WO2005030819A1 - エンジニアリングプラスチック用流動性向上剤およびこれを含有する熱可塑性樹脂組成物ならびにその成形品 - Google Patents

エンジニアリングプラスチック用流動性向上剤およびこれを含有する熱可塑性樹脂組成物ならびにその成形品 Download PDF

Info

Publication number
WO2005030819A1
WO2005030819A1 PCT/JP2004/014393 JP2004014393W WO2005030819A1 WO 2005030819 A1 WO2005030819 A1 WO 2005030819A1 JP 2004014393 W JP2004014393 W JP 2004014393W WO 2005030819 A1 WO2005030819 A1 WO 2005030819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fluidity
fluidity improver
engineering plastics
thermoplastic resin
Prior art date
Application number
PCT/JP2004/014393
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Nabeshima
Atsunori Koshirai
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to US10/573,831 priority Critical patent/US8729205B2/en
Priority to EP04788421.8A priority patent/EP1679324B1/en
Priority to CN200480034416XA priority patent/CN1882621B/zh
Priority to KR1020067007980A priority patent/KR101192949B1/ko
Priority to JP2005514282A priority patent/JP4054042B2/ja
Publication of WO2005030819A1 publication Critical patent/WO2005030819A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • Fluidity improver for engineering plastics thermoplastic resin composition containing the same, and molded article thereof
  • the present invention relates to a flow improver for engineering plastics and resin, which exhibits excellent flow property improving properties and chemical resistance improving properties, and a fluidity, peeling resistance, heat resistance and chemical resistance using the same.
  • TECHNICAL FIELD The present invention relates to a thermoplastic resin composition having excellent heat resistance and transparency, and to molded articles, automobile members and lamp covers using the same.
  • Patent Document 4 a method of adding a polyester oligomer (for example, Patent Document 4), a method of adding a polycarbonate oligomer (for example, Patent Document 5), and a method of adding a low-molecular-weight styrene-based copolymer (Eg Patent Documents 6-8) proposed Has been.
  • Patent Documents 9 and 10 and the like disclose, as lamp covers having excellent heat resistance, (2) 9,9-bis (4-oxyphenyl) fluorene structural unit and 1,1-bis (4-hydroxyphenyl) -3 A lamp cover comprising an aromatic polycarbonate resin having a 3,3,5-trimethylcyclohexane structural unit has been proposed.
  • Patent Document 1 Japanese Patent Publication No. 59-42024
  • Patent Document 2 JP-A-62-138514
  • Patent Document 3 Japanese Patent No. 2622152
  • Patent Document 4 Japanese Patent Publication No. 54 37977
  • Patent Document 5 JP-A-3-24501
  • Patent Document 6 Japanese Patent Publication No. 52-784
  • Patent Document 7 JP-A-11-181197
  • Patent Document 8 JP-A-2000-239477
  • Patent Document 1 JP-A-6-65362
  • Patent Document 2 JP-A-7-90073
  • the method of reducing the molecular weight of the polycarbonate resin greatly improves the flowability, the excessive reduction in the molecular weight impairs the excellent heat resistance and chemical resistance of the polycarbonate. Also, since the impact resistance is remarkably reduced, there is a limit to improving the melt fluidity by low molecular weight filtration while maintaining the excellent properties of the polycarbonate resin.
  • the balance between peel resistance and fluidity is still insufficient.
  • the method using a specific styrene-based copolymer is excellent in melt fluidity, but the compatibility is still insufficient, so that the surface of the molded product is peeled off, and the appearance and mechanical properties are greatly reduced immediately.
  • the specific acrylic copolymer has excellent compatibility and good transparency, but the effect of improving the melt fluidity is small. It is necessary to increase the amount of the ril copolymer, and there is a limit to improving the fluidity while maintaining the excellent characteristics of polycarbonate such as heat resistance and impact resistance.
  • the method of adding a polyester oligomer or the method of adding a polycarbonate oligomer is effective in improving fluidity, but has a problem that the excellent heat resistance and impact resistance of polycarbonate are significantly reduced.
  • the product has the following problems: the surface peeling occurs immediately after the product is peeled off, and the resulting impact strength, the weld appearance, which is important for practical use, and the surface impact are not sufficient.
  • the molecular weight of the aromatic polycarbonate resin itself is reduced to a lower molecular weight.
  • the melt viscosity is reduced and the melt fluidity is greatly improved, as the molecular weight is reduced, heat resistance and impact resistance are reduced.
  • the mechanical properties such as gas resistance are reduced, and the chemical resistance such as gasoline resistance required for lamp power bars of automobiles is also impaired. Therefore, there is a limit in improving the moldability while maintaining the excellent characteristics of the aromatic polycarbonate resin by the low molecular weight resin, and at present, the aromatic compound having the low molecular weight resin has a low molecular weight. Molding is carried out using an aromatic polycarbonate resin and raising the molding temperature to near limit. If the molding temperature is excessively increased while applying force, appearance defects such as silver are generated, and molding defects are increased.
  • the present invention has been made in order to solve the above-mentioned problems, and has been made to solve the problems of heat resistance, exfoliation resistance, and transparency of an engineering plastic without impairing its transparency and the like.
  • An object of the present invention is to provide a fluidity improver capable of improving fluidity, a resin composition using the same, and a product using the same.
  • Another object of the present invention is to provide a lamp cover having improved moldability and chemical resistance without impairing the excellent characteristics of the conventional aromatic polycarbonate resin.
  • the lamp cover in the present invention includes a lens and a cover used for an illumination lamp such as a head lamp lens and a cover of an automobile. Means for solving the problem
  • the gist of the first invention is that (meth) acrylic acid in which the aromatic vinyl monomer unit (a1) is 0.5 to 99.5% by mass and the ester group is a phenyl group or a substituted phenyl group. 0.5 to 99.5% by mass of the ester monomer unit (a2) and 0 to 40% by mass of the other monomer units (a3) (the total of al-a3 is 100% by mass).
  • a fluidity improver for engineering plastics comprising a polymer (A) having a weight average molecular weight of 5,000 to 1500,000.
  • the gist of the second invention resides in a thermoplastic resin composition obtained by mixing the engineering plastics) with the fluidity improver for engineering plastics.
  • the gist of the third invention resides in a molded product, an automobile member, and a lamp cover obtained by injection-molding the thermoplastic resin composition.
  • the fluidity improver for engineering plastics of the present invention has a phase separation behavior at the time of melt molding with engineering plastics represented by polycarbonate resin, and has good peeling resistance in the use temperature range of molded products. It has a level of compatibility (affinity).
  • affinity affinity
  • the polycarbonate resin-based alloy lamp cover of the present invention provides the chemical resistance such as gasoline resistance required for automobile headlamps, etc., and the melt fluidity which do not impair the excellent transparency and heat resistance of conventional products. (Moldability) is remarkably excellent, so that it can be suitably used for a large-sized, thin-walled headlamp cover for an automobile, which has been increasingly required in recent years.
  • Engineering plastics fluidity improver of the present invention include aromatic Bulle monomer unit (al) O. 5- 99. 5 mass 0/0, ester groups Hue - Le (Meth) acrylic acid ester monomer unit (a2) which is a group or a substituted phenol group (a2) 0.5 to 99.5% by mass, other monomer unit (a3) 0 to 40% by mass (al- a3 is 100% by mass), and has a weight average molecular weight of 5,000 to 150,000.
  • Such a fluidity improver has a phase separation behavior at the time of melt molding with engineering plastics represented by polycarbonate resin, and has a good level of compatibility (affinity ), Exhibiting unprecedented remarkable melt flowability (molding processability) and chemical resistance improvement effects that do not impair the characteristics (heat resistance, peeling resistance, etc.) of engineering plastics.
  • the copolymer contains a predetermined amount of the aromatic butyl monomer unit (al), it becomes a fluidity improver exhibiting excellent fluidity and chemical resistance improving effect.
  • aromatic vinyl monomer constituting the aromatic vinyl monomer unit (al) examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -t-butylstyrene, p-methoxystyrene, and o-methoxystyrene. , 2,4-dimethylstyrene, chlorostyrene, bromostyrene, vinyltoluene, vinylnaphthalene, vinylanthracene and the like, and these can be used alone or in combination of two or more. Among them, styrene, ⁇ -methylstyrene and ⁇ -t-butylstyrene are preferred.
  • the content of the aromatic vinyl monomer unit (al) in the copolymer is 0.5 to 99.5% by mass. If the content of the aromatic vinyl monomer unit (al) exceeds 99.5% by mass, the compatibility with the engineering plastic becomes insufficient, so that the molded article of the mixture causes layer delamination. In some cases, appearance and mechanical properties may be impaired. On the other hand, if the aromatic vinyl monomer unit (al) content is less than 0.5% by mass, the compatibility with engineering plastics is too good. In some cases, it cannot be formed sufficiently, and the effect of improving chemical resistance tends to decrease.
  • the content of the aromatic vinyl monomer unit (al) in the copolymer is preferably 98% by mass or less, more preferably 96% by mass or less, and further preferably 93% by mass or less. Or less, and most preferably 90% by mass or less.
  • the content is preferably at least 10% by mass, more preferably at least 20% by mass, further preferably at least 50% by mass, and most preferably at least 75% by mass.
  • the copolymer used in the fluidity improver of the present invention contains a (meth) acrylate monomer unit (a2) having an ester group having a phenyl group or a substituted phenyl group.
  • a2 acrylate monomer unit having an ester group having a phenyl group or a substituted phenyl group.
  • the monomers constituting the (meth) acrylic acid ester monomer unit (a2) in which the ester group has a phenyl group or a substituted phenyl group include phenyl (meth) acrylate, 4 t-butyl phenol ( (Meth) acrylate, bromophenyl (meth) acrylate, dibromophenyl (meth) T) acrylate, 2,4,6-tribromophenyl (meth) acrylate, monochlorophenol (meth) acrylate, dichlorophenyl (meth) acrylate, trichlorophenyl (meth) acrylate, etc. These can be used alone or in combination of two or more. Of these, phenol (meta) acrylate is particularly preferred.
  • the content of the (meth) acrylic acid ester monomer unit ( a2 ) in which the ester group has a fluorine group or a substituted fluorine group in the copolymer is 0.5 to 99%. It must be 5% by mass.
  • ester group has a phenyl or substituted phenyl group-containing (meth) acrylate monomer (a2) content of less than 0.5% by mass, the compatibility with engineering plastics is insufficient. For this reason, a molded article obtained by molding a resin composition containing a fluidity improver and an engineering plastic may cause delamination, resulting in impaired appearance and mechanical properties.
  • ester groups Hue - group or a substituted phenylene Le having a group (meth) acrylic Sane ester monomer (a2) content of force 99.5 mass 0/0 exceeds the engineering plus nitride click and compatibility, In some cases, the phase separation behavior, which brings about a remarkable fluidity improving effect at the time of melting, cannot be sufficiently formed.
  • the amount of the (meth) acrylate monomer (a2) in which the ester group has a phenol group or a substituted phenol group is preferably 90% by mass or less. It is preferably at most 80% by mass, more preferably at most 50% by mass, most preferably at most 25% by mass.
  • the use amount is preferably 2% by mass or more, more preferably 4% by mass or more, still more preferably 7% by mass or more, and most preferably 10% by mass or more.
  • the polymer used in the fluidity improver of the present invention may contain an aromatic vinyl monomer, a fluor group or a substituted fluor group, if necessary, as long as the above-mentioned characteristics are not impaired. It may contain 0 to 40% by mass of another monomer unit (a3) derived from another monomer copolymerizable with the (meth) acrylic ester monomer.
  • the monomer constituting the other monomer unit (a3) is an a, j8-unsaturated monomer, specifically, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) ) Atarilate, 2 —Ethylhexyl acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, t-butyl (meth) acrylate, isopropyl (meta) ) Acrylates, alkyl (meth) acrylates such as t-butylcyclohexyl (meth) acrylate, (meth) acrylic acid, 2-hydroxyethyl (meth) atalylate, glycidyl (meth) atalylate, aryl (meta) ) (Meth) acrylates having a reactive functional group such as
  • One or more copolymerizable components of the above can be used within the range of 0 to 40% by mass in the polymer. If the content of the monomer exceeds 40% by mass, the effect of improving the fluidity and chemical resistance of a thermoplastic resin composition obtained by blending a fluidity improver with an engineering plastic tends to decrease.
  • the preferable content of the other monomer unit (a3) in the copolymer is 30% by mass or less, more preferably 20% by mass or less, further preferably 10% by mass or less, and most preferably. Or less than 5% by mass.
  • the fluidity improver of the present invention is characterized in that it is excellent in compatibility with engineering plastics represented by polycarbonate, and therefore, the mixture is excellent in transparency.
  • the (meth) acrylic acid ester monomer (a2) having the unit (a1) and the ester group having a phenol group or a substituted phenyl group is a two-component system, and the content thereof is within a specific range. By doing so, it becomes possible to express a very high degree of transparency. In this range, the (meth) acrylate ester in which the aromatic vinyl monomer unit (al) in the copolymer is 0.5 to 40% by mass and the ester group has a phenyl group or a substituted phenyl group.
  • Monomer unit (a2) force 0-99.5% by mass (the total amount of both is 100% by mass) and the case where the aromatic vinyl monomer unit (al) in the copolymer is 60-99% 0.5% by mass, and when the (meth) acrylic acid ester monomer unit (a2) having a ester group or a substituted phenyl group as the ester group is 0.5 to 40% by mass. There are two.
  • the weight average molecular weight of the copolymer used for the fluidity improver for engineering plastics of the present invention is 5,000 to 150,000.
  • the weight average molecular weight is less than 5,000, the amount of low molecular weight substances increases relatively, There is a possibility that various functions such as properties and rigidity are reduced. In addition, there is a possibility that problems such as smoke during melt molding, mist, mechanical contamination, and poor appearance of molded products such as fish eyes and silver may occur.
  • a higher mass average molecular weight is preferable.
  • a preferable mass average molecular weight is 10,000 or more, more preferably 15,000. And more preferably 30,000 or more, and most preferably 40,000 or more.
  • the mass average molecular weight exceeds 150,000, the melt viscosity of the resin composition to which the fluidity improver has been added becomes high, and a sufficient fluidity modifying effect may not be obtained.
  • the mass average molecular weight is preferably 120,000 or less, and most preferably 100,000 or less.
  • Examples of the polymerization method for obtaining the fluidity improver of the present invention include an emulsion polymerization method, a suspension polymerization method, a solution polymerization method, and a bulk polymerization method.
  • a turbid polymerization method and an emulsion polymerization method are preferred.
  • a carboxylic acid salt emulsifier is used, and a phosphoric acid ester that recovers by acid precipitation coagulation etc. It is preferable to carry out salting out coagulation with a calcium acetate salt or the like using a non-aion type emulsifier or the like.
  • the fluidity improver of the present invention when used together with an engineering plastic, the fluidity that the inherent properties of the engineering plastic, such as heat resistance, peel resistance, and transparency, are not impaired. (Forming workability) and chemical resistance can be improved.
  • the engineering plastic (B) used in the thermoplastic resin composition of the present invention is not particularly limited as long as it is a conventionally known various thermoplastic engineering plastics, such as polyphenylene ether, polycarbonate, polyethylene terephthalate, and polycarbonate.
  • Polyester polymers such as butylethylene terephthalate, nylon polymers such as syndiotactic polystyrene, 6-nylon, 6,6-nylon, polyarylate, polyphenylene sulfide, polyetherketone, polyetheretherketone, polysulfone, Examples include polyethersulfone, polyamideimide, polyetherimide, polyacetal, and the like. Wear.
  • aromatic polycarbonate (C) examples include 4,4, dioxydiarylalkane-based polycarbonates such as 4,4'-dihydroxydiphenylene 2,2-propane (ie, bisphenol A) -based polycarbonate.
  • the molecular weight of the engineering plastic (B) is not particularly limited in the present invention as long as it can be appropriately determined as desired.
  • the engineering plastic is an aromatic polycarbonate resin (C)
