydrochloric acid, the chloride salt of the protonated polyaniline being formed. This is neutralized with a strong base, eg ammonia, to remove HCl. This gives the so-called emeraldine base. This is dissolved with camphor sulfonic acid in the presence of the toxic m-cresol in xylene or chloroform. A film is then cast from this solution, which is then stretched. After stretching, a conductivity of. some 10 2 S / cm.
  • camphorsulfonic acid is considered the doping agent of choice.
  • the above-mentioned dispersion process of EP-A-0 700 573 which does not have these disadvantages, has likewise not proven to be the optimal solution for commercially providing end products with a conductivity of significantly more than 100 S / cm.
  • the end product is preferably a thermoplastic polymer blend that only has a concentration of conductive polymer of generally just under 40%. Further processing into products, e.g. Layers which either consist predominantly of the conductive polymer or contain any matrix with any concentration (in accordance with the requirements for the product to be produced with it) are therefore not possible.
  • a stable dispersion which contains particles of at least one intrinsically conductive polymer, the average particle size (weight) being less than 1 ⁇ m, and which is characterized in that the dispersant is a liquid at room temperature and a formed from this dispersion Layer, film or plate has a conductivity of> 100 S / cm after removal of the dispersant.
  • the invention further relates to a method for producing the above-mentioned dispersion, in which order
  • an intrinsically conductive polymer is produced from monomers, the temperature being regulated during the polymerization so that it does not rise above 5 ° C. above the starting temperature,
  • step (b) the product from step (a) is rubbed and / or dispersed in the presence of a non-electrically conductive, non-polymeric polar substance which is inert to the conductive polymer using sufficient shear forces, the weight ratio between the conductive polymer and the polar substance 2: 1 to 1:10,
  • step (c) the product from step (b) is dispersed in a dispersant, the weight ratio between the conductive polymer and the dispersant being less than 1:10.
  • the invention also relates to the use of a dispersion as mentioned above or as obtained by the process mentioned above for the production of moldings, self-supporting films or coatings with electrical conductivity.
  • the success achieved according to the invention can be regarded as surprising in particular because, in general, a dispersion process is harmful to the conductivity of the polymer is seen. This is because most experts suspect that the chains of the conductive polymers are broken during dispersion, so that the electron conduction (along these chains) is deteriorated. For this reason, as stated above in relation to the prior art, they strive to produce real solutions of conductive polymers. In addition, the use of dispersants and additives is generally considered to be disadvantageous, since they could increase and strengthen the barriers for the transport of the electrons. In the process according to the invention, two dispersion steps have now even been proposed.
  • the dispersions according to the invention also have the advantage that they are stable. Stable dispersions according to the invention therefore do not have to be processed immediately after their production or at least after a short time. B. over several hours, e.g. B. 5 - 10 hours, or days, e.g. B. 1-3 days or 4-6 days, or weeks, e.g. B. more than a week to several months, e.g. B. stored for more than 1 month, preferably more than 3 months.
  • the above information on storage relates to ambient conditions.
  • Examples of intrinsically conductive polymers according to the invention are those mentioned at the beginning of this description.
  • dispersible, intrinsically conductive polymer preferably polyaniline
  • dispersible, intrinsically conductive polymer is generally prepared according to the regulations of EP-A-0 329 768.
  • EP-A-0 329 768 In particular, reference is made to the definitions used in EP-A-0 329 768. These also apply here in connection with the implementation of stage (a) of the method according to the invention.
  • the temperature is preferably controlled in stage (a) of the process according to the invention, that is to say during the polymerization, so that, not only as required in EP-A-0 329 768, the temperature during the polymerization does not exceed a value of more than 5 ° C increases above the starting temperature, but the rate of temperature rise at no time during the polymerization is more than 1 K / minute.
  • the reaction is preferably carried out in such a way that the temperature rise is ⁇ 0.5 ° C., the speed of the temperature rise never exceeding 0.2 ° K / min. is.
  • the (intermediate) products obtained according to the invention after stage (a) generally have a conductivity of about 5 S / cm.
  • the intermediates from stage (a) are generally obtained as a powder, 80% by weight of the primary particles being less than 500 nm and no more than 20% by weight of these being aggregated to aggregates of more than 1 ⁇ m.
  • the light microscopic examination is carried out by dispersing the solid according to the invention directly or as a concentrate in a test polymer using an internal mixer.
  • PCL or PVC are suitable as test polymers.
  • the concentration of the substance to be dispersed is usually 0.5% by weight.
  • the mixture is pressed out into a thin film.
  • One recognizes with raw materials according to the invention a uniformly strongly colored, semi-transparent substance; the color comes from. the dispersed primary particles.
  • undispersed particles of 0.5-1 ⁇ m as well as individual coarser particles can be seen in some cases.
  • the polymer is dispersed in stage (b) of the process according to the invention in the presence of a non-polymeric polar substance or triturated with it.
  • the polar substance (which could also be called a "dispersion aid") has the following properties:
  • Solid barium sulfate; Titanium dioxide, in particular ultrafine titanium dioxide with a grain size of less than 300 nm; organic pigments such as Pigment Yellow 18; b) inert solvents: water, DMF, DMSO, ⁇ -butyrolactone, NMP and other pyrrolidone derivatives, dioxane, THF;
  • the dispersion or the rubbing on with the polar material can generally be carried out in dispersing devices such as high-speed mixers (e.g. so-called fluid mixers) or under ultrasound, in a ball mill, bead mill, a two- or three-roll mill or a high-pressure dispersing device (type Microfluidics).
  • dispersing devices such as high-speed mixers (e.g. so-called fluid mixers) or under ultrasound, in a ball mill, bead mill, a two- or three-roll mill or a high-pressure dispersing device (type Microfluidics).
  • the processing time is at least 3 minutes.
  • a longer treatment time e.g. of at least 30 minutes.
  • the simultaneous application of an electrical field, in particular an alternating electrical field with frequencies between 10 kHz and 10 GHz, can be advantageous; in this case, more than 24 hours are usually required.
  • the polar, non-conductive substance which is inert towards the intrinsically conductive polymer is added in such an amount that there is a weight ratio of 2: 1 to 1:10 between the conductive polymer powder and the polar substance.
  • At least one non-conductive polymer in particular a thermoplastic polymer, is present when step (b) is carried out.
  • a thermoplastic polymer for example, polyethylene terephthalate copolymer, commercially available from Eastman Kodak or from Degussa, or a polyethylene methacrylate (PMMA) from Degussa can be used.
  • PMMA polyethylene methacrylate
  • the presence of the thermoplastic polymer requires the dispersion to be carried out under high shear and at temperatures above 50 ° C., for example at temperatures between 50 and 200 ° C. or between 70 and 120 ° C., for example at about 90 ° C.
  • a solid mixture is then obtained, a polymer blend which contains between 20 and 60% by weight, preferably about 35% by weight, of conductive polymer, based on the constituents of the product composition from step (b) which are solid at room temperature the conductive polymer, the polar substance and, if appropriate, further non-conductive polymer.
  • the conductive polymer generally has conductivities around 60 S / cm after step (b).
  • step (b) the added polar, inert and non-conductive substance or the likewise present non-conductive polymer can be partially or almost completely removed by washing or extracting.
  • This after-treatment step is preferably carried out after the. Completion of stage (b) as described in the previous paragraph. Alternatively / can the post-treatment already begin during stage (b).
  • the aftertreatment which could also be called the conditioning of the product from stage (b) for the subsequent dispersion stage (c), has the purpose of preparing (conditioning) the product from stage (b) for the subsequent dispersion stage (c).
  • a wide variety of substances can be used for washing or extracting, e.g. Aromatics, alcohols, esters, ethers, ketones, e.g. ylol, toluene, ethanol, isopropanol, chlorobenzene, diisopropylethe and the like.
  • Solvents and auxiliaries which support the subsequent dispersion stage (c) can also be added. This can e.g. Xylene or chlorobenzene and dodecylbenzenesulfonic acid (DBSH).
  • the proportion of the conductive polymer in the product is preferably increased by at least 5% by weight, preferably 10% by weight, in particular 20% by weight. % elevated.
  • work can continue without reducing or removing the polar material or the thermoplastic polymer, for example if the further processing and use of the conductive polymers are not disturbed by the presence of the added substance.
  • the conductivity of the polymer powder is not affected by the presence of the polar substance or the thermoplastic polymer.
  • Preferred concentrations of conductive polymer which are achieved after step (b) ' and aftertreatment are between 45 and 99% by weight, preferably 55 to 70% by weight, based on the total composition.
  • the product from stage (b) can be a moist paste with a relatively high proportion of solvent or auxiliary, which was used in the aftertreatment. It is therefore not essential to the invention to remove substances used during the aftertreatment as far as possible before carrying out step (c) of the process according to the invention, but this can be advantageous in industrial practice.
  • Stage (c) of the process according to the invention is a dispersion in an organic or aqueous medium.
  • Dispersant takes place and is generally carried out at room temperature or only slightly different temperature.
  • Particularly suitable machines for dispersion are machines that are capable of introducing high dispersion energy into the system. This can e.g. B. Systems such as Ultraturrax, disolver, bead mills, ball mills, high-pressure dispersion apparatus such as those of the Microfluidics type, or ultrasound systems.
  • Particularly suitable dispersants are those solvents which have a surface tension of at least 25 mN / m.
  • the dispersants according to the invention are liquid at room temperature and in particular have relative viscosities of ⁇ 10,000, e.g. ⁇ 5,000, and especially ⁇ 1,000.
  • dispersants according to the invention are xylene, chlorophenol, dichloroacetic acid, N-methylpyrrolidone, dimethyl sulfoxide, octanol, or benzyl alcohol or higher alcohols, z.
  • B. C 9 - C 2 ⁇ alcohols of paraffinic or aromatic nature, or mixtures thereof.
  • the dispersing agent (s) are added to the product from stage (b) of the process according to the invention in such an amount that, based on the intrinsically conductive polymer, there is an excess (weight ratio) of dispersing agent.
  • the weight ratio between the conductive polymer and the dispersant is less than 1:10, preferably less than 1:15, e.g. 1:18.
  • the product of step (c) is generally a highly viscous paste or a liquid, low-viscosity dispersion with a concentration of the conductive polymer of generally not more than about 10% by weight, based on the total dispersion.
  • the dispersion obtained after stage (c) preferably contains small proportions of the polar substances and non-conductive polymers used in stage (b), depending on the extent of the conditioning.
  • auxiliaries and additives can be added after stage (c) or alternatively during stage (c).
  • This can e.g. Viscosity regulators, wetting aids, matrix polymers such as paint binders, film-forming substances, stabilizers, crosslinking aids, evaporation regulators such as evaporation accelerators or evaporation inhibitors or other auxiliaries and additives.
  • a stable dispersion is then obtained which contains all the components which are helpful or decisive for the further shaping and the properties of the product.
  • the dispersion obtained after step (c), including aftertreatment and formulation, can then, if appropriate after carrying out further further dispersion and aftertreatment steps, for the production of moldings, self-supporting films or coatings of various layer thicknesses with electrical conductivity can be used (shaping).
  • Shaping can be done by a number of methods such as dipping, wetting by dripping, spraying, spin coating, printing (e.g. screen printing, offset printing, ink jet, etc.), extruding, casting, knife coating, electrospinning, and others. Shaping by dipping, pouring, drip wetting, spin coating or printing is particularly preferred.
  • the layers, coatings, foils, plates or other moldings or components thus obtained have a conductivity of> 100 S / cm after removal of the dispersant, preferably at least 200 S / cm, e.g. B. greater than 250 S / cm, in particular at least 500 S / cm, z. 200 to 200,000 S / cm, 200 to 20,000 S / cm or 500 to 10,000 S / cm, e.g. 300 to 3,000 or 500 to 1000 S / cm.
  • the "raw" powder from stage (a) normally shows no peak or only very weak intensity there, the polyaniline after the first rubbing / dispersing operation according to stage (b) shows at least a clear reflection, but this is in comparison to the peak at about 19 ° weaker.
  • the shaping or further processing can produce antistatic or conductive coatings, transparent and non-transparent electrodes, lacquers which are suitable for EMI shielding, contacts in electronics or "source”, “drain” or “gate” in field effect transistors, as well as antennas, resonant circuits, logic circuits, conductors or counterpoles in capacitors, electrolytic capacitors or so-called “supercapacitors” and many functions such as those that are performed in conventional electrical engineering and electronics by conventional metals, highly doped semiconductors of the electrodes or redox-active layers will meet.
  • the articles which are accessible by drying or by carrying out one of the shaping processes described above and which contain the conductive polymer obtainable from the dispersion according to the invention are an embodiment of the invention.
  • the above items consist essentially of the conductive polymer.
  • thermoelectric effect as a temperature sensor (IR absorption) or in thermovoltaic energy conversion, as sensors, as indicators, e.g. by electroctiromism, microwave absorption, thermoelectric force etc., in electrolysis or electrosynthesis processes as electrocatalytic electrodes (e.g.
  • the cooling required for temperature control was obtained with cooling rates of at least 0.02 K / min, preferably 0.05 K / min.
  • the cooling rates were determined by measuring the temperature change with activated cooling on the reactors used in each case, without the reaction being started.
  • Polyaniline as prepared in Example 1 was intensively dispersed as a dry powder with the substances used in the table below in the ratio given in a laboratory high-speed mixer for 3 minutes.
  • Example 1 The powder obtained according to Example 1 was dispersed in a laboratory kneader with PMMA in the melt at 90 ° C. A polyaniline concentration of approximately 40% by weight, based on the blend of polyaniline and polymethylene ethacrylate, was used.
  • the polymer blend After cooling, the polymer blend usually shows a conductivity of 60 (+/- 20) S / cm.
  • Example 6 10 g of paste from Example 4 were diluted with 10 g of dichloroacetic acid and 10 g of dichloromethane with stirring and applied to a glass substrate in a spin coating system at a speed of 1500 rpm. After drying, there was a layer thickness of 150 nm with a conductivity of 220 S / cm.
  • Example 6 post-treatment / conditioning
  • Example 2 50 g of a predispersion from Example 2 were washed in a glass flask with 300 ml of chlorobenzene for 10 minutes. The mixture was filtered. A moist residue with a solids content of 40% by weight and a calculated polyaniline concentration of approx. 0.15% by weight was obtained.
  • Example 7 The dispersion from Example 7 was diluted with 10 ml of chlorophenol and 8 ml of this was poured into a petri dish.
  • the dispersion from Example 7 was diluted with 10 ml of chlorophenol and 8 ml of this was poured into a petri dish.
  • the dish was dried at a temperature of 50 ° C for 6 hours.
  • the result was a self-supporting film with a layer thickness of 25 ⁇ m and a conductivity of 540 S / cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die Erfindung betrifft eine Dispersion, die Teilchen mindestens eines intrinsisch leitfähigen Polymers enthält, wobei die Teilchengröße im Mittel (Gewicht) weniger als 1 µm beträgt, und die dadurch gekennzeichnet ist, dass das Dispersionsmittel bei Raumtemperatur eine Flüssigkeit ist und eine aus dieser Dispersion gebildete Schicht, Folie oder Platte nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm aufweist. Die Erfindung betrifft auch ein Verfahren zur Herstellung dieser Dispersion.

