WO2005063977A1 - 核酸の増幅法およびこれを利用した変異核酸の検出法 - Google Patents

核酸の増幅法およびこれを利用した変異核酸の検出法 Download PDF

Info

Publication number
WO2005063977A1
WO2005063977A1 PCT/JP2004/019346 JP2004019346W WO2005063977A1 WO 2005063977 A1 WO2005063977 A1 WO 2005063977A1 JP 2004019346 W JP2004019346 W JP 2004019346W WO 2005063977 A1 WO2005063977 A1 WO 2005063977A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleic acid
primer
primer set
mutation
Prior art date
Application number
PCT/JP2004/019346
Other languages
English (en)
French (fr)
Inventor
Yasumasa Mitani
Takanori Oka
Yoshihide Hayashizaki
Toshizo Hayashi
Original Assignee
Riken
Kabushiki Kaisha Dnaform
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34742123&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005063977(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Riken, Kabushiki Kaisha Dnaform filed Critical Riken
Priority to EP04807703.6A priority Critical patent/EP1712618B1/en
Priority to US10/583,706 priority patent/US8206902B2/en
Priority to JP2005516642A priority patent/JP3897805B2/ja
Publication of WO2005063977A1 publication Critical patent/WO2005063977A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Definitions

  • the present invention relates to a method for amplifying a nucleic acid sequence useful in the field of genetic engineering.
  • the present invention relates to a method for amplifying a nucleic acid sequence using a strand displacement reaction and a method for detecting a mutation using these methods.
  • an analysis based on complementation of nucleic acid sequences is known as a method capable of directly analyzing genetic characteristics.
  • the amount of the target gene present in the sample is small, it is generally not easy to detect the target gene, so it is necessary to amplify the target gene itself in advance.
  • Amplification of a target gene is mainly performed by an enzymatic method using a DNA polymerase.
  • enzymatic methods include, for example, polymerase chain reaction (PCR method; U.S. Pat.No. 4,683,195, U.S. Pat.No. 4,683,202 and U.S. Pat.
  • PCR method polymerase chain reaction
  • RT-PCR method reverse transcription PCR method
  • Trends in Biotechnology 10, ppl46-152, 1992 that combines the PCR method and the reverse transcriptase reaction.
  • a strand displacement amplification method (3 ⁇ 4DA; strand displacement amplincation) described in Japanese Patent Publication No.
  • a target nucleic acid (and its complementary strand) in a sample is introduced into a system in which DNA is finally amplified by displacing a double strand through a DNA polymerase and a restriction endonuclease.
  • the method requires four primers, two of which need to be designed to include a recognition site for a restriction endonuclease.
  • a modified deoxynucleotide triphosphate for example, an oxygen atom of a phosphate group at the ⁇ -position of a triphosphate moiety is substituted with a sulfur atom (S).
  • the method requires high running costs. Furthermore, in this method, since the amplified nucleic acid fragment contains a modified nucleotide such as a S-substituted deoxynucleotide, for example, the amplified fragment is subjected to restriction enzyme fragment length polymorphism (RFLP) In the case of offering, the amplified fragment may not be able to be cleaved with a restriction enzyme, and thus such analysis may not be performed.
  • RFLP restriction enzyme fragment length polymorphism
  • the improved SDA method described in US Pat. No. 5,824,517 also requires chimeric primers that are also composed of RNA and DNA and whose 3 ′ end is DNA. Such chimeric primers composed of RNA and DNA are difficult to synthesize, and primers containing RNA require specialized knowledge to handle them. Also, the improved SDA method described in WO99Z09211 pamphlet requires a restriction enzyme that generates a 5 'protruding end, and further, the improved SDA method described in WO95 / 25180 These methods require high running costs because they require a large number of primer pairs.
  • chimeric primers composed of RNA and DNA and having an RNA at the 3 'end, and further require RNaseH, which cleaves the RNA portion at the 3' end of the primer.
  • RNaseH RNaseH
  • the ramp method four types of primers are required, and by recognizing the six regions, amplification of the target gene becomes possible. That is, in this method, first, the first primer anneals to the type I strand to cause an extension reaction, and then the strand displacement reaction by the second primer designed upstream from the first primer is performed. The extended strand due to the first primer separates from the type I strand. At this time, a stem-loop structure is formed at the 5 'end of the extended strand due to the structure of the stripped first primer extension product. A similar reaction is performed on the other strand of the double-stranded nucleic acid, or on the 3 'end of the stripped first primer extension product, and these reactions are repeated.
  • the target nucleic acid is amplified. Therefore, in the ramp method, the mechanism of action of the amplification reaction is complicated, and furthermore, since six regions must be selected, primer design is difficult. It will be difficult. In addition, of the four types of primers, two types require relatively long-chain primers, so that the synthesis and purification of the primers are complicated, and the preparation of reagents is difficult.
  • nucleic acid amplification method that can be carried out at low running cost and that can use the obtained nucleic acid fragment for further genetic processing.
  • an isothermal nucleic acid amplification method capable of rapidly amplifying with a pair of primers is desired.
  • a double-stranded nucleic acid synthesized by the extension reaction of a primer is used as a new type II.
  • the sequence that the next new primer anneals contains the initial force in the sample. It is a copy of the primer sequence that is not the same as the nucleotide sequence. Therefore, if the complementary strand is synthesized in the wrong region even once, the wrong region is amplified one after another, so that an amplification product other than the target is easily generated, and therefore, the single nucleotide mutation can be accurately detected. It is difficult to do.
  • a probe DNA capable of hybridizing to a region containing a mutation site is brought into contact with a target amplification product amplified by the PCR method, so that the ability to generate hybridization is reduced. By looking, the presence or absence of a mutation in the target amplification product is determined.
  • the time required for the hybridization reaction is not only long, but nonspecific hybridization may occur depending on the stringency of the reaction solution. There is a problem with sex, and it is not easy to determine exactly one base mutation.
  • a DNA-RNA-DNA chimeric primer containing a nucleotide related to the mutation in the RNA portion is used.
  • the DNA at the 3 'end of this chimeric primer is chemically modified so that no elongation reaction occurs therefrom.
  • an amplification reaction is performed in a reaction solution containing such a chimeric primer and RNaseH, Only when the sequence of the chimeric primer and type II completely matches, the RNA portion is cleaved by RNaseH, and the 3'-terminal extension reaction of the newly generated primer is started. Amplified.
  • the sequence of the chimeric primer and the type III DNA do not match, that is, when there is a mutation, cleavage of the RNA portion by RNaseH does not occur, and the 3 'end of the chimeric primer remains chemically modified. Therefore, DNA amplification does not occur.
  • the ICAN method and the UCAN method like the conventional PCR method, are amplifications based on specific hybridization to two regions in type II, so their specificity is problematic. There is. Therefore, after amplification, it is necessary to further confirm whether or not the obtained amplification product has the intended power. Since the total reaction time becomes longer, it takes a longer time to obtain a test result. Also, the synthesis of modified primers, chimeric primers, etc. is complicated.
  • the extension reaction is not always stopped by a mismatch of one base at the 3 'end. Furthermore, even when amplification from the 3 'end of the dumbbell structure does not occur, the amplification product itself has already formed a dumbbell structure, so its own stem-loop structure has been formed. In order for the primer to anneal to the primer at all times, an extension reaction at the 3 'end of the primer is always performed. Therefore, it is very difficult to discriminate a single nucleotide mutation based on the presence or absence of the amplification.
  • a commonly used nucleic acid sample contains genomic DNA that is more than just the target mRNA.
  • the nucleotide sequence of the mRNA is the nucleotide sequence of the genomic DNA excluding some intron sequences.
  • One intron generally has a chain length of several bases to several hundred bases.
  • the present inventors have designed a primer capable of forming a stem loop only when a target nucleic acid is amplified in a nucleic acid amplification method using a strand displacement reaction so as to satisfy a specific condition. It has been found that a target nucleic acid can be specifically and efficiently amplified by using a combination of a primer and a primer having a folded sequence at the 5 ′ end.
  • the present invention is based on such findings.
  • an object of the present invention is to provide a primer set capable of specifically and efficiently amplifying a target nucleic acid, and a nucleic acid amplification method using the same.
  • the primer set according to the present invention is a primer set including at least two types of primers capable of amplifying a target nucleic acid sequence, and is included in the primer set.
  • the first primer comprises a sequence (Ac) that hybridizes to the sequence (A) at the 3′-end portion of the target nucleic acid sequence at the 3′-end portion, and the sequence (A) ),
  • a sequence ( ⁇ ′) that hybridizes to the complementary sequence (Be) of the sequence (B) present on the 5 ′ side of the sequence (Ac) is included on the 5 ′ side of the sequence (Ac), and is included in the primer set.
  • the second primer comprises a sequence (Cc ') that hybridizes to the sequence (C) at the 3' end of the complementary sequence of the target nucleic acid sequence at the end, and hybridizes to each other.
  • a primer set comprising a folded sequence (D-Dc ') containing two nucleic acid sequences on the same chain, on the 5' side of the sequence (Cc).
  • the nucleic acid amplification method according to the present invention is a method for amplifying a target nucleic acid sequence in a type III nucleic acid, wherein (a) a step of preparing a type II nucleic acid containing a target nucleic acid sequence; And (c) performing a nucleic acid amplification reaction with the set of primers in the presence of the type III nucleic acid.
  • the primer set and the nucleic acid amplification method using the same according to the present invention do not require a special device such as a thermal cycler, and do not require the time required for temperature adjustment, so that an amplification product can be obtained in a short time.
  • the primer set according to the present invention enables highly specific nucleic acid amplification, it can be used to determine whether there is a mutation in a gene, in particular, whether or not there is a single nucleotide mutation, and to determine the sequence of a specific nucleic acid sequence. The presence or absence of the deletion or insertion can be determined by detecting the amplification product.
  • the present inventors have developed a mutation detection method using an isothermal nucleic acid amplification reaction with a nucleic acid reagent that causes a mismatch with type II either due to the presence or absence of a mutation in type II.
  • the present inventors have found that by performing the nucleic acid amplification reaction in the presence of a substance having a mismatch discriminating ability, a more accurate mutation can be detected.
  • the presence of a mutation in the type II and the presence or absence of a mutation in the type II cause A method for determining the presence or absence of a mutation in a nucleic acid sequence in a nucleic acid sample by performing an isothermal nucleic acid amplification reaction using a nucleic acid reagent that causes a mismatch Law is provided.
  • FIG. 1 is a diagram schematically showing an action mechanism of a nucleic acid amplification reaction using a first primer according to the present invention.
  • FIG. 2 is a diagram illustrating the structure of a second primer according to the present invention.
  • FIG. 3a is a diagram schematically showing the mechanism of action of a nucleic acid amplification reaction using a first primer and a second primer according to the present invention.
  • FIG. 3b is a diagram schematically showing the action mechanism of a nucleic acid amplification reaction using a first primer and a second primer according to the present invention.
  • Fig. 4 is a view showing the positions of the first and second primers used for amplifying the human STS DYS237 gene on the gene.
  • FIG. 5 is a view showing the results of amplification of the human STS DYS237 gene using a primer set including a first primer and a second primer.
  • Fig. 6 is a view showing the result of treating the amplification product with a restriction enzyme after amplification of the human STS DYS237 gene using a primer set including a first primer and a second primer.
  • FIG. 7 is a diagram showing the effect of a melting temperature regulator on the amplification of the human STS DYS237 gene by a primer set including a first primer and a second primer.
  • FIG. 8 is a diagram showing a sequence containing a single nucleotide mutation and a sequence not containing the same, prepared for a specific region in the human STS DYS237 gene.
  • Fig. 9 is a view showing a result of detection of a single nucleotide mutation in a specific region in the human STS DYS237 gene using a primer set including a first primer and a second primer.
  • FIG. 10 is a diagram showing the positions of the first, second and third primers used for the amplification of the human STS DYS237 gene on the gene.
  • FIG. 11 shows the results of amplification of the human STS DYS237 gene using a primer set including a first primer, a second primer, and a third primer.
  • Fig. 12 is a view showing the influence of the concentration of type I on amplification of the human STS DYS237 gene by a primer set including a first primer, a second primer, and a third primer.
  • FIG. 13 is a view showing positions of respective primers included in a primer set used for detecting a mutation in the human ALDH2 gene on the gene.
  • FIG. 14 is a view showing the effect of MutS in detecting a single nucleotide mutation of the human ALDH2 gene performed using an isothermal nucleic acid amplification reaction.
  • Fig. 15 is a view showing the positions of the respective primers included in the primer set used for detecting mutations in the human CYP2C19 * 3 gene on the gene.
  • FIG. 16 is a diagram showing the effect of MutS in detecting a single nucleotide mutation in the human CYP2C19 * 3 gene, which was performed using an isothermal nucleic acid amplification reaction.
  • the primer set of the present invention comprises at least two types of primers capable of amplifying a target nucleic acid sequence.
  • the first primer included in the primer set includes a sequence (Ac) that hybridizes to the sequence (A) at the 3′-terminal portion of the target nucleic acid sequence at the 3, terminal portion thereof, and the first nucleic acid sequence has Thus, a sequence ( ⁇ ′) that hybridizes to the complementary sequence (Be) of the sequence (B) located 5 ′ to the sequence (A) is included on the 5 ′ side of the sequence (Ac).
  • the second primer included in the primer set includes a sequence (Cc ′) that hybridizes to the sequence (C) at the 3 ′ end of the complementary sequence of the target nucleic acid sequence at the 3 ′ end,
  • a folded sequence (D-Dc ′) containing two nucleic acid sequences that are mutually and mutually hybridizing on the same strand is included on the 5 ′ side of the sequence (Cc).
  • target nucleic acid or “target nucleic acid sequence” includes not only a nucleic acid to be amplified or its sequence itself, but also a sequence complementary thereto or a nucleic acid having the sequence. means.
  • “neutralize” means that a part of the primer according to the present invention hybridizes to a target nucleic acid under stringent conditions and does not hybridize to a nucleic acid molecule other than the target nucleic acid.
  • Stringent conditions correspond to primers according to the invention.
  • Tm melting temperature
  • salt concentration concentration of the hybridization solution.For example, J. Sambrook, EF Frisch, T. Maniatis; Molecular Cloning 2nd edition, Cold spring Harbor Laboratory (1989) and the like can be referred to.
  • the primer when the hybridization is performed at a temperature slightly lower than the melting temperature of the primer to be used, the primer can specifically and specifically hybridize with the target nucleic acid.
  • Such primers can be designed using commercially available primer construction software, for example, Primer3 (manufactured by Whitehead Institute for Biomedical Research).
  • the primer that hybridizes to a target nucleic acid comprises all or part of the sequence of a nucleic acid molecule complementary to the target nucleic acid.
  • the mechanism of action of nucleic acid synthesis by the first primer is schematically shown in FIG.
  • the target nucleic acid sequence in the nucleic acid to be type III is determined, and the sequence (A) at the 3 ′ end of the target nucleic acid sequence and the sequence (B) located 5 ′ to the sequence (A) are determined. I do.
  • the first primer comprises the sequence (Ac) and further comprises the sequence ( ⁇ ') on its 5' side.
  • the sequence (Ac) hybridizes to the sequence (A), and the sequence ( ⁇ ′) hybridizes to the complementary sequence (Be) to the sequence ( ⁇ ).
  • the first primer may include an intervening sequence that does not affect the reaction between the sequence (Ac ′) and the sequence ( ⁇ ′).
  • the sequence (Ac) in the primer becomes in a state of being hybridized to the sequence (A) of the target nucleic acid sequence (FIG. 1 (a)).
  • a primer extension reaction S occurs in this state, a nucleic acid containing a sequence complementary to the target nucleic acid sequence is synthesized.
  • the sequence ( ⁇ ') present at the 5' end of the synthesized nucleic acid hybridizes to the sequence (Be) present in the nucleic acid, whereby the stem is generated at the 5 'end of the synthesized nucleic acid.
  • a loop structure is formed.
  • the sequence (A) on the type III nucleic acid becomes a single strand, and another primer having the same sequence as the first primer hybridizes to this portion (FIG. 1 (b)). Thereafter, an elongation reaction from the newly hybridized first primer occurs by a strand displacement reaction, and at the same time, the previously synthesized nucleic acid is separated from the type III nucleic acid (FIG. L (c)).
  • the phenomenon that the sequence ( ⁇ ⁇ ') hybridizes to the sequence (Be) typically occurs due to the presence of a complementary region on the same strand.
  • double-stranded nucleic acids When dissociating into single strands, partial dissociation of the terminal or other relatively unstable partial force begins.
  • the double-stranded nucleic acid generated by the elongation reaction using the first primer has an equilibrium state of dissociation and binding at the terminal portion at a relatively high temperature, and maintains the double strand as a whole.
  • a stem-loop structure can be formed as a metastable state.
  • the same other primer binds to the complementary strand portion (sequence (A) on type I nucleic acid) exposed by the formation of the structure, and immediately the polymerase By performing an elongation reaction, a previously synthesized strand is displaced and released, and at the same time, a new double-stranded nucleic acid can be generated.
  • the design criteria for the first primer in a preferred embodiment of the present invention are as follows.
  • a stem-loop structure must be formed at the 5 'end of the synthesized complementary strand. Therefore, the portion of the sequence (A) on the type III nucleic acid needs to be single-stranded. To do so, the difference (X—Y) between the number of bases X of the sequence (Ac ′) and the number of bases Y in the region between the sequence (A) and the sequence (B) in the target nucleic acid sequence, X (X—Y) ZX is important.
  • the portion existing on the 5 ′ side of the type I nucleic acid at the 5 ′ side of the sequence ( ⁇ ) is irrelevant to the primers and the hybridization, and the portion is not single-stranded.
  • the new primer in order for the new primer to efficiently anneal to the type III nucleic acid, it is necessary to efficiently form the above-described stem-loop structure. Then, formation of an efficient stem loop structure, that is, efficient hybridization of the array ( ⁇ ′) and the array (Be) includes a distance ( ⁇ ′) between the array ( ⁇ ′) and the array (Be). X + Y) is important.
  • the optimal temperature for the primer extension reaction is at most around 72 ° C, and at such a low temperature, it is difficult for the extended strand to dissociate over a long region. Therefore, in order for the sequence ( ⁇ ′) to efficiently hybridize to the sequence (Be), it is considered that the smaller the number of bases between the two sequences, the better. On the other hand, in order for the sequence ( ⁇ ′) to hybridize to the sequence (Be) to make the portion of the sequence (A) on the type III nucleic acid single-stranded, the sequence ( ⁇ ′) and the sequence (Be) It is considered that the number of bases between and is large, and more preferable is U.
  • the first primer according to a preferred embodiment of the present invention is In the case where no intervening sequence exists between the sequence (Ac) and the sequence () ′) constituting the primer, (X- ⁇ ) is at least 1.00, preferably at least 0.000, more preferably at least 0.000. Designed to be 0.05 or more, more preferably 0.10 or more, and 1.00 or less, preferably 0.75 or less, more preferably 0.50 or less, more preferably 0.25 or less Is done. Further, ( ⁇ + ⁇ ) is preferably 15 or more, more preferably 20 or more, further preferably 30 or more, and preferably 50 or less, more preferably 48 or less, and further preferably 42 or less.
  • the first primer when an intervening sequence (the number of bases is Y ') is present between the sequence (Ac) and the sequence ( ⁇ ') constituting the primer, the first primer according to a preferred embodiment of the present invention is used.
  • the first primer has a length that allows base pairing with a target nucleic acid while maintaining required specificity under given conditions.
  • the length of one primer is preferably 15-100 nucleotides, more preferably 20-60 nucleotides.
  • the length of the sequence (Ac ′) and the length of the sequence ( ⁇ ′) constituting the first primer are preferably 5 to 50 nucleotides, more preferably 7 to 30 nucleotides, respectively. If necessary, insert an intervening sequence that does not affect the reaction between the sequence (Ac ') and the sequence ( ⁇ ').
  • the second primer included in the primer set according to the present invention is the 3 'end of the complementary sequence of the target nucleic acid sequence (the strand opposite to the strand to which the first primer hybridizes).
  • the structure of such a second primer can be, for example, a force sequence as shown in FIG. It is not limited to the number of nucleotides.
  • the length of the sequence (Cc) constituting the second primer is preferably 5 to 50 nucleotides, more preferably 10 to 30 nucleotides.
  • the length of the folded sequence (D-Dc ') is preferably 2 to 1000 nucleotides, more preferably 2 to 100 nucleotides, still more preferably 4 to 60 nucleotides, and still more preferably 6 to 40 nucleotides.
  • the number of nucleotides of a base pair formed by hybridization within the folded sequence is preferably 2 to 500 bp, more preferably 2 to 50 bp, further preferably 2 to 30 bp, and still more preferably 3 to 30 bp. — 20 bp.
  • the nucleotide sequence of the folded sequence (D-Dc ') may be any sequence, and is not particularly limited, but is preferably a sequence that does not hybridize to the target nucleic acid sequence. If necessary, an intervening sequence that does not affect the reaction may be inserted between the sequence (Cc ′) and the folded sequence (D-Dc).
  • the two hybridizing sequences are set as complementary sequences to each other, and the present invention is not limited thereto.
  • the first primer hybridizes to the sense strand of the target nucleic acid, and an elongation reaction of the primer occurs (FIG. 3 (a)).
  • a stem-loop structure is formed on the extended strand (1), whereby a new first primer hybridizes to the sequence (A) on the single-stranded target nucleic acid sense strand (Fig.
  • the elongation reaction from the loop tip generates a hairpin-type double-stranded nucleic acid in which the extended strand (1) is linked to the extended strand (+) via the sequence (A) and the sequence (Be) at the 3 'side.
  • the first primer hybridizes to the sequence (A) and the sequence (Be) (FIG. 3 (g)), and an elongation reaction generates an extended chain ( ⁇ ) (FIG. 3 (h) and (0)).
  • the hairpin-type double-stranded nucleic acid has a loop sequence at the 3 'end, The released 3 'end was provided (Fig. 3 (h)), and an extension reaction therefrom (Fig.
  • the stem-loop structure is formed at both ends by the extension reaction, and the extended strand (
  • a single-stranded nucleic acid containing alternating (+) and the extended strand (1) is generated (Fig. 3 (o)).
  • a single-stranded nucleic acid that is automatically extended in this manner includes a sequence derived from the first primer and the second primer in the extended strand (+ ) And the extended strand (1), each primer can hybridize and cause an extension reaction, which significantly amplifies the sense and antisense strands of the target nucleic acid .
  • the primer set according to the present invention can include a third primer in addition to the first primer and the second primer.
  • the third primer hybridizes to the target nucleic acid sequence or its complementary sequence, and does not compete with other primers for hybridization to the target nucleic acid sequence or its complementary sequence. It is said.
  • “do not compete!” Means that the primer hybridizes to the target nucleic acid and does not hinder the provision of the complementary strand synthesis origin by other primers.
  • the amplification product When the target nucleic acid is amplified by the first primer and the second primer, as described above, the amplification product has a target nucleic acid sequence and its complementary sequence alternately. A folded sequence or a loop structure is present at the 3 'end of the amplification product, and an extension reaction is successively performed from the provided starting point of complementary strand synthesis.
  • the third primer is When such an amplification product becomes partially single-stranded, it can be annealed to a target sequence present in the single-stranded portion. This provides a new starting point for complementary strand synthesis within the target nucleic acid sequence in the amplification product, from which an elongation reaction occurs, so that the nucleic acid amplification reaction can be performed more quickly.
  • the third primer is not necessarily limited to one type. To improve the speed and specificity of the nucleic acid amplification reaction, two or more types of third primers may be used simultaneously. These third primers may typically hybridize to a partially overlapping region, as long as they do not compete with these primers, unlike the first and second primers.
  • the chain length of the third primer is preferably 2-100 nucleotides, more preferably 5-50 nucleotides, and even more preferably 7-30 nucleotides.
  • the third primer has a main purpose of an auxiliary function for advancing the nucleic acid amplification reaction by the first primer and the second primer more rapidly. Accordingly, it is preferable that the third primer has a lower Tm than the Tm of each of the 3, terminal of the first primer and the second primer.
  • the amount of the third primer added to the amplification reaction solution is preferably smaller than the amounts of the first and second primers added.
  • a primer having a structure capable of forming a loop as described in WO 02/24902 pamphlet as type ⁇ and giving a starting point for complementary strand synthesis to the loop portion is used.
  • the power that can be raised is not limited to this. That is, any site may be provided as the starting point for complementary strand synthesis within the target nucleic acid sequence.
  • the primers included in the primer set according to the present invention are composed of deoxynucleotides and Z or ribonucleotides.
  • ribonucleotide (sometimes simply referred to as "N") refers to ribonucleotide triphosphate, and includes, for example, ATP, UTP, CTP, GTP and the like.
  • ribonucleotides include these derivatives, for example, ribonucleotides in which the oxygen atom of the phosphate group at position a is replaced with a sulfur atom (a thioribonucleotide).
  • the primer includes an oligonucleotide primer composed of an unmodified nucleonucleotide and Z or a modified ribonucleotide, and an oligonucleotide primer composed of an unmodified ribonucleotide and Z or a modified ribonucleotide.
  • chimeric oligonucleotide primers containing unmodified deoxynucleotides and Z or modified deoxynucleotides and unmodified ribonucleotides and z or modified ribonucleotides are also included.
  • the primers included in the primer set according to the present invention can be synthesized by any method that can be used for oligonucleotide synthesis, such as the phosphotriester method, the H-phosphonate method, and the thiophosphonate method.
  • the primer can be easily obtained by, for example, synthesizing it by a phosphoramidite method using a DNA synthesizer Model 394 of ABI (Applied Biosystem Inc.).
  • the type I nucleic acid containing the target nucleic acid sequence or the nucleic acid sample used in the nucleic acid amplification reaction may be either DNA or RNA.
  • DNA includes any of cDNA, genomic DNA and synthetic DNA.
  • RNA includes all RNA, mRNA, rRNA, siRNA, hnRNA and synthetic RNA. These nucleic acids can be prepared, for example, from a biological sample such as blood, tissue, cells, or even an animal or a plant, or from a biological sample, food, soil, wastewater, or the like. .
  • Isolation of the type ⁇ nucleic acid or nucleic acid sample can be performed by any method, for example, a method using a dissolving treatment with a surfactant, sonication, shaking and stirring using glass beads, a French press or the like. Is mentioned.
  • a method using a dissolving treatment with a surfactant for example, phenol extraction, mouth chromatography, ion exchange, gel electrophoresis, density-dependent centrifugation, or the like.
  • the type III nucleic acid or the nucleic acid sample is prepared by a reverse transcription reaction from double-stranded nucleic acid such as genomic DNA or PCR fragment, total RNA or mRNA isolated by the above method. Differences between single-stranded nucleic acids such as cDNAs can also be used. In the case of the above-described double-stranded nucleic acid, it can be more optimally used by performing a denaturing step to form a single-stranded nucleic acid.
  • the enzyme used in the above reverse transcription reaction is not particularly limited as long as it has an activity of synthesizing cDNA with RNA type II, and for example, avian myeloblastosis virus-derived reverse transcriptase (AMV RTase) ), Rous-related Winnoles 2 reverse transcriptase (RAV-2 RTase), reverse transcriptase from Moro-mouse leukemia virus (MMLV RTase), and the like.
  • AMV RTase avian myeloblastosis virus-derived reverse transcriptase
  • RAV-2 RTase Rous-related Winnoles 2 reverse transcriptase
  • MMLV RTase Moro-mouse leukemia virus
  • an enzyme having a reverse transcription activity at a high temperature is most suitable, and for example, a DNA polymerase derived from a bacterium belonging to the genus Thermus (Tth DNA polymerase or the like), a DNA polymerase derived from a bacterium belonging to the genus Bacillus, or the like can be used.
  • particularly preferred enzymes include, for example, B. st-derived DNA polymerase (Bst DNA polymerase) and B. ca-derived DNA polymerase (Bca DNA polymerase), for example, DNA polymerases derived from thermophilic Bacillus bacteria.
  • DNA polymerase, Bca (exo-) DNA polymerase and the like for example, Bca DNA polymerase does not require manganese ions for the reaction, and can synthesize cDNA under high temperature conditions while suppressing the formation of secondary structure of type II RNA.
  • the type ⁇ nucleic acid is a double-stranded nucleic acid, it can be used for the reaction as it is, but if necessary, by denaturing them to make them single-stranded, Annealing of the primer to the template nucleic acid can also be performed efficiently. Raising the temperature to about 95 ° C is a preferred method of denaturing nucleic acids. Alternatively, the force can be denatured by increasing the pH. In this case, the pH needs to be reduced in order for the primer to hybridize to the target nucleic acid.
  • any of ordinary temperature, intermediate temperature, or heat resistant polymerases having a strand displacement activity (strand displacement ability) can be suitably used.
  • this polymerase may be either a natural form or an artificially mutated mutant.
  • Such polymerases include DNA polymerases. Further, it is preferable that the DNA polymerase has substantially no 5, ⁇ 3, exonuclease activity.
  • Such DNA polymerases include thermophilic bacterium such as Bacillus stearothermophilus (hereinafter referred to as “B. st”) and Bacillus caldotenax (hereinafter referred to as “B. ca”).
  • the DNA polymerase used in the nucleic acid amplification reaction further includes Vent DNA polymerase, Vent (Exo-) DNA polymerase, DeepVent DNA polymerase, DeepVent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, and MS-2 phage DNA polymerase.
  • Vent DNA polymerase Vent (Exo-) DNA polymerase, DeepVent DNA polymerase, DeepVent (Exo-) DNA polymerase, ⁇ 29 phage DNA polymerase, and MS-2 phage DNA polymerase.
  • Merase Z-Taq DNA polymerase
  • Pfo DNA polymerase, Pfo turbo DNA polymerase KOD DNA polymerase, 9 ° Nm DNA polymerase, Therminater DNA polymerase and the like.
