WO2005020276A2 - 電力変換装置及び半導体装置の実装構造 - Google Patents

電力変換装置及び半導体装置の実装構造 Download PDF

Info

Publication number
WO2005020276A2
WO2005020276A2 PCT/JP2004/011970 JP2004011970W WO2005020276A2 WO 2005020276 A2 WO2005020276 A2 WO 2005020276A2 JP 2004011970 W JP2004011970 W JP 2004011970W WO 2005020276 A2 WO2005020276 A2 WO 2005020276A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
semiconductor
semiconductor module
holding member
mounting structure
Prior art date
Application number
PCT/JP2004/011970
Other languages
English (en)
French (fr)
Other versions
WO2005020276A3 (ja
Inventor
Daisuke Harada
Hiroshi Ishiyama
Original Assignee
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003297833A external-priority patent/JP4075734B2/ja
Priority claimed from JP2003299248A external-priority patent/JP4003719B2/ja
Application filed by Denso Corporation filed Critical Denso Corporation
Priority to EP04771931A priority Critical patent/EP1657806B1/en
Priority to US10/554,998 priority patent/US7508668B2/en
Publication of WO2005020276A2 publication Critical patent/WO2005020276A2/ja
Publication of WO2005020276A3 publication Critical patent/WO2005020276A3/ja
Priority to US12/073,871 priority patent/US7724523B2/en
Priority to US12/457,246 priority patent/US8027161B2/en
Priority to US12/457,245 priority patent/US7826226B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a semiconductor device mounting structure suitable for a power conversion device such as an inverter device using a semiconductor module and a semiconductor device used as an inverter device.
  • the inverter circuit (power conversion circuit) is configured using a semiconductor module having a built-in IGBT element or the like.
  • the inverter circuit power conversion circuit
  • the conventional power conversion device 9 is configured by incorporating a cooling device 91 for cooling the semiconductor module 92 as shown in FIG.
  • a power wiring unit that arranges a semiconductor module 92 so as to face the cooling device 91 and further allows a current such as a bus bar to enter and exit the semiconductor module 92 so as to face the semiconductor module 92.
  • the power conversion device 9 is configured by arranging 93 and further arranging a control circuit board 95 via a shield layer 94.
  • the control circuit board section 95 has a force for controlling the semiconductor module 92.
  • the interposition of the shield layer 94 is essential.
  • the structure of such a power converter is disclosed, for example, in Japanese Patent Application Laid-Open No. H11-69774.
  • the conventional power converter 9 has the following problems. That is, in the above-described conventional power converter 9, the interposition of the shield layer 94 is indispensable in order to enhance the operation performance of the control circuit board unit 95. As a result, the number of parts increases, and it becomes difficult to meet the overall cost reduction requirement.
  • connection line 955 connecting the control circuit board section 95 and the semiconductor module 92 still passes through the shield layer 94 and the power wiring section 93. Therefore, it is difficult to eliminate the influence of noise on the control circuit board 95.
  • Inverter device 1510 includes a plurality of semiconductor modules.
  • each semiconductor module has an internal semiconductor element (switch element) 1511, a pair of electrodes on both sides thereof, and a signal terminal connected to an external control circuit.
  • the semiconductor element 1511 is switched by a control signal input from the control circuit 1512 via a signal terminal, and a pseudo AC is generated.
  • high-frequency noise is generated in a current-carrying part thereof, and is emitted from DC power lines 1514 and 1515 and AC power line 1516.
  • high-frequency capacitors 1521, 1522 and 1523 are connected between the DC power lines 1514 and 1515 and ground and between the AC power line 1516 and ground via lead wires 1526 to reduce noise components. It is designed to bypass.
  • the conventional self-excited rectifier circuit shown in FIG. 26 includes a self-excited rectifier circuit section 1532 for converting AC supplied from a commercial power supply 1530 into a desired DC voltage. Including 1535.
  • the noise generated due to the switching operation of the rectifying element 1536 constituting the rectifying circuit unit 1535 flows into the commercial power supply 1530 and has an adverse effect.
  • a noise suppression circuit 1540 is arranged between the self-excited rectification circuit units 1532 and 1535.
  • the noise suppression circuit 1540 includes a noise suppression resistor 1542 arranged on each phase line 1541, a capacitor 1544 arranged between each phase line 1541, and a capacitor 1546 arranged between one phase line and the ground. including.
  • the noise suppression rear turtle 1542 and the capacitor 1544 suppress the emission of the normal mode noise, and the capacitor 1546 suppresses the emission of the common mode noise.
  • the inverter device 1510 for an electric vehicle or the like described above has the following problems.
  • Power spring 1514-1516 This high-frequency capacitor 1521-1523 is connected to lead wire 1526 Represents large resistance and inductance components.
  • a high-frequency current passing through high-frequency capacitors 1521 to 1523 becomes a leakage current, which may cause malfunction of inverter device 1510.
  • the semiconductor module as a noise source and the high-frequency capacitor 1521 1523 for bypassing noise are separated from the power source by a distance S, a certain amount of noise emission from the power lines 1514 to 1516 between them is inevitable.
  • the above-mentioned self-excited rectifier circuit only shows the arrangement of the rear turtle 1542 on each phase line 1541 and the capacitor 1544 between each phase line 1541.
  • the specific mounting method of the capacitors 1544 and 1546 is shown. I don't know. In any case, providing the capacitors 1544 and 1546 will increase the cost and space accordingly.
  • the lead connecting the capacitors 1544 and 1546 to the phase line 1541 has a resistance component and the like. Furthermore, the capacitors 1544 and 1546 are separated from the rectifier circuit 1535, and noise is easily emitted from the phase line 1541 between the two.
  • the present invention has been made in view of a strong conventional problem, and is capable of reducing the number of components and suppressing the influence of noise from a power wiring unit.
  • the primary purpose is to provide It is a second object of the present invention to provide a semiconductor device mounting structure capable of effectively suppressing the emission of noise generated in a semiconductor element without externally connecting a special bypass capacitor.
  • a power conversion device includes a main circuit unit including a semiconductor module that forms a part of a power conversion circuit, and a cooling device that cools the semiconductor module.
  • a control circuit board portion electrically connected to a signal terminal of the semiconductor module and having a control circuit for controlling the semiconductor module;
  • a power wiring portion connected to a main electrode terminal of the semiconductor module and for allowing a current to flow in and out of the semiconductor module;
  • the main circuit section is interposed between the control circuit board section and the power wiring section.
  • the power converter of the present invention is arranged such that the main circuit section including the semiconductor module and the cooling device as described above is sandwiched between the control circuit board section and the power wiring section. Therefore, the main circuit section functions as a shield section between the control circuit board section and the power wiring section, and it is possible to suppress transmission of electrical noise from the power wiring section to the control circuit board section. . This eliminates the need for the shield layer, which was conventionally required, and reduces the number of components.
  • the main circuit section and the control circuit board section are arranged adjacent to each other, an electrical junction between them can be arranged at a boundary between them, and the power wiring It is not necessary to penetrate the part. Therefore, the influence of electrical noise from the power wiring section to the control circuit board section can be further suppressed.
  • the mounting structure of the semiconductor device may be configured such that a semiconductor element of a semiconductor module and a holding member for holding the semiconductor module from both sides, or a semiconductor element and a semiconductor
  • a bypass capacitor is formed as a dielectric by interposing a part of the semiconductor module, a part of the holding member, or another intermediary member between the module and a case for housing the module.
  • the mounting structure of the first semiconductor device includes a power semiconductor element, a first electrode plate and a second electrode plate bonded to one surface and the other surface of the semiconductor element, respectively, A semiconductor module including a connection terminal to a control circuit for controlling the element, an insulating resin mold for sealing the semiconductor element and the first and second electrode plates, and a first insulating member and a (2) A conductive first holding member and a second holding member for holding the semiconductor module from both sides via the insulating member.
  • noise generated during operation of the semiconductor module is caused by the first electrode plate and / or the second electrode plate, the first holding member and / or the second holding member, and the It is absorbed by the noise suppression bypass capacitor composed of the first insulating member and the Z or second insulating member located between the plate and the holding member, and is prevented from being released to the power line or the like. That is, the emission of noise generated in the power semiconductor element is caused between the electrode plate and the holding member.
  • the noise is suppressed by a noise suppressing bypass capacitor having the insulating member located as a dielectric.
  • bypass capacitor is arranged in the vicinity of the semiconductor element and the force is arranged for each semiconductor element, the effect of suppressing the emission noise is assured and effective. Further, since the holding member is conductive, grounding is easy.
  • the first insulating member and the second insulating member are connected to the exposed portions of the first electrode plate and the second electrode plate.
  • it is an insulating plate interposed between the first holding member and the second holding member.
  • the insulating plate interposed between the semiconductor module and the conductive holding member becomes the dielectric. Therefore, a general-purpose semiconductor module and a holding tube can be used as they are, and an increase in cost can be minimized.
  • the insulating coating integrated with the resin mold of the semiconductor module becomes a dielectric.
  • the first insulating member and the second insulating member were integrated with the first holding member and the second holding member so as to face the exposed portion.
  • An insulating film may be used. According to this mounting structure, the insulating coating integrated with the holding tube becomes the dielectric. Therefore, a bypass capacitor can be easily formed by only slightly improving the general-purpose semiconductor module and the holding tube.
  • the first holding member and the second holding member are preferably grounded. As described above, when the holding member is grounded, the suppression of noise by the bypass capacitor is more reliable. Further, the first holding member and the second holding member may have a structure in which a conductive cooling medium is circulated inside and the cooling medium is grounded. In this case, the cooling medium, which is the cooling means for the semiconductor element, can be used as the grounding means, and the suppression of noise becomes more reliable.
  • the mounting structure of the second semiconductor device includes a power semiconductor element and a semiconductor device.
  • a first electrode plate and a second electrode plate bonded to one surface and the other surface of the semiconductor element, a connection terminal for a control circuit for controlling the semiconductor element, a semiconductor element, and the first electrode plate and the second electrode plate
  • a semiconductor module including: an insulating resin mold that seals the semiconductor module;
  • a conductive first internal member and a second internal member are inserted to hold the semiconductor module from both sides, and include an insulating first holding member and a second holding member serving as a dielectric.
  • the mounting structure noise generated when the semiconductor module operates is generated by the first electrode plate and / or the second electrode plate, the first internal member and the Z or second internal member, and the The noise is suppressed by the bypass capacitor for noise suppression composed of the first holding member and the Z or the wall of the second holding member located between the inner member and the first holding member and the wall of the second holding member.
  • the bypass capacitor for noise suppression composed of the first holding member and the Z or the wall of the second holding member located between the inner member and the first holding member and the wall of the second holding member.
  • a dedicated bypass capacitor for suppressing noise emission is not required, and labor and time for externally attaching the bypass capacitor are not required, thereby reducing costs.
  • the bypass capacitor is arranged near the semiconductor element and the force is arranged for each semiconductor element, the effect of suppressing the emission noise is assured and the force is effective.
  • the holding member is insulative, the range of choice of materials is widened, and the weight is reduced depending on the material.
  • the first internal member and the second internal member are preferably grounded. Further, the first internal member and the second internal member may have a structure in which a conductive cooling medium flows and the cooling medium is grounded. In any case, noise can be more reliably suppressed by the bypass capacitor.
  • the mounting structure of the third semiconductor device comprises a power semiconductor element, a first electrode plate and a second electrode plate joined to one surface and the other surface of the semiconductor element, respectively.
  • a semiconductor module including: a connection terminal for a control circuit that controls the semiconductor element; and an insulating resin mold that seals the semiconductor element and the first and second electrode plates.
  • a metal case containing a conductive cooling medium and a plurality of semiconductor modules arranged in close proximity to each other in the cooling medium.