Description

Dispersionen intrinsisch leitfähiger Polymere und Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft eine stabile Dispersion, die Teilchen intrinsisch leitfähiger Polymere enthält, ein Verfahren zur Herstellung derselben sowie deren Verwendung zur Herstellung von Formteilen, Folien oder Beschichtungen.
Als leitfähige Polymere, die auch "intrinsisch leitfähige Polymere" bzw. "organische Metalle" genannt werden, bezeichnet man Stoffe, die aus niedermolekularen Verbindungen (Monomeren) aufgebaut sind, durch Polymerisation mindestens oligomer sind, also mindestens 3 Monomereinheiten enthalten, die durch chemische Bindung verknüpft sind, im neutralen (nicht leitfähigen) Zustand ein konjugiertes π-Elektronensystem aufweisen und durch Oxida- tion, Reduktion oder Protonierung (was oftmals als "dotieren" bezeichnet wird) in eine ionische Form überführt werden können, die leitfähig ist. Die Leitfähigkeit beträgt mindestens 1(A S/cm. Als Dotierungsmittel werden im Falle der Dotierung durch Oxidation z.B. Jod, Peroxide, Lewis- und Protonensäuren oder im Falle der Dotierung durch Reduktion z.B. Natrium, Kalium, Calcium eingesetzt.
Leitfähige Polymere können chemisch außerordentlich . unterschiedlich zusammengesetzt sein. Als Monomere haben sich z.B. Acetylen, Benzol, Napthalin, Pyrrpl, Anilin^ Thiophen, Phenylen- sulfid, peri-Naphthalin und andere, sowie deren Derivate, wie Sulfo-Anilin, Ethylendioxythiophen, Thieno-thiophen und andere, sowie deren Alkyl- oder Alkoxy-Derivate oder Derivate mit anderen Seitengruppen, wie Sulfonat-, Phenyl- und andere Seitengruppen, bewährt. Es können auch Kombinationen der oben genannten Monomere als Monomer eingesetzt werden. Dabei werden z.B. Anilin und Phenylensulfid verknüpft und diese A-B-Dimere dann als Monomere eingesetzt. Je nach Zielsetzung können z.B. Pyrrol, Thiophen oder Alkylthiophene, Ethylendioxythiophen, Thieno-thiophen, Anilin, Phenylensulfid und. andere miteinander zu A-B-Strukturen verbunden und diese dann zu Oligomeren oder Polymeren umgesetzt werden. Alternativ können auch zwei oder mehr, z. B. drei verschiedene Monomere gemeinsam polymerisiert werden.
Die meisten leitfähigen Polymere weisen einen mehr oder weniger starken Anstieg der Leitfähigkeit mit steigender Temperatur auf, was sie als nicht-metallische Leiter ausweist. Einige wenige Vertreter dieser Stoffklasse zeigen zumindest in einem Temperaturbereich nahe Raumtemperatur ein metallisches Verhalten insofern, als die Leitfähigkeit mit steigender Temperatur sinkt. Eine weitere Methode, metallisches Verb_alten zu erkennen, besteht in der Auftragung der sogenannten "reduzierten Aktivierungsenergie" der Leitfähigkeit gegen die Temperatur bei niedrigen Temperaturen (bis nahe 0 K) . Leiter mit einem metallischen Beitrag zur Leitfähigkeit zeigen eine positive Steigung der Kurve bei niedriger Temperatur. Solche Stoffe bezeichnet man als "organische Metalle" . Ein solches organisches Metall ist von Weßling et al . in Eur. Phys. J. E 2, 2000, 207-210 beschrieben worden. Dabei wurde der Übergang vom Zustand eines nicht-metallischen zu einem zumindest teilweise metallischen Leiter durch einen einstufigen Reib- bzw. Dispersionsvorgang nach vollendeter Synthese des intrinsisch leitfähigen Polymers bewirkt, dessen verfahrenstechnische Grundlage in der EP-A-0 700 573 beschrieben wird. Hierbei wird durch den Dispersionsvorgang auch die Leitfähigkeit erhöht, ohne dass die chemische Zusammensetzung des verwendeten leitfahigen Polymeren wesentlich verändert wurde.
Dem Stand der Technik sind zahlreiche Bemühungen zu entnehmen, die Leitfähigkeit deutlich zu erhöhen. Während normalerweise ein Leitfähigkeitsbereich von um und unter 5 S/cm nach der Synthese erreicht wird, erzielt man durch verschiedene Vorgehensweisen Werte von einigen 10, gelegentlich auch einigen 100 S/cm. Leitfähigkeitswerte von einigen 1.000 oder 10.000 S/cm, wie sie von Naarmann und Theophilou in Synthet. Met., 22, 1 (1987) vor 15 Jahren mit Polyacetylen aufgrund eines speziellen Polymerisationsverfahrens und anschließendem Verstrecken erreicht wurden, konnten mit anderen leitfähigen PolymerSystemen bisher nicht erreicht werden. Das Verfahren von Naarmann et al. weist allerdings den Nachteil auf, dass es schwer durchzuführen und schwer zu reproduzieren ist. Außerdem führt es zu einem Produkt, das nicht luft- und oxidationsstabil und außerdem nicht weiter- verarbeitbar ist.
Abgesehen von dem oben erwähnten einstufigen Verfahren der EP-A- 0 700 573 sind die Verfahren des Standes der Technik dadurch gekennzeichnet, daß ausgewählte Dotierungsmittel oder ausgewählte Kombinationen von Dotierungsmitteln verwendet werden oftmals gefolgt von einem Verstrecken des gewonnenen Produktes. Einen guten Überblick über diese Verfahren geben neben Synthetic Metal (Special Issue, Vol. 65, Nos. 2-3, August 1994) auch die Beiträge von Epstein et al. und Heeger et al. (Handbook of Conductive Polymers, Skotheim, Eisenbanner, Reynolds (Hrsg.), M. Dekker, N.Y. 1998) . Fig 3.2 in Kohlman u. Epstein im soeben genannten Handbuch gibt einen sehr guten Überblick über die bisher erzielten Leitfähigkeitswerte, wobei die höheren Werte um 102 S/cm gener-ell erst nach Verstrecken einer aus dem intrinsich leitfähigen Polymer hergestellten Folie oder Faser erreicht werden.
Im Falle des Polyanilins geht man dabei z.B. so vor, daß man Anilin in wäßriger Salzsäure polymerisiert, wobei das Chlorid- Salz des protonierten Polyanilins entsteht. Dieses wird mittels einer starken Base, z.B. Ammoniak, zur Entfernung von HCl neutralisiert. Man erhält dadurch die sogenannte Emeraldinbase. Diese wird mit Kamphersulfonsäure in Gegenwart des giftigen m- Kresols in Xylol oder Chloroform gelöst. Anschließend wird aus dieser Lösung ein Film gegossen, der danach verstreckt wird. Nach dem Verstrecken erhält man eine Leitfähigkeit von. einigen 102 S/cm.
Dieses als Sekundär-Dotierung ("secondary doping") bezeichnete Verfahren, siehe Mac Diarid und Epstein, Synth. Met. (Special Issue) Vol. 65, Nos. 2-3, August 1994, S. 103-116, wird in zahlreichen Varianten durchgeführt, u.a. in Arbeiten von Holland, Monkman et al. J. Phys . Condens . Matter 8 (1996), 2991- 3002 oder Dufour, Pron et al . , Synth. Met. (2003), No . 133-136, S. 63-68, wobei die Säure und das Sekundär-Dotierungsmittel ("secondary dopant") variiert werden. Mattes et al - , US-A- 6 123 883, haben in weiteren Varianten dieses Verfahrens Fasern erzeugt, die nach Verstrecken ebenfalls eine Leitfähigkeit von einigen 102 S/cm aufweisen.
Der oben erörterte Stand der Technik zeigt, dass Kamphersulfonsäure als das Dotierungsagens der Wahl angesehen wird .
Ebenso wird klar, daß die Mehrheit der Forscher echte Lösungen von leitfähigen Polymeren herzustellen versucht und anstrebt, die Kristallinität nach Entfernung des Lösungsmittels zu maximieren. Angesichts der zahlreichen Veröffentlichungen ist es erstaunlich, daß keine Produkte mit diesen Leitfähigkeits-Eigenschaften kommerziell erhältlich sind. Dies liegt vor allem, daran, daß die Leitfähigkeit nicht ausreichend reproduzierbar ist, aber auch daran, dass giftige Lösungsmittel bzw. Dispergiermittel verwendet werden müssen und dass das Produkt noch verstreckt werden muß .
Das oben erwähnte Dispersionsverfahren der EP-A-0 700 573, das diese Nachteile nicht aufweist, hat sich jedoch ebenfalls nicht als optimale Lösung erwiesen, Endprodukte mit einer Leitfähigkeit von deutlich mehr als 100 S/cm kommerziell bereitzustellen. Hinzu kommt, dass das Endprodukt bevorzugt ein thermoplastisches Polymerblend ist, das nur eine Konzentration an leitfähigem Polymer von in der Regel knapp unter 40 % aufweist. Die weitere Verarbeitung zu Produkten, z.B. Schichten, die entweder vorwiegend aus dem leitfähigen Polymer bestehen oder eine beliebige Matrix mit einer beliebigen Konzentration (entsprechend den Anforderungen an das damit herzustellende Produkt) enthalten, ist daher nicht möglich.