  • the viscosity average molecular weight is preferably 10,000 to 50,000, and more preferably 15,000 to 30,000! / ⁇ .
  • Engineering plastics can be manufactured by various conventionally known methods. For example, when producing 4,4'-dihydroxydiphenylene 2,2-propane-based polycarbonate, 4,4'-dihydroxydiphenyl 2,2-propane is used as a raw material and an alkaline aqueous solution is used. And a method in which phosgene is blown in the presence of a solvent to cause a reaction, and a method in which 4,4, dihydroxydiphenyl 2,2-propane is transesterified with a carbonic acid diester in the presence of a catalyst.
  • the engineering plastic (B) of the present invention has a range within which the excellent heat resistance, impact resistance, flame retardancy, etc. inherent to engineering plastics are not impaired, specifically, 100 parts by mass of engineering plastic.
  • a thermoplastic resin other than engineering plastics such as styrene resin such as ABS, HIPS, PS, and PAS, acrylic resin, polyolefin resin, and elastomer is blended within 50 parts by mass. It is also possible to use engineering plastic polymer alloys that have been used.
  • the mixing ratio of the fluidity improver (A) and the engineering plastic (B) is not particularly limited in the present invention as long as it can be appropriately determined according to desired physical properties and the like.
  • a flow improver (A) O. 1-30 per 100 parts by mass of engineering plastic It is preferable to mix parts by mass. If the amount of the fluidity improver (A) is less than 0.1 part by mass, a sufficient improvement effect may not be obtained. If the amount of the fluidity improver (A) exceeds 30 parts by mass, the excellent mechanical properties of the engineering plastic may be impaired.
  • the preferred amount of the fluidity improver (A) is at least 1 part by mass, more preferably at least 2 parts by mass, and even more preferably at least 3 parts by mass.
  • the amount is preferably not more than 25 parts by mass, more preferably not more than 15 parts by mass, and most preferably not more than 10 parts by mass.
  • the engineering plastic resin composition of the present invention may contain, if necessary, known stabilizers, reinforcing agents, inorganic fillers, impact resistance modifiers, flame retardants, fluorinated olefins, and the like. May be added.
  • talc, myric, calcium carbonate, glass fiber, carbon fiber, potassium titanate fiber, and the like can be contained.
  • other engineering plastic compositions such as polyethylene terephthalate for improving chemical resistance and the like, rubber-like elastic materials having a core-shell two-layer structure for improving impact resistance and the like may be blended.
  • the blending of the engineering plastic (B) and the fluidity improver (A) is carried out by mixing the powder with the engineering plastic (B) and the fluidity improver (A) by heating and kneading. It may be obtained.
  • Examples of such a compounding method include a method using a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two-roller, a kneader, a Brabender and the like.
  • a masterbatch prepared by mixing the flowability improver (A) and the engineering plastic (B) so that the ratio of the flowability improver is large is prepared in advance, and then the masterbatch and the engineering plastic (B) are mixed. Can be mixed again to obtain a desired composition.
  • the molded article of the present invention is obtained by injection molding the above-mentioned thermoplastic resin composition.
  • the flowability Z that cannot be achieved with low molecular weight Because it is possible to improve the chemical resistance balance, it is extremely effective for automotive parts such as headlamps, etc., which require chemical resistance, OA equipment, and large-sized thin injection molded products of electric and electronic equipment. is there.
  • the injection molding method is not particularly limited, and can be performed by a known method.
  • the lamp cover of the present invention is obtained by mixing (kneading) the flow improver (A) and the polycarbonate resin (C).
  • the content of (A) may be appropriately determined according to the desired physical properties and the like, and is not particularly limited in the present invention. However, the performance (heat resistance, impact strength, etc.) of the aromatic polycarbonate resin (C) is low. In order to obtain an effective moldability improvement effect and chemical resistance improvement effect without lowering, the aromatic polycarbonate resin (C) is 80-99.5% by mass, and the fluidity improver (A) Is preferably 0.5 to 20% by mass. If the content of the fluidity improver (A) is less than 0.5% by mass, a sufficient improvement effect may not be obtained. If the content of the fluidity improver (A) is more than 20% by mass, the excellent mechanical properties of the aromatic polycarbonate resin (C) may be impaired.
  • the lower limit of the preferable content of the fluidity improver (A) is 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more.
  • the upper limit of the preferred content of the fluidity improver (A) is 15% by mass or less, more preferably 10% by mass or less.
  • a polycarbonate resin-based alloy may be used, for example, as necessary.
  • the lamp cover of the present invention is manufactured by molding the above-mentioned polycarbonate resin-based alloy using various molding methods such as injection molding, compression molding, extrusion molding, blow molding, and casting. It can. Of these, injection molding is the simplest method and is preferred. In the injection molding, the alloy is preferably melted and processed at a processing temperature of 250 ° C to 350 ° C.
  • the lamp cover of the present invention is excellent in melt fluidity (moldability), easy to perform large-scale and thin-wall molding that has not been achieved conventionally, and the obtained lamp cover impairs the excellent characteristics of aromatic polycarbonate. Excellent chemical resistance to solvents such as gasoline.
  • a separable flask equipped with a condenser and a stirrer was charged with 0.4 part of calcium phosphate and 150 parts of distilled water, and then 80 parts of styrene, 20 parts of phenyl methacrylate, 1 part of AIBN, and 1 part of t-butinolemenolecabutane.
  • the mixture obtained by dissolving 5 parts was dried, stirred for a while, and then subjected to nitrogen bubbling for 30 minutes. Under a nitrogen atmosphere, the mixture was stirred at 80 ° C for 4 hours, and further stirred at 90 ° C for 1 hour to complete the polymerization.
  • the precipitate was separated and washed, and dried at 75 ° C for 24 hours to obtain a fluidity improver (A-1).
  • the weight average molecular weight (Mw) was 92,000.
  • a fluidity improver (A-3) was obtained in the same manner as in Production Example 2, except that the amount of n-octyl mercaptan was changed from 0.3 part to 0.5 part.
  • Mass-average molecular weight (Mw) was 50,000 o
  • a fluidity improver (A-4) was obtained in the same manner as in Production Example 2 except that the amount of n-octyl mercaptan was changed from 0.3 part to 1 part.
  • the weight average molecular weight (Mw) was 27100.
  • the fluidity improver (A-6) was prepared in the same manner as in Production Example 5 except that 80 parts of the monomer yarn styrene and 19 parts of phenol methacrylate were replaced with 60 parts of styrene and 39 parts of phenol methacrylate. Obtained.
  • the weight average molecular weight (Mw) was 13,800.
  • the flowability improver (A—) was prepared in the same manner as in Production Example 5 except that 80 parts of the monomer yarn styrene and 19 parts of phenol methacrylate were replaced with 25 parts of styrene and 74 parts of phenol methacrylate. 7) was obtained.
  • the weight average molecular weight (Mw) was 13,800.
  • a flow improver (B-2) was obtained in the same manner as in Production Example 2 except that the part was changed to 0.4 part of kabutane.
  • the weight average molecular weight (Mw) was 60,000.
  • Table 1 shows the monomer composition for the copolymer produced in Production Example 119, the mass average molecular weight (Mw), and the polymerization mode of the obtained copolymer.
  • St Styrene
  • PhMA Feral methacrylate
  • MA Methyl acrylate
  • BA Butyla Tallylate
  • MMA methyl methacrylate
  • the obtained fluidity improver and polycarbonate resin were mixed at the mass ratio shown in Table 2, supplied to a twin-screw extruder (model name "TEM-35", manufactured by Toshiba Machine Co., Ltd.), and melt-kneaded at 280 ° C. Thus, an engineering plastic composition was obtained.
  • thermoplastic resin composition was evaluated in the following (1)-(5). The results are shown in Table 2.
  • the spiral flow length SFL of the obtained engineering plastic composition was evaluated using an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.).
  • the molding temperature was 280 ° C
  • the mold temperature was 80 ° C
  • the injection pressure was 98MPa.
  • the molded product has a thickness of 2 mm and a width of 15 mm.
  • a molded product having a wall thickness of 1Z4 inches was molded by an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.).
  • the deflection temperature under load of the molded article was measured according to ASTM D648. Note that annealing was not performed, and the load was 1.82 MPa.
  • an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.) was used to mold a 3 mm-thick, 5 cm square flat plate.
  • the engineering plastic resin composition obtained in Comparative Example 2 had sufficient fluidity and chemical resistance because the fluidity improver did not contain the aromatic bead conjugate and had too good compatibility. I could't get the sex.
  • the engineering plastic composition obtained in Comparative Example 3 did not contain a flowability improver, and thus did not have sufficient flowability and chemical resistance.
  • a mixture of 12.5 parts, 0.2 part of t-butyl hydroperoxide and 0.5 part of n-octylmercaptan was added dropwise over 180 minutes. Thereafter, the mixture was stirred for 60 minutes to complete the polymerization.
  • 300 parts of an aqueous solution in which sulfuric acid was dissolved at a rate of 0.7% was heated to 70 ° C and stirred.
  • the obtained polymer emulsion was gradually dropped therein to coagulate.
  • the precipitate was separated and washed, dried at 75 ° C for 24 hours, and dried for 24 hours to obtain a fluidity improver (A-8).
  • the weight average molecular weight (Mw) was 49,000.
  • a flow improver (A-9) was obtained in the same manner as in Production Example 10, except that the amount of n-octyl mercaptan was changed from 0.5 part to 0.2 part.
  • Mass-average molecular weight (Mw) was 98000 o
  • Table 3 shows the monomer composition for the copolymer produced in Production Examples 10 to 11, the weight average molecular weight (Mw), and the polymerization mode of the obtained copolymer. [Table 3]
  • the obtained fluidity improver and polycarbonate resin were mixed at the mass ratio shown in Table 4, supplied to a twin-screw extruder (model name "TEM-35", manufactured by Toshiba Machine Co., Ltd.), and melt-kneaded at 280 ° C. Thus, an engineering plastic composition was obtained.
  • thermoplastic resin composition was evaluated in the following (1)-(5). The results are shown in Table 4.
  • PC2 polycarbonate resin
  • Panlite L1225WS manufactured by Teijin Chemicals, viscosity average molecular weight 21,000
  • PC3 Polycarbonate resin (“Panlite L1225ZL”, manufactured by Teijin Chemicals, viscosity average molecular weight: 190,000)
  • the spiral flow length SFL of the obtained engineering plastic composition was evaluated using an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.).
  • the molding temperature was 280 ° C
  • the mold temperature was 80 ° C
  • the injection pressure was 98MPa.
  • the molded product has a thickness of 2 mm and a width of 15 mm.
  • a molded product having a wall thickness of 1Z4 inches was molded by an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.). After annealing at 120 ° C for 2 hours, the deflection temperature under load of the molded article was measured in accordance with ASTM D648. The load was 1.82MPa.
  • an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.) was used to mold a flat plate having a thickness of 2 mm and a size of 5 cm ⁇ 10 cm.
  • Example 9 Using the engineering plastic composition obtained in Example 9, a flat molded product having a thickness of 2 mm and a size of 10 cm ⁇ 10 cm was molded by an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.). After performing a hard coat treatment by UV curing on this flat plate, an instrumented surface impact test (No. Mouth shot). The total absorbed energy is 30J and the fracture mode is ductile fracture.
  • a flat molded product having a thickness of 2 mm and a size of 10 cm ⁇ 10 cm was molded in the same manner as in Example 10 except that the engineering plastic composition obtained in Comparative Example 5 was used. After performing a hard coat treatment by UV curing on this flat plate, an instrumented surface impact test (hide opening shot) was performed. The total absorbed energy was 5J and the fracture mode was brittle.
  • a flow improver (A-10) was obtained in the same manner as in Production Example 10 except that the monomer composition was changed to 90 parts of styrene and 10 parts of phenol metathallate.
  • the weight average molecular weight (Mw) was 51,000.
  • a flow improver (B-3) was obtained in the same manner as in Production Example 10 except that the monomer composition was changed to 100 parts of styrene.
  • the weight average molecular weight (Mw) was 55,000.
  • Table 5 shows the monomer composition for the copolymers produced in Production Examples 12 and 13, the weight average molecular weight (Mw) of the obtained copolymers, and the polymerization mode.
  • Production example 1 0 Production example 1 2 Production example 1 3
  • Weight average molecular weight 49000 98000 55000 [0053] The abbreviations in the table are as follows.
  • Polymer (A-8) (A-10) (A-3) and (B-3) and each component shown in Table 6 were mixed at the ratio (mass ratio) shown in Table 6 to obtain a biaxial polymer. It was supplied to an extruder (model name "TEM-35", manufactured by Toshiba Machine Co., Ltd.) and melt-kneaded at 280 ° C to obtain a polycarbonate resin alloy.
  • PC-4 Polycarbonate resin (Panlite L 1225Z-100, manufactured by Teijin Chemicals, viscosity average molecular weight 220,000)
  • PC-5 Polycarbonate resin (Panlite L 1225ZL-100, manufactured by Teijin Chemicals, viscosity average molecular weight: 19,000)
  • the spiral flow length (SFL) of the obtained polycarbonate resin-based alloy was evaluated using an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.).
  • the molding temperature was 280 ° C
  • the mold temperature was 80 ° C
  • the injection pressure was 98MPa.
  • the molded product had a thickness of 2 mm and a width of 15 mm.
  • the above-mentioned SFL is within the range of 200 mm or more.
  • a molded product having a wall thickness of 1Z4 inches was molded by an injection molding machine (“IS-100”, manufactured by Toshiba Machine Co., Ltd.).
  • the deflection temperature under load of the molded article was measured according to ASTM D648. The annealing was not performed, and the load was 1.82 MPa.
  • the above heat resistance is 120 ° C or more.
  • the range of the above heat resistance is 120 ° C or more.
  • the lamp cover preferably has a total light transmittance of 88% or more. Further, the haze is preferably within a range of 2% or less ⁇
  • the molded product of the polycarbonate resin-based alloy obtained in Examples 11 to 15 has sufficient heat resistance and transparency, as well as melt fluidity and chemical resistance. The characteristics required for a large and thin lamp cover were extremely excellent.
  • the molded product of the polycarbonate resin alloy obtained in Comparative Example 7 was the same as that of the polycarbonate resin of Example 11-15. Compared with the molded article obtained by using the alloy, the lens appearance with poor peelability and transparency was poor. This is thought to be due to insufficient compatibility between polymer B-1 and PC-4.
  • Example 11-1 The molded product of the polycarbonate resin-based alloy obtained in Comparative Examples 8 and 9, which did not contain the copolymers (A-8), (A-10) and (A-3), was obtained in Example 11-1. Compared to the polycarbonate resin alloy molded product obtained in 15, the balance between the melt fluidity and the chemical resistance sufficient to make a large and thin lamp cover was not obtained.
  • the flowability improver of the present invention is remarkably added by adding a small amount to the engineering plastic without impairing the characteristics (transparency, heat resistance, peeling resistance, chemical resistance, etc.) of the engineering plastic, thereby improving the melt flowability ( An improvement effect can be obtained.
  • Engineering plastics containing this fluidity improver have excellent physical properties and good melt fluidity (moldability), so that molded products of any shape, such as more complex, large, thin, etc. can be easily formed. It can be molded stably, and is extremely useful industrially as OA (office automation) equipment, information and communication equipment, electricity and electronic equipment, home appliances, automobile components, and building components.
  • the lamp cover of the present invention is excellent in melt fluidity (moldability) and also has excellent polycarbonate resin alloy strength that is excellent in solvent resistance without impairing the excellent characteristics of aromatic polycarbonate.
  • melt fluidity melt fluidity
  • polycarbonate resin alloy strength that is excellent in solvent resistance without impairing the excellent characteristics of aromatic polycarbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明の要旨は、芳香族ビニル単量体単位(a1)0.5~99.5質量%、エステル基がフェニル基または置換フェニル基である(メタ)アクリル酸エステル単量体単位(a2)0.5~99.5質量%、その他の単量体単位(a3)0~40質量%(a1~a3の合計が100質量%)とからなり、その重量平均分子量が5000~150000である重合体(A)からなるエンジニアリングプラスチック用流動性向上剤にある。  本発明の流動性向上剤によれば、エンジニアリングプラスチックの耐熱性、耐剥離性、さらには透明性等を損なうことなく、その溶融流動性(成形加工性)と耐薬品性を向上させることができる。