  • noise generated during operation of the semiconductor module is generated by the first electrode plate and / or the second electrode plate, the cooling medium, and the tree located between the electrode plate and the cooling medium.
  • Noise suppression composed of the first mold part and / or the second mold part of the resin mold It is absorbed by the control bypass capacitor and is prevented from being released to a power line or the like.
  • the emission of noise generated in the power semiconductor element is suppressed by the noise suppression bypass capacitor having the molded portion of the resin mold located between the electrode plate and the cooling medium as a dielectric.
  • a dedicated bypass capacitor for suppressing noise emission is not required, and labor and time for externally attaching the capacitor are not required, thereby reducing costs.
  • bypass capacitor is arranged near the semiconductor element and the force is arranged for each semiconductor element, the effect of suppressing the emission noise is assured and effective. Further, since the case containing the cooling medium also functions as the positioning means of the semiconductor module, a holding member is not required, so that the number of parts can be reduced and the assembling process can be simplified.
  • the cooling medium is preferably grounded. As a result, the effect of suppressing the emission noise by the bypass capacitor becomes more reliable.
  • FIG. 1 is an explanatory diagram showing an arrangement of each part of a power conversion device according to a first embodiment.
  • FIG. 2 is an explanatory view showing a semiconductor module in Embodiment 1.
  • Example 1 is an explanatory diagram showing a power wiring portion, (b) is an explanatory diagram showing a main circuit portion, and (c) is an explanatory diagram showing a control circuit board portion.
  • FIG. 4 is an explanatory diagram illustrating a configuration of a power conversion device according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a configuration of a power conversion device according to a second embodiment.
  • FIG. 6 is an explanatory diagram showing an arrangement of each part of a power conversion device in a conventional example.
  • FIG. 7 is an explanatory diagram of an electric vehicle system according to a third embodiment.
  • FIG. 8 is a front sectional view showing a mounting structure of a semiconductor device in a third embodiment.
  • FIG. 9 is a sectional view taken along the line 1003-1003 in FIG.
  • FIG. 10 is a sectional view taken along the line 1004-1004 in FIG.
  • FIG. 11 is a perspective view of a semiconductor module according to a third embodiment.
  • FIG. 12 is an exploded perspective view of a semiconductor module of Embodiment 3.
  • FIG. 13 (a) is a sectional view taken along the line 1007-1007 in FIG. 11, and (b) is an enlarged view of a main part thereof.
  • FIG. 14 is a front sectional view showing a mounting structure of a semiconductor device in a fourth embodiment.
  • FIG. 15 is a sectional view taken along the line 1009-1009 in FIG.
  • FIG. 16 is a sectional view taken along line 1010-1010 of FIG. 14.
  • FIG. 17 is a sectional view corresponding to FIG. 13 (a).
  • FIG. 18 is a cross-sectional view corresponding to FIG. 13A in Example 5.
  • FIG. 19 is a front sectional view showing a mounting structure of a semiconductor device according to a fifth embodiment.
  • FIG. 20 is a sectional view taken along line 1014-1014 of FIG.
  • FIG. 21 (a) is a cross-sectional view taken along the line 1015-1015 in FIG. 19, and FIG. 21 (b) is an enlarged view of a main part of FIG.
  • FIG. 22 is a front view (partial cross section) showing the mounting structure of the semiconductor device in Example 6.
  • FIG. 23 is a plan view showing a mounting structure of a semiconductor device in Embodiment 6.
  • FIG. 24 is a front view showing a semiconductor module of Embodiment 6.
  • FIG. 25 is a circuit diagram of a first conventional example.
  • FIG. 26 is a circuit diagram of a second conventional example.
  • a power wiring section is composed of, for example, a bus bar connected to a three-phase motor and a connection section between the bus bar and the main electrode terminal of the semiconductor module, and inputs a current to be controlled to the semiconductor module. And output from the semiconductor module.
  • the control circuit board section is a section that is connected to the signal terminal of the semiconductor module and has a control circuit that sends a control signal to the semiconductor module.
  • the main circuit section includes a semiconductor module and a cooling device for cooling the semiconductor module.
  • the semiconductor module is configured using one or more semiconductor elements and provided with a main electrode terminal and a signal terminal.
  • a double-sided cooling type as described later that is, a semiconductor module that can be cooled not only from one surface but from another surface opposite thereto is preferable.
  • an electronic component connected to the semiconductor module is provided in the power wiring section. That is, the electronic component itself or the bus bar connected to the electronic component may generate electric noise in some cases, and it is preferable to dispose the electronic component in the power wiring portion. This suppresses the influence of electrical noise from the electronic components on the control circuit board.
  • Examples of electronic components include components such as a rear turtle and a capacitor. These electronic components constitute a booster circuit.
  • the semiconductor module includes a module main body containing a semiconductor, a main electrode terminal protruding from the module main body, and a signal terminal protruding in a direction substantially 180 degrees different from the protruding direction of the main electrode terminal.
  • the cooling device has a pair of refrigerant tubes arranged so as to sandwich the module main body from both sides, and a cooling medium is circulated through the refrigerant tubes to cool the module main body from both sides.
  • the semiconductor module is arranged such that the main electrode terminal and the signal terminal project in mutually different directions substantially perpendicular to the longitudinal direction of the pair of refrigerant tubes. .
  • the semiconductor module and the refrigerant tube can be arranged in parallel, and the main electrode terminal and the signal terminal can be arranged in different directions orthogonal to the arrangement direction. it can. Therefore, it is very easy to distribute and arrange the control circuit board section and the power wiring section on both sides of the main circuit section in which the semiconductor module and the refrigerant tube are arranged.
  • the main circuit portion has a laminated structure in which a plurality of refrigerant tubes and semiconductor modules are alternately laminated, and the main electrode terminals of the semiconductor module are protruded from one surface in a direction orthogonal to the laminating direction, and the opposite ends. Surface force It is preferable that the signal terminal is protruded.
  • the laminated structure of the semiconductor module and the refrigerant tube can be easily integrated into one unit, and the entire main circuit can be compacted. Can be easier.
  • the arrangement of the semiconductor modules and the refrigerant tubes may employ an arrangement method in which one set of two refrigerant tubes sandwiching one row of semiconductor modules is taken as one unit, and this unit is repeatedly arranged.
  • the whole can be assembled by preparing a plurality of one unit, arranging them in parallel, and connecting a plurality of refrigerant tubes by a pair of header portions.
  • the power converter 1 of the first embodiment is a power converter for a hybrid vehicle, and includes a main circuit unit 10, a control circuit board unit 2, and a power wiring unit 3, as shown in FIG.
  • the main circuit section 10 is interposed between the control circuit board section 2 and the power wiring section 3.
  • the main circuit section 10 includes a semiconductor module 4 that forms a part of a power conversion circuit, and a cooling device 5 that cools the semiconductor module 4.
  • the control circuit board section 2 is a board that is electrically connected to the signal terminal 42 of the semiconductor module 4 and has a control circuit (not shown) for controlling the semiconductor module 4.
  • the power wiring section 3 is a section that is connected to the main electrode terminal 41 of the semiconductor module 4 and allows current to flow into and out of the semiconductor module 4.
  • the semiconductor module 4 includes a module body 40 having a built-in semiconductor element, and a main electrode protruding from the module body 40. And a signal terminal 42 protruding in a direction substantially 180 degrees different from the direction in which the main electrode terminal 41 protrudes.
  • a heat sink 451 conducting to the main electrode terminal 41 is exposed on both main surfaces 401 and 402 of the module main body.
  • the cooling device 5 has a pair of refrigerant tubes 51 arranged so as to sandwich the module body 40 from both sides as shown in FIG. 3 (b).
  • two semiconductor modules 4 were arranged and sandwiched between a pair of refrigerant tubes 51.
  • the main circuit section 10 was formed by alternately stacking the refrigerant tubes 51 and the rows of the semiconductor modules 4. As a result, all the semiconductor modules 4 are in a state where both surfaces 401 and 402 are sandwiched by the refrigerant tube 51.
  • Each refrigerant tube 51 has a refrigerant passage (not shown) therein, and is configured to allow a cooling medium to flow therethrough. Also, as shown in FIG. 3 (b), a bellows pipe 59 is arranged so as to connect both ends of the plurality of refrigerant tubes 51 to form a header portion 50. Then, by flowing a cooling medium through the refrigerant tube 51, the module main body 40 is cooled off P by both sides 401, 402. Each semiconductor module 4 is arranged so that the main electrode terminal 41 and the signal terminal 42 project in mutually different directions substantially perpendicular to the longitudinal direction of the pair of refrigerant tubes 51. As a result, the control circuit board section 2 and the power wiring section 3 are provided on both sides of the main circuit section 10 in which the semiconductor module 4 and the refrigerant tube 51 are arranged. It is very easy to sort out and arrange.
  • the control circuit board section 2 has a plurality of connection holes 22 into which the signal terminals 42 of the semiconductor module 4 are inserted as shown in FIG. 3C, and the signal terminals 42 are inserted into the connection holes 22. Thus, the control circuit and the signal terminal 42 are electrically connected.
  • the support rod 29 erected on the control circuit board 2 comes into contact with the refrigerant tube 51 of the main circuit 10 to maintain a constant distance between the main circuit 10 and the control circuit board 2. It functions as a spacer.
  • the power wiring section 3 is composed of a plurality of bus bars 31 connected to a three-phase motor (not shown) as shown in Fig. 3 (a), and a resin molding section 30 obtained by molding a part of these bus bars 31. .
  • a plurality of bonding terminal portions (not shown) to be bonded to the main electrode terminals 41 of the semiconductor module 4 are provided on a surface 302 of the power wiring portion 3 facing the main circuit portion 10.
  • the power wiring section 3 is disposed adjacently above the main circuit section 10
  • the control circuit board section 2 is disposed adjacently below the main circuit section 10, and the main electrodes of the semiconductor module 4
  • the power converter 1 of the present example is obtained.
  • the power converter 1 of the present example is configured such that the main circuit section 10 including the semiconductor module 4 and the cooling device 5 as described above is sandwiched between the control circuit board section 2 and the power wiring section 3. It is arranged. Therefore, the main circuit section 10 functions as a shield section between the control circuit board section 2 and the power wiring section 3 and suppresses transmission of electrical noise from the power wiring section 3 to the control circuit board section 2. be able to. This eliminates the need for the shield layer, which was conventionally required, and reduces the number of components.
  • the main circuit section 10 and the control circuit board section 2 are arranged adjacent to each other, the electrical junction between them can be arranged at the boundary between them, and the power wiring section can be arranged. No need to penetrate 3. Therefore, the influence of electrical noise from the power wiring section 3 to the control circuit board section 2 can be further suppressed.
  • a semiconductor module 4 having a structure capable of being cooled on both sides and having a main electrode terminal 41 and a signal terminal 42 projecting in directions different from each other by approximately 180 degrees was employed.
  • a laminated structure with the refrigerant tube 51 is realized as described above.
  • the structure was such that the main electrode terminal 41 and the signal terminal 42 respectively protruded in different directions orthogonal to the laminating direction.
  • the cooling efficiency of the semiconductor module 4 can be improved, and a structure in which the control circuit board section 2 and the power wiring section 3 are separately arranged on both surfaces of the main circuit section 10 can be easily achieved.
  • the main circuit section 10 is arranged above the control circuit board section 2 and the power wiring section 3 is arranged further above the control circuit board section 2.
  • the power wiring section 3 is arranged further above the control circuit board section 2.
  • a rear turtle 61 and a capacitor 62 constituting a part of a booster circuit are disposed in a power wiring section 3 thereof. It is. In this case, it is possible to suppress the influence of electrical noise on the control circuit board unit 3 from the rear turtle 61 and the capacitor 62, which are the electronic components constituting the booster circuit. Otherwise, the same operation and effect as those of the first embodiment can be obtained.
  • the mounting structure of this semiconductor device can be classified into the following three types according to the method of forming a noise suppression bypass capacitor, and in particular, what constitutes a dielectric (insulator).
  • an insulating plate or film interposed between a semiconductor module and a holding member that holds or sandwiches the semiconductor module from both sides is a dielectric.
  • the state is included.
  • a part of an electrode plate of a semiconductor module is exposed from a resin mold of a semiconductor module forming one electrode plate.
