WO2005019450A1 - 細胞傷害性リンパ球の製造方法 - Google Patents

細胞傷害性リンパ球の製造方法 Download PDF

Info

Publication number
WO2005019450A1
WO2005019450A1 PCT/JP2004/012238 JP2004012238W WO2005019450A1 WO 2005019450 A1 WO2005019450 A1 WO 2005019450A1 JP 2004012238 W JP2004012238 W JP 2004012238W WO 2005019450 A1 WO2005019450 A1 WO 2005019450A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
cell
medium
serum
Prior art date
Application number
PCT/JP2004/012238
Other languages
English (en)
French (fr)
Inventor
Mitsuko Ideno
Nobuko Muraki
Kinuko Ogawa
Masayuki Kishimoto
Tatsuji Enoki
Hiroaki Sagawa
Ikunoshin Kato
Original Assignee
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE602004025591T priority Critical patent/DE602004025591D1/de
Application filed by Takara Bio Inc. filed Critical Takara Bio Inc.
Priority to CA2536492A priority patent/CA2536492C/en
Priority to EP04772194A priority patent/EP1666589B1/en
Priority to AU2004267313A priority patent/AU2004267313B2/en
Priority to JP2005513357A priority patent/JP4870432B2/ja
Priority to KR1020127008838A priority patent/KR101331746B1/ko
Priority to EA200600459A priority patent/EA012520B1/ru
Priority to AT04772194T priority patent/ATE458046T1/de
Priority to CN2004800241727A priority patent/CN1839202B/zh
Priority to MXPA06002039A priority patent/MXPA06002039A/es
Priority to US10/568,745 priority patent/US8927273B2/en
Publication of WO2005019450A1 publication Critical patent/WO2005019450A1/ja
Priority to HK07102871.3A priority patent/HK1095606A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/58Adhesion molecules, e.g. ICAM, VCAM, CD18 (ligand), CD11 (ligand), CD49 (ligand)

Definitions

  • the present invention relates to a method for obtaining cytotoxic lymphocytes useful in the medical field.
  • lymphocytes Living organisms are protected from foreign substances mainly by immune responses, and the immune system is made up of various cells and the soluble factors they produce. Among them, leukocytes, especially lymphocytes, play a central role. These lymphocytes are divided into two main types: B lymphocytes (hereinafter sometimes referred to as B cells) and T lymphocytes (hereinafter sometimes referred to as T cells). It recognizes antigens specifically and acts on them to protect the body.
  • B lymphocytes hereinafter sometimes referred to as B cells
  • T lymphocytes hereinafter sometimes referred to as T cells
  • CD (C lusterof D ifferentiati on ) 4 has a marker mainly helper T cells involved in the induction of antibody production aid and various immune responses (hereinafter referred to as T H), CD 8 It is cytotoxic T lymphocytes (cytot ox ic T 1 ymph ocyte ), also known as killer one T cell; has a marker primary, mainly cytotoxic T cells that exhibit cytotoxic activity [T C. (Hereinafter sometimes referred to as CTL)].
  • CTL which plays the most important role in recognizing, destroying, and removing tumor cells and virus-infected cells, does not produce antibodies that react specifically with antigens like sputum cells.
  • TCR Human leukocyte antigen
  • adoptive immunotherapy is an effective treatment for viral infections and tumors in animal models (for example, Adv an cesin Immun olo, published by Gr ee nb erg, PD) in 1992. gy and Reusser P. and 3 others, Blood, 1991, Vol. 78, No. 5, P 1373-1380). In this treatment method, it is important to maintain or increase the number of cells while maintaining or enhancing the CTL antigen-specific damage activity.
  • T cells As a method for preparing T cells effective for treating diseases, for example, adoptive immunotherapy using lymphokine-activated killer cells (LAK cells) (for example, Rosenberg SA et al., N. Engl. J. Med. 1987, Vo l 3, 16, No. 15, P 889-897), adoptive immunotherapy using tumor-infiltrating lymphocytes (TIL) induced with high concentrations of interleukin-2 (IL-2) (eg Rose nb erg SA et al., N. Eng l. J. Med. 1988, Vo l. 319, No. 25, P 1676-1680 and Ho M. et al., 9 people, Blood, 1993, Vo l. 8 1, No. 8, P 2093-2101) are known.
  • LAK cells lymphokine-activated killer cells
  • IL-2 interleukin-2
  • WO 96/06929 discloses a REM method (rapide xp an si on me thod).
  • the R EM method is a method in which in a short time initial population of T cells comprising an antigen-specific CTL and T H are grown (Exp and).
  • individual T cell clones can be expanded to provide large amounts of T cells, and anti-CD3 antibody, IL-2, and PBMC (peripheral blood mo nonuc 1 earcell, It is characterized by increasing the number of antigen-specific CTLs using peripheral blood mononuclear cells) and Epstein Barr virus (hereinafter abbreviated as EBV) infected cells.
  • EBV Epstein Barr virus
  • WO 97/32970 Pamphlet discloses a modified REM method, in which an undivided mammalian cell line expressing a T cell stimulating component that is distinct from PBMC is used as a feeder cell. And reduce PBMC usage It is a method to make it.
  • Lymphokine-activated killer cells are cells obtained by adding IL-12 to peripheral blood (peripheral blood leukocytes), umbilical cord blood, tissue fluid, etc. containing lymphocytes, and culturing in vitro for several days. A functional cell population with damaging activity. At this time, the growth of LAK cells is further accelerated by culturing with the addition of anti-CD3 antibody. The LAK cells thus obtained have non-specific cytotoxic activity against various cancer cells and other targets. LAK cells are also used for adoptive immunotherapy as in the case of the above CTL.
  • IL-2 is indispensable in the process of obtaining cytotoxic lymphocytes such as CTL, LAK cells, TIL and the like.
  • Cells are further activated when IL_2 binds to interleukin-2 receptor (IL-2R) on the cell surface.
  • IL-12R is known as a lymphocyte activation marker.
  • it is important to increase the expression of IL-2R on the cell surface.
  • the efficiency of inducing CTL progenitor cells subjected to stimulation with antigen as CTL is improved, that is, the ratio (ratio) of CD 8 positive cells in the cell group after induction is improved. It is important to do this.
  • serum or plasma is usually added in an amount of 5 to 20% by volume. This serum / plasma lymphocytes and other cells
  • lymphocyte expansion culture methods with low serum and serum-free (low plasma and plasma-free).
  • Fibronectin is a huge glycoprotein with a molecular weight of 250,000 that is present in animal blood, on the surface of cultured cells, and in the extracellular matrix of tissues, and is known to have a variety of functions.
  • the domain structure is divided into seven parts (see Fig. 1 below), and the amino acid sequence contains three types of similar sequences. ing. Three types of similar sequences are called type I, type II, and type III. Of these, type III is composed of 71 to 96 amino acid residues, and the concordance rate of these amino acid residues. Is 17-40%. There are 14 type III sequences in fibronectin, of which 8th, 9th and 10th (hereinafter referred to as 1 1 1-8, 1 1 1-9 and III-10, respectively).
  • III-10 contains VLA (Verylateactivati on an tigen) -5 binding region, and its core sequence is RGD S.
  • RGD S the C-terminal side of the heparin-binding domain.
  • III CS has a region called CS-1 that has binding activity to VLA-4 consisting of 25 amino acids (for example, De ane F. Momer, 1988, FI BRONECT IN, A CADEM IC PRES SI NC., P l-8, Kimizuka F.
  • An object of the present invention is to provide a method for obtaining a cytotoxic lymphocyte having a high level of cytotoxic activity, which is highly safe and suitable for medical use.
  • the first invention of the present invention uses fibronectin, a fragment thereof, or a combination thereof using a medium in which the total concentration of serum and plasma in the medium is 0% by volume or more and less than 5% by volume.
  • the present invention relates to a method for producing cytotoxic lymphocytes, comprising a step of performing at least one selected from induction, maintenance and expansion culture of cytotoxic lymphocytes in the presence of a mixture.
  • the cytotoxic lymphocytes produced in the first invention of the present invention include interleukins and receptors as compared to those produced in the absence of fibronectin, a fragment thereof or a mixture thereof. Examples are cytotoxic lymphocytes that highly express one. In addition, the cytotoxic lymphocyte produced in the first invention of the present invention has a higher ratio of CD8 positive cells than that produced in the absence of fibronectin, a fragment thereof or a mixture thereof. The cytotoxic lymphocyte contained in is illustrated.
  • the cytotoxic lymphocytes produced in the first invention of the present invention are those produced by the method for producing cytotoxic lymphocytes in the absence of fibronectin, a fragment thereof or a mixture thereof.
  • Cytotoxic lymphocytes with higher expansion rate compared to Is exemplified have enhanced cytotoxic activity compared to those produced in the absence of fibronectin, a fragment thereof or a mixture thereof. Examples thereof include cytotoxic lymphocytes that maintain high cytotoxic activity.
  • fibronectin a fragment thereof or a mixture thereof is exemplified by using them immobilized on a solid phase.
  • the solid phase include cell culture equipment or cell culture support.
  • the cell culture equipment include petri dishes, flasks or bags, and examples of the cell culture support include beads, membranes or glass slides.
  • lymphokine-activated killer cells are exemplified as the cytotoxic lymphocytes.
  • the fibronectin fragment is a polypeptide (m) comprising at least one of the amino acid sequences represented by SEQ ID NOs: 1 to 8 in the sequence listing, or the above-mentioned A polypeptide comprising at least one amino acid sequence in which one or more amino acids are substituted, deleted, inserted or added in any amino acid sequence, and having a function equivalent to that of the polypeptide (m)
  • the polypeptide (n) having is exemplified.
  • the fibronectin fragment include those having cell adhesion activity and / or heparin binding activity.
  • the fibronectin fragment is exemplified by at least one polypeptide selected from the group consisting of polypeptides having any one of the amino acid sequences represented by SEQ ID NOs: 9 to 20 and 25 in the Sequence Listing.
  • the ratio of the number of cells at the start of culture and the culture area in the cell culture equipment is lce 1 l / cm 2 to 5 X l 0 5 ce 1 1 s / cm 2 , and / or
  • the concentration of the cells in the medium at the start of the culture is 1 ce 1 1 ZmL to 5 X 10 5 ce 1 1 s / mL,
  • An example of such a production method is a method that does not require a step of diluting the cell culture solution.
  • At least one of induction, maintenance, and expansion culture of cytotoxic lymphocytes is carried out in a cell culture device containing a medium in the presence of fibronectin, a fragment thereof or a mixture thereof.