Description

明 細 書
エンジニアリングプラスチック用流動性向上剤およびこれを含有する熱可 塑性樹脂組成物ならびにその成形品
技術分野
[0001] 本発明は、優れた流動性改良性と耐薬品性改良性を発現するエンジニアリングプ ラスチック榭脂用流動性向上剤、およびこれを用いた流動性、耐剥離性、耐熱性、耐 薬品性、さらには透明性にも優れた熱可塑性榭脂組成物、並びにこれを用いた成形 品、自動車用部材、ランプカバーに関する。
背景技術
[0002] エンジニアリングプラスチックは、その優れた機械強度、耐熱性、電気特性、寸法安 定性などにより、 OA (オフィスオートメーション)機器、情報'通信機器、電気'電子機 器、家庭電化機器、自動車分野、建築分野等の様々な分野において幅広く利用さ れている。し力しながら、例えばポリカーボネート榭脂の場合、非晶性であるがため、 成形加工温度が高く溶融流動性に劣る、さらには耐薬品性に劣るという問題点を有 している。
一方、近年においては、それらの成形品が、大型化、薄肉化、形状複雑化、高性 能化、環境問題等に伴って、ポリカーボネート榭脂の優れた特徴を損なうことなく溶 融流動性を向上させ、射出成形性を高める榭脂改質剤およびこれを用いた熱可塑 性榭脂組成物が求められている。
ポリカーボネート榭脂の特徴 (耐熱性、透明性等)を損なうことなく溶融流動性を改 良する方法としては、マトリクス榭脂であるポリカーボネート榭脂自体を低分子量ィ匕す る方法が一般的である。また、特定のスチレン系榭脂とのポリマーァロイ化による流動 性改良(例えば特許文献 1、 2)、特定のメタタリレート系榭脂とのポリマーァロイ化によ る流動性改良(例えば特許文献 3)が提案されて 、る。
また、さらなる流動性の改良を目的として、ポリエステルオリゴマーを添加する方法( 例えば特許文献 4)、ポリカーボネートのオリゴマーを添加する方法 (例えば特許文献 5)、低分子量のスチレン系共重合体を添加する方法 (例えば特許文献 6— 8)が提案 されている。
また、従来、 自動車等のヘッドランプ用レンズ等のランプカバーとしては、透明性、 耐熱性、耐衝撃性等の機械特性に優れることから、 2, 2 ビス (4ーヒドロキシフエ-ル )プロパン (通称ビスフエノール A)力 のポリカーボネート榭脂等の芳香族ポリカーボ ネート榭脂からなるランプカバーが用いられて 、る。
近年、自動車ヘッドランプ等の大型化の要望が高まる中、ランプカバーについても 、大型化および軽量薄肉化の要望が高まっている。芳香族ポリカーボネート榭脂から なるランプカバーの優れた特性を損なうことなく、ランプカバーを大型化および軽量 薄肉化するためには、芳香族ポリカーボネート榭脂の優れた特性を維持しつつ、さら に溶融流動性に優れた材料、すなわち射出成形等による成形性に優れた材料が必 要とされる。
榭脂の成形性を向上させる方法としては、(1)榭脂を低分子量ィ匕し、溶融流動性を 高める方法が一般的である。
また、特許文献 9, 10等には、耐熱性に優れたランプカバーとして、(2) 9, 9 ビス( 4 ォキシフエ-レン)フルオレン構造単位や 1, 1—ビス(4ーヒドロキシフエ-ル)— 3, 3 , 5—トリメチルシクロへキサン構造単位を有する芳香族ポリカーボネート榭脂よりなる ランプカバーが提案されて 、る。
特許文献 1:特公昭 59 - 42024号公報
特許文献 2 :特開昭 62— 138514号公報
特許文献 3:特許 2622152号公報
特許文献 4:特公昭 54 37977号公報
特許文献 5:特開平 3— 24501号公報
特許文献 6:特公昭 52 - 784号公報
特許文献 7 :特開平 11— 181197号公報
特許文献 8:特開平 2000-239477号公報
特許文献 1:特開平 6— 65362号公報
特許文献 2:特開平 7-90073号公報
発明の開示 発明が解決しょうとする課題
[0004] 上記の従来法においては、ある程度の溶融流動性が改良されるものの次のような 問題点があった。
第一に、ポリカーボネート榭脂の分子量を低分子量化する方法は、流動性が大きく 向上するものの、必要以上の分子量低下はポリカーボネートの優れた耐熱性ゃ耐薬 品性を損なう。また、耐衝撃性が著しく低下することからも、ポリカーボネート榭脂の 優れた特性を保持したまま低分子量ィ匕により溶融流動性を向上させるには限界があ る。
また、特定のスチレン系共重合体や特定のアクリル系共重合体とポリマーァロイイ匕 する方法においては、耐剥離性と流動性バランスが、未だ不十分である。更に特定 のスチレン系共重合体を用いる方法は溶融流動性に優れるものの、相溶性が未だ不 十分のため成形品に表層剥離が生じやすぐ外観や機械物性が大きく低下する。ま た、特定のアクリル系共重合体は相溶性に優れ、透明性が良好であるが、溶融流動 性の改良効果が小さいため、近年要求される溶融流動性の向上効果を得るにはァク リル系共重合体の配合が多くする必要があり、耐熱性ゃ耐衝撃性等のポリカーボネ ートの優れた特徴を保持したまま流動性を向上させるには限界がある。
また、ポリエステルオリゴマーを添加する方法やポリカーボネートオリゴマーを添カロ する方法は、流動性の改良には有効であるものの、ポリカーボネートの優れた耐熱性 ゃ耐衝撃性が著しく低下するという問題がある。
更に低分子量のスチレン系共重合体を添加する方法では、少量添加である程度の 耐熱性を保持したままで溶融流動性の改良が可能であるものの、未だ相溶性が不十 分であるため、成形品に表層剥離が生じやすぐそれに伴う衝撃強度、実用上重要 なウエルド外観、面衝撃が充分でな 、と 、う問題点を残して 、る。
[0005] 以上のことから、従来技術においては、そのいずれもがポリカーボネートに代表され るエンジニアリングプラスチックの優れた特性を損なうことなぐ溶融流動性を改良す ると 、う点では未だ不十分であった。
また、上記の従来法により、ランプカバーを大型化および軽量薄肉化するためには 、次のような問題点があった。 例えば上記(1)の方法である芳香族ポリカーボネート榭脂自体の分子量を低分子 量化は、溶融粘度が低下し、溶融流動性が大きく向上するものの、分子量が低下す るにつれて、耐熱性ゃ耐衝撃性等の機械特性が低下し、さらに自動車等のランプ力 バーに必要とされる耐ガソリン性等の耐薬品性も損なわれる。そのため、低分子量ィ匕 により、芳香族ポリカーボネート榭脂の優れた特徴を保持したまま成形性を向上させ るには限界があり、現在は、これらの特性を損なわないレベルに低分子量ィ匕した芳香 族ポリカーボネート榭脂を使用し、成形温度を限界近くまで高くした成形が行われて いる。し力しながら、成形温度を過度に上げることは、シルバー等の外観不良の発生 を引き起こし、成形不具合が増加する t 、う問題を生じる。
また、上記(2)の方法については、耐熱性については非常に良好であるものの、溶 融粘度が高すぎて溶融流動性が悪ぐ成形性が不十分である上、耐衝撃性等の特 性や、耐薬品性などが著しく低下すると 、う問題点を残して 、る。
このように、従来技術においては、芳香族ポリカーボネート榭脂の優れた特性を損な うことなぐ成形性および耐薬品性が改良されたランプカバーは得られていない。 本発明は、上記の課題を解決するためになされたものであり、エンジニアリングブラ スチックの耐熱性、耐剥離性、さらには透明性等を損なうことなぐその溶融流動性( 成形加工性)と耐薬品性を向上させることができる流動性向上剤、およびこれを用い た榭脂組成物、並びにこれを用いた製品を提供することを目的とする。また、本発明 は、従来の芳香族ポリカーボネート榭脂の優れた特徴を損なうことなぐ成形性およ び耐薬品性が改良されたランプカバーを提供することを目的とする。なお、本発明で いうランプカバーとは自動車のヘッドランプレンズやカバー等照明燈に用いるレンズ やカバー等を含む。 課題を解決するための手段
本発明のうち、第 1の発明の要旨は、芳香族ビニル単量体単位(a 1) 0. 5— 99. 5 質量%、エステル基がフエニル基または置換フエニル基である(メタ)アクリル酸エス テル単量体単位(a2) 0. 5— 99. 5質量%、その他の単量体単位(a3) 0— 40質量 % (al— a3の合計が 100質量%)と力らなり、その重量平均分子量が 5000— 1500 00である重合体 (A)からなるエンジニアリングプラスチック用流動性向上剤にある。 また、第 2の発明の要旨は、エンジニアリングプラスチック )に、前記エンジニアリ ングプラスチック用流動性向上剤を配合してなる熱可塑性榭脂組成物にある。
また、第 3の発明の要旨は、前記熱可塑性榭脂組成物を射出成形することにより得 られた成形品、自動車用部材、ランプカバーにある。
発明の効果
[0007] 本発明のエンジニアリングプラスチック用流動性向上剤によれば、ポリカーボネート 榭脂に代表されるエンジニアリングプラスチックと溶融成形時に相分離挙動を有し、 成形品の使用温度領域では耐剥離性が良好なレベルの相溶性 (親和性)を有してい る。これにより、本流動性向上剤は、エンジニアリングプラスチックに配合して用いるこ とで、エンジニアリングプラスチックの透明性、耐熱性、耐剥離性等を損なうことなぐ 従来にな 、著し 、溶融流動性 (成形加工性)と耐薬品性を付与することができる。 また、本発明のポリカーボネート榭脂系ァロイ力 なるランプカバーは、従来品の優 れた透明性や耐熱性を損なうことなぐ自動車ヘッドランプ等に必要な耐ガソリン性等 の耐薬品性と溶融流動性 (成形性)が著しく優れていることから、近年要望高まって いる自動車用の大型'薄肉ヘッドランプカバーに好適に利用できる。
発明を実施するための最良の形態
[0008] 以下、本発明について詳細に説明する。
〔流動性向上剤〕
本発明のエンジニアリングプラスチック用流動性向上剤(以下、単に流動性向上剤 という)は、芳香族ビュル単量体単位(al) O. 5— 99. 5質量0 /0、エステル基がフエ- ル基、または置換フエ-ル基である (メタ)アクリル酸エステル単量体単位 (a2) 0. 5— 99. 5質量%、その他の単量体単位(a3) 0— 40質量%(al— a3の合計が 100質量 %)とカゝらなり、その重量平均分子量が 5000— 150000である共重合体からなる。 この様な流動性向上剤は、ポリカーボネート榭脂に代表されるエンジニアリングブラ スチックと溶融成形時に相分離挙動を有し、成形品の使用温度領域では耐剥離性 が良好なレベルの相溶性 (親和性)を有しており、エンジニアリングプラスチックの特 徴 (耐熱性、耐剥離性等)を損なうことなぐ従来にない著しい溶融流動性 (成形加工 性)改良効果と耐薬品性改良効果を発現する。 [0009] 共重合体中が芳香族ビュル単量体単位 (al)を所定量含有することにより、優れた 流動性と耐薬品性改良効果を発現する流動性向上剤となる。
芳香族ビニル単量体単位 (al)を構成する芳香族ビニル単量体としては、例えばス チレン、 α—メチルスチレン、 ρ-メチルスチレン、 ρ— tーブチルスチレン、 p-メトキシスチ レン、 o—メトキシスチレン、 2, 4 ジメチルスチレン、クロロスチレン、ブロモスチレン、 ビュルトルエン、ビュルナフタレン、ビ-ルアントラセン等が挙げられ、これらを単独あ るいは 2種以上併用することができる。これらの中でも、スチレン、 α—メチルスチレン 、 ρ— tーブチルスチレンが好ましい。
共重合体中の芳香族ビニル単量体単位 (al)の含有量は 0. 5— 99. 5質量%であ る。芳香族ビニル単量体単位 (al)の含有量が、 99. 5質量%を越えるとエンジニアリ ングプラスチックとの相溶性が不十分となることから、その混合物の成形品は層状剥 離を引き起こし、外観や機械特性を損なう場合がある。また、芳香族ビニル単量体単 位 (al)の含有量力 0. 5質量%未満であると、エンジニアリングプラスチックと相溶 性がよすぎるため、溶融時に著しい流動性向上効果をもたらす相分離挙動を十分に 形成することができない場合があるとともに、耐薬品性の改良効果が低下する傾向に ある。
これらのバランスを考えると、共重合体中の芳香族ビュル単量体単位 (al)の含有 量は、 98質量%以下が好ましぐより好ましくは 96質量%以下でありさらに好ましくは 93質量%以下であり、最も好ましくは 90質量%以下である。
また、この含有量は 10質量%以上であることが好ましぐより好ましくは 20質量%以 上、さらに好ましくは 50質量%以上であり、最も好ましくは 75質量%以上である。
[0010] 本発明の流動性向上剤に用いる共重合体は、エステル基がフ ニル基、または置 換フエ二ル基を有する (メタ)アクリル酸エステル単量体単位 (a2)を含有する。共重 合体がこの単量体単位を所定量含有することで、優れた相溶性 (耐剥離性)改良効 果を発現する流動性向上剤となる。