  • nucleic acid amplification reaction by using a DNA polymerase having a reverse transcription activity, for example, BcaBEST DNA polymerase, Bca (exo-) DNA polymerase, etc. It is possible to carry out the transcription reaction and the DNA polymerase reaction in which the cDNA is converted into type II with one type of polymerase. Alternatively, a combination of DNA polymerase and the above-mentioned reverse transcriptase such as MMLV reverse transcriptase may be used.
  • a DNA polymerase having a reverse transcription activity for example, BcaBEST DNA polymerase, Bca (exo-) DNA polymerase, etc. It is possible to carry out the transcription reaction and the DNA polymerase reaction in which the cDNA is converted into type II with one type of polymerase.
  • a combination of DNA polymerase and the above-mentioned reverse transcriptase such as MMLV reverse transcriptase may be used.
  • reagents used in the nucleic acid amplification reaction include, for example, catalysts such as magnesium chloride, magnesium acetate, and magnesium sulfate, substrates such as dNTP mix, Tris-HCl buffer, tricine buffer, sodium phosphate buffer, and phosphorus phosphate. Potassium acid buffer One or more buffers can be used. Further, additives such as dimethyl sulfoxide and betaine ( ⁇ , ⁇ , ⁇ -trimethylglycine), acidic substances described in WO99Z54455 pamphlet, and cation complexes may be used.
  • a melting temperature regulator can be added to the reaction solution in order to increase the efficiency of nucleic acid amplification.
  • the melting temperature (Tm) of a nucleic acid is generally determined by the specific nucleotide sequence of the duplex forming moiety in the nucleic acid.
  • Tm melting temperature
  • General melting temperature regulators have the effect of lowering the melting temperature.
  • the melting temperature of the double-stranded portion between the two nucleic acids can be reduced, in other words, the intensity of the double-stranded formation can be reduced. Becomes possible. Therefore, when such a melting temperature regulator is added to the reaction solution in the nucleic acid amplification reaction, Efficient single-strand double-strands in GC-rich nucleic acid regions that form strong double-strands or regions that form complex secondary structures, thereby extending primers After the reaction is completed, the next primer hybridizes to the target region, so that the nucleic acid amplification efficiency can be increased.
  • the melting temperature regulator used in the present invention and its concentration in the reaction solution may be determined by those skilled in the art in consideration of other reaction conditions that affect the hybridization conditions, for example, salt concentration, reaction temperature, and the like. Will be selected appropriately. Accordingly, the melting temperature regulator is not particularly limited, but is preferably dimethyl sulfoxide (DMSO), betaine, formamide or glycerol, or any combination thereof, and more preferably dimethyl sulfoxide (DMSO). ).
  • an enzyme stabilizer may be added to the reaction solution. This stabilizes the enzyme in the reaction solution, thereby increasing the nucleic acid amplification efficiency.
  • the enzyme stabilizer used in the present invention is not particularly limited, and may be any of those known in the art, such as glycerol, serum albumin, and saccharides.
  • a reagent for enhancing the heat resistance of an enzyme such as a DNA polymerase and a reverse transcriptase can be added to the reaction solution as an enzyme stabilizer. This stabilizes the enzyme in the reaction solution, thereby increasing the nucleic acid synthesis efficiency and amplification efficiency.
  • enzyme stabilizers are well known in the art, and may be of any type, but are not particularly limited, but are preferably saccharides, more preferably monosaccharides or oligosaccharides, and still more preferably Trehalose, sorbitol or mannitol, or a mixture of two or more of these.
  • the nucleic acid amplification reaction using the primer set according to the present invention can be performed at an isothermal temperature.
  • the nucleic acid amplification reaction comprises a step of preparing a nucleic acid amplification solution comprising a type III nucleic acid or nucleic acid sample and a primer set according to the present invention; Isothermally incubating the working solution.
  • isothermal means that the enzyme and the primer are kept under a substantially constant temperature condition capable of substantially functioning.
  • almost constant temperature condition refers to the set temperature In addition, it is not only that the temperature of the enzyme and the primer are accurately maintained, but also a temperature change that does not impair the substantial function of the enzyme and the primer is acceptable.
  • the nucleic acid amplification reaction under a constant temperature condition can be carried out by maintaining the temperature at which the activity of the enzyme to be used can be maintained.
  • the reaction temperature In order to allow the primer to anneal to the target nucleic acid in this nucleic acid amplification reaction, for example, it is preferable to set the reaction temperature to a temperature near or lower than the melting temperature (Tm) of the primer. It is preferable to set the stringency level in consideration of the melting temperature (Tm) of the primer. Accordingly, this temperature is preferably between about 20 ° C and about 75 ° C, and more preferably between about 35 ° C and about 65 ° C.
  • the amplification reaction is repeated until the enzyme is inactivated or one of the reagents including the primer is used up or exhausted.
  • a nucleic acid containing an unnatural nucleotide can be used as a ⁇ -type nucleic acid.
  • the term "unnatural nucleotide” refers to a nucleotide containing a base other than the base (adenine, guanine, cytosine, and thymine or peracil) contained in a natural nucleotide, which can be incorporated into a nucleic acid sequence.
  • xanthosines, diaminopyrimidines, isoG, isoC Proc. Natl. Acad. Sci. USA 92, 6329-6333, 1995
  • nucleic acid amplification enzyme having no heat resistance For amplification of a target nucleic acid containing an unnatural nucleotide, a nucleic acid amplification enzyme having no heat resistance is generally used.
  • the nucleic acid amplification reaction can be performed at an isothermal temperature of, for example, about 50 ° C, the possibility of deactivating nucleic acid amplification enzymes (such as DNA polymerase) is lower than in the conventional PCR method. . Therefore, the nucleic acid amplification reaction using the primer set according to the present invention is also effective for amplifying a target nucleic acid containing a non-natural nucleotide in which a nucleic acid amplification enzyme having no heat resistance is used.
  • the enzyme used to amplify the nucleic acid containing the unnatural nucleotide is not particularly limited as long as it can amplify such a target nucleic acid, but from the viewpoint of uptake efficiency, the Y188L / E478Q mutant HIV I inversion is particularly preferred.
  • Preferred are transcriptase, AMV reverse transcriptase, tarenow fragment of DNA polymerase, 9 ° N DNA polymerase, HotTub DNA polymerase and the like (Michael Sismour 1 et al, Biochemistry 42, No. 28, 8598, 2003Z U.S. Patent No. 6617106). Description, Michael J. Lutz et al "Bioorganic & Medical Chemistry letters 8, 1149—1152, 1998 etc). Furthermore, a substance that improves the heat resistance of the nucleic acid amplification enzyme, such as trehalose, can be added to the reaction solution, whereby the target nucleic acid containing the unnatural nucleotide can be amplified more efficiently
  • the presence of the amplification product obtained by the nucleic acid amplification method according to the present invention can be detected by many various methods.
  • One method is to detect amplification products of a specific size by general gel electrophoresis. In this method, for example, detection can be performed using a fluorescent substance such as ethidium bromide or Cyber Green.
  • a labeled probe having a label such as biotin can be used and detected by hybridizing the probe with an amplification product. Pyotin can be detected by binding to fluorescently labeled avidin, avidin bound to an enzyme such as peroxidase, or the like.
  • Yet another method is to use immunochromatography.
  • a method in which the white turbidity of the reaction solution is visually observed by utilizing the fact that the pyrophosphoric acid binds to magnesium in the reaction solution to form a white precipitate of magnesium pyrophosphate.
  • Another method utilizes the fact that pyrophosphoric acid binds strongly to metal ions such as magnesium to form an insoluble salt, thereby significantly reducing the concentration of magnesium ions in the reaction solution.
  • a metal indicator for example, Eriochrome Black T, Hydroxy Naphthol Blue, etc.
  • a metal indicator for example, Eriochrome Black T, Hydroxy Naphthol Blue, etc.
  • the increase in fluorescence accompanying the amplification reaction can be visually observed, so that amplification products can be detected in real time.
  • the presence of the amplification product obtained by the nucleic acid amplification method according to the present invention is detected by observing the aggregation of the solid phase carrier resulting from the generation of the amplification product. You can also.
  • the primer comprises at least one kind of primer contained in a set of primers of the present invention, a solid phase carrier, or a site capable of binding to a solid phase carrier.
  • the solid phase carrier or the site capable of binding to the solid phase carrier may be one introduced into any part of the primer, such as the 3 ′ end, 5 ′ end, or central region, but is preferably 5 ′ end It is assumed that it was introduced to.
  • the substrate used in the nucleic acid amplification reaction may include a solid phase carrier or a site capable of binding to the solid phase carrier.
  • the solid phase carrier used in the present invention may be a carrier insoluble in a reaction solution used for a nucleic acid amplification reaction, or a liquid phase to a solid phase (gel phase) or a solid phase (gel phase) before and after amplification.
  • Any phase transition carrier whose properties change to a liquid phase can be used.
  • Preferred solid-phase carriers include water-insoluble organic polymer carriers, water-insoluble inorganic polymer carriers, synthetic polymer carriers, phase transition carriers, metal colloids, magnetic particles, and the like. Further, solvent-insoluble organic polymer carriers And a solvent-insoluble inorganic polymer carrier, a solvent-soluble polymer carrier, and a gel polymer carrier.
  • water-insoluble organic polymer examples include, for example, silicon-containing substances such as porous silica, porous glass, diatomaceous earth, and celite; and polysaccharides such as nitrocellulose, hydroxyapatite, agarose, dextran, cellulose, and carboxymethylcellulose.
  • examples include cross-linked products, cross-linked products of proteins such as methylated albumin, gelatin, collagen, and casein, gel particles, and dye sols.
  • water-insoluble inorganic polymer examples include aluminum oxide, titanium oxide, and ceramic particles.
  • Examples of the synthetic polymer include polystyrene, poly (meth) atalylate, polybutyl alcohol, polyacrylonitrile or a copolymer thereof, a styrene-styrene sulfonic acid copolymer, a vinyl acetate-acrylate copolymer, and the like. It is possible.
  • Examples of metal colloids include gold colloids.
  • the magnetic particles include magnetic iron oxide beads, monodispersed and superparamagnetic particles having finely ground magnetic iron oxide particles on the surface (Japanese Patent Publication No. Hei 4 501959), and superparamagnetic acid covered with a polymerizable silane coating. Magnetically responsive particles with danigata (Japanese Patent Publication No.
  • the magnetized solid phase carrier can easily separate a solid and a liquid using magnetic force.
  • the shape of the solid support include particles, membranes, fibrous forms, and filters.
  • particles are particularly preferred, and the surface thereof is porous or non-porous!
  • Particularly preferred solid carriers include latex in which a synthetic polymer carrier is uniformly dispersed in water or the like, metal colloid particles such as gold colloid, and magnetic particles such as magnet beads.
  • the immobilization of the primer or the substrate on the solid phase carrier can be performed by a method known to those skilled in the art, and may be a method based on the deviation of physical bond or chemical bond! /,.
  • Immobilization of a primer or a substrate on a solid support is performed, for example, generally by using a substance capable of labeling an oligonucleotide such as a primer or a probe and a solid support to which a substance capable of binding to the substance is bound. Can be combined.
  • the combination of substances used for such a purpose can be used, for example, a combination with an antibody, a combination of a ligand and a receptor capable of binding thereto, and a combination of two hybridizing with each other. And combinations of two nucleic acids.
  • the primer or the substrate can be immobilized on the solid support.
  • the antigen include haptens such as FITC, DIG, and DNP.
  • antibodies that can bind to these include antibodies such as anti-FITC antibody, anti-DIG antibody, and anti-DNP antibody.
  • these antibodies may be either monoclonal antibodies or polyclonal antibodies.
  • biotin and streptavidin is particularly preferred because of their high specificity and good binding efficiency. Labeling substances such as biotin, hapten, ligand and the like can be used alone or in combination of two or more if necessary, using known means (JP-A-59-93099, JP-A-59-148798, and (See Japanese Unexamined Patent Publication No. Sho 59-204200).
  • the site (or group) capable of binding to the solid phase carrier used in the present invention is selected according to the above-mentioned method used for immobilizing a primer or a substrate on the solid phase carrier. Therefore, any of those that enable physical binding to the solid phase carrier and those that allow chemical binding may be used, but are preferably those that allow specific binding. .
  • Examples of such a site capable of binding to a solid phase carrier include, as described above, biotin, avidin, streptavidin, an antigen, an antibody, a ligand, a receptor, a nucleic acid, a protein, and the like, and preferably a biotin or a streptavidin. And more preferably, biotin.
  • the solid phase carrier used in this case may include a binding partner of the site contained in the primer or the substrate, if necessary.
  • a binding partner exists in a form capable of binding to the site contained in the primer or the substrate, preferably exists on the surface of the solid support, and more preferably exists on the surface of the solid support. It is to be applied on the surface of the phase carrier.
  • a primer set according to the present invention is prepared for each of a plurality of target nucleic acids, and the plurality of primer sets are immobilized on a solid support in such a manner that they can be distinguished from each other. Then, a nucleic acid amplification reaction is carried out using these immobilized primer sets. This makes it possible to simultaneously amplify a plurality of target nucleic acids and detect amplification products for each of them in a distinguishable manner. Detection of the amplification product can be performed using an interlator or the like.
  • solid supports that can be used for such purposes include not only the flat solid supports described above but also bead surfaces that can be distinguished from each other (U.S. Pat.No. 6,046,807 and U.S. Pat. Description of the related art, such as a quasi-plate carrier (Japanese Patent Application Laid-Open No. 2000-245460), which is prepared by bundling a solid support obtained by solidifying the respective primer sets on a fibrous carrier and cutting the resultant into thin pieces. It can be known in the art.
  • the amplified fragment obtained by the nucleic acid amplification method of the present invention is composed of ordinary bases, after amplification, it is subcloned into an appropriate vector using a restriction enzyme site inside the amplified fragment. It is also possible to make contact. Furthermore, the amplified fragment can be treated with a restriction enzyme, such as RFLP, and can be widely used in the field of genetic testing. In addition, the amplified fragment can be generated as containing an RNA polymerase promoter sequence, which allows direct synthesis of RNA from the amplified fragment. The RNA synthesized in this manner can be used as an RNA probe, siRNA, or the like.
  • a base labeled with biotin or a fluorescent substance can be used as a substrate in place of ordinary dNTP, whereby the base labeled with biotin or a fluorescent substance can be used. It is also possible to prepare DNA probes. Furthermore, it is also possible to confirm the presence or absence of an amplification product through some structure such as biotin or a labeling substance.
  • the primers included in the primer set according to the present invention can include a restriction enzyme recognition site, and thereby, the efficiency of nucleic acid amplification can be improved. That is, since a nick is generated in the amplification product by the restriction enzyme corresponding to the restriction enzyme recognition site in the primer, a strand displacement-type complementary strand synthesis reaction can be generated using the nick as a synthesis starting point.
  • This method is basically based on the principle of the SDA method described as the prior art.However, in the present invention, as shown in FIGS. In that they have a structure in which typical nucleic acids are alternately linked. In this method, it is necessary to design so that the complementary strand of the reverse primer containing the nick will not be cleaved by the restriction enzyme and the dNTP derivative will be incorporated so as to be resistant to nucleases. .
  • the primers contained in the primer set according to the present invention can include a promoter sequence of RNA polymerase, whereby the efficiency of nucleic acid amplification can be improved.
  • This method is basically based on the principle of the NASBA method described as a prior art.However, in the present invention, transcription by an RNA polymerase that recognizes this promoter from a long chain amplification product as shown in FIG. As a result, the primer can easily bind to single-stranded RNA as a transcript, and the amplification efficiency can be improved.
  • the primer set according to the present invention can include an "outer primer" used in the LAMP method or the SDA method, whereby the efficiency of nucleic acid amplification can be improved.
  • the outer primer it is possible to use a primer that can provide a starting point for complementary strand synthesis at a portion located outside the target nucleic acid sequence on the type III nucleic acid.
  • nucleic acid amplification method By the nucleic acid amplification method according to the present invention, a single-stranded nucleic acid to be immobilized on a DNA chip, a single-stranded DNA probe for base sequence determination, a megaprimer for long-chain PCR, and the like can be easily and quickly prepared. Can be made. Further, according to the purpose, it is possible to selectively amplify only the sense sequence or only the antisense sequence of the target nucleic acid by the nucleic acid amplification method according to the present invention.
  • the single-stranded nucleic acid prepared by the nucleic acid amplification method according to the present invention can be used as a DNA fragment to be immobilized on a DNA chip. That is, the nucleic acid amplification method according to the present invention can be applied to a method for preparing a DNA chain for immobilization in the preparation of a DNA chip. It is also possible to prepare a DNA chip by preliminarily fixing the 5 'end of the primer on a DNA chip and performing nucleic acid amplification on the chip.
  • a fluorescently labeled probe that hybridizes to the amplified product is added to the reaction solution, so that the nucleic acid can be amplified on the DNA chip in real time. It is possible to detect the amplification product in a short time.
  • a set of primers can be designed so that the mutation site is included in the sequence (A), the sequence (B) or the sequence (C), whereby the presence or absence of the amplification product is determined.
  • a method for determining the presence or absence of a mutation in a nucleic acid sequence in a nucleic acid sample comprising: (a) a step of preparing a nucleic acid sample; (b) a primer set according to the present invention, Or a nucleic acid sequence not having the mutation, is designed to be a target nucleic acid sequence, and the nucleotide residue related to the mutation is designed to be included in the sequence (A), the sequence (B) or the sequence (C). Preparing a primer set, and (c) in the presence of the nucleic acid sample, Performing an amplification reaction.
  • the presence of an amplification product after the nucleic acid amplification reaction indicates the presence of the mutation.
  • the absence or reduction of the amplification product indicates the absence of the mutation.
  • the presence of the amplification product after the nucleic acid amplification reaction indicates the absence of the mutation, and the absence of the amplification product. Or a decrease indicates the presence of the mutation.
  • “reduction of amplification product” means that the amount of the obtained amplification product is reduced as compared to the amount of the amplification product obtained when the target nucleic acid sequence is present in the nucleic acid sample. means.
  • control nucleic acid refers to a wild-type (normal type) which is considered to be a standard nucleotide sequence, for example, a standard genotype, with respect to a specific nucleotide sequence. )).
  • test nucleic acid refers to a nucleic acid to be examined for whether or not it has a different base (mutation) from the control nucleic acid in the mutation detection method of the present invention, in other words, a nucleic acid sample.
  • a nucleic acid present therein which has the same sequence as the control nucleic acid except for the base involved in the mutation.
  • bases pertaining to mutation or “nucleotide residues pertaining to mutation” refers to bases or nucleotide residues present at the site of mutation in a nucleic acid, and thus are included in the mutation site of a control nucleic acid.
  • Base or nucleotide residue and the base or nucleotide residue contained in the mutation site of the mutant nucleic acid are a test nucleic acid, and the gene of a healthy subject corresponding to this gene is a control nucleic acid.
  • the test nucleic acid and the control nucleic acid may be nucleic acids derived from natural products or artificially synthesized nucleic acids.
  • nucleic acid as used in the present invention means a polynucleotide comprising any unmodified nucleotides and Z or modified nucleotides.
  • the test and control nucleic acids are typically DNA, such as cDNA, genomic DNA, synthetic DNA, or RNA, such as mRNA, total RNA, hnRNA, siRNA, synthetic RNA. .
  • polynucleotide used in the present invention also includes, for convenience, polynucleotides and oligonucleotides, and artificially synthesized nucleic acids such as peptide nucleic acids, morpholino nucleic acids, methylphosphonate nucleic acids, and s-oligonucleic acids.
  • the test nucleic acid and the control nucleic acid can be freely selected by the tester. Further, upon detection, these nucleic acids may be mixed.
  • step (b) of the mutation detection method according to the present invention a set of primers designed so that nucleotide residues related to the mutation are included in the sequence (A) Is prepared.
  • the target nucleic acid sequence is contained in the nucleic acid sample
  • an amplification product is obtained because the first primer anneals to the sequence (A) in the nucleic acid amplification reaction.
  • the nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence at the mutation site, it becomes difficult for the first primer to anneal to sequence (A) in the nucleic acid amplification reaction, and No product is obtained or the amount of amplification product obtained is significantly reduced.
  • the nucleotide residue related to the mutation is preferably contained at the 5 ′ end of the sequence (A) (corresponding to the 3 ′ end in the first primer).
  • the sequence (Ac ′) contained in the first primer is preferably a sequence complementary to the sequence (A).
  • step (b) of the mutation detection method according to the present invention a primer set designed such that the nucleotide residue related to the mutation is included in the sequence (C) is used. Be prepared.
  • an amplification product is obtained since the second primer anneals to the sequence (C) in the nucleic acid amplification reaction.
  • nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence at the mutation site, it becomes difficult for the second primer to anneal to the sequence (C) in the nucleic acid amplification reaction, and the amplification product Is not obtained, or the amount of amplification product obtained is significantly reduced.
  • the nucleotide residue related to the mutation is preferably contained at the 5 ′ end of the sequence (C) (corresponding to the 3 ′ end in the second primer).
  • sequence (Cc ′) contained in the second primer is preferably a sequence complementary to the sequence (C).
  • step (b) of the mutation detection method according to the present invention A primer set designed so that the nucleotide residue related to the mutation is included in the sequence (B) is prepared.
  • the first primer is included in the nucleic acid amplification reaction after the first primer has been annealed to the sequence (A) and subjected to an extension reaction.
  • the sequence ( ⁇ ') hybridizes to the sequence (Be) on the extended strand, so that a stem-loop structure is efficiently formed. This efficient formation of the stem-loop structure allows the other first primer to anneal to type III, and the mechanism of action shown in FIG.
  • the sequence ( ⁇ ⁇ ′) contained in the first primer is preferably the same sequence as the sequence ( ⁇ ⁇ ).
  • a stem-loop structure when a sequence complementary to the dissociated portion at the end is present on the same strand, a stem-loop structure can be formed as a metastable state.
  • this stem-loop structure does not exist stably, especially when there are non-complementary nucleotides between the sequence forming the stem ( ⁇ ′) and the sequence (Be). It becomes unstable or no stem is formed.
  • the hybridization of the sequence (A) on type I and the sequence (Ac ') in the primer becomes dominant, and the sequence (A) does not become a main strand. , The next first primer will not be able to anneal. Therefore, it is extremely difficult to cause the continuous reaction shown in FIG.
  • a nucleic acid sample containing a test nucleic acid can also obtain a test subject, for example, a human or non-human animal.
  • a sample such as a desired tissue, organ, or cell from the subject is obtained.
  • the nucleic acid can be extracted from the pull by a method known in the art, and if necessary, conditions such as the size of the nucleic acid fragment and the purification purity can be adjusted to an appropriate state after the extraction.
  • the test nucleic acid in the nucleic acid sample may be further amplified by performing an amplification reaction by a general polymerase chain reaction (PCR) or the like.
  • PCR general polymerase chain reaction
  • the test nucleic acid and the control nucleic acid may be single-stranded or double-stranded!
  • double-stranded nucleic acid used in the present invention means any of double-stranded DNA, double-stranded RNA, and DNAZRNA.
  • the double-stranded nucleic acid may be used as it is as a nucleic acid sample, or may be one amplified by a vector such as a phage or a plasmid! ⁇
  • the nucleic acid amplification reaction in the mutation detection method according to the present invention is performed in the presence of a mismatch recognition protein, whereby the mutation can be detected more accurately.
  • mismatch binding proteins such as MutS protein (WO 99/06591 pamphlet) bound to Fluorescence Protein
  • a genetic diagnostic method for detecting a mismatch using a mismatch binding protein has been developed (M. Gotoh et al., Genet. Anal., 14, 47-50, 1997).
  • Methods for detecting polymorphisms and mutations at specific nucleotides in a nucleic acid include, for example, hybridizing a control nucleic acid having no mutation with a test nucleic acid suspected of having a mutation, and combining the nucleic acid with a mismatch recognition protein.
  • a method for detecting a mismatch by introducing a mismatch There is known a method for detecting a mismatch by introducing a mismatch.
  • mismatch refers to a mismatch from adenine (A), guanine (G), cytosine (C), and thymine (T) (peracil (U) in the case of RNA). It means that the selected base pair is not a normal base pair (A and T combination or G and C combination). Mistake Matches include not only one mismatch, but also a plurality of consecutive mismatches, mismatches resulting from the insertion and / or Z or deletion of one or more bases, and combinations thereof.
  • the specificity (accuracy) can be improved by using these mismatch binding proteins.
  • the sequence (Ac ′) or the second Amplification due to the force that prevents the hybridization of the sequence (Cc) contained in the primer to the test nucleic acid or the formation of the stem-loop structure due to the sequence ( ⁇ ′) contained in the first primer No product will be obtained or the amount of amplification product will be reduced.
  • heteroduplex structure refers to a double-stranded structure that is a substantially complementary double-stranded structure but contains a non-complementary region due to one or more mismatches. I do.
  • Such a heteroduplex structure creates an erroneous amplification product that should not be produced. Therefore, if the mismatch binding protein is added to the reaction solution used for the nucleic acid amplification reaction, the mismatch binding protein binds to the heteroduplex structure as described above, and the subsequent amplification reaction is hindered. Therefore, by using a mismatch binding protein, it is possible to prevent generation of an erroneous amplification product.
  • the mismatch binding protein used in the present invention may be any protein that recognizes a mismatch in a double-stranded nucleic acid and is capable of binding to the site of the mismatch. It may be something.
  • the mismatch-binding protein used in the present invention may have one or more amino acids substituted, deleted, added, and / or inserted in the amino acid sequence of the wild-type protein as long as the mismatch in the double-stranded nucleic acid can be recognized. It may be a protein (variant) that also has the amino acid sequence power! / ,. Such variants can also be artificially created, which can occur in nature. Many methods are known for introducing amino acid mutations into proteins. For example, As a site-directed mutagenesis method, the method of WP Deng and JA Nickoloff (Anal.
  • mismatch binding protein used in the present invention is preferably derived from MutS, MutH, MutL, or yeast, and more preferably MutS, MutH, or MutL.
  • Mismatch binding proteins may also bind to single-stranded nucleic acids, and binding of such mismatch-binding proteins to single-stranded nucleic acids is known to be inhibited by single-stranded binding proteins. Therefore, when a mismatch-binding protein is used in the mutation detection method according to the present invention, it is preferable to use a single-stranded binding protein in combination. Further, the mismatch binding protein may also bind to a double-stranded nucleic acid that does not contain a mismatch. Such erroneous binding of the mismatch binding protein may be detected by using an activator at first. Is known to be inhibited by activating.
  • the single-stranded binding protein (SSB) used to inhibit the binding of the mismatch binding protein to the single-stranded nucleic acid can be any SSB known in the art.
  • Preferred SSBs include single-stranded binding proteins from Escherichia coli, Drosophila, and Xenopus laevis, and gene 32 proteins from T4 Bataterio phage, and their equivalents from other species. No.
  • mismatch binding protein examples include MutS, MutH, MutL, HexA, MSH1-6, Rep3, RNaseA, Peracil-DNA glycosidase, T4 endonuclease VII, and resolvase, and preferably MutS, MSH2.
  • it is MSH6, or a mixture of two or more of these, and more preferably MutS.
  • the activator for activating the mismatch binding protein can be appropriately selected by those skilled in the art, and is not particularly limited, but is preferably ATP (adenosine 5'-triphosphate). , ADP (adenosine 5'-diphosphate), ATP- ⁇ -S (adenosine 5'-O- (3-thiotriphosphate)), AMP-PNP (adenosine 5 '-[ ⁇ , y imide] triphosphate Acid) or one of the nucleotides that can bind to the mismatch binding protein.
  • Activation of the mismatch binding protein can be performed by incubating the mismatch binding protein and the activator at room temperature for several seconds to several minutes.
  • the mutation detection method according to the present invention examines whether a specific gene has a mutation in a subject suspected of having a genetic disease. It can be used to determine whether the gene and the gene of a healthy subject have the same nucleotide sequence. In the mutation detection method according to the present invention, it is possible to detect a mutation at any position of a test gene.
  • the primer set according to the nucleic acid amplification reaction using the primer set according to the present invention, it is possible to determine the presence or absence of deletion or insertion of a sequence in a nucleic acid sequence in a nucleic acid sample.
  • the site of the deletion or insertion is included in sequence (A), sequence (B) or sequence (C), or between sequence (A) and sequence (B), or
  • the primer set can be designed so as to be located between (A) and sequence (C), which allows the presence or absence of amplification products to be determined to determine the presence or absence of sequence deletion or insertion. It becomes possible.