  • a cell culture device containing a medium in the presence of fibronectin, a fragment thereof or a mixture thereof.
  • a cell culture solution dilution step containing, for example, at least one cell culture solution dilution step, medium replacement step or cell culture equipment replacement step, and at least one cell culture solution dilution step.
  • the concentration of the cells in the cell culture medium is 2 ⁇ 10 5 ce 1 1 s 111 to 1 ⁇ 10 8 ce 1 1 s ZmL, or
  • the ratio of the number of cells in the cell culture medium to the culture area in the cell culture equipment is 1 ⁇ 10 5 ce 1 1 sZcm 2 to lx i 0 8 ce 1 1 s / cm 2
  • At least one of induction, maintenance and expansion culture of cytotoxic lymphocytes is carried out in the presence of fibronectin, a fragment thereof or a mixture thereof in a cell culture containing a medium.
  • the equipment there is no particular limitation, for example, including at least one cell culture solution dilution step, medium replacement step or cell culture equipment exchange step, and at least one time
  • the total serum and plasma concentrations in the medium are the same as at the start of the culture, or at the start of the culture. It is illustrated that it is reduced more.
  • a method further including a step of introducing a foreign gene into cytotoxic lymphocytes is exemplified.
  • a foreign gene introduction examples are the introduction using virus, adenovirus, adeno-associated virus or simian virus.
  • the second invention of the present invention relates to a cytotoxic lymphocyte obtained by the method of the first invention of the present invention.
  • the third invention of the present invention relates to a pharmaceutical comprising as an active ingredient a cytotoxic lymphocyte obtained by the method of the first invention of the present invention.
  • a cell comprising fibronectin, a fragment thereof or a mixture thereof as an active ingredient, wherein the total concentration of serum and plasma is 0% by volume or more and less than 5% by volume.
  • a culture medium for cytotoxic lymphocytes a method for producing cytotoxic lymphocytes with high safety and reduced burden on patients is provided.
  • FIG. 1 is a schematic diagram showing the domain structure of fibronectin. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a method for inducing, maintaining, or expanding cytotoxic lymphocytes by preparing a lymphocyte, so that even if the content of serum or plasma in the medium is reduced or removed, a high expansion culture rate can be achieved. It has been found that cytotoxic lymphocytes having sufficient cytotoxic activity, high expression level of IL-12R, and high ratio of CD8 positive cells can be obtained. .
  • cytotoxic lymphocytes refers to an operation including each step of induction (activation), maintenance and expansion of the cells, or a combination of these steps.
  • the cytotoxic lymphocyte of the present invention is produced by Also called sphere culture.
  • Fibronectin and fragments thereof used in the present invention may be obtained from nature or artificially synthesized. Fibronectin and its fragments are described, for example, in Ruoslati E. et al. [Ruos 1 ahti E., eta 1 ⁇ , Journal of Biological Chemistry (J. Biol. Ch em.), Vol. 256, No. 14, pp. 7277-7281 (1981)], can be produced in substantially pure form from naturally occurring substances.
  • the substantially pure fibronectin or fibronectin fragment described herein means that they are essentially free of other proteins that are naturally present with fibronectin. To do.
  • fibronectin and fragments thereof can be used in the present invention alone or in a mixture of plural kinds.
  • fibronectin is known to have many splicing variants, any of the variants can be used as fibronectin as long as it exhibits the desired effect of the present invention.
  • the region called ED-B that exists upstream of the cell binding domain and the region called ED-A that exists between the cell binding domain and the heparin binding domain must be deleted.
  • plasma-derived fibronectin can also be used in the present invention.
  • fibronectin fragments that can be used in the present invention, and the preparation of such fragments, can be found in Kimika F. et al. [1: 11111 1111 ⁇ 3 F., eta 1., Journal of Biochemistry i'o ch em.), Volume 10, pages 284-291 (1991)], Corn Bullitt AR et al. [01: 1113 1 "1 11 1; 1; AR, etal., EMBO —Naru (EMBO J.), Vol. 4, No. 7, 1755-1759 (1985)], and Sekiguchi K. et al. [Sekiguchi K., eta 1., B ioch em istry, Vol. 25, No. 17, 493 6-4941 (1986)] and the like.
  • the amino acid sequence of fibronectin is disclosed in Genbank Accession No. NM-002026 (NP_002017).
  • fibronectin fragments include, for example, III-8 (amino acid sequence represented by SEQ ID NO: 1 in the sequence listing), III-9 (amino acid sequence represented by SEQ ID NO: 2 in the sequence listing), III 1 (amino acid sequence represented by SEQ ID NO: 3 in the sequence listing), III 1 1 1 (amino acid sequence represented by SEQ ID NO: 4 in the sequence listing), II 1-12 (represented by SEQ ID NO: 5 in the sequence listing) II 1—1 3 (amino acid sequence represented by SEQ ID NO: 6 in the sequence listing), 1 1 1—14 (amino acid sequence represented by SEQ ID NO: 7 in the sequence listing), and CS— 1 (Amino acid sequence represented by SEQ ID NO: 8 in the Sequence Listing) Polypeptide (m) (see FIG.
  • polypeptide (n) comprising at least one amino acid sequence inserted or added and having a function equivalent to that of the polypeptide (m) is exemplified.
  • the fragment those having cell adhesion activity and / or heparin binding activity can be preferably used.
  • the cell adhesion activity can be examined by assaying the binding between the fragment (its cell binding domain) used in the present invention and the cell using a known method.
  • a known method includes the method of Williams DA et al. [Wi 1 1ams DA, eta 1., Nature, Vol. 352, pp. 438-441 (1991)].
  • This method is a method for measuring the binding of cells to a fragment immobilized on a culture plate.
  • Heparin binding activity is also used in the present invention.
  • the binding of the fragment (its heparin-binding domain) to heparin can be examined by assaying using known methods. For example, in the above-mentioned method of Williams DA et al., By using heparin instead of cells, for example, parin for labeling, the binding of fragments to heparin can be evaluated in the same manner.
  • fibronectin fragments include C-274 (amino acid sequence represented by SEQ ID NO: 9 in the sequence listing), H-271 (amino acid sequence represented by SEQ ID NO: 10 in the sequence listing), H-296 (sequence listing).
  • CH-296Na is a polypeptide produced for the first time in the present application.
  • CH-271, CH_296, CH-296 Na, C_274, and C-CS1 are polypeptides having a cell-binding domain having an activity of binding to VLA-5.
  • C-CS 1, H-296, CH-296, and C H-296 Na are polypeptides having CS-1 having an activity of binding to VLA-4.
  • H-271, H-296, CH-271, CH-296 and CH-296 Na are polypeptides having a heparin-binding domain.
  • CH_296Na is a polypeptide containing from cell binding domain to CS_1 in fibronectin derived from plasma.
  • CH-296Na is a 1631-th amino acid from a polypeptide containing from 1270th proline to 2016th threonine of the amino acid sequence of fibronectin disclosed in Genbank Accession No. NM_002026 (NP-00 20 17).
  • the region from Asparagine to the 1720th threonine (ED—A) It is a deleted polypeptide.
  • fragments in which each of the above domains is modified can also be used.
  • the heparin-binding domain of fibronectin is composed of three I I type I sequences (1 1 1— 1 2, 1 1 1— 13 and I I I— 14).
  • a fragment containing a heparin-binding domain lacking one or two of the I II type sequences can also be used in the present invention.
  • CHV-89 SEQ ID NO: 15 in the sequence listing
  • CHV-89 is a fragment in which a fibronectin cell binding site (VL A-5 binding region, Prol 239 to Ser 515 5) and one type III sequence are bound.
  • CHV-90 amino acid sequence represented by SEQ ID NO: 16 in the sequence listing
  • CHV-92 amino acid sequence represented by SEQ ID NO: 17 in the sequence listing
  • two type III sequences CHV-179 (amino acid sequence represented by SEQ ID NO: 18 in the Sequence Listing) and CHV-181 (amino acid sequence represented by SEQ ID NO: 19 in the Sequence Listing), which are fragments to which is bound.
  • CHV-89, C HV-90, and CHV-92 contain I 1 1 13, 1 1 1-14, III-12, respectively
  • CHV-179 contains III 13 and II 1-14
  • CHV — 18 1 contains III-12 and III-13, respectively.
  • a fragment obtained by adding an amino acid to each of the above fragments can also be used in the present invention.
  • the fragment can be produced, for example, by adding a desired amino acid to each of the above fragments according to the production method of H-275-Cys described in the production examples described later.
  • H-275-Cys amino acid sequence represented by SEQ ID NO: 20 in the sequence listing
  • SEQ ID NO: 20 amino acid sequence represented by SEQ ID NO: 20 in the sequence listing
  • the fragment used in the present invention has the same function as the fragment containing at least a part of the amino acid sequence of natural fibronectin exemplified above as long as the desired effect of the present invention is obtained.
  • Substitution, deletion, or insertion of one or more amino acids in the amino acid sequence of the polypeptide Alternatively, it may consist of a polypeptide having an amino acid sequence having an addition.
  • amino acid substitution and the like are preferably such that the physicochemical properties and the like of the polypeptide can be changed within a range in which the function of the original polypeptide can be maintained.
  • amino acid substitution is preferably conservative within a range that does not substantially change the properties of the original polypeptide (eg, hydrophobicity, hydrophilicity, charge, PKC, etc.).
  • amino acid substitutions are: 1. glycine, alanine; 2. parin, iso-oral, leucine; 3. aspartic acid, glutamic acid, asparagine, glutamine; 4. serine, threonine; 5.
  • Amino acid substitution or the like may occur naturally due to interspecies or individual differences, or may be artificially induced. Artificial induction may be performed by a known method, and is not particularly limited.
  • one or a plurality of nucleic acids encoding the above-mentioned region derived from natural fibronectin or a predetermined fragment may be obtained by a known method.
  • a polypeptide comprising an amino acid sequence having a substitution in the amino acid sequence of the polypeptide to be produced can be produced.
  • “having an equivalent function” means that the polypeptide as a comparative control has a fibronectin fragment derived from nature, (1) enhancement of cytotoxic activity of cytotoxic lymphocytes or Maintenance function, (ii) enhancement function of IL-12R expression, (iii) function to improve the ratio of CD8 positive cells, or (iv) cytotoxicity It has at least one of the functions of improving the expansion rate of sex lymphocytes.
  • the function can be appropriately confirmed according to the method described in Examples described later.
  • a fragment comprising a polypeptide having amino acid substitution or the like those having cell adhesion activity and heparin binding activity are preferred. Cell adhesion activity and heparin binding activity can be evaluated according to the aforementioned activity measurement method.