  • the holding member is made of a conductive material to form the other electrode plate.
  • bypass capacitor be connected to both the first electrode plate on the front side and the second electrode plate on the back side of the semiconductor module.
  • a bypass capacitor may be connected only to the first or second electrode plate.
  • an insulating plate or the like may be interposed only between one electrode plate and the holding member facing the electrode plate. This is based on the second to fourth aspects of the first type and the second type described later. The same applies to the third and third types.
  • a part (mold part) of a resin mold that covers an electrode plate of a semiconductor module becomes a dielectric.
  • a part of the exposed electrode plate of the semiconductor module is covered with an insulating film integrated with the resin module, and the dielectric plate is made of a dielectric.
  • the insulating film integrated with the holding member and facing a part of the exposed electrode plate of the semiconductor module becomes a dielectric.
  • the cooling medium circulates inside the holding member.
  • the cooling medium not only suppresses the temperature rise in the semiconductor module but also is effective in grounding the holding member to the vehicle body when it is conductive.
  • holding members for holding or sandwiching the semiconductor module from both sides are a dielectric and the other electrode plate.
  • the holding member is made of an insulating material, and a conductive internal member is inserted therein. A part of the electrode plate of the semiconductor module is exposed. Further, a cooling medium can be circulated inside the holding member.
  • the third type does not include a holding member for holding the semiconductor module from both sides.
  • One electrode and a dielectric are formed on the semiconductor module, and the other electrode is a conductive cooling medium contained in a metal case.
  • the electrode plate of the semiconductor module is covered by a part (mold part) of the resin mold.
  • the plurality of semiconductor modules are positioned in a predetermined state by the case.
  • the drive system of the hybrid vehicle shown in FIG. 7 includes a battery 1010, a generator motor (MG) 1020, and an inverter device 1060. Between the positive terminal and the negative terminal of the battery 1010, between the extended DC busbars 1011 and 1012, a smoothing capacitor 1013 and a semiconductor pair for three-phase alternating current (U-phase, V-phase and W-phase) constituting the inverter device 60. And are arranged.
  • a U-phase line 1016 extends from the first and second U-phase semiconductor elements 1031 and 1032 to the MG 1020.
  • a V-phase line 1017 extends between the first and second V-phase semiconductor elements 1031 and 1032 to form a first W and a second W
  • the force between the phase semiconductor elements 1031 and 1032 also extends to the MG 1020 with 1018 W-phase wires.
  • the inverter device 1060 is configured by alternately stacking a holding tube 1055 and a plurality of semiconductor modules 1030 in the height direction via an insulating material 1050. As shown in FIGS. 11 to 13, each semiconductor module 1030 is joined to the first semiconductor element (IGBT) 1031 and the second semiconductor element (flywheel diode) 1032 via solders 1033a and 1033b. And a second electrode plate 1036 joined to the substrate side (back side) via solder (not shown).
  • the first electrode plate 1035 and the second electrode plate 1036 have a first drive electrode terminal 1038 and a second
  • the control electrode terminal 1041 is joined to the first semiconductor element 1031 by a signal line such as a bonding wire 1042.
  • the control electrode terminal 1041 is a gate terminal (G) and an emitter terminal (Ke) for turning on and off the first semiconductor element 1031, and an output terminal of a temperature diode formed on the surface of the first semiconductor element 1031 and detecting its temperature. ( ⁇ , A) and a current detection terminal (Se) for detecting a current flowing through the first semiconductor element 1031.
  • the first semiconductor element 1031 and the second semiconductor element 1032, the first electrode plate 1035 and the second electrode plate 1036, the first drive electrode terminal 1038 and the second drive electrode terminal 1039, and the control terminal 1041 and the like are formed of a molding resin. Sealed by 1045.
  • the mold resin 1045 is filled between the first electrode plate 1035 and the second electrode plate 1036 to ensure insulation between the two electrode plates 1035 and 1036, and to fix the connection terminal 1041 to the first electrode plate 1035. Ensure insulation between the two electrode plates 1036 and the connection terminals 1041.
  • the back surfaces of the first electrode plate 1035 and the second electrode plate 1036 are exposed.
  • the semiconductor module 1030 has a flat rectangular shape.
  • the insulating material 1050 is made of, for example, a plate or a film of aluminum nitride / silicon nitride and has a rectangular shape slightly larger than the semiconductor module 1030.
  • the holding tube (holding tube) 1055 is formed by extruding aluminum or the like, is partitioned by fins 1056b, and has a space 1056a extending in the longitudinal direction.
  • the holding tube 1055 has a width that is slightly larger than the width of the electrode plates 1035 and 1036 of the semiconductor module 1030 and a length that allows a plurality of semiconductor modules 1030 to be placed.
  • the void 1056b penetrates in the length direction, A conductive cooling medium flows through the inside.
  • a combination of a plurality of semiconductor modules 1030 arranged side by side, an upper (first) holding tube 1055A on the front surface side, and a lower (second) holding tube 1055B on the rear surface side will be considered.
  • the upper holding tube 1055A faces the first electrode plate 1035 via the first insulating plate 1050A
  • the lower holding tube 1055B faces the second electrode plate 36 via the second insulating plate 50B.
  • the first drive electrode terminal 1038 and the second drive electrode terminal 1039 protrude to one side of the upper holding tube 1055A and the lower holding tube 1055B, respectively, and a positive DC bus bar 1011, a negative DC bus bar 1012, and an MG 1020, respectively. Connected to AC busbar 1016 1018 connected to.
  • the control electrode terminal 1041 projects from the other side and is connected to the control circuit 1048.
  • the holding pipes 1055A and 1055B are connected to a part of the body of the hybrid vehicle.
  • the first insulating plate 1050A which is a non-conductive material, exists between the first electrode plate 1035, which is a conductive material, and the first holding tube 1055A, and the first bypass capacitor 1057A is formed by these three members. It is formed. Similarly, a second bypass capacitor 1057B is formed by the second electrode plate 1036, the second holding tube 1055B, and the second insulating plate 1050B existing therebetween.
  • the bellows member 1061 is interposed between both ends of the adjacent upper holding pipe 1055A and lower holding pipe 1055B. Both ends are brazed to the upper holding tube 1055A and the lower holding tube 1055B in a state where airtightness is secured, and they are adhered by bonding or the like.
  • the bellows member 1061 is supplied with a cooling medium from the pipe 1062, and thus flows through the gap 1056 of the holding tube 1055.
  • a circulation path of the cooling medium is formed by the pipe 1062, the piping pump, the radiator, and the like (not shown).
  • the stacked body of the plurality of holding tubes 1055 and the plurality of semiconductor modules 1030 is accommodated in a metal case (not shown), and the metal case is fixed to the body of the electric vehicle and is electrically conductive. As a result, the holding pipe 1055 is grounded to the vehicle body.
  • the DC of battery 1010 is converted to AC by inverter device 1060, and MG1020 is driven.
  • the AC generated by driving the MG 1020 is converted into DC, and the battery 1010 is charged. Since the action itself is well known, a detailed description is omitted.
  • the following effects can be obtained with respect to noise suppression.
  • emission of noise generated in the first semiconductor element 1031 and the second semiconductor element 1032 to the bus bars 1011, 1012, and 1016 is suppressed without mounting a special or dedicated bypass capacitor.
  • Electrode plate 1035, 1036 force S-Segment plate, holding tube 1055A, 1055B force S Other electrode plate, insulating plate 1050A, 1050B force S dielectric, forming bypass capacitors 1057A, 1057B It is.
  • the insulating plates 1050A and 1050B are originally provided for the purpose of electrically insulating the semiconductor elements 1031 and 1032 and the holding tubes 1055A and 1055B from each other. It also functions as a body. As a result, the time and effort for connecting a dedicated bypass capacitor with a lead wire is not only unnecessary, but also space is advantageous.
  • Capacitors 1057A and 1057B are individually connected to the first and semiconductor elements 1031 and 1032, respectively, and the bypass capacitors 1057A and 1057B are connected to the first and second semiconductor elements 1031 and 1032, which are noise sources. It depends on what is located nearby.
  • the effect of suppressing emission noise is high for two reasons.
  • the first holding pipe 1055A and the second holding pipe 1055B are connected to the body of the vehicle via conductive LLC, a pump, a radiator and the like flowing through the inside.
  • the impedance of the path that bypasses the noise of the semiconductor elements 1031, 1032 to the body decreases.
  • the fins 1056b formed inside the inner peripheral surface of the gap 1056a improve the electrical coupling between the holding tube 1055 and the LLC.
  • FIGS. 14 to 17 show a fourth embodiment.
  • a part of the resin mold 1110 of the semiconductor module constitutes a dielectric instead of the first and second insulating plates 1050A and 1050B of the third embodiment. More specifically, the front surface of the first electrode plate 1035 and the back surface of the second electrode plate 1036 are not exposed, and are covered by the first mold portion 1112 and the second mold portion 1113, respectively.
  • the bypass capacitors 1115A and 1115B are formed.
  • the same effect as that of the third embodiment can be obtained.
  • the power of the semiconductor device is reduced to S compact.
  • the first and second molded portions 1112 and 1113 function as insulating materials between the first and second semiconductor elements 1031 and 1032 and the first and second holding tubes 1055A and 1055B, and This is because it also functions as a dielectric of the pass capacitor. Further, the first and second insulating plates 1050A and 1050B in the third embodiment become unnecessary.
  • first and second insulating coatings 1153 and 1154 are tightly formed on the first and second molded portions 1151 and 1152. , And cover the exposed portions of the first and second electrode plates 1035 and 1036.
  • the first and second insulating coatings 1153 and 1154 are made of, for example, a sprayed film of alumina or a coating force of DLC (diamond dike carbon).
  • the first and second semiconductor elements 1031 and 1032, the first and second holding tubes 1055A and 1055B, and the first and second insulating coatings 1153 and 1154 located between the first and second semiconductor elements 1031 and 1032, and the bypass capacitors 1155A and 1155 1155B is configured.
  • the same effects as in the third embodiment can be obtained.
  • the capacitance of the bypass capacitors 1155A and 1155B can be increased.
  • the capacitance of a capacitor is inversely proportional to the thickness of the insulating coating 1153, 1154. Therefore, the thickness of the insulating coatings 1153 and 1154 should be reduced when increasing the capacitance, and increased when decreasing the capacitance. Since the capacitance is proportional to the surface area of the electrode plates 1035 and 1036, the surface area of the electrode plates 1035 and 1036 can be adjusted concurrently with or separately from the adjustment of the film thickness of the insulating films 1153 and 1154. .
  • first and second electrode plates 1035 and 1036 of the semiconductor module 1030 are exposed.
  • first and second insulating films 1153 and 1154 may be formed on the first and second holding tubes 1055A and 1055B.
  • a holding tube 1210 made of an insulating material such as resin-ceramic is used instead of the metal holding tube 1055.
  • a conductive inner tube 1215 is inserted into the hollow portion of the insulating holding tube 1210 so that the cooling medium flows through the gap 1216.
  • the first and second electrode plates 1035 and 1036 of the semiconductor module 1030 are exposed. Therefore, the first and second electrode plates 1035 and 1036, the first and second inner tubes 1215A and 1215B, and the walls 1212A and 1212B of the holding tubes 1210A and 1210B located therebetween are noise.
  • Capacitors 1220A and 1220B are configured.
  • the insulating wall portion 1212 of the holding tube 1210 for allowing the cooling medium to flow is made of a dielectric material. It is not necessary to form a dielectric on 30. Further, since conductivity is not required for the holding tube 1210, the range of material selection is widened.
  • Embodiment 7 is shown in FIGS.
  • the first and second drive electrode terminals 1038 and 1039 of the semiconductor module 1030 and the control terminal 1041 protrude from the same side surface.
  • the front surface of the first electrode plate 1035 and the back surface (both not shown) of the second electrode plate 1036 are covered with the first and second mono-reed components 1251 and 1252, respectively.
  • the metal case 1260 has a plurality of openings 1262 on the upper end side, and the inside thereof is filled with a conductive cooling medium 1265.
  • the lower end of each semiconductor module 1030 is immersed in the cooling medium 1265 of the case 1260, the upper end protrudes upward from the opening 1262, and is sealed with a seal member 1263.
  • the first and second semiconductor elements 1031 and 1032, the cooling medium 1265, and the mold parts 1251 and 1252 located between them form first and second bypass capacitors 1270A and 1270B.
  • the bypass capacitors 1270A and 1270B are formed for each of the first and second semiconductor elements 1031 and 1032, and in the vicinity thereof, thereby effectively suppressing noise.
  • a metal case 1260 containing a cooling medium 1265 positions the plurality of semiconductor modules 1030 in a predetermined state. Each semiconductor module 1030 can be set in a predetermined state only by inserting it through the opening 1262 of the case 1260, and the time required to manufacture the inverter device can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