  • a deletion or sequence deletion in a nucleic acid sequence in a nucleic acid sample A method for determining the presence or absence of insertion, comprising: (a) a step of preparing a nucleic acid sample; and (b) a primer set according to the present invention, which contains a sequence related to deletion or insertion, or contains the sequence.
  • the target nucleic acid sequence is a target nucleic acid sequence, and the site related to the deletion or insertion is included in sequence (A), sequence (B) or sequence (C), or between sequence (A) and sequence (B).
  • the presence of the amplification product indicates the presence of the deletion or insertion sequence, and the absence or decrease of the amplification product indicates the absence of the deletion or insertion sequence.
  • the presence of an amplification product after the nucleic acid amplification reaction is The absence of such a sequence indicates the absence or reduction of the amplification product indicates the presence of the deletion or insertion sequence.
  • “reduction of amplification product” means that the amount of the obtained amplification product is reduced compared to the amount of amplification product obtained when the target nucleic acid sequence is present in the nucleic acid sample. means.
  • a site related to deletion or insertion is contained in the sequence (A).
  • a set of designed primers is prepared.
  • the target nucleic acid sequence is contained in the nucleic acid sample
  • an amplification product is obtained because the first primer anneals to the sequence (A) in the nucleic acid amplification reaction.
  • the nucleic acid sample contains a nucleic acid sequence that differs from the target nucleic acid sequence due to deletion Z insertion, it is difficult for the first primer to anneal to sequence (A) in the nucleic acid amplification reaction.
  • the sequence (Ac) contained in the first primer is preferably a sequence complementary to the sequence (A).
  • the site related to the deletion or insertion is contained in the sequence (C).
  • Designed ply A marset is prepared.
  • the amplification product is obtained because the second primer is used for the sequence (C) in the nucleic acid amplification reaction. If the nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence due to deletion Z insertion, it will be difficult for the second primer to anneal to sequence (c) in the nucleic acid amplification reaction. No amplification product is obtained, or the amount of amplification product obtained is significantly reduced.
  • the sequence contained in the second primer (
  • Cc ′ is preferably a sequence complementary to the sequence (C).
  • a site related to deletion or insertion is included in the sequence (B).
  • a designed primer set is prepared.
  • the first primer is used in the nucleic acid amplification reaction after the first primer is used for the sequence (A) and the extension reaction is performed. Since the contained sequence ( ⁇ ') hybridizes to the sequence (Be) on the extended strand, a stem-loop structure is efficiently formed. This efficient formation of the stem-loop structure allows the other first primer to align with type I, and the mechanism of action shown in FIG. 1 proceeds efficiently, resulting in amplification.
  • the product is obtained.
  • the nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence due to deletion Z insertion, it becomes difficult to form the stem-loop structure in the nucleic acid amplification reaction. In this case, the mechanism of action described in (1) is disturbed, and no amplification product is obtained, or the amount of amplification product obtained is significantly reduced.
  • the details are as described above for the mutation detection method according to the present invention.
  • the sequence ( ⁇ ⁇ ′) contained in the first primer is preferably the same sequence as the sequence ( ⁇ ⁇ ).
  • the site relating to the deletion or insertion comprises the sequence (A) and the sequence (B).
  • a primer set designed to be placed between is prepared.
  • the first primer is annealed to the sequence (A) in the nucleic acid amplification reaction, and after the elongation reaction, the first primer Since the contained sequence ( ⁇ ′) hybridizes to the sequence (Be) on the extended strand, a stem-loop structure is efficiently formed.
  • this efficient stem-loop structure allows Primers can anneal to type III, and the mechanism of action shown in FIG. 1 proceeds efficiently, so that an amplification product is obtained.
  • the nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence due to deletion Z insertion, the sequence contained in the first primer ( ⁇ ') and the sequence on the extended strand (( Be) is maintained at an appropriate distance, and thus the formation of the stem-loop structure in a nucleic acid amplification reaction becomes difficult. Therefore, in this case, the mechanism of action shown in FIG. 1 is disturbed, and an amplification product is not obtained or the amount of the obtained amplification product is significantly reduced.
  • the site relating to the deletion or insertion comprises the sequence (A) and the sequence (C).
  • a primer set designed to be interposed is prepared.
  • the nucleic acid is contained in the nucleic acid amplification reaction after the first primer has been annealed to the sequence (A) and subjected to an extension reaction.
  • the sequence ( ⁇ ') hybridizes to the sequence (Be) on the extended strand, so that a stem-loop structure is efficiently formed.
  • nucleic acid sample contains a nucleic acid sequence different from the target nucleic acid sequence due to insertion of a deletion Z, no amplification product is obtained, or the amount of the amplification product obtained is extremely large. Decrease. For example, when a nucleic acid sequence different from the target nucleic acid sequence is contained in a nucleic acid sample due to insertion of a long sequence between sequence (A) and sequence (C), the nucleic acid amplification rate (efficiency) is significantly increased.
  • nucleic acid sequence different from the target nucleic acid sequence is contained in the nucleic acid sample due to the deletion of the sequence between sequence (A) and sequence (C). If part or all is lost, the sequence ( ⁇ ') contained in the first primer cannot be hybridized on the extended strand, and the force or difficulty in forming a stem-loop structure will result. However, the mechanism of action shown in FIG. 1 is disturbed, and no amplification product is obtained, or the amount of the obtained amplification product is significantly reduced.
  • nucleic acid sequence different from the target nucleic acid sequence is contained in the nucleic acid sample due to the deletion of the sequence between the sequence ( ⁇ ) and the sequence (C). Even if partial deletion of sequence (B) does not occur due to the loss, no amplification product is obtained or the amount of obtained amplification product is significantly reduced because the speed (efficiency) of nucleic acid amplification is reduced. You.
  • RNA includes, for example, mRNA, spliced RNA, unspliced RNA, and the like.
  • RNA that exists in the nucleus, cytoplasm, etc. RNA derived from infected viruses, bacteria, etc. All possible types of RNA are included.
  • Examples of the DNA include not only naturally occurring DNA but also an artificially recombined DNA sequence.
  • the sequence relating to the deletion or insertion is an intron sequence contained in a gene on the genome of a eukaryote.
  • an intron sequence contained in a gene on the genome of a eukaryote.
  • mRNA of a target gene (having an intron deletion) is used as a target nucleic acid sequence, and a site related to the deletion of the intron sequence is located between the sequence (A) and the sequence (B).
  • An embodiment using a primer set designed as described above will be described in detail.
  • the sequence (Ac ′) present at the 3 ′ end of the first primer anneals to type ⁇ to cause an extension reaction, and further, the extension reaction product from the primer defines the target region. Only in the case of synthesis, it becomes possible to hybridize the sequence ( ⁇ ') present at the 5' end of the primer to the sequence (Be) corresponding to the adjacent etason on the self-extension product.
  • the stem-loop structure shown in FIG. A new first primer may anneal to sequence (A) above. It becomes possible. As described above, the formation of a stem-loop structure by the 5 ′ terminal portion of the first primer is efficiently repeated when the sequence (A) and the sequence (B) on the ⁇ pattern are present at an appropriate interval. Therefore, amplification occurs only when the mRNA containing no intron sequence is changed to type III, and amplification does not occur with genomic DNA containing the intron sequence.
  • the target nucleic acid can be accurately amplified, and since the formation of this stem loop structure is accurately repeated for each cycle, only the target nucleic acid can be accurately amplified It becomes.
  • non-specific amplification occurs in the PCR method and the like, and it is extremely difficult to amplify only the target mRNA and quantify it. Since the method has a very high specificity, it is possible to specifically amplify only a target mRNA without causing non-specific amplification, so that the quantification is also improved.
  • this principle makes it possible to perform complicated and time-consuming DNase treatments and the like, thereby omitting the step of breaking down DNA in a sample to obtain RNA, thereby reducing spontaneous degradation of mRNA, and More rapid qualitative or quantitative diagnosis can be made.
  • the kit according to the present invention comprises the primer set according to the present invention.
  • the nucleic acid amplification method, mutation detection method or deletion Z insertion determination method according to the present invention has an advantage that no primer other than the primer set according to the present invention is required. Therefore, according to a preferred embodiment of the present invention, the kit according to the present invention does not contain any primer components other than the primer set according to the present invention.
  • the kit according to the present invention when at least one primer contained in the primer set according to the present invention includes a site capable of binding to a solid phase carrier, preferably further includes the solid phase carrier. Further, even when the substrate used for the nucleic acid amplification reaction contains a site capable of binding to a solid phase carrier, the kit according to the present invention preferably further comprises the solid phase carrier.
  • the kit according to the present invention may further include the above-mentioned reagents such as DNA polymerase, dNTP, and buffer solution, a reaction container, instructions, and the like.
  • the kit comprises a reaction container containing the primer set according to the present invention and other reagents required for a nucleic acid amplification reaction. It is assumed that Other reagents include those described above, such as DNA polymerase, dNTPs, and buffers.
  • a nucleic acid amplification reaction simply by adding a ⁇ -type nucleic acid or a nucleic acid sample to the reaction vessel and keeping the reaction vessel at a constant temperature.
  • a transparent or translucent reaction vessel is used since the solid phase carrier is aggregated at the same time as the amplification product is generated.
  • mismatch with type ⁇ is determined by the presence or absence of a mutation in type ⁇ .
  • a method for determining the presence or absence of a mutation in a nucleic acid sequence in a nucleic acid sample by performing a nucleic acid amplification reaction using the resulting nucleic acid reagent is provided.
  • the term "mutation" as used in this embodiment also includes substitutions, deletions and insertions of one or more nucleotides!
  • the term "substance having a mismatch discriminating ability" refers to a substance capable of binding to a mismatch site or a substance capable of cleaving this site when a double-stranded nucleic acid contains a mismatch. .
  • a nucleic acid amplification reaction using a primer and a DNA polymerase if there is a double-stranded portion to which a substance having a mismatch discriminating property is bound on the target nucleic acid sequence in Type I, even if the extended strand of the primer reaches that portion, Since the double-stranded structure is not resolved, the primer extension reaction stops there and therefore no amplification product is obtained.
  • the substance having a mismatch discriminating ability is preferably a substance that binds to the mismatch portion, and may be an organic compound, an inorganic compound or a protein, or a complex thereof, but is particularly preferably a compound that binds to the mismatch portion. It is considered a mismatch binding protein.
  • the details of the mismatch binding protein are as described above, but are preferably MutS, MSH2 or MSH6, or a mixture of two or more thereof, and more preferably MutS (J Smith and P Modrich, Proc. Natl. Acad. Sci. USA.
  • mismatch binding protein has a difference in heat resistance depending on the origin organism.
  • a person skilled in the art can select an appropriate mismatch binding protein according to the temperature set in the nucleic acid amplification reaction.
  • MutS derived from a thermophilic bacterium can be suitably used in the present invention.
  • the nucleic acid amplification reaction described above may be performed by any method known in the art, or may be performed by the nucleic acid amplification method according to the present invention.
  • a nucleic acid amplification reaction performed at an isothermal temperature is suitably used.
  • Such a nucleic acid amplification reaction is not limited to the nucleic acid amplification method according to the present invention described above, but may be a method known as an isothermal nucleic acid amplification method, for example, SDA method (Japanese Patent Publication No. 7-114718), improved SDA method (US Pat. No. 5,824,517; WO 99Z09211 pamphlet; WO 95Z25180 pamphlet), NASBA method (Japanese Patent No. 2650159) ), LAMP method (WO 00 Z28082 pamphlet), ICAN method (WO 02Z16639 pamphlet) and the like.
  • the method for detecting mutation according to the second aspect of the present invention comprises the following steps:
  • a primer set capable of amplifying a target nucleic acid sequence containing a site related to a mutation, wherein at least one primer included in the primer set has hybridized to a nucleic acid sequence or a complementary sequence thereof in the nucleic acid sample.
  • the above primer set capable of amplifying a target nucleic acid sequence depends on the nucleic acid amplification method to be used. Can be appropriately designed. In particular, it is preferable that the primer set be capable of amplifying the target nucleic acid sequence under isothermal conditions. In this case, the nucleic acid amplification reaction can be performed at isothermal conditions.
  • the above-mentioned one or more mismatches can be a single-base mismatch, a plurality of continuous mismatches, or a plurality of discontinuous mismatches.
  • the upper limit of the number of mismatches may be any number as long as the two nucleic acids to be hybridized can maintain a double-stranded state.Therefore, the number of nucleotides paired by hybridization is limited. Although it depends on the number, it is preferably 5 bases, more preferably 3 bases, and still more preferably 2 bases.
  • the above primers that cause a mismatch due to the presence or absence of a mutation can be used by those skilled in the art by comparing a target nucleic acid sequence having a mutation to be detected with a target nucleic acid sequence not having the mutation. If so, it can be designed appropriately. That is, the primer may be designed so as to hybridize to a region containing nucleotides different between these two target nucleic acid sequences. At this time, if the primer is designed so as to include a sequence complementary to the target nucleic acid sequence having a mutation, a mismatch may occur due to the absence of the mutation, while the target nucleic acid sequence having no mutation may be generated. If the sequence is designed to include a sequence complementary to, the presence of the mutation will cause a mismatch.
  • the first primer included in the primer set is the first primer included in the above-described primer set according to the present invention.
  • the first primer can be designed such that the presence or absence of the mutation causes one or more mismatches between the sequence (A) and the sequence (Ac ').
  • the first primer can be designed such that the presence or absence of the mutation causes one or more mismatches between the sequence (Be) and the sequence ( ⁇ ′).
  • the second primer included in the primer set is the second primer included in the above-described primer set according to the present invention.
  • the second primer can be designed so that the presence or absence of the mutation causes one or more mismatches between the sequence (C) and the sequence (Cc ′).
  • the primer set further includes a third primer that may be included in the above-described primer set according to the present invention.
  • This The third primer when hybridized to a nucleic acid sequence or its complementary sequence in the nucleic acid sample, causes one or more mismatches with the nucleic acid sequence or its complementary sequence due to the presence or absence of the mutation. Can be designed as follows.
  • nucleic acid amplification reaction preferably, a polymerase having the above-described strand displacement ability is used. Further, if necessary, the above-mentioned melting temperature regulator, the above-mentioned enzyme stabilizing agent and the like may be used.
  • kits can be assembled into a kit. Therefore, the kit comprises the substance having the ability to identify a mismatch, and the primer set. Further, the kit preferably further comprises a polymerase having the above-described strand displacement ability. Further, the kit may include the above-mentioned reagents such as the above-mentioned melting temperature regulator, the above-mentioned enzyme stabilizing agent, dNTP, and a buffer, a reaction vessel, instructions, and the like.
  • the above-mentioned reagents such as the above-mentioned melting temperature regulator, the above-mentioned enzyme stabilizing agent, dNTP, and a buffer, a reaction vessel, instructions, and the like.
  • the method for detecting mutation according to the second aspect of the present invention comprises the following steps:
  • nucleic acid fragment that hybridizes to the target nucleic acid sequence, and when hybridized to the nucleic acid sequence or its complementary sequence in the nucleic acid sample, the nucleic acid fragment or the complementary sequence thereof depends on the presence or absence of the mutation. Causes more than one mismatch in Preparing a nucleic acid fragment, which is designed for;
  • the one or more mismatches can be a single-base mismatch, a plurality of continuous mismatches, or a plurality of discontinuous mismatches.
  • the upper limit of the number of mismatches may be any number as long as the two nucleic acids to be hybridized can maintain a double-stranded state.Therefore, the number of nucleotides paired by hybridization is limited. Although it depends on the number, it is preferably 5 bases, more preferably 3 bases, and still more preferably 2 bases.
  • nucleic acid fragment that causes a mismatch due to the presence or absence of a mutation can be compared with a target nucleic acid sequence having a mutation to be detected and a target nucleic acid sequence not having the mutation by a person skilled in the art. If so, it can be designed appropriately. That is, the nucleic acid fragment may be designed so as to hybridize to a region containing nucleotides different between these two target nucleic acid sequences.
  • nucleic acid fragment is designed to include a sequence complementary to the target nucleic acid sequence having a mutation
  • a mismatch may be caused by the absence of the mutation, while the target nucleic acid sequence having no mutation If it is designed to contain a sequence that is complementary to, a mismatch will occur due to the presence of the mutation.
  • the nucleic acid fragment may be one that hybridizes to a target nucleic acid sequence at a temperature used in a nucleic acid amplification reaction, for example, a temperature in the range of 20 ° C to 80 ° C.
  • the chain length of the nucleic acid fragment is not particularly limited, but is preferably 5 to 40 nucleotides, more preferably 15 to 25 nucleotides.
  • the nucleic acid fragment can also contain a modified base (a non-naturally occurring base) if necessary.
  • the nucleic acid fragment may contain a label or an active group such as an amino group at one or both ends.
  • the above primer set capable of amplifying a target nucleic acid sequence can be appropriately designed depending on the nucleic acid amplification method to be used.
  • the primer set be capable of amplifying the target nucleic acid sequence under isothermal conditions.
  • the nucleic acid amplification reaction can be performed at isothermal conditions.
  • the first primer included in the primer set is the first primer included in the above-described primer set according to the present invention.
  • the second primer included in the primer set is the second primer included in the above-described primer set according to the present invention.
  • the primer set further comprises a third primer which may be included in the above-described primer set according to the present invention.
  • nucleic acid amplification reaction preferably, a polymerase having the above-described strand displacement ability is used. Further, if necessary, the above-mentioned melting temperature regulator, the above-mentioned enzyme stabilizing agent and the like may be used.
  • an amplification product is obtained using a nucleic acid fragment that causes a mismatch due to the presence of the mutation, it is determined that the mutation is not present in the nucleic acid sample Conversely, when an amplification product is not obtained, it can be determined that the mutation exists. On the other hand, when an amplification product is obtained using a nucleic acid fragment that causes a mismatch due to the absence of a mutation, it can be determined that the mutation is present in the nucleic acid sample, and conversely, the amplification product is obtained. If the force is not enough, it can be determined that the variation does not exist.
  • kits can be assembled into a kit. Therefore, the kit comprises the substance having the ability to identify a mismatch, the primer set, and the nucleic acid fragment.
  • the kit preferably further comprises a polymerase having the above-described strand displacement ability.
  • the kit may include the above-mentioned reagents such as the above-mentioned melting temperature regulator, the above-mentioned enzyme stabilizing agent, dNTP, and a buffer, a reaction container, instructions, and the like.
  • Example 1 Amplification of target nucleic acid sequence in human STS DYS237 gene
  • human genomic DNA (Clontech) was used as type I, and The target nucleic acid sequence in the contained human STS DYS237 gene was amplified.
  • a primer a primer pair having the following sequence was used. The positional relationship of each primer region with respect to the template was as shown in FIG. 4 (SEQ ID NO: 6).
  • the sequence on the 3, terminal side (22mer: underlined) anneals to type II, and the sequence on the terminal side (16mer: non-underlined) is folded in that region. It is designed to adopt the structure shown in 2.
  • the sequence at the 3 ′ end (20mer: underlined) anneals to the ⁇ type, and after the extension reaction, the sequence at the 5 ′ end (10mer: not underlined) It is designed to hybridize to the region on the extended strand that starts 16 bases downstream of the 3 'terminal residue of the primer.
  • F1 GGATATATATATATCCACTGAACAAATGCCACATAAAG (SEQ ID NO: 1); R1: GCAGCATCACCAACCCAAAAGCACTGAGTA (SEQ ID NO: 2).
  • a reaction solution (25 ⁇ L) having the following composition: Tris-HCl (20 mM, pH 8.8), KCl (lOmM), (NH) SO (lOmM) ⁇ MgSO (8 mM) ⁇ DMSO (3%) , Triton X—100 (1%),
  • the amplification product obtained in Example 1 was derived from the target nucleic acid sequence
  • the amplification product was subjected to restriction enzyme digestion. Specifically, digestion with the restriction enzyme MboII (3 hours at 37 ° C.) was performed using the reaction solution 0 after the amplification reaction obtained in Example 1.
  • the digestion products were electrophoresed using 3% NuSieve 3: 1 Agarose (BioWhittaker Molecular Applications (BMA); purchased from Takara Bayo; "NuSieve” is a registered trademark of BMA).
  • BMA BioWhittaker Molecular Applications
  • the results are as shown in FIG.
  • the samples in each lane in FIG. 6 are as follows: Lane 1: 20 bp DNA Ladder size marker; Lane 2: electrophoresed 0.3 ⁇ L of the amplified product; Lane 3: 0.3 ⁇ L of the amplified product Electrophoresis of digestion products.
  • each restriction enzyme digested fragment whose nucleotide sequence is deduced is as shown on the right side of the electrophoresis photograph. Since the band of the undigested sample shifted to a band of an estimated size after digestion, it was confirmed that the target nucleic acid sequence was amplified.
  • Example 3 Promoting amplification reaction by adding a melting temperature regulator
  • a melting temperature regulator was added to the amplification reaction solution, and its effect on amplification efficiency was examined.
  • the target nucleic acid sequence in the human STS DYS237 gene was amplified using human DNA (manufactured by Clontech) as type II.
  • the composition of the amplification reaction solution was the same as in Example 1 except that DMSO was added at a final concentration of 0%, 2%, 5%, or 10% as a melting temperature regulator.
  • the reaction conditions and the electrophoresis conditions after the reaction are the same as those described in Example 1.
  • Example 4 The output of a certain salt
  • single nucleotide mutation was detected using the primer set according to the present invention.
  • a long-chain synthetic oligonucleotide containing a single-base mutation and a long-chain synthetic oligonucleotide not containing a single-base mutation in a specific region of the human STS DYS237 gene were prepared to create a model of the single-base mutation. And were synthesized.
  • these long-chain synthetic oligonucleotides were amplified by the PCR method, respectively, to obtain amplification products containing no single nucleotide mutation! / Wild-type DNA and mutant DNA containing single nucleotide mutation.
  • amplification products were sequenced to confirm the nucleotide residues in the mutated portion, and then used as templates in the following experiments.
  • the nucleotide sequences of these amplification products are shown in FIG. 8 (SEQ ID NO: 7 and SEQ ID NO: 8).
  • Fig. 8 Power As can be seen, in the wild-type DNA, the residue represented by the arrow at the C residue is substituted with the G residue in the mutant DNA.
  • primers a primer pair for detecting wild-type DNA and a primer pair for detecting mutant DNA having the following sequences were used.
  • the primer pair for detecting a wild-type DNA uses the primer F1 and the primer R1 used in Example 1 as a forward primer and a reverse primer, respectively.
  • the primer pair for detecting mutant DNA uses the primer F1 as a forward primer and the newly designed primer R1G as a reverse primer.
  • Primer R1G has the same nucleotide sequence as primer R1, except that it has a fifth, fifth G residue from the end.
  • FIG. 8 shows the positional relationship of each primer region with respect to type I DNA.
  • Fl GGATATATATATATCCACTGAACAAATGCCACATAAAG (SEQ ID NO: 1); Rl: GCAGCATCACCAACCCAAAAGCACTGAGTA (SEQ ID NO: 2).
  • F1 GGATATATATATATCCACTGAACAAATGCCACATAAAG (SEQ ID NO: 1); RIG: GCAGGATCACCAACCCAAAAGCACTGAGTA (SEQ ID NO: 3).
  • the above wild-type DNA or mutant DNA was designated as type II, and in each case, a nucleic acid amplification reaction was performed using a primer pair for detecting wild-type DNA or a primer pair for detecting mutant DNA.
  • a reaction solution having the following composition (25: Tris-HCl (20 mM, pH 8.8), KCl (lOmM), (NH) SO (lOmM) ⁇ MgSO (8 mM)
  • Lane 1 20 bp DNA Ladder size marker
  • Lane 2 Reaction solution using wild-type DNA as type I and a primer base for detection of wild-type DNA
  • Lane 3 Reaction solution using mutant DNA as type III and a pair of primers for detection of wild-type DNA
  • Lane 4 Reaction solution using wild-type DNA as type II and a pair of primers for detection of mutant DNA
  • Lane 5 Reaction solution using mutant DNA as type III and a primer pair for detecting mutant DNA.
  • Example 5 Promotion of width by adding a third primer
  • Example 1 a nucleic acid amplification reaction using a third primer in addition to the primer pair used in Example 1 was performed.
  • the third primer two kinds of primers having the following sequences were used. These third primers are designed to anneal to a target nucleic acid sequence amplified by the primer pair at a different position from the primer pair. The positional relationship of each primer region with respect to the template was as shown in FIG. 10 (SEQ ID NO: 6).
  • Primer 3F TAAGAACTCGCTTTATAC (SEQ ID NO: 4);
  • Primer 3R TCTTCAACAGTCATTACC (SEQ ID NO: 5).
  • the target nucleic acid sequence in the human STS DYS237 gene was amplified using human DNA (Clontech) as type I.
  • the composition of the amplification reaction solution is the same as that of Example 1 except that the third primer contains one or both of the primer 3F (800 nM) and the primer 3R (800 nM).
  • the reaction solution was incubated at 60 ° C for 30 minutes or 60 minutes.
  • BMA Bovine MBMA
  • Takara Bio Takara Bio
  • NuSieve is a registered trademark of BMA
  • Nucleic acids were detected by staining the gel after electrophoresis with ethidium promide (EtBr). The results are as shown in FIG.
  • the samples in each lane in FIG. 11 are as shown in Table 1 below.
  • Table 1 Samples of each lane in the electrophoresis photograph shown in Fig. 11
  • Example 6 Confirmation of unfolded density
  • the reaction solution was the same as in Example 1, except that it contained 100 ng, 10 ng, lng, or Ong of Human Genomic DNA (Clontech) as template ⁇ and 800 nM of primer 3F (SEQ ID NO: 4) as the third primer.
  • the reaction solution was incubated at 60 ° C for 20, 40, or 60 minutes.
  • Table 2 Samples of each lane in the electrophoresis photograph shown in Fig. 12
  • Example 7 Effect of MutS on detection of certain mutations in ALDH2 gene
  • a single nucleotide mutation present in exon 12 of the aldehyde dehydrogenase-2 gene was detected using human genomic DNA (Clontech) as type I. Note that the above DNA to be type I contains the wild-type ALDH2 gene.
  • a primer set having the following sequence was used as a primer.
  • the positional relationship of each primer region with respect to the template was as shown in FIG. 13 (SEQ ID NO: 9).
  • the sequence at the 3 'end (16mer: underlined) is annealed in a ⁇ pattern, and the sequence at the 5' end (16mer: not underlined) is folded in that region.
  • the sequence at the 3 'end (20mer: underlined) anneals to type III, and after the extension reaction, the sequence at the 5' end (llmer) is placed on the extended strand by the primer.
  • the primers ALDH20F and ALDH20R are designed to anneal to ALDH2F and 01 "[21 on the type I, respectively, to the outside (5 'side).
  • ALDH2SNPg and ALDH2SNPa A primer containing a nucleotide residue (underlined) that is important for ALDH2SNPg contains a wild-type sequence and ALDH2SNPa contains a variant sequence.
  • ALDH2F TTTATATATATATAAACCGGGAGTTGGGCGAG (SEQ ID NO: 10); ALDH2R: CGAGTACGGGCCCACACTCACAGTTTTCAC (SEQ ID NO: 11); ALDH20F: ACAAGATGTCGGGGAGTG (SEQ ID NO: 12); ALDH20R: CCTGAGCCCCCAGCAGGT (SEQ ID NO: 13);
  • ALDH2SNPg GCAGGCATACACTGA (SEQ ID NO: 14);
  • ALDH2SNPa GCAGGCATACACTAA (SEQ ID NO: 15).
  • a reaction solution (25 ⁇ L) having the following composition: Tris—HCl (20 mM, pH 8.8), KCl (10 mM), (NH 2) SO (10 mM) ⁇ MgSO (6 mM) ⁇ DMSO (6%) , Triton X—100 (1%),
  • dNTP 0.4 mM
  • 8 U Bst DNA polymerase NEW ENGLAND BioLabs
  • SYBR GREEN I Molecule Probe
  • ⁇ type 40 ng
  • 3200 nM each ALDH2F and ALDH2R each containing 400 nM of ALDH20F and ALDH20R, containing either ALDH2SNPg (wild-type primer) or ALDH2SNPa (mutant primer) (1600 nM), and MutS (0.8 g).
  • Type ⁇ was reacted as a double strand.
  • an experiment was similarly performed for a reaction solution containing no MutS.
  • the production of the amplification product was monitored using a real-time fluorescence detector Mx3000P (manufactured by STRATAGENE).
  • FIG. 14 shows the results of the experiment.
  • human genomic DNA containing no mutation was used as type I
  • an amplification product was obtained when the above-mentioned wild-type primer was used, and an amplification product was obtained when the mutant-type primer was used. Should not be possible.
  • FIG. 14 when the wild-type primer was used, regardless of the presence or absence of MutS, generation of an amplification product was observed at about 25 minutes.
  • the mutated primer was used, the amplification product was generated at about 35 minutes in the absence of MutS, whereas the amplification product was produced in the presence of MutS for 3 hours. No formation was observed. Therefore, it was shown that accurate SNP typing was possible by using MutS.
  • Example 8 Effect of MutS on detection of certain mutations in the human CYP2C19 * 3 gene
  • the sequence at the 3 'end (20mer: underlined) anneals to type III, and after the extension reaction, the sequence at the 5' end (8mer) It is designed to hybridize to a region on the extended strand of the primer, which begins 29 bases downstream of the 3 ′ terminal residue of the primer.
  • the sequence at the 3 ′ end (18mer: underlined) anneals in a ⁇ pattern, and after the extension reaction, the sequence at the 5 ′ end (9mer).
  • the second nucleotide residue from the 5 'end of each of these inner primers corresponds to the nucleotide residue that acts on the mutation.
  • RW GGATCC AGGCCCAGAAAAAAAGACTGT (fixed I number 18),
  • F3 TCCAGAAACGTTTCG (SEQ ID NO: 21);
  • R3 AGGGCTTGGTCAATAT (SEQ ID NO: 22),
  • LoopF GCTTACAATCCTGATGTT (SEQ ID NO: 23);
  • LoopR GTAAGGCCAAGTTTTTTG (SEQ ID NO: 24).
  • reaction solution containing the wild-type inner primer a reaction solution (25 ⁇ L) having the following composition: Tris-HCl (20 mM, pH 8.8), KCl (lOmM), (NH) SO (10 mM), MgSO (
  • reaction solution containing the mutant inner primer a reaction solution (25, uL) having the following composition: Tris-HCl (20 mM, pH 8.8), KCl (10 mM), (NH) SO (10mM), Mg