  • a fragment in which one or more amino acids are inserted as a linker between two different domains can also be used in the present invention.
  • Fibronectin is also a polypeptide having an amino acid sequence having one or more amino acid substitutions, deletions, insertions or additions in the amino acid sequence of the polypeptide, similar to the above fragment,
  • the polypeptide having any of the functions (i) to (iv) can be used in the present invention.
  • the fibronectin fragment described in the present specification can also be produced from a gene recombinant based on the description in US Pat. No. 5,198,423, for example.
  • H-271 SEQ ID NO: 10
  • H-296 SEQ ID NO: 11
  • CH-271 SEQ ID NO: 12
  • CH-296 SEQ ID NO: 13
  • the method is described in detail in the patent specification.
  • CH_296Na SEQ ID NO: 25
  • the production method thereof are described in (3) CH-296Na described later and in Examples.
  • the above-mentioned C-274 (SEQ ID NO: 9) fragment can be obtained by the method described in US Pat. No. 5,102,988.
  • the C—CS 1 (SEQ ID NO: 14) fragment can be obtained by the method described in Japanese Patent No. 3104178. Above? 1 ⁇ —89 (SEQ ID NO: 15), CHV-90 (SEQ ID NO: 16), CHV-179 (SEQ ID NO: 18) It can be obtained by the method described in 2729712.
  • a CH V-18 1 (SEQ ID NO: 19) fragment can be obtained according to the method described in WO 97 183 18 pamphlet.
  • For the CHV-92 (SEQ ID NO: 1 7) fragment refer to Japanese Patent No. 2729712 and International Publication No. 9 7/18318 pamphlet. It can be obtained by genetic engineering using the plasmid.
  • FERM BP-2264 E. coli harboring a plasmid encoding H-271; deposit date 30 January 1989
  • FERM BP-2800 E. coli carrying a plasmid encoding CH-296; deposit date 12 May 1989
  • FERM BP-2799 E. coli carrying a plasmid encoding CH_271; date of deposit, May 12, 1989
  • FERM BP— 7420 E. coli harboring a plasmid encoding H—296; deposit date 12 May 1989
  • FERM BP—191 5 E. coli harboring a plasmid encoding C—274; deposit date June 17, 1988
  • FERM BP— 5723 (C. coli which carries a plasmid encoding C—C S 1; date of deposit March 5, 1990),.
  • FERM BP—10073 (plasmid encoding CH—296 N a; deposited 7 July 23, 2004)
  • FERM P—12182 E. coli possessing a plasmid encoding CHV—89; deposit date 1 April 8, 991)
  • FERM P-1 2183 E. coli harboring a plasmid encoding C HV-179; date of deposit April 8, 1991.
  • fibronectin is a large glycoprotein, it is not always easy to prepare and use proteins of natural origin for industrial and pharmaceutical production.
  • fibronectin is a multifunctional protein, it may be caused by inconvenience due to a region different from the region that is effective for the method of the present invention depending on the situation of its use. Therefore, in the present invention, from the viewpoint of availability, ease of handling, and safety, a fibronectin fragment is preferably used, and a recombinant fibronectin fragment obtained as described above is more preferably used. Can be used.
  • the expansion rate of lymphocytes described later is increased, the expression level of IL-2R in expanded lymphocytes is increased, and the proportion of CD8 positive cells in the expanded lymphocyte population is increased.
  • a fibronectin fragment that can exhibit effects such as an increase in damaging activity can be used particularly preferably.
  • the molecular weight of the fibronectin fragment used in the present invention is not particularly limited, but is preferably 1 to 200 kD, more preferably 5 to 190 kD, and even more preferably 10 to 180 kD. is there.
  • the molecular weight can be measured, for example, by SDS-polyacrylamide gel electrophoresis.
  • the amino acid sequence portion other than the amino acid sequence of the polypeptide constituting the naturally derived fibronectin fragment is the desired effect of the present invention. It is optional as long as it does not inhibit the expression, and is not particularly limited.
  • the method of the invention uses a medium in which the total concentration of serum and plasma in the medium is 0% by volume or more and less than 5% by volume, and induces cytotoxic lymphocytes in the presence of fibronectin, a fragment thereof or a mixture thereof.
  • the cytotoxic lymphocyte means a group of cells containing the cytotoxic lymphocyte. In a narrow sense, only cytotoxic lymphocytes contained in the cell group may be indicated.
  • the production of cytotoxic lymphocytes means the induction of cytotoxic lymphocytes from precursor cells that can become the cytotoxic lymphocytes of the present invention, maintenance of cytotoxic lymphocytes, It includes both cytotoxic lymphocytes and expanded culture of cytotoxic lymphocytes using progenitor cells.
  • cytotoxic lymphocytes are induced, maintained, or expanded by appropriately adjusting the type of cells to be used in the method, culture conditions, and the like. become.
  • the cytotoxic lymphocytes of the present invention are not particularly limited.
  • lymphokine-activated killer cells LAK cells
  • CTL cytotoxic T cells
  • TIL tumor-infiltrating lymphocytes having cytotoxic activity
  • NK cells NK cells and the like.
  • progenitor cells that can be cytotoxic lymphocytes that is, have the ability to differentiate into lymphocytes, such as peripheral blood mononuclear cells (PBMC), NK cells, naive cells, memory cells, hematopoiesis Examples include stem cells and cord blood mononuclear cells. Any hematopoietic cell can be used as a progenitor cell in the present invention. These cells can be used either directly or cryopreserved from those collected from living organisms.
  • the material containing the cells for example, blood such as peripheral blood, umbilical cord blood, or blood from which components such as red blood cells and plasma are removed, bone marrow fluid, etc. Can be used.
  • the method for producing cytotoxic lymphocytes of the present invention comprises fibronectin and its fragment.
  • One major feature is the production of cytotoxic lymphocytes in the presence of an active ingredient selected from an antibiotic or a mixture thereof.
  • the method for producing cytotoxic lymphocytes of the present invention is carried out during the entire period of cytotoxic lymphocyte culture or any part of the period. That is, the present invention includes any process that includes the above-mentioned process in a part of the production process of cytotoxic lymphocytes.
  • the conventional method for expanding cytotoxic lymphocytes requires the addition of 5 to 20% by volume of serum / plasma in the medium, whereas the cytotoxic lymphocytes of the present invention are produced.
  • the method is characterized in that the total concentration of these serum and plasma in the culture medium is 0% by volume or more and less than 5% by volume.
  • the total concentration of serum and plasma in the culture medium is preferably 0% to 4% by volume, particularly preferably 0% to 3% by volume.
  • sufficient cytotoxic lymphocytes can be produced without adding any serum or plasma to the medium, which reduces safety and burden on patients. This is a very useful method.
  • the amount of serum / plasma used when it is desired to further reduce the amount of serum used in the present invention, can be gradually reduced during the culture.
  • the serum / plasma concentration in the new medium used when diluting the cell culture solution, replacing the medium, or replacing the cell culture equipment described later is reduced with respect to the serum / plasma concentration at the start of the culture.
  • the amount of serum / plasma used can be reduced more than usual.
  • the method includes at least one cell culture solution dilution step, a medium exchange step or a cell culture equipment exchange step, and at least one cell culture solution dilution step immediately after, Cytotoxic lymphocytes whose total serum and plasma concentrations in the medium immediately after the medium replacement process or immediately after the cell culture equipment replacement process are the same as or lower than those at the start of the culture. Manufacturing methods are provided.
  • the origin of serum or plasma is either self (meaning the same origin as the precursor cells of the cytotoxic lymphocytes used) or non-self (the cytotoxicity used) Which means that the origin of the lymphocyte is different from that of the progenitor lymphocyte).
  • an autologous lymphocyte can be used from the viewpoint of safety.
  • the production of cytotoxic lymphocytes that is, the induction, maintenance and / or expansion culture of cytotoxic lymphocytes is usually carried out by adding a predetermined component in the presence of the active ingredient of the present invention. Performed in medium containing.
  • the number of cells (cytotoxic lymphocytes and Z or progenitor cells) used in the present invention is as follows.
  • I ce 1 1 1 to 1 X 10 8 eel I s / mL preferably 1 ce 1 1 / mL to 5 X 10 7 ce 1 1 s / mL, more preferably 1 Examples include ce 1 1 mL to 2 X 10 7 eel I s ZmL.
  • the culture conditions are not particularly limited, and the conditions used for normal cell culture can be used. For example, it can be cultured under conditions of 37, such as 5% C_ ⁇ 2.
  • the cell culture solution can be diluted by adding a fresh medium at an appropriate time interval, the medium can be replaced, or the cell culture equipment can be replaced.
  • the medium used in the method for producing cytotoxic lymphocytes of the present invention is not particularly limited except for the total concentration of serum and plasma.
  • a known medium prepared by mixing necessary components can be used.
  • a commercially available medium can be appropriately selected and used.
  • These culture media may contain appropriate proteins, cytosines, and other components in addition to the original components.
  • a medium containing IL-12 is used in the present invention.
  • the concentration of IL-12 in the medium is not particularly limited.
  • the concentration is preferably 0.1 to LX 10 5 UZmL, more preferably 0.1 to LX 10 4 UZmL.
  • the cell culture equipment used in the method for producing cytotoxic lymphocytes of for example, petri dishes, flasks, bags, large culture tanks.
  • a bioreactor or the like can be used.
  • the bag as described below the actual ⁇ 3 4-3 8 and 4 5-5 2, it can be used C_ ⁇ 2 gas permeable cell culture bag.
  • a large culture tank can be used.
  • culture of either an open system or a closed system can be used, but it is preferable to perform the culture in a closed system from the viewpoint of the safety of the obtained lymphocytes.
  • progenitor cells that can become cytotoxic lymphocytes can be cultured in a medium further containing an anti-CD3 antibody.
  • concentration of the anti-CD3 antibody in the medium is not particularly limited, but is preferably, for example, 0.001 to 100 g Zm L, particularly 0.01 to 100 g / m L.
  • Anti-CD3 antibody can be added to activate the receptor on lymphocytes.
  • a lymphocyte stimulating factor such as lectin can be added.
  • the concentration of the component in the medium is not particularly limited as long as a desired effect is obtained.
  • the above ingredients are dissolved in the medium so that they coexist, and appropriate solid phase, for example, cell culture equipment such as petri dishes, flasks, bags, etc. (open type and closed type) Or any of them may be immobilized on a cell culture carrier such as beads, membranes, and slide glass.
  • a cell culture carrier such as beads, membranes, and slide glass.
  • the immobilization to the beads can be performed as described in Examples 61 and 62 below, and the produced beads can be used as described in Examples 63 and 64 below. it can.