Es besteht daher nach wie vor die Aufgabe, ein Verfahren bereitzustellen, mit dem intrinsisch leitfähige Polymere sowie Produkte, die diese enthalten, hergestellt werden können, in denen das leitfähige Polymer eine hohe Leitfähigkeit (> 102 S/cm) ohne vorheriges Verstrecken aufweist, und mit dem eine nahezu unbeschränkte Formulierungsfreiheit besteht, so dass Substrate unterschiedlichster Natur und Form mit einem solchen leitfähigen Polymer beschichtet werden können bzw. Produkte unterschiedlichster Form und Zusammensetzung aus diesem hergestellt werden können.
Die obigen Aufgaben werden erfindungsgemäß durch eine stabile Dispersion gelöst, die Teilchen mindestens eines intrinsisch leitfähigen Polymers enthält, wobei die Teilchengröße im Mittel (Gewicht) weniger als 1 um beträgt, und die dadurch gekennzeichnet ist, dass das Dispersionsmittel bei Raumtemperatur eine Flüssigkeit ist und eine aus dieser Dispersion gebildete Schicht, Folie oder Platte nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm aufweist.
Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung der vorstehend genannten Dispersion, bei dem in dieser Reihenfolge
(a) aus Monomeren ein intrinsisch leitfähiges Polymer hergestellt wird, wobei die Temperatur während der Polymerisation so geregelt wird, dass sie niclrt über einen Wert von mehr als 5 °C oberhalb der Start"temperatur ansteigt,
(b) das Produkt aus Stufe (a) in Gegenwart eines gegenüber dem leitfähigen Polymer inerten, nicht elektrisch leitfähigen, nicht-polymeren polaren Stoffes unter Anwendung ausreichender Scherkräfte aufgerieben und/oder dispergiert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem polaren Stoff 2:1 bis 1:10 beträgt,
(c) das Produkt aus Stufe (b) in einem Dispersionsmittel dispergiert wird, wobei das GewichtsVerhältnis zwischen dem leitfähigen Polymer und dem Dispersionsmittel kleiner als 1 : 10 ist.
Gegenstand der Erfindung ist auch die Verwendung einer Dispersion wie vorstehend genannt bzw. wie nach cLem vorstehend genannten Verfahren erhalten zur Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit .
Weitere bevorzugte Ausführungsformen der vorliegenden Erfindung ergeben sich aus den abhängigen Patentansprüchen.
Der erfindungsgemäß erreichte Erfolg ist insbesondere deshalb als überraschend anzusehen, weil im Allgemeinen, ein Disper- giervorgang als schädlich für die Leitfähigkeit des Polymers angesehen wird. Denn die meisten Fachleute vermuten, dass die Ketten der leitfähigen Polymere bei der Dispergierung zerrissen werden, sodass die Elektronenleitung (entlang dieser Ketten) verschlechtert wird. Deshalb wird von ihnen wie oben zum Stand der Technik ausgeführt angestrebt, echte Lösungen von leitfähigen Polymeren herzustellen. Daneben wird auch die Verwendung von Dispergiermitteln und Zusatzstoffen im Allgemeinen als nachteilig angesehen, da sie die Barrieren für den Transport der Elektronen erhöhen und verstärken könnten. Bei dem erfindungsgemäßen Verfahren wurden nun sogar zwei Dispergierschritte vorgeschlagen.
Ferner ist es als überraschend anzusehen, dass bei dem erfindungsgemäßen Verfahren nach der ersten Dispergierstufe (Stufe (b) ) nicht unbedingt eine vollständige Entfernung des gegebenenfalls vorhandenen nicht-leitenden Polymers notwendig ist, wie nachstehend näher erläutert wird.
Die erfindungsgemäßen Dispersionen weisen ferner den Vorteil auf, dass sie stabil sind. Stabile erfindungsgemäße Dispersionen müssen daher nach ihrer Herstellung nicht sofort oder zumindest nach kurzer Zeit weiterverarbeitet werden, sondern können über längere Zeit, z. B. über mehrere Stunden, z. B. 5 - 10 Stunden, oder Tage, z. B. 1 - 3 Tage oder 4 - 6 Tage, oder Wochen, z. B. mehr als eine Woche bis zu mehreren Monaten, z. B. mehr als 1 Monat, vorzugsweise mehr als 3 Monate gelagert werden. Die vorstehenden Angaben zur Lagerung beziehen sich auf Umgebungsbedingungen.
Beispiele für erfindungsgemäß intrinsisch leitfähige Polymere sind die eingangs dieser Beschreibung genannten. Insbesondere können als Beispiele genannt werden: Polyanilin (PAni) , Poly- thiophen (PTh) , Poly (3, 4-ethylendioxyth.iphene) (PEDT) , Poly- diacetylen, Polyacetylen (PAc) , Polypyrrol (PPy) , Polyiso- thianaphthen (PITN) , Polyheteroarylenvinylen (PArV) , wobei die Heteroarylen-Gruppe z.B. Thiophen, Furan oder Pyrrol sein kann, Poly-p-phenylen (PpP) , Polyphenylensulfid (PPS) , Polyperinaph- thalin (PPN) , Polyphthalocyanin (PPc) u.a., sowie deren Derivate (die z.B. aus mit Seitenketten oder -gruppen. substituierten Monomeren gebildet werden) , deren Copolymere und deren physikalische Mischungen. Besonders bevorzugt sind Polyanilin (PAni) , Polythiophen (PTh) , Poly (3, 4-ethylendioxythiophene) (PEDT) , Po- lythieno-thiophen (PTT) und deren Derivate. An meisten bevorzugt ist Polyanilin.
In Stufe (a) des erfindungsgemäßen Verfahrens wird im Allgemeinen nach den Vorschriften der EP-A-0 329 768 disper- gierbares, intrinsisch leitfähiges Polymer, vorzugsweise Polyanilin, hergestellt. Insbesondere wird auf die in der EP-A-0 329 768 verwendeten Definitionen Bezug genommen. Diese gelten auch hierin im Zusammenhang mit der Durchführung von Stufe (a) des erfindungsgemäßen Verfahrens.
Vorzugsweise erfolgt die Steuerung der Temperatur in Stufe (a) des erfindungsgemäßen Verfahrens, also während der Polymerisation, so, dass nicht nur wie in der EP-A-0 329 768 gefordert die Temperatur während der Polymerisation nicht über einen Wert von mehr als 5 °C oberhalb der Starttemperatur ansteigt, sondern auch die Geschwindigkeit des Temperaturanstiegs zu keiner Zeit während der Polymerisation mehr als 1 K/Minute beträgt. Bevorzugt ist die Führung der Reaktion so, dass der Temperaturanstieg ^n- < 0,5 °C ist, wobei die Geschwindigkeit des Temperaturanstieges zu keiner Zeit mehr als 0,2 °K/min. beträgt.
Die erfindungsgemäß nach Stufe (a) erhaltenen (Zwischen-) Produkte weisen im Allgemeinen eine Leitfähigkeit von etwa 5 S/cm auf.
Die Zwischenprodukte aus Stufe (a) fallen im Allgemeinen als Pulver an, wobei 80 Gew.-% der Primärteilchen kleiner als 500 nm sind und wobei diese zu nicht mehr als 20 Gew.-% zu Aggregaten von mehr als 1 um aggregiert sind. Dies kann man rasterelek- tronenmikroskopischen Aufnahmen am getrockneten Feststoff und lichtmikroskopischen Untersuchungen von Dispersionen in Polymer- blends entnehmen. Die lichtmikroskopische Untersuchung erfolgt, indem der erfindungsgemäße Feststoff direkt oder als Konzentrat mit Hilfe eines Innenmischers in einem Testpolymer dispergiert wird . Als Testpolymere eignen sich PCL oder PVC. Die Konzentration des zu dis- pergierenden Stoffs beträgt üblicherweise 0,5 Gew.-%. Die Mischung wird zu einem dünnen Film ausgepreßt. Man erkennt bei erfindungsgemäßen Rohstoffen eine gleichmäßig stark gefärbte, semi-transparente Substanz; die Färbung rührt von. den disper- gierten Primärteilchen her. Zusätzlich erkennt man in einigen Fällen undispergierte Teilchen von 0,5-1 um sowie einzelne gröbere Teilchen.
Nach Polymerisation und Aufarbeitung - wobei es nicht wesentlich ist, ob das erhaltene Polymer bereits vollständig- trocken ist oder nicht - wird das Polymer in Stufe (b) des erfindungsgemäßen Verfahrens in Gegenwart eines nicht-polymeren polaren Stoffes dispergiert bzw. mit diesem verrieben. Dabei hat der polare Stoff (der auch als "Dispersionshilfsstoff" bezeichnet werden könnte) folgende Eigenschaften:
> er hat eine Oberflächenspannung von mehr als 30 dyn/cm,
> er ist nicht elektrisch leitfähig (d.h. er weist eine elektrische Leitfähigkeit von weniger als 10~s S/cm auf) ,
> er kann flüssig oder fest sein,
> er wirkt gegenüber dem eingesetzten leitfähigen Polymer inert, d.h. geht keine nennenswerten chemischen Reaktionen mit ihm ein; vor allem sind oxidative oder reduktive sowie Säure-Base-Reaktionen nicht erwünscht,
> er ist unter gewöhnlichen Bedingungen nicht unbedingt ein Dispersionshilfsmittel und fällt nicht unter die Stoffklasse der Tenside.
Beispiele für solche polaren Stoffe sind
a) Festkörper: Bariumsulfat; Titandioxid, insbesondere ultrafeines Titandioxid mit einer Korngröße von weniger als 300 nm; organische Pigmente wie Pigment Gelb 18; b) inerte Lösungsmittel: Wasser, DMF, DMSO, γ-Butyrolacton, NMP und andere Pyrrolidon-Derivate, Dioxan, THF;