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、標的核酸を特異的かつ効率的に増幅しうるプライマーセットに関する。本発明によるプライマーセットは、標的核酸配列を増幅しうる少なくとも二種のプライマーを含んでなるものである。前記プライマーセットに含まれる第一のプライマーは、標的核酸配列の3’末端部分の配列(A)にハイブリダイズする配列(Ac')を3’末端部分に含んでなり、かつ前記標的核酸配列において前記配列(A)よりも5’側に存在する配列(B)の相補配列(Bc)にハイブリダイズする配列(B')を前記配列(Ac')の5’側に含んでなるものであり、前記プライマーセットに含まれる第二のプライマーは、前記標的核酸配列の相補配列の3’末端部分の配列(C)にハイブリダイズする配列(Cc')を3’末端部分に含んでなり、かつ相互にハイブリダイズする2つの核酸配列を同一鎖上に含む折返し配列(D-Dc')を前記配列(Cc')の5’側に含んでなるものである。

Description

明 細 書
核酸の増幅法およびこれを利用した変異核酸の検出法
関連出願の参照
[0001] 本特許出願は、先に出願された日本国における特許出願である特願 2003— 4310 03号(出願曰: 2003年 12月 25曰)および特願 2004— 313910号(出願曰: 2004年 10月 28日)に基づく優先権の主張を伴うものである。これらの先の特許出願におけ る全開示内容は、引用することにより本明細書の一部とされる。
発明の背景
[0002] 発明の分野
本発明は、遺伝子工学分野において有用な核酸配列の増幅法に関するものであり
、より詳細には、鎖置換反応を利用した核酸配列の増幅法、ならびにこれらの方法を 利用した変異検出法に関するものである。
[0003] 背景 術
遺伝子工学分野においては、遺伝的な特徴を直接的に分析しうる方法として、核 酸配列の相補性に基づく分析が知られている。このような分析では、試料中に存在 する目的遺伝子量が少ない場合には、一般にその検出が容易ではないため、目的 遺伝子そのものを予め増幅することが必要となる。
[0004] 目的遺伝子の増幅 (核酸増幅)は、主に、 DNAポリメラーゼを利用した酵素的方法 により行われる。このような酵素的方法の主要なものとしては、例えば、ポリメラーゼ連 鎖反応法 (PCR法;米国特許第 4683195号明細書、米国特許第 4683202号明細 書および米国特許第 4800159号明細書)、さらには、 PCR法と逆転写酵素反応を 組合わせた逆転写 PCR法(RT— PCR法; Trends in Biotechnology 10, ppl46- 152, 1992)がある。これらの方法は、铸型となる二本鎖核酸の一本鎖核酸への解離 (変性 )、一本鎖核酸へのプライマーのアニーリング、およびプライマーカ の相補鎖合成( 伸長)の 3つの段階力もなる反応を繰り返すことにより、 DNAまたは RNAからの目的 遺伝子の増幅を可能とするものである。これらの方法では、反応溶液を上記 3段階の それぞれに適した温度に調節する計 3工程の繰り返しが必要とされる。 [0005] さらに、欧州特許出願公開第 0320308号明細書には、リガーゼ連鎖反応法 (LCR 法)が開示されており、該方法では、耐熱性の DNAリガーゼを用いて 2工程の温度 サイクリング反応 (加熱と冷却の繰り返し反応)を行うことにより既知の遺伝子配列が 増幅される。
[0006] しかし、以上に記載した方法にぉ 、ては、広 、温度範囲で、かつ、厳密な温度制 御を経時的に行なうことのできる高価なサーマルサイクラ一を使用することが必要とな る。また、これらの反応は、 2種類一 3種類の温度条件で行なうために、各反応温度 に調整するための時間が必要であり、サイクル数が増えれば増えるほど、それに要す る時間は増大する。
[0007] 上記問題点を解決すベぐ等温状態で実施可能な核酸増幅法が開発されている。
このような方法としては、例えば、特公平 7— 114718号公報に記載の鎖置換型増幅 (¾DA ; strand displacement amplincation)法、自 複:^ (3SR ;
self- sustainedsequence replication)法、日本国特許第 2650159号公報に記載の核 酸配列増幅(NASBA;nucleic acid sequence based amplification)法、 TMA (transcription-mediated amplification)法、日本国特許第 2710159号公報に記載の Qベータレプリカーゼ法、米国特許第 5824517号明細書、国際公開第 99/09211 号パンフレットまたは国際公開第 95Z25180号パンフレットに記載の種々の改良 S DA法、国際公開第 00Z28082号パンフレットに記載のランプ法(Loop- Mediated Isothermal Amplification)、国際公開第 02/16639号パンフレットに記載の ICAN法 (Isothermal and Chimeric primer— initiated Amplification of Nucleic acids)等 »爭げ られる。これらの等温核酸増幅法に関与する全段階の反応は一定の温度に保たれ た反応混合物中で同時に進行する。
[0008] SDA法では、最終的に DNAが増幅される系にお!/、て、 DNAポリメラーゼと制限ェ ンドヌクレアーゼが介する二本鎖の置換により、試料中の目的核酸 (およびその相補 鎖)の増幅が可能となる。該方法では、 4種類のプライマーが必要とされ、その内の 2 種類は、制限エンドヌクレアーゼの認識部位を含むように設計する必要がある。また 、該方法では、核酸合成のための基質として、修飾されたデォキシヌクレオチド三リン 酸、例えば三リン酸部分の α位のリン酸基の酸素原子が硫黄原子 (S)に置換された デォキシヌクレオチド三リン酸が必要とされる。従って、該方法は、高いランニングコス トを必要とする。さらに該方法では、増幅された核酸断片中に a S置換デォキシヌク レオチド等の修飾ヌクレオチドが含まれるため、例えば、増幅断片を制限酵素断片長 多型 (RFLP ; restriction enzyme fragment length polymorphism)解^ fに供しよつとす る場合に、該増幅断片が制限酵素で切断できないことがあり、よって、そのような解析 を実施できない場合がある。
[0009] 米国特許第 5824517号明細書に記載の改良 SDA法は、 RNAと DNA力も構成さ れ、 3'末端側が DNAであるキメラプライマーを必要とする。そのような RNAと DNA カゝら構成されるキメラプライマーはその合成が困難であり、また、 RNAを含むプライマ 一はその取り扱いに専門的な知識を必要とする。また、国際公開第 99Z09211号 パンフレットに記載の改良 SDA法は、 5'突出末端を生じさせる制限酵素を必要とし 、さらに、国際公開第 95/25180号パンフレットに記載の改良 SDA法は、少なくとも 2組のプライマー対を必要とするため、これらの方法は高いランニングコストを必要と する。
[0010] ICAN法では、 RNAと DNA力 構成され、 3 '末端側が RN Aであるキメラプライマ 一、さら〖こは、そのプライマーの 3'末端の RNA部分を切断する RNaseHが必要とさ れるため、試薬数が増え、処理時間も長くなるため、大量のサンプルを処理するには 適していない。
[0011] ランプ法では、 4種類のプライマーが必要とされ、それらが 6個所の領域を認識する ことにより、 目的遺伝子の増幅が可能となる。すなわち、この方法では、まず、第一の プライマーが铸型鎖にアニーリングして伸長反応が起こり、次に、第一のプライマーよ りも上流側に設計された第二のプライマーによる鎖置換反応により第一のプライマー による伸長鎖が铸型鎖から分離する。この時に、剥ぎ取られた第一のプライマー伸長 産物の構成に起因して伸長鎖の 5'末端部分でステム ループ構造が形成される。こ れと同様の反応が二本鎖核酸のもう一方の鎖、もしくは、剥ぎ取られた第一のプライ マー伸長産物の 3'末端側についても行なわれ、これらの反応が繰り返されることによ り、標的核酸が増幅される。従って、ランプ法では増幅反応の作用機序が複雑となり 、さらには必ず 6個所の領域を選定しなければならないため、プライマーの設計が困 難となる。また、 4種類のプライマーのうち、 2種類は比較的長鎖のプライマーが必要 とされるため、プライマーの合成およびその精製が煩雑となり、試薬の調製が困難で ある。
[0012] 従って、低いランニングコストで実施でき、かつ得られた核酸断片をさらに遺伝子ェ 学的な処理に使用することを可能とする核酸増幅法が求められている。特に、一対 のプライマーで速やかに増幅可能な等温核酸増幅法が望まれる。
[0013] また、これらの増幅法を用いて標的核酸中に存在する一塩基変異を検出する場合 には、様々な問題が生じていた。例えば、 PCR法を応用した PCR— SSP法による変 異検出では、変異に係るヌクレオチドを 3'末端に含むプライマーが用いられ、増幅 産物の有無により変異が検出される。しかし、このようなプライマーによる増幅反応に おいては、変異に係るヌクレオチドとプライマーの 3,末端のヌクレオチドとが相補的で ない場合にも誤って伸長反応が起こることがある。 PCR法では、プライマーの伸長反 応により合成された二本鎖の核酸が新たな铸型として用いられ、その場合には、次の 新たなプライマーがァニールする配列は、サンプル中に当初力も含まれて 、たヌクレ ォチド配列ではなぐプライマー配列を写し取ったものである。従って、一度でも誤つ た領域の相補鎖合成が行なわれると、次々とその誤った領域が増幅されるため、容 易に目的以外の増幅産物が生成し、よって、正確に一塩基変異を検出することは困 難である。
[0014] さらに、 PCR— SSO法では、 PCR法で増幅させた標的増幅産物に、変異部位を含 む領域にハイブリダィズしうるプローブ DNAを接触させ、ハイブリダィゼーシヨンが生 ずる力否力を見ることにより、標的増幅産物中の変異の有無が判定される。しかし、こ の方法では、ノ、イブリダィゼーシヨン反応に時間が力かるだけでなぐ反応溶液のスト リンジエンシーによっては非特異的なハイブリダィゼーシヨンが起こる可能性があるな ど、その特異性に問題があり、正確に 1塩基の変異を調べることは容易ではない。
[0015] ICAN法を応用した変異検出法である UCAN法では、変異に係るヌクレオチドを R NA部分に含む DNA— RNA— DNAキメラプライマーが用いられる。このキメラプライ マーの 3 '末端の DNAは、そこからの伸長反応が起きな 、ように化学修飾されて 、る 。このようなキメラプライマーおよび RNaseHを含む反応液中で増幅反応を行なうと、 キメラプライマーと铸型との配列が完全にマッチしている場合にのみ RNaseHによる RNA部分の切断が起こり、新たに生成したプライマーの 3'末端力 伸長反応が開 始されるため、铸型 DNAが増幅される。一方、キメラプライマーと铸型 DNAとの配列 がマッチしていない場合、つまり変異が存在する場合には、 RNaseHによる RNA部 分の切断が起こらず、キメラプライマーの 3'末端は化学修飾されたままとなるため、 D NA増幅が起こらない。し力し、 ICAN法や UCAN法は、従来の PCR法と同様に、铸 型中の 2箇所の領域への特異的ハイブリダィゼーシヨンに基づく増幅であるため、そ の特異性には問題がある。そのため、増幅後に、得られた増幅産物が目的とするも のである力否かをさらに確認する必要があり、全反応時間が長くなるため、検査結果 が出るまでに長時間を要することとなる。また、修飾プライマーやキメラプライマーなど の合成が煩雑である。
[0016] ランプ法では、 4種類以上のプライマーが必要とされるため、プライマーダイマーな どが生じやすくなり、さらには、 6箇所の特異的な領域を必要とするため、プライマー の設計が非常に困難となる。そのため、核酸増幅の特異性を高める条件検討などに 長時間が必要とされている。さらに、国際公開第 01Z034838号パンフレットに記載 のランプ法による変異検出では、増幅の途中に生じる増幅産物であるダンベル構造 の 3'末端において変異が認識される。この方法では、ダンベル構造の 3'末端に変 異が存在する場合に、そこ力 の伸長反応が停止し、これにより標的領域の増幅が 起きなくなるとされている力 PCR— SSP法と同様に、 3'末端の 1塩基のミスマッチに より伸長反応が必ずしも停止するわけではない。さらに、ダンベル構造の 3 '末端から の増幅が起きない場合においても、増幅産物自体は、既にダンベル構造を形成して いるために、それ自身のステムループ構造は形成されており、そのループ構造部分 にプライマーがアニーリングするために、プライマーの 3'末端力もの伸長反応は常に 行われる。そのため、その増幅の有無による一塩基変異の識別は非常に困難である
[0017] 近年、遺伝子の挿入、欠失などの遺伝子情報を迅速に検出する診断技術は非常 に重要視されており、特に、癌細胞などに特異的に発現される mRNAや遺伝子マー カーの特異的な検出など、目的遺伝子を簡易、迅速、かつ正確に解析する技術が重 要視されている。
[0018] 癌細胞などの特定の細胞型のみに特異的に発現されている mRNAを検出する場 合、通常用いられる核酸試料中には、目的とする mRNAだけでなぐゲノム DNAが 混在している。 mRNAのヌクレオチド配列は、ゲノム DNAのヌクレオチド配列からい くつかのイントロン部分の配列を除いたものである。一つのイントロンは、一般的に数 塩基一数百塩基の鎖長を有する。このような核酸試料を铸型とし、 PCR法で用いら れるようなプライマーを用いると、 mRNAとゲノム DNAの両方が铸型となり得るため、 両者の铸型カゝら増幅が起きる。 mRNAを特異的に増幅するようなプライマー設計を した場合にでも、通常、 mRNAの配列はゲノム DNAの配列の一部であるために、ゲ ノム DNAが混在する核酸試料においては、 mRNAからだけではなぐゲノム DNA からも増幅が起きる。そのため、 mRNAの特異的な増幅ができず、ましてや、その m RNAを正確に増幅し、試料中に存在する mRNA量を定量する事は非常に困難とさ れている。さらに、数塩基一数百塩基の挿入または欠失が存在するような目的核酸 を増幅し、その増幅産物の存在の有無を確認する場合において、従来から用いられ ている電気泳動法により目的の増幅産物のバンドを確認する場合には、僅かなサイ ズの差を識別するのが非常に困難であった。臨床現場において遺伝子診断を行う場 合には、多くのサンプルを簡易に短時間で効率良く処理することが必要とされるため 、従来法では十分対応できるものではなかった。
発明の概要
[0019] 本発明者らは、鎖置換反応を利用した核酸の増幅法において、標的核酸が増幅さ れた場合にのみステム ループ形成可能なプライマーを特定の条件を満たすよう〖こ 設計し、このプライマーと 5'末端部分に折返し配列を有するプライマーとを組み合わ せて用いることにより、特異的かつ効率的に標的核酸を増幅できることを見出した。 本発明はこのような知見に基づくものである。
[0020] 従って、本発明は、標的核酸を特異的かつ効率的に増幅しうるプライマーセット、 およびこれを用いた核酸増幅法を提供することを目的とする。
[0021] そして、本発明によるプライマーセットは、標的核酸配列を増幅しうる少なくとも二種 のプライマーを含んでなるプライマーセットであって、前記プライマーセットに含まれる 第一のプライマーが、標的核酸配列の 3'末端部分の配列 (A)にハイブリダィズする 配列 (Ac )を 3'末端部分に含んでなり、かつ前記標的核酸配列にお!、て前記配列( A)よりも 5 '側に存在する配列(B)の相補配列(Be)にハイブリダィズする配列(Β')を 前記配列 (Ac )の 5'側に含んでなるものであり、前記プライマーセットに含まれる第 二のプライマーが、前記標的核酸配列の相補配列の 3'末端部分の配列 (C)にハイ ブリダィズする配列(Cc')を 3,末端部分に含んでなり、かつ相互にハイブリダィズす る 2つの核酸配列を同一鎖上に含む折返し配列(D-Dc')を前記配列(Cc )の 5'側に 含んでなるものであるプライマーセットである。
[0022] さらに、本発明による核酸増幅法は、铸型核酸中の標的核酸配列を増幅する方法 であって、(a)標的核酸配列を含む铸型核酸を用意する工程、(b)本発明によるブラ イマ一セットを用意する工程、および (c)前記铸型核酸の存在下において、前記ブラ イマ一セットによる核酸増幅反応を行う工程、を含んでなるものである。
[0023] 本発明によれば、 DNAまたは RNAを铸型として、等温条件下で連続して標的核 酸を合成することが可能となる。従って、本発明によるプライマーセットおよびそれを 用いた核酸増幅法は、サーマルサイクラ一等の特別な装置を必要とせず、また、温 度調整に要する時間も必要ないため、短時間で増幅産物を得ることを可能とする。さ らに、本発明によるプライマーセットは高度に特異的な核酸増幅を可能とするため、 これを用いることにより、遺伝子中における変異、特に一塩基変異の有無、特定の核 酸配列中における配列の欠失または挿入の有無などを、増幅産物の検出によって判 定することが可能となる。
[0024] さらに、本発明者らは、铸型における変異の存在または不存在のいずれかによつて 铸型とのミスマッチを生じる核酸試薬による等温での核酸増幅反応を利用した変異 検出法にぉ 、て、該核酸増幅反応をミスマッチ識別能を有する物質の存在下で行な うことにより、より正確な変異の検出が可能となることを見出した。
[0025] 従って、本発明の第二の態様によれば、ミスマッチ結合タンパク質などのミスマッチ 識別能を有する物質の存在下において、铸型における変異の存在または不存在の いずれかによつて铸型とのミスマッチを生じる核酸試薬を用いた等温での核酸増幅 反応を行なうことにより、核酸試料中の核酸配列における変異の有無を判定する方 法が提供される。
図面の簡単な説明
[図 1]図 1は、本発明による第一のプライマーを用いた核酸増幅反応の作用機序を模 式的に示した図である。
[図 2]図 2は、本発明による第二のプライマーの構造を例示した図である。
[図 3a]図 3aは、本発明による第一のプライマーおよび第二のプライマーを用いた核 酸増幅反応の作用機序を模式的に示した図である。
[図 3b]図 3bは、本発明による第一のプライマーおよび第二のプライマーを用いた核 酸増幅反応の作用機序を模式的に示した図である。
[図 4]図 4は、ヒト STS DYS237遺伝子の増幅に用いた第一および第二のプライマ 一の該遺伝子上での位置を示す図である。
[図 5]図 5は、第一のプライマーおよび第二のプライマーを含むプライマーセットによ るヒト STS DYS237遺伝子の増幅の結果を示す図である。
[図 6]図 6は、第一のプライマーおよび第二のプライマーを含むプライマーセットによ るヒト STS DYS237遺伝子の増幅の後に増幅産物を制限酵素処理した結果を示す 図である。
[図 7]図 7は、第一のプライマーおよび第二のプライマーを含むプライマーセットによ るヒト STS DYS237遺伝子の増幅における、融解温度調整剤の影響を示す図であ る。
[図 8]図 8は、ヒト STS DYS237遺伝子中の特定の領域について作製した、一塩基 変異を含む配列とこれを含まない配列を示す図である。
[図 9]図 9は、ヒト STS DYS237遺伝子中の特定の領域についての、第一のプライマ 一および第二のプライマーを含むプライマーセットによる一塩基変異の検出結果を 示す図である。
[図 10]図 10は、ヒト STS DYS237遺伝子の増幅に用いた第一、第二および第三の プライマーの該遺伝子上での位置を示す図である。
[図 11]図 11は、第一のプライマー、第二のプライマーおよび第三のプライマーを含む プライマーセットによるヒト STS DYS237遺伝子の増幅の結果を示す図である。 [図 12]図 12は、第一のプライマー、第二のプライマーおよび第三のプライマーを含む プライマーセットによるヒト STS DYS237遺伝子の増幅における、铸型の濃度の影 響を示す図である。
[図 13]図 13は、ヒト ALDH2遺伝子の変異検出に用 、たプライマーセットに含まれる 各プライマーの、該遺伝子上での位置を示す図である。
[図 14]図 14は、等温での核酸増幅反応を利用して行なったヒト ALDH2遺伝子の一 塩基変異の検出における MutSの効果を示す図である。
[図 15]図 15は、ヒト CYP2C19 * 3遺伝子の変異検出に用いたプライマーセットに含 まれる各プライマーの、該遺伝子上での位置を示す図である。
[図 16]図 16は、等温での核酸増幅反応を利用して行なったヒト CYP2C19 * 3遺伝 子の一塩基変異の検出における MutSの効果を示す図である。
発明の具体的説明
[0027] 本発明におけるプライマーセットは、標的核酸配列を増幅しうる少なくとも二種のプ ライマーを含んでなるものである。該プライマーセットに含まれる第一のプライマーは 、標的核酸配列の 3 '末端部分の配列 (A)にハイブリダィズする配列 (Ac )を 3,末端 部分に含んでなり、かつ前記標的核酸配列にぉ 、て前記配列 (A)よりも 5 '側に存在 する配列(B)の相補配列(Be)にハイブリダィズする配列(Β')を前記配列 (Ac )の 5' 側に含んでなるものである。また、前記プライマーセットに含まれる第二のプライマー は、前記標的核酸配列の相補配列の 3'末端部分の配列(C)にハイブリダィズする配 列(Cc')を 3'末端部分に含んでなり、かつ相互にノ、イブリダィズする 2つの核酸配列 を同一鎖上に含む折返し配列(D-Dc')を前記配列(Cc )の 5'側に含んでなるもので ある。
[0028] 本発明にお 、て「標的核酸」または「標的核酸配列」とは、増幅しょうとする核酸また はその配列そのものだけでなく、これに相補的な配列または該配列を有する核酸を も意味する。
[0029] 本発明において「ノヽイブリダィズする」とは、本発明によるプライマーの一部がストリ ンジェントな条件下で標的核酸にハイブリダィズし、標的核酸以外の核酸分子には ハイブリダィズしないことを意味する。ストリンジェントな条件は、本発明によるプライマ 一とその相補鎖との二重鎖の融解温度 Tm (°C)およびハイブリダィゼーシヨン溶液の 塩濃度などに依存して決定することができ、例えば、 J. Sambrook, E. F. Frisch, T. Maniatis; Molecular Cloning 2nd edition, Cold spring Harbor Laboratory (1989)等を 参照することができる。例えば、使用するプライマーの融解温度よりわずかに低い温 度下でノ、イブリダィゼーシヨンを行なうと、プライマーを標的核酸に特異的にノ、イブリ ダイズさせることができる。このようなプライマーは、市販のプライマー構築ソフト、例え ば、 Primer3 (Whitehead Institute for Biomedical Research社製)などを用いて設計 することができる。本発明の好ましい実施態様によれば、ある標的核酸にノ、イブリダイ ズするプライマーは、その標的核酸に相補的な核酸分子の全部または一部の配列を 含んでなるものである。
[0030] 第一のプライマーによる核酸合成の作用機序を図 1に模式的に示す。まず、铸型と なる核酸中の標的核酸配列を決定し、その標的核酸配列の 3 '末端部分の配列 (A) 、および配列 (A)よりも 5 '側に存在する配列(B)を決定する。第一のプライマーは、 配列 (Ac )を含んでなり、さらにその 5 '側に配列(Β')を含んでなる。配列 (Ac )は、配 列 (A)にハイブリダィズするものであり、配列(Β')は、配列(Β)の相補配列(Be)にハ イブリダィズするものである。ここで、第一のプライマーは、前記配列 (Ac')と前記配列 (Β')の間に、反応に影響を与えない介在配列を含んでいてもよい。このようなプライ マーを铸型核酸にアニーリングさせると、プライマー中の配列 (Ac )が標的核酸配列 の配列 (A)にノ、イブリダィズした状態となる(図 1(a))。この状態でプライマー伸長反応 力 S起こると、標的核酸配列の相補配列を含む核酸が合成される。そして、合成された 核酸の 5 '末端側に存在する配列(Β')が、同核酸中に存在する配列(Be)にハイプリ ダイズし、これにより、合成された核酸の 5 '末端部分においてステム ループ構造が 形成される。その結果、铸型核酸上の配列 (A)がー本鎖となり、この部分に先の第一 のプライマーと同一の配列を有する他のプライマーがハイブリダィズする(図 1(b))。 その後、鎖置換反応により、新たにハイブリダィズした第一のプライマーからの伸長 反応が起こると同時に、先に合成された核酸が铸型核酸から分離される(図 l(c))。
[0031] 上記の作用機序にお!、て、配列(Β')が配列(Be)にハイブリダィズする現象は、典 型的には、同一鎖上に相補領域が存在することにより起こる。一般に、二本鎖核酸が 一本鎖に解離するときは、その末端あるいはそれ以外の比較的不安定な部分力 部 分的な解離が始まる。上記第一のプライマーによる伸長反応で生成した二本鎖核酸 は、比較的高温では末端部分の塩基対は解離と結合の平衡状態にあり、全体として は二本鎖を保っている。そのような状態で末端の解離した部分に相補的な配列が同 一鎖上に存在すると、準安定な状態としてステム ループ構造を形成することができ る。このステムループ構造は安定的には存在しないが、その構造の形成により剥き出 しとなつた相補鎖部分 (铸型核酸上の配列 (A) )に同一の他のプライマーが結合し、 すぐさまポリメラーゼが伸長反応を行うことにより、先に合成された鎖が置換されて遊 離すると同時に、新たな二本鎖核酸を生成することができる。
[0032] 本発明の好ましい態様における第一のプライマーの設計基準は次のとおりである。
まず、プライマーの伸長により铸型核酸の相補鎖が合成された後に新たなプライマー が効率よく同铸型核酸にアニーリングするためには、合成された相補鎖の 5 '末端に おけるステム -ループ構造形成により、铸型核酸上の前記配列 (A)の部分を一本鎖 とする必要がある。そのためには、配列 (Ac')の塩基数 Xと標的核酸配列中における 前記配列 (A)と前記配列 (B)に挟まれた領域の塩基数 Yとの差 (X— Y)の、 Xに対す る割合 (X— Y) ZXが重要となる。ただし、铸型核酸上において配列 (Α)よりも 5 '側に 存在する、プライマーのノ、イブリダィズとは関係無 、部分まで一本鎖とする必要はな い。また、新たなプライマーが効率よく铸型核酸にアニーリングするためには、上述の ステム ループ構造形成を効率よく行なうことも必要となる。そして、効率の良いステ ムーループ構造形成、すなわち、効率の良い配列(Β')と配列(Be)とのハイブリダィゼ ーシヨンには、前記配列(Β')と前記配列(Be)との間の距離 (X+Y)が重要となる。一 般に、プライマー伸長反応のための最適温度は最高でも 72°C付近であり、そのよう な低い温度では、伸長鎖が長い領域にわたって解離することは困難である。従って、 配列(Β')が配列(Be)に効率よくハイブリダィズするためには、両配列の間の塩基数 は少ないほうが好ましいと考えられる。一方で、配列(Β')が配列(Be)にハイブリダィ ズして铸型核酸上の前記配列 (A)の部分を一本鎖とするためには、配列(Β')と配列 (Be)との間の塩基数は多 、方が好ま U、と考えられる。
[0033] 以上のような観点から、本発明の好ましい実施態様による前記第一のプライマーは 、プライマーを構成する配列 (Ac )と配列 (Β')の間に介在配列が存在しない場合に おいて、(X— Υ) ΖΧカ 1. 00以上、好ましくは 0. 00以上、さらに好ましくは 0. 05以 上、さらに好ましくは 0. 10以上となり、また、 1. 00以下、好ましくは 0. 75以下、さら に好ましくは 0. 50以下、さらに好ましくは 0. 25以下となるように設計される。さらに、 (Χ+Υ)は、好ましくは 15以上、さらに好ましくは 20以上、さらに好ましくは 30以上と され、また、好ましくは 50以下、さらに好ましくは 48以下、さらに好ましくは 42以下とさ れる。
[0034] また、プライマーを構成する配列 (Ac )と配列 (Β')の間に介在配列 (塩基数は Y' ) が存在する場合には、本発明の好ましい実施態様による前記第一のプライマーは、 { X— (Υ— Υ' ΜΖΧカ 1. 00以上、好ましくは 0. 00以上、さらに好ましくは 0. 05以上 、さらに好ましくは 0. 10以上となり、また、 1. 00以下、好ましくは 0. 75以下、さらに 好ましくは 0. 50以下、さらに好ましくは 0. 25以下となるように設計される。さらに、(X +Y+Y' )は、好ましくは 15以上、さらに好ましくは 20以上、さらに好ましくは 30以上 とされ、また、好ましくは 100以下、さらに好ましくは 75以下、さらに好ましくは 50以下 とされる。
[0035] 前記第一のプライマーは、与えられた条件下で必要な特異性を維持しながら標的 核酸との塩基対結合を行うことができる程度の鎖長を有するものである。このプライマ 一の鎖長は、好ましくは 15— 100ヌクレオチド、より好ましくは 20— 60ヌクレオチドと する。また、前記第一のプライマーを構成する配列 (Ac')と配列 (Β')の長さは、それ ぞれ、好ましくは 5— 50ヌクレオチド、より好ましくは 7— 30ヌクレオチドである。また、 必要に応じて、配列 (Ac')と配列 (Β')の間に、反応に影響を与えない介在配列を挿 人してちょい。
[0036] 本発明によるプライマーセットに含まれる第二のプライマーは、上述のように、前記 標的核酸配列の相補配列 (第一のプライマーがハイブリダィズする鎖に対して反対 側の鎖)の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc )を 3,末端部分に 含んでなり、かつ相互にハイブリダィズする 2つの核酸配列を同一鎖上に含む折返し 配列(D-Dc )を前記配列(Cc )の 5,側に含んでなるものである。このような第二のプ ライマーの構造は、例えば、図 2に示すようなものである力 図 2に示される配列ゃヌ クレオチド数に限定されるものではな 、。第二のプライマーを構成する配列(Cc )の 長さは、好ましくは 5— 50ヌクレオチド、より好ましくは 10— 30ヌクレオチドである。ま た、前記折返し配列(D-Dc')の長さは、好ましくは 2— 1000ヌクレオチド、より好まし くは 2— 100ヌクレオチド、さらに好ましくは 4一 60ヌクレオチド、さらに好ましくは 6— 4 0ヌクレオチドであり、折返し配列の内部におけるハイブリダィゼーシヨンによって形成 される塩基対のヌクレオチド数は、好ましくは 2— 500bp、より好ましくは 2— 50bp、さ らに好ましくは 2— 30bp、さらに好ましくは 3— 20bpである。折返し配列(D-Dc')のヌ クレオチド配列はいかなる配列であってもよぐ特に限定されるものではないが、好ま しくは標的核酸配列にハイブリダィズしない配列とされる。また、必要に応じて、配列( Cc')と折返し配列(D-Dc )の間に、反応に影響を与えない介在配列を挿入してもよ い。
これら第一のプライマーおよび第二のプライマーによる核酸増幅反応について考え られる作用機序を、図 3 (図 3aおよび図 3b)を用いて説明する。なお、図 3では、説明 を簡略化するため、ハイブリダィズする 2つの配列を相互に相補的な配列として ヽる 1S これにより本発明が限定されるものではない。まず、第一のプライマーが標的核 酸のセンス鎖にハイブリダィズし、該プライマーの伸長反応が起きる(図 3(a))。次い で、伸長鎖 (一)上においてステム ループ構造が形成され、これにより一本鎖となつ た標的核酸センス鎖上の配列 (A)に新たな第一のプライマーがハイブリダィズし(図 3(b))、該プライマーの伸長反応が起きて、先に合成された伸長鎖 (一)が脱離する。 次に、脱離した伸長鎖 (一)上の配列 (C)に第二のプライマーがハイブリダィズし(図 3 (c))、該プライマーの伸長反応が起き、伸長鎖(+ )が合成される(図 3(d))。生成した 伸長鎖( + )の 3 '末端と伸長鎖 (一)の 5 '末端ではステム ループ構造が形成され (図 3(e))、遊離型の 3'末端である伸長鎖(+ )のループ先端力 伸長反応が起こると同 時に、前記伸長鎖 (-)が脱離する(図 3(1))。ループ先端からの前記伸長反応により、 伸長鎖( + )の 3 '側に配列 (A)および配列 (Be)を介して伸長鎖 (一)が結合したヘア ピン型の二本鎖核酸が生成し、その配列 (A)および配列(Be)に第一のプライマーが ハイブリダィズし(図 3(g))、その伸長反応により伸長鎖 (-)が生成する(図 3(h)および (0)。また、前記ヘアピン型二本鎖核酸の 3'末端に存在する折返し配列によって遊 離型の 3 '末端が提供され (図 3(h))、そこからの伸長反応により(図 3(0)、両端に折返 し配列を有し、第一および第二のプライマーに由来する配列を介して伸長鎖(+ )と 伸長鎖 (一)とを交互に含む一本鎖核酸が生成する(図 3(j))。この一本鎖核酸では、 その 3 '末端に存在する折返し配列により遊離型の 3 '末端 (相補鎖合成起点)が提供 されるため(図 3(k))、同様の伸長反応が繰り返され、 1回の伸長反応あたり 2倍の鎖 長となる(図 3(1)および (m))。また、図 3(0において脱離した第一のプライマーからの 伸長鎖 (-)では、その 3 '末端に存在する折返し配列により遊離型の 3 '末端 (相補鎖 合成起点)が提供されるため(図 3(n))、そこ力ゝらの伸長反応により、両端にステムール ープ構造が形成され、プライマーに由来する配列を介して伸長鎖( + )と伸長鎖 (一) とを交互に含む一本鎖核酸が生成する(図 3(o))。この一本鎖核酸においても、 3 '末 端におけるループ形成によって相補鎖合成起点が順次提供されるため、そこ力 の 伸長反応が次々に起こる。このようにして自動的に延長される一本鎖核酸には、第一 のプライマーおよび第二のプライマーに由来する配列が伸長鎖( + )と伸長鎖 (一)と の間に含まれているため、各プライマーがハイブリダィズして伸長反応を起こすことが 可能であり、これにより標的核酸のセンス鎖およびアンチセンス鎖が顕著に増幅され る。