  • the material for these solid phases is not particularly limited as long as it can be used for cell culture.
  • the concentration is the same as the desired concentration when the component is dissolved in the medium.
  • the amount of the component to be immobilized is not particularly limited as long as a desired effect is obtained.
  • the carrier is used by immersing it in a culture solution in cell culture equipment during cell culture.
  • the component is immobilized on the carrier, when the carrier is placed in the medium.
  • the amount of component immobilization is not particularly limited as long as a desired effect is obtained.
  • immobilization of fibronectin fragments can be carried out by the methods described in WO 97 Z 1 8 3 18 Pamphlet and WO 0 0 1 16 8 Pamphlet.
  • cytotoxic lymphocytes are obtained by the method of the present invention, and then the lymphocytes and the solid phase are separated.
  • the active ingredient or the like and the lymphocyte can be easily separated, and mixing of the active ingredient or the like into the lymphocyte can be prevented.
  • acidic polysaccharides, acidic oligosaccharides, and acidic monosaccharides that are effective in inducing cytotoxic T cells having antigen-specific cytotoxic activity, as described in WO 02/144844.
  • a compound selected from the group consisting of salts thereof and a substance selected from the following (A) to (D) may be used together with the above components.
  • Examples of the substance having a binding activity to CD44 include CD44 ligand and antibody or anti-CD44 antibody.
  • Examples of the substance capable of controlling a signal emitted by binding of CD44 ligand to CD44 include various phosphatases and inhibitors of phosphatases or activators.
  • As a substance that can inhibit the growth factor binding to the growth factor receptor for example, the growth factor has a binding activity, and the growth factor forms a complex with the growth factor.
  • examples of substances capable of controlling the signal emitted by the growth factor binding to the growth factor receptor include inhibitors or activators of various phosphorylases and phosphatases.
  • concentration of these components in the medium is not particularly limited as long as a desired effect is obtained. These components may be dissolved in a medium and coexist, or may be used by immobilizing on an appropriate solid phase as described above.
  • the presence of the active ingredient means that the active ingredient is present in a state capable of exerting its function when performing induction, maintenance or expansion culture of cytotoxic lymphocytes.
  • the content of the active ingredient of the present invention in the culture medium is not particularly limited as long as the desired effect can be obtained.
  • the expression level of IL-12R is measured for the cytotoxic lymphocytes obtained by the production method of the present invention, at least one of induction, maintenance, and expansion culture in the absence of fibronectin, a fragment thereof or a mixture thereof is performed. There is a significant increase in IL-2R expression compared to cytotoxic lymphocytes treated with either one.
  • the expression level of IL-2R can be measured by a known method, for example, using an anti-IL1-2R antibody.
  • the cytotoxic lymphocytes obtained by the method of the present invention have an increased expression level of IL-12R.
  • IL-2R is an activation marker that is expressed on the surface of activated T cells. With the expression of this molecule, cytoforce-in production, cytotoxic activity, proliferative activity Sex etc. are activated. Therefore, the cytotoxic lymphocyte obtained by the method of the present invention is a cell group having a high function.
  • the cytotoxic lymphocytes obtained by the method of the present invention have an increased expression level of 1-21, IL-2 added to the medium, or progenitor cells of cytotoxic lymphocytes, Sensitivity to stimulation by IL-2 produced by lymphocytes or other coexisting cells is improved. For this reason, it can be activated by itself even in an environment with low IL-12 (for example, in the body).
  • the cytotoxic lymphocytes obtained by the method of the present invention are compared with those obtained by induction, maintenance and expansion culture in the absence of fibronectin, a fragment thereof or a mixture thereof.
  • High percentage of cells with CD8 marker CD8 marker (CD & positive).
  • CD 8 positive cells produce cytokines such as interferon and cause immune activation, and helper T cell balance becomes Th 1 system.
  • CD 8 positive cells are cellular It is an immunocompetent cell and can efficiently eliminate foreign substances such as viruses and tumor cells.
  • magnetic beads were used to purify CD8-positive cells using a flow cytometer.
  • CD 8 positive cells can be enriched while culturing. 4.
  • the ratio of CD 8 positive cells Since the ratio of CD 8 positive cells is large, it can be used as a progenitor cell for inducing CTL. It is suitable for use. 5. Even from a cell population with a low CD8 positive cell ratio, it can be cultured while increasing the CD8 positive cell ratio. Therefore, the method of the present invention is extremely useful in the preparation of cytotoxic lymphocytes.
  • the ratio of CD8-positive cells in cytotoxic lymphocytes obtained by the method of the present invention is not particularly limited, and can be measured using, for example, an anti-CD8 antibody.
  • the cytotoxic lymphocytes prepared by the method of the present invention have a high level as observed in the past even if the cultured cells are maintained for a long period or proliferated. It has the property that cytotoxic activity is maintained. That is, the cytotoxic lymphocytes have a higher cytotoxic activity than those obtained by induction, maintenance and expansion culture in the absence of fibronectin, a fragment thereof or a mixture thereof. The Therefore, the cultured cytotoxic lymphocytes can be cloned and maintained as lymphocytes having stable cytotoxic activity. In addition, the induced cytotoxic lymphocytes can be proliferated and expanded by giving antigens, various cytokines, and anti-CD3 antibody stimulation. There are no particular limitations on the maintenance and expansion of the cytotoxic lymphocytes, and known methods can be used.
  • the maintenance of the above-mentioned cytotoxic lymphocyte refers to maintaining the cytotoxic lymphocyte while maintaining the cytotoxic activity.
  • the culture conditions at that time are not particularly limited, and conditions used for normal cell culture can be applied. For example, it can be cultured under the condition of 3 7, like 5% CO 2.
  • the medium can be replaced with a fresh one at an appropriate time interval.
  • the culture medium used and other components used at the same time are the same as described above.
  • the maintenance and expansion culture of cytotoxic lymphocytes in the method of the present invention is carried out in the presence of the active ingredient of the present invention, that is, fibronectin, a fragment thereof or a mixture thereof, with a total content of serum and plasma in the medium being 0% by volume.
  • the active ingredient of the present invention that is, fibronectin, a fragment thereof or a mixture thereof
  • a total content of serum and plasma in the medium being 0% by volume.
  • One major feature is the continuous culture and expansion of cytotoxic lymphocytes in a medium that is less than 5% by volume. According to expansion culture, the number of cells can be increased while maintaining the cytotoxic activity of cytotoxic lymphocytes. That is, the method of the present invention provides, as one embodiment, a method for expanding cytotoxic lymphocytes.
  • the cytotoxic lymphocyte obtained by the method of the present invention has the ability to recognize a desired target cell.
  • the target cell is destroyed by its cytotoxic activity.
  • the cytotoxic activity of this cytotoxic lymphocyte can be evaluated by a known method.
  • the cytotoxic activity of cytotoxic lymphocytes against target cells labeled with radioactive substances, fluorescent substances, etc. is evaluated by measuring the radioactivity and fluorescence intensity derived from target cells destroyed by cytotoxic lymphocytes. it can. It can also be detected by measuring the amount of cytokines such as GM_CSF and IFN_a specifically released from cytotoxic lymphocytes and target cells. It can also be confirmed directly by using an antigen peptide MHC complex labeled with a fluorescent dye or the like.
  • an antigen peptide-MHC complex in which cytotoxic lymphocytes are contacted with a first fluorescent marker coupled with a cytotoxic lymphocyte-specific antibody and then force-coupled with a second fluorescent marker.
  • the cytotoxic activity of cytotoxic lymphocytes can be evaluated by FACS (fluorescence-activated cell sorting) analysis of the presence of double-labeled cells.
  • culture can be started from a low number of cells.
  • Adoptive immunotherapy requires a large amount of lymphocytes, but it is difficult to obtain a large amount of lymphocytes from the patient.
  • cell culture equipment in normal expansion of cytotoxic lymphocytes, it is necessary to select cell culture equipment with an appropriate culture area according to the number of cells to be used and culture with an appropriate amount of medium.
  • the cell volume (number) is usually lxi 0 6 cells / cm 2 or more with respect to the culture area in the cell culture equipment [that is, the area of the surface portion of the equipment in contact with the medium (cm 2 )], and the cell concentration is 1 X 10 6 cells
  • the expansion culture rate ratio of the number of cells after expansion to the number of cells before expansion (number of cells after expansion) The number of cells before Z expansion culture) is very low, and it takes a long culture period to obtain a large amount of cytotoxic lymphocytes.
  • the culture can be performed at a high expansion rate regardless of the size of the cell culture equipment. Therefore, conventional troublesome cell culture equipment and cell culture medium replacement and cell culture medium dilution operations are not required. That is, according to the method of the present invention, sufficient cytotoxic lymphocytes can be expanded and cultured by a culture operation using one cell culture device, in other words, by one culture system. Therefore, the method of the present invention can realize a method for producing cytotoxic lymphocytes that does not require a step of diluting the cell culture medium.
  • LAK cells when LAK cells are expanded by the method of the present invention, progenitor cells and medium that can become LAK cells are added to a large volume of cell culture equipment, and after that, only IL-12 is added. Expansion culture is possible.
  • the present invention is very useful in that a large amount of L A K cells can be obtained by a simple operation.
  • a fibronectin fragment can be preferably used from the viewpoint of obtaining a higher expansion culture rate.
  • a necessary amount of cytotoxic lymphocytes can be obtained in a short time.
  • the culture starts.
  • it can be performed using a low concentration or a low density of cells that satisfy the conditions selected from (a) and (b) below.
  • the cell volume to cell area ratio of the cell culture equipment used is preferably 1 eel 1 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 5 eel 1 s / cm 2 , more preferably 10 ce 1 1! ⁇ ⁇ ! ;! . 5 ce 1 1 s / cm 2 , particularly preferably 1 ⁇ 10 2 ce 1 1 sZcm 2 to 5 ⁇ 10 4 ce 1 1 s / cm 2 .
  • the concentration of cells in the medium is preferably 1 cell / mL to 5 ⁇ 10 5 ce 1 1 s ZmL, more preferably 10 ce 1 I s ZmL 1 ⁇ 10 5 eel I s / mL, especially 1 X 10 2 eel I s ZmL 5 X 10 4 ce 1 1 s NO mL is preferred
  • the amount of cells refers to the number of cytotoxic lymphocytes and / or progenitor cells.
  • the method of the present invention there is a method in which at least one of induction, maintenance and expansion culture of cytotoxic lymphocytes is performed in one culture system, which does not require a step of diluting the cell culture medium. Illustrated.