wobei diese Aufzählung beispielhaft und keineswegs limitierend ist.
Die Dispergierung bzw. das Aufreiben mit dem polaren Stoff kann im Allgemeinen in Dispergiervorrichtungen wie Schnellmischern (z.B. sog. Fluid-Mischern) oder unter Ultraschall, in einer Kugelmühle, Perlmühle, einem Zwei- oder Dreiwalzenstuhl oder einer Hochdruckdispergiervorrichtung (Typ Microfluidics) durchgeführt werden.
In Schnellmischern oder unter Ultraschall beträgt die Verarbeitungszeit mindestens 3 Minuten. In Kugelmühlen, auf Zweioder Dreiwalzen-Stühlen oder in anderen Aggregaten hoher Scherkraft wird eine längere Behandlungszeit, z.B. von mindestens 30 Minuten benötigt . Die gleichzeitige Anwendung eines elektrischen Feldes, insbesondere eines elektrischen Wechselfeldes mit Frequenzen zwischen 10 kHz und 10 GHz, kann von Vorteil sein; in diesem Fall werden meist mehr als 24 Stunden benötigt.
Der polare, nicht-leitfähige und gegenüber dem intrinsisch leitfähigen Polymer inerte Stoff wird in einer solchen Menge zugesetzt, daß sich zwischen dem leitfähigen Polymerpulver und dem polaren Stoff ein Gewichts-Verhältnis von 2:1 bis 1:10 ergibt.
Vorzugsweise ist bei der Durchführung von Stufe (b) ferner mindestens ein nicht-leitfähiges Polymer, insbesondere ein thermoplastisches Polymer vorhanden. Zum Beispiel kann Poly- ethylenterephthalat-Copolymer, kommerziell erhältlich von der Firma Eastman Kodak oder von der Degussa, oder ein Polyme- thylmethacrylat (PMMA) der Fa. Degussa verwendet werden. Die Anwesenheit des thermoplastischen Polymers erfordert die Durchführung der Dispergierung unter hoher Scherung und bei Temperaturen oberhalb von 50 °C, z.B. bei Temperaturen zwischen 50 und 200 °C oder zwischen 70 und 120 °C, beispielsweise bei etwa 90 °C. Nach dem Abkühlen erhält man dann eine feste Mischung, ein Polymerblend, das zwischen 20 und 60 Gew.-%, vorzugsweise etwa 35 Gew.-% leitfähiges Polymer enthält, bezogen auf die bei Raumtemperatur festen Bestandteile der ProduktZusammensetzung aus Stufe (b) , die das leitfähige Polymer, den polaren Stoff sowie gegebenenfalls weiteres nicht-leitfähiges Polymer uinfasst. Das leitfähige Polymer weist nach Durchführung von Stufe (b) im Allgemeinen Leitfähigkeiten um etwa 60 S/cm auf.
Nach Stufe (b) kann der zugesetzte polare, inerte und nicht- leitfähige Stoff bzw. das ebenfalls vorhandene nicht-leitfähige Polymer durch Waschen oder Extrahieren teilweise oder nahezu vollständig entfernt werden.. Vorzugsweise wird dieser Nachbehandlungsschritt nach dem. Abschluss von Stufe (b) wie im vorstehenden Absatz beschrieben durchgeführt. Alternativ/ kann die Nachbehandlung aber auch schon während Stufe (b) einsetzen.
Die Nachbehandlung, die man auch als Konditionieruixg des Produkts aus Stufe (b) für die nachfolgende Dispergierstiαfe (c) bezeichnen könnte, hat den Zweck, das Produkt aus Stufe (b) für die nachfolgende Dispergiertrstufe (c) vorzubereiten (zu kon- ditionieren) . Zum Waschen bzw. Extrahieren können die unterschiedlichsten Stoffe verwendet werden, z.B. Aromaten, Alk.oh.ole, Ester, Ether, Ketone, z.B. ylol, Toluol, Ethanol, Isopropanol, Chlorbenzol, Diisopropylethe und dergleichen. Es können auch Lösemittel und Hilfsstoffe zugesetzt werden, die die nachfolgende Dispergierstufe (c) unterstützen. Dies können z.B. Xy- lol oder Chlorbenzol sowie Dodecylbenzolsulfonsäure (DBSH) sein.
Vorzugsweise wird während der Nachbehandlung des Produkts aus Stufe (b) der Anteil des leitfähigen Polymers in dem Produkt, bezogen auf die bei Raumtemperatur festen Bestandteile desselben, um mindestens 5 Gevj.-%, vorzugsweise 10 Gew.-%, insbesondere 20 Gew.-% erhöht.
Alternativ kann ohne Reduzierung oder Entfernung des polaren Stoffes bzw. des thermopla_stischen Polymers weitergearbeitet werden, z.B. wenn die weitere Verarbeitung und die Anwendung des leitfähigen Polymeren nicht durch die Anwesenheit des zugesetzten Stoffes gestört wird. Die Leitfähigkeit des Polymerpulvers wird durch die Anwesenheit des polaren Stoffes bzw. des thermoplastischen Polymers nicht beeinträchtigt.
Bevorzugte Konzentrationen an leitfähigem Polymer, die nach Stufe (b) ' und Nachbehandlung erreicht werden, liegen zwischen 45 und 99 Gew.-%, vorzugsweise 55 bis 70 Gew.-%, bezogen auf die gesamte Zusammensetzung. Zum Beispiel kann das Produkt aus Stufe (b) eine feuchte Paste mit einem relativ hohen Anteil an Lösemittel bzw. Hilfsstoff sein, der in der Nachbehandlung verwendet wurde. Es ist also nicht erfindungswesentlich., während der Nachbehandlung verwendete Stoffe vor der Durchführung von Stufe (c) des erfindungsgemäßen Verfahrens weitestgehend zu entfernen, jedoch kann dies in der industriellen Praxis von Vorteil sein.
Stufe (c) des erfindungsgemäßen Verfahrens ist eine Dispergierung, die in einem organischen oder wässrigen Medium. (Dispersionsmittel) stattfindet und im Allgemeinen bei Raumtemperatur oder davon nur unwesentlich verschiedener Temperatur durchgeführt wird. Als Dispersionsaggregate kommen insbesondere solche Maschinen in Frage, die in der Lage sind, riohe Dispersionsenergie in das System einzubringen. Dies können z. B. Anlagen wie Ultraturrax, Disolver, Perlmühlen, Kugelmühlen, Hochdruckdispersionsapparate wie solche vom Typ Microfluidics, oder Ultraschallanlagen sein.
Als Dispersionsmittel sind insbesondere solche Lösemittel geeignet, die eine Oberflächenspannung von mindestens 25 mN/m aufweisen. Die erfindungsgemäßen Dispersionsmittel sind bei Raumtemperatur flüssig und weisen insbesondere relative Viskositäten von < 10.000, z.B. < 5.000, und insbesondere < 1.000 auf.
Beispiele für erfindungsgemäße Dispersionsmittel sind Xylol, Chlorphenol, Dichloressigsäure, N-Methylpyrrolidon, Dimethyl- sulfoxid, Octanol, oder Benzylalkohol oder höhere Alkohole, z. B. C9 - C2o~Alkohole paraffinischer oder aromatischer Natur, bzw. Mischungen derselben.
Das bzw. die Dispersionsmittel werden dem Produkt aus Stufe (b) des erfindungsgemäßen Verfahrens in einer solche Menge zugesetzt, das, bezogen auf das intrinsisch leitfähige Polymer, ein Überschuss (Gewichtsverhältnis) von Dispergiermittel vorliegt. Insbesondere ist das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem Dispergiermittel kleiner als 1 : 10, vorzugsweise kleiner als 1 : 15, z.B. 1 : 18.
Als Produkt von Stufe (c) wird im Allgemeinen eine hochviskose Paste oder eine flüssige, niederviskose Dispersion mit einer Konzentration des leitfähigen Polymeren von im Allgemeinen nicht mehr als etwa 10 Gew.-%, bezogen auf die gesamte Dispersion, erhalten. Vorzugsweise enthält die nach Stufe (c) erhaltene Dispersion geringe Anteile der in Stufe (b) verwendeten polaren Stoffe und nicht-leitfähigen Polymere, je nach dem Umfang der Konditionierung.
Zur Vorbereitung der Verwendung der erfindungsgemäßen Dispersion bei der Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit können nach Stufe (c) oder alternativ während Stufe (c) Hilfs- und Zusatzstoffe zugesetzt werden. Dies können z.B. Viskositätsregler, Benetzungshilfen, Matrixpolymere wie Lackbindemittel, filmbildende Stoffe, Stabilisatoren, Vernetzungshilfsmittel, Verdunstungsregler wie Verdungstungsbeschleuniger oder Verdunstungshemmer oder weitere Hilfs- und Zusatzstoffe sein. Man erhält dann eine stabile Dispersion, die alle Komponenten enthält, die für die weitere Formgebung und die Eigenschaften des Produktes hilfreich oder entscheidend sind.
Die nach Stufe (c) einschließlich Nachbehandlung und Formulierung erhaltene Dispersion kann dann, gegebenenfalls nach Durchführung weiterer weiterer Dispersions- und Nachbehandlungs- schritte, zur Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen unterschiedlichster Schichtdicke mit elektrischer Leitfähigkeit verwendet werden (Formgebung) .
Die Formgebung kann durch eine Reihe von Verfahren, wie Tauchen, Benetzung durch Tropfen, Sprühen, Spincoaten, Drucken (z.B. Siebdruck, Offsetdruck, Ink-Jet u. a.), Extrudieren, Gießen, Rakeln, Elektrospinnen, und andere erfolgen. Besonders bevorzugt ist die Formgebung durch Tauchen, Gießen, Tropfbenetzung, Spincoaten oder Drucken.