[0038] 本発明によるプライマーセットは、第一のプライマーおよび第二のプライマー以外に 、第三のプライマーを含むものとすることができる。第三のプライマーは、前記標的核 酸配列またはその相補配列にハイブリダィズするものであって、標的核酸配列または その相補配列へのハイブリダィゼーシヨンにっ 、て他のプライマーと競合しな 、もの とされる。
[0039] 本発明にお 、て「競合しな!、」とは、そのプライマーが標的核酸にハイブリダィズす ることによって他のプライマーによる相補鎖合成起点の付与が妨げられないことを意 味する。
[0040] 第一のプライマーおよび第二のプライマーにより標的核酸が増幅された場合には、 上述のように、増幅産物は標的核酸配列とその相補配列とを交互に有するものとなる 。その増幅産物の 3 '末端には折返し配列またはループ構造が存在し、これにより提 供される相補鎖合成起点から次々に伸長反応が起こっている。第三のプライマーは 、このような増幅産物が部分的に一本鎖の状態になった時に、その一本鎖部分に存 在する標的配列にアニーリングすることができる。これにより、増幅産物中の標的核酸 配列内に新たな相補鎖合成起点が提供され、そこからの伸長反応が起こるため、核 酸増幅反応がより迅速に行われるようになる。
[0041] 第三のプライマーは必ずしも 1種類に限定されるわけではなぐ核酸増幅反応の迅 速性および特異性を向上させるためには 2種類以上の第三のプライマーを同時に用 いてもよい。これら第三のプライマーは、典型的には第一のプライマーおよび第二の プライマーとは異なる配列力 なる力 これらのプライマーと競合しない限りにおいて 、部分的に重なる領域にハイブリダィズするものとしてもよい。第三のプライマーの鎖 長は、好ましくは 2— 100ヌクレオチド、より好ましくは 5— 50ヌクレオチド、さらに好ま しくは 7— 30ヌクレオチドとされる。
[0042] 第三のプライマーは、第一のプライマーおよび第二のプライマーによる核酸増幅反 応をより迅速に進めるための補助的な働きをその主目的とするものである。従って、 第三のプライマーは、第一のプライマーおよび第二のプライマーの各 3,末端の Tmよ りも低い Tmを有するものとすることが好ましい。また、第三のプライマーの増幅反応 液への添加量は、第一のプライマーおよび第二のプライマーのそれぞれの添加量よ りも少ない方が好ましい。
[0043] 第三のプライマーとしては、国際公開第 02/24902号パンフレットに記載のような 、ループを形成できる構造をもつものを铸型として、そのループ部分に相補鎖合成の 起点を与えるものを挙げることができる力 これに限定されるものではない。すなわち 、標的核酸配列内であれば、いかなる部位に相補鎖合成起点を提供するものであつ てもよい。
[0044] 本発明によるプライマーセットに含まれるプライマーは、デォキシヌクレオチドおよ び Zまたはリボヌクレオチドにより構成される。本発明において、「リボヌクレオチド」 ( 単に「N」ということもある)とは、リボヌクレオチド三リン酸をいい、例えば、 ATP, UTP , CTP, GTP等がある。さらに、リボヌクレオチドにはこれらの誘導体が含まれ、例え ば、 a位のリン酸基の酸素原子を硫黄原子に置き換えたリボヌクレオチド( a チォー リボヌクレオチド)等がある。 [0045] また、前記プライマーには、未修飾デォキシヌクレオチドおよび Zまたは修飾デォ キシヌクレオチドで構成されたオリゴヌクレオチドプライマー、および未修飾リボヌタレ ォチドおよび Zまたは修飾リボヌクレオチドで構成されたオリゴヌクレオチドプライマ 一、未修飾デォキシヌクレオチドおよび Zまたは修飾デォキシヌクレオチドおよび未 修飾リボヌクレオチドおよび zまたは修飾リボヌクレオチドを含有するキメラオリゴヌク レオチドプライマ一等も含まれる。
[0046] 本発明によるプライマーセットに含まれるプライマーは、オリゴヌクレオチドの合成に 用いることのできる任意の方法、例えば、リン酸トリエステル法、 H—ホスホネート法、 チォホスホネート法等により合成できる。前記プライマーは、例えば、 ABI社 (Applied Biosystem Inc.)の DNAシンセサイザー 394型を用いてホスホアミダイト法により合成 すれば、容易に取得することができる。
[0047] 核酸増幅反応にぉ 、て用いられる、標的核酸配列を含む铸型核酸、または核酸試 料は、 DNAまたは RNAのどちらでもよい。 DNAには、 cDNA、ゲノム DNAおよび 合成 DNAのいずれもが含まれる。 RNAには、全 RNA、 mRNA, rRNA、 siRNA、 hnRNAおよび合成 RNAのいずれもが含まれる。これらの核酸は、例えば、血液、組 織、細胞、さらには動物、植物のような生体由来試料、または生体由来試料、食品、 土壌、排水等力 分離された微生物由来試料力 調製することができる。
[0048] 铸型核酸または核酸試料の単離は任意の方法で行うことができ、例えば、界面活 性剤による溶解処理、音波処理、ガラスビーズを用いた振盪撹拌およびフレンチプレ ス等を用いる方法が挙げられる。また、内在性ヌクレアーゼが存在する場合には、単 離された核酸を精製することが好ましい。核酸の精製は、例えば、フエノール抽出、ク 口マトグラフィー、イオン交換、ゲル電気泳動、密度に依存した遠心分離などにより実 施することが可能である。
[0049] より具体的には、前記铸型核酸または前記核酸試料としては、上記方法により単離 したゲノム DNAや PCRフラグメントのような二本鎖核酸、全 RNAもしくは mRNAから 逆転写反応で調製された cDNAのような一本鎖核酸の 、ずれも使用可能である。上 記二本鎖核酸の場合は、変性工程 (denaturing)を行なって一本鎖とすることにより、 より最適に利用することができる。 [0050] 上記の逆転写反応に用いられる酵素は、 RNAを铸型とした cDNA合成活性を有 するものであれば特に限定されず、例えば、トリ骨髄芽球症ウィルス由来逆転写酵素 (AMV RTase)、ラウス関連ウイノレス 2逆転写酵素(RAV— 2 RTase)、モロ-一ネズ ミ白血病ウィルス由来逆転写酵素(MMLV RTase)等、種々の起源の逆転写酵素 が挙げられる。このほか、逆転写活性を併せ持つ DNAポリメラーゼを使用することも 可能である。また、本発明の目的のためには、高温で逆転写活性を有する酵素が最 適であり、例えばサーマス属細菌由来 DNAポリメラーゼ (TthDNAポリメラーゼ等)、 バチルス属細菌由来 DNAポリメラーゼ等を使用できる。特に好ましい酵素を例示す れば、例えば、好熱性バチルス属細菌由来 DNAポリメラーゼとして、 B. st由来 DN Aポリメラーゼ(Bst DNAポリメラーゼ)、および B. ca由来 DNAポリメラーゼ(Bca D NAポリメラーゼ)、例えば BcaBEST DNAポリメラーゼ、 Bca (exo—) DNAポリメラ ーゼ等が挙げられる。例えば、 Bca DNAポリメラーゼは、反応にマンガンイオンを必 要とせず、高温条件下で铸型 RNAの二次構造形成を抑制しながら cDNAを合成す ることが可能である。
[0051] 核酸増幅反応では、铸型核酸が二本鎖核酸の場合でも、これをそのまま反応に用 いることができるが、必要に応じてそれらを変性して一本鎖にすることにより、铸型核 酸へのプライマーのアニーリングを効率よく行なうこともできる。温度を約 95°Cに上昇 させることは、好ましい核酸変性法である。他の方法として、 pHを上昇させることによ り変性させることも可能である力 この場合には、プライマーを標的核酸にハイブリダ ィズさせるために pHを低下させる必要がある。
[0052] 核酸増幅反応に用いられるポリメラーゼは、鎖置換 (strand displacement)活性 (鎖 置換能)を有するものであればよぐ常温性、中温性、もしくは耐熱性のいずれのもの も好適に使用できる。また、このポリメラーゼは、天然体もしくは人工的に変異を加え た変異体のいずれであってもよい。このようなポリメラーゼとしては、 DNAポリメラーゼ が挙げられる。さらに、この DNAポリメラーゼは、実質的に 5,→3,ェキソヌクレア一 ゼ活性を有しないものであることが好ましい。このような DNAポリメラーゼとしては、バ チルス 'ステア口サーモフィルス(Bacillus stearothermophilus、以下「B. st」という)、 バチルス.カルドテナックス(Bacillus caldotenax、以下「B. ca」という)等の好熱性バ チルス属細菌由来 DNAポリメラーゼの 5 '→3,ェキソヌクレアーゼ活性を欠失した変 異体、大腸菌 . coli)由来 DNAポリメラーゼ Iのタレノウフラグメント等が挙げられる 。核酸増幅反応において使用する DNAポリメラーゼとしては、さらに、 Vent DNAポリ メラーゼ、 Vent (Exo-) DNAポリメラーゼ、 DeepVent DNAポリメラーゼ、 DeepVent (Exo-) DNAポリメラーゼ、 Φ 29ファージ DNAポリメラーゼ、 MS— 2ファージ DNAポリ メラーゼ、 Z-Taq DNAポリメラーゼ、 Pfo DNAポリメラーゼ、 Pfo turbo DNAポリメラーゼ 、 KOD DNAポリメラーゼ、 9° Nm DNAポリメラーゼ、 Therminater DNAポリメラーゼ等 が挙げられる。
[0053] さらに、上記核酸増幅反応にお!、ては、逆転写活性を併せ持つ DNAポリメラーゼ 、例えば、 BcaBEST DNAポリメラーゼ、 Bca (exo—) DNAポリメラーゼ等を使うこと により、全 RNAもしくは mRNAからの逆転写反応と cDNAを铸型にした DNAポリメ ラーゼ反応を 1種類のポリメラーゼで行なうことが可能である。また、 DNAポリメラー ゼと、 MMLV逆転写酵素などの上述の逆転写酵素とを組み合わせて用いてもょ 、。
[0054] 核酸増幅反応において使用するその他の試薬としては、例えば、塩化マグネシウム 、酢酸マグネシウム、硫酸マグネシウム等の触媒、 dNTPミックス等の基質、トリス塩酸 ノ ッファー、トライシンバッファー、リン酸ナトリウムバッファー、リン酸カリウムバッファ 一等の緩衝液を使用することができる。さら〖こ、ジメチルスルホキシド (dimethyl sulfoxide)やべタイン(Ν,Ν,Ν- trimethylglycine)等の添加物、国際公開第 99Z54455 号パンフレットに記載の酸性物質、陽イオン錯体等を使用してもよい。
[0055] 核酸増幅反応において、核酸の増幅効率を高めるために、融解温度調整剤を反 応溶液中に添加することができる。核酸の融解温度 (Tm)は、一般的に、核酸中の二 本鎖形成部分の具体的なヌクレオチド配列によって決定される。反応溶液中に融解 温度調整剤を添加することにより、この融解温度を変化させることができ、従って、一 定の温度下では、核酸における二本鎖形成の強度を調整することが可能となる。一 般的な融解温度調整剤は、融解温度を下げる効果を有する。このような融解温度調 整剤を添加することにより、 2本の核酸の間の二本鎖形成部分の融解温度を下げるこ とができ、換言すれば、その二本鎖形成の強度を下げることが可能となる。従って、 前記核酸増幅反応においてこのような融解温度調整剤を反応溶液中に添加すると、 強固な二本鎖を形成する GCの豊富な核酸領域や複雑な二次構造を形成する領域 において効率的に二本鎖部分を一本鎖とすることが可能となり、これにより、プライマ 一による伸長反応が終わった後に次のプライマーが目的領域にハイブリダィズしゃ すくなるため、核酸の増幅効率を上げることができる。本発明において用いられる融 解温度調整剤およびその反応溶液中での濃度は、ハイブリダィゼーシヨン条件に影 響を与える他の反応条件、例えば塩濃度、反応温度等を考慮して、当業者により適 切に選択される。従って、融解温度調整剤は特に制限されるものではないが、好まし くはジメチルスルホキシド(DMSO)、ベタイン、ホルムアミドもしくはグリセロール、ま たはこれらの任意の組み合わせとされ、より好ましくはジメチルスルホキシド(DMSO )とされる。
[0056] さらに、核酸増幅反応において、酵素安定化剤を反応溶液中に添加することもでき る。これにより、反応液中の酵素が安定ィ匕されるため、核酸の増幅効率を高めること が可能となる。本発明において用いられる酵素安定化剤は、グリセロール、ゥシ血清 アルブミン、糖類などの、当技術分野において知られているいかなるものであってもよ ぐ特に制限されない。
[0057] さらに、核酸増幅反応において、 DNAポリメラーゼ、逆転写酵素などの酵素の耐熱 性を増強するための試薬を、酵素安定化剤として反応溶液中に添加することもできる 。これにより、反応液中の酵素が安定化されるため、核酸の合成効率および増幅効 率を高めることが可能となる。このような試薬は当技術分野にぉ 、て知られて 、る!/ヽ 力なるものであってもよぐ特に制限されないが、好ましくは糖類、より好ましくは単糖 またはオリゴ糖、さらに好ましくはトレハロース、ソルビトールもしくはマン-トール、ま たはこれらの 2種以上の混合物とされる。
[0058] 本発明によるプライマーセットを用いる核酸増幅反応は、等温で実施可能である。
従って、本発明の好ましい実施態様によれば、この核酸増幅反応は、铸型核酸また は核酸試料と本発明によるプライマーセットとを含んでなる核酸増幅用溶液を用意す る工程、およびこの核酸増幅用溶液を等温でインキュベートする工程を含んでなる。 ここで、「等温」とは、酵素およびプライマーが実質的に機能しうるような、ほぼ一定の 温度条件下に保つことをいう。さらに、「ほぼ一定の温度条件」とは、設定された温度 を正確に保持することのみならず、酵素およびプライマーの実質的な機能を損なわ ない程度の温度変化であれば許容されることを意味する。
[0059] 一定の温度条件下での核酸増幅反応は、使用する酵素の活性を維持できる温度 に保つことにより実施することができる。また、この核酸増幅反応において、プライマ 一が標的核酸にアニーリングするためには、例えば、反応温度を、そのプライマーの 融解温度 (Tm)付近の温度、もしくはそれ以下に設定することが好ましぐさらには、 プライマーの融解温度 (Tm)を考慮し、ストリンジエンシーのレベルを設定することが 好ましい。従って、この温度は、好ましくは、約 20°C—約 75°Cであり、さらに好ましく は、約 35°C—約 65°Cとする。
[0060] 上記の核酸増幅反応においては、酵素が失活するか、またはプライマーをはじめと する試薬のうちの一つが使 、尽くされるかの 、ずれかまで増幅反応が繰り返される。
[0061] 上記の核酸増幅反応においては、非天然ヌクレオチドを含む核酸を铸型核酸とす ることも可能である。本明細書において「非天然ヌクレオチド」とは、天然ヌクレオチド に含まれる塩基 (アデニン、グァニン、シトシン、およびチミンもしくはゥラシル)以外の 塩基を含むヌクレオチドであって、核酸配列中に取り込まれうるものを意味し、例えば 、キサントシン類、ジァミノピリミジン類、 isoG, isoC (Proc. Natl. Acad. Sci. USA 92, 6329-6333, 1995)等が挙げられる。非天然ヌクレオチドを含む標的核酸の増幅には 、一般に、耐熱性を持たない核酸増幅酵素が用いられる。一方で、上記核酸増幅反 応は、例えば 50°C前後の等温で行うことが可能であるため、従来の PCR法と比較し て核酸増幅酵素 (DNAポリメラーゼなど)が失活する可能性が低い。従って、本発明 によるプライマーセットによる核酸増幅反応は、耐熱性を持たない核酸増幅酵素が用 V、られる非天然ヌクレオチドを含む標的核酸の増幅にも有効である。非天然ヌクレオ チドを含む核酸の増幅に用いられる酵素は、そのような標的核酸を増幅可能なもの であればよぐ特に限定されないが、特に取り込み効率の観点から、 Y188L/E478Q 変異型 HIV I逆転写酵素、 AMV逆転写酵素、 DNAポリメラーゼのタレノウ断片、 9 ° N DNAポリメラーゼ、 HotTub DNAポリメラーゼ等が好適である(Michael Sismour 1 et al, Biochemistry 42, No.28, 8598, 2003Z米国特許第 6617106号明細書、 Michael J. Lutz et al" Bioorganic & Medical Chemistry letters 8, 1149—1152, 1998 等)。さらに、核酸増幅酵素の耐熱性を向上させる物質、例えばトレハロースなど、を 反応溶液に添加することもでき、これにより、より効率的に非天然ヌクレオチドを含む 標的核酸の増幅を行うことができる。
本発明による核酸増幅法によって得られた増幅産物の存在は、多くのあらゆる方法 により検出が可能である。一つの方法は、一般的なゲル電気泳動による特定のサイ ズの増幅産物の検出である。この方法では、例えば、ェチジゥムブロマイドやサイバ 一グリーン等の蛍光物質により検出できる。他の方法としては、ピオチンのような標識 を有する標識プローブを用い、これを増幅産物にハイブリダィズさせることにより検出 することもできる。ピオチンは、蛍光標識されたアビジン、ペルォキシダーゼのような 酵素に結合したアビジン等との結合により検出可能である。さらに別の方法としては、 免疫クロマトグラフを用いる方法がある。この方法では、肉眼で検出可能な標識を利 用したクロマトグラフ媒体を用いることが考案されて 、る (ィムノクロマトグラフィー法)。 上記増幅断片と標識プローブとをハイブリダィズさせ、該増幅断片のさらに異なる配 列とハイブリダィズ可能な捕捉用プローブをクロマト媒体に固定しておけば、その固 定した部分でトラップすることができ、クロマト媒体での検出が可能となる。その結果、 肉眼的にシンプルな検出が可能となる。さらに、本発明による核酸増幅法では、核酸 増幅反応における増幅効率が非常に高いため、増幅の副産物としてピロリン酸が生 じることを利用して、増幅産物を間接的に検出することもできる。このような方法として は、例えば、ピロリン酸が反応溶液中のマグネシウムと結合することによりピロリン酸マ グネシゥムの白色沈澱が生じることを利用して、反応溶液の白濁を目視で観察する 方法がある。また、他の方法としては、ピロリン酸がマグネシウムなどの金属イオンと 強く結合して不溶性塩を形成することにより、反応溶液中のマグネシウムイオン濃度 が著しく減少することを利用する方法がある。この方法では、マグネシウムイオン濃度 に応じて色調が変化する金属指示薬(例えば、 Eriochrome Black T、 Hydroxy Naphthol Blue等)を反応溶液に添加しておくことにより、反応溶液の色の変化を目視 で観察することにより、増幅の有無を検出することが可能となる。さらに、 Calceinなど を利用することにより、増幅反応に伴う蛍光の増大を目視で観察することができるた め、リアルタイムでの増幅産物の検出が可能となる。 [0063] 本発明の好ま 、実施態様によれば、本発明による核酸増幅法によって得られた 増幅産物の存在は、増幅産物の生成に起因する固相担体の凝集を観察することに よって検出することもできる。このような検出を行なう場合には、本発明によるプライマ 一セットに含まれる少なくとも 1種のプライマーカ、固相担体または固相担体と結合可 能な部位を含んでなるものとされる。固相担体または固相担体と結合可能な部位は、 プライマーの 3'末端部、 5'末端部、中央領域など、いかなる部分に導入されたもの であってもよいが、好ましくは 5'末端部に導入されたものとされる。あるいは、核酸増 幅反応にぉ 、て用いられる基質を、固相担体または固相担体と結合可能な部位を 含んでなるものとしてもよい。
[0064] 本発明に用いられる固相担体としては、核酸増幅反応に用いられる反応溶液に不 溶性の担体、または増幅の前後において液相から固相(ゲル相)もしくは固相(ゲル 相)から液相に性状が変化する相転移性担体であれば、いずれも使用することが可 能である。好ましい固相担体としては、水不溶性有機高分子担体、水不溶性無機高 分子担体、合成高分子担体、相転移性担体、金属コロイド、磁性粒子等が挙げられ 、さらには、溶媒不溶性有機高分子担体、溶媒不溶性無機高分子担体、溶媒可溶 性高分子担体、ゲル高分子担体等が挙げられる。さらに、水不溶性有機高分子とし ては、例えば、多孔質シリカ、多孔質ガラス、珪藻土、セライトなどの珪素含有物質、 ニトロセルロース、ヒドロキシアパタイト、ァガロース、デキストラン、セルロース、カルボ キシメチルセルロースなどの多糖類の架橋体、メチル化アルブミン、ゼラチン、コラー ゲン、カゼインなどのタンパク質の架橋体、ゲル状粒子、染料ゾル等が挙げられる。 水不溶性無機高分子としては、例えば、酸ィ匕アルミニウム、酸化チタン、セラミック粒 子等が挙げられる。合成高分子としては、例えば、ポリスチレン、ポリ(メタ)アタリレー ト、ポリビュルアルコール、ポリアクリロニトリルまたはこれらの共重合体、スチレンース チレンスルホン酸共重合体、酢酸ビニルーアクリル酸エステル共重合体等が挙げられ る。金属コロイドとしては、金コロイド等が挙げられる。磁性粒子としては、磁性酸化鉄 のビーズ、磁性酸化鉄の微粉砕粒子を表面に有する単分散、超常磁性粒子 (特表 平 4 501959号公報)、重合性シラン被膜によって覆われた超常磁性酸ィ匕鉄を有す る磁気応答粒子 (特公平 7— 6986号公報)、有機ポリマー中に封入された微粉末状 の磁化可能な粒子等が挙げられる。磁性化された固相担体は、固体と液体との分離 を磁力を利用して簡単に行うことができる。固相担体の形状としては、粒子、膜、繊維 状、フィルタ一等が挙げられる。固相担体の形状としては粒子が特に好ましぐその 表面は多孔質または非多孔質の!/、ずれであってもよ!/、。特に好ましい固相担体とし ては、合成高分子担体が水などに均一に分散されたラテックス、金コロイドなどの金 属コロイド粒子、マグネットビーズなどの磁性粒子等が挙げられる。
[0065] プライマーまたは基質の固相担体への固定ィ匕は当業者に公知の方法によって行な うことができ、物理的な結合または化学的な結合の 、ずれによる方法であってもよ!/、 。プライマーまたは基質の固相担体への固定ィ匕は、例えば、一般的にプライマーや プローブなどのオリゴヌクレオチドを標識ィ匕しうる物質と、これに結合可能な物質を結 合させた固相担体とを組み合わせて行なうことができる。このような目的で用いられる 物質の組み合わせは、当技術分野において周知のものを用いることができ、例えば、 る抗体との組み合わせ、リガンドとこれに結合しうるレセプターとの組み合わせ、相互 にハイブリダィズする 2つの核酸の組み合わせ等が挙げられる。具体的には、例えば 、ピオチンで標識したプライマーまたは基質を、アビジンもしくはストレプトアビジンで 表面をコートした固相担体に結合させることにより、プライマーまたは基質を固相担体 に固定ィ匕することができる。前記抗原としては、例えば、 FITC、 DIG, DNP等のハプ テンが挙げられ、これらと結合しうる抗体としては、抗 FITC抗体、抗 DIG抗体、抗 D NP抗体等の抗体が挙げられる。また、これらの抗体は、モノクローナル抗体またはポ リクローナル抗体のいずれであってもよい。特に、ピオチンとストレプトアビジンとの結 合は特異性が高ぐ結合効率も良好であるため、これらの組み合わせは特に好まし い。ピオチン、ハプテン、リガンド等の標識物質は、いずれも単独で、あるいは必要で あれば複数の組み合わせで、公知の手段 (特開昭 59 - 93099号公報、特開昭 59 - 148798号公報、および特開昭 59— 204200号公報を参照のこと)により、プライマ 一の 5'末端部に導入することができる。
[0066] 本発明に用いられる固相担体と結合可能な部位 (または基)は、プライマーまたは 基質の固相担体への固定ィ匕のために用いられる上述の方法に従って選択すること ができ、従って、固相担体との物理的な結合を可能とするものまたは化学的な結合を 可能とするもののいずれであってもよいが、好ましくは特異的結合を可能とするものと される。このような固相担体と結合可能な部位としては、上述のような、ピオチン、アビ ジン、ストレプトアビジン、抗原、抗体、リガンド、レセプター、核酸、タンパク質などが 挙げられ、好ましくはピオチンまたはストレプトアビジンとされ、より好ましくはピオチン とされる。このような部位を含むプライマーまたは基質を用いることにより、核酸増幅 反応を行なった後に、増幅産物に上記固相担体を結合させることが可能となる。この 場合において用いられる固相担体は、必要に応じて、プライマーまたは基質に含ま れる前記部位の結合相手を含むものとすることができる。このような結合相手は、ブラ イマ一または基質に含まれる前記部位との結合が可能な形で存在するものであり、 好ましくは固相担体の表面上に存在するものとされ、より好ましくは固相担体の表面 上に塗布されたものとされる。
[0067] 本発明の一つの実施態様によれば、複数の標的核酸のそれぞれについて本発明 によるプライマーセットを用意し、これら複数のプライマーセットを相互に識別可能な 形で固相担体に固定ィ匕し、これらの固定ィ匕プライマーセットを用いて核酸増幅反応 が行なわれる。これにより、複数の標的核酸を同時に増幅し、それぞれについての増 幅産物を識別可能な形で検出することが可能となる。増幅産物の検出は、インター力 レーターなどを用いて行なうことができる。例えば、平面状の固相担体上において、 複数のプライマーをそれぞれ特定の位置に固定ィ匕しておくことにより、核酸増幅反応 および増幅産物の検出の後に、増幅産物が検出された位置によって、増幅された標 的核酸を特定することができる。また、このような目的に使用可能な固相担体は、上 記の平面状の固相担体のみならず、相互に識別可能なビーズ表面 (米国特許第 60 46807号明細書および米国特許第 6057107号明細書)、繊維状の担体にそれぞ れのプライマーセットを固相化したものを束ねた後に薄片に切断して作製される準平 板担体 (特開 2000— 245460号公報)等の、当技術分野において公知のものとする ことができる。
[0068] 本発明による核酸増幅法によって得られた増幅断片は通常の塩基により構成され るため、増幅後、増幅断片内部の制限酵素部位を用いて適当なベクターにサブクロ 一-ングすることも可能である。さらに、前記増幅断片は、 RFLPのように、制限酵素 処理することも可能であり、遺伝子検査の分野においても広く利用することができる。 また、前記増幅断片は、 RNAポリメラーゼのプロモーター配列を含むものとして生成 させることができ、これにより、増幅断片カゝら直接 RNAを合成することが可能となる。 このようにして合成された RNAは、 RNAプローブ、 siRNA等として使用することもで きる。
[0069] さらに、本発明による核酸増幅法においては、通常の dNTPの代わりに、ピオチン や蛍光物質で標識された塩基を基質として使用することができ、これにより、ピオチン や蛍光物質で標識された DNAプローブを調製することも可能である。さらには、それ らビォチンや標識物質などの何らかの構造を介して増幅産物の有無を確認すること も可能である。
[0070] 本発明によるプライマーセットに含まれるプライマーは、制限酵素認識部位を含む ものとすることができ、これにより、核酸増幅の効率を向上させることが可能となる。す なわち、プライマー内の制限酵素認識部位に対応する制限酵素により増幅産物中に ニックが生じるため、このニックを合成起点として鎖置換型の相補鎖合成反応を生じ させることが可能になる。この方法は、基本的には先行技術として記載した SDA法の 原理に基づくが、本発明においては、铸型となる核酸が、図 3(m)および (◦)に示すよう に、相互に相補的な核酸を交互に連結した構造となっている点において異なってい る。この方法では、ニックを入れるリバースプライマーの相補鎖となる部分には、制限 酵素による 2本鎖の切断が生じないよう、ヌクレアーゼ耐性となるように dNTP誘導体 が取りこまれるように設計する必要がある。
[0071] また、本発明によるプライマーセットに含まれるプライマーは、 RNAポリメラーゼの プロモーター配列を含むものとすることができ、これにより、核酸増幅の効率を向上さ せることが可能となる。この方法は、基本的には先行技術として記載した NASBA法 の原理に基づくが、本発明においては、図 3(m)に示すような長鎖増幅産物からこの プロモーターを認識する RNAポリメラーゼによる転写が行われるため、転写産物であ る 1本鎖 RNAにプライマーが容易に結合することが可能となり、増幅効率を向上させ ることが可能となる。 [0072] さらに、本発明によるプライマーセットは、 LAMP法または SDA法において利用さ れる「アウタープライマー」を含むものとすることができ、これにより、核酸増幅の効率 を向上させることが可能となる。アウタープライマーとしては、铸型核酸上において標 的核酸配列の外側に位置する部分に相補鎖合成起点を提供しうるプライマーを用い ることがでさる。
[0073] 本発明による核酸増幅法により、 DNAチップに固定するための一本鎖核酸、塩基 配列決定のための一本鎖 DNAプローブ、長鎖 PCR法のためのメガプライマー等を 簡便かつ迅速に作製することができる。また、本発明による核酸増幅法により、目的 に応じて、標的核酸のセンス配列のみまたはアンチセンス配列のみを選択的に増幅 することも可會である。
[0074] 本発明による核酸増幅法により調製された一本鎖核酸は、 DNAチップ上に固定す るための DNA断片として使用することができる。すなわち、本発明による核酸増幅法 は、 DNAチップ作製において固定ィ匕するための DNA鎖を調製する方法にも応用が 可能である。また、プライマーの 5'末端をあら力じめ DNAチップ上に固定しておき、 そのチップ上で核酸増幅を行ない、 DNAチップを作製することも可能である。また、 その核酸増幅を行なう前に、あら力じめ増幅産物にハイブリダィズする蛍光標識プロ ーブを反応液に添カ卩しておくことにより、 DNAチップ上で核酸増幅を行な 、ながら、 リアルタイムに増幅産物を検出することが可能となる。
[0075] 本発明によるプライマーセットを用いた核酸増幅反応を利用して、核酸試料中の核 酸配列における変異の有無を判定することが可能である。この目的のためには、変 異部位が前記配列 (A)、前記配列 (B)または前記配列 (C)に含まれるようにプライマ 一セットを設計することができ、これにより、増幅産物の有無を確認することによって 前記変異の有無を判定することが可能となる。従って、本発明によれば、核酸試料中 の核酸配列における変異の有無を判定する方法であって、 (a)核酸試料を用意する 工程、(b)本発明によるプライマーセットであって、前記変異を有するか、または該変 異を有さな 、核酸配列を標的核酸配列とし、該変異に係るヌクレオチド残基が配列( A)、配列 (B)または配列 (C)に含まれるように設計されたプライマーセットを用意する 工程、および (c)前記核酸試料の存在下において、前記プライマーセットによる核酸 増幅反応を行う工程、を含んでなる方法が提供される。
[0076] 本発明による変異検出法では、目的とする変異を有する核酸配列を標的核酸配列 として設計されたプライマーセットを用いる場合には、核酸増幅反応後における増幅 産物の存在が該変異の存在を示し、増幅産物の不在または減少が該変異の不在を 示す。一方で、目的とする変異を有さない核酸配列を標的核酸配列として設計され たプライマーセットを用いる場合には、核酸増幅反応後における増幅産物の存在が 該変異の不在を示し、増幅産物の不在または減少が該変異の存在を示す。ここで、「 増幅産物の減少」とは、得られた増幅産物の量が、核酸試料中に標的核酸配列が存 在する場合に得られる増幅産物の量に比較して減少していることを意味する。
[0077] 本発明にお 、て「変異」とは、核酸配列中に対照核酸配列とは異なる塩基 (二本鎖 核酸の場合には塩基対)が存在することを意味する。また、本発明において「対照核 酸」とは、ある特定の塩基配列に関して、標準的な塩基配列、例えば標準的な遺伝 子型、であるとされる野生型 (wild type。正常型 (normal type)とも称される。)の配列を 有する核酸をいう。これに対し、「被検核酸」とは、本発明による変異検出法において 、対照核酸と異なる塩基 (変異)を有するか否かを調べる対象となる核酸を意味し、換 言すれば、核酸試料中に存在する核酸であって、変異に係る塩基を除いて対照核 酸と同一の配列を有するものを意味する。さらに、本発明において「変異に係る塩基 」または「変異に係るヌクレオチド残基」とは、核酸中における変異の部位に存在する 塩基またはヌクレオチド残基を意味し、従って、対照核酸の変異部位に含まれる塩基 またはヌクレオチド残基および変異型の核酸の変異部位に含まれる塩基またはヌク レオチド残基のどちらをも意味する。例えば、遺伝子病が疑われる患者の遺伝子に おける変異を検出する場合において、変異を有することが疑われる患者の遺伝子は 被検核酸であり、この遺伝子に対応する健常者の遺伝子は対照核酸である。