 部品点数を削減することができ、かつ、パワー配線部からのノイズの影響を抑制することができる電力変換装置を提供することを目的とする。  電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却装置とを含む主回路部10と、半導体モジュールの信号端子に電気的に接続され、半導体モジュールを制御する制御回路を有する制御回路基板部2と、半導体モジュールの主電極端子に接続され、半導体モジュールに対して電流を入出させるパワー配線部3とを有してなる。主回路部10は、制御回路基板部2とパワー配線部3との間に介在させてある。パワー配線部3には、半導体モジュールに接続される昇圧回路の少なくとも一部を構成する電子部品を併設してあることが好ましい。

Description

明 細 書
電力変換装置及び半導体装置の実装構造
技術分野
[0001] 本発明は、半導体モジュールを用いたインバータ装置等の電力変換装置及びイン バータ装置として使用される半導体装置に用いて好適な半導体装置の実装構造に 関する。
背景技術
[0002] 例えば、内燃機関と電気モータの両方を駆動源として有するハイブリッド自動車、 その他、電気モータを駆動源として備えた自動車等では、直流電力と交流電力との 間で双方向変換する大容量のインバータを必要とする。そのため、このインバータを 含む電力変換装置が種々開発されてきた。
[0003] インバータ回路(電力変換回路)は、 IGBT素子等を内蔵した半導体モジュールを 用いて構成するが、上記のごとく大容量であるため、発熱量も大きい。そのため、従 来の電力変換装置 9は、図 6に示すごとぐ上記半導体モジュール 92を冷却する冷 却装置 91を組み込んで構成する。
[0004] より具体的には、冷却装置 91に対面するように半導体モジュール 92を配置し、さら に半導体モジュール 92に対面するようにバスバー等の電流を半導体モジュール 92 に対して入出させるパワー配線部 93を配置し、さらにシールド層 94を介して、制御 回路基板部 95を配置して電力変換装置 9を構成する。制御回路基板部 95は、半導 体モジュール 92を制御するものである力 上記パワー配線部 93からのノイズの影響 を避けるために、上記シールド層 94の介設が必須となる。このような電力変換装置の 構造は、例えば特開平 11一 69774号公報に示されている。
[0005] し力 ながら、従来の電力変換装置 9においては、次のような問題がある。すなわち 、上記従来の電力変換装置 9では、制御回路基板部 95の動作性能を高めるために 、上記シールド層 94の介設が不可欠である。そのため、部品点数が増加し、全体の コスト低減要求に対応することが困難となる。
[0006] また、上記シールド層 94の存在によって、パワー配線部 93から制御回路基板部 9 5へのノイズの影響を低減はできるものの、依然として、制御回路基板部 95と半導体 モジュール 92とを接続する接続線 955がシールド層 94及びパワー配線部 93の部分 を貫通する構造となる。そのため、上記制御回路基板部 95へのノイズの影響をなく すことが困難である。
[0007] また、例えば電気自動車及びハイブリッド自動車では、図 25に示すように、バッテリ 1500の直流をインバータ装置 1510で交流に変換し、交流発電機 1505を駆動する ようになつている。インバータ装置 1510は複数の半導体モジュールを含む。
[0008] 良く知られているように、各半導体モジュールは内部の半導体素子 (スィッチ素子) 1511と、その両側の一対の電極と、外部の制御回路に接続する信号端子とを有す る。制御回路 1512から信号端子を介して入力される制御信号により半導体素子 151 1がスイッチングされ、擬似的な交流を発生する。
[0009] 半導体モジュールの作動時、その通電部に高周波のノイズが発生し、直流電力線 1514、 1515及び交流電力線 1516から放出される。これを防止するために、直流電 力線 1514, 1515とアースとの間、及び交流電力線 1516とアースとの間にリード線 1 526を介して高周波コンデンサ 1521, 1522及び 1523を接続し、ノイズ成分をバイ パスするようになっている。
[0010] 一方、図 26に示す従来の自励式整流回路(特開平 07 - 308070号公報参照)は、 商用電源 1530から供給される交流を所望の直流電圧に変換する自励式整流回路 部 1532及び 1535を含む。整流回路部 1535を構成する整流素子 1536のスィッチ 動作に起因して発生するノイズが商用電源 1530に流入し、悪影響を及ぼす。
[0011] これを防止するため、 自励式整流回路部 1532と 1535との間にノイズ抑制回路 15 40を配置している。ノイズ抑制回路 1540は、各相線 1541に配置されたノイズ抑制リ ァクトノレ 1542、各相線 1541間に配置されたコンデンサ 1544、及び一つの相線とァ ースとの間に配置されたコンデンサ 1546を含む。ノイズ抑制リアタトル 1542及びコン デンサ 1544がノーマルモードノイズの放出を抑制し、コンデンサ 1546がコモンモー ドノイズの放出を抑制するようになっている。
[0012] 上述した電気自動車等のインバータ装置 1510では、以下のような問題がある。電 力泉 1514一 1516 (こ高周波コンデンサ 1521一 1523を接続してレヽるリード線 1526 は抵抗成分及びインダクタンス成分が大きレ、。ノくィパス経路のインピーダンスを下げ て十分なノイズ抑制効果を得るためには、高周波コンデンサ 1521— 523の容量を大 きくする必要がある。そうすると、高周波コンデンサ 1521— 1523を経由した高周波 電流が漏電電流となり、インバータ装置 1510の誤作動要因となるおそれがある。
[0013] また、ノイズ発生源である半導体モジュールとノイズをバイパスする高周波コンデン サ 1521 1523と力 S離れてレヽるので、その間の電力線 1514— 1516力、らのある程度 のノイズ放出は避けられない。
[0014] 一方、上記自励式整流回路は、各相線 1541へのリアタトル 1542の配置、及び各 相線 1541間のコンデンサ 1544等を示すのみで、コンデンサ 1544, 1546の具体的 な搭載方法は示していなレ、。いずれにしても、コンデンサ 1544, 1546を設ければそ の分コスト、スペースが増加する。また、コンデンサ 1544, 1546を相線 1541に接続 するリード線には抵抗成分等が存在する。更に、コンデンサ 1544, 1546が整流回 路部 1535から離れており、両者間の相線 1541からノイズが放出され易い。
[0015] 本発明は、力かる従来の問題点に鑑みてなされたもので、部品点数を削減すること ができ、かつ、パワー配線部からのノイズの影響を抑制することができる電力変換装 置を提供することを第 1の目的とする。また、半導体素子で発生するノイズの放出を、 特別のバイパスコンデンサを外付けすることなぐしかも効果的に抑制できる半導体 装置の実装構造を提供することを第 2の目的とする。
発明の開示
[0016] 上記第 1の目的を達成するために、本発明による電力変換装置は、電力変換回路 の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却装置と を含む主回路部と、
上記半導体モジュールの信号端子に電気的に接続され、上記半導体モジュール を制御する制御回路を有する制御回路基板部と、
上記半導体モジュールの主電極端子に接続され、上記半導体モジュールに対して 電流を入出させるパワー配線部とを有してなり、
上記主回路部は、上記制御回路基板部と上記パワー配線部との間に介在させてあ ることを特 ί数とする。 [0017] 本発明の電力変換装置は、上記のごとぐ半導体モジュールとその冷却装置とより なる主回路部を、上記制御回路基板部とパワー配線部とによって挟持するように配 置してある。そのため、上記主回路部が、上記制御回路基板部とパワー配線部との 間におけるシールド部として機能し、パワー配線部からの電気的なノイズが制御回路 基板部に伝わることを抑制することができる。これにより、従来必要であったシールド 層を不要にすることができ、部品点数を減らすことができる。
[0018] また、上記主回路部と上記制御回路基板部とは隣接して配置しているので、両者 の間の電気的接合部は、両者の境界部分に配置することができ、上記パワー配線部 を貫通させる必要がなレ、。それ故、さらにパワー配線部から制御回路基板部への電 気的なノイズの影響を抑制することができる。このように、本発明によれば、部品点数 を削減することができ、かつ、パワー配線部からのノイズの影響を抑制することができ る電力変換装置を提供することができる。
[0019] また、上記第 2の目的を達成するために、本発明による半導体装置の実装構造は、 半導体モジュールの半導体素子と半導体モジュールを両側から保持する保持部材と の間、又は半導体素子と半導体モジュールを収納するケースとの間に、半導体モジ ユールの一部、保持部材の一部又は別の仲介部材を介在させて誘電体として、バイ パスコンデンサを形成することを特徴とする。
[0020] すなわち、本発明による第 1の半導体装置の実装構造は、電力用半導体素子と、 半導体素子の一面及び他面にそれぞれ接合された第 1の電極板及び第 2の電極板 と、半導体素子を制御する制御回路との接続端子と、半導体素子並びに第 1電極板 及び第 2電極板を封止する絶縁性の樹脂モールドと、を含む半導体モジュールと、 誘導体となる第 1絶縁部材及び第 2絶縁部材を介して半導体モジュールを両側か ら保持する導電性の第 1保持部材及び第 2保持部材とから成る。
[0021] 上記の実装構造によれば、半導体モジュールの作動時に発生するノイズは、第 1電 極板及び/又は第 2の電極板と、第 1保持部材及び/又は第 2保持部材と、電極板 と保持部材との間に位置する第 1絶縁部材及び Z又は第 2絶縁部材とで構成される ノイズ抑制用バイパスコンデンサにより吸収され、電力線等への放出が防止される。 つまり、電力用半導体素子で発生するノイズの放出が、電極板と保持部材との間に 位置する絶縁部材を誘電体とするノイズ抑制用バイパスコンデンサにより抑制される 。その結果、ノイズ放出を抑制するために専用のバイパスコンデンサが不要となると 共に、これを外付けする手間、時間が不要となり、コストが低減する。
[0022] また、バイパスコンデンサが半導体素子の近傍に、し力、も半導体素子毎に配置され ているので、放出ノイズの抑制効果が確実でし力 効果的である。更に、保持部材が 導電性であるので、その接地が容易である。
[0023] 上記実装構造において、第 1電極板及び第 2電極板の一部が露出し、第 1絶縁部 材及び第 2絶縁部材は、第 1電極板及び第 2電極板の露出部分と第 1保持部材及び 第 2保持部材との間に介在された絶縁性の板であることが好ましい。この実装構造に よれば、半導体モジュールと導電性の保持部材との間に介在させた絶縁性の板が誘 電体となる。よって、汎用の半導体モジュール及び保持管をそのまま使用でき、コスト の上昇を最低限に抑えることができる。
[0024] 上記実装構造において、第 1電極板及び第 2電極板の一部が露出し、第 1絶縁部 材及び第 2絶縁部材は、樹脂モールドと一体化され第 1電極板及び第 2電極板の露 出部分を覆う絶縁性の被膜であることが好ましい。この実装構造によれば、半導体モ ジュールの樹脂モールドと一体化した絶縁性の被膜が誘電体となる。また、第 1電極 板及び第 2電極板の一部が露出し、第 1絶縁部材及び第 2絶縁部材は、第 1保持部 材及び第 2保持部材に露出部分に対向して一体化された絶縁性の被膜であっても 良い。この実装構造によれば、保持管と一体化した絶縁性の被膜が誘電体となる。よ つて、何れも汎用の半導体モジュール及び保持管を少し改良するのみで、容易にバ ィパスコンデンサを形成できる。
[0025] 上記実装構造において、第 1保持部材及び第 2保持部材は接地されていることが 好ましレ、。このように、保持部材が接地されると、バイパスコンデンサによるノイズの抑 制がより確実である。また、第 1保持部材及び第 2保持部材は内部に導電性の冷却 媒体が流通され、その冷却媒体が接地されている構造であっても良レ、。この場合、本 来、半導体素子の冷却手段である冷却媒体を接地手段として利用でき、ノイズの抑 制がより確実になる。
[0026] また、本発明による第 2の半導体装置の実装構造は、電力用半導体素子と、半導 体素子の一面及び他面にそれぞれ接合された第 1電極板及び第 2電極板と、半導 体素子を制御する制御回路との接続端子と、半導体素子並びに第 1電極板及び第 2 電極板を封止する絶縁性の樹脂モールドと、を含む半導体モジュールと、
導電性の第 1内部部材及び第 2内部部材が揷入され、半導体モジュールを両側か ら保持すると共に、誘導体となる絶縁性の第 1保持部材及び第 2保持部材とから成る
[0027] 上記実装構造によれば、半導体モジュールの作動時に発生するノイズは、第 1電 極板及び/又は第 2電極板と、第 1内部部材及び Z又は第 2内部部材と、電極板と 内部部材との間に位置する第 1保持部材及び Z又は第 2保持部材の壁部とで構成さ れるノイズ抑制用バイパスコンデンサにより吸収され、電力線等への放出が防止され る。その結果、ノイズ放出を抑制するために専用のバイパスコンデンサが不要となると 共に、これを外付けする手間、時間が不要となり、コストが低減する。また、バイパスコ ンデンサが半導体素子の近傍に、し力も半導体素子毎に配置されているので、放出 ノイズの抑制効果が確実でし力も効果的である。更に、保持部材が絶縁性であるの で、材料の選択の幅が広がり、材質によっては重量が軽くなる。
[0028] 上記実装構造において、第 1内部部材及び第 2内部部材は接地されていることが 好ましい。また、第 1内部部材及び第 2内部部材は導電性の冷却媒体が流通され、 その冷却媒体が接地されている構造であっても良い。いずれの場合も、バイパスコン デンサによるノイズの抑制をより確実に行なうことができる。
[0029] また、本発明による第 3の半導体装置の実装構造は、電力用半導体素子と、半導 体素子の一面及び他面にそれぞれ接合された第 1電極板及び第 2電極板と、半導 体素子を制御する制御回路との接続端子と、半導体素子並びに第 1電極板及び第 2 電極板を封止する絶縁性の樹脂モールドと、を含む半導体モジュールと、
導電性の冷却媒体を収納し、冷却媒体内に複数の半導体モジュールが近接配置 された金属製ケースとから成る。