エステル基がフエニル基、または置換フエ二ル基を有する(メタ)アクリル酸エステル 単量体単位 (a2)を構成する単量体としては、フエニル (メタ)アタリレート、 4 t プチ ルフエ-ル(メタ)アタリレート、ブロモフエ-ル(メタ)アタリレート、ジブロモフエ-ル(メ タ)アタリレート、 2, 4, 6—トリブロモフエ-ル (メタ)アタリレート、 モノクロルフエ-ル( メタ)アタリレート、ジクロルフエ-ル (メタ)アタリレート、トリクロルフエ-ル (メタ)アタリレ 一ト等を挙げられ、これらを単独あるい 2種以上併用することができる。これらの中で もフエ-ル (メタ)アタリレートが特に好まし 、。
[0011] 共重合体中の、エステル基がフ -ル基、または置換フ 二ル基を有する (メタ)ァ クリル酸エステル単量体単位(a2)の含有量は、 0. 5— 99. 5質量%であることが必 要である。
エステル基がフエニル基、または置換フエ二ル基を有する(メタ)アクリル酸エステル 単量体 (a2)の含有量力 0. 5質量%未満であると、エンジニアリングプラスチックと の相溶性が不十分となることから、流動性向上剤とエンジニアリングプラスチックとを 配合した榭脂組成物を成形した成形品が層状剥離を引き起こし、概観や機械特性を 損なう場合がある。
また、エステル基がフエ-ル基、または置換フエ二ル基を有する(メタ)アクリル酸ェ ステル単量体(a2)の含有量力 99. 5質量0 /0を越えるとエンジニアリングプラスチッ クと相溶性がよすぎるため、溶融時に著しい流動性向上効果をもたらす相分離挙動 を十分に形成することができな 、場合がある。
これらのバランスを考えるとエステル基がフエ-ル基、または置換フエ-ル基を有す る (メタ)アクリル酸エステル単量体 (a2)の使用量は、 90質量%以下が好ましぐより 好ましくは 80質量%以下であり、さらに好ましくは 50質量%以下、最も好ましくは 25 質量%以下である。
また、前記使用量は 2質量%以上であることが好ましぐより好ましくは 4質量%以上 、さらに好ましくは 7質量%以上であり、最も好ましくは 10質量%以上である。
[0012] 本発明の流動性向上剤に用いる重合体は、上述の特徴を損なわない範囲におい て、必要に応じて、芳香族ビニル単量体や、フ -ル基または置換フ -ル基を有す る (メタ)アクリル酸エステル単量体と共重合可能な他の単量体に由来する、他の単 量体単位 (a3)を 0— 40質量%含んでも良!、。
他の単量体単位 (a3)を構成する単量体は、 a , j8 -不飽和単量体であり、具体的 にはメチル (メタ)アタリレート、ェチル (メタ)アタリレート、ブチル (メタ)アタリレート、 2 —ェチルへキシルアタリレート、ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレート 、シクロへキシル (メタ)アタリレート、ベンジル (メタ)アタリレート、 t ブチル (メタ)アタリ レート、イソポロ-ル (メタ)アタリレート、 t—ブチルシクロへキシル (メタ)アタリレート等 のアルキル (メタ)アタリレート、 (メタ)アクリル酸、 2—ヒドロキシェチル (メタ)アタリレー ト、グリシジル (メタ)アタリレート、ァリル (メタ)アタリレート、 1, 3-ブチレンジメタクリレ ート等の反応性官能基を有する (メタ)アタリレート、安息香酸ビニル、酢酸ビニル、無 水マレイン酸、 N フエ-ルマレイミド、シクロへキシルマレイミド等の共重合可能な成 分を 1種または 2種以上を重合体中 0— 40質量%の範囲内で用いることができる。 上記単量体の含有量が 40質量%を超えると、エンジニアリングプラスチックに流動 性向上剤を配合した熱可塑性榭脂組成物の流動性と耐薬品性改良効果が低下する 傾向にある。
共重合体中の他の単量体単位 (a3)の好ましい含有量は、 30質量%以下であり、 より好ましくは 20質量%以下であり、更に好ましくは 10質量%以下であり、最も好まし くは 5質量%以下である。
[0013] 本発明の流動性向上剤は、ポリカーボネートに代表されるエンジニアリングプラスチ ックとの相溶性に優れることからその混合物の透明性は良好である力 共重合体を、 芳香族ビュル単量体単位 (a 1)とエステル基がフエ-ル基、または置換フエ二ル基を 有する (メタ)アクリル酸エステル単量体 (a2)の二成分系とし、更にこれらの含有量を 、特定範囲内とすることで、極めて高度な透明性を発現させることが可能となる。 この範囲は共重合体中の芳香族ビニル単量体単位(al)が 0. 5— 40質量%であつ て、エステル基がフエニル基、または置換フエ二ル基を有する(メタ)アクリル酸エステ ル単量体単位 (a2)力 0— 99. 5質量% (両者の合計量が 100質量%)とした場合と 、共重合体中の芳香族ビニル単量体単位(al)が 60— 99. 5質量%であって、エス テル基がフエ-ル基、または置換フエ二ル基を有する(メタ)アクリル酸エステル単量 体単位(a2)が 0. 5— 40質量%である場合の 2つがある。
[0014] また、本発明のエンジニアリングプラスチック用流動性向上剤に用いる共重合体の 重量平均分子量は 5000— 150000である。
重量平均分子量が 5000未満であると、相対的に低分子量物が多くなるため、耐熱 性や剛性等の種々の機能を低下させる可能性がある。また、溶融成形時の発煙、ミ スト、機械汚れ、フィッシュアイやシルバー等の成形品の外観不良といった問題が発 生する可能性も高くなる恐れがある。上記範囲において、高温時の透明性 (ヘイズの 温度依存性)が良好なものが必要な場合は、質量平均分子量が高い方が好ましぐ 好ましい質量平均分子量は 10000以上であり、より好ましくは 15000以上であり、さ らに好ましくは 30000以上であり、最も好ましくは 40000以上である。
また、上記質量平均分子量が 150000を越えると、流動性向上剤を添加した榭脂 組成物の溶融粘度も高くなり、充分な流動性改質効果が得られない可能性がある。 著しい流動性向上効果が必要な場合は、質量平均分子量を 120000以下とするこ と力 S好ましく、最も好ましくは 100000以下である。
[0015] 本発明の流動性向上剤を得るための重合方法としては、乳化重合法、懸濁重合法 、溶液重合法、塊状重合法等が挙げられるが、回収方法が容易である点で懸濁重合 法、乳化重合法が好ましい。ただし乳化重合法の場合は、熱可塑性榭脂中に残存 塩がエンジニアリングプラスチックに熱分解を引き起こす恐れがあるためカルボン酸 塩乳化剤等を使用し、酸析凝固等により回収をする力リン酸エステル等のノ-オンァ ユオン系乳化剤等を使用し酢酸カルシウム塩等で塩析凝固ことが好ましい。
以上説明したように、本発明の流動性向上剤をエンジニアリングプラスチックと共に 用いた場合、エンジニアリングプラスチックが本来有する、耐熱性、耐剥離性、さらに は透明性等の優れた特性が損なわれることなぐ流動性 (成形加工性)と耐薬品性を 向上することができる。
[0016] 〔エンジニアリングプラスチック〕
本発明の熱可塑性榭脂組成物に用いるエンジニアリングプラスチック (B)としては、 従来より知られている各種の熱可塑性エンジニアリングプラスチックであれば特に制 限はなぐポリフエ二レンエーテル、ポリカーボネート、ポリエチレンテレフタレート、ポ リブチレンテレフタレート等のポリエステル系重合体、シンジオタクチックポリスチレン 、 6—ナイロン、 6, 6—ナイロン等のナイロン系重合体、ポリアリレート、ポリフエ-レンス ルフイド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテ ルスルホン、ポリアミドイミド、ポリエーテルイミド、ポリアセタール等を例示することがで きる。
また、高度に耐熱性に優れ、溶融流動性が必要とされる耐熱 ABS等の特殊なスチ レン系榭脂ゃ耐熱アクリル系榭脂なども本発明におけるエンジニアリングプラスチック として例示することができる。これらの中でも、流動性改良効果を考慮すると、ポリフエ 二レンエーテル、ポリカーボネート等が好ましぐ芳香族ポリカーボネート(C)がより好 ましい。また、これらは、単独または 2種以上を用いることができる。
また、上記芳香族ポリカーボネート(C)としては、 4, 4'ージヒドロキシジフエニノレー 2 , 2—プロパン(すなわちビスフエノール A)系ポリカーボネート等の 4, 4,ージォキシジ ァリールアルカン系ポリカーボネートが挙げられる。
[0017] 上記エンジニアリングプラスチック(B)の分子量は、所望に応じて適宜決定すれば よぐ本発明において特に制限はない。ただし、エンジニアリングプラスチック )が 芳香族ポリカーボネート榭脂(C)の場合、粘度平均分子量は 10000— 50000であ るの力 S好ましく、 15000— 30000であるの力より好まし!/ヽ。
エンジニアリングプラスチック )は、従来より知られている各種の方法で製造する ことができる。例えば、 4, 4'ージヒドロキシジフエニノレー 2, 2—プロパン系ポリカーボネ ートを製造する場合には、 4, 4'ージヒドロキシジフエ二ルー 2, 2—プロパンを原料とし て用い、アルカリ水溶液および溶剤の存在下にホスゲンを吹き込んで反応させる方 法や、 4, 4,ージヒドロキシジフエ-ルー 2, 2—プロパンと炭酸ジエステルとを、触媒の 存在下にエステル交換させる方法が挙げられる。
[0018] また、本発明のエンジニアリングプラスチック(B)には、エンジニアリングプラスチッ クが本来有する優れた耐熱性、耐衝撃性、難燃性等を損なわない範囲、具体的には エンジニアリングプラスチック 100質量部に対して 50質量部以下の範囲で、 ABS、 H IPS, PS、 PAS等のスチレン系榭脂、アクリル系榭脂、ポリオレフイン系榭脂、エラス トマ一等のエンジニアリングプラスチック以外の熱可塑性榭脂を配合したエンジニアリ ングプラスチック系ポリマーァロイを使用することも可能である。
[0019] 〔流動性向上剤 (A) +エンジニアリングプラスチック(B)〕
流動性向上剤 (A)とエンジニアリングプラスチック (B)の配合割合は、所望の物性 等に応じて適宜決定すればよぐ本発明において特に制限はないが、エンジニアリン グプラスチックの性能 (耐熱性、衝撃強度等)を低下させることなく有効な流動性改良 効果を得るためには、エンジニアリングプラスチック 100質量部に対して、流動性向 上剤 (A) O. 1— 30質量部を配合することが好ましい。流動性向上剤 (A)の配合量が 0. 1質量部未満であると、充分な改良効果得られない恐れがある。また、流動性向 上剤 (A)の配合量が 30質量部を越えるとエンジニアリングプラスチックの優れた機械 特性を損なう恐れがある。流動性向上剤 (A)の好ま ヽ配合量は 1質量部以上であ り、より好ましくは 2質量部以上であり、更に好ましくは 3質量部以上である。また、この 配合量は 25質量部以下でることが好ましぐ更に好ましくは 15質量部以下であり、最 も好ましくは 10質量部以下である。
[0020] さらに、本発明のエンジニアリングプラスチック榭脂組成物には、必要に応じて、公 知の安定剤、強化剤、無機フィラー、耐衝撃性改質剤、難燃剤、フルォロォレフイン 等の添加剤を配合してもよい。例えば、成形品の強度、剛性、さらには難燃性を向上 させるために、タルク、マイ力、炭酸カルシウム、ガラス繊維、炭素繊維、チタン酸カリ ゥム繊維などを含有させることができる。さらに、耐薬品性などの改良のためにポリエ チレンテレフタレートなどの他のエンジニアリングプラスチック組成物、耐衝撃性を向 上させるためのコアシェル 2層構造力もなるゴム状弾性体等を配合してもよい。
[0021] エンジニアリングプラスチック(B)と流動性向上剤 (A)との配合は、粉体で混合され たものでよぐまたエンジニアリングプラスチック (B)と流動性向上剤 (A)を加熱混練 して得られたものであってもよ 、。
この様な配合方法としては、例えば、ヘンシェルミキサー、バンバリ一ミキサー、単 軸スクリュー押出機、二軸スクリュー押出機、 2本ロール、ニーダー、ブラベンダー等 を使用する方法が挙げられる。
また、予め流動性向上剤の比率が大きくなるように、流動性向上剤 (A)とェンジ- ァリングプラスチック(B)とを混合したマスターバッチを調製し、その後マスターバッチ とエンジニアリングプラスチック(B)とを再度混合し、所望の組成物を得ることもできる