[0078] 上記の被検核酸および対照核酸は、天然物由来の核酸であっても、人工的に合成 された核酸であってもよい。本発明において用いられる「核酸」という用語は、任意の 未修飾ヌクレオチドおよび Zまたは修飾ヌクレオチドを含むポリヌクレオチドを意味す る。被検核酸および対照核酸は、典型的には、 cDNA、ゲノム DNA、合成 DNAなど の DNA、または mRNA、全 RNA、 hnRNA、 siRNA、合成 RNAなどの RNAである 。また、本発明において用いられる「ポリヌクレオチド」という用語は、便宜的に、ポリヌ クレオチドおよびオリゴヌクレオチド、並びにペプチド核酸、モルホリノ核酸、メチルフ ォスフォネート核酸、 s-オリゴ核酸などの人工合成核酸をも含むものとする。被検核 酸および対照核酸は、試験実施者が自由に選択することができる。さらに、検出を行 う際には、これらの核酸が混在していてもよい。
[0079] 本発明の一つの実施態様によれば、本発明による変異検出法の工程 (b)において 、変異に係るヌクレオチド残基が前記配列 (A)に含まれるように設計されたプライマ 一セットが用意される。この実施態様では、核酸試料中に標的核酸配列が含まれて いる場合には、核酸増幅反応において第一のプライマーが配列 (A)にアニーリング するため、増幅産物が得られる。核酸試料中に、変異部位において標的核酸配列と は異なる核酸配列が含まれている場合には、核酸増幅反応において第一のプライマ 一が配列 (A)にアニーリングすることが困難となるため、増幅産物が得られないか、ま たは得られる増幅産物の量が著しく減少する。変異に係るヌクレオチド残基は、好ま しくは前記配列 (A)の 5 '末端 (第一のプライマーにおける 3 '末端に対応する)に含ま れるものとされる。また、第一のプライマーに含まれる配列 (Ac')は、前記配列 (A)に 相補的な配列とすることが好まし 、。
[0080] 本発明の他の実施態様によれば、本発明による変異検出法の工程 (b)において、 変異に係るヌクレオチド残基が前記配列 (C)に含まれるように設計されたプライマー セットが用意される。この実施態様では、核酸試料中に標的核酸配列が含まれてい る場合には、核酸増幅反応において第二のプライマーが配列(C)にアニーリングす るため、増幅産物が得られる。核酸試料中に、変異部位において標的核酸配列とは 異なる核酸配列が含まれている場合には、核酸増幅反応において第二のプライマー が配列(C)にアニーリングすることが困難となるため、増幅産物が得られないか、また は得られる増幅産物の量が著しく減少する。変異に係るヌクレオチド残基は、好ましく は前記配列(C)の 5'末端 (第二のプライマーにおける 3'末端に対応する)に含まれ るものとされる。また、第二のプライマーに含まれる配列(Cc')は、前記配列(C)に相 補的な配列とすることが好ま 、。
[0081] 本発明の他の実施態様によれば、本発明による変異検出法の工程 (b)において、 変異に係るヌクレオチド残基が前記配列 (B)に含まれるように設計されたプライマー セットが用意される。この実施態様では、核酸試料中に標的核酸配列が含まれてい る場合には、核酸増幅反応において、第一のプライマーが配列 (A)にアニーリングし て伸長反応が行なわれた後に該プライマーに含まれる配列 (Β')が伸長鎖上の配列( Be)にハイブリダィズするため、ステム ループ構造が効率的に形成される。この効率 的なステム ループ構造の形成により、他の第一のプライマーが铸型にアニーリング することが可能となり、図 1に示される作用機序が効率的に進行するため、増幅産物 が得られる。一方で、核酸試料中に、変異部位において標的核酸配列とは異なる核 酸配列が含まれて 、る場合には、核酸増幅反応における上記ステム ループ構造の 形成が困難となるため、図 1に示される作用機序が妨げられ、増幅産物が得られない 力 または得られる増幅産物の量が著しく減少する。また、第一のプライマーに含ま れる配列(Β')は、前記配列(Β)と同一の配列とすることが好ましい。
[0082] 上述の配列(Β)における変異の検出について、さらに詳細に説明する。図 1に示す 作用機序において、配列(Β')が配列(Be)にハイブリダィズする現象は、同一鎖上に 相補領域が存在することにより起こる。一般に、二本鎖核酸が一本鎖に解離するとき は、その末端あるいはそれ以外の比較的不安定な部分力 部分的な解離が始まる。 第一のプライマーによる伸長反応によって生成した二本鎖核酸は、比較的高温では 末端部分の塩基対は解離と結合の平衡状態にあり、全体としては二本鎖を保ってい る。そのような状態で末端の解離した部分に相補的な配列が同一鎖上に存在すると 、準安定な状態としてステム ループ構造を形成することができる。しかし、このステム ループ構造は安定的には存在せず、特に、そのステムを形成する配列(Β')と配列 (Be)部分との間に相補的でないヌクレオチドが存在する場合には、非常に不安定と なり、あるいは、ステムが全く形成されない。この場合には、铸型上の配列 (A)とブラ イマ一中の配列(Ac')とのハイブリダィゼーシヨンの方が優位となり、配列(A)の部分 がー本鎖とならないため、次の第一のプライマーがアニーリングできなくなる。そのた め、図 1に示される連続した反応を起こすことが極めて困難となる。
[0083] 被検核酸を含む核酸試料は、被検体、例えばヒトまたは非ヒト動物力も取得すること ができる。その場合には、該被検体からの所望の組織、臓器および細胞などのサン プルから当技術分野において公知の方法により核酸を抽出することができ、必要に 応じて、抽出の後に核酸断片の大きさおよび精製純度などの条件を適度な状態に調 整することもできる。その後、さらに、一般的なポリメラーゼ連鎖反応 (PCR)などによ る増幅反応を行うことにより、核酸試料中の被検核酸を増幅してもよい。
[0084] 被検核酸および対照核酸は、一本鎖であっても二本鎖であってもよ!、。本発明に おいて用いられる「二本鎖核酸」という用語は、二本鎖 DNA、二本鎖 RNA、および DNAZRNAのいずれをも意味する。二本鎖核酸は、そのまま核酸試料として用い てもよ 、し、ファージまたはプラスミドなどのベクターで増幅されたものを用いてもよ!ヽ
[0085] 本発明の好ましい実施態様によれば、本発明による変異検出法における核酸増幅 反応は、ミスマッチ認識タンパク質の存在下で行なわれ、これにより、より正確に変異 を検出することが可能となる。
[0086] DNAの 2本鎖において部分的に対合できない(ミスマッチ)塩基対が生じたときに、 細菌や酵母等には、これを修復するための機構があることが既に知られている。この 修復は「ミスマッチ結合タンパク質」(「ミスマッチ認識タンパク質」とも称される)と呼ば れるタンパク質によって行なわれるものであり、 MutSタンパク質(特表平 9— 504699 号公報)、 MutMタンパク質(特開 2000— 300265号公報)、 GFP (Green
Fluorescence Protein)に結合した MutSタンパク質(国際公開第 99/06591号パン フレット)などの様々なミスマッチ結合タンパクの使用が報告されている。さらに、近年 、ミスマッチ結合タンパク質を利用してミスマッチを検出する遺伝子診断法が開発さ れている(M. Gotoh et al., Genet. Anal., 14, 47-50, 1997)。核酸中における特定の ヌクレオチドにおける多型および突然変異の検出法としては、例えば、変異のない対 照核酸と、変異が存在することが疑われる被検核酸とをハイブリダィズさせ、そこにミ スマッチ認識タンパク質を導入することによりミスマッチを検出する方法が知られてい る。
[0087] 本発明にお!/、て「ミスマッチ」とは、アデニン (A)、グァニン(G)、シトシン(C)、およ びチミン (T) (RNAの場合はゥラシル (U) )から選択される一組の塩基対が正常な塩 基対 (Aと Tの組み合わせ、または Gと Cの組み合わせ)ではないことを意味する。ミス マッチには、 1つのミスマッチのみならず、複数の連続したミスマッチ、 1または複数の 塩基の挿入および Zまたは欠失により生じるミスマッチ、ならびにそれらの組み合わ せが含まれる。
[0088] 本発明による変異検出法においても、これらのミスマッチ結合タンパク質を利用する ことにより、その特異性 (正確さ)を向上させることができる。本発明による変異検出法 では、核酸試料に含まれる被検核酸が、変異部位において標的核酸配列と異なるヌ クレオチドを有する場合には、第一のプライマーに含まれる配列 (Ac')もしくは第二の プライマーに含まれる配列(Cc )の被検核酸へのハイブリダィゼーシヨンが妨げられ る力、または第一のプライマーに含まれる配列(Β')によるステム ループ構造の形成 が妨げられるため、増幅産物が得られないか、または増幅産物の量が減少することと なる。しかしながら、これらのハイブリダィゼーシヨンまたはステム ループ構造の形成 が完全には妨げられない場合もあり、その場合には、これらの配列において少量の ヘテロ二本鎖構造が生ずる。本発明において「ヘテロ二本鎖構造」とは、実質的には 相補的な二本鎖構造であるが、 1または複数のミスマッチを有することにより非相補的 な領域を含む二本鎖構造を意味する。このようなヘテロ二本鎖構造により、本来的に は生成しないはずの誤った増幅産物力あたらされる。そこで、核酸増幅反応に用いら れる反応液中にミスマッチ結合タンパク質を添加しておけば、上記のようなヘテロ二 本鎖構造にこのミスマッチ結合タンパク質が結合し、その後の増幅反応が妨げられる 。従って、ミスマッチ結合タンパク質を利用することにより、誤った増幅産物の生成を 防ぐことが可能となる。
[0089] 本発明に用いられるミスマッチ結合タンパク質は、二本鎖核酸におけるミスマッチを 認識し、そのミスマッチの部位に結合することが可能なタンパク質であればよぐ例え ば、当業者に公知のいずれのものであってもよい。また、本発明に用いられるミスマツ チ結合タンパク質は、二本鎖核酸中のミスマッチを認識しうる限り、野生型タンパク質 のアミノ酸配列において 1または複数のアミノ酸が置換、欠失、付加、および/または 挿入されたアミノ酸配列力もなるタンパク質 (変異体)であってもよ!/、。このような変異 体は、自然界において生じることもある力 人為的に作製することも可能である。タン ノ ク質にアミノ酸変異を導入する方法としては、多くの方法が知られている。例えば、 部位特異的変異導入法としては、 W.P. Dengと J.A. Nickoloffの方法 (Anal.
Biochem., 200, 81, 1992)、 K.L. Makamayeと F. Ecksteinの方法(Nucleic Adids Res., 14, 9679-9698, 1986)などが知られており、ランダム変異導入法としては、基本的な 修復系を欠損した大腸菌 XLト Red株 (Stratagene社)を用いる方法、亜硝酸ナトリウ ム等を用いて化学的に塩基を修飾する方法 (J.-J. Diaz et al, BioTechnique, 11, 204-211, 1991)などが知られている。このようなミスマッチ結合タンパク質としては、 M utM、 MutSおよびそれらの類似体など、多くのものが知られている(Radman,M.et al.,Annu.Rev.Genet.20:523-538(1986);Radaman,M.etal.,Sci.Amer.,August
1988,pp40-46;Modrich,P.,J.Biol.Chem.264:6597-6600(1989); Lahue.R.S. et al, Science 245 : 160- 164(1988); Jiricny , J . et al,.Nucl. Acids
Res.16:7843— 7853(1988);Su,S.S.et
al.,J.Biol.Chem.263;6829-6835(1988);Lahue,R.S.et
al.'Mutat.Res.198:37- 43(1988);Dohet,C.et al.,Mol.Gen.Gent.206:181- 184(1987); Jones, M.et al.'Gentics 115:605-610(1987) ; Salmonella typhimuriumの Muts ( Lu.A.L., Genetics 118:593- 600(1988);HaberL.T. et
al.,J.Bacteriol.l70:197-202(1988);Pang,P.P.et al.,J.Bacteriol. l63:1007— 1015(1985)) ;および Priebe S.D.et al.,J.Bacterilo.l70:190-196(1988)) o本発明に用いられるミス マッチ結合タンパク質は、好ましくは MutS、 MutH、 MutL、または酵母に由来する ものとされ、より好ましくは MutS、 MutH、または MutLとされる。
ミスマッチ結合タンパク質は、一本鎖核酸にも結合することがあり、このようなミスマツ チ結合タンパク質の一本鎖核酸への結合は、一本鎖結合タンパク質により阻害され ることが知られている。従って、本発明による変異検出法においてミスマッチ結合タン ノ ク質を用いる場合には、一本鎖結合タンパク質を併用することが好ましい。また、ミ スマッチ結合タンパク質は、ミスマッチを含まな 、二本鎖核酸にも結合することがあり 、このようなミスマッチ結合タンパク質の誤った結合は、あら力じめ活性剤を用いてミス マッチ結合タンパク質を活性ィ匕しておくことにより阻害されることが知られている。従つ て、本発明による変異検出法にぉ 、てミスマッチ結合タンパク質を用いる場合には、 活性剤によりあらカゝじめ活性ィ匕されたものを用いることが好まし ヽ。 [0091] 一本鎖核酸にミスマッチ結合タンパク質が結合するのを阻害するために使用する 一本鎖結合タンパク質 (SSB)は、当技術分野において公知の任意の SSBとすること ができる。好ましい SSBとしては、ェシエリキア'コリ、ショウジヨウバエ、およびアフリカ ッメガエルに由来する一本鎖結合タンパク質、および T4バタテリオファージ由来の遺 伝子 32タンパク質、ならびに他の種に由来するこれらの相当物が挙げられる。この場 合に使用されるミスマッチ結合タンパク質としては、 MutS、 MutH、 MutL、 HexA、 MSH1— 6、 Rep3、 RNaseA、ゥラシルー DNAグリコシダーゼ、 T4エンドヌクレア一 ゼ VII、レゾルバーゼなどが挙げられ、好ましくは MutS、 MSH2もしくは MSH6、ま たはこれらの 2種以上の混合物とされ、より好ましくは MutSとされる。
[0092] ミスマッチ結合タンパク質を活性ィ匕するための活性剤は、当業者であれば適宜選 択することができるため、特に限定されないが、好ましくは、 ATP (アデノシン 5'—三リ ン酸)、 ADP (アデノシン 5'—二リン酸)、 ATP— γ— S (アデノシン 5'— O— (3—チォ三リン 酸))、 AMP—PNP(ァデノシン5'—[ β , y イミド]三リン酸)などの化合物とされ、あるい は、ミスマッチ結合タンパク質に結合できるヌクレオチドの一つとされる。ミスマッチ結 合タンパク質の活性ィ匕は、ミスマッチ結合タンパク質と活性剤とを、室温で数秒間から 数分間インキュベートすることにより行うことができる。
[0093] 本発明の好ましい実施態様によれば、本発明による変異検出法は、遺伝子病の罹 病が疑われる被検体において特定の遺伝子が変異を有するカゝ否かを調べるため、 患者由来の遺伝子と健常者の遺伝子が同一の塩基配列を有する力否かを調べるた めに利用することができる。本発明による変異検出法においては、被検遺伝子のい 力なる位置に存在する変異をも検出することが可能である。
[0094] さらに、本発明によるプライマーセットを用いた核酸増幅反応によれば、核酸試料 中の核酸配列における配列の欠失または挿入の有無を判定することが可能である。 この目的のためには、欠失または挿入に係る部位力 配列 (A)、配列(B)もしくは配 列 (C)に含まれるか、または配列 (A)と配列 (B)との間もしくは配列 (A)と配列 (C)と の間に配置されるようにプライマーセットを設計することができ、これにより、増幅産物 の有無を確認することによって配列の欠失または挿入の有無を判定することが可能と なる。従って、本発明によれば、核酸試料中の核酸配列における配列の欠失または 挿入の有無を判定する方法であって、(a)核酸試料を用意する工程、(b)本発明に よるプライマーセットであって、欠失または挿入に係る配列を含むか、または該配列を 含まない核酸配列を標的核酸配列とし、欠失または挿入に係る部位が、配列 (A)、 配列(B)もしくは配列(C)に含まれるか、または配列 (A)と配列(B)との間もしくは配 列 (A)と配列 (C)との間に配置されるように設計されたプライマーセットを用意するェ 程、および (c)前記核酸試料の存在下において、前記プライマーセットによる核酸増 幅反応を行う工程、を含んでなる方法が提供される。
[0095] 本発明による欠失 Z挿入判定法では、目的とする欠失または挿入に係る配列を有 する核酸配列を標的核酸配列として設計されたプライマーセットを用いる場合には、 核酸増幅反応後における増幅産物の存在が欠失または挿入に係る配列の存在を示 し、増幅産物の不在または減少が欠失または挿入に係る配列の不在を示す。一方で 、目的とする欠失または挿入に係る配列を有さない核酸配列を標的核酸配列として 設計されたプライマーセットを用いる場合には、核酸増幅反応後における増幅産物 の存在が欠失または挿入に係る配列の不在を示し、増幅産物の不在または減少が 欠失または挿入に係る配列の存在を示す。ここで、「増幅産物の減少」とは、得られた 増幅産物の量が、核酸試料中に標的核酸配列が存在する場合に得られる増幅産物 の量に比較して減少して 、ることを意味する。
[0096] 本発明の一つの実施態様によれば、本発明による欠失 Z挿入判定法の工程 (b)に おいて、欠失または挿入に係る部位が前記配列 (A)に含まれるように設計されたブラ イマ一セットが用意される。この実施態様では、核酸試料中に標的核酸配列が含ま れている場合には、核酸増幅反応において第一のプライマーが配列 (A)にァニーリ ングするため、増幅産物が得られる。核酸試料中に、欠失 Z挿入により標的核酸配 列とは異なる核酸配列が含まれている場合には、核酸増幅反応において第一のブラ イマ一が配列 (A)にアニーリングすることが困難となるため、増幅産物が得られない 力 または得られる増幅産物の量が著しく減少する。第一のプライマーに含まれる配 列 (Ac )は、前記配列 (A)に相補的な配列とすることが好ましい。
[0097] 本発明の他の実施態様によれば、本発明による欠失 Z挿入判定法の工程 (b)にお いて、欠失または挿入に係る部位が前記配列 (C)に含まれるように設計されたプライ マーセットが用意される。この実施態様では、核酸試料中に標的核酸配列が含まれ ている場合には、核酸増幅反応において第二のプライマーが配列(C)にァユーリン グするため、増幅産物が得られる。核酸試料中に、欠失 Z挿入により標的核酸配列 とは異なる核酸配列が含まれている場合には、核酸増幅反応において第二のプライ マーが配列(c)にアニーリングすることが困難となるため、増幅産物が得られないか、 または得られる増幅産物の量が著しく減少する。第二のプライマーに含まれる配列(
Cc')は、前記配列(C)に相補的な配列とすることが好ましい。
[0098] 本発明の他の実施態様によれば、本発明による欠失 Z挿入判定法の工程 (b)にお いて、欠失または挿入に係る部位が前記配列 (B)に含まれるように設計されたプライ マーセットが用意される。この実施態様では、核酸試料中に標的核酸配列が含まれ ている場合には、核酸増幅反応において、第一のプライマーが配列 (A)にァユーリン グして伸長反応が行なわれた後に該プライマーに含まれる配列 (Β')が伸長鎖上の 配列(Be)にハイブリダィズするため、ステム ループ構造が効率的に形成される。こ の効率的なステム ループ構造の形成により、他の第一のプライマーが铸型にァ- 一リングすることが可能となり、図 1に示される作用機序が効率的に進行するため、増 幅産物が得られる。一方で、核酸試料中に、欠失 Z挿入により標的核酸配列とは異 なる核酸配列が含まれて 、る場合には、核酸増幅反応における上記ステム ループ 構造の形成が困難となるため、図 1に示される作用機序が妨げられ、増幅産物が得 られないか、または得られる増幅産物の量が著しく減少する。その詳細は、本発明に よる変異検出法について上述したとおりである。また、第一のプライマーに含まれる 配列(Β')は、前記配列(Β)と同一の配列とすることが好ま 、。
[0099] 本発明の好ま 、実施態様によれば、本発明による欠失 Ζ挿入判定法の工程 (b) において、欠失または挿入に係る部位が前記配列 (A)と前記配列 (B)との間に配置 されるように設計されたプライマーセットが用意される。この実施態様では、核酸試料 中に標的核酸配列が含まれている場合には、核酸増幅反応において、第一のプライ マーが配列 (A)にアニーリングして伸長反応が行なわれた後に該プライマーに含ま れる配列(Β')が伸長鎖上の配列(Be)にハイブリダィズするため、ステム ループ構 造が効率的に形成される。この効率的なステム ループ構造の形成により、他の第一 のプライマーが铸型にアニーリングすることが可能となり、図 1に示される作用機序が 効率的に進行するため、増幅産物が得られる。一方で、核酸試料中に、欠失 Z挿入 により標的核酸配列とは異なる核酸配列が含まれている場合には、第一のプライマ 一に含まれる配列 (Β')と伸長鎖上の配列 (Be)とが適切な距離を維持して 、な!/、た め、核酸増幅反応における上記ステム ループ構造の形成が困難となる。従って、こ の場合には、図 1に示される作用機序が妨げられ、増幅産物が得られないか、または 得られる増幅産物の量が著しく減少する。
本発明の他の実施態様によれば、本発明による欠失 Z挿入判定法の工程 (b)にお いて、欠失または挿入に係る部位が前記配列 (A)と前記配列 (C)との間に配置され るように設計されたプライマーセットが用意される。この実施態様では、核酸試料中に 標的核酸配列が含まれている場合には、核酸増幅反応において、第一のプライマー が配列 (A)にアニーリングして伸長反応が行なわれた後に該プライマーに含まれる 配列(Β')が伸長鎖上の配列(Be)にハイブリダィズするため、ステム ループ構造が 効率的に形成される。この効率的なステム ループ構造の形成により、他の第一のプ ライマーが铸型にアニーリングすることが可能となり、図 1に示される作用機序が効率 的に進行するため、増幅産物が得られる。一方で、核酸試料中に、欠失 Z挿入によ り標的核酸配列とは異なる核酸配列が含まれて 、る場合には、増幅産物が得られな いか、または得られる増幅産物の量が著しく減少する。例えば、配列 (A)と配列 (C)と の間における長い配列の挿入により標的核酸配列とは異なる核酸配列が核酸試料 中に含まれている場合には、核酸増幅の速度 (効率)が著しく低減されるため、増幅 産物が得られないか、または得られる増幅産物の量が著しく減少する。また、配列 (A )と配列 (C)との間における配列の欠失により標的核酸配列とは異なる核酸配列が核 酸試料中に含まれており、かっこの欠失により配列(B)の一部または全部が失われ ている場合には、第一のプライマーに含まれる配列 (Β')が伸長鎖上にハイブリダィズ できないため、ステム ループ構造の形成が不可能となる力、または困難となるため、 図 1に示される作用機序が妨げられ、増幅産物が得られないか、または得られる増幅 産物の量が著しく減少する。さらに、配列 (Α)と配列 (C)との間における配列の欠失 により標的核酸配列とは異なる核酸配列が核酸試料中に含まれており、かっこの欠 失による配列 (B)の部分的欠失が生じな 、場合にも、核酸増幅の速度 (効率)が低減 されるため、増幅産物が得られないか、または得られる増幅産物の量が著しく減少す る。
[0101] 本発明による欠失 Z挿入判定法では、 DNAおよび RNAの ヽずれをも標的核酸配 列とすることができる。 RNAとしては、例えば、 mRNA、スプライスド RNA、アンスプ ライスド RNA等が挙げられ、また、核、細胞質などに存在する RNA、感染したウィル ス、細菌などに由来する RNA等、生体力 取得することのできる全ての種類の RNA が挙げられる。 DNAとしては、天然に存在する DNAのみならず、人工的に組み換え られた DNA配列を挙げることもできる。現在、様々な遺伝子または核酸断片の配列 を組み換えることが可能となっており、本発明による欠失 Z挿入判定法によれば、天 然には存在しない組換え配列を検出することも可能である。
[0102] 本発明の好ま 、実施態様によれば、上記の欠失または挿入に係る配列は、真核 生物のゲノム上の遺伝子に含まれるイントロン配列とされる。これにより、 mRNAおよ びゲノム DNAをともに含む核酸試料を用いた場合に、標的とする遺伝子の配列中に イントロンが存在するか否かを判定することができ、その結果、イントロンが存在しない と判定された場合には、標的とする遺伝子の mRNAが存在するものと、すなわち、標 的とする遺伝子が発現しているものと判定することができる。本発明のさらに好ましい 実施態様によれば、前記標的核酸配列は mRNAとされる。
[0103] 標的とする遺伝子の mRNA (イントロンの欠失を有する)を標的核酸配列とし、イン トロン配列の欠失に係る部位が前記配列 (A)と前記配列(B)との間に配置されるよう に設計されたプライマーセットを用いる実施態様について詳述する。この実施態様で は、まず、第一のプライマーの 3'末端に存在する配列 (Ac')が铸型にァニールして 伸長反応が起こり、さらに、該プライマーからの伸長反応産物が目的の領域を合成し ていた場合にのみ、該プライマーの 5 '末端に存在する配列(Β')が自己伸長産物上 の隣のエタソンに対応する配列(Be)にハイブリダィズすることが可能となる。すなわち 、伸長反応産物が二つのェクソンを順番通りに連結させた配列を有する mRNAの目 的領域を合成したときにはじめて図 1に示されるステム ループ構造が形成され、一 本鎖となった铸型上の配列 (A)に新たな第一のプライマーがアニーリングすることが 可能となる。この第一のプライマーの 5'末端部分によるステム ループ構造の形成は 、上述のように、铸型上の配列 (A)と配列(B)が適切な間隔で存在するときに効率良 く繰り返されるため、イントロン配列を含まない mRNAを铸型にする時のみ増幅が起 き、イントロン配列を含むようなゲノム DNAでは増幅は起きないこととなる。この反応 を等温で繰り返すことによって正確に目的核酸の増幅を行うことができ、また、このス テム ループ構造の形成がサイクルごとに正確に繰り返されるため、 目的核酸のみを 正確に増幅することが可能となる。また、 PCR法などでは、多くの場合、非特異的な 増幅が起こり、 目的とする mRNAのみを増幅し、これを定量することは非常に困難で あつたが、本発明による欠失 Z挿入判定法は非常に特異性が高いために、非特異 増幅を起こすことなぐ標的とする mRNAのみを特異的に増幅することができるので 、その定量性も向上する。また、この原理により、煩雑で時間の力かる DNase処理な どを行 ヽ、検体中の DNAを壊して RNAを獲得する工程を省略することが可能となり 、 mRNAの自然崩壊を減らすことができ、より迅速な定性または定量の診断が行える ようになる。
[0104] 本発明による核酸増幅法、変異検出法、または欠失 Z挿入判定法を実施するため に、必要な試薬をまとめてキットとすることができる。従って、本発明によるキットは、本 発明によるプライマーセットを含んでなる。また、本発明による核酸増幅法、変異検出 法、または欠失 Z挿入判定法は、本発明によるプライマーセット以外のプライマーを 必要としないという利点を有する。従って、本発明の好ましい実施態様によれば、本 発明によるキットは、本発明によるプライマーセット以外のプライマー成分を含まな ヽ ものとされる。さらに、本発明によるプライマーセットに含まれる少なくとも 1種のプライ マーが固相担体と結合可能な部位を含む場合には、本発明によるキットは該固相担 体をさらに含んでなることが好ましい。また、核酸増幅反応に用いられる基質が固相 担体と結合可能な部位を含む場合にも、本発明によるキットは該固相担体をさらに含 んでなることが好ましい。本発明によるキットはさらに、 DNAポリメラーゼ、 dNTP、緩 衝液などの上述の試薬類、反応容器、説明書等を含んでいてもよい。
[0105] 本発明の好ましい実施態様によれば、前記キットは、本発明によるプライマーセット および核酸増幅反応に必要とされる他の試薬類を含有する反応容器を含んでなるも のとされる。他の試薬類としては、 DNAポリメラーゼ、 dNTP、緩衝液などの上述の試 薬類が挙げられる。このようなキットを用いることにより、前記反応容器に铸型核酸ま たは核酸試料を添加し、該反応容器を一定の温度に保つだけで核酸増幅反応を行 なうことが可能となる。さらには、プライマーセットに含まれる少なくとも 1種のプライマ 一が固相担体を含んでいる場合には、増幅産物が生成すると同時に該固相担体が 凝集するため、透明または半透明の反応容器を用いることによりこの凝集を反応容器 の外部から観察することが可能である。従って、この場合には、反応容器の開封をす ることなく増幅産物を検出することができるため、操作が簡便であり、さらには他のサ ンプルとの間での核酸増幅物のコンタミネーシヨンを防止することもできる。
[0106] 本発明の第二の態様によれば、ミスマッチ結合タンパク質などのミスマッチ識別能 を有する物質の存在下において、铸型における変異の存在または不存在のいずれ カゝによって铸型とのミスマッチを生じる核酸試薬を用いた核酸増幅反応を行なうこと により、核酸試料中の核酸配列における変異の有無を判定する方法が提供される。 この態様において用いられる「変異」という用語は、 1以上のヌクレオチドの置換、欠 失および挿入の!/、ずれをも包含する。
[0107] 本明細書において「ミスマッチ識別能を有する物質」とは、二本鎖核酸中にミスマツ チが含まれている場合に、そのミスマッチ部位に結合する力 またはこの部位を切断 する物質をいう。プライマーと DNAポリメラーゼを用いる核酸増幅反応において、铸 型における標的核酸配列上にミスマッチ識別能を有する物質が結合した二本鎖部分 が存在すると、プライマーカ の伸長鎖がその部分に到達してもその二本鎖構造が 解消されないため、プライマー伸長反応がそこで停止し、従って、増幅産物が得られ ない。また、核酸増幅反応において、铸型における標的核酸配列が切断された場合 にも、増幅産物が得られない。ミスマッチ識別能を有する物質は、好ましくはミスマツ チ部分に結合する物質とされ、これは有機化合物、無機化合物もしくはタンパク質、 またはこれらの複合体であってもよいが、特に好ましくは、ミスマッチ部分に結合する ミスマッチ結合タンパク質とされる。ミスマッチ結合タンパク質の詳細については上述 したとおりであるが、好ましくは MutS、 MSH2もしくは MSH6、またはこれらの 2種以 上の混合物とされ、より好ましくは MutSとされる(J Smith and P Modrich, Proc. Natl. Acad. Sci. USA. 93, 4374-4379, 1996 ;Au KG, Welsh K, Modrich P., J. Biol. Chem. 267, 12142-12148, 1992 ; Alan B. Clark, Frank Valle, Karin Drotschmann, Ronald K. Gary, and Thomas A. Kunkel, J. Biol. Chem. 275, 36498-36501, 2000)。また、ミ スマッチ結合タンパク質は、その起源生物によって耐熱性に差が見られる。当業者で あれば、核酸増幅反応において設定される温度に応じて適切なミスマッチ結合タン ノ ク質を選択することができる。例えば、好温菌由来の MutSは、本発明において好 適に用いることができる。
[0108] 上記の核酸増幅反応は、当技術分野において公知のいずれの方法によるものであ つてもよく、また、本発明による核酸増幅法によるものであってもよい。特に、等温で 行なわれる核酸増幅反応が好適に用いられ、このような核酸増幅反応は、上述の本 発明による核酸増幅法のみならず、等温下での核酸増幅法として知られる方法、例 えば、 SDA法 (特公平 7— 114718号公報)、改良 SDA法 (米国特許第 5824517号 明細書;国際公開第 99Z09211号パンフレット;国際公開第 95Z25180号パンフ レット)、 NASBA法(日本国特許第 2650159号公報)、 LAMP法(国際公開第 00 Z28082号パンフレット)、 ICAN法(国際公開第 02Z16639号パンフレット)などに 従って行なうことができる。
[0109] 一つの実施態様によれば、本発明の第二の態様による変異検出法は、以下のェ 程:
(a)核酸試料を用意する工程;
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセットであって、該 プライマーセットに含まれる少なくとも 1種のプライマーが、前記核酸試料中の核酸配 列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在に よって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるように 設計されたものである、プライマーセットを用意する工程;および
(c)ミスマッチ識別能を有する物質の存在下にお ヽて、前記核酸試料を铸型とする 前記プライマーセットによる核酸増幅反応を行う工程
を含んでなるものである。
[0110] 標的核酸配列を増幅しうる上記のプライマーセットは、利用する核酸増幅法に応じ て適宜設計することができる。特に、該プライマーセットは標的核酸配列を等温下で 増幅しうるものであることが好ましぐその場合には、核酸増幅反応は等温で行なうこ とがでさる。
[0111] 上記の 1以上のミスマッチは、 1塩基のミスマッチ、連続した複数のミスマッチ、また は非連続的な複数のミスマッチとすることができる。また、該ミスマッチの数の上限は、 ノ、イブリダィズすべき 2本の核酸が二本鎖の状態を維持しうる程度の数であればよく 、従って、ハイブリダィゼーシヨンにより対合するヌクレオチドの数によって異なるが、 好ましくは 5塩基、より好ましくは 3塩基、さらに好ましくは 2塩基とされる。