  • the method for producing cytotoxic lymphocytes of the present invention it is possible to perform culture with a high cell number. That is, a method for producing cytotoxic lymphocytes in a cell culture device containing a medium, wherein at least one step of diluting the cell culture medium with a fresh medium during the culture, and replacing the medium
  • the process includes a process or a process for replacing cell culture equipment, the culture conditions immediately after these processes are set to a high concentration (for example, the concentration of cells in the cell culture medium is 2 X 1 0 5 eel I s mL to 1 X 1 0 8 cells / mL, preferably 2 X 1 0 5 ce 1 1 s mL ⁇ 5 X 1 0 7 eel I s mL, more preferably 2 X 1 0 5 eel I s Roh!
  • the process of the present invention can be compared with the conventional method, to achieve good expansion large culture rate.
  • the culture with a high cell number means that the concentration of cells in the cell culture medium at the time of setting the cell concentration and cell density during the culture is 2 ⁇ 10 5 ce 1 1 s / mL to 1 X 1 0 8 eel I s / mL, or the ratio of the number of cells in the cell culture medium to the culture area of the cell culture equipment is 1 X 1 0 5 ce
  • Advantages that can be cultivated with such a high number of cells include medium to be used, medium additives such as serum and plasma, cell culture equipment, labor and space.
  • Adoptive immunotherapy requires a large amount of lymphocytes, and therefore requires a large amount of medium and cell culture equipment, which in turn requires a large culture space and a large number of personnel. These are major issues for adoption of adoptive immunotherapy. Therefore, since the method of the present invention can solve such a problem, it is a very significant invention in terms of facility construction and operation.
  • the method of the present invention is applicable to both cell culture at low concentration or low density and cell culture at high concentration or high density. Therefore, the method of the present invention is used. This makes it possible to produce cytotoxic lymphocytes at various cell concentrations or cell densities depending on the culture conditions.
  • the medium be suitable for the maintenance and growth of both cytotoxic lymphocytes and feeder cells.
  • a commercially available medium can be used as the medium.
  • the feeder cells used in the method of the present invention are not particularly limited as long as they cooperate with anti-CD3 antibody to stimulate cytotoxic lymphocytes and activate T cell receptors.
  • B cells EBV-B cells
  • feeder cells are used after depriving of proliferation ability by means such as irradiation.
  • the content of feeder cells in the medium may be determined according to a known method, and for example, 1 X 10 5 ce 11 s mL to 1 X 10 7 eel I s / mL is preferable.
  • feeder cells other than non-virally infected cells such as EBV-B cells are used. This eliminates the possibility that EBV-B cells are mixed in expanded cultured cytotoxic lymphocytes, and enhances the safety of medical care using cytotoxic lymphocytes such as adoptive immunotherapy. It can be increased.
  • Antigen-presenting cells can be prepared by adding an antigenic peptide to cells having antigen-presenting ability and presenting the antigenic peptide on the surface [for example, Bendnarek MA et al. , J. Immuno 1., 1 47, Vol. 12, No. 2, pp. Pp. 47-43 (see 199 1)].
  • cells with antigen-presenting ability have the ability to process antigens
  • the antigens are taken up into the cells, processed, and fragmented.
  • the antigen peptide is displayed on the cell surface.
  • an antigen peptide when added to a cell having an antigen presenting ability, the antigen presenting cell to be used, an antigen peptide that matches the MHC restriction of the cytotoxic lymphocyte to be induced, or an antigen peptide that is not restricted to MHC Is used.
  • the antigen used in the present invention is not particularly limited, and examples thereof include foreign antigens such as bacteria and viruses, and endogenous antigens such as tumor-related antigens (cancer antigens).
  • the antigen-presenting cell is preferably nonproliferative.
  • irradiation with X-rays or treatment with a drug such as mitomycin (mitomomycin) may be performed.
  • the LAK cell When the LAK cell is produced by the production method of the present invention, it is carried out by incubating progenitor cells that can become LAK cells together with IL-2 in the presence of the active ingredient.
  • Progenitor cells that can become LAK cells are particularly limited. For example, peripheral blood mononuclear cells (PBMC), NK cells, umbilical cord blood mononuclear cells, hematopoietic stem cells, blood components containing these cells, and the like.
  • PBMC peripheral blood mononuclear cells
  • NK cells NK cells
  • umbilical cord blood mononuclear cells hematopoietic stem cells
  • blood components containing these cells blood components containing these cells, and the like.
  • condition for culturing LAK cells are known conditions [eg, cell engineering, VoI. 14, No. 2, p 22 3 to 227, except that the above-mentioned medium is used. (1995); cell culture, 17, (6), pl 92-: 1 95, (199 1); THE LANCET, Vo l. 356, p 802-807, (2000); Current Protocolsin I mm uno 1 ogy, supplement 17, and UN IT 7.7].
  • the culture conditions can be used conditions used for ordinary cell culture, for example, may be cultured under conditions such as 37, 5% C_ ⁇ 2. This culture is usually carried out for about 2 to 15 days.
  • a step of diluting the cell culture solution at an appropriate time interval, a step of replacing the medium, or a step of replacing the cell culture equipment may be performed.
  • a cell group having high cytotoxic activity for CTL and TIL can be prepared. It can.
  • a medium in which fibronectin, a fragment thereof, or a mixture thereof coexists in the activation operation of these cells and the total concentration of serum and plasma in the medium is 0 volume% or more and less than 5 volume%.
  • a medium suitable for culturing and activating the cells Appropriate amounts of fibronectin, fragments thereof or mixtures thereof, addition methods, etc. may be selected according to the above methods.
  • the active ingredient is present in the culture system used for the method, and the total concentration of serum and plasma in the medium is 0 volume. % Or more and less than 5% by volume, and there is no particular limitation. In other conventional methods for expanding cytotoxic lymphocytes, the active ingredient may be added to the culture system. In addition, if the total concentration of serum and plasma in the medium is 0 volume% or more and less than 5 volume%, it is included in the present invention.
  • the disease to which cytotoxic lymphocytes produced by the method of the present invention are administered is not particularly limited.
  • cancer, malignant tumor, hepatitis, viruses such as influenza, bacteria, and mold are the cause. Infectious diseases are exemplified.
  • a foreign gene is introduced as described later, it is expected to be effective against various genetic diseases.
  • the cytotoxic lymphocytes produced by the method of the present invention can also be used for bone marrow transplantation, donor lymphocyte infusion for the purpose of preventing infection after irradiation, and the like.
  • cytotoxic lymphoid containing fibronectin, a fragment thereof or a mixture thereof as an active ingredient and having a total concentration of serum and plasma in the medium of 0% by volume or more and less than 5% by volume.
  • a sphere culture medium is provided.
  • the medium further comprises other optional components, for example, medium components used in known cell culture, proteins, cytosines (preferably IL-12), and other desired components.
  • the medium uses the active ingredient of the present invention and self- or non-self serum or plasma so that the total concentration in the medium is 0% by volume or more and less than 5% by volume, according to a known method. Can be manufactured.
  • the content of the active ingredient of the present invention in the medium is not particularly limited as long as the desired effect of the present invention is obtained.
  • the active ingredient in the medium used in the method of the present invention is not limited.
  • the content can be determined as appropriate according to need.
  • One aspect of the medium of the present invention is a medium containing a cell culture carrier on which fibronectin, a fragment thereof or a mixture thereof is immobilized, or a cell culture on which fibronectin, a fragment thereof or a mixture thereof is immobilized. Media provided enclosed in equipment are included.
  • lymphocyte-containing culture obtained using the above-described method for producing cytotoxic lymphocytes cells other than cytotoxic lymphocytes such as helper T cells are usually mixed.
  • the lymphocyte-containing culture obtained by the present invention does not have cytotoxic activity. Therefore, the cells in the culture are collected from the culture by centrifugation or the like, and used directly as the cytotoxic lymphocytes obtained by the method of the present invention. Can do.
  • the active ingredient or the like is immobilized on a cell culture device or the like, there is no concern of mixing the ingredient or the like in the obtained cytotoxic lymphocytes.
  • a cell population (or culture) containing a high amount of cytotoxic lymphocytes is separated from the culture by a known method and used as the cytotoxic lymphocyte obtained by the method of the present invention.
  • the method for producing cytotoxic lymphocytes of the present invention can include a step of selecting a cell population having a high content of cytotoxic lymphocytes from the culture obtained by the method.
  • an antibody against a cell surface antigen expressed on a desired cell surface from a culture for example, an anti-CD8 antibody.
  • examples include a method of selectively recovering only the target cells using a cell culture device or carrier to which is bound, and a method of using a flow cytometer.
  • the carrier include magnetic beads and columns.
  • a cell population containing a high amount of target cells can be obtained by adsorbing and removing cells other than the desired cells from the culture.
  • an antibody against a cell surface antigen expressed on the surface of a helper T cell such as an anti-CD4 antibody, can be used to remove the helper T cell from the lymphocyte culture. Flow cytometry can be used for this process.
  • the present invention provides cytotoxic lymphocytes obtained by the above-described method for producing cytotoxic lymphocytes of the present invention.
  • the lymphocyte has a high cytotoxic activity, and has a property that a decrease in the cytotoxic activity is small even if continuous culture or expansion culture is performed for a long period of time.
  • the present invention also provides a medicine (therapeutic agent) containing the lymphocyte as an active ingredient.
  • the therapeutic agent containing the lymphocyte is suitable for use in adoptive immunotherapy.
  • adoptive immunotherapy cells suitable for patient treatment Lymphocytes with damaging activity are administered to the patient, for example by intravenous administration.
  • the therapeutic agent is very useful for use in the above-mentioned diseases and Donna lymphocyte infusion.
  • the therapeutic agent is prepared according to a method known in the pharmaceutical field, for example, the lymphocyte prepared by the method of the present invention as an active ingredient, for example, an organic or inorganic carrier suitable for parenteral administration, excipient It can be prepared by mixing with a stabilizer or the like.
  • the content of the lymphocytes of the present invention in the therapeutic agent, the dosage of the therapeutic agent, and various conditions relating to the therapeutic agent can be appropriately determined according to known adoptive immunotherapy.
  • the method for producing cytotoxic lymphocytes of the present invention can further include a step of introducing a foreign gene into the lymphocytes. That is, the present invention provides, as one aspect thereof, a method for producing cytotoxic lymphocytes, further comprising the step of introducing a foreign gene into the cytotoxic lymphocytes.
  • “Outpatient” refers to being out of the lymphocytes targeted for gene transfer.