Die so erhaltenen Schichten, Beschichtungen, Folien, Platten oder anderen Form- oder Bauteile weisen nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm auf, vorzugsweise mindestens 200 S/cm, z. B. größer als 250 S/cm, insbesondere mindestens 500 S/cm, z. B. 200 bis 200.000 S/cm, 200 bis 20.000 S/cm oder 500 bis 10.000 S/cm, z.B. 300 bis 3.000 oder 500 bis 1000 S/cm.
Daneben sind die Teilchen der erfindungsgemä-ßen Dispersion dadurch gekennzeichnet, dass das Röntgendiffraktogramm z.B. für Polyanilin ("dotiert" mit p-Toluolsulfonsäure) keine scharfen Reflexe aufweist und daß bei 2θ = ca 3° ein Reflex sichtbar ist, die bei Polyanilin aus erfindungsgemäßen Dispersionen eine verglichen mit der breiten Reflektion bei 2Θ = ca. 19° mindestens ebenso hohe Intensität aufweist. Im Vergleich dazu zeigt das "rohe" Pulver aus Stufe (a) normalerweise dort keinen Peak bzw. nur sehr schwache Intensität, das Polyanilin nach dem ersten Reib-/Dispergiervorgang gemäß Stufe (b) zeigt immerhin eine deutliche Reflektion, diese ist aber im Vergleich zum Peak bei ca 19° schwächer.
Nach der zweiten Dispergierung gemäß Stufe (c) und nur für solche Dispersionen, die erfindungsgemäß ausgeführt werden und dementsprechend eine Leitfähigkeit von > 100 S/cm erlauben, wird dieser Reflex der eindeutig stärkste, und die anderen Reflexe werden mit steigender Leitfähigkeit zunehmend schwächer. Durch die Formgebung bzw. Weiterverarbeitung können antistatische oder leitfähige Beschichtungen, transparente und nicht transparente Elektroden, Lacke, die für die EMI-Abschirmung geeignet sind, Kontakte in der Elektronik oder "Source", "Drain" oder "Gate" in Feldeffekttransistoren hergestellt werden, ebenso Antennen, Schwingkreise, logische Schaltungen, Leiter bzw. Gegenpole in Kondensatoren, Elektrolytkondensatoren oder sogenannte "Supercapacitors" und viele Funktionen wie die, die in der konventionellen Elektrotechnik und Elektronik von konventionellen Metallen, hoch dotierten Halbleitern der Elektroden bzw. redox-aktiven Schichten erfüllt werden, erfüllen.
Die Gegenstände, die das durch Trocknung oder durch Durchführung eines der oben beschriebenen Formgebungsverfahren zugänglich sind und das aus der erfindungsgemäßen Dispersion erhältliche leitfähige Polymer enthalten, sind eine Ausführungsform der Erfindung. Vorzugsweise bestehen die oben genannten Gegenstände im wesentlichen aus dem leitfähigen Polymer.
Beispielhaft seien folgende Anwendungen genannt: als elektrische Leiter (z.B. elektrischer Kontakt, elektrische Zuleitung, als Druckschalter, Elektroden etc.) oder Halbleiter, als Schutz vor statischen Aufladungen, zur Abschirmung von elektromagnetischen Wellen (EMI-Abschirmung) , zur Absorption von Mikrowellen (für Abschirmungs- oder Erwärmungszwecke) , zur Herstellung von Kondensatoren oder als Ersatz der Elek- trolyte in Elektrolytkondensatoren, als Elektrode oder Elektrodenbestandteil in sogenannten "Supercapacitors" (Dieser Typ Kondensator wird auch als Doppelschichtkondensator (DLK) bezeichnet und ist durch die Ausbildung einer elektrischen Doppelschicht, oft auf Basis von Ruß und/oder Graphit gekennzeichnet. Im Englischen wird häufig auch von "electrochemical double layer capacitors" gesprochen. ) , zur Herstellung von Halbleiterbauelementen wie Dioden, Transistoren u.a., als Photoleiter oder in der photovoItaischen Energieumwandlung, in Zusammensetzungen mit Metallen oder Halbmetallen oder in Zusammensetzungen mit verschiedenen leitfähigen Polymeren unter Ausnutzung des therm.oelektrisch.en Effektes als Temperaturfühler (IR-Absorption) oder in der thermovoltaisehen Energieumwandlung, ais Sensoren, als Indikatoren, z.B. durch Elektroctiromismus, Mikrowellenabsorption, thermoelektrische Kraft etc., in Elektrolyse- oder Elektrosyntheseprozessen als elektro- katalytische Elektroden (z.B. in Brennstoffzellen), in der Photoelektrokatalyse oder -synthese und bei photo- voltaischen Effekten, im Korrosionsschutz, z.B. beim anodischen Korrosionsschutz, als Elektroden in Akkumulatoren, als UV- und lichtstabile Pigmente. als Elektrode oder Zuleitung in Elektrolumiszenz-Anordnungen (z. B. als nicht-transparente sog. "Back-" oder als transparente sog. "Front-Elektrode") als Lochinjektionsschicht bzw. anodische Pufferschicht oder als transparente Anoden in organischen/polymeren Leuchtdioden oder Solarzellen
Die Erfindung soll durch die nachfolgend angeführten Ausfüh- rungsbeispiele näher erläutert werden, "wobei diese in keiner Weise als den Umfang der Erfindung begrenzend verstanden werden sollen. BEISPIELE
Beispiel 1 (Stufe (a) )
Die zur Temperatursteuerung notwendige Kühlung wurde mit Kühlraten von mindestens 0,02 K/min, vorzugsweise 0,05 K/min erhalten. Die Kühlraten wurden duch Messung der Temperaturänderung bei aktivierter Kühlung an den jeweils verwendeten Reaktoren bestimmt, ohne dass die Reaktion in Gang gesetzt wurde .
300 ml Anilin wurde mittels 960 g Ammoniumperoxodisulfat (in Wasser gelöst) in Gegenwart von 1960 g p-Toluolsulfonsäure (pTs) in 9,5 1 Wasser zu Polyanilin, das somit mit pTs "dotiert" ist, polymerisiert. Die Starttemperatur der Reaktion betrug 17,5 °C. Die Zugabe der Reaktanden erfolgte so, dass die Temperatur nicht um mehr als 5 °C anstieg und die Geschwindigkeit des Temperaturanstieg unterhalb von IK/min. lag. Das ausgefallene rohe Polymer wurde gefiltert und dreimal mit 10%iger wässriger pTs-Lösung gewaschen, wonach jeweils filtriert wurde.
Ausbeute: 210-330 g, Leitfähigkeit (getrocknetes Pulver, kalt gepreßt) : ca. 5 S/cm.
Beispiel 2a (Stufe (b) )
Polyanilin wie in Beispiel 1 hergestellt wurde als trockenes Pulver mit den in der nachfolgenden Tabelle verwendeten Stoffen in dem jeweils angegebenen Verhältnis in einem Laborschnellmischer 3 Minuten lang intensiv dispergiert.
Figure imgf000018_0001
Beispiel 2b (Stufe (b) )
Das gemäß Beispiel 1 gewonnene Pulver wurde in einem Laborkneter mit PMMA in der Schmelze bei 90 °C dispergiert. Dabei wurde eine Polyanilin-Konzentration von ca. 40 Gew.-%, bezogen auf das Blend aus Polyanilin und Polymethylen ethacrylat, verwendet.
Nach dem Abkühlen zeigt das Polymerblend in der Regel eine Leitfähigkeit von 60 (+/- 20) S/cm.
Beispiel 3 (Nachbehandlung/Konditionierung)
200 g einer Vordispersion aus Beispiel 2 wurden in einer Wirbelschichtextraktionsanlage mit 1 1 Xylol extrahiert. Dabei wurden ca. 400 g mit einem Restfeuchtegehalt von 70 Gew.-% erhalten.
Beispiel 4 (Stufe (c) )
200 g Extraktionsrückstand aus Beispiel 3 wurden mit 600 g Xylol in einer Perlmühle 2,5 Stunden lang dispergiert. Es wurde eine hochviskose Paste mit einem Polyanilingehalt von ca. 4 Gew.-% erhalten.
Beispiel 5 (Nachbehandlung (Formulierung) und Formgebung)
10 g Paste aus Beispiel 4 wurde mit 10 g Dichloressigsäure und 10 g Dichlormethan unter Rühren verdünnt und in einer Spincoa- tinganlage mit einer Umdrehungszahl von 1500 U/min auf ein Glassubstrat aufgebracht. Es ergab sich nach Trocknung eine Schichtdicke von 150 nm mit einer Leitfähigkeit von 220 S/cm. Beispiel 6 (Nachbehandlung / Konditionierung)
50 g einer Vordispersion aus Beispiel 2 wurden in einem Glaskolben 10 Minuten lang mit 300 ml Chlorbenzol gewaschen. Die Mischung wurde filtriert. Es wurde ein feuchter Rückstand mit einem Festkörpergehalt von 40 Gew.-% und einer rechnerischen Polyanilin-Konzentration von ca. 0,15 Gew.-% erhalten.
Beispiel 7 (Stufe (c) )
0,2 g Filtrierrückstand aus Beispiel 6 wurden unter Ultraschall mit 10 ml Chlorphenol vermischt und 20 min mit einer Energiedichte von 500 W/m2 beschallt. Es ergab sich eine stabile Dispersion.
Beispiel 8 (Nachbehandlung (Formulierung) und Formgebung)
Die Dispersion aus Beispiel 7 wurde mit 10 ml Chlorphenol verdünnt und hiervon 8 ml in eine Petrischale gegossen. Die
Schale wurde bei einer Temperatur von 50 °C über 6 Stunden getrocknet. Es ergab sich ein freitragender Film von 25 μm Schichtdicke und einer Leitfähigkeit von 540 S/cm.