[0030] 上記実装構造によれば、半導体モジュールの作動時に発生するノイズは、第 1電 極板及び/又は第 2電極板と、冷却媒体と、電極板と冷却媒体との間に位置する樹 脂モールドの第 1モールド部分及び/又は第 2モールド部分とで構成されるノイズ抑 制用バイパスコンデンサにより吸収され、電力線等への放出が防止される。つまり、 電力用半導体素子で発生するノイズの放出が、電極板と冷却媒体との間に位置する 樹脂モールドのモールド部分を誘電体とするノイズ抑制用バイパスコンデンサにより 抑制される。その結果、ノイズ放出を抑制するために専用のバイパスコンデンサが不 要となると共にこれを外付けする手間、時間が不要となり、コストが低減する。
[0031] また、バイパスコンデンサが半導体素子の近傍に、し力、も半導体素子毎に配置され ているので、放出ノイズの抑制効果が確実でし力 効果的である。更に、冷却媒体を 収納したケースが半導体モジュールの位置決め手段を兼ねるので、保持部材が不 要となり、部品点数の減少、組立て工程の簡略化が可能となる。
[0032] 上記実装構造において、冷却媒体は接地されていることが好ましい。これにより、バ ィパスコンデンサによる放出ノイズの抑制効果がより確実になる。
図面の簡単な説明
[0033] [図 1]実施例 1における、電力変換装置の各部の配置を示す説明図である。
[図 2]実施例 1における、半導体モジュールを示す説明図である。
[図 3]実施例 1において、(a)はパワー配線部を示す説明図、(b)は主回路部を示す 説明図、及び (c)は制御回路基板部を示す説明図である。
[図 4]実施例 1における、電力変換装置の構成を示す説明図である。
[図 5]実施例 2における、電力変換装置の構成を示す説明図である。
[図 6]従来例における、電力変換装置の各部の配置を示す説明図である。
[図 7]実施例 3における、電気自動車のシステム説明図である。
[図 8]実施例 3における、半導体装置の実装構造を示す正面断面図である。
[図 9]図 8の 1003— 1003断面図である。
[図 10]図 8の 1004— 1004断面図である。
[図 11]実施例 3の半導体モジュールの斜視図である。
[図 12]実施例 3の半導体モジュールの分解斜視図である。
[図 13] (a)は図 11の 1007-1007断面図、(b)はその要部拡大図である。
[図 14]実施例 4における、半導体装置の実装構造を示す正面断面図である。
[図 15]図 14の 1009—1009断面図である。 [図 16]図 14の 1010—1010断面図である。
[図 17]図 13 (a)に相当する断面図である。
[図 18]実施例 5において、図 13 (a)に相当する断面図である。
[図 19]実施例 5における、半導体装置の実装構造を示す正面断面図である。
[図 20]図 19の 1014—1014断面図である。
[図 21] (a)は図 19の 1015—1015断面図、(b)は(a)の要部拡大図である。
[図 22]実施例 6における、半導体装置の実装構造を示す正面図(一部断面)である。
[図 23]実施例 6における、半導体装置の実装構造を示す平面図である。
[図 24]実施例 6の半導体モジュールを示す正面図である。
[図 25]第 1従来例の回路説明図である。
[図 26]第 2従来例の回路説明図である。
発明を実施するための最良の形態
[0034] 1.電力変換装置
まず、電力変換装置の概要について説明する。電力変換装置において、パワー配 線部は、例えば三相モータに連結されるバスバー等と、これらと半導体モジュールの 主電極端子との接続部等により構成され、制御すべき電流を半導体モジュールに入 力すると共に半導体モジュールから出力する部分である。
[0035] また、制御回路基板部は、半導体モジュールの信号端子に接続され、半導体モジ ユールに対して制御信号を送る制御回路を有してなる部分である。そして、主回路部 は、半導体モジュールとこれを冷却する冷却装置とを含んで構成される。
[0036] 半導体モジュールとしては、 1種又は複数の半導体素子を用いて構成し、主電極 端子と信号端子とを設けたものを用いる。この半導体モジュールとしては、後述する ごとぐ両面冷却タイプ、すなわち、一方の面からだけでなぐこれに対向するもう一 つの面から冷却できる構造のものが好ましい。
[0037] また、パワー配線部には、半導体モジュールに接続される電子部品を併設してある ことが好ましい。つまり、電子部品は、該電子部品そのもの、もしくはそれにつながる バスバーが電気的なノイズを発する場合があり、パワー配線部に配置することが好ま しい。これにより、電子部品からの制御回路基板部への電気的なノイズの影響を抑制 すること力 Sできる。電子部品としては、例えば、リアタトル,コンデンサ等の部品がある 。これら電子部品により昇圧回路が構成される。
[0038] 半導体モジュールは、半導体を内蔵したモジュール本体部と、該モジュール本体 部から突出させた主電極端子と、該主電極端子の突出方向と略 180度異なる方向へ 突出させた信号端子とよりなり、冷却装置は、モジュール本体部を両面から挟持する ように配置される一対の冷媒チューブを有し、該冷媒チューブ内に冷却媒体を流通 させることにより、モジュール本体部を両面から冷却するよう構成されており、かつ、 半導体モジュールは、一対の冷媒チューブの長手方向に対して略直角の互いに異 なる方向に主電極端子と信号端子とがそれぞれ突出するように配置してあることが好 ましい。
[0039] この場合には、半導体モジュールと冷媒チューブとを並列して配置することができ、 力、つ、その配列方向に直交する異なる方向に主電極端子と信号端子とをそれぞれ 配置することができる。そのため、半導体モジュールと冷媒チューブとを配歹 1Jしてなる 主回路部の両面に制御回路基板部とパワー配線部とを振り分けて配置することが非 常に容易となる。
[0040] 主回路部は、冷媒チューブと半導体モジュールとを交互に複数積層した積層構造 を有しており、その積層方向と直交する方向の一面から半導体モジュールの主電極 端子を突出させると共にその反対面力 信号端子を突出させていることが好ましい。 この場合には、半導体モジュールと冷媒チューブとの積層構造体を一つのユニットと してまとめることが容易となり、主回路部全体をコンパクトィ匕することができると共に、 製造上の取り扱レ、を容易にすることができる。
[0041] なお、半導体モジュールと冷媒チューブとの配列は、 1列の半導体モジュールを挟 持する 2つ 1組の冷媒チューブを一単位とし、この単位を繰り返し配置する配列方法 を採用することもできる。この場合には、一単位のものを複数作製し、これらを並列に 配置し、複数の冷媒チューブを一対のヘッダ部により連結することによって全体をュ ニットィ匕することができる。
[0042] (実施例 1)
以下、本発明の実施例 1に係る電力変換装置につき、図 1一図 4を用いて説明する 。実施例 1の電力変換装置 1は、ハイブリッド自動車用の電力変換装置であり、図 1に 示すごとぐ主回路部 10と制御回路基板部 2とパワー配線部 3とよりなる。そして、主 回路部 10は、制御回路基板部 2とパワー配線部 3との間に介在させてある。
[0043] 図 2,図 3に示すごとぐ主回路部 10は、電力変換回路の一部を構成する半導体モ ジュール 4と、該半導体モジュール 4を冷却する冷却装置 5とを含んで構成されてい る。また、制御回路基板部 2は、半導体モジュール 4の信号端子 42に電気的に接続 され、半導体モジュール 4を制御する制御回路(図示略)を有する基板である。また、 パワー配線部 3は、半導体モジュール 4の主電極端子 41に接続され、半導体モジュ ール 4に対して電流を入出させる部分である。
[0044] 実施例 1においては、図 2,図 3 (b)に示すごとぐ半導体モジュール 4は、半導体素 子を内蔵したモジュール本体部 40と、該モジュール本体部 40から突出させた主電 極端子 41と、該主電極端子 41の突出方向と略 180度異なる方向へ突出させた信号 端子 42とよりなる。そして、モジュール本体部 40は、その主面両面 401、 402に主電 極端子 41に導通する放熱板 451を露出させてある。
[0045] 冷却装置 5は、図 3 (b)に示すごとぐモジュール本体部 40を両面から挟持するよう に配置される一対の冷媒チューブ 51を有している。本例では、一対の冷媒チューブ 51の間に 2つの半導体モジュール 4を並べて挟持させた。そして、全体的には、冷媒 チューブ 51と半導体モジュール 4の列とを交互に積層して主回路部 10を構成した。 これにより、すべての半導体モジュール 4は、その両面 401 , 402を冷媒チューブ 51 により挟持された状態となる。
[0046] 各冷媒チューブ 51は、その内部に図示しない冷媒通路を有しており、これに冷却 媒体を流通可能に構成してある。また、図 3 (b)に示すごとぐ複数の冷媒チューブ 5 1の両端をそれぞれ連結するように蛇腹パイプ 59を配置し、ヘッダ部 50を形成してあ る。そして、冷媒チューブ 51内に冷却媒体を流通させることにより、モジュール本体 部 40を両面 401 , 402力、ら冷去 Pする。各半導体モジュール 4は、一対の冷媒チュー ブ 51の長手方向に対して略直角の互レ、に異なる方向に主電極端子 41と信号端子 4 2とがそれぞれ突出するように配置される。これにより、半導体モジュール 4と冷媒チュ ーブ 51とを配列してなる主回路部 10の両面に制御回路基板部 2とパワー配線部 3と を振り分けて配置することが非常に容易となる。
[0047] 制御回路基板部 2は、図 3 (c)に示すごとぐ半導体モジュール 4の信号端子 42を 挿入配置する接続穴 22を複数有しており、この接続穴 22に信号端子 42を挿入する ことによって制御回路と信号端子 42とが電気的に接続されるように構成されている。 なお、制御回路基板部 2に立設させた支持棒 29は、主回路部 10の冷媒チューブ 51 に当接して、主回路部 10と制御回路基板部 2との間の距離を一定に保っためのスぺ ーサとして機能するものである。
[0048] パワー配線部 3は、図 3 (a)に示すごとぐ図示しない三相モータに接続される複数 のバスバー 31と、これらの一部をモールドした樹脂モールド部 30とにより構成されて いる。またパワー配線部 3の主回路部 10に面した面 302には、半導体モジュール 4 の主電極端子 41に接合される接合端子部(図示略)が複数設けられている。
[0049] そして、図 3,図 4に示すごとぐ主回路部 10の上方にパワー配線部 3を隣接配置し 、下方に制御回路基板部 2を隣接配置し、かつ、半導体モジュール 4の主電極端子 4 1とパワー配線部 3を電気的に接続し、信号端子 42を制御回路基板部 2に電気的に 接合することによって、本例の電力変換装置 1が得られる。
[0050] 本例の電力変換装置 1は、上記のごとぐ半導体モジュール 4とその冷却装置 5とよ りなる主回路部 10を、制御回路基板部 2とパワー配線部 3とによって挟持するように 配置してある。そのため、主回路部 10が、制御回路基板部 2とパワー配線部 3との間 におけるシールド部として機能し、パワー配線部 3からの電気的なノイズが制御回路 基板部 2に伝わることを抑制することができる。これにより、従来必要であったシールド 層を不要にすることができ、部品点数を減らすことができる。
[0051] また、主回路部 10と制御回路基板部 2とは隣接して配置しているので、両者の間の 電気的接合部は、両者の境界部分に配置することができ、パワー配線部 3を貫通さ せる必要がない。それ故、さらにパワー配線部 3から制御回路基板部 2への電気的な ノイズの影響を抑制することができる。
[0052] さらに、本例では、半導体モジュール 4として、両面冷却可能であると共に、主電極 端子 41と信号端子 42とを略 180度異なる方向へ突出させた構造のものを採用した。 そしてこの構造を最大限利用して、上記のごとく冷媒チューブ 51との積層構造を実 現すると共に、その積層方向と直交する異なる方向に主電極端子 41と信号端子 42 とがそれぞれ突出するような構造とした。これにより、半導体モジュール 4の冷却効率 の向上と、主回路部 10の両面に制御回路基板部 2とパワー配線部 3とを振り分けて 配置する構造の実現を容易に成し遂げることができた。
[0053] なお、本例では、制御回路基板部 2の上方に主回路部 10を、さらにその上方にパ ヮー配線部 3を配置した構造としたが、この相対的な関係を維持したまま、上下方向 を逆転させた形態、あるいは、 90度反転させた形態などに変更することは勿論可能 である。
[0054] (実施例 2)
実施例 2は、図 5に示すごとぐ実施例 1における電力変換装置 1を基にして、その パワー配線部 3に、昇圧回路の一部を構成するリアタトル 61とコンデンサ 62とを配設 した例である。この場合には、昇圧回路を構成する電子部品であるリアタトル 61及び コンデンサ 62から制御回路基板部 3への電気的なノイズの影響を抑制することがで きる。その他は実施例 1と同様の作用効果が得られる。
[0055] 2.実装構造
次に、本発明による半導体装置の実装構造の実施例について説明する。この半導 体装置の実装構造は、ノイズ抑制用バイパスコンデンサの形成の仕方、特に何が誘 電体 (絶縁体)となるかに応じて、以下の三つのタイプに分類できる。
[0056] (1)第 1タイプでは、半導体モジュールと、これを表裏両側から保持又は挟持する 保持部材との間に介在させた絶縁性の板や膜が誘電体となるものであり、種々の態 様が含まれる。第 1態様は、半導体モジュールの電極板は、一方極板を形成すベぐ 半導体モジュールの樹脂モールドからその一部が露出している。保持部材は他方極 板を形成すべく導電材から成る。
[0057] なお、半導体モジュールの表面側の第 1電極板及び裏面側の第 2電極板の両方に バイパスコンデンサが接続されていることが望ましい。但し、そのようになっていること は不可欠ではなぐ第 1又は第 2電極板のみにバイパスコンデンサを接続しても良い 。そのためには、一方の電極板とこれに対向する保持部材との間のみに絶縁性の板 等を介在させればよい。これは、第 1タイプの第 2から第 4態様や、後述する第 2タイ プ及び第 3タイプでも同様である。
[0058] 第 2態様は、半導体モジュールの電極板を覆う樹脂モールドの一部(モールド部分 )が誘電体となる。第 3態様は、半導体モジュールの露出した電極板の一部を、樹脂 モジュールと一体化された絶縁性の被膜が覆レ、、誘電体となっている。第 4態様は、 保持部材と一体化され、半導体モジュールの露出した電極板の一部と対向する絶縁 性の被膜が誘電体となる。
[0059] なお、何れの態様でも、保持部材はその内部を冷却媒体が流通することが望ましい 。冷却媒体は半導体モジュールでの温度上昇を抑えるのみならず、導電性の場合、 保持部材を車体に接地する上で有効である。
[0060] (2)第 2タイプでは、半導体モジュールを表裏両側から保持又は挟持する保持部材 が誘電体及び他方極板となる。そのために、保持部材は絶縁材からなり、その内部 に導電性の内部部材が揷入されている。なお、半導体モジュールの電極板はその一 部が露出している。また、保持部材の内部に冷却媒体を流通させることができる。