[0022] 本発明の成形品は、上述した熱可塑性榭脂組成物を射出成形することにより得ら れる。とりわけエンジニアリングプラスチックの低分子量ィ匕では達成できな 、流動性 Z 耐薬品性バランスを向上させることが可能であることから、耐薬品性が要求されるへッ ドランプ等の自動車部材、 OA機器、電気'電子機器の大型'薄肉射出成形品に極 めて有効である。射出成形する方法は特に限定されるものではなぐ公知の方法によ り行うことができる。
[0023] 本発明のランプカバーは、上述の流動性向上剤 (A)とポリカーボネート榭脂(C)と を混合 (混練)すること〖こより得られる。
本発明のランプカバーにおいては、このようなポリカーボネート系ァロイを用いること により、芳香族ポリカーボネート榭脂 (C)が本来有する、耐熱性、耐剥離性、さらには 透明性等の優れた特性が損なわれることなぐ溶融流動性 (成形性)と耐薬品性を向 上することが可能である。
流動性向上剤 (A)と芳香族ポリカーボネート榭脂 (C)の混合方法としては、従来よ り知られて!/、る各種の配合方法および混鍊方法を用いることができ、例えばへンシェ ルミキサー、バンバリ一ミキサー、単純スクリュー押出機、二軸スクリュー押出機、 2本 ロール、ニーダー、ブラベンダー等を使用する方法が挙げられる。
[0024] ポリカーボネート榭脂系ァロイ中、芳香族ポリカーボネート榭脂(C)と流動性向上剤
(A)の含有量は、所望の物性等に応じて適宜決定すればよぐ本発明において特に 制限はないが、芳香族ポリカーボネート榭脂 (C)の性能 (耐熱性、衝撃強度等)を低 下させることなく有効な成形性改良効果と耐薬品性の改良効果を得るためには、芳 香族ポリカーボネート榭脂(C)が 80— 99. 5質量%であり、流動性向上剤 (A)が 0. 5— 20質量%であることが好ましい。流動性向上剤 (A)の含有量が 0. 5質量%より 小さいと、充分な改良効果が得られない恐れがある。また、流動性向上剤 (A)の含有 量が 20質量%より大きいと、芳香族ポリカーボネート榭脂 (C)の優れた機械特性を 損なう恐れがある。
流動性向上剤 (A)の好ましい含有量の下限は 1質量%以上であり、より好ましくは 2 質量%以上であり、更に好ましくは 3質量%以上である。また、流動性向上剤 (A)の 好ましい含有量の上限は 15質量%以下であり、更に好ましくは 10質量%以下である
[0025] また、本発明において、ポリカーボネート榭脂系ァロイは、必要に応じて、例えばトリ フエニルフォスファイト、トリス(ノユルフェ-ル)フォスファイト、ジステアリルペンタエリ スリトールジフォスファイト、ジフエ-ルハイドロジジェンフォスファイト、ィルガノックス 1 076〔ステアリル β - (3, 5—ジ—tert—ブチルー 4—ヒドロキシフエ-ル)プロピオネート 〕等のような安定剤、例えば 2— (2,ーヒドロキシー 5,一メチルフエ-ル)ベンゾトリァゾー ル、 2— (2,ーヒドロキシー 3,, 5,ージー tert—ァミルフエ-ル)ベンゾトリァゾール、 2— (2 ,ーヒドロキシー 4,一オタトキシフエニル)ベンゾトリァゾール、 2—ヒドロキシー 4 オタトキ シベンゾフエノン等のような耐候剤、帯電防止剤、離型剤、染顔料等を、ァロイの透 明性や本発明の効果を損なわな 、範囲で添加してもよ 、。
[0026] 本発明のランプカバーは、上述のポリカーボネート榭脂系ァロイを、射出成形、圧 縮成形、押出成形、ブロー成形、注型成形等の各種の成形方法を用いて成形するこ とにより製造できる。これらのなかでも、射出成形が最も簡便な方法であり、好ましい。 射出成形において、ァロイを溶融させ、加工する際の加工温度は 250°Cから 350°C が好ましい。
[0027] 本発明のランプカバーは、溶融流動性 (成形性)に優れ、従来にない大型'薄肉成 形が容易であり、得られたランプカバーは芳香族ポリカーボネートの優れた特徴を損 なうことなぐガソリン等の溶剤などに対する耐薬品性に優れる。
実施例
[0028] 以下、実施例により本発明をさらに詳細に説明する。なお、以下の記載において、「 部」および「%」は特に断らない限り「質量部」および「質量%」を意味する。
(製造例 1) 流動性向上剤 (A— 1)の製造
冷却管および攪拌装置を備えたセパラブルフラスコに、リン酸カルシウム 0. 4部、 蒸留水 150部を仕込み、次いでスチレン 80部、フエニルメタタリレート 20部、 AIBN1 部、 t-プチノレメノレカブタン 0. 5部を溶解した混合物をカ卩え、しばらく攪拌後、窒素バ プリングを 30分実施した。窒素雰囲気下、 80°Cで 4時間攪拌し、さらに 90°Cで 1時間 攪拌を行い重合を終了した。沈殿物を分離洗浄後、 75°Cで 24時間乾燥し流動性向 上剤 (A-1)を得た。質量平均分子量 (Mw)は、 92000であった。
[0029] (製造例 2) 流動性向上剤 (A— 2)の製造
冷却管および攪拌装置を備えたセパラブルフラスコに、ァ-オン系乳化剤 (「ラテム ル ASK」、花王 (株)製)(固形分 28%) 1. 0部(固形分)、蒸留水 290部を仕込み、 窒素雰囲気下に水浴中で 80°Cまで加熱した。次いで、硫酸第一鉄 0. 0001部、ェ チレンジァミン四酢酸ニナトリウム塩 0. 0003部、ロンガリット 0. 3部を蒸留水 5部に 溶かして加え、その後スチレン 80部、フエ-ルメタタリレート 20部、 tーブチルヒドロパ 一オキサイド 0. 2部、 n—才クチルメルカプタン 0. 3部の混合物を 180分かけて滴下 した。その後 60分間攪拌し、重合を終了した。次いで 0. 7%の割合で硫酸を溶解し た水溶液 300部を 70°Cに加温し攪拌した。この中に得られた重合体エマルシヨンを 徐々に滴下して凝固を行った。析出物を分離洗浄後、 75°Cで 24時間乾燥し 24時間 乾燥し流動性向上剤 (A— 2)を得た。質量平均分子量 (Mw)は、 77000であった。
[0030] (製造例 3) 流動性向上剤 (A— 3)の製造
n—ォクチルメルカブタンの量を 0. 3部から 0. 5部に変更する以外は製造例 2と同 様の方法により流動性向上剤 (A-3)を得た。質量均分子量 (Mw)は、 50000であ つた o
(製造例 4) 流動性向上剤 (A— 4)の製造
n—ォクチルメルカブタンの量を 0. 3部から 1部に変更する以外は製造例 2と同様の 方法により流動性向上剤 (A— 4)を得た。質量均分子量 (Mw)は、 27100であった。 (製造例 5) 流動性向上剤 (A— 5)の製造
フエ-ルメタタリレート 20部、 n—ォクチルメルカプタン 0. 3部をフエ-ルメルメタタリ レート 19部、メチルアタリレート 1部、 n-オタチルメルカブタン 2部に変更する以外は 製造例 2と同様の方法により流動性向上剤 (A— 5)を得た。質量均分子量 (Mw)は、 14300であった。
[0031] (製造例 6) 流動性向上剤 (A— 6)の製造
モノマー糸且成スチレン 80部、フエ-ノレメタタリレート 19部をスチレン 60部、フエ-ノレ メタタリレート 39部に変更する以外は製造例 5と同様の方法により流動性向上剤 (A— 6)を得た。質量均分子量(Mw)は、 13800であった。
(製造例 7) 流動性向上剤 (A— 7)の製造
モノマー糸且成スチレン 80部、フエ-ノレメタタリレート 19部をスチレン 25部、フエ-ノレ メタタリレート 74部に変更する以外は製造例 5と同様の方法により流動性向上剤 (A— 7)を得た。質量均分子量(Mw)は、 13800であった。
[0032] (製造例 8) 流動性向上剤 (B— 1)の製造
モノマー組成スチレン 80部、フエ-ルメタタリレート 19部、メチルアタリレート 1部をス チレン 96部、ブチルアタリレート 4部に変更する以外は製造例 5と同様の方法により 流動性向上剤(B-1)を得た。質量均分子量 (Mw)は、 14000であった。
(製造例 9) 流動性向上剤 (B— 2)の製造
モノマー組成スチレン 80部、フエ-ルメタタリレート 20部、 n-ォクチルメルカプタン 0 . 3部をフエ-ルメタクリレー卜 74部、メチルメタクリレー卜 25部、メチルアタリレー卜 1部 、 n-ォクチルメルカブタン 0. 4部に変更する以外は製造例 2と同様の方法により流動 性向上剤(B-2)を得た。質量均分子量 (Mw)は、 60000であった。
上記製造例 1一 9で製造した共重合体用の単量体組成、得られた共重合体の質量 平均分子量 (Mw)、重合様式を表 1に示した。
[0033] [表 1]
Figure imgf000017_0001
なお、表中の略号は、以下の通りである。
St:スチレン、 PhMA:フエ-ルメタタリレート、 MA:メチルアタリレート、 BA:ブチルァ タリレート、 MMA:メチルメタタリレート
[0035] (実施例 1一 7、比較例 1一 3)
得られた流動性向上剤およびポリカーボネート榭脂を表 2に示す質量比で混合し、 二軸押出機 (機種名「TEM - 35」、東芝機械製)に供給し、 280°Cで溶融混練し、ェ ンジニアリングプラスチック組成物を得た。
得られた熱可塑性榭脂組成物について、後述する(1)一(5)の評価を行った。その 結果を表 2に示す。
[0036] [表 2]
Figure imgf000019_0001
チック製、粘度平均分子量 2万)
[0038] (性能評価方法)
(1)溶融流動性
得られたエンジニアリングプラスチック組成物のスパイラルフロー長さ SFLを射出成 形機(「IS— 100」、東芝機械 (株)製)を用いて評価した。なお、成形温度は 280°C、 金型温度は 80°C、射出圧力は 98MPaとした。また、成形品の肉厚は 2mm、幅は 15 mmとし 7こ。
(2)耐薬品性
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、厚さ 2mm、 15cm角の平板を作成、これを切断し厚さ 2mm、 15cm X 2. 5cmの成形品を得た。試験片を 120°Cで 2時間ァニール処理後、カンチ レバー試験を行い、薬品塗布による試験片の破断時間を測定した。測定条件は試験 温度 23°C、荷重 10MPa、溶媒トルエン/イソオクタン = lZlvol%で実施した。
[0039] (3)表層剥離 (耐剥離性)
成形品の突き出しピン跡にカッターで切り込みを入れ、剥理状態を目視観察した。 その結果の評価基準は以下の通りである。
〇:剥離なく良好
X:表層剥離が見られる
(4)荷重たわみ温度 (耐熱性)
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、肉厚 1Z4インチの成形品を成形した。 成形品の荷重たわ み温度を ASTM D648に準拠して測定した。なお、ァニールは行わず、荷重は 1. 82MPaとした。
(5)透明性
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、厚さ 3mm、 5cm角の平板の成形品を成形した。
成形品の全光線透過率、ヘイズを ASTM D1003に準拠して 23°Cと 100°Cで測 し 7こ。 [0040] 表 2の結果から明らかなように、実施例 1一 7で得られたエンジニアリングプ組成物 は、耐熱性、耐剥離性さらには透明性を損なうことなく流動性と耐薬品性の著しく向 上が見られ、物性バランスに非常に優れていた。
一方、比較例 1で得られたエンジニアリングプラスチック榭脂組成物は、相溶性が不 十分なため、良好な耐剥離性が得られなカゝつた。
また、比較例 2で得られたエンジニアリングプラスチック榭脂組成物は、流動性向上 剤が芳香族ビ-ルイ匕合物を含んでおらずかつ相溶性が良すぎるため、充分な流動 性と耐薬品性が得られな力つた。
また、比較例 3で得られたエンジニアリングプラスチック組成物は、流動性向上剤を 含有していないため、充分な流動性と耐薬品性が得られな力つた。
[0041] (製造例 10) 流動性向上剤 (A— 8)の製造
冷却管および攪拌装置を備えたセパラブルフラスコに、ァ-オン系乳化剤 (「ラテム ル ASK」、花王 (株)製)(固形分 28%) 1. 0部(固形分)、蒸留水 290部を仕込み、 窒素雰囲気下に水浴中で 80°Cまで加熱した。次いで、硫酸第一鉄 0. 0001部、ェ チレンジァミン四酢酸ニナトリウム塩 0. 0003部、ロンガリット 0. 3部を蒸留水 5部に 溶かして加え、その後スチレン 87. 5部、フエ-ルメタタリレート 12. 5部、 tーブチルヒ ドロパーオキサイド 0. 2部、 n—ォクチルメルカプタン 0. 5部の混合物を 180分かけて 滴下した。その後 60分間攪拌し、重合を終了した。次いで 0. 7%の割合で硫酸を溶 解した水溶液 300部を 70°Cに加温し攪拌した。この中に得られた重合体エマルショ ンを徐々に滴下して凝固を行った。析出物を分離洗浄後、 75°Cで 24時間乾燥し 24 時間乾燥し流動性向上剤 (A— 8)を得た。質量平均分子量 (Mw)は、 49000であつ た。