[0112] 変異の存在または不存在によってミスマッチを生じる上記のプライマーは、検出の 対象とする変異を有する標的核酸配列と該変異を有さない標的核酸配列とを比較す ることにより、当業者であれば適宜設計することができる。すなわち、これら 2つの標 的核酸配列の間で異なるヌクレオチドを含む領域にハイブリダィズするように、前記 プライマーを設計すればよい。その際、前記プライマーは、変異を有する標的核酸配 列に相補的な配列を含むように設計すれば、変異の不存在によってミスマッチを生じ るものとなり、一方で、変異を有さない標的核酸配列に相補的な配列を含むように設 計すれば、変異の存在によってミスマッチを生じるものとなる。
[0113] 好ましい実施態様によれば、前記プライマーセットに含まれる第一のプライマーは、 上述の本発明によるプライマーセットに含まれる第一のプライマーとされる。この第一 のプライマーは、前記変異の存在または不存在によって、前記配列 (A)と前記配列( Ac')との間で 1以上のミスマッチを生じるように設計することができる。あるいは、この 第一のプライマーは、前記変異の存在または不存在によって、前記配列(Be)と前記 配列(Β')との間で 1以上のミスマッチを生じるように設計することもできる。
[0114] 他の好ましい実施態様によれば、前記プライマーセットに含まれる第二のプライマ 一は、上述の本発明によるプライマーセットに含まれる第二のプライマーとされる。こ の第二のプライマーは、前記変異の存在または不存在によって、前記配列(C)と前 記配列(Cc')との間で 1以上のミスマッチを生じるように設計することができる。
[0115] 他の好ましい実施態様によれば、前記プライマーセットは、上述の本発明によるプ ライマーセットに含まれてもよい第三のプライマーをさらに含んでなるものとされる。こ の第三のプライマーは、前記核酸試料中の核酸配列またはその相補配列にハイプリ ダイズしたときに、前記変異の存在または不存在によって前記核酸配列またはその 相補配列との間で 1以上のミスマッチを生じるように設計することができる。
[0116] 上記核酸増幅反応の他の条件は、本発明による核酸増幅法と同様に設定すること ができる。例えば、上記核酸増幅反応では、好ましくは上述の鎖置換能を有するポリ メラーゼが使用される。また、必要に応じて、上述の融解温度調整剤、上述の酵素安 定化剤などを用いてもよい。
[0117] この実施態様による変異検出法を行なった結果、変異の存在によりミスマッチを生 じるプライマーを用いて増幅産物が得られた場合には核酸試料中に前記変異が存 在しないものと判定することができ、逆に、増幅産物が得られな力つた場合には前記 変異が存在するものと判定することができる。一方で、変異の不存在によりミスマッチ を生じるプライマーを用いて増幅産物が得られた場合には核酸試料中に前記変異 が存在するものと判定することができ、逆に、増幅産物が得られな力つた場合には前 記変異が存在しないものと判定することができる。
[0118] この実施態様に従って本発明の第二の態様による変異検出法を実施するために、 必要な試薬をまとめてキットとすることができる。従って、該キットは、前記ミスマッチ識 別能を有する物質、および前記プライマーセットを含んでなる。また、該キットは、好ま しくは上述の鎖置換能を有するポリメラーゼをさらに含んでなるものとされる。さらに、 該キットは、上述の融解温度調整剤、上述の酵素安定化剤、 dNTP、緩衝液などの 上述の試薬類、反応容器、説明書等を含んでいてもよい。
[0119] 他の一つの実施態様によれば、本発明の第二の態様による変異検出法は、以下の 工程:
(a)核酸試料を用意する工程;
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセットを用意するェ 程;
(c)標的核酸配列にハイブリダィズする核酸断片であって、前記核酸試料中の核酸 配列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在 によって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるよう に設計されてなる、核酸断片を用意する工程;および
(d)ミスマッチ識別能を有する物質および前記核酸断片の存在下において、前記核 酸試料を铸型とする前記プライマーセットによる核酸増幅反応を行う工程
を含んでなるものである。
[0120] 上記の 1以上のミスマッチは、 1塩基のミスマッチ、連続した複数のミスマッチ、また は非連続的な複数のミスマッチとすることができる。また、該ミスマッチの数の上限は、 ノ、イブリダィズすべき 2本の核酸が二本鎖の状態を維持しうる程度の数であればよく 、従って、ハイブリダィゼーシヨンにより対合するヌクレオチドの数によって異なるが、 好ましくは 5塩基、より好ましくは 3塩基、さらに好ましくは 2塩基とされる。
[0121] 変異の存在または不存在によってミスマッチを生じる上記核酸断片は、検出の対象 とする変異を有する標的核酸配列と該変異を有さない標的核酸配列とを比較するこ とにより、当業者であれば適宜設計することができる。すなわち、これら 2つの標的核 酸配列の間で異なるヌクレオチドを含む領域にハイブリダィズするように、前記核酸 断片を設計すればよい。その際、前記核酸断片は、変異を有する標的核酸配列に 相補的な配列を含むように設計すれば、変異の不存在によってミスマッチを生じるも のとなり、一方で、変異を有さない標的核酸配列に相補的な配列を含むように設計 すれば、変異の存在によってミスマッチを生じるものとなる。
[0122] また、上記核酸断片は、核酸増幅反応において用いられる温度、例えば、 20°C— 80°Cの範囲の温度にぉ 、て、標的核酸配列にハイブリダィズするものであればょ ヽ 。該核酸断片の鎖長は特に制限されるものではないが、好ましくは 5— 40ヌクレオチ ド、より好ましくは 15— 25ヌクレオチドとされる。該核酸断片は、必要に応じて、修飾 塩基 (天然では存在しない塩基)を含むこともできる。また、該核酸断片は、その一方 または両方の末端部において、標識、またはアミノ基などの活性基を含んでいてもよ い。
[0123] 標的核酸配列を増幅しうる上記のプライマーセットは、利用する核酸増幅法に応じ て適宜設計することができる。特に、該プライマーセットは標的核酸配列を等温下で 増幅しうるものであることが好ましぐその場合には、核酸増幅反応は等温で行なうこ とがでさる。 [0124] 好ましい実施態様によれば、前記プライマーセットに含まれる第一のプライマーは、 上述の本発明によるプライマーセットに含まれる第一のプライマーとされる。他の好ま しい実施態様によれば、前記プライマーセットに含まれる第二のプライマーは、上述 の本発明によるプライマーセットに含まれる第二のプライマーとされる。さらに他の好 ましい実施態様によれば、前記プライマーセットは、上述の本発明によるプライマー セットに含まれてもよい第三のプライマーをさらに含んでなるものとされる。
[0125] 上記核酸増幅反応の他の条件は、本発明による核酸増幅法と同様に設定すること ができる。例えば、上記核酸増幅反応では、好ましくは上述の鎖置換能を有するポリ メラーゼが使用される。また、必要に応じて、上述の融解温度調整剤、上述の酵素安 定化剤などを用いてもよい。
[0126] この実施態様による変異検出法を行なった結果、変異の存在によりミスマッチを生 じる核酸断片を用いて増幅産物が得られた場合には核酸試料中に前記変異が存在 しないものと判定することができ、逆に、増幅産物が得られな力つた場合には前記変 異が存在するものと判定することができる。一方で、変異の不存在によりミスマッチを 生じる核酸断片を用いて増幅産物が得られた場合には核酸試料中に前記変異が存 在するものと判定することができ、逆に、増幅産物が得られな力つた場合には前記変 異が存在しないものと判定することができる。
[0127] この実施態様に従って本発明の第二の態様による変異検出法を実施するために、 必要な試薬をまとめてキットとすることができる。従って、該キットは、前記ミスマッチ識 別能を有する物質、前記プライマーセット、および前記核酸断片を含んでなる。また、 該キットは、好ましくは上述の鎖置換能を有するポリメラーゼをさらに含んでなるものと される。さらに、該キットは、上述の融解温度調整剤、上述の酵素安定化剤、 dNTP、 緩衝液などの上述の試薬類、反応容器、説明書等を含んでいてもよい。
実施例
[0128] 以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれら実施例 に限定されるものではない。
[0129] 例 1:ヒト STS DYS237遺伝子中の標的核酸配列の増幅
本例では、铸型として Human Genomic DNA (Clontech社製)を使用して、その中に 含まれるヒト STS DYS237遺伝子中の標的核酸配列の増幅を行なった。プライマー としては、下記の配列を有するプライマーペアを用いた。また、テンプレートに対する 各プライマー領域の位置関係は図 4 (配列番号 6)に示す通りとした。フォワードプライ マー F1は、その 3,末端側にある配列(22mer:下線部)が铸型にアニーリングし、 5, 末端側にある配列(16mer:下線部以外)がその領域内で折り畳まれて図 2に示す構 造をとるように設計されている。リバースプライマー R1は、その 3'末端側にある配列( 20mer:下線部)が铸型にアニーリングし、伸長反応の後、 5'末端側にある配列(10 mer:下線部以外)力 そのプライマーによる伸長鎖上の、該プライマーの 3'末端残 基の 16塩基下流力 始まる領域にハイブリダィズするように設計されている。
[0130] プライマーペア:
F1: GGATATATATATATCCACTGAACAAATGCCACATAAAG (配列番号 1); R1: GCAGCATCACCAACCCAAAAGCACTGAGTA (配列番号 2)。
[0131] 次の組成を有する反応液(25 μ L): Tris— HCl(20mM, pH8. 8)、 KCl(lOmM) 、 (NH ) SO (lOmM)ゝ MgSO (8mM)ゝ DMSO (3%)、 Triton X— 100 (1%)、
4 2 4 4
dNTP (l. 4mM)、それぞれ 2000nMの上記のプライマー対および铸型(lOOng) 、さらに 16Uの Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)を含有;を調 製し、これを 60°Cで 1時間インキュベートした。铸型は二本鎖のまま反応させた。また 、铸型の代わりに滅菌水を添加した溶液についても同様に実験を行なった。
[0132] 各反応液 5 μ 1につ 、て、 3% NuSieve 3:1 Agarose (BioWhittaker Molecular
Applications (BMA)社製;タカラバイオ社より購入;「NuSieve」は BMA社の登録商標 である)を用いて、 80分間、 100Vで電気泳動した。泳動後のゲルをェチジゥムプロ マイド (EtBr)で染色することにより、核酸を検出した。結果は図 5に示すとおりである 。図 5における各レーンのサンプルは次の通りである:レーン l : 20bpDNA Ladder size marker;レーン 2:铸型を含む反応液;レーン 3:铸型の代わりに滅菌水を添カロ した反応液。
[0133] 図 5のレーン 3では、未反応のプライマーが染色されている以外にバンドは確認さ れなかった。レーン 2において、低サイズのバンドのうち、約 120bp付近のバンドは、 目的核酸の増幅産物として予想されるものである。よって、铸型を含む反応液におい て、増幅産物が確認された。レーン 2では、さらに、前記増幅産物よりも上部にバンド が確認され、これは、本発明による増幅反応において予測される標的核酸配列を繰 り返し有する増幅産物である。本発明による増幅反応によって得られる増幅産物は 複雑な構造をとるために、結果としてこのようなラダー状の電気泳動結果が得られた
[0134] 例 2 :制限酵素による切断
例 1で得られた増幅産物が、標的核酸配列に由来するものであることを示すため、 該増幅産物の制限酵素消化を行った。具体的には、例 1により得られる増幅反応後 の反応液 0. を用いて、制限酵素 MboIIによる消化(37°Cにて 3時間)を行なつ た。
[0135] 消化産物を 3% NuSieve 3: 1 Agarose (BioWhittaker Molecular Applications (BMA) 社製;タカラバィォ社より購入;「NuSieve」は BMA社の登録商標である)を用いて電 気泳動した。結果は図 6に示すとおりである。図 6における各レーンのサンプルは次 の通りである:レーン l : 20bpDNA Ladder size marker ;レーン 2 :増幅産物 0. 3 μ Lをそのまま電気泳動したもの;レーン 3:増幅産物 0. 3 μ Lの消化産物を電気泳動し たもの。
[0136] 図 6において、ヌクレオチド配列力 推測される各制限酵素消化断片のサイズは、 泳動写真の右側に記したとおりである。未消化サンプルのバンドが、消化後には推 定されるサイズのバンドへ移行したことから、標的核酸配列が増幅されて 、ることが確 f*i¾ れ 。
[0137] 例 3:融解温度調整剤を添加する事による増幅反 の促淮
増幅反応溶液に融解温度調整剤を添加し、増幅効率に対するその効果を検討し た。例 1と同様に、铸型として Human DNA (Clontech社製)を使用してヒト STS DYS2 37遺伝子中の標的核酸配列の増幅を行なった。増幅反応溶液の組成は、融解温度 調整剤として最終濃度 0%、 2%、 5%、または 10%の DMSOを添加する以外は、例 1と同様である。また、反応条件や反応後の電気泳動条件は、例 1に記載したものと 同様である。
[0138] 結果は図 7に示すとおりである。図 7における各レーンのサンプルは次の通りである :レーン l : 20bpDNA Ladder size marker;レーン 2 : 0%DMSO (DMSOを含ま な!ヽ);レーン 3: 2%DMSO;レーン 4: 5%DMSO;レーン 5: 10%DMSO。
[0139] 図 7から明らかなように、 DMSOの濃度が 2%および 5%の場合には十分な増幅産 物が得られ、 0%の場合にも僅かな増幅産物が得られた。これに対し、 DMSOの濃 度が 10%の場合には増幅産物が得られな力つた。これは、融解温度調整剤の濃度 が高か過ぎたために、 Tm (融解温度)が低下し過ぎたためと思われる。
[0140] 例 4 :一塩某栾¾の枪出
本例では、本発明によるプライマーセットを用いた一塩基変異の検出を行なった。 まず、一塩基変異のモデルを作製するため、ヒト STS DYS237遺伝子中の特定の 領域にお 、て一塩基変異を含むような長鎖合成オリゴヌクレオチドと、一塩基変異を 含まない長鎖合成オリゴヌクレオチドとを合成した。さら〖こ、これら長鎖合成オリゴヌク レオチドを PCR法でそれぞれ増幅し、一塩基変異を含まな!/、野生型 DNAと一塩基 変異を含む変異型 DNAの増幅産物を得た。これら増幅産物を、配列決定して変異 部分のヌクレオチド残基を確認した後、テンプレートとして以下の実験に使用した。こ れら増幅産物のヌクレオチド配列を図 8 (配列番号 7および配列番号 8)に示す。図 8 力 明らかなように、野生型 DNAでは C残基である矢印の残基力 変異型 DNAで は G残基に置換されている。
[0141] プライマーとしては、下記の配列を有する野生型 DNA検出用プライマーペアおよ び変異型 DNA検出用プライマーペアを用 V、た。野生型 DNA検出用プライマーペア は、例 1にお 、て使用したプライマー F1およびプライマー R1をそれぞれフォワードプ ライマーおよびリバースプライマーとするものである。変異型 DNA検出用プライマー ペアは、前記プライマー F1をフォワードプライマーとし、新たに設計したプライマー R1Gをリバースプライマーとするものである。プライマー R1Gは、 5,末端から 5番目に G残基を有することを除いて、プライマー R1と同一のヌクレオチド配列を有するもので ある。また、铸型 DNAに対する各プライマー領域の位置関係は図 8に示す通りであ る。
[0142] 野生型 DNA検出用プライマーペア:
Fl : GGATATATATATATCCACTGAACAAATGCCACATAAAG (配列番号 1); Rl: GCAGCATCACCAACCCAAAAGCACTGAGTA (配列番号 2)。
変異型 DNA検出用プライマーペア:
F1: GGATATATATATATCCACTGAACAAATGCCACATAAAG (配列番吾 1); RIG: GCAGGATCACCAACCCAAAAGCACTGAGTA (配列番号 3)。
[0143] 上記の野生型 DNAまたは変異型 DNAを铸型とし、それぞれの場合について、野 生型 DNA検出用プライマーペアまたは変異型 DNA検出用プライマーペアを用 V、た 核酸増幅反応を行なった。具体的には、次の組成を有する反応液 (25 : Tris- HCl (20mM, pH8. 8)、 KCl(lOmM)、(NH ) SO (lOmM)ゝ MgSO (8mM)
4 2 4 4
、 DMSO (3%)、 Triton X— 100 (1%)、 dNTP (1. 4mM)、それぞれ 2000nMの 上記のプライマー対および铸型(10— 19molZtube (約 60000分子))、さらに 16Uの Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)を含有;を調製し、これを 60 °Cで 1時間インキュベートした。铸型は二本鎖のまま反応させた。
[0144] 各反応液 5 μ 1につ 、て、 3% NuSieve 3:1 Agarose (BioWhittaker Molecular
Applications (BMA)社製;タカラバイオ社より購入;「NuSieve」は BMA社の登録商標 である)を用いて、 80分間、 100Vで電気泳動した。泳動後のゲルをェチジゥムプロ マイド (EtBr)で染色することにより、核酸を検出した。結果は図 9に示すとおりである 。図 9における各レーンのサンプルは次の通りである:レーン l : 20bpDNA Ladder size marker;レーン 2 :野生型 DNAを铸型とし、野生型 DNA検出用プライマーべ ァを用いた反応液;レーン 3:変異型 DNAを铸型とし、野生型 DNA検出用プライマ 一ペアを用いた反応液;レーン 4:野生型 DNAを铸型とし、変異型 DNA検出用ブラ イマ一ペアを用いた反応液;レーン 5:変異型 DNAを铸型とし、変異型 DNA検出用 プライマーペアを用いた反応液。
[0145] 図 9から明らかなように、レーン 2およびレーン 5では、増幅産物が得られた。これら のレーンにおいて、低サイズのバンドのうちの約 120bp付近のバンドは、目的核酸の 増幅産物として予想されるものである。これに対し、レーン 3およびレーン 4では、増 幅産物が得られな力つた。従って、野生型 DNA検出用プライマーペアは野生型 DN Aのみを検出し、変異型 DNA検出用プライマーペアは変異型 DNAのみを検出する ことが確認された。この結果により、本発明による増幅反応を利用することによって、 一塩基変異を効果的に検出することが可能であることが示された。
[0146] 例 5 :第三のプライマー添加による增幅谏度の促進
例 1にお 、て使用したプライマーペアに加えて、第三のプライマーを使用する核酸 増幅反応を行なった。第三のプライマーとしては、以下の配列を有する 2種のプライ マーを用いた。これら第三のプライマーは、前記プライマーペアにより増幅される標 的核酸配列上の、該プライマーペアとは異なる位置にアニーリングするように設計され ている。テンプレートに対する各プライマー領域の位置関係は図 10 (配列番号 6)に 示す通りとした。
[0147] 第三のプライマー:
プライマー 3F:TAAGAACTCGCTTTATAC (配列番号 4);
プライマー 3R:TCTTCAACAGTCATTACC (配列番号 5)。
[0148] 例 1と同様に、铸型として Human DNA (Clontech社製)を使用してヒト STS DYS23 7遺伝子中の標的核酸配列の増幅を行なった。増幅反応溶液の組成は、第三のブラ イマ一としてプライマー 3F (800nM)およびプライマー 3R (800nM)の一方または両 方を含むこと以外は、例 1と同様である。この反応溶液を、 60°Cで 30分間または 60 分間インキュベートした。
[0149] 各反応液 5 μ 1につ 、て、 3% NuSieve 3:1 Agarose (BioWhittaker Molecular
Applications (BMA)社製;タカラバイオ社より購入;「NuSieve」は BMA社の登録商標 である)を用いて、 80分間、 100Vで電気泳動した。泳動後のゲルをェチジゥムプロ マイド (EtBr)で染色することにより、核酸を検出した。結果は図 11に示すとおりであ る。図 11における各レーンのサンプルは、下記の表 1に示す通りである。
[0150] [表 1] 表 1 :図 1 1に示す電気泳動写真における各レーンのサンプル
Figure imgf000052_0001
[0151] 図 11に示す電気泳動写真において、低サイズのバンドのうちの約 120bp付近のバ ンドは、 目的核酸の増幅産物として予想されるものである。図 11から明らかなように、 1種類または 2種類の第三のプライマーを添カ卩したサンプルでは、 30分間および 60 分間の反応により十分な増幅産物が得られた(レーン 2— 4、およびレーン 10— 12) 。これに対し、第三のプライマーを添カ卩していないサンプルでは、 30分間の反応では 増幅産物が得られず(レーン 1) 60分間の反応により増幅産物が得られた(レーン 9 ) o铸型を添カ卩していないサンプルでは、増幅産物は得られなかった(レーン 5— 8 およびレーン 13— 16)。これらの結果により、本発明による増幅反応において、第三 のプライマーを添加することによって増幅効率が向上することが示された。
[0152] 例 6:儘型濃度 存的增幅の確認 铸型として 100ng、 10ng、 lng、または Ongの Human Genomic DNA (Clontech社 製)を含み、第三のプライマーとして 800nMのプライマー 3F (配列番号 4)を含むこと を除き、例 1と同様に反応溶液を調製した。この反応溶液を、 60°Cで 20分間、 40分 間、または 60分間インキュベートした。
[0153] 各反応液 5 μ 1につ 、て、 3% NuSieve 3:1 Agarose (BioWhittaker Molecular
Applications (BMA)社製;タカラバイオ社より購入;「NuSieve」は BMA社の登録商標 である)を用いて、 80分間、 100Vで電気泳動した。泳動後のゲルをェチジゥムブ口 マイド (EtBr)で染色することにより、核酸を検出した。結果は図 12に示すとおりであ る。図 12における各レーンのサンプルは、下記の表 2に示す通りである。
[0154] [表 2] 表 2 :図 1 2に示す電気泳動写真における各レーンのサンプル
Figure imgf000053_0001
[0155] 図 12に示す電気泳動写真において、低サイズのバンドのうちの約 120bp付近のバ ンドは、 目的核酸の増幅産物として予想されるものである。図 12から明らかなように、 100ngの铸型を添加した場合、 20分以上の反応により増幅産物が得られた (レーン 1、 5、および 9)。 lOngの铸型を添加した場合、 40分以上の反応により増幅産物が 得られた (レーン 6および 10)。 lngの铸型を添加した場合、 60分以上の反応により 増幅産物が得られた(レーン 11)。铸型を添加しなカゝつた場合には、全ての反応時間 において増幅産物は得られなかった(レーン 4、 8、および 12)。これらの結果により、 反応時間を長くすることによって、铸型が低濃度の場合においても増幅産物が得ら れることが確認された。
[0156] 例 7 :ALDH2遣伝子の一塩某変異の検出における MutSの効果
本例では、铸型として Human Genomic DNA (Clontech社製)を使用して、アルデヒド デヒドロゲナーゼー 2遺伝子 (ALDH2遺伝子)のェクソン 12中に存在する一塩基変 異の検出を行なった。なお、铸型とする上記 DNAは、野生型 ALDH2遺伝子を含む ものである。
[0157] プライマーとしては、下記の配列を有するプライマーセットを用いた。また、テンプレ ートに対する各プライマー領域の位置関係は図 13 (配列番号 9)に示す通りとした。 フォワードプライマー ALDH2Fは、その 3'末端側にある配列(16mer:下線部)が铸 型にアニーリングし、 5'末端側にある配列(16mer:下線部以外)がその領域内で折 り畳まれて図 2に示す構造をとるように設計されて!、る。リバースプライマー ALDH2R は、その 3'末端側にある配列(20mer:下線部)が铸型にアニーリングし、伸長反応 の後、 5'末端側にある配列(l lmer)が、そのプライマーによる伸長鎖上の、該プライ マーの 3'末端残基の 18塩基下流力も始まる領域にハイブリダィズするように設計さ れている。プライマー ALDH20Fおよび ALDH20Rは、铸型上のそれぞれ ALDH2Fお ょひ7\し01"[21?ょりも外側(5'側)にアニーリングするように設計されている。また、 ALDH2SNPgおよび ALDH2SNPaは、変異に力かるヌクレオチド残基(下線部)を含む プライマーである。 ALDH2SNPgは野生型配列を含むものであり、 ALDH2SNPaは変 異型配列を含むものである。
[0158] 使用したプライマーの配列:
ALDH2F: TTTATATATATATAAACCGGGAGTTGGGCGAG (配列番号 10); ALDH2R: CGAGTACGGGCCCACACTCACAGTTTTCAC (配列番吾 11); ALDH20F: ACAAGATGTCGGGGAGTG (配列番号 12); ALDH20R: CCTGAGCCCCCAGCAGGT (配列番号 13);
ALDH2SNPg: GCAGGCATACACTGA (配列番号 14);
ALDH2SNPa: GCAGGCATACACTAA (配列番号 15)。
[0159] 次の組成を有する反応液(25 μ L): Tris— HCl(20mM, pH8. 8)、 KCl(lOmM) 、 (NH ) SO (lOmM)ゝ MgSO (6mM)ゝ DMSO (6%)、 Triton X— 100 (1%)、
4 2 4 4
dNTP (0. 4mM)、 8Uの Bst DNAポリメラーゼ(NEW ENGLAND BioLabs)、 S YBR GREEN I (Molecule Probe社)(最終的に 100, 000倍希釈となる濃度)、铸型 (40ng)、それぞれ 3200nMの ALDH2Fおよび ALDH2R、それぞれ 400nMの ALDH20Fおよび ALDH20R、 ALDH2SNPg (野性型プライマー)と ALDH2SNPa (変異 型プライマー)のいずれか一方(1600nM)、ならびに MutS (0. 8 g)を含有;を調 製し、これを 60°Cで 180分間インキュベートした。铸型は二本鎖のまま反応させた。 また、 MutSを含まない反応液についても同様に実験を行なった。増幅産物の生成 はリアルタイム蛍光検出装置 Mx3000P(STRATAGENE社製)を用いてモニタリングし た。
[0160] 実験の結果を図 14に示した。この実験では、変異を含まないヒトゲノム DNAを铸型 として使用しているため、上記の野生型プライマーを用いた場合には増幅産物が得 られ、変異型プライマーを用いた場合には増幅産物が得られないはずである。図 14 によれば、野性型プライマーを用いた場合には、 MutSの有無にかかわらず、約 25 分の時点で増幅産物の生成が認められることがわかる。一方で、変異型プライマーを 用いた場合には、 MutSの不在下では約 35分の時点で増幅産物の生成が認められ たのに対し、 MutSの存在下では 3時間反応させても増幅産物の生成は認められな かった。従って、 MutSを用いることにより、正確な SNPタイピングが可能になることが 示された。
[0161] 例 8 :ヒト CYP2C19 * 3遣伝子の一塩某変異の検出における MutSの効果
本例では、铸型として Human Genomic DNA (Clontech社製)を使用して、薬物代謝 酵素チトクロム P450ファミリーの CYP2C19 * 3遺伝子のェクソン 4中に存在する一塩 基変異の検出を行なった。また、本例では、核酸増幅法として LAMP法を用いた。な お、铸型とする上記 DNAは、野生型 CYP2C19 * 3遺伝子を含むものである。 [0162] プライマーとしては、下記の配列を有する LAMP法用のプライマーセットを用いた。 また、テンプレートに対する各プライマー領域の位置関係は図 15 (配列番号 16)に 示す通りとした。各インナープライマーに含まれるフォワードプライマー FWおよび FM は、その 3'末端側にある配列(20mer:下線部)が铸型にアニーリングし、伸長反応 の後、 5,末端側にある配列(8mer)が、そのプライマーによる伸長鎖上の、該プライ マーの 3'末端残基の 29塩基下流力 始まる領域にハイブリダィズするように設計さ れている。また、各インナープライマーに含まれるリバースプライマー RWおよび RMは 、その 3'末端側にある配列(18mer:下線部)が铸型にアニーリングし、伸長反応の 後、 5'末端側にある配列(9mer)が、そのプライマーによる伸長鎖上の、該プライマ 一の 3'末端残基の 36塩基下流力 始まる領域にハイブリダィズするように設計され ている。これらの各インナープライマーの 5'末端から 2番目のヌクレオチド残基は、変 異に力かるヌクレオチド残基に対応して 、る。
[0163] 野性型インナープライマー:
FW: TCCAGGGGTCTTAACTTGATGGAAAAAT (配列番号 17);
RW: GGATCC AGGCCCAGAAAAAAAGACTGT (固 I番号 18)、
変異型インナープライマー:
F : TTCAGGGGTCTTAACTTGATGGAAAAAT (配列番号 19);
RM: GAATCCAGGCCCAGAAAAAAAGACTGT (配列番号 20)、
アウタープライマー:
F3 :TCCAGAAACGTTTCG (配列番号 21);
R3: AGGGCTTGGTCAATAT (配列番号 22)、
ノレーププライマー:
LoopF: GCTTACAATCCTGATGTT (配列番号 23);
LoopR: GTAAGGCCAAGTTTTTTG (配列番号 24)。
[0164] 野性型インナープライマーを含む反応液として、次の組成を有する反応液(25 μ L ): Tris-HCl (20mM, pH8. 8)、 KCl (lOmM)、(NH ) SO (10mM)、MgSO (
4 2 4 4
4mM)、ベタイン(1M)、 Tween20 (0. 1%)、 dNTP (0. 5mM)、 8Uの Bst DNA ポリメラーゼ(NEW ENGLAND BioLabs)、 SYBR GREEN I (Molecule Probe社 ) (最終的に 100, 000倍希釈となる濃度)、铸型 (40ng)、それぞれ 400nMの F3お よび R3、それぞれ 800nMの LoopFおよび LoopR、それぞれ 1600nMの FWおよび RW、ならびに MutS (0. 8 g)を含有;を調製した。
[0165] また、変異型インナープライマーを含む反応液として、次の組成を有する反応液(2 5 ,u L): Tris-HCl (20mM, pH8. 8)、 KCl(lOmM)、(NH ) SO (10mM)、Mg
4 2 4
SO (4mM)、ベタイン(0. 8M) , Tween20 (0. l%)、dNTP (0. 5mM)、 8Uの Bs
4
t DNAポリメラーゼ(NEW ENGLAND BioLabs)、 SYBR GREEN I (Molecule Probe社)(最終的に 100, 000倍希釈となる濃度)、铸型 (40ng)、それぞれ 400nM の F3および R3、それぞれ 800nMの LoopFおよび LoopR、それぞれ 1600nMの FM および RM、ならびに MutS (0. 8 g)を含有;を調製した。
[0166] 上述のそれぞれの反応液を、 60°Cで 180分間インキュベートした。铸型は二本鎖 のまま反応させた。また、 MutSを含まない反応液についても同様に実験を行なった 。増幅産物の生成はリアルタイム蛍光検出装置 Mx3000P(STRATAGENE社製)を用 いてモニタリングした。
[0167] 実験の結果を図 16に示した。この実験では、変異を含まないヒトゲノム DNAを铸型 として使用しているため、上記の野生型インナープライマーを用いた場合には増幅産 物が得られ、変異型インナープライマーを用いた場合には増幅産物が得られないは ずである。図 16によれば、野性型インナープライマーを用いた場合には、 MutSの有 無にかかわらず、約 25分の時点で増幅産物の生成が認められることがわかる。一方 で、変異型インナープライマーを用いた場合には、 MutSの不在下では約 40分の時 点で増幅産物の生成が認められたのに対し、 MutSの存在下では 3時間反応させて も増幅産物の生成は認められなかった。従って、 MutSを用いることにより、正確な S NPタイピングが可能になることが示された。