[0061] (3)第 3タイプは、半導体モジュールを表裏両側から保持等する保持部材は含まな レ、。一方極板及び誘電体が半導体モジュールに形成され、他方極板は金属製ケー スに収納された導電性の冷却媒体である。半導体モジュールの電極板は樹脂モー ルドの一部(モールド部)により覆われている。複数の半導体モジュールはケースによ り所定状態に位置決めされる。
[0062] 以下、各タイプ及び各タイプにおける態様について添付図面を参照しつつ説明す る。
[0063] (実施例 3)
図 7に示すハイブリッド自動車の駆動システムは、バッテリ 1010、発電電動機(MG ) 1020及びインバータ装置 1060を含む。バッテリ 1010の正極端子及び負極端子 力、ら延びた直流ブスバー 1011及び 1012の間に、平滑コンデンサ 1013と、インバー タ装置 60を構成する三相交流(U相、 V相及び W相)用半導体対とが配置されてい る。第 1及び第 2U相半導体素子 1031, 1032間から U相線 1016が MG1020に延 びている。
第 1及び第 2V相半導体素子 1031, 1032間から V相線 1017が、第 1W及び第 2W 相半導体素子 1031 , 1032間力も W相線 1018カ それぞれ MG1020に延びてい る。
[0064] 図 8から図 10に示すように、インバータ装置 1060は保持管 1055と、複数の半導体 モジユーノレ 1030とを、絶縁材 1050を介して高さ方向で交互に積み重ねて成る。図 11から図 13に示すように、各半導体モジュール 1030は第 1半導体素子(IGBT) 10 31及び第 2半導体素子(フライホイールダイオード) 1032と、はんだ 1033a、 1033b を介してこれらの表面側に接合された第 1電極板 35と、はんだ(不図示)を介してこれ らの基板側 (裏面側)に接合された第 2電極板 1036とを含む。
[0065] 第 1電極板 1035及び第 2電極板 1036にそれぞれ第 1駆動電極端子 1038及び第
2駆動電極端子 1039が一体化されている。第 1半導体素子 1031には、制御電極端 子 1041がボンディングワイヤ 1042等の信号線により接合されている。制御電極端 子 1041は第 1半導体素子 1031をオンオフするためのゲート端子(G)及びェミッタ 端子 (Ke)、第 1半導体素子 1031の表面に形成され、その温度を検出する温度ダイ オードの出力端子 (Κ, A)、及び第 1半導体素子 1031を流れる電流を検出する電流 検出端子 (Se)を含む。
[0066] 第 1半導体素子 1031及び第 2半導体素子 1032、第 1電極板 1035及び第 2電極 板 1036、第 1駆動電極端子 1038及び第 2駆動電極端子 1039、並びに制御端子 1 041等がモールド樹脂 1045により封止されている。モールド樹脂 1045は第 1電極 板 1035と第 2電極板 1036の間に充填され、両電極板 1035, 1036間の絶縁を確 保するとともに、接続端子 1041を固着し、第 1電極板 1035、第 2電極板 1036及び 接続端子 1041間の絶縁を確保してレ、る。第 1電極板 1035及び第 2電極板 1036の 裏面は露出している。半導体モジュール 1030は扁平な矩形状を持っている。
[0067] 図 8から図 10に戻って、絶縁材 1050は例えば窒化アルミニウムゃ窒化珪素の板や フィルムから成り、半導体モジュール 1030よりも少し大きい矩形状を持つ。保持管( 挟持管) 1055はアルミニウムの押出し成形法等で成形され、フィン 1056bで区画さ れ、長手方向にのびる空隙部 1056aを備えている。保持管 1055は、半導体モジュ 一ノレ 1030の電極板 1035, 1036の幅よりも少し大きい幅と、複数の半導体モジユー ル 1030を載置できる長さとを持つ。空隙部 1056bは長さ方向に貫通しており、その 内部を導電性の冷却媒体が流通するようになっている。
[0068] ここで、並置された複数の半導体モジュール 1030と、その表面側の上方(第 1)保 持管 1055Aと、その裏面側の下方(第 2)保持管 1055Bとの組合体について考える 。上方保持管 1055Aが第 1絶縁板 1050Aを介して第 1電極板 1035に対向し、下方 保持管 1055Bが第 2絶縁板 50Bを介して第 2電極板 36に対向している。
[0069] 第 1駆動電極端子 1038及び第 2駆動電極端子 1039が上方保持管 1055A及び 下方保持管 1055Bの一側方に突出し、それぞれ正の直流ブスバー 1011及び負の 直流ブスバ一1012、及び MG 1020に接続される交流ブスバー 1016 1018に接 続されている。また、制御電極端子 1041が他側方から突出し、制御回路 1048に接 続されている。保持管 1055A, 1055Bはハイブリッド自動車の車体の一部に接続さ れている。
[0070] その結果、導電材である第 1電極板 1035と第 1保持管 1055Aとの間に、非導電材 である第 1絶縁板 1050Aが存在し、これら三者により第 1バイパスコンデンサ 1057A が形成される。同様に、第 2電極板 1036と第 2保持管 1055Bと、両者間に存在する 第 2絶縁板 1050Bとで第 2バイパスコンデンサ 1057Bが形成される。
[0071] 隣接する上方保持管 1055A及び下方保持管 1055Bの両端同士間に蛇腹部材 1 061が介在されている。その両端が気密性を確保した状態で上方保持管 1055A及 び下方保持管 1055Bにロー付け、接着等により接着されている。この蛇腹部材 106 1にパイプ 1062から冷却媒体が供給され、従って、冷却媒体は保持管 1055の空隙 部 1056を流れる。こうしてパイプ 1062、配管ポンプ及びラジェータ等(不図示)によ り冷却媒体の循環経路が形成されてレ、る。
[0072] 複数の保持管 1055及び複数の半導体モジュール 1030の積み重ね体は金属ケー ス(不図示)に収容され、この金属ケースは電気自動車の車体に固定され、電気的に 導通している。結局、保持管 1055は車体に接地されていることになる。
[0073] 例えば、アイドルストップ後の発進時等に、バッテリ 1010の直流をインバータ装置 1 060で交流に変換し MG1020を駆動する。一方、エンジンによる走行時に、 MG10 20を駆動して発電した交流を直流に変換し、バッテリ 1010に充電する。この作用自 体は周知であるので、詳しい説明は割愛する。 [0074] 実施例 3によれば、ノイズの抑制に関し以下の効果が得られる。まず、第 1半導体素 子 1031及び第 2半導体素子 1032で発生するノイズのブスバー 1011, 1012及び 1 016等への放出が、特別又は専用のバイパスコンデンサを搭載することなく抑制され る。電極板 1035, 1036力 S—方極板となり、保持管 1055A、 1055B力 S他方極板とな り、絶縁板 1050A、 1050B力 S誘電体となり、これらによりバイパスコンデンサ 1057A 、 1057Bが形成されるからである。
[0075] 絶縁板 1050A、 1050Bは本来半導体素子 1031 , 1032と保持管 1055A、 1055 Bとの電気的絶縁のために介在させるものである力 S、その性質(絶縁性)及び配置位 置から誘電体としても機能する。その結果、専用のバイパスコンデンサをリード線で接 続する手間、時間が不要となるのみならず、スペース的に有利である。
[0076] 第 2に、放出ノイズの抑制が確実である。第 1及び半導体素子 1031及び 1032のそ れぞれに個別にコンデンサ 1057A、 1057Bが接続され、し力 バイパスコンデンサ 1 057A、 1057Bがノイズの発生源である第 1及び第 2半導体素子 1031及び 1032の すぐ近くに位置してレ、ることによる。
[0077] 第 3に、 2つの理由により放出ノイズの抑制効果が高い。まず、第 1保持管 1055A 及び第 2保持管 1055Bは、その内部を流通する導電性の LLC、ポンプ及びラジェ 一タ等を介して車両のボディに接続されている。これにより、半導体素子 1031, 103 2のノイズをボディにバイパスする経路のインピーダンスが低下する。しかも空隙部 10 56aの内周面に内部に形成したフィン 1056bが保持管 1055と LLCとの電気的結合 を向上させるからである。
[0078] また、第 1及び第 2半導体素子 1031及び 1032の冷却に関し優れた冷却効果が得 られる。その表面側に配置された第 1電極板 1035と、その裏面側に配置された第 2 電極板 1036とを介して、それぞれ内部を冷却媒体が流通する第 1保持管 1055A及 び第 2保持管 1055Bに直接密着する、両面冷却方式を採用しているからである。
[0079] (実施例 4)
図 14から図 17に実施例 4を示す。実施例 4では実施例 3の第 1 ,第 2絶縁板 1050 A、 1050Bの代わりに、半導体モジュールの樹脂モールド 1110の一部が誘電体を 構成している。 [0080] 詳述すると、第 1電極板 1035の表面及び第 2電極板 1036の裏面は露出しておら ず、それぞれ第 1モールド部分 1112及び第 2モールド部分 1113により覆われてレ、る 。その結果、第 1及び第 2半導体素子 1031及び 1032と、第 1及び第 2保持管 1055 A及び 1055Bと、これらの間に位置する第 1及び第 2モールド部分 1112及び 1113 とで第 1及び第 2バイパスコンデンサ 1115A及び 1115Bが形成されてレ、る。
[0081] 実施例 4によれば、実施例 3と同様の効果が得られる。カロえて、半導体装置の構成 力 Sコンパクトになる。第 1及び第 2モールド部分 1112及び 1113が、第 1及び第 2半導 体素子 1031及び 1032と第 1及び第 2保持管 1055A及び 1055Bとの間の絶縁材と しての機能と、ノ ィパスコンデンサの誘電体としての機能を兼ねていることによる。ま た、実施例 3における第 1 ,第 2絶縁板 1050A、 1050Bは不要となる。
[0082] (実施例 5)
図 18に示す実施例 5では、実施例 3の絶縁板 1050A、 1050Bの代わりに、第 1及 び第 2モールド部分 1151及び 1152に、第 1及び第 2絶縁被膜 1153及び 1154を密 着形成し、第 1及び第 2電極板 1035及び 1036の露出部分を覆っている。第 1及び 第 2絶縁被膜 1153及び 1154は、例えばアルミナの溶射膜や、 DLC (ダイヤモンド ダイクカーボン)の被膜力 成る。その結果、第 1及び第 2半導体素子 1031及び 103 2と、第 1及び第 2保持管 1055A及び 1055Bと、両者間に位置する第 1及び第 2絶 縁被膜 1153及び 1154とでバイパスコンデンサ 1155A及び 1155Bが構成される。
[0083] 実施例 5においても、実施例 3と同様の効果が得られる。加えて、第 1及び第 2絶縁 被膜 1153及び 1154が第 1及び第 2半導体素子 1031及び 1032のすぐ近くに位置 しているので、バイパスコンデンサ 1155A、 1155Bの容量を大きくできる。
[0084] しかも、第 1及び第 2絶縁被膜 1153及び 1154の膜厚を調整すれば、容量を変更 すること力 Sできる。よく知られているように、コンデンサの容量は絶縁被膜 1153, 115 4の厚さに反比例する。よって、容量を大きくしたいときは絶縁被膜 1153, 1154の厚 さを薄く、小さくしたいときは厚くすれば良レ、。なお、容量は電極板 1035, 1036の表 面積に比例するので、絶縁被膜 1153, 1154の膜厚の調整と併行して又はこれとは 別に、電極板 1035, 1036の表面積を調整することもできる。
[0085] なお、半導体モジュール 1030の第 1及び第 2電極板 1035および 1036は露出さ せ、第 1及び第 2絶縁被膜 1153及び 1154を第 1及び第 2保持管 1055A及び 1055 Bに形成しても良い。
[0086] (実施例 6)
図 19から図 21に示す実施例 6では、金属製の保持管 1055の代わりに、樹脂ゃセ ラミックス等の絶縁材カも成る保持管 1210が使用されている。絶縁性の保持管 121 0の中空部に導電性の内管 1215が揷入され、その空隙部 1216を冷却媒体が流通 するようになつている。なお、半導体モジュール 1030の第 1及び第 2電極板 1035及 び 1036は露出している。よって、第 1及び第 2電極板 1035及び 1036と、第 1及び第 2内管 1215A及び 1215Bと、両者の間に位置する保持管 1210A及び 1210Bの壁 き 1212A及び 1212Bとでノ イノヽ。スコンデンサ 1220A及び 1220B力 S構成されてレヽ る。
[0087] 実施例 6によれば、実施例 3と同様の効果に加えて、本来冷却媒体を流通させるた めの保持管 1210の絶縁性の壁部 1212が誘電体となるので、半導体モジュール 10 30に誘電体を形成すること等が不要となる。また、保持管 1210に導電性が要求され ないので、材料の選択の幅が広がる。
[0088] (実施例 7)
図 22から図 24に実施例 7を示す。実施例 7では、半導体モジュール 1030の第 1及 び第 2駆動電極端子 1038及び 1039と、制御端子 1041とが同じ側面から突出して いる。第 1電極板 1035の表面及び第 2電極板 1036の裏面(何れも不図示)は第 1 , 第 2モーノレド咅分 1251, 1252で覆われてレヽる。
[0089] 金属製ケース 1260は上端側に複数の開口 1262を持ち、その内部には導電性の 冷却媒体 1265が充填されている。各半導体モジュール 1030の下端をケース 1260 の冷却媒体 1265に浸し上端を開口 1262から上方に突出させ、シール部材 1263で シールしている。第 1及び第 2半導体素子 1031及び 1032と、冷却媒体 1265と、両 者間に位置するモールド部分 1251, 1252とで、第 1及び第 2バイパスコンデンサ 12 70A及び 1270Bが形成されている。
[0090] 実施例 7によれば、第 1及び第 2半導体素子 1031及び 1032毎に、しかもその近傍 にバイパスコンデンサ 1270A及び 1270Bが形成され、ノイズを効果的に抑制する。 加えて、冷却媒体 1265を収納した金属製ケース 1260が、複数の半導体モジュール 1030を所定状態に位置決めしている。各半導体モジュール 1030をケース 1260の 開口 1262から挿入するのみで所定状態にセットでき、インバータ装置を製作するた めの時間が短くできる。