[0042] (製造例 11) 流動性向上剤 (A— 9)の製造
n—ォクチルメルカブタンの量を 0. 5部から 0. 2部に変更する以外は製造例 10と同 様の方法により流動性向上剤 (A— 9)を得た。質量均分子量 (Mw)は、 98000であ つた o
上記製造例 10— 11で製造した共重合体用の単量体組成、得られた共重合体の 質量平均分子量 (Mw)、重合様式を表 3に示した。 [0043] [表 3]
Figure imgf000022_0001
[0044] なお、表中の略号は、以下の通りである。
St:スチレン、 PhMA:フエ-ルメタタリレート
[0045] (実施例 8— 9、比較例 4一 5)
得られた流動性向上剤およびポリカーボネート榭脂を表 4に示す質量比で混合し、 二軸押出機 (機種名「TEM - 35」、東芝機械製)に供給し、 280°Cで溶融混練し、ェ ンジニアリングプラスチック組成物を得た。
得られた熱可塑性榭脂組成物について、後述する(1)一(5)の評価を行った。その 結果を表 4に示す。
[0046] [表 4]
実施例 8 実施例 9 比較例 4 比較例 5
向 A-8 7.5
剤 A-9 7.5
PC2 100
PC3 92.5 92.5 100
溶融流動性 335 247 177 222
(SPL: mm)
耐薬品性(MPa) 11.5 11.5 8.5 8
表層剥離性
評 O O O O
結 荷重たわみ温度 (°C) 134 133 135 134
全光線透過率 91 91 91 91
(%,23°C)
ヘイズ(%,23°C) 0.9 0.4 0.2 0.3
ヘイズ(%.100°C) 0.9 0.4 0.2 0.3
[0047] PC2 :ポリカーボネート榭脂(「パンライト L1225WS」、帝人化成製、粘度平均分子 量 2. 1万)
PC3 :ポリカーボネート榭脂(「パンライト L1225ZL」、帝人化成製、粘度平均分子量 1. 9万)
[0048] (性能評価方法)
(1)溶融流動性
得られたエンジニアリングプラスチック組成物のスパイラルフロー長さ SFLを射出成 形機(「IS— 100」、東芝機械 (株)製)を用いて評価した。なお、成形温度は 280°C、 金型温度は 80°C、射出圧力は 98MPaとした。また、成形品の肉厚は 2mm、幅は 15 mmとし 7こ。
(2)耐薬品性
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、厚さ 2mm、 15cm角の平板を作成、これを切断し厚さ 2mm、 12cm X 3. 5cmの成形品を得た。試験片を 120°Cで 2時間ァニール処理後、 1/4 楕円試験を行い、薬品塗布による 4時間後の試験片の限界応力値 (MPa)を測定し た。測定条件は試験温度 23°C、溶媒トルエン/イソオクタン = lZlvol%で実施した
(3)表層剥離 (耐剥離性)
成形品の突き出しピン跡にカッターで切り込みを入れ、剥理状態を目視観察した。 その結果の評価基準は以下の通りである。
〇:剥離なく良好
X:表層剥離が見られる
(4)荷重たわみ温度 (耐熱性)
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、肉厚 1Z4インチの成形品を成形した。 120°Cで 2時間ァニ ール処理後成形品の荷重たわみ温度を ASTM D648に準拠して測定した。なお、 荷重は 1. 82MPaとした。
(5)透明性
得られたエンジニアリングプラスチック組成物を用い、射出成形機(「IS— 100」、東 芝機械 (株)製)により、厚さ 2mm、 5cm X 10cmの平板の成形品を成形した。
成形品の全光線透過率、ヘイズを ASTM D1003に準拠して 23°Cと 100°Cで測 し 7こ。
[0049] 表 4の結果から明らかなように、実施例 8— 9で得られたエンジニアリングプ組成物 は、耐熱性、耐剥離性さらには透明性を損なうことなく流動性と耐薬品性の著しく向 上が見られ、物性バランスに非常に優れていた。
一方、比較例 4、 5で得られたエンジニアリングプラスチック榭脂組成物は、流動性 向上剤を含有していないため、充分な流動性と耐薬品性のノ ンスが得られなかつ た。
[0050] (実施例 10)
実施例 9で得られたエンジニアリングプラスチック組成物を用い、射出成形機 (「IS— 100」、東芝機械 (株)製)により、厚さ 2mm、 10cm X 10cmの平板の成形品を成形 した。この平板に UV硬化によるハードコート処理を実施後、計装化面衝撃試験 (ノヽ イド口ショット)を実施した。全吸収エネルギーは 30Jであり、破壊形態は延性破壊で めつに。
(比較例 6)
比較例 5で得られたエンジニアリングプラスチック組成物を用いる以外は実施例 10 と同様の方法により、厚さ 2mm、 10cm X 10cmの平板の成形品を成形した。この平 板に UV硬化によるハードコート処理を実施後、計装化面衝撃試験 (ハイド口ショット) を実施した。全吸収エネルギーは 5Jであり、破壊形態は脆性破壊であった。
[0051] (製造例 12) 流動性向上剤 (A— 10)の製造
モノマー組成を、スチレン 90部、フエ-ルメタタリレート 10部に変更する以外は製造 例 10と同様の方法により流動性向上剤 (A-10)を得た。質量均分子量 (Mw)は、 5 1000であった。
(製造例 13) 流動性向上剤 (B— 3)の製造
モノマー組成を、スチレン 100部に変更する以外は製造例 10と同様の方法により 流動性向上剤(B-3)を得た。質量均分子量 (Mw)は、 55000であった。
上記製造例 12、 13で製造した共重合体用の単量体組成、得られた共重合体の質 量平均分子量 (Mw)、重合様式を表 5に示した。
[0052] [表 5]
製造例 1 0 製造例 1 2 製造例 1 3
流動性向上剤 A— 8 A— 1 0 B-3
St 87.5 90 100
仕 PhMA 12.5 10 0
み n—ォクチルメルカフ'タン 0.5 0.5 0.5
tーフチル tにロハ"一才キサイ 0.2 0.2 0.2
重合様式 乳化 乳化 乳化
質量平均分子量 49000 98000 55000 [0053] なお、表中の略号は、以下の通りである。
St:スチレン、 PhMA:フエ-ルメタタリレート
[0054] 実施例 11一 15、比較例 7— 9
[ポリカーボネート榭脂系ァロイの製造および成形品の評価]
重合体 (A - 8) (A - 10) (A - 3)および (B - 3)と、表 6に示す各成分とを、表 6に示 す割合 (質量比)で混合し、二軸押出機 (機種名「TEM-35」、東芝機械製)に供給 し、 280°Cで溶融混練し、ポリカーボネート榭脂系ァロイを得た。
以下、表 6中の略号および使用した材料について記す。
PC— 4 :ポリカーボネート榭脂(「パンライト L 1225Z— 100」、帝人化成製、粘度平 均分子量 2. 2万)
PC— 5 :ポリカーボネート榭脂(「パンライト L 1225ZL— 100」、帝人化成製、粘度 平均分子量 1. 9万)
[0055] [表 6]
Figure imgf000027_0001
得られたポリカーボネート榭脂系ァロイを用いて、後述する(1) (6)の評価を行つ た。その結果を表 6に併記する。
(性能評価方法) (1)溶融流動性
得られたポリカーボネート榭脂系ァロイのスパイラルフロー長さ(SFL)を、射出成形 機(「IS - 100」、東芝機械 (株)製)を用いて評価した。なお、成形温度は 280°C、金 型温度は 80°C、射出圧力は 98MPaとした。また、成形品の肉厚は 2mm、幅は 15m mとした。
なお、ランプカバーの大型ィヒ '薄肉化のためには、上記 SFLが 200mm以上の範 囲内であることが好ましい。
(2)耐薬品性
得られたポリカーボネート榭脂系ァロイを用い、射出成形機(「IS— 100」、東芝機械 (株)製)により、厚さ 2mm、 15cm角の平板を作成、これを切断し、厚さ 2mm、 3. 5c m X 15cmの成形品(試験片)を得た。
試験片を 120°Cで 2時間ァニール処理後、 1Z4楕円法溶剤試験 (定歪試験)を行 い、溶媒塗布後 60分後のクラック発生位置を測定し、限界応力 (MPa)を計算した。 測定条件は試験温度 23°C、溶媒 [トルエン Zイソオクタン = lZlvol%]で実施した なお、自動車等のランプカバーとして用いるためには、上記耐薬品性が 8. 5MPa 以上の範囲内であることが好ましい
[0057] (3)耐剥離性 (表層剥離)
成形品の突き出しピン跡にカッターで切り込みを入れ、剥理状態を目視観察した。 その結果の評価基準は以下の通りである。
〇:剥離なく良好
X:表層剥離が見られる
[0058] (4)耐熱性 (荷重たわみ温度)
得られたポリカーボネート榭脂系ァロイを用い、射出成形機(「IS— 100」、東芝機械 (株)製)により、肉厚 1Z4インチの成形品を成形した。
成形品の荷重たわみ温度を ASTM D648に準拠して測定した。なお、ァニール は行わず、荷重は 1. 82MPaとした。
なお、自動車等のランプカバーとして用いるためには、上記耐熱性が 120°C以上の 範囲内であることが好ましい
[0059] (5)透明性 (全光線透過率およびヘイズ)
得られたポリカーボネート榭脂系ァロイを用い、射出成形機(「IS— 100」、東芝機械 (株)製)により、厚さ 2mm、 5cm角の平板の成形品を成形した。成形品の全光線透 過率およびヘイズを ASTM D1003に準拠して 23°Cで測定した。
なお、ランプカバーとしては、上記全光線透過率が 88%以上の範囲内であることが 好ましい。また、ヘイズが 2%以下の範囲内であることが好ましい ^
[0060] (6)レンズ外観
得られたポリカーボネート榭脂系ァロイを用い、射出成形機(「IS— 100」、東芝機械 (株)製)により、厚さ 2mm、 5cm角の平板の成形品を成形した。成形品に HIDラン プ(「HID Handy Light Pro NN13000」、松下電工(株)製)を当て、レンズ外 観 (強力光源下での外観)を目?見観察した。その結果の評価基準は以下の通りであ る。
〇:無色透明で良好
X:曇りが観察される
[0061] 表 6の結果から明らかなように、実施例 11一 15で得られたポリカーボネート榭脂系 ァロイの成形品は、充分な耐熱性、透明性を有するとともに、溶融流動性、耐薬品性 の著しい向上が見られ、大型 ·薄肉ランプカバーに必要な特性に非常に優れていた 一方、比較例 7で得られたポリカーボネート榭脂系ァロイの成形品は、実施例 11一 15のポリカーボネート榭脂系ァロイを用いて得られた成形品に比べ、遺剥離性や透 明性が悪ぐレンズ外観も不良であった。これは、重合体 B— 1と PC— 4との相溶性が 不十分なためと考えられる。
また、共重合体 (A— 8) (A— 10) (A— 3)を含有していない比較例 8、 9で得られたポ リカーボネート榭脂系ァロイの成形品は、実施例 11一 15で得られたポリカーボネート 榭脂系ァロイの成形品に比べ、大型 ·薄肉ランプカバーとするのに充分な溶融流動 性と耐薬品性のバランスが得られなカゝつた。
産業上の利用可能性 本発明の流動性向上剤は、エンジニアリングプラスチックに少量添加することにより 、エンジニアリングプラスチックの特徴 (透明性、耐熱性、耐剥離性、耐薬品性等)を 損なうことなく、著し 、溶融流動性 (成形加工性)改良効果が得ることが可能である。 本流動性向上剤を含むエンジニアリングプラスチックは、各種物性に優れかつ溶融 流動性 (成形加工性)が良好であることから、より複雑な形状、大型、薄型等の任意の 形状の成形品を容易、かつ安定に成形することができ、 OA (オフィスオートメーション )機器、情報 ·通信機器、電気 ·電子機器、家庭電化機器、自動車部材、建築部材と して工業的に極めて有用である。また、本発明のランプカバーは、溶融流動性 (成形 性)に優れ、芳香族ポリカーボネートの優れた特徴を損なうことなぐ耐溶剤性にも優 れるポリカーボネート榭脂ァロイ力もなるものである。そのため、より複雑な形状、大型 、薄型等の任意の形状のレンズカバー成形品を容易、かつ安定に成形することが可 能となり、 OA (オフィスオートメーション)機器、情報'通信機器、電気'電子機器、家 庭電化機器、自動車部材、建築部材として、特に自動車等の薄肉'大型ヘッドランプ 用レンズカバーとして工業的に極めて有用である。