  • the method for producing cytotoxic lymphocytes of the present invention particularly the method for expanding cytotoxic lymphocytes, the proliferation ability of the cultured lymphocytes is enhanced. Therefore, an increase in gene introduction efficiency is expected by combining the method for producing cytotoxic lymphocytes of the present invention with a gene introduction step.
  • the gene transfer step can be performed at any time during the production of cytotoxic lymphocytes. For example, it is preferable from the viewpoint of work efficiency to carry out simultaneously with or after any of the steps of induction, maintenance and expansion or culturing of lymphocytes.
  • the virus vector is not particularly limited, and is usually a known virus vector used in gene transfer methods, for example, a retrovirus vector, a lentivirus.
  • a vector, an adenovirus vector, an adeno-associated virus vector, a simian virus vector, a vaccinia virus vector, a Sendai virus vector, or the like is used.
  • a viral vector retrovirus, adenovirus, adeno-associated virus or simian virus is used.
  • those lacking replication ability are preferable so that they cannot self-replicate in infected cells.
  • the retrovirus vector can stably incorporate a foreign gene inserted into the chromosome DNA of the cell into which the vector is introduced, and is used for gene therapy and the like. Since the vector is highly effective in infecting dividing and proliferating cells, it is suitable for carrying out gene transfer in the production process of cytotoxic lymphocytes in the present invention, for example, in the expansion culture process. .
  • the gene transfer method without using a viral vector is not limited to the present invention.
  • a method using a carrier such as a ribosome, a ligand-polylysine, a calcium phosphate method, an electopore position method, a particle gun method, etc.
  • a foreign gene incorporated into plasmid DNA or linear DNA is introduced.
  • the foreign gene introduced into the cytotoxic lymphocyte is not particularly limited, and any gene desired to be introduced into the cell can be selected.
  • genes include, for example, those that encode proteins (eg, enzymes, cytokinins, receptors, etc.), as well as antisense nucleic acids, siRNA (small in terfering RNA), and liposomes. Things can be used.
  • an appropriate marker gene that enables selection of the transfected cell may be introduced at the same time.
  • the foreign gene can be used, for example, by inserting it into a vector or plasmid so that it can be expressed under the control of an appropriate promoter.
  • promoters and other mechanisms that cooperate with the transcription start site A node element, eg, an enhancer sequence or a terminator sequence, may be present in the vector.
  • homology is made to the nucleotide sequences on both sides of the desired insertion site of the gene in the chromosome.
  • a foreign gene may be placed between the flanking sequences consisting of the nucleotide sequences.
  • the foreign gene to be introduced may be natural or artificially produced or of different origin
  • a DNA molecule may be bound by a known means such as religion. Furthermore, it may have a sequence in which a mutation is introduced into a natural sequence according to the purpose.
  • a gene encoding an enzyme related to resistance to a drug used for treatment of a patient such as cancer is introduced into cytotoxic lymphocytes, and the drug is added to the lymphocyte. Resistance can be imparted. If such cytotoxic lymphocytes are used, it is possible to combine adoptive immunotherapy and drug therapy, and thus obtain a higher therapeutic effect.
  • the drug resistance gene include a multidrug resistance gene (mu ti dru gre ge s i s tan ce ge nge) force s.
  • a gene that confers sensitivity to a specific drug can be introduced into cytotoxic lymphocytes to impart sensitivity to the drug.
  • lymphocytes after transplantation into a living body can be removed by administration of the drug.
  • An example of a gene that confers sensitivity to a drug is a thymidine kinase gene.
  • amino acid sequence (x) (CH-296Na) described in SEQ ID NO: 25 of the sequence listing, or one or more amino acids in amino acid sequence (X) have been deleted, inserted, added or substituted.
  • Polypeptide having amino acid sequence (y) There are also provided a novel polypeptide, and a nucleic acid encoding the same, wherein the polypeptide having the amino acid sequence (y) has the same function as the polypeptide having the amino acid sequence (X). .
  • nucleic acid examples include (1) DNA consisting of the base sequence set forth in SEQ ID NO: 26 (nucleic acid encoding CH-296 Na), (2) one or more of the base sequences set forth in SEQ ID NO: 26 DNA encoding a polypeptide consisting of a base sequence with one base deleted, substituted, inserted or added, and having a function equivalent to the polypeptide encoded by DNA (l), or (3) SEQ ID NO: 2
  • a nucleic acid comprising a DNA comprising the base sequence described in 6 and a DNA that hybridizes under stringent conditions and that encodes a polypeptide having a function equivalent to that of the polypeptide encoded by DNA (1). Illustrated.
  • novel polypeptide may be referred to as the polypeptide of the present invention, and the nucleic acid encoding it may be referred to as the nucleic acid of the present invention.
  • polypeptide of the present invention the nucleic acid encoding the polypeptide, and the method for producing the polypeptide will be described.
  • polypeptide of the present invention has the above-mentioned amino acid sequence as long as it has any of the functions desired in the production of cytotoxic lymphocytes as described above [functions (i) to (iv) above].
  • Polypeptides of the present invention include sequences having one or more substitutions, deletions, insertions or additions.
  • polypeptide of the present invention other than CH-296 Na, preferably 1 to 20 amino acid substitutions, deletions, insertions in the amino acid sequence described in SEQ ID NO: 25 of the Sequence Listing
  • any one or more of the additions occurred more preferably 1 to 10 amino acid substitutions, deletions, insertions, or any one or more of the additions occurred, more preferably 1 Examples in which one or more of substitution, deletion, insertion or addition of ⁇ 5 amino acids have occurred are exemplified.
  • the amino acid substitution and the like may be such that the physicochemical properties of the polypeptide can be changed within a range in which the original function of the polypeptide can be maintained. Details of the production of the polypeptide are as described above.
  • the nucleic acid represented by SEQ ID NO: 26 in the sequence listing encoding the polypeptide of the present invention is a DNA encoding CH-296Na by performing a PCR reaction using a cDNA encoding human fibronectin derived from plasma as a cage. It can be obtained as a fragment.
  • the primer used in this case is not particularly limited. For example, Primer CH-296 N a 1> Primer CH—296 Na 2 described in SEQ ID Nos. 27 and 28 in the Sequence Listing is used. Can be used.
  • the nucleic acid includes a FERM BP-2800 plasmid (E.
  • coli containing a plasmid encoding CH-296), a fibronectin cell-binding domain derived from native plasma, and a heparin-binding domain.
  • the DNA fragment having the sequence present in Fig. 1 (11 of the type III repeat sequence in Fig. 1) can be obtained by binding using an appropriate restriction enzyme site.
  • nucleic acid of the present invention includes those in which one or more substitutions, deletions, insertions or additions in the nucleotide sequence of the nucleic acid represented by SEQ ID NO: 26 in the Sequence Listing have occurred. It is. For example, one in which at least one of substitution, deletion, insertion or addition of 1 to 60 bases has occurred from the base sequence described in SEQ ID NO: 26 in the sequence listing, more preferably substitution or deletion of 1 to 30 bases Examples are those in which at least one of insertion or addition has occurred, and more preferably those in which at least one of substitution, deletion, insertion or addition of 1 to 15 bases has occurred.
  • the base substitution or the like may be such that the physicochemical properties of the polypeptide can be changed within a range in which the function of the polypeptide encoded by the nucleic acid can be maintained. Details of the method, such as base substitution, are the same as those described above for amino acid substitution.
  • nucleic acid comprising the base sequence set forth in SEQ ID NO: 26 under stringent conditions, and has the same function as the polypeptide of the present invention, that is, the above (i) to (i) in the production of the aforementioned cytotoxic lymphocytes.
  • a nucleic acid encoding a polypeptide having at least one function of iv) is also included in the nucleic acid of the present invention.
  • stringent conditions are not particularly limited, and the nucleotide sequence set forth in SEQ ID NO: 26 Depending on the DN A to be hybridized, it can be set by appropriately determining the temperature and salt concentration during hybridization, preferably further washing, , for example, Molecular black-learning ⁇ Laboratory manual, third Edition [San Bourke (s amb rook), et al., Mo lecularcl on i ng, a laboratory manu al 3 rd editi on, 2001 years, cold spring harbor one laboratory one press ( (For example, 6 XS SC (1 XS SC is 0.15M N a C 1, 0., Published by Cold Spring Harbor Laboratory Pres)).
  • a lower ion intensity such as 2 XS SC, or a more stringent 0.1 XS SC
  • Tm value of the nucleic acid used 25 or more, more stringent 37: or more, more stringent 42 42 or more, more stringent ⁇ May be added to the condition that the cleaning is performed under the above condition at 50 or more.
  • Nucleic acid molecules that hybridize to the polynucleotides of the invention at lower stringency hybridization conditions are also encompassed by the invention. Changes in stringency and signal detection of hybridization are mainly due to the decrease in formamide concentration (lower percentages of formamide decreased stringency This is done by manipulation of salt concentration or temperature.
  • the washing performed after stringent hyperpridase can be performed at higher salt concentrations (eg, 5 XS SC).
  • the above conditions can be modified by adding and / or substituting alternative blocking reagents that are used to suppress background in hybridization experiments.
  • Typical blocking reagents include Denhardt's reagent, BLOTT®, heparin, denatured salmon sperm DNA, and commercial product formulations.
  • other elements of the above hybridization conditions may need to be modified.
  • a polypeptide having the amino acid sequence represented by SEQ ID NO: 25 in the sequence listing can be obtained by genetic engineering. That is, the nucleic acid is inserted into an appropriate expression vector, such as, but not limited to, a pET vector, a PC o 1d vector, etc., and the polypeptide is obtained by known methods, for example, E. coli. It can be obtained by expressing.
  • an appropriate expression vector such as, but not limited to, a pET vector, a PC o 1d vector, etc.
  • the polypeptide is obtained by known methods, for example, E. coli. It can be obtained by expressing.
  • fibronectin fragment Fragment H-271 derived from human fibronectin was prepared from Escherichiacoli HBlOl / pHDIOl (FERM BP-2264) by the method described in US Pat. No. 5,198,423. .
  • human fibronectin-derived fragments H-296, CH-271, and CH-296 are represented by Escherichiacoli HB101 / pHD102 (FERM BP-7420), Escherichiacoli HBlOl / pCHlOl ( FERM BP-2799) and Escherichiacoli HB101 / pCH102 (FERM BP-2800) were cultured by the method described in the above specification and prepared from the culture.
  • Fragment C-274 derived from human fibronectin was Escherichiacoli JM109 / TF 7221 (FERM BP-19 15), which was cultured by the method described in US Pat. No. 5,102,988, Prepared from the culture.
  • Human fibronectin-derived fragment C—CS 1 was cultured from Escherichiacoli HB 101 / p CS 25 (FERM BP—5723) using the method described in Japanese Patent No. 3104178 and prepared from the culture. did.