Claims

Patentansprüche
1. Dispersion, die Teilchen mindestens eines intrinsisch leitfähigen Polymers enthält, wobei die Teilchengröße im Mittel (Gewicht) weniger als 1 um beträgt, dadurch gekennzeichnet, dass das Dispersionsmittel bei Raumtemperatur eine Flüssigkeit ist und eine aus dieser Dispersion gebildete Schicht, Folie oder Platte nach Entfernen des Dispersionsmittels eine Leitfähigkeit von > 100 S/cm aufweist.
2. Dispersion nach Anspruch 1, dadurch gekennzeichnet, dass die Leitfähigkeit mindestens 200 S/cm beträgt.
3. Dispersion nach Anspruch 2, dadurch gekennzeichnet, dass die Leitfähigkeit 300 S/cm bis 3000 S/cm beträgt.
4. Dispersion nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Polymer ausgewählt ist aus der Gruppe bestehend aus Polyanilin, Polythiophen, Polythie- no-thiophen, Polypyrrol, Copolymeren aus den Monomeren dieser Polymere und Polymeren oder Copolymeren aus den Derivaten dieser Monomeren.
5. Dispersion nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Dispersionsmittel eine relative Viskosität von < 10.000 aufweist.
6. Verfahren zur Herstellung einer Dispersion gemäß einem der Ansprüche 1 bis 5, bei dem in dieser Reihenfolge
(a) aus Monomeren ein intrinsisch leitfähiges Polymer hergestellt wird, wobei die Temperatur während der Polymerisation so geregelt wird, dass sie nicht über einen Wert von mehr als 5 °C oberhalb der Starttemperatur ansteigt, (b) das Produkt aus Stufe (a) in Gegenwart eines gegenüber dem leitfähigen Polymer inerten, nicht elektrisch leitfähigen, nicht-polymeren polaren Stoffes unter Anwendung ausreichender Scherkräfte aufgerieben und/oder dispergiert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem polaren Stoff 2:1 bis 1:10 beträgt,
(c) das Produkt aus Stufe (b) in einem Dispersionsmittel dispergiert wird, wobei das Gewichtsverhältnis zwischen dem leitfähigen Polymer und dem Dispersionsmittel kleiner als 1 : 10 ist.
7. Verfahren nach Abspruch 6, dadurch gekennzeichnet, dass die Geschwindigkeit des Temperaturanstiegs während Stufe (a) zu keiner Zeit während der Polymerisation mehr als 1 K/Minute beträgt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass in Stufe (b) ferner mindestens ein nicht-leitfähiges Polymer vorhanden ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das nicht-leitfähige Polymer ein thermoplastisches Polymer ist.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass das Produkt aus Stufe (b) einer Nachbehand¬ lung unterworfen wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Anteil des polaren Stoffes oder des nicht-leitfähigen Polymers im Produkt aus Stufe (b) während der Nachbehandlung durch Waschen oder Extrahieren vermindert wird.
12. Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, dass Lösemittel und/oder Hilfsstoffe zugesetzt werden, die die nachfolgende Dispergierstufe (c) unterstützen.
13. Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, dass das Produkt aus Stufe (c) einer Nachbehandlung unterworfen wird.
14. Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, dass Viskositätsregler, Benetzungshilfen, Matrixpolymere, Stabilisatoren, Vernetzungshilfsmittel, Verdunstungsregler und/oder andere Hilfs- und Zusatzstoffe, die ein sich gegebenenfalls anschließendes Formgebungsverfahren unterstützen, zugesetzt werden.
15. Verfahren nach einem der Anspruch 14, dadurch gekennzeichnet, dass der Zusatz vor oder während Stufe (c) erfolgt.
16. Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, dass bei der Nachbehandlung des Produkts aus Stufe (b) und/oder während Dispergierstufe (c) ein organisches Lösemittel verwendet wird, das eine Oberflächenspannung von mehr als 25 mN/m aufweist.
17. Verfahren nach einem der 7Λnsprüche 9 bis 16, dadurch gekennzeichnet, dass sich die Konzentration des leitfähigen Polymers während der Nachbehandlung des Produkts aus Stufe (b) um mindestens 5 Gew.-%, bezogen auf die bei Raumtemperatur festen Bestandteile, erhöht.
18. Verfahren nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, dass die Dispergierstufe (n) in einer Dispergier- vorrichtung ausgewählt aus der Gruppe bestehend aus einer Kugelmühle, einer Perlmühle, einem Dreiwalzenstuhl und einer Hochdruckdispergiervorrichtung durchgeführt wird bzw. werden.
19. Verfahren nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, dass das Dispergieren unter Ultraschall durchgeführt wird.
20. Verwendung einer Dispersion gemäß einem der Ansprüche 1 bis 5 oder hergestellt gemäß dem Verfahren gemäß einem der Ansprüche 6 bis 19 zur Herstellung von Formteilen, selbsttragenden Folien oder Beschichtungen mit elektrischer Leitfähigkeit.
21. Verwendung nach Anspruch 20, dadurch gekennzeichnet, dass die Formteile, selbsttragenden Folien oder Beschichtungen Elektroden, Antennen, polymere Elektronikbauteile, Kondensatoren und Doppelschichtkondensatoren (DLK) sind.
PCT/EP2005/000595 2004-01-23 2005-01-21 Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung WO2005070972A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067015215A KR101138295B1 (ko) 2004-01-23 2005-01-21 고유 전도성 중합체의 분산물 및 그의 제조방법
CA002553467A CA2553467A1 (en) 2004-01-23 2005-01-21 Dispersions of intrinsically conductive polymers, and methods for the production thereof
JP2006550052A JP5236879B2 (ja) 2004-01-23 2005-01-21 真性導電性重合体の分散液およびその製造方法
EP05706959.3A EP1706431B1 (de) 2004-01-23 2005-01-21 Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung
US10/597,170 US7683124B2 (en) 2004-01-23 2005-01-21 Dispersions of intrinsically conductive polymers, and methods for the production thereof
US12/701,111 US8344062B2 (en) 2004-01-23 2010-02-05 Dispersions of intrinsically conductive polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003784.1 2004-01-23
DE102004003784A DE102004003784B4 (de) 2004-01-23 2004-01-23 Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/597,170 A-371-Of-International US7683124B2 (en) 2004-01-23 2005-01-21 Dispersions of intrinsically conductive polymers, and methods for the production thereof
US12/701,111 Continuation US8344062B2 (en) 2004-01-23 2010-02-05 Dispersions of intrinsically conductive polymers

Publications (1)

Publication Number Publication Date
WO2005070972A1 true WO2005070972A1 (de) 2005-08-04

Family

ID=34801000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000595 WO2005070972A1 (de) 2004-01-23 2005-01-21 Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung

Country Status (8)

Country Link
US (2) US7683124B2 (de)
EP (1) EP1706431B1 (de)
JP (1) JP5236879B2 (de)
KR (1) KR101138295B1 (de)
CN (1) CN100523005C (de)
CA (1) CA2553467A1 (de)
DE (1) DE102004003784B4 (de)
WO (1) WO2005070972A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092292A1 (de) * 2005-03-02 2006-09-08 Ormecon Gmbh Leitfähige polymere aus teilchen mit anisotroper morphologie
WO2007023334A1 (en) * 2005-08-26 2007-03-01 Council Of Scientific And Industrial Research A process for preparation of conductive polymer dispersion
WO2008031492A1 (en) * 2006-09-13 2008-03-20 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
EP2031012A1 (de) * 2006-06-12 2009-03-04 The Yokohama Rubber Co., Ltd. Verfahren zur herstellung einer dispersion von leitfähigem polymer und dispersion von leitfähigem polymer
US7683124B2 (en) 2004-01-23 2010-03-23 Ormecon Gmbh Dispersions of intrinsically conductive polymers, and methods for the production thereof
EP2371909A1 (de) 2010-03-31 2011-10-05 Nissan Motor Co., Ltd. Korrosionsschutz-Wachszusammensetzung mit Polyanilin in dotierter Form und Flüssigparaffin
US8158030B2 (en) * 2006-08-10 2012-04-17 Nissan Chemical Industries, Ltd. Process for producing dispersion liquid of intrinsic electroconductive polymer in organic solvent