Claims

請求の範囲
[I] 芳香族ビュル単量体単位 (al) O. 5— 99. 5質量%、エステル基がフエ-ル基また は置換フ -ル基である(メタ)アクリル酸エステル単量体単位(a2) 0. 5— 99. 5質 量%、その他の単量体単位(a3) 0— 40質量% (al— a3の合計が 100質量%)とか らなり、その重量平均分子量が 5000— 150000である重合体 (A)からなるェンジ- ァリングプラスチック用流動性向上剤。
[2] 重合体 (A)の重量平均分子量が 5000— 100000である請求項 1記載のェンジ二 ァリングプラスチック用流動性向上剤。
[3] 重合体 (A)力 芳香族ビュル単量体単位 (al) 50— 99. 5質量%と、エステル基が フエ-ル基または置換フエ-ル基である(メタ)アクリル酸エステル単量体単位 (a2) 0
. 5— 50質量%とからなる重合体であることを特徴とする請求項 1記載のエンジニアリ ングプラスチック用流動性向上剤。
[4] (メタ)アクリル酸エステル系単量体単位 (a2)がフエニルメタタリレート単量体単位で あることを特徴とする請求項 1記載のエンジニアリングプラスチック用流動性向上剤。
[5] 重合体 (A)が、懸濁重合または乳化重合により得られたものであることを特徴とする 請求項 1記載のエンジニアリングプラスチック用流動性向上剤。
[6] エンジニアリングプラスチック(B)に、請求項 1記載のエンジニアリングプラスチック 用流動性向上剤を配合してなる熱可塑性榭脂組成物。
[7] エンジニアリングプラスチック(B) 100質量部にエンジニアリングプラスチック用流動 性向上剤 0. 1— 30質量部を配合してなる請求項 6記載の熱可塑性榭脂組成物。
[8] エンジニアリングプラスチック(B)力 ポリカーボネート系榭脂であることを特徴とす る請求項 6記載の熱可塑性榭脂組成物。
[9] 請求項 6記載の熱可塑性榭脂組成物を射出成形することにより得られた成形品。
[10] 請求項 6記載の熱可塑性榭脂組成物を射出成形することにより得られた自動車用 部材。
[II] 請求項 6記載の熱可塑性榭脂組成物を射出成形することにより得られたランプカバ
PCT/JP2004/014393 2003-09-30 2004-09-30 エンジニアリングプラスチック用流動性向上剤およびこれを含有する熱可塑性樹脂組成物ならびにその成形品 WO2005030819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/573,831 US8729205B2 (en) 2003-09-30 2004-09-30 Flowability improver for engineering plastics, thermoplastic resin compositions containing the same and molded articles of the compositions
EP04788421.8A EP1679324B1 (en) 2003-09-30 2004-09-30 Flowability improver for engineering plastics, thermoplastic resin compositions containing the same, and molded articles of the compositions
CN200480034416XA CN1882621B (zh) 2003-09-30 2004-09-30 工程塑料用流动性改进剂、含有它的热塑性树脂组合物及其成型品
KR1020067007980A KR101192949B1 (ko) 2003-09-30 2004-09-30 엔지니어링 플라스틱용 유동성 향상제, 이것을 함유하는 열가소성 수지 조성물 및 그의 성형품
JP2005514282A JP4054042B2 (ja) 2003-09-30 2004-09-30 熱可塑性樹脂組成物ならびにその成形品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-340819 2003-09-30
JP2003340819 2003-09-30
JP2004-049320 2004-02-25
JP2004049320 2004-02-25

Publications (1)

Publication Number Publication Date
WO2005030819A1 true WO2005030819A1 (ja) 2005-04-07

Family

ID=34395628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014393 WO2005030819A1 (ja) 2003-09-30 2004-09-30 エンジニアリングプラスチック用流動性向上剤およびこれを含有する熱可塑性樹脂組成物ならびにその成形品

Country Status (6)

Country Link
US (1) US8729205B2 (ja)
EP (1) EP1679324B1 (ja)
JP (1) JP4054042B2 (ja)
KR (1) KR101192949B1 (ja)
CN (1) CN1882621B (ja)
WO (1) WO2005030819A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199774A (ja) * 2005-01-19 2006-08-03 Mitsubishi Rayon Co Ltd ハードコート品
JP2006249290A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 帯電防止性芳香族ポリカーボネート樹脂組成物
JP2006249292A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2006249286A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物
JP2006249289A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 光高反射性芳香族ポリカーボネート樹脂組成物
JP2006249291A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd ガラス強化ポリカーボネート樹脂組成物
JP2006257127A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2006257195A (ja) * 2005-03-16 2006-09-28 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2006257126A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
JP2006257284A (ja) * 2005-03-17 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2006306958A (ja) * 2005-04-27 2006-11-09 Mitsubishi Rayon Co Ltd 芳香族ポリカーボネート系樹脂用流動性向上剤、芳香族ポリカーボネート系樹脂組成物およびその成形品
JP2008031231A (ja) * 2006-07-27 2008-02-14 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物
JP2008095025A (ja) * 2006-10-13 2008-04-24 Jsp Corp 光拡散剤及びビニル系樹脂粒子の製造方法並びに光拡散シート
WO2008081791A1 (ja) 2006-12-25 2008-07-10 Mitsubishi Rayon Co., Ltd. 流動性向上剤、芳香族ポリカーボネート系樹脂組成物、及びその成形品
JP2009030004A (ja) * 2007-06-29 2009-02-12 Sumitomo Dow Ltd 流動性の改良された難燃性ポリカーボネート樹脂組成物
JP2009084528A (ja) * 2007-10-03 2009-04-23 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物及び成形品
JP2009263533A (ja) * 2008-04-25 2009-11-12 Mitsubishi Rayon Co Ltd エンジニアリングプラスチック用溶融張力向上剤、熱可塑性樹脂組成物及び成形体
JP2010132806A (ja) * 2008-12-05 2010-06-17 Sumitomo Dow Ltd 光反射性に優れた難燃性ポリカーボネート樹脂組成物およびそれからなる成形品
JP2012211233A (ja) * 2011-03-31 2012-11-01 Unitika Ltd 樹脂組成物及び該樹脂組成物からなる成形体
US8642699B2 (en) 2008-03-11 2014-02-04 Mitsubishi Rayon Co., Ltd. Fluidity improver for aromatic polycarbonate resin, process for producing the fluidity improver for aromatic polycarbonate resin, aromatic polycarbonate resin composition, and molded product
JP2016041788A (ja) * 2014-08-19 2016-03-31 三菱レイヨン株式会社 重合体の製造方法、重合体、及び、芳香族ポリカーボネート系樹脂用流動性向上剤
KR20160111993A (ko) 2014-03-20 2016-09-27 미쯔비시 레이온 가부시끼가이샤 비닐 중합체 분체, 열가소성 수지 조성물 및 그의 성형체
JP2021017545A (ja) * 2019-07-22 2021-02-15 三菱ケミカル株式会社 流動性向上剤、熱可塑性樹脂組成物およびその成形品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188349B1 (ko) 2008-12-17 2012-10-05 제일모직주식회사 투명성 및 내스크래치성이 향상된 폴리카보네이트계 수지 조성물
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145260A (ja) * 1984-12-18 1986-07-02 Mitsubishi Rayon Co Ltd アクリル系被覆用材料
JPS6481807A (en) * 1987-09-24 1989-03-28 Mitsubishi Rayon Co Styrene based resin
JPH01115914A (ja) * 1987-10-29 1989-05-09 Mitsubishi Rayon Co Ltd メタクリル樹脂
JPH075301A (ja) * 1993-06-15 1995-01-10 Tosoh Corp マイクロレンズ形成用感光性組成物
JPH11181197A (ja) * 1997-10-13 1999-07-06 Arakawa Chem Ind Co Ltd ポリカーボネート用流動性改質剤およびポリカーボネート樹脂組成物
JP2001524151A (ja) * 1997-05-09 2001-11-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー 化学組成物およびそれより得られるポリマーと高分子物質