Claims

請求の範囲
[1] 電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却 する冷却装置とを含む主回路部と、
上記半導体モジュールの信号端子に電気的に接続され、上記半導体モジュール を制御する制御回路を有する制御回路基板部と、
上記半導体モジュールの主電極端子に接続され、上記半導体モジュールに対して 電流を入出させるパワー配線部とを有してなり、
上記主回路部は、上記制御回路基板部と上記パワー配線部との間に介在させてあ ることを特徴とする電力変換装置。
[2] 請求項 1において、上記パワー配線部には、上記半導体モジュールに接続される 電子部品を併設してあることを特徴とする電力変換装置。
[3] 請求項 2において、上記電子部品は、昇圧回路の少なくとも一部を構成しているこ とを特徴とする電力変換装置。
[4] 請求項 1一 3のいずれか 1項において、上記半導体モジュールは、半導体素子を内 蔵したモジュール本体部と、該モジュール本体部から突出させた上記主電極端子と
、該主電極端子の突出方向と略 180度異なる方向へ突出させた上記信号端子とより なり、
上記冷却装置は、上記モジュール本体部を両面から挟持するように配置される一 対の冷媒チューブを有し、該冷媒チューブ内に冷却媒体を流通させることにより、上 記モジュール本体部を両面から冷却するよう構成されており、
かつ、上記半導体モジュールは、上記一対の冷媒チューブの長手方向に対して略 直角の互いに異なる方向に上記主電極端子と上記信号端子とがそれぞれ突出する ように配置してあることを特徴とする電力変換装置。
[5] 請求項 4において、上記主回路部は、上記冷媒チューブと上記半導体モジュール とを交互に複数積層した積層構造を有しており、その積層方向と直交する方向の一 面から上記半導体モジュールの上記主電極端子を突出させると共にその反対面から 上記信号端子を突出させていることを特徴とする電力変換装置。
[6] 電力用半導体素子と、該半導体素子の一面及び他面にそれぞれ接合された第 1 の電極板及び第 2の電極板と、該半導体素子を制御する制御回路との接続端子と、 該半導体素子並びに該第 1電極板及び第 2電極板を封止する絶縁性の樹脂モール ドと、を含む半導体モジュールと、
誘導体となる第 1絶縁部材及び第 2絶縁部材を介して前記半導体モジュールを両 側から保持する導電性の第 1保持部材及び第 2保持部材と、力 成り、
前記第 1電極板及び/又は第 2の電極板と、前記第 1保持部材及び Z又は第 2保 持部材と、前記第 1絶縁部材及び Z又は第 2絶縁部材とによりノイズ抑制用バイパス コンデンサが形成されていることを特徴とする半導体装置の実装構造。
[7] 前記第 1電極板及び第 2電極板の一部が露出し、前記第 1絶縁部材及び第 2絶縁 部材は、該第 1電極板及び第 2電極板の露出部分と前記第 1保持部材及び第 2保持 部材との間に介在された絶縁性の板である請求項 6に記載の半導体装置の実装構 造。
[8] 前記第 1電極板及び第 2電極板の一部が露出し、前記第 1絶縁部材及び第 2絶縁 部材は、前記樹脂モールドと一体化され該第 1電極板及び第 2電極板の露出部分を 覆う絶縁性の被膜である請求項 6に記載の半導体装置の実装構造。
[9] 前記第 1電極板及び第 2電極板の一部が露出し、前記第 1絶縁部材及び第 2絶縁 部材は、前記第 1保持部材及び第 2保持部材に該露出部分に対向して一体化され た絶縁性の被膜である請求項 6に記載の半導体装置の実装構造。
[10] 前記第 1保持部材及び第 2保持部材は接地されている請求項 7, 8又は 9に記載の 半導体装置の実装構造。
[11] 前記第 1保持部材及び第 2保持部材は内部に導電性の冷却媒体が流通され、該 冷却媒体が接地されている請求項 7, 8又は 9に記載の半導体装置の実装構造。
[12] 電力用半導体素子と、該半導体素子の一面及び他面にそれぞれ接合された第 1 電極板及び第 2電極板と、該半導体素子を制御する制御回路との接続端子と、該半 導体素子並びに該第 1電極板及び第 2電極板を封止する絶縁性の樹脂モールドと、 を含む半導体モジュールと、
導電性の第 1内部部材及び第 2内部部材が揷入され、前記半導体モジュールを両 側から保持すると共に、誘導体となる絶縁性の第 1保持部材及び第 2保持部材と、か ら成り、
前記第 1電極板及び/又は前記第 2の電極板と、前記第 1内部部材及び/又は第 2内部部材と、前記第 1保持部材及び/又は第 2保持部材の壁部とによりノイズ抑制 用バイパスコンデンサが形成されていることを特徴とする半導体装置の実装装置。
[13] 前記第 1内部部材及び第 2内部部材は接地されている請求項 12に記載の半導体 装置の実装構造。
[14] 前記第 1内部部材及び第 2内部部材は導電性の冷却媒体が流通され、該冷却媒 体が接地されている請求項 12に記載の半導体装置の実装構造。
[15] 電力用半導体素子と、該半導体素子の一面及び他面にそれぞれ接合された第 1 電極板及び第 2電極板と、該半導体素子を制御する制御回路との接続端子と、該半 導体素子並びに該第 1電極板及び第 2電極板を封止する絶縁性の樹脂モールドと、 を含む半導体モジュールと、
導電性の冷却媒体を収納し、該冷却媒体内に複数の前記半導体モジュールが近 接配置された金属製ケースと、から成り、
前記第 1電極板及び/又は第 2電極板と、前記冷却媒体と、前記樹脂モールドの 第 1モールド部分及び/又は第 2モールド部分とにより、ノイズ抑制用バイパスコンデ ンサが形成されていることを特徴とする半導体装置の実装構造。
[16] 前記冷却媒体は接地されている請求項 15に記載の半導体装置の実装構造。
PCT/JP2004/011970 2003-08-21 2004-08-20 電力変換装置及び半導体装置の実装構造 WO2005020276A2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04771931A EP1657806B1 (en) 2003-08-21 2004-08-20 Power converter and semiconductor device mounting structure
US10/554,998 US7508668B2 (en) 2003-08-21 2004-08-20 Electric power converter and mounting structure of semiconductor device
US12/073,871 US7724523B2 (en) 2003-08-21 2008-03-11 Electric power converter and mounting structure of semiconductor device
US12/457,246 US8027161B2 (en) 2003-08-21 2009-06-04 Electronic power converter and mounting structure of semiconductor device
US12/457,245 US7826226B2 (en) 2003-08-21 2009-06-04 Electric power converter and mounting structure of semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-297833 2003-08-21
JP2003297833A JP4075734B2 (ja) 2003-08-21 2003-08-21 半導体装置の実装構造
JP2003-299248 2003-08-22
JP2003299248A JP4003719B2 (ja) 2003-08-22 2003-08-22 電力変換装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10554998 A-371-Of-International 2004-08-20
US12/073,871 Division US7724523B2 (en) 2003-08-21 2008-03-11 Electric power converter and mounting structure of semiconductor device

Publications (2)

Publication Number Publication Date
WO2005020276A2 true WO2005020276A2 (ja) 2005-03-03
WO2005020276A3 WO2005020276A3 (ja) 2005-04-14

Family

ID=34220706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011970 WO2005020276A2 (ja) 2003-08-21 2004-08-20 電力変換装置及び半導体装置の実装構造

Country Status (3)

Country Link
US (4) US7508668B2 (ja)
EP (4) EP2216892B1 (ja)
WO (1) WO2005020276A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671458B2 (en) 2005-03-28 2010-03-02 Toyota Jidosha Kabushiki Kaisha Connecting member used for semiconductor device including plurality of arranged semiconductor modules and semiconductor device provided with the same
US7940526B2 (en) * 2005-10-07 2011-05-10 Curamik Electronics Gmbh Electrical module