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090446A1 (en) * 2004-03-18 2005-09-29 Ormecon Gmbh A composition comprising a conductive polymer in colloidal form and carbon
DE102004030388A1 (de) * 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
DE102005039608A1 (de) 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
US8287774B2 (en) * 2007-08-29 2012-10-16 Korea Institute Of Industrial Technology Electrochromic pani films and process thereof
DE102007048212A1 (de) * 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
DE102008024805A1 (de) * 2008-05-23 2009-12-03 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP5435436B2 (ja) 2009-02-17 2014-03-05 綜研化学株式会社 複合導電性ポリマー組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
WO2010095649A1 (ja) 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性ポリマー組成物、その製造法、当該組成物を含有する溶液、および当該組成物の用途
KR101064527B1 (ko) * 2009-08-06 2011-09-14 주식회사 인스프리트 이동단말을 이용한 dlna 홈네트워크의 디바이스 정보 제공 시스템 및 방법
US8692722B2 (en) 2011-02-01 2014-04-08 Phoenix Contact Development and Manufacturing, Inc. Wireless field device or wireless field device adapter with removable antenna module
WO2013024532A1 (ja) 2011-08-17 2013-02-21 三菱レイヨン株式会社 固体電解コンデンサ、およびその製造方法
CN104105738B (zh) * 2012-01-25 2017-04-05 凯米特电子公司 制备导电性聚合物的聚合方法
CN104387957B (zh) * 2014-11-13 2016-08-24 宁夏中科天际防雷股份有限公司 一种抗静电涂料及其制备方法
CN109983057A (zh) 2016-11-22 2019-07-05 综研化学株式会社 导电性高分子用掺杂剂、利用其的导电性高分子、以及导电性高分子的制造方法
CN109734905B (zh) * 2019-02-13 2022-02-08 东北大学 一种增强电催化剂性能的部分结晶共聚物制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329768A1 (de) * 1987-09-04 1989-08-30 Zipperling Kessler &amp; Co (GmbH &amp; Co) Intrinsisch leitfähiges polymer in form eines dispergierbaren körpers, seine herstellung und seine anwendung
EP0446943A2 (de) * 1990-03-15 1991-09-18 E.I. Du Pont De Nemours And Company Stabile Polyanilinlösungen und daraus hergestellte Artikel
WO1994027297A1 (de) * 1993-05-17 1994-11-24 Zipperling Kessler & Co. (Gmbh & Co.) Dispergierbares intrinsisch leitfähiges polymer und verfahren zu dessen herstellung
US5403913A (en) * 1993-08-12 1995-04-04 The Trustees Of The University Of Pennsylvania Methods for preparing conductive polyanilines

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977756A (en) * 1975-09-22 1976-08-31 General Motors Corporation Transitional connector for printed circuits
US4394498A (en) 1981-08-24 1983-07-19 Celanese Corporation Method for providing particulates of liquid crystal polymers and particulates produced therefrom
AT378008B (de) 1982-09-07 1985-06-10 Neumayer Karl Gmbh Verfahren zur herstellung von mit einer zinnlegierung ueberzogenen draehten
US4585695A (en) 1983-10-11 1986-04-29 Agency Of Industrial Science And Technology Electrically conductive polypyrrole article
DE3440617C1 (de) * 1984-11-07 1986-06-26 Zipperling Kessler & Co (Gmbh & Co), 2070 Ahrensburg Antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends,Verfahren zu deren Herstellung und deren Verwendung
US4657632A (en) * 1985-08-29 1987-04-14 Techno Instruments Investments 1983 Ltd. Use of immersion tin coating as etch resist
US5104599A (en) 1987-03-05 1992-04-14 Allied-Signal Inc. Method of forming short fibers composed of anisotropic polymers
US5498761A (en) 1988-10-11 1996-03-12 Wessling; Bernhard Process for producing thin layers of conductive polymers
KR960001314B1 (ko) 1988-10-11 1996-01-25 지페르링 케슬러 게엠베하 운트 코 전도성 중합체의 박층형성방법
US4959180A (en) * 1989-02-03 1990-09-25 The United States Of America As Represented By The United States Department Of Energy Colloidal polyaniline
EP0466943A4 (en) 1990-02-05 1992-07-01 Vsesojuzny Nauchno-Issledovatelsky Instrumentalny Institut Liquid pulverizer
US5173766A (en) * 1990-06-25 1992-12-22 Lsi Logic Corporation Semiconductor device package and method of making such a package
US5192835A (en) * 1990-10-09 1993-03-09 Eastman Kodak Company Bonding of solid state device to terminal board
US5278213A (en) * 1991-04-22 1994-01-11 Allied Signal Inc. Method of processing neutral polyanilines in solvent and solvent mixtures
US5281363A (en) * 1991-04-22 1994-01-25 Allied-Signal Inc. Polyaniline compositions having a surface/core dopant arrangement
US5196053A (en) * 1991-11-27 1993-03-23 Mcgean-Rohco, Inc. Complexing agent for displacement tin plating
DE4238765A1 (de) 1992-11-10 1994-05-11 Stuebing Gmbh Verfahren zur stromlosen Verzinnung von Leiterplatten und deren Verwendung
WO1995000678A1 (de) 1993-06-25 1995-01-05 Zipperling Kessler & Co (Gmbh & Co) Verfahren zur herstellung korrosionsgeschützter metallischer werkstoffe und damit erhältliche werkstoffe
US5532025A (en) * 1993-07-23 1996-07-02 Kinlen; Patrick J. Corrosion inhibiting compositions
DE4333127A1 (de) 1993-09-29 1995-03-30 Basf Ag Verfahren zum Schutz von lötfähigen Kupfer- und Kupferlegierungsoberflächen vor Korrosion
US5682043A (en) 1994-06-28 1997-10-28 Uniax Corporation Electrochemical light-emitting devices
US5595689A (en) * 1994-07-21 1997-01-21 Americhem, Inc. Highly conductive polymer blends with intrinsically conductive polymers
US5700398A (en) * 1994-12-14 1997-12-23 International Business Machines Corporation Composition containing a polymer and conductive filler and use thereof
US5645890A (en) * 1995-02-14 1997-07-08 The Trustess Of The University Of Pennsylvania Prevention of corrosion with polyaniline
DE19525708C1 (de) 1995-07-14 1997-01-30 Rmh Polymers Gmbh & Co Kg Temporärer Anlaufschutz für Kupfer und Kupferlegierungen
WO1997020084A1 (de) * 1995-11-29 1997-06-05 Zipperling Kessler & Co. (Gmbh & Co.) Verfahren zur herstellung von metallisierten werkstoffen
US5733599A (en) 1996-03-22 1998-03-31 Macdermid, Incorporated Method for enhancing the solderability of a surface
JP2001503449A (ja) * 1996-05-31 2001-03-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高分子量ポリアニリンの安定濃厚溶液とそれからなる物品
JP3660777B2 (ja) 1997-03-06 2005-06-15 日本エレクトロプレイテイング・エンジニヤース株式会社 錫合金膜の形成方法およびその錫合金めっき浴
US6503382B1 (en) 1997-06-27 2003-01-07 University Of Southampton Method of electrodepositing a porous film
JPH1121673A (ja) 1997-07-07 1999-01-26 Ishihara Chem Co Ltd 鉛フリーの無電解スズ合金メッキ浴及びメッキ方法、並びに当該無電解メッキ浴で鉛を含まないスズ合金皮膜を形成した電子部品
CA2297249C (en) 1997-07-25 2005-10-25 Zipperling Kessler & Co. (Gmbh & Co.) Chemical compounds of intrinsically conductive polymers with metals
CN1276086A (zh) * 1997-10-15 2000-12-06 陶氏化学公司 电导性聚合物
DE19754221A1 (de) * 1997-12-06 1999-06-17 Federal Mogul Wiesbaden Gmbh Schichtverbundwerkstoff für Gleitlager mit bleifreier Gleitschicht
US6015482A (en) * 1997-12-18 2000-01-18 Circuit Research Corp. Printed circuit manufacturing process using tin-nickel plating
US6123995A (en) * 1998-03-06 2000-09-26 Shipley Company, L.L.C. Method of manufacture of multilayer circuit boards
DE19812258A1 (de) * 1998-03-20 1999-09-23 Bayer Ag Elektrolumineszierende Anordnungen unter Verwendung von Blendsystemen
EP0962486B1 (de) 1998-06-05 2003-12-17 Teijin Limited Antistatische Polyesterfolie und Verfahren zu ihrer Herstellung
JP3937113B2 (ja) 1998-06-05 2007-06-27 日産化学工業株式会社 有機−無機複合導電性ゾル及びその製造法
JP2000191906A (ja) * 1998-12-25 2000-07-11 Hitachi Chem Co Ltd ポリアニリン系ペ―スト、これを用いた固体電解コンデンサの製造法及び固体電解コンデンサ
JP3796381B2 (ja) * 1999-01-26 2006-07-12 株式会社エスアイアイ・マイクロパーツ 電気二重層キャパシタ
US6593399B1 (en) * 1999-06-04 2003-07-15 Rohm And Haas Company Preparing conductive polymers in the presence of emulsion latexes
US20050260930A1 (en) * 1999-06-15 2005-11-24 Yuji Okuda Table of wafer of polishing apparatus, method for polishing semiconductor wafer, and method for manufacturing semiconductor wafer
US6821323B1 (en) 1999-11-12 2004-11-23 Enthone Inc. Process for the non-galvanic tin plating of copper or copper alloys
US6361823B1 (en) * 1999-12-03 2002-03-26 Atotech Deutschland Gmbh Process for whisker-free aqueous electroless tin plating
JP5014553B2 (ja) * 2000-06-26 2012-08-29 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンを含む再分散可能なラテックス
EP1167582B1 (de) * 2000-07-01 2005-09-14 Shipley Company LLC Metall-Legierungs-Zusammensetzungen und damit verbundene Plattierungsmethode
CN1407141A (zh) * 2001-03-16 2003-04-02 希普雷公司 镀锡
JP2002289653A (ja) 2001-03-26 2002-10-04 Hitachi Cable Ltd 半導体装置用テープキャリアおよびその製造方法
US6824857B2 (en) * 2001-04-02 2004-11-30 Nashua Corporation Circuit elements having an embedded conductive trace and methods of manufacture
WO2003009657A1 (en) 2001-07-19 2003-01-30 Toray Industries, Inc. Circuit board, circuit board-use member and production method therefor and method of laminating fexible film
WO2003020000A1 (en) * 2001-08-22 2003-03-06 World Properties Inc. Method for improving bonding of circuit substrates to metal and articles formed thereby
GB2380964B (en) 2001-09-04 2005-01-12 Multicore Solders Ltd Lead-free solder paste
JP3513709B2 (ja) 2001-10-16 2004-03-31 石原薬品株式会社 前処理によるスズホイスカーの防止方法
US6814833B2 (en) * 2001-10-26 2004-11-09 Corning Incorporated Direct bonding of articles containing silicon
US7270885B1 (en) * 2001-11-14 2007-09-18 Marlene Rossing, legal representative Method for brazing ceramic-containing bodies, and articles made thereby
TW200302685A (en) 2002-01-23 2003-08-01 Matsushita Electric Ind Co Ltd Circuit component built-in module and method of manufacturing the same
JP2005526876A (ja) * 2002-03-01 2005-09-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 添加剤を含有する有機導電性ポリマーの印刷
JP3940620B2 (ja) 2002-03-22 2007-07-04 ガンツ化成株式会社 非球塊状ポリマー微粒子の製造法
JP3855161B2 (ja) 2002-05-10 2006-12-06 石原薬品株式会社 電子部品のスズホイスカーの防止方法
DE10227362A1 (de) * 2002-06-19 2004-01-08 Basf Ag Komplexbildner für die Behandlung von Metall- und Kunstoffoberflächen
DE10234363A1 (de) 2002-07-27 2004-02-12 Robert Bosch Gmbh Korrosionsschutzlack für metallische Oberflächen
US6962642B2 (en) * 2002-09-26 2005-11-08 International Business Machines Corporation Treating copper surfaces for electronic applications
WO2004062020A2 (en) * 2002-12-27 2004-07-22 Foamex L.P. Gas diffusion layer containing inherently conductive polymer for fuel cells
KR100858839B1 (ko) 2003-03-20 2008-09-17 주식회사 동진쎄미켐 초저온 마이크로에멀젼 중합을 이용한 고전도성 막대형폴리아닐린 나노 입자의 제조 방법
US7083694B2 (en) * 2003-04-23 2006-08-01 Integrated Materials, Inc. Adhesive of a silicon and silica composite particularly useful for joining silicon parts
JP4603812B2 (ja) 2003-05-12 2010-12-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 改良されたスズめっき方法
AT412094B (de) * 2003-05-13 2004-09-27 Austria Tech & System Tech Verfahren zur beschichtung von rohlingen zur herstellung von gedruckten leiterplatten (pcb)
US7025498B2 (en) * 2003-05-30 2006-04-11 Asml Holding N.V. System and method of measuring thermal expansion
US6950175B2 (en) * 2003-06-02 2005-09-27 Asml Holding N.V. System, method, and apparatus for a magnetically levitated and driven reticle-masking blade stage mechanism
JP4387131B2 (ja) * 2003-06-30 2009-12-16 富山薬品工業株式会社 導電性高分子物質の有機溶剤分散液及びその製造方法
US7009359B2 (en) * 2003-08-08 2006-03-07 Asml Holding N.V. Foam core chuck for the scanning stage of a lithography system
KR100841148B1 (ko) * 2003-10-27 2008-06-24 교세라 가부시키가이샤 복합재료와 웨이퍼 유지부재 및 이들의 제조방법
DE102004003784B4 (de) 2004-01-23 2011-01-13 Ormecon Gmbh Dispersion intrinsisch leitfähigen Polyanilins und deren Verwendung
JP5245188B2 (ja) 2004-03-03 2013-07-24 日清紡ホールディングス株式会社 楕円球状有機ポリマー粒子およびその製造方法
WO2005090446A1 (en) * 2004-03-18 2005-09-29 Ormecon Gmbh A composition comprising a conductive polymer in colloidal form and carbon
GB0407953D0 (en) * 2004-04-08 2004-05-12 Univ The Glasgow Silicon carbride bonding
US20050269555A1 (en) 2004-05-11 2005-12-08 Suck-Hyun Lee Conductive polymers having highly enhanced solubility in organic solvent and electrical conductivity and synthesizing process thereof
DE102004030388A1 (de) 2004-06-23 2006-01-26 Ormecon Gmbh Artikel mit einer Beschichtung von elektrisch leitfähigem Polymer und Verfahren zu deren Herstellung
DE102004030930A1 (de) 2004-06-25 2006-02-23 Ormecon Gmbh Zinnbeschichtete Leiterplatten mit geringer Neigung zur Whiskerbildung
US7087441B2 (en) 2004-10-21 2006-08-08 Endicott Interconnect Technologies, Inc. Method of making a circuitized substrate having a plurality of solder connection sites thereon
DE102005010162B4 (de) 2005-03-02 2007-06-14 Ormecon Gmbh Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
DE202005010364U1 (de) 2005-07-01 2005-09-08 Ormecon Gmbh Zinnbeschichtete flexible Leiterplatten mit geringer Neigung zur Whiskerbildung
DE102005039608A1 (de) * 2005-08-19 2007-03-01 Ormecon Gmbh Zusammensetzung mit intrinsisch leitfähigem Polymer
ATE546032T1 (de) * 2006-09-13 2012-03-15 Enthone Artikel mit beschichtung aus elektrisch leitendem polymer und edel-/halbedelmetal sowie herstellungsverfahren dafür
US7678458B2 (en) * 2007-01-24 2010-03-16 Asml Holding N.V. Bonding silicon silicon carbide to glass ceramics
DE102007040065A1 (de) 2007-08-24 2009-02-26 Ormecon Gmbh Artikel mit einer nanoskopischen Beschichtung aus Edel-/Halbedelmetall sowie Verfahren zu deren Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329768A1 (de) * 1987-09-04 1989-08-30 Zipperling Kessler &amp; Co (GmbH &amp; Co) Intrinsisch leitfähiges polymer in form eines dispergierbaren körpers, seine herstellung und seine anwendung
EP0446943A2 (de) * 1990-03-15 1991-09-18 E.I. Du Pont De Nemours And Company Stabile Polyanilinlösungen und daraus hergestellte Artikel
WO1994027297A1 (de) * 1993-05-17 1994-11-24 Zipperling Kessler & Co. (Gmbh & Co.) Dispergierbares intrinsisch leitfähiges polymer und verfahren zu dessen herstellung
US5403913A (en) * 1993-08-12 1995-04-04 The Trustees Of The University Of Pennsylvania Methods for preparing conductive polyanilines