Claims

請求の範囲
[1] 標的核酸配列を増幅しうる少なくとも二種のプライマーを含んでなるプライマーセッ トであって、
前記プライマーセットに含まれる第一のプライマーが、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac')を 3'末端部分に含んでなり、かつ前記標 的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補配列(Be) にハイブリダィズする配列(Β')を前記配列 (Ac )の 5'側に含んでなるものであり、 前記プライマーセットに含まれる第二のプライマーカ、前記標的核酸配列の相補配 列の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc')を 3,末端部分に含んで なり、かつ相互にノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折返し配列( D-Dc )を前記配列(Cc )の 5'側に含んでなるものである、プライマーセット。
[2] 前記標的核酸配列またはその相補配列にノ、イブリダィズする第三のプライマーで あって、標的核酸配列またはその相補配列へのノ、イブリダィゼーシヨンにっ 、て他の プライマーと競合しない第三のプライマーをさらに含んでなる、請求項 1に記載のブラ イマ一セット。
[3] 前記第一のプライマーにおいて、前記配列 (Ac )と前記配列 (Β')との間に介在配 列が存在しない場合には、前記配列 (Ac')の塩基数を Xとし、標的核酸配列中にお ける前記配列 (A)と前記配列 (B)に挟まれた領域の塩基数を Yとしたときに、(X— Y) ZXが— 1. 00-1. 00の範囲にあり、プライマー中において前記配列 (Ac')と前記配 列(Β')との間に介在配列が存在する場合には、 Xおよび Υを前記の通りとし、該介在 配列の塩基数を Υ,としたときに、 ー ー丫,)}7 カ 1. 00-1. 00の範囲にある 、請求項 1に記載のプライマーセット。
[4] 前記第二のプライマーにおいて、前記折返し配列(D-Dc')が 2— 1000ヌクレオチ ド長である、請求項 1に記載のプライマーセット。
[5] 前記プライマーセットに含まれる少なくとも 1種のプライマーカ 固相担体または固 相担体と結合可能な部位を有するものである、請求項 1に記載のプライマーセット。
[6] 固相担体が、水不溶性有機高分子担体、水不溶性無機高分子担体、合成高分子 担体、相転移性担体、金属コロイドおよび磁性粒子からなる群から選択されるもので ある、請求項 5に記載のプライマーセット。
[7] 固相担体と結合可能な部位が、ピオチン、アビジン、ストレプトアビジン、抗原、抗体
、リガンド、レセプター、核酸およびタンパク質力 なる群力 選択されるものである、 請求項 5に記載のプライマーセット。
[8] 铸型核酸中の標的核酸配列を増幅する方法であって、
(a)標的核酸配列を含む铸型核酸を用意する工程、
(b)請求項 1一 7のいずれか一項に記載のプライマーセットを用意する工程、および
(c)前記铸型核酸の存在下において、前記プライマーセットによる核酸増幅反応を 行う工程
を含んでなる、方法。
[9] 核酸増幅反応が等温で行われる、請求項 8に記載の方法。
[10] 鎖置換能を有するポリメラーゼが使用される、請求項 8に記載の方法。
[11] 核酸増幅反応が融解温度調整剤の存在下で行われる、請求項 8に記載の方法。
[12] 融解温度調整剤が、ジメチルスルホキシド、ベタイン、ホルムアミドもしくはグリセ口 ール、またはこれらの 2種以上の混合物である、請求項 11に記載の方法。
[13] 核酸増幅反応が酵素安定化剤の存在下で行われる、請求項 8に記載の方法。
[14] 酵素安定化剤が、トレハロース、ソルビトールもしくはマン-トール、またはこれらの 2 種以上の混合物である、請求項 13に記載の方法。
[15] 核酸試料中の核酸配列における変異の有無を判定する方法であって、
(a)核酸試料を用意する工程、
(b)請求項 1一 7のいずれか一項に記載のプライマーセットであって、前記変異を有 するか、または該変異を有さない核酸配列を標的核酸配列とし、該変異に係るヌクレ ォチド残基が配列 (A)、配列 (B)または配列 (C)に含まれるように設計されたプライマ 一セットを用意する工程、および
(c)前記核酸試料の存在下において、前記プライマーセットによる核酸増幅反応を 行う工程
を含んでなる、方法。
[16] 工程 (b)にお 、て、変異に係るヌクレオチド残基が前記配列 (A)に含まれるように設 計されたプライマーセットが用意される、請求項 15に記載の方法。
[17] 工程 (b)において、変異に係るヌクレオチド残基が前記配列(B)に含まれるように設 計されたプライマーセットが用意される、請求項 15に記載の方法。
[18] 工程 (b)において、変異に係るヌクレオチド残基が前記配列(C)に含まれるように 設計されたプライマーセットが用意される、請求項 15に記載の方法。
[19] 核酸増幅反応がミスマッチ結合タンパク質の存在下で行われる、請求項 15に記載 の方法。
[20] 核酸増幅反応が等温で行われる、請求項 15に記載の方法。
[21] 鎖置換能を有するポリメラーゼが使用される、請求項 15に記載の方法。
[22] 核酸増幅反応が融解温度調整剤の存在下で行われる、請求項 15に記載の方法。
[23] 融解温度調整剤が、ジメチルスルホキシド、ベタイン、ホルムアミドもしくはグリセ口 ール、またはこれらの 2種以上の混合物である、請求項 22に記載の方法。
[24] 核酸増幅反応が酵素安定化剤の存在下で行われる、請求項 15に記載の方法。
[25] 酵素安定化剤が、トレハロース、ソルビトールもしくはマン-トール、またはこれらの 2 種以上の混合物である、請求項 24に記載の方法。
[26] 核酸試料中の核酸配列における配列の欠失または挿入の有無を判定する方法で あって、
(a)核酸試料を用意する工程、
(b)請求項 1一 7のいずれか一項に記載のプライマーセットであって、欠失または揷 入に係る配列を含むか、または該配列を含まない核酸配列を標的核酸配列とし、欠 失または挿入に係る部位が、配列 (A)、配列 (B)もしくは配列 (C)に含まれるか、また は配列 (A)と配列 (B)との間もしくは配列 (A)と配列 (C)との間に配置されるように設 計されたプライマーセットを用意する工程、および
(c)前記核酸試料の存在下において、前記プライマーセットによる核酸増幅反応を 行う工程
を含んでなる、方法。
[27] 工程 (b)にお 、て、欠失または挿入に係る部位が前記配列 (A)と前記配列 (B)との 間に配置されるように設計されたプライマーセットが用意される、請求項 26に記載の 方法。
[28] 欠失または挿入に係る配列力 ゲノム上の遺伝子に含まれるイントロン配列である、 請求項 26に記載の方法。
[29] 標的核酸配列が mRNAである、請求項 26に記載の方法。
[30] 核酸増幅反応が等温で行われる、請求項 26に記載の方法。
[31] 鎖置換能を有するポリメラーゼが使用される、請求項 26に記載の方法。
[32] 核酸増幅反応が融解温度調整剤の存在下で行われる、請求項 26に記載の方法。
[33] 融解温度調整剤が、ジメチルスルホキシド、ベタイン、ホルムアミドもしくはグリセ口 ール、またはこれらの 2種以上の混合物である、請求項 32に記載の方法。
[34] 核酸増幅反応が酵素安定化剤の存在下で行われる、請求項 26に記載の方法。
[35] 酵素安定化剤が、トレハロース、ソルビトールもしくはマン-トール、またはこれらの 2 種以上の混合物である、請求項 34に記載の方法。
[36] 核酸試料中の核酸配列における変異の有無を判定する方法であって、
(a)核酸試料を用意する工程、
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセットであって、該 プライマーセットに含まれる少なくとも 1種のプライマーが、前記核酸試料中の核酸配 列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在に よって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるように 設計されたものである、プライマーセットを用意する工程、および
(c)ミスマッチ識別能を有する物質の存在下にお ヽて、前記核酸試料を铸型とする 前記プライマーセットによる核酸増幅反応を行う工程
を含んでなる、方法。
[37] 前記プライマーセットが前記標的核酸配列を等温下で増幅しうるものであり、核酸 増幅反応が等温で行われる、請求項 36に記載の方法。
[38] ミスマッチ識別能を有する物質力 スマッチ結合タンパク質である、請求項 36に記 載の方法。
[39] ミスマッチ結合タンパク質が、 MutS、 MSH2もしくは MSH6、またはこれらの 2種 以上の混合物である、請求項 38に記載の方法。
[40] 前記プライマーセットに含まれる第一のプライマーが、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac')を 3'末端部分に含んでなり、かつ前記標 的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補配列(Be) にハイブリダィズする配列(Β')を前記配列 (Ac )の 5'側に含んでなるものである、請 求項 36に記載の方法。
[41] 第一のプライマーが、前記変異の存在または不存在によって、前記配列 (A)と前記 配列 (Ac )との間で 1以上のミスマッチを生じるように設計されたものである、請求項 4 0に記載の方法。
[42] 第一のプライマーが、前記変異の存在または不存在によって、前記配列 (Be)と前 記配列(Β')との間で 1以上のミスマッチを生じるように設計されたものである、請求項 40に記載の方法。
[43] 前記プライマーセットに含まれる第二のプライマーカ、前記標的核酸配列の相補配 列の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc')を 3,末端部分に含んで なり、かつ相互にノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折返し配列( D-Dc )を前記配列(Cc )の 5'側に含んでなるものである、請求項 36に記載の方法。
[44] 第二のプライマーが、前記変異の存在または不存在によって、前記配列 (C)と前記 配列(Cc')との間で 1以上のミスマッチを生じるように設計されたものである、請求項 4 3に記載の方法。
[45] 前記プライマーセットが、前記標的核酸配列またはその相補配列にハイブリダィズ する第三のプライマーであって、標的核酸配列またはその相補配列へのハイブリダィ ゼーシヨンについて他のプライマーと競合しない第三のプライマーをさらに含んでな る、請求項 36に記載の方法。
[46] 第三のプライマーが、前記核酸試料中の核酸配列またはその相補配列にハイプリ ダイズしたときに、前記変異の存在または不存在によって前記核酸配列またはその 相補配列との間で 1以上のミスマッチを生じるように設計されたものである、請求項 45 に記載の方法。
[47] 鎖置換能を有するポリメラーゼが使用される、請求項 36に記載の方法。
[48] 核酸増幅反応が融解温度調整剤の存在下で行われる、請求項 36に記載の方法。
[49] 融解温度調整剤が、ジメチルスルホキシド、ベタイン、ホルムアミドもしくはグリセ口 ール、またはこれらの 2種以上の混合物である、請求項 48に記載の方法。
[50] 核酸増幅反応が酵素安定化剤の存在下で行われる、請求項 36に記載の方法。
[51] 酵素安定化剤が、トレハロース、ソルビトールもしくはマン-トール、またはこれらの 2 種以上の混合物である、請求項 50に記載の方法。
[52] 核酸試料中の核酸配列における変異の有無を判定するためのキットであって、
(a)ミスマッチ識別能を有する物質、および
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセットであって、該 プライマーセットに含まれる少なくとも 1種のプライマーが、前記核酸試料中の核酸配 列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在に よって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるように 設計されたものである、プライマーセット
を含んでなる、キット。
[53] 前記プライマーセットが前記標的核酸配列を等温下で増幅しうるものである、請求 項 52に記載のキット。
[54] ミスマッチ識別能を有する物質力 スマッチ結合タンパク質である、請求項 52に記 載のキット。
[55] ミスマッチ結合タンパク質が、 MutS、 MSH2もしくは MSH6、またはこれらの 2種 以上の混合物である、請求項 54に記載のキット。
[56] 前記プライマーセットに含まれる第一のプライマーが、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac')を 3'末端部分に含んでなり、かつ前記標 的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補配列(Be) にハイブリダィズする配列(Β')を前記配列 (Ac )の 5'側に含んでなるものである、請 求項 52に記載のキット。
[57] 第一のプライマーが、前記変異の存在または不存在によって、前記配列 (A)と前記 配列 (Ac )との間で 1以上のミスマッチを生じるように設計されたものである、請求項 5
6に記載のキット。
[58] 第一のプライマーが、前記変異の存在または不存在によって、前記配列 (Be)と前 記配列(Β')との間で 1以上のミスマッチを生じるように設計されたものである、請求項 56に記載のキット。
[59] 前記プライマーセットに含まれる第二のプライマーカ、前記標的核酸配列の相補配 列の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc')を 3,末端部分に含んで なり、かつ相互にノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折返し配列( D-Dc )を前記配列(Cc )の 5'側に含んでなるものである、請求項 52に記載のキット
[60] 第二のプライマーが、前記変異の存在または不存在によって、前記配列 (C)と前記 配列(Cc')との間で 1以上のミスマッチを生じるように設計されたものである、請求項 5 9に記載のキット。
[61] 前記プライマーセットが、前記標的核酸配列またはその相補配列にハイブリダィズ する第三のプライマーであって、標的核酸配列またはその相補配列へのハイブリダィ ゼーシヨンについて他のプライマーと競合しない第三のプライマーをさらに含んでな る、請求項 52に記載のキット。
[62] 第三のプライマーが、前記核酸試料中の核酸配列またはその相補配列にハイプリ ダイズしたときに、前記変異の存在または不存在によって前記核酸配列またはその 相補配列との間で 1以上のミスマッチを生じるように設計されたものである、請求項 61 に記載のキット。
[63] 鎖置換能を有するポリメラーゼをさらに含んでなる、請求項 52に記載のキット。
[64] 核酸試料中の核酸配列における変異の有無を判定する方法であって、
(a)核酸試料を用意する工程、
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセットを用意するェ 程、
(c)標的核酸配列にハイブリダィズする核酸断片であって、前記核酸試料中の核酸 配列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在 によって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるよう に設計されてなる、核酸断片を用意する工程、および
(d)ミスマッチ識別能を有する物質および前記核酸断片の存在下において、前記核 酸試料を铸型とする前記プライマーセットによる核酸増幅反応を行う工程 を含んでなる、方法。
[65] 前記プライマーセットが標的核酸配列を等温下で増幅しうるものであり、核酸増幅 反応が等温で行なわれる、請求項 64に記載の方法。
[66] ミスマッチ識別能を有する物質力 スマッチ結合タンパク質である、請求項 64に記 載の方法。
[67] ミスマッチ結合タンパク質が、 MutS、 MSH2もしくは MSH6、またはこれらの 2種 以上の混合物である、請求項 66に記載の方法。
[68] 前記プライマーセットに含まれる第一のプライマーが、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac')を 3'末端部分に含んでなり、かつ前記標 的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補配列(Be) にハイブリダィズする配列(Β')を前記配列 (Ac )の 5'側に含んでなるものである、請 求項 64に記載の方法。
[69] 前記プライマーセットに含まれる第二のプライマーカ、前記標的核酸配列の相補配 列の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc')を 3,末端部分に含んで なり、かつ相互にノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折返し配列( D-Dc )を前記配列(Cc )の 5'側に含んでなるものである、請求項 64に記載の方法。
[70] 前記プライマーセットが、前記標的核酸配列またはその相補配列にハイブリダィズ する第三のプライマーであって、標的核酸配列またはその相補配列へのハイブリダィ ゼーシヨンについて他のプライマーと競合しない第三のプライマーをさらに含んでな る、請求項 64に記載の方法。
[71] 鎖置換能を有するポリメラーゼが使用される、請求項 64に記載の方法。
[72] 核酸増幅反応が融解温度調整剤の存在下で行われる、請求項 64に記載の方法。
[73] 融解温度調整剤が、ジメチルスルホキシド、ベタイン、ホルムアミドもしくはグリセ口 ール、またはこれらの 2種以上の混合物である、請求項 72に記載の方法。
[74] 核酸増幅反応が酵素安定化剤の存在下で行われる、請求項 64に記載の方法。
[75] 酵素安定化剤が、トレハロース、ソルビトールもしくはマン-トール、またはこれらの 2 種以上の混合物である、請求項 74に記載の方法。
[76] 核酸試料中の核酸配列における変異の有無を判定するためのキットであって、
(a)ミスマッチ識別能を有する物質、
(b)変異に係る部位を含む標的核酸配列を増幅しうるプライマーセット、および
(c)標的核酸配列にハイブリダィズする核酸断片であって、前記核酸試料中の核酸 配列またはその相補配列にハイブリダィズしたときに、前記変異の存在または不存在 によって前記核酸配列またはその相補配列との間で 1以上のミスマッチを生じるよう に設計されてなる、核酸断片
を含んでなる、キット。
[77] 前記プライマーセットが前記標的核酸配列を等温下で増幅しうるものである、請求 項 76に記載のキット。
[78] ミスマッチ識別能を有する物質力 スマッチ結合タンパク質である、請求項 76に記 載のキット。
[79] ミスマッチ結合タンパク質が、 MutS、 MSH2もしくは MSH6、またはこれらの 2種 以上の混合物である、請求項 78に記載のキット。
[80] 前記プライマーセットに含まれる第一のプライマーが、標的核酸配列の 3'末端部分 の配列 (A)にノ、イブリダィズする配列 (Ac')を 3'末端部分に含んでなり、かつ前記標 的核酸配列にぉ 、て前記配列 (A)よりも 5'側に存在する配列(B)の相補配列(Be) にハイブリダィズする配列(Β')を前記配列 (Ac )の 5'側に含んでなるものである、請 求項 76に記載のキット。
[81] 前記プライマーセットに含まれる第二のプライマーカ、前記標的核酸配列の相補配 列の 3 '末端部分の配列 (C)にハイブリダィズする配列 (Cc')を 3,末端部分に含んで なり、かつ相互にノ、イブリダィズする 2つの核酸配列を同一鎖上に含む折返し配列( D-Dc )を前記配列(Cc )の 5'側に含んでなるものである、請求項 76に記載のキット
[82] 前記プライマーセットが、前記標的核酸配列またはその相補配列にハイブリダィズ する第三のプライマーであって、標的核酸配列またはその相補配列へのハイブリダィ ゼーシヨンについて他のプライマーと競合しない第三のプライマーをさらに含んでな る、請求項 76に記載のキット。 [83] 鎖置換能を有するポリメラーゼをさらに含んでなる、請求項 76に記載のキット。
PCT/JP2004/019346 2003-12-25 2004-12-24 核酸の増幅法およびこれを利用した変異核酸の検出法 WO2005063977A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04807703.6A EP1712618B1 (en) 2003-12-25 2004-12-24 Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same
US10/583,706 US8206902B2 (en) 2003-12-25 2004-12-24 Method of amplifying nucleic acid and method of detecting mutated nucleic acid using the same
JP2005516642A JP3897805B2 (ja) 2003-12-25 2004-12-24 核酸の増幅法およびこれを利用した変異核酸の検出法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003431003 2003-12-25
JP2003-431003 2003-12-25
JP2004313910 2004-10-28
JP2004-313910 2004-10-28

Publications (1)

Publication Number Publication Date
WO2005063977A1 true WO2005063977A1 (ja) 2005-07-14

Family

ID=34742123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019346 WO2005063977A1 (ja) 2003-12-25 2004-12-24 核酸の増幅法およびこれを利用した変異核酸の検出法

Country Status (5)

Country Link
US (1) US8206902B2 (ja)
EP (2) EP1712618B1 (ja)
JP (1) JP3897805B2 (ja)
TW (2) TW200525026A (ja)
WO (1) WO2005063977A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847617A1 (en) * 2006-04-17 2007-10-24 FUJIFILM Corporation Detection method of SNPs
JP2007325534A (ja) * 2006-06-07 2007-12-20 Institute Of Physical & Chemical Research RecAタンパク質を利用した核酸の等温増幅法
EP1876246A1 (en) * 2006-07-03 2008-01-09 FUJIFILM Corporation Self-complementary primers used in LAMP gene amplification method
WO2009054510A1 (ja) 2007-10-25 2009-04-30 Riken 等温増幅方法およびそれに用いるdnaポリメラーゼ
WO2010061922A1 (ja) 2008-11-27 2010-06-03 独立行政法人理化学研究所 新規MutSタンパク質およびそれを用いた変異の判定方法
JP2010279302A (ja) * 2009-06-04 2010-12-16 Institute Of Physical & Chemical Research 核酸の増幅方法および遺伝子変異の検出方法
JP2011050380A (ja) * 2009-08-06 2011-03-17 Institute Of Physical & Chemical Research 核酸増幅用プライマーの設計方法、核酸増幅用プライマーの製造方法、核酸増幅用プライマー、プライマーセット、および核酸の増幅方法
US8097414B2 (en) * 2005-11-25 2012-01-17 K. K. Dnaform Method for detecting and amplifying nucleic acid
WO2013002354A1 (ja) 2011-06-29 2013-01-03 株式会社ダナフォーム 生体試料の前処理方法、rnaの検出方法及び前処理キット
WO2013035875A1 (ja) * 2011-09-08 2013-03-14 独立行政法人理化学研究所 プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
WO2016011280A1 (en) 2014-07-16 2016-01-21 Tangen Biosciences, Inc. Isothermal methods for amplifying nucleic acid samples

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9870907B2 (en) 2002-03-11 2018-01-16 Jp Scientific Limited Probe for extraction of molecules of interest from a sample
US20090026122A1 (en) 2002-03-11 2009-01-29 Janusz Biocompatible solid-phase microextraction coatings and methods for their preparation
WO2017193213A1 (en) 2016-05-10 2017-11-16 Jp Scientific Limited System and method for desorbing and detecting an analyte sorbed on a solid phase microextraction device
US9733234B2 (en) 2002-03-11 2017-08-15 Jp Scientific Limited Probe for extraction of molecules of interest from a sample
CA2504234C (en) 2002-10-29 2011-09-13 Riken Process for amplifying nucleic acids
JP3897805B2 (ja) 2003-12-25 2007-03-28 独立行政法人理化学研究所 核酸の増幅法およびこれを利用した変異核酸の検出法
EP2130835B1 (en) * 2007-03-09 2012-05-23 Riken Compound having structure derived from mononucleoside or mononucleotide, nucleic acid, labeling substance, and method and kit for detection of nucleic acid
CA2622649C (en) 2007-03-09 2018-04-24 Riken Nucleic acid amplification method using primer exhibiting exciton effect
WO2009049630A1 (en) * 2007-10-16 2009-04-23 Aarhus Universitet Isothermal amplification method for detection of nucleic acid mutation
CN101983236B (zh) * 2008-01-24 2014-03-12 基亚生物科技股份有限公司 热对流聚合酶连锁反应之方法及装置
EP2256188B1 (en) * 2008-02-29 2014-06-18 Riken Method for increasing enzymatic reactivity
CN102282258A (zh) * 2009-01-21 2011-12-14 人类遗传标记控股有限公司 改良的等温链置换扩增
US8563298B2 (en) 2010-10-22 2013-10-22 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
BR122020001802B1 (pt) 2010-10-22 2021-05-18 T2 Biosystems, Inc métodos para detectar a presença de um patógeno em uma amostra de sangue total e para detectar um analito em uma amostra
EA034342B1 (ru) 2012-09-04 2020-01-29 КАБУСИКИ КАЙСЯ ДиЭнЭйФОРМ Соединение, нуклеиновая кислота, вещество, несущее метку, и способ обнаружения
US20140302504A1 (en) 2013-03-15 2014-10-09 Theranos, Inc. Nucleic Acid Amplification
EP2970961B1 (en) 2013-03-15 2019-04-24 Theranos IP Company, LLC Nucleic acid amplification
EP2971123B1 (en) 2013-03-15 2021-05-05 Labrador Diagnostics LLC Nucleic acid amplification
US9460268B2 (en) 2013-09-06 2016-10-04 Theranos, Inc. Systems and methods for detecting infectious diseases
US10196684B2 (en) 2013-10-18 2019-02-05 California Institute Of Technology Enhanced nucleic acid identification and detection
CN106471131A (zh) 2014-03-31 2017-03-01 达纳福股份有限公司 荧光性标记单链核酸及其用途
US10093918B2 (en) 2014-06-04 2018-10-09 Lucigen Corporation Sample collection and analysis devices
AU2015354693B2 (en) 2014-11-05 2022-06-02 California Institute Of Technology Microfluidic measurements of the response of an organism to a drug
EP3248011A4 (en) 2015-01-21 2018-11-14 T2 Biosystems, Inc. Nmr methods and systems for the rapid detection of tick-borne pathogens
JP6518110B2 (ja) * 2015-03-31 2019-05-22 株式会社カネカ クレブシエラ・ニューモニエ(Klebsiellapneumoniae)を検出するためのプライマー及び方法
WO2017066592A1 (en) * 2015-10-16 2017-04-20 Qiagen Sciences, Llc Methods and kits for highly multiplex single primer extension
CA3011991A1 (en) 2016-01-21 2017-07-27 T2 Biosystems, Inc. Rapid antimicrobial susceptibility testing using high-sensitivity direct detection methods
WO2017147707A1 (en) 2016-03-02 2017-09-08 Jp Scientific Limited Solid phase microextraction coating
CA3020581A1 (en) 2016-04-14 2017-10-19 T2 Biosystems, Inc. Methods and systems for amplification in complex samples
CN112094842B (zh) * 2020-11-06 2021-02-05 迈杰转化医学研究(苏州)有限公司 一种环形阻滞探针、含有所述环形阻滞探针的扩增阻碍突变系统及其应用
CN114561493A (zh) * 2022-03-08 2022-05-31 武汉兰丁云医学检验实验室有限公司 一种快速新冠病毒n501y突变变体的检测方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025180A1 (en) 1994-03-16 1995-09-21 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH10257900A (ja) * 1996-12-17 1998-09-29 Toyobo Co Ltd ミスマッチを含む核酸を分離する方法およびそのための試薬
US5824517A (en) 1995-07-24 1998-10-20 Bio Merieux Method for amplifying nucleic acid sequences by strand displacement using DNA/RNA chimeric primers
WO1999009211A1 (en) 1997-08-13 1999-02-25 Tepnel Medical Limited Amplification of nucleic acids
WO1999010369A1 (en) * 1997-08-28 1999-03-04 Thomas Jefferson University Compositions, kits, and methods for effecting adenine nucleotide modulation of dna mismatch recognition proteins
EP0971039A2 (en) 1998-06-24 2000-01-12 Enzo Diagnostics, Inc. Processes useful for nucleic acid amplification and sequencing, and for the production of nucleic acid having decreased thermodynamic stability
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
US6117635A (en) 1996-07-16 2000-09-12 Intergen Company Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
WO2001077317A1 (en) * 2000-04-07 2001-10-18 Eiken Kagaku Kabushiki Kaisha Method of amplifying nucleic acid by using double-stranded nucleic acid as template
WO2002016639A1 (fr) 2000-08-23 2002-02-28 Takara Bio Inc. Procede d'amplification d'acide nucleique
WO2002024902A1 (fr) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
JPS59204200A (ja) 1983-04-28 1984-11-19 Wakunaga Seiyaku Kk 2,4―ジニトロフェニルヌクレオチド誘導体
JPS59148798A (ja) 1983-02-14 1984-08-25 Wakunaga Seiyaku Kk ビオチンヌクレオチド誘導体
US4672040A (en) 1983-05-12 1987-06-09 Advanced Magnetics, Inc. Magnetic particles for use in separations
US4554088A (en) 1983-05-12 1985-11-19 Advanced Magnetics Inc. Magnetic particles for use in separations
JPS5993099A (ja) 1983-10-31 1984-05-29 Wakunaga Seiyaku Kk オリゴヌクレオチド誘導体およびその製造法
US4957858A (en) 1986-04-16 1990-09-18 The Salk Instute For Biological Studies Replicative RNA reporter systems
US5503979A (en) 1984-05-25 1996-04-02 The Trustees Of Columbia University In The City Of New York Method of using replicatable hybridzable recombinant RNA probes
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
CA1284931C (en) 1986-03-13 1991-06-18 Henry A. Erlich Process for detecting specific nucleotide variations and genetic polymorphisms present in nucleic acids
JP2774121B2 (ja) 1987-07-31 1998-07-09 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 標的ポリヌクレオチド配列の選択的増幅
CA1323293C (en) 1987-12-11 1993-10-19 Keith C. Backman Assay using template-dependent nucleic acid probe reorganization
DE68913555T2 (de) 1988-11-21 1994-07-07 Dynal As Sonden aus nukleinsäuren.
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
KR0148265B1 (ko) 1988-12-16 1998-10-15 에프.지이.엠 헤르만스 자가-지속 서열 복제 시스템
IL97222A (en) 1990-02-16 1995-08-31 Orion Yhtymae Oy Method and Responder for Determining Special Changes to Nucleotide
US6140496A (en) 1990-10-09 2000-10-31 Benner; Steven Albert Precursors for deoxyribonucleotides containing non-standard nucleosides
US6004744A (en) 1991-03-05 1999-12-21 Molecular Tool, Inc. Method for determining nucleotide identity through extension of immobilized primer
DK0519338T3 (da) 1991-06-20 1996-10-28 Hoffmann La Roche Forbedrede fremgangsmåder til nukleinsyreamplifikation
JPH076986A (ja) 1993-06-16 1995-01-10 Nippondenso Co Ltd 半導体基板研削方法
JPH07114718A (ja) 1993-10-18 1995-05-02 Tanashin Denki Co テープレコーダの回転ヘッド装置
ATE291583T1 (de) 1993-11-03 2005-04-15 Orchid Biosciences Inc Polymorphismus von mononukleotiden und ihre verwendung in der genanalyse
US6027877A (en) 1993-11-04 2000-02-22 Gene Check, Inc. Use of immobilized mismatch binding protein for detection of mutations and polymorphisms, purification of amplified DNA samples and allele identification
CA2182517C (en) 1994-02-07 2001-08-21 Theo Nikiforov Ligase/polymerase-mediated primer extension of single nucleotide polymorphisms and its use in genetic analysis
FR2721945B1 (fr) 1994-07-04 1996-10-18 David Fabrice Accroissement genique, un procede d'amplicication genique isotherme et ses applications
AT402203B (de) 1995-06-13 1997-03-25 Himmler Gottfried Dipl Ing Dr Verfahren zur transkriptionsfreien amplifizierung von nucleinsäuren
US5736330A (en) 1995-10-11 1998-04-07 Luminex Corporation Method and compositions for flow cytometric determination of DNA sequences
SE9602062D0 (sv) * 1996-05-29 1996-05-29 Pharmacia Biotech Ab Method for detection of mutations
US6294325B1 (en) * 1996-07-05 2001-09-25 The Mount Sinai School Of Medicine Of The City University Of New York Cloning and expression of thermostable multi genes and proteins and uses thereof
US6124092A (en) 1996-10-04 2000-09-26 The Perkin-Elmer Corporation Multiplex polynucleotide capture methods and compositions
JP3968810B2 (ja) 1997-01-24 2007-08-29 東ソー株式会社 核酸配列分析方法
WO1998059066A1 (en) 1997-06-25 1998-12-30 Orchid Biocomputer, Inc. Methods for the detection of multiple single nucleotide polymorphisms in a single reaction
EP1041160A4 (en) 1997-07-31 2003-05-28 Rikagaku Kenkyusho METHOD FOR DETECTING MUTATION IN A BASE SEQUENCE
EP1816197B1 (en) 1998-04-23 2009-09-16 Takara Bio Inc. Method for synthesizing DNA
JP4471494B2 (ja) 1998-05-14 2010-06-02 ルミネックス コーポレイション ダイオードレーザをベースとした測定装置
GB9812768D0 (en) 1998-06-13 1998-08-12 Zeneca Ltd Methods
WO2000008082A1 (en) 1998-08-03 2000-02-17 Cognis Corporation Epoxy curing agent of phenol-aldehyde reacted with polyamine
ATE431848T1 (de) 1999-03-05 2009-06-15 Mitsubishi Rayon Co Microarray mit einer biologischen substanz
JP2000245460A (ja) 1999-03-05 2000-09-12 Mitsubishi Rayon Co Ltd 核酸固定化中空繊維並びに核酸固定化中空繊維配列体及びその薄片
US6951722B2 (en) 1999-03-19 2005-10-04 Takara Bio Inc. Method for amplifying nucleic acid sequence
JP2000300265A (ja) 1999-04-19 2000-10-31 Amersham Pharmacia Biotech Kk 2本鎖核酸中のミスマッチ検出方法および変異を有する核酸の検出方法、並びにミスマッチを有する2本鎖核酸の分離方法
JP4721603B2 (ja) 1999-11-08 2011-07-13 栄研化学株式会社 変異および/または多型の検出方法
EP1231281B1 (en) * 1999-11-08 2006-02-01 Eiken Kagaku Kabushiki Kaisha Method of detecting variation or polymorphism
JP2001161486A (ja) 1999-12-09 2001-06-19 Toshimitsu Kaneda 腰痛に適用した椅子用ヘッドレスト
EP1306447B1 (en) * 2000-05-01 2006-05-10 Eiken Kagaku Kabushiki Kaisha Method for detecting product of nucleic acid synthesizing reaction
JP2002186481A (ja) 2000-12-18 2002-07-02 Eiken Chem Co Ltd 光学的特性の測定による核酸増幅産物の検出方法
CA2439098A1 (en) * 2001-02-21 2002-10-03 Gene Check, Inc. Mutation detection using muts and reca
BR0207914A (pt) 2001-03-07 2005-08-16 Biomerieux Bv Método para a amplificação baseada em transcrição de uma sequência de ácido nucleico alvo partindo de dna opcionalmente presente em uma amostra
JP2002345499A (ja) 2001-05-29 2002-12-03 Eiken Chem Co Ltd 核酸配列を検出する方法及びその方法に使用するキット
CA2504234C (en) 2002-10-29 2011-09-13 Riken Process for amplifying nucleic acids
JP3897805B2 (ja) 2003-12-25 2007-03-28 独立行政法人理化学研究所 核酸の増幅法およびこれを利用した変異核酸の検出法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650159B2 (ja) 1988-02-24 1997-09-03 アクゾ・ノベル・エヌ・ベー 核酸増幅方法
JPH07114718B2 (ja) 1991-01-31 1995-12-13 ベクトン・ディッキンソン・アンド・カンパニー 鎖置換型増幅法
WO1995025180A1 (en) 1994-03-16 1995-09-21 Gen-Probe Incorporated Isothermal strand displacement nucleic acid amplification
US5824517A (en) 1995-07-24 1998-10-20 Bio Merieux Method for amplifying nucleic acid sequences by strand displacement using DNA/RNA chimeric primers
US6117635A (en) 1996-07-16 2000-09-12 Intergen Company Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
JPH10257900A (ja) * 1996-12-17 1998-09-29 Toyobo Co Ltd ミスマッチを含む核酸を分離する方法およびそのための試薬
WO1999009211A1 (en) 1997-08-13 1999-02-25 Tepnel Medical Limited Amplification of nucleic acids
WO1999010369A1 (en) * 1997-08-28 1999-03-04 Thomas Jefferson University Compositions, kits, and methods for effecting adenine nucleotide modulation of dna mismatch recognition proteins
EP0971039A2 (en) 1998-06-24 2000-01-12 Enzo Diagnostics, Inc. Processes useful for nucleic acid amplification and sequencing, and for the production of nucleic acid having decreased thermodynamic stability
WO2000028082A1 (fr) 1998-11-09 2000-05-18 Eiken Kagaku Kabushiki Kaisha Procede de synthese d'acide nucleique
WO2001077317A1 (en) * 2000-04-07 2001-10-18 Eiken Kagaku Kabushiki Kaisha Method of amplifying nucleic acid by using double-stranded nucleic acid as template
WO2002016639A1 (fr) 2000-08-23 2002-02-28 Takara Bio Inc. Procede d'amplification d'acide nucleique
WO2002024902A1 (fr) * 2000-09-19 2002-03-28 Eiken Kagaku Kabushiki Kaisha Procede permettant de synthetiser un polynucleotide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOTO M. ET AL: "Rapid method for detection of point mutations using mismatch binding protein (MutS) and an optical biosensor", GENETIC ANALYSIS: BIOMOLECULAR ENGINEERING, vol. 14, 1997, pages 47 - 50, XP004126266 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150829B2 (ja) * 2005-11-25 2013-02-27 株式会社ダナフォーム 核酸検出及び増幅方法
US8097414B2 (en) * 2005-11-25 2012-01-17 K. K. Dnaform Method for detecting and amplifying nucleic acid
EP1847617A1 (en) * 2006-04-17 2007-10-24 FUJIFILM Corporation Detection method of SNPs
JP2007325534A (ja) * 2006-06-07 2007-12-20 Institute Of Physical & Chemical Research RecAタンパク質を利用した核酸の等温増幅法
EP1876246A1 (en) * 2006-07-03 2008-01-09 FUJIFILM Corporation Self-complementary primers used in LAMP gene amplification method
WO2009054510A1 (ja) 2007-10-25 2009-04-30 Riken 等温増幅方法およびそれに用いるdnaポリメラーゼ
JP4450867B2 (ja) * 2007-10-25 2010-04-14 独立行政法人理化学研究所 等温増幅方法およびそれに用いる等温増幅用キット
JPWO2009054510A1 (ja) * 2007-10-25 2011-03-10 独立行政法人理化学研究所 等温増幅方法およびそれに用いる等温増幅用キット
WO2010061922A1 (ja) 2008-11-27 2010-06-03 独立行政法人理化学研究所 新規MutSタンパク質およびそれを用いた変異の判定方法
JP2010279302A (ja) * 2009-06-04 2010-12-16 Institute Of Physical & Chemical Research 核酸の増幅方法および遺伝子変異の検出方法
JP2011050380A (ja) * 2009-08-06 2011-03-17 Institute Of Physical & Chemical Research 核酸増幅用プライマーの設計方法、核酸増幅用プライマーの製造方法、核酸増幅用プライマー、プライマーセット、および核酸の増幅方法
WO2013002354A1 (ja) 2011-06-29 2013-01-03 株式会社ダナフォーム 生体試料の前処理方法、rnaの検出方法及び前処理キット
US9518901B2 (en) 2011-06-29 2016-12-13 Kabushiki Kaisha Dnaform Pretreatment method of biological sample, detection method of RNA, and pretreatment kit
WO2013035875A1 (ja) * 2011-09-08 2013-03-14 独立行政法人理化学研究所 プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
JP5299981B1 (ja) * 2011-09-08 2013-09-25 独立行政法人理化学研究所 プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
US9586987B2 (en) 2011-09-08 2017-03-07 Kabushiki Kaisha Dnaform Primer set for isothermal amplication of a target nucleic acid sequence
WO2016011280A1 (en) 2014-07-16 2016-01-21 Tangen Biosciences, Inc. Isothermal methods for amplifying nucleic acid samples

Also Published As

Publication number Publication date
EP1712618A1 (en) 2006-10-18
US20070190531A1 (en) 2007-08-16
TW201037080A (en) 2010-10-16
EP1712618B1 (en) 2014-06-04
JP3897805B2 (ja) 2007-03-28
TW200525026A (en) 2005-08-01
TWI332987B (ja) 2010-11-11
EP2415878A1 (en) 2012-02-08
US8206902B2 (en) 2012-06-26
JPWO2005063977A1 (ja) 2007-07-19
EP1712618A4 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP3897805B2 (ja) 核酸の増幅法およびこれを利用した変異核酸の検出法
US8673567B2 (en) Method and kit for nucleic acid sequence detection
JP5299981B1 (ja) プライマーセット及びそれを用いた標的核酸配列の増幅方法並びに変異核酸の検出方法
US20040146866A1 (en) Quantitative multiplex detection of nucleic acids
US20030165948A1 (en) Method and compositions for efficient and specific rolling circle amplification
JP3867926B2 (ja) 核酸の増幅法
JP2005509433A (ja) 多重pcr
JP3942627B2 (ja) 変異核酸の検出法
JP2000505312A (ja) 標的核酸配列増幅
JPH08505535A (ja) 一本鎖dna分子の生成方法
JP2008029333A (ja) 新規遺伝子増幅法に用いられるプライマー
WO2006098428A1 (ja) プライマーダイマーからの非特異的増幅を減少させる方法
JP2008161165A (ja) 競合オリゴヌクレオチドを用いた遺伝子検出法
JPWO2003102178A1 (ja) 遺伝子多型のタイピング方法
JP2007319096A (ja) エンドヌクレアーゼのニッキング活性を利用した核酸増幅法
JP2008029335A (ja) 新規遺伝子増幅法に用いられるプライマーセットおよびキット
WO2002090538A1 (fr) Procede de synthese d'acide nucleique
WO2006051991A1 (ja) 核酸の増幅および検出方法
JP2008161164A (ja) 人工ミスマッチ核酸を含むプライマーを用いた遺伝子検出法
CN117089605B (zh) 一种基于fq-rca的rna等温实时基因分型方法
JP5618227B2 (ja) 核酸の増幅方法および遺伝子変異の検出方法
JP5417752B2 (ja) 高精度の標的核酸の検出方法および標的核酸検出用キット
JP2007325534A (ja) RecAタンパク質を利用した核酸の等温増幅法
JP2008048603A (ja) 核酸の増幅および検出方法
WO2018132939A1 (zh) 一种恒温条件下合成核酸的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516642

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807703

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004807703

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10583706

Country of ref document: US

Ref document number: 2007190531

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10583706

Country of ref document: US