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125781B2 (en) * 2004-11-11 2012-02-28 Denso Corporation Semiconductor device
EP1965424A3 (en) 2004-11-24 2011-06-29 Danfoss Silicon Power GmbH A flow distribution module and a stack of flow distribution modules
US8339767B2 (en) * 2005-05-02 2012-12-25 Epcos Ag Power capacitor
EP1878031B1 (de) * 2005-05-02 2014-06-04 Epcos Ag Modul der leistungselektronik
JP4284625B2 (ja) * 2005-06-22 2009-06-24 株式会社デンソー 三相インバータ装置
TWI265695B (en) * 2005-07-15 2006-11-01 Delta Electronics Inc Ethernet adapter
CN101385225B (zh) * 2006-02-17 2012-01-18 株式会社安川电机 功率转换设备
JP4564937B2 (ja) 2006-04-27 2010-10-20 日立オートモティブシステムズ株式会社 電気回路装置及び電気回路モジュール並びに電力変換装置
WO2007142038A1 (ja) 2006-06-09 2007-12-13 Honda Motor Co., Ltd. 半導体装置
US8749990B2 (en) * 2006-11-29 2014-06-10 Tdk-Lambda Corporation Multiple-board power converter
EP2122682B1 (en) * 2006-12-21 2019-05-08 ABB Research LTD Semiconductor module
JP4719187B2 (ja) * 2007-06-15 2011-07-06 トヨタ自動車株式会社 半導体素子の冷却構造
US7773381B2 (en) * 2007-09-26 2010-08-10 Rohm Co., Ltd. Semiconductor device
US20090165996A1 (en) * 2007-12-26 2009-07-02 Lynch Thomas W Reticulated heat dissipation with coolant
JP4506848B2 (ja) * 2008-02-08 2010-07-21 株式会社デンソー 半導体モジュール
US7911792B2 (en) * 2008-03-11 2011-03-22 Ford Global Technologies Llc Direct dipping cooled power module and packaging
US7646606B2 (en) * 2008-05-13 2010-01-12 Honeywell International Inc. IGBT packaging and cooling using PCM and liquid
US7952856B2 (en) * 2008-06-02 2011-05-31 Honda Motor Co., Ltd. Power control unit and hybrid vehicle comprising same
JP5557441B2 (ja) * 2008-10-31 2014-07-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
DE102009012302A1 (de) * 2009-03-11 2010-09-23 Polyic Gmbh & Co. Kg Elektronisches Bauelement
DE102009017621B3 (de) * 2009-04-16 2010-08-19 Semikron Elektronik Gmbh & Co. Kg Vorrichtung zur Verringerung der Störabstrahlung in einem leistungselektronischen System
JP2012528471A (ja) * 2009-05-27 2012-11-12 キュラミーク エレクトロニクス ゲーエムベーハー 冷却される電気構成ユニット
JP5289348B2 (ja) * 2010-01-22 2013-09-11 三菱電機株式会社 車載用電力変換装置
JP4924750B2 (ja) * 2010-02-05 2012-04-25 株式会社デンソー 電力変換装置
JP5327195B2 (ja) * 2010-02-05 2013-10-30 株式会社デンソー 電力変換装置
JP5158176B2 (ja) * 2010-02-05 2013-03-06 株式会社デンソー 電力変換装置
JP5423655B2 (ja) * 2010-02-05 2014-02-19 株式会社デンソー 電力変換装置
JP5423654B2 (ja) * 2010-02-05 2014-02-19 株式会社デンソー 電力変換装置
JP2011165988A (ja) * 2010-02-11 2011-08-25 Denso Corp 半導体装置
JP2011167049A (ja) * 2010-02-15 2011-08-25 Denso Corp 電力変換装置
JP5165012B2 (ja) * 2010-02-22 2013-03-21 三菱電機株式会社 樹脂封止形電子制御装置及びその製造方法
US8203839B2 (en) * 2010-03-10 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices, power modules, and vehicles incorporating the same
JP2011192809A (ja) * 2010-03-15 2011-09-29 Omron Corp パワーコンディショナー装置およびこの装置に使用するモジュール基板構造
JP5627499B2 (ja) * 2010-03-30 2014-11-19 株式会社デンソー 半導体モジュールを備えた半導体装置
JP5473733B2 (ja) * 2010-04-02 2014-04-16 株式会社日立製作所 パワー半導体モジュール
US8472194B2 (en) * 2010-05-05 2013-06-25 Custom Sensors & Technologies, Inc. Solid state switching device with integral heatsink
JP5206732B2 (ja) 2010-05-21 2013-06-12 株式会社デンソー インバータ装置、及び、それを用いた駆動装置
JP5067679B2 (ja) 2010-05-21 2012-11-07 株式会社デンソー 半導体モジュール、および、それを用いた駆動装置
JP5201171B2 (ja) * 2010-05-21 2013-06-05 株式会社デンソー 半導体モジュール、および、それを用いた駆動装置
JP5380376B2 (ja) * 2010-06-21 2014-01-08 日立オートモティブシステムズ株式会社 パワー半導体装置
JP5206822B2 (ja) * 2010-07-09 2013-06-12 株式会社デンソー 半導体装置
US9520772B2 (en) 2010-11-09 2016-12-13 Tdk-Lambda Corporation Multi-level voltage regulator system
US8934267B2 (en) 2010-11-09 2015-01-13 Tdk-Lambda Corporation Loosely regulated feedback control for high efficiency isolated DC-DC converters
CN103222049A (zh) * 2010-11-24 2013-07-24 丰田自动车株式会社 层叠型冷却器
CN103348780B (zh) * 2011-02-10 2015-03-18 丰田自动车株式会社 电力转换装置
JP5488565B2 (ja) 2011-03-29 2014-05-14 株式会社デンソー 電力変換装置
JP5652370B2 (ja) 2011-03-30 2015-01-14 株式会社デンソー 電力変換装置
DE202011100820U1 (de) 2011-05-17 2011-12-01 Ixys Semiconductor Gmbh Leistungshalbleiter
JP5397417B2 (ja) * 2011-05-30 2014-01-22 株式会社デンソー 半導体装置、および、それを用いた駆動装置
JP5738676B2 (ja) * 2011-05-30 2015-06-24 トヨタ自動車株式会社 電力変換装置
US8804340B2 (en) * 2011-06-08 2014-08-12 International Rectifier Corporation Power semiconductor package with double-sided cooling
JP5344012B2 (ja) * 2011-09-02 2013-11-20 株式会社デンソー 電力変換装置
US9048721B2 (en) * 2011-09-27 2015-06-02 Keihin Corporation Semiconductor device
CN103023279B (zh) * 2011-09-27 2015-05-13 株式会社京浜 半导体控制装置
JP5634621B2 (ja) * 2011-11-30 2014-12-03 三菱電機株式会社 半導体装置、及び車載用電力変換装置
CN103999213A (zh) * 2011-12-20 2014-08-20 丰田自动车株式会社 半导体模块
JP5664578B2 (ja) * 2012-03-13 2015-02-04 株式会社デンソー 電力変換装置
US8699225B2 (en) * 2012-03-28 2014-04-15 Delphi Technologies, Inc. Liquid cooled electronics assembly suitable to use electrically conductive coolant
US9131630B2 (en) * 2012-03-28 2015-09-08 Delphi Technologies, Inc. Edge seal for electronics assembly suitable for exposure to electrically conductive coolant
DE102012206271A1 (de) * 2012-04-17 2013-10-17 Semikron Elektronik Gmbh & Co. Kg Flüssigkeitsgekühlte Anordnung mit anreihbaren Leistungshalbleitermodulen und mindestens einer Kondensatoreinrichtung und Leistungshalbleitermodul hierzu
JP5753829B2 (ja) * 2012-09-28 2015-07-22 日立オートモティブシステムズ株式会社 電力変換装置
JP5747963B2 (ja) * 2012-10-02 2015-07-15 株式会社デンソー 電力変換装置
JP2014078599A (ja) * 2012-10-10 2014-05-01 Denso Corp 電力変換装置
JP5655846B2 (ja) * 2012-12-04 2015-01-21 株式会社デンソー 電力変換装置
FR3002410B1 (fr) * 2013-02-20 2016-06-03 Bull Sas Carte electronique pourvue d'un systeme de refroidissement liquide
JP5821890B2 (ja) * 2013-04-17 2015-11-24 トヨタ自動車株式会社 電力変換装置
US9275926B2 (en) 2013-05-03 2016-03-01 Infineon Technologies Ag Power module with cooling structure on bonding substrate for cooling an attached semiconductor chip
US20150195951A1 (en) * 2014-01-06 2015-07-09 Ge Aviation Systems Llc Cooled electronic assembly and cooling device
JP2015149883A (ja) 2014-01-09 2015-08-20 株式会社デンソー 電力変換装置
JP6044559B2 (ja) * 2014-02-05 2016-12-14 株式会社デンソー 電力変換装置
DE112014006676B4 (de) * 2014-06-25 2021-01-07 Hitachi, Ltd. Leistungsmodulvorrichtung
JP6197769B2 (ja) * 2014-09-12 2017-09-20 株式会社デンソー 電力変換装置及びその製造方法
US10264695B2 (en) * 2014-09-25 2019-04-16 Hitachi Automotive Systems, Ltd. Power converter
US10279653B2 (en) * 2014-11-13 2019-05-07 Hitachi Automotive Systems, Ltd. Power converter
US10199804B2 (en) * 2014-12-01 2019-02-05 Tesla, Inc. Busbar locating component
JP6187448B2 (ja) * 2014-12-24 2017-08-30 トヨタ自動車株式会社 積層ユニット
EP3144625B1 (en) * 2015-09-21 2018-07-04 ABB Schweiz AG Cooling assembly and method for manufacturing the same
EP3147621B1 (en) * 2015-09-24 2019-09-11 ABB Schweiz AG Cooling device and method for cooling at least two power electronic devices
FR3043851B1 (fr) * 2015-11-13 2018-01-05 Valeo Siemens Eautomotive France Sas Barre de connexion electrique
KR102413829B1 (ko) * 2015-12-30 2022-06-29 한온시스템 주식회사 전기소자 냉각용 열교환기
DE102016208380A1 (de) * 2016-05-17 2017-05-11 Conti Temic Microelectronic Gmbh Gehäuselose Leistungselektronikanordnung, insbesondere gehäuseloser Wechselrichter
KR102614123B1 (ko) * 2016-11-24 2023-12-13 현대자동차주식회사 차량의 인버터 구조
CN108365736B (zh) * 2017-01-25 2020-10-16 泰达电子股份有限公司 多通道电源
KR102325110B1 (ko) * 2017-05-31 2021-11-11 한온시스템 주식회사 전기소자 냉각용 열교환기
JP6859860B2 (ja) * 2017-06-13 2021-04-14 株式会社デンソー 電力変換装置、及びその製造方法
US10916931B2 (en) * 2018-01-15 2021-02-09 Infineon Technologies Ag Temperature sensing and fault detection for paralleled double-side cooled power modules
KR102094223B1 (ko) * 2018-03-30 2020-03-27 엘에스산전 주식회사 무효전력보상장치의 스위치어셈블리
JP6915633B2 (ja) * 2018-07-25 2021-08-04 株式会社デンソー 電力変換装置
US10685900B2 (en) * 2018-10-22 2020-06-16 Deere & Company Packaging of a semiconductor device with phase-change material for thermal performance
KR102598320B1 (ko) 2019-02-18 2023-11-06 현대자동차주식회사 전력변환 장치
JP7151599B2 (ja) * 2019-04-08 2022-10-12 株式会社デンソー 電力変換器
CN112930077B (zh) * 2019-12-06 2023-11-07 台达电子工业股份有限公司 适用于电源模块的冷却系统
US11612084B1 (en) * 2020-12-18 2023-03-21 Zoox, Inc. Modular heatsink for vehicle computer cooling architecture
CN114334921A (zh) * 2021-12-31 2022-04-12 佛山市国星光电股份有限公司 功率模块和散热系统

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538170A (en) * 1983-01-03 1985-08-27 General Electric Company Power chip package
US4646129A (en) * 1983-09-06 1987-02-24 General Electric Company Hermetic power chip packages
JP2579315B2 (ja) * 1987-06-17 1997-02-05 新光電気工業株式会社 セラミツクパツケ−ジ
JPH01169774A (ja) 1987-12-24 1989-07-05 Matsushita Electric Ind Co Ltd 円盤型磁気記録再生装置
US5031069A (en) * 1989-12-28 1991-07-09 Sundstrand Corporation Integration of ceramic capacitor
US5579217A (en) * 1991-07-10 1996-11-26 Kenetech Windpower, Inc. Laminated bus assembly and coupling apparatus for a high power electrical switching converter
JPH07308070A (ja) 1994-05-12 1995-11-21 Fuji Electric Co Ltd 自励式整流回路のノイズ抑制回路
JPH09312376A (ja) * 1996-05-21 1997-12-02 Fuji Electric Co Ltd 半導体装置
JP3879150B2 (ja) 1996-08-12 2007-02-07 株式会社デンソー 半導体装置
US6046921A (en) * 1996-08-27 2000-04-04 Tracewell; Larry L. Modular power supply
US5864177A (en) * 1996-12-12 1999-01-26 Honeywell Inc. Bypass capacitors for chip and wire circuit assembly
JPH1169774A (ja) 1997-08-19 1999-03-09 Hitachi Ltd 電力変換装置
US6188575B1 (en) * 1998-06-30 2001-02-13 Intersil Corporation Heat exchanging chassis and method
US6072240A (en) * 1998-10-16 2000-06-06 Denso Corporation Semiconductor chip package
US6331365B1 (en) * 1998-11-12 2001-12-18 General Electric Company Traction motor drive system
FR2790905A1 (fr) * 1999-03-09 2000-09-15 Sagem Composant electrique de puissance a montage par brasage sur un support et procede de montage correspondant
JP3886295B2 (ja) * 1999-06-15 2007-02-28 松下冷機株式会社 冷凍システムのパワー制御装置およびコンプレッサ
US6703707B1 (en) * 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
EP2244289B1 (en) * 2000-04-19 2014-03-26 Denso Corporation Coolant cooled type semiconductor device
JP4423746B2 (ja) * 2000-05-10 2010-03-03 株式会社デンソー 冷媒冷却型両面冷却半導体装置
JP4415503B2 (ja) * 2000-05-12 2010-02-17 株式会社デンソー 半導体装置
US6345507B1 (en) * 2000-09-29 2002-02-12 Electrografics International Corporation Compact thermoelectric cooling system
JP4691819B2 (ja) * 2001-04-25 2011-06-01 株式会社安川電機 インバータ装置
US6693348B2 (en) * 2001-06-15 2004-02-17 Ricoh Company, Ltd. Semiconductor device with power supplying unit between a semiconductor chip and a supporting substrate
JP3676719B2 (ja) * 2001-10-09 2005-07-27 株式会社日立製作所 水冷インバータ
JP2003125588A (ja) * 2001-10-12 2003-04-25 Mitsubishi Electric Corp 電力変換装置
US7061775B2 (en) * 2002-01-16 2006-06-13 Rockwell Automation Technologies, Inc. Power converter having improved EMI shielding
US6898072B2 (en) * 2002-01-16 2005-05-24 Rockwell Automation Technologies, Inc. Cooled electrical terminal assembly and device incorporating same
US6965514B2 (en) * 2002-01-16 2005-11-15 Rockwell Automation Technologies, Inc. Fluid cooled vehicle drive module
US6982873B2 (en) * 2002-01-16 2006-01-03 Rockwell Automation Technologies, Inc. Compact vehicle drive module having improved thermal control
JP4103411B2 (ja) * 2002-03-01 2008-06-18 三菱電機株式会社 電力変換装置
JP2003298253A (ja) * 2002-03-29 2003-10-17 Denso Corp 電子制御装置の筐体構造及び電子制御装置の搭載構造
JP2003298009A (ja) * 2002-03-29 2003-10-17 Toshiba Corp パワーモジュール及びそれを用いた電力変換装置
DE10221082A1 (de) * 2002-05-11 2003-11-20 Bosch Gmbh Robert Halbleiterbauelement
JP4450230B2 (ja) * 2005-12-26 2010-04-14 株式会社デンソー 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671458B2 (en) 2005-03-28 2010-03-02 Toyota Jidosha Kabushiki Kaisha Connecting member used for semiconductor device including plurality of arranged semiconductor modules and semiconductor device provided with the same
US7940526B2 (en) * 2005-10-07 2011-05-10 Curamik Electronics Gmbh Electrical module

Also Published As

Publication number Publication date
EP2216892A3 (en) 2010-09-29
EP2216891B1 (en) 2012-01-04
US7724523B2 (en) 2010-05-25
US20090251858A1 (en) 2009-10-08
US20090251859A1 (en) 2009-10-08
EP2216890B1 (en) 2012-01-04
EP1657806A2 (en) 2006-05-17
EP1657806B1 (en) 2011-11-30
US8027161B2 (en) 2011-09-27
EP2216891A2 (en) 2010-08-11
EP2216892B1 (en) 2012-01-18
EP1657806A4 (en) 2008-10-29
EP2216892A2 (en) 2010-08-11
US20080164607A1 (en) 2008-07-10
EP2216891A3 (en) 2010-09-29
US7508668B2 (en) 2009-03-24
EP2216890A3 (en) 2010-09-29
EP2216890A2 (en) 2010-08-11
WO2005020276A3 (ja) 2005-04-14
US20060284308A1 (en) 2006-12-21
US7826226B2 (en) 2010-11-02

Similar Documents

Publication Publication Date Title
WO2005020276A2 (ja) 電力変換装置及び半導体装置の実装構造
JP6915633B2 (ja) 電力変換装置
JP5521091B2 (ja) 電力変換装置
WO2019097989A1 (ja) 電力変換装置
JP4075734B2 (ja) 半導体装置の実装構造
JP6161550B2 (ja) 電力変換装置
CN111162060A (zh) 功率半导体模块、流路部件及功率半导体模块结构体
US11942869B2 (en) Power module and electric power conversion device
JP6977682B2 (ja) 回転電機ユニット
WO2021149352A1 (ja) 電力変換装置
WO2020021880A1 (ja) 電力変換装置
WO2023032060A1 (ja) 電力変換装置
US20240215211A1 (en) Power conversion device
JP7392557B2 (ja) 半導体装置
WO2023058381A1 (ja) 電力変換装置
CN118120140A (zh) 电力转换装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006284308

Country of ref document: US

Ref document number: 10554998

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004771931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004771931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10554998

Country of ref document: US