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919108A (en) 1974-11-14 1975-11-11 Westinghouse Electric Corp Method of preventing degradation of yttrium oxide phosphor
JPS5437977A (en) 1977-08-31 1979-03-20 Mitsubishi Electric Corp Equipment for treating discharge processing liquids
JPS5849942A (ja) 1981-09-18 1983-03-24 Matsushita Electric Ind Co Ltd 遠紫外線露光用レジスト材料
JPS5942024A (ja) 1982-09-02 1984-03-08 Mitsubishi Electric Corp 廃オゾン処理装置
JPS5978219A (ja) * 1982-10-28 1984-05-07 Konishiroku Photo Ind Co Ltd 光学用樹脂組成物および光学用素子
JPS62138514A (ja) 1985-12-11 1987-06-22 Hitachi Chem Co Ltd 光学用樹脂材料
DE3719239A1 (de) 1987-06-06 1988-12-15 Roehm Gmbh Vertraegliche polycarbonat-polymethacrylat-mischungen
JPH0324501A (ja) 1989-06-22 1991-02-01 Optrex Corp カラーフィルター及びカラー液晶表示素子
KR0170358B1 (ko) * 1991-10-22 1999-05-01 . 굴절률 분포형 광학 수지 재료와 그 제조 방법 및 광전송체
JPH0665362A (ja) 1992-07-02 1994-03-08 Teijin Chem Ltd ランプカバー
JPH06306230A (ja) 1993-04-23 1994-11-01 Mitsubishi Petrochem Co Ltd 熱可塑性樹脂組成物
JPH0790073A (ja) 1993-09-24 1995-04-04 Teijin Chem Ltd ランプ用レンズ
JP3521956B2 (ja) 1994-06-15 2004-04-26 富士通化成株式会社 バックライトユニット用導光体の製造方法
JP2002509565A (ja) 1996-12-19 2002-03-26 イーストマン ケミカル カンパニー 流動性が改良された靱性強化ポリエステル
US5739235A (en) * 1997-04-09 1998-04-14 Eastman Kodak Company (2-(1,2-benzisothiazol-3(2H)-ylidene 1,1-dioxide)-2-cyanoacetamido)phenyl acrylate compounds and polymers
JP3867177B2 (ja) * 1997-04-30 2007-01-10 Jsr株式会社 カラーフィルタ用感放射線性組成物
JP2963945B2 (ja) 1997-05-08 1999-10-18 大塚化学株式会社 2,2’−ビス(6−ベンゾトリアゾリルフェノール)化合物
JP3864605B2 (ja) 1998-02-27 2007-01-10 藤倉化成株式会社 紫外線硬化性被覆用樹脂組成物
KR20000048033A (ko) 1998-12-17 2000-07-25 후루타 다케시 열가소성수지 조성물
JP2000178432A (ja) 1998-12-17 2000-06-27 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP3461746B2 (ja) 1999-02-17 2003-10-27 三菱レイヨン株式会社 熱可塑性樹脂組成物
JP2002258027A (ja) * 2001-02-28 2002-09-11 Jsr Corp カラーフィルタ用感放射線性組成物とその製造方法、カラーフィルタおよびカラー液晶表示素子
JPWO2003072620A1 (ja) * 2002-02-28 2005-06-23 三菱レイヨン株式会社 熱可塑性樹脂組成物、及びエンジニアリングプラスチック組成物
WO2006077813A1 (ja) 2005-01-19 2006-07-27 Mitsubishi Rayon Co., Ltd. 芳香族ポリカーボネート系樹脂組成物および光拡散性成形品
JP2006201667A (ja) 2005-01-24 2006-08-03 Mitsubishi Rayon Co Ltd 導光板およびこれを備えた面光源体
JP2006249292A (ja) 2005-03-11 2006-09-21 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP4817684B2 (ja) 2005-03-16 2011-11-16 帝人化成株式会社 ポリカーボネート樹脂組成物
JP2009030004A (ja) * 2007-06-29 2009-02-12 Sumitomo Dow Ltd 流動性の改良された難燃性ポリカーボネート樹脂組成物
JP5301811B2 (ja) * 2007-11-14 2013-09-25 帝人株式会社 ポリカーボネート樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145260A (ja) * 1984-12-18 1986-07-02 Mitsubishi Rayon Co Ltd アクリル系被覆用材料
JPS6481807A (en) * 1987-09-24 1989-03-28 Mitsubishi Rayon Co Styrene based resin
JPH01115914A (ja) * 1987-10-29 1989-05-09 Mitsubishi Rayon Co Ltd メタクリル樹脂
JPH075301A (ja) * 1993-06-15 1995-01-10 Tosoh Corp マイクロレンズ形成用感光性組成物
JP2001524151A (ja) * 1997-05-09 2001-11-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー 化学組成物およびそれより得られるポリマーと高分子物質
JPH11181197A (ja) * 1997-10-13 1999-07-06 Arakawa Chem Ind Co Ltd ポリカーボネート用流動性改質剤およびポリカーボネート樹脂組成物

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199774A (ja) * 2005-01-19 2006-08-03 Mitsubishi Rayon Co Ltd ハードコート品
JP2006249290A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 帯電防止性芳香族ポリカーボネート樹脂組成物
JP2006249292A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2006249286A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物
JP2006249289A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd 光高反射性芳香族ポリカーボネート樹脂組成物
JP2006249291A (ja) * 2005-03-11 2006-09-21 Teijin Chem Ltd ガラス強化ポリカーボネート樹脂組成物
JP2006257126A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物
JP2006257127A (ja) * 2005-03-15 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2006257195A (ja) * 2005-03-16 2006-09-28 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2006257284A (ja) * 2005-03-17 2006-09-28 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JP2006306958A (ja) * 2005-04-27 2006-11-09 Mitsubishi Rayon Co Ltd 芳香族ポリカーボネート系樹脂用流動性向上剤、芳香族ポリカーボネート系樹脂組成物およびその成形品
JP2008031231A (ja) * 2006-07-27 2008-02-14 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物
JP2008095025A (ja) * 2006-10-13 2008-04-24 Jsp Corp 光拡散剤及びビニル系樹脂粒子の製造方法並びに光拡散シート
US8202943B2 (en) 2006-12-25 2012-06-19 Mitsubishi Rayon Co., Ltd. Fluidity-improving agent, aromatic polycarbonate resin composition, and shaped article thereof
WO2008081791A1 (ja) 2006-12-25 2008-07-10 Mitsubishi Rayon Co., Ltd. 流動性向上剤、芳香族ポリカーボネート系樹脂組成物、及びその成形品
TWI455950B (zh) * 2006-12-25 2014-10-11 Mitsubishi Rayon Co 流動性改良劑、芳香族聚碳酸酯樹脂組成物以及其成型品
JP5269585B2 (ja) * 2006-12-25 2013-08-21 三菱レイヨン株式会社 流動性向上剤、芳香族ポリカーボネート系樹脂組成物、及びその成形品
JP2009030004A (ja) * 2007-06-29 2009-02-12 Sumitomo Dow Ltd 流動性の改良された難燃性ポリカーボネート樹脂組成物
JP2009084528A (ja) * 2007-10-03 2009-04-23 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物及び成形品
US8642699B2 (en) 2008-03-11 2014-02-04 Mitsubishi Rayon Co., Ltd. Fluidity improver for aromatic polycarbonate resin, process for producing the fluidity improver for aromatic polycarbonate resin, aromatic polycarbonate resin composition, and molded product
JP2009263533A (ja) * 2008-04-25 2009-11-12 Mitsubishi Rayon Co Ltd エンジニアリングプラスチック用溶融張力向上剤、熱可塑性樹脂組成物及び成形体
JP2010132806A (ja) * 2008-12-05 2010-06-17 Sumitomo Dow Ltd 光反射性に優れた難燃性ポリカーボネート樹脂組成物およびそれからなる成形品
JP2012211233A (ja) * 2011-03-31 2012-11-01 Unitika Ltd 樹脂組成物及び該樹脂組成物からなる成形体
KR20160111993A (ko) 2014-03-20 2016-09-27 미쯔비시 레이온 가부시끼가이샤 비닐 중합체 분체, 열가소성 수지 조성물 및 그의 성형체
KR20180128081A (ko) 2014-03-20 2018-11-30 미쯔비시 케미컬 주식회사 비닐 중합체 분체, 열가소성 수지 조성물 및 그의 성형체
US10221268B2 (en) 2014-03-20 2019-03-05 Mitsubishi Chemical Corporation Vinyl polymer powder, thermoplastic resin composition, and molded body thereof
US10787529B2 (en) 2014-03-20 2020-09-29 Mitsubishi Chemical Corporation Vinyl polymer powder, thermoplastic resin composition, and molded body thereof
JP2016041788A (ja) * 2014-08-19 2016-03-31 三菱レイヨン株式会社 重合体の製造方法、重合体、及び、芳香族ポリカーボネート系樹脂用流動性向上剤
JP2021017545A (ja) * 2019-07-22 2021-02-15 三菱ケミカル株式会社 流動性向上剤、熱可塑性樹脂組成物およびその成形品

Also Published As

Publication number Publication date
KR20060108624A (ko) 2006-10-18
EP1679324A4 (en) 2007-11-07
EP1679324B1 (en) 2014-03-05
EP1679324A1 (en) 2006-07-12
CN1882621A (zh) 2006-12-20
US8729205B2 (en) 2014-05-20
JP4054042B2 (ja) 2008-02-27
KR101192949B1 (ko) 2012-10-18
CN1882621B (zh) 2013-05-15
JPWO2005030819A1 (ja) 2006-12-07
US20070213451A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4054042B2 (ja) 熱可塑性樹脂組成物ならびにその成形品
JP5303027B2 (ja) 相溶性が改善された難燃性−耐スクラッチ性熱可塑性樹脂組成物
US8735490B2 (en) Thermoplastic resin composition having improved impact strength and melt flow properties
KR101320326B1 (ko) 충격성과 유동성이 우수한 열가소성 수지 조성물
JP2011137158A (ja) 優れた耐スクラッチ性及び衝撃強度を有するポリカーボネート樹脂組成物
KR20050085454A (ko) 고 유동성 엔지니어링 열가소성 조성물 및 이로부터 제조된제품
JP2005307180A (ja) 熱可塑性樹脂組成物
JPH10130485A (ja) 熱可塑性樹脂組成物
JP2007039490A (ja) 流動性向上剤、芳香族ポリカーボネート樹脂組成物および成形品
WO2019176763A1 (ja) 熱可塑性樹脂組成物およびその成形品
KR101134018B1 (ko) 상용성이 향상된 난연 내스크래치 열가소성 수지 조성물 및이를 이용한 성형품
JP2004002897A (ja) トレー用熱可塑性樹脂組成物
JPH0931309A (ja) 熱可塑性樹脂組成物
JP2006306958A (ja) 芳香族ポリカーボネート系樹脂用流動性向上剤、芳香族ポリカーボネート系樹脂組成物およびその成形品
JP4333857B2 (ja) 難燃性熱可塑性樹脂組成物およびその再生成形材料
JP4916623B2 (ja) 熱可塑性樹脂組成物
JP2021017545A (ja) 流動性向上剤、熱可塑性樹脂組成物およびその成形品
JP2001348473A (ja) 熱可塑性樹脂組成物
JPH11199747A (ja) 熱可塑性樹脂組成物
JP2001226556A (ja) 難燃性熱可塑性樹脂組成物
KR101247629B1 (ko) 열가소성 수지 조성물
KR100877296B1 (ko) 내스크래치 난연성 열가소성 수지 조성물
KR20070069349A (ko) 광택도가 낮고 내충격성이 우수한 열가소성 수지 조성물
JP2008222907A (ja) 流動性向上剤、熱可塑性樹脂組成物、及び成形品
JP3433908B2 (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034416.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005514282

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004788421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067007980

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004788421

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067007980

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10573831

Country of ref document: US

Ref document number: 2007213451

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10573831

Country of ref document: US