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683124B2 (en) 2004-01-23 2010-03-23 Ormecon Gmbh Dispersions of intrinsically conductive polymers, and methods for the production thereof
WO2006092292A1 (de) * 2005-03-02 2006-09-08 Ormecon Gmbh Leitfähige polymere aus teilchen mit anisotroper morphologie
US7947199B2 (en) 2005-03-02 2011-05-24 Ormecon Gmbh Conductive polymers consisting of anisotropic morphology particles
WO2007023334A1 (en) * 2005-08-26 2007-03-01 Council Of Scientific And Industrial Research A process for preparation of conductive polymer dispersion
WO2007023335A1 (en) * 2005-08-26 2007-03-01 Council Of Scientific And Industrial Research A process for the preparation of polyaniline dispersion
EP2031012A1 (de) * 2006-06-12 2009-03-04 The Yokohama Rubber Co., Ltd. Verfahren zur herstellung einer dispersion von leitfähigem polymer und dispersion von leitfähigem polymer
EP2031012A4 (de) * 2006-06-12 2010-09-15 Yokohama Rubber Co Ltd Verfahren zur herstellung einer dispersion von leitfähigem polymer und dispersion von leitfähigem polymer
US7960499B2 (en) 2006-06-12 2011-06-14 The Yokohama Rubber Co., Ltd. Process for producing conductive polymer dispersion and conductive polymer dispersion
US8158030B2 (en) * 2006-08-10 2012-04-17 Nissan Chemical Industries, Ltd. Process for producing dispersion liquid of intrinsic electroconductive polymer in organic solvent
WO2008031492A1 (en) * 2006-09-13 2008-03-20 Ormecon Gmbh Article with a coating of electrically conductive polymer and precious/semiprecious metal and process for production thereof
EP2371909A1 (de) 2010-03-31 2011-10-05 Nissan Motor Co., Ltd. Korrosionsschutz-Wachszusammensetzung mit Polyanilin in dotierter Form und Flüssigparaffin
WO2011120646A1 (en) 2010-03-31 2011-10-06 Nissan Motor Co., Ltd. Corrosion-protective wax composition containing polyaniline in a doped form and a liquid paraffin

Also Published As

Publication number Publication date
KR101138295B1 (ko) 2012-04-24
EP1706431A1 (de) 2006-10-04
KR20070007274A (ko) 2007-01-15
DE102004003784A1 (de) 2005-08-18
JP5236879B2 (ja) 2013-07-17
CA2553467A1 (en) 2005-08-04
US7683124B2 (en) 2010-03-23
EP1706431B1 (de) 2016-03-23
US20070267747A1 (en) 2007-11-22
CN100523005C (zh) 2009-08-05
DE102004003784B4 (de) 2011-01-13
US20100133478A1 (en) 2010-06-03
US8344062B2 (en) 2013-01-01
CN1910204A (zh) 2007-02-07
JP2007518859A (ja) 2007-07-12

Similar Documents

Publication Publication Date Title
EP1706431B1 (de) Dispersionen intrinsisch leitfähiger polymere und verfahren zu deren herstellung
DE102005010162B4 (de) Leitfähige Polymere aus Teilchen mit anisotroper Morphologie
DE3855678T2 (de) Intrinsisch leitfähiges polymer in form eines dispergierbaren körpers, seine herstellung und seine anwendung
EP2297753A2 (de) Verfahren zur herstellung von festelektrolytkondensatoren
DE102009012660A1 (de) Polymerbeschichtungen mit verbesserter Temperaturstabilität
DE202018006859U1 (de) Leitfähige Zusammensetzung und Leiter
WO2017059845A1 (de) Verfahren zur herstellung von polythiophenhaltigen fluiden
DE10206294A1 (de) Transparente Polythiophenschichten hoher Leitfähigkeit
EP1516375A2 (de) Material für eine dünne und niedrig leitfähige funktionsschicht für eine oled und herstellungsverfahren dazu
EP0554798A2 (de) Beschichtungsmittel für Kunststofffolien
WO2009056462A9 (de) Verfahren zur beschichtung von unpolaren polyaromaten enthaltenden schichten
DE102008003251A1 (de) Verfahren zur Herstellung von erhöhte Leitfähigkeit aufweisenden Beschichtungen auf Basis von Polythiophen und dessen Derivaten
DE102008059389A1 (de) Verfahren zur Herstellung von erhöhte Leitfähigkeit aufweisenden Beschichtungen auf Basis von Polythiophen und dessen Derivaten
DE102013004526A1 (de) PEDOT/Tensid-Komplexe
DE202018002723U1 (de) Zusammensetzungen beinhaltend PEDOT/PSS und Urethan-(Meth)Acrylate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005706959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2553467

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200580002827.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006550052

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067015215

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005706959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10597170

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067015215

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10597170

Country of ref document: US