  • Fragments derived from human fibronectin CHV-89 and CHV-179 use Escherichiacoli HB 101 / p CHV 89 (F ERM P-12182) and Escherichiacoli HB 101 / p CHV 179 (FERM P-12183), respectively. Cultivated by the method described in Japanese Patent No. 2729712 and prepared from the culture.
  • a fragment CHV-90 derived from human fibronectin was prepared by the method described in Japanese Patent No. 2729712. That is, the plasmid PCHV90 was constructed by the operations described in the specification, and the transformant harboring the plasmid was cultured, and CHV-90 was prepared from the culture. Fragment CHV-181 derived from human fibronectin was constructed by constructing a plasmid (PCHV 18 1) containing DNA encoding CHV-181 by the method described in WO 97/18318 Pamphlet. E. coli (Escherichiacoli HB101 / p CHV 1 81) introduced with the plasmid was cultured, and prepared from the culture in the same manner as CHV-179 described above.
  • the plasmid CHV92 was constructed by deleting the region coding for the III-13 region in the region coding for CHV-181. . Deletion operation is Japanese patent 2
  • Escherichia coli HB101 transformed with the above plasmid pCHV92 (Escherichiacoli HB101ZpCHV92) is cultured, and the culture method is used to purify the CHV_89 polypeptide described in Japanese Patent No. 2729712.
  • the purification operation was performed in the same manner to obtain a purified CHV-92 standard.
  • Plasmid pCH102 was prepared from Escherichia HcIacoli HBlOlZpC H102 (FERM BP-2800). Using this plasmid as a saddle type, PCR was performed using primer-12S having the nucleotide sequence shown in SEQ ID NO: 21 in the sequence listing and primer 14A having the nucleotide sequence shown in SEQ ID NO: 22 in the sequence listing, and fibronectin heparin binding An approximately 0.8 kb DNA fragment encoding the domain was obtained. The obtained PNA fragment was digested with NcoI and BamHI (both manufactured by Takara Bio Inc.) and then digested with NcoI and BamHI pTV 1 1
  • Plasmid vector pINIII—omp (Ghray eb J. et al., EMB0 J., Vol. 3, No. 10, pp. 2437-2442 (1984)) Digestion with Hincl I (manufactured by Carabio Co., Ltd.) and a DNA fragment of about 0.9 kb containing the region of lipoprotein / minine / overnight was recovered. This is mixed with the above plasmid p RH 1 digested with BamH I and H inc II, and ligated. Plasmid pRH1-T containing in this order was obtained.
  • Ligation was performed by mixing with a 2.5 kb DNA fragment obtained by digestion with (manufactured by Kara Bio Inc.) to obtain plasmid pRH-Cys.
  • Polypeptide H in which met-A 1 a -A 1 a-Ser 4-amino acid is added to the N-terminal side of H-271 and Cys is further added to the C-terminal is added to the plasmid.
  • _ 275 -Cy s is coded.
  • Polypeptide H-275-Cys was prepared by the following method. Escherichia coli HB101 (Escherichiacoli HBlOlZpRH-Cys) transformed with the above plasmid pRH-Cys was cultured in 12 OmL of LB medium at 37 "C for 1 hr. Suspended in 4 OmL disruption buffer (50 mM MT ris -HC 1, 1 mM EDTA, 15 OmM NaC 11 mM DTT, ImM PMSF, pH 7.5) and sonicated Break the cells Crushed.
  • OmL disruption buffer 50 mM MT ris -HC 1, 1 mM EDTA, 15 OmM NaC 11 mM DTT, ImM PMSF, pH 7.5
  • PB S Middle layer peripheral blood mononuclear cells
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment used in the following experiments.
  • 1 mL of PBS containing anti-human CD 3 antibody manufactured by Janssen Kyowa
  • final concentration 5 ug / mL on a 24-well cell culture plate or 12.5 cm 2 cell culture flask (Fa Icon) (24-well plate) or 2 mL (12.5 cm 2 flask) was added.
  • FN fragment Each group should have a final concentration of 10 g / mL (for 24-well plates) or 25 gZmL (for 12.5 cm 2 flasks) for each fibronectin fragment (FN fr) described in Production Example 1. Added.
  • a group to which FN fr was not added was also set.
  • the P BMC prepared in Example 1— (1) was adjusted to 1 X 10 6 eel 1 s ZmL in XV I VO 20 (hereinafter referred to as 1% XV I VO20) containing 1% human AB serum. After suspension, place lmL wells on the anti-human CD 3 antibody-immobilized plate prepared in Example 1 (1) (2) or anti-human CD 3 antibody and FN fr-immobilized plate to obtain a final concentration of 100 OUZmL. — 2 (Shionogi Pharmaceutical Co., Ltd.) was added. These plates were incubated at 5% C_ ⁇ 2 37 (0 day of culture).
  • 1% XV I VO 2O containing 100 OUZmL of IL-2 was added to each lmL well.
  • the culture solution diluted with 1% XV I V020 was appropriately transferred to a new flask without any immobilization, and IL-2 was added to a final concentration of 50 OUZmL.
  • the culture was continued, and IL-2 was added every 2 to 3 days as appropriate on the 4th day after the start of the culture using 1% XV I V020 to a final concentration of 300 to 50 OUZmL.
  • Example 1 After suspending the PBMC prepared in (1) so that it becomes 1 X 10 6 ce 1 1 sZmL in 5% or 1% ⁇ VO20, the anti-antigen prepared in Example 1 (1) (2) was suspended. To a human CD 3 antibody-immobilized plate or anti-human CD 3 antibody and FN fr-immobilized plate, lmL wells were plated, and IL-2 (manufactured by Shionogi & Co., Ltd.) was added to a final concentration of 100 OUZmL. These plates were incubated at at 5% C0 2 in 37 (zeroth day of culture).
  • Example 1 On the 2nd and 3rd days after the start of culture, 0.5% or 1% XV I V020 containing 100 OUZmL of IL-1 was added to each 1mL well. On the 4th day after the start of culture, transfer the diluted culture solution with 0.5% or 1% XV I VO 20 to a new flask without any immobilization, so that the final concentration is 50 OUZml. Was added. On day 9 of culture, the same as in Example 1 (1) (2) Prepare an anti-human CD 3 antibody-immobilized flask prepared by the above method, or anti-human CD 3 antibody and FN fr-immobilized flask (however, the concentration of anti-human CD 3 antibody used for immobilization was 0.5 gZmL).
  • the culture medium diluted with 0.5% or 1% XV IV020 was transferred as appropriate, and IL-2 was added to a final concentration of 50 OUZmL.
  • IL-2 was added to a final concentration of 50 OUZmL.
  • transfer the diluted culture solution with 0.5% or 1% XV I V020 to a new non-immobilized flask until the final concentration is 50 OU / mL. was added.
  • the number of viable cells was measured by the trypan blue staining method and calculated as the expansion culture rate compared with the number of cells at the start of culture. The results are shown in Table 2.
  • Table 2 Table 2
  • LAK cell induction using medium containing low-concentration serum Repeatedly in the early and middle stages, a group using culture equipment in which each fibronectin fragment and anti-CD3 antibody were immobilized In LAK cells, the expansion culture rate of LAK cells is higher than that in the control group. These expansion culture rates were much higher than those in the group using the culture equipment in which only the anti-CD3 antibody was immobilized repeatedly in the early and middle stages of LAK cell induction.
  • LAK cells can be expanded at a high expansion rate even when using a medium containing a low concentration of serum. It has become clear that induction and culture are possible.
  • Example 3 Induction of IL-1R receptor (IL-2R) expression in LAK cell culture system using low serum medium
  • Example 2 LAK cells were induced and cultured in the same manner as in (1).
  • Example 3 After fixing the 2 ⁇ 10 5 eel Is LAK cells prepared in (1) with PBS (Nissai) containing 1% paraformaldehyde (Nacalai Tesque), PBS was used. Washed. Fixed cells containing 1% BSA (SI GMA) 100 // Shino? After suspension in 83, FITC-labeled mouse IgGl or FITC-labeled mouse anti-human IL-2R (CD25) antibody (both manufactured by DAKO) was added and incubated on ice for 30 minutes. After incubation, the cells were washed with PBS and resuspended in PBS containing 1% paraformaldehyde.
  • SI GMA SI GMA
  • FITC-labeled mouse IgGl or FITC-labeled mouse anti-human IL-2R (CD25) antibody both manufactured by DAKO
  • IL-12R expression positive cells were subjected to flow cytometry using FA CS Van tage (manufactured by Becton Dickinson), and the content of IL-12R expression positive cells was measured. The results are shown in Table 3. In this table, IL-1R expression positive cell content rate (%) is expressed as IL-2R expression rate (%).
  • Serum concentration Fibronectin Start of culture 0 days Start of culture 9 days I L 1 2 R expression rate
  • Example 2 LAK cells were induced and cultured in the same manner as in (1).
  • Example 4 1 2 ⁇ 10 5 eel Is LAK cells prepared in (1) were fixed with PBS containing 1% paraformaldehyde and washed with PBS. 100 fixed cells containing 1% BS A? After suspension in 83, FI TC-labeled mouse IgG 1 or FI TC-labeled mouse anti-human CD 8 antibody (both manufactured by DAKO) was added, and incubated on ice for 30 minutes. After incubation, the cells were washed with PBS and resuspended in PBS containing 1% paraformaldehyde. The cells were subjected to flow cytometry using FA CS V antage to measure the content of CD8 positive cells. The results are shown in Table 4. Table 4
  • Serum concentration Fibronectin Start of culture 0 days Start of culture 9 days CD 8 positive cells
  • LAK cells can be induced and cultured while increasing the content of CD8 positive cells in LAK cells. became.
  • Example 5 Measurement of expansion culture rate in LAK cell culture system using serum-free medium
  • Example 1 After suspending the PBMC prepared in Example 1— (1) in XV IV0 20 (hereinafter abbreviated as 0% XV I VO 20) without serum to give IX 10 6 ce 1 1 sZmL 1 mL / well was sprinkled on the anti-human CD 3 antibody-immobilized plate prepared in (2) or anti-human CD 3 antibody and FN fr-immobilized plate, and IL-2 was added to a final concentration of 100 OUZmL. . These plates 5% C_ ⁇ 2 in 37T: were cultured in (0 day of culture). On the 2nd and 3rd days after the start of culture, 0% ⁇ 1 V020 containing 1000 UZmL of I_2 was added at 1 mL / well.
  • XV IV0 20 hereinafter abbreviated as 0% XV I VO 20
  • Example 1 Suspend the PBMC prepared in Example 1 (1) in 0% XV I VO20 so that the concentration is 1 X 10 6 cells / mL, and then immobilize the anti-human CD3 antibody prepared in Example 1- (2). Plates or anti-human CD3 antibody and FN fr-immobilized plates were plated in 1 mL wells, and IL-1 was added to a final concentration of 10 OUZmL. These plates were incubated at 5% C_ ⁇ 2 37 (0 day of culture). Open culture On the second and third days after the start, 0% XV I VO 20 containing 100 OU / mL IL-2 was added to each lmL well.
  • the culture solution diluted with 0% XV I VO 20 was transferred to a new flask without any immobilization, and IL_2 was added to a final concentration of 50 OUZmL.
  • anti-human CD 3 antibody-immobilized flask prepared in the same manner as in Example 1 (1) (2), or anti-human CD 3 antibody and FN fr-immobilized flask (however, used for immobilization)
  • the culture medium diluted with 0% XV I V020 was appropriately transferred to an anti-human CD3 antibody concentration of 0.5 gZmL), and IL-12 was added to a final concentration of 50 OUZmL.
  • the culture medium diluted with 0% XV I VO 20 was again transferred to a new non-immobilized flask, and IL-2 was added to a final concentration of 50 OU / mL. .
  • the number of viable cells was measured by trypan blue staining, and calculated as the expansion culture rate compared with the number of cells at the start of the culture. The results are shown in Table 6.
  • the expansion culture rate of LAK cells is higher in the group using the culture equipment initialized at the time of LAK cell induction using a serum-free medium than in the control group.
  • These expansion culture rates were much higher than those in the group using culture equipment in which only anti-CD3 antibody was immobilized repeatedly in the early and middle stages of LAK cell induction.
  • LAK cells can be induced and cultured at a high expansion rate even when using a culture medium that does not contain serum, by stimulating with a bronectin fragment and anti-CD3 antibody. It was.
  • Example 7 Induction of IL-12R expression in LAK cell culture system using serum-free medium
  • Example 6 LAK cells were induced and cultured in the same manner as in (1).
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). The results are shown in Table 7. In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-2R expression rate (%).
  • Serum concentration Fibronectin Start of culture 0 days Start of culture 9 days I L-2 R expression rate
  • Example 5 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to serum-free AIMV medium (Invitrogen, hereinafter referred to as 0% AIMV). The results are shown in Table 8. Table 8
  • Serum concentration ⁇ Medium Culture days Fibronectin fragment Expansion culture rate (magnification)
  • Example 1 After suspending PBMC prepared in (1) to 1 X 10 5 eel 1 s / mL in XV I VO 20 (without serum), the same as in Example 1 (1) (2) Direction 1 mL of Zuwell was added to the anti-human CD 3 antibody-immobilized plate prepared by the above method or anti-human CD 3 antibody and FN fr-immobilized 6-well plate, and 4 mL of XV I VO20 (without serum) was added (1 X 10 4 eel 1 sZcm 2 ), and IL-2 was added to a final concentration of 50 OUZmL. These plates were incubated at 5% C0 2 in 37 (zeroth day of culture).
  • IL_2 was added to a final concentration of 50 OUZmL on the 2nd, 3rd, and 4th days after the start of culture. The culture was continued, and IL-2 was added to a final concentration of 50 OUZmL every 2-3 days after the start of the culture every 2-3 days. During this time, the culture broth was not diluted at all.
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). The results are shown in Table 10. In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-2R expression rate (%). Table 10
  • Example 8 LAK cells were induced and cultured in the same manner as in (1).
  • Example 4 The content of CD8 positive cells was measured in the same manner as in (2). The results are shown in Table 11. Serum concentration ⁇ Medium CD 8 positive cell content (%)
  • Example 1 1 LAK cells were induced and cultured in the same manner as in (3). However, the medium used at this time was changed to AIMV medium containing 1% or 5% human AB serum (hereinafter abbreviated as 1% AIMV or 5% AIMV). The results are shown in Table 12.
  • Example 1 LAK cells were induced and cultured in the same manner as in (3).
  • the medium used at this time is XV I VO 20 medium containing 1% human AB serum, XV IV 010 medium or AIMV medium (hereinafter 1% XV I VO 20 1% XV I VO 10 or 1% AIMV respectively)
  • the expanded culture rate in each medium was measured. The results are shown in Table 13. .
  • Table 13 Table 13
  • Example 1 LAK cells were induced and cultured in the same manner as in (3). However, the medium used at this time was changed to XVIVO 20 medium containing 0.2% human AB serum. The results are shown in Table 14. Table 14
  • Example 2 LAK cells were induced and cultured in the same manner as in (1).
  • the medium used at this time was changed to XV I VO 20 medium containing 0.2% human AB serum or XV I VO 10 containing 1% human AB serum.
  • the results are shown in Table 15.
  • Table 15 Table 15
  • Serum concentration ⁇ Medium Fibronectin Start of culture 0 ⁇ Start of culture Day 9 Expansion culture rate Fragment Eye stimulation Stimulation (magnification)
  • each fibronectin fragment and anti-CD3 antibody were immobilized repeatedly in the early and middle stages of LAK cell induction using medium containing a low concentration of serum (0.2%).
  • the group using the cultured culture equipment And the expansion culture rate of LAK cells is high.
  • These expansion culture rates were much higher than those in the group using culture equipment in which only anti-CD3 antibody was immobilized repeatedly in the early and middle stages of LAK cell induction. This effect is also demonstrated when the basic medium is changed.
  • LAK cells can be induced and cultured at a high expansion rate even when using medium containing low concentrations of serum by stimulating with fibronectin fragment and anti-CD3 antibody in the early and middle stages of LAK cell induction. It became clear that it was possible.
  • Example 16 Induction of IL-1 receptor (IL-2R) expression in LAK cell culture system using low serum medium
  • Example 2 LAK cells were induced and cultured in the same manner as in (1).
  • the medium used at this time was changed to XV I VO 20 medium containing 0.2% human AB serum or XV I VO 10 containing 1% human AB serum.
  • Example 3 The content of IL-2R expression positive cells was measured in the same manner as in (2). The results are shown in Table 16. In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-2R expression rate (%). Table 1 6
  • Example 1 LAK cells were induced and cultured in the same manner as in (3). The medium used at this time was changed to XV I VO 20 medium containing 0.2% or 1% human AB serum or XV I VO 10 containing 1% human AB serum.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 17.
  • Example 2 LAK cells were induced and cultured in the same manner as in (1).
  • the medium used at this time was changed to XV I VO 20 medium containing 0.2% human AB serum or XV I VO 10 containing 1% human AB serum.
  • Example 4 The content of CD8 positive cells was measured in the same manner as in (2). The results are shown in Table 18. Table 1 8
  • Example 5 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to XVIVO10 medium or AIMV medium without serum. The results are shown in Table 19. Table 19
  • Example 6 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to XVIVO10 medium without serum. The results are shown in Table 20. Table 20
  • LAK cells are stimulated with fibronectin fragments and anti-CD3 antibodies in the early and middle stages of LAK cell induction, and LAK cells are induced and cultured at a high expansion rate even when using serum-free medium. It became clear that this was possible.
  • Example 21 Induction of IL-12R expression in LAK cell culture system using serum-free medium
  • Example 6 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to XVIVO10 medium without serum.
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). The results are shown in Table 21. In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-1R expression rate (%). Table 2
  • Example 5 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to XVIVO 20 or XVIVO10 or AIMV medium without serum.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2).
  • Example 6 LAK cells were induced and cultured in the same manner as in (1). However, the medium used at this time was changed to XVIVO20 or XVIVO10 medium without serum.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 23. Table 23
  • Serum concentration ⁇ Medium Fibronectin Start of culture 0 ⁇ Start of culture 9 days CD 8 positive fragment Eye stimulation Eye stimulation Cell content
  • Example 1 X 10 5 ce 1 1 sZmL or 5 X 10 4 ce 1 1 s / mL in XV I VO 20 (hereinafter abbreviated as 1% XV I V020) containing 1% human AB serum 1
  • anti-human CD 3 antibody-immobilized plate prepared in the same manner as in Example 1 (1) (2), or anti-human CD 3 antibody and FN fr immobilized 6 Swell 1 mL XV I VO 2 4 4 mL to the well plate (1 X 10 4 eel 1 s / cm 2 or 5 X 10 3 eel 1 s / cm 2 ) to a final concentration of 50 OUZmL IL-2 (manufactured by Shionogi & Co., Ltd.) was added as described above.
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-2R expression rate (%). The results are shown in Table 24. Table 24
  • Example 1 1 LAK cells were induced and cultured in the same manner as in (3).
  • the medium used is 0% to 5% human AB serum containing XVIVO 20 or 0% to 5% human AB serum containing AIMV medium or 5% human AB serum containing XVI VO10 medium. Changed to
  • Example 25 The cytotoxic activity of LAK on day 15 after culturing prepared in (1) was determined by measuring cytotoxic activity using C a 1 cein-AM [Lichtenfels R. et al. (Lichtenfels R., et al.), J. Immno 1. M eth ods, Vol. 172, No. 2, pp. 227-239 (1994)].
  • Daud i to R PM 1 1640 medium containing l X 10 6 cells / mL become by cormorants 5% FBS (manufactured by B io Wh ittaker Co.) to a final concentration of 25 C a Add 1 cein-AM (Dotite) and incubate at 37 for 1 hour.
  • the cells were washed with a medium not containing C a 1 cein-AM, and then used as C a 1 cein-labeled target cells.
  • Example 25 LAK cells prepared in (1) were used as effector cells. 6 to 3 X 10 6 ce 1 1 5/111 5% 1111111 & 1 serum containing 5% 1111111 & 1 serum (hereinafter abbreviated as 5 HRPM I) 100 LZ wells were dispensed into wells, and C 1 cein-labeled target cells prepared to 1 ⁇ 10 5 ce 1 1 s / ml were added to each 100 LZ wells. The plate containing the cell suspension was centrifuged at 400 ⁇ g for 1 minute and then incubated in a wet C 0 2 incubator at 37 for 4 hours.
  • 5 HRPM I 100 LZ wells were dispensed into wells, and C 1 cein-labeled target cells prepared to 1 ⁇ 10 5 ce 1 1 1 s / ml were added to each 100 LZ wells.
  • the plate containing the cell suspension was centrifuged at 400 ⁇ g for 1 minute and then incubated in a wet C 0 2 incubator at
  • Cytotoxic activity (%) [(measured value of each well minus minimum release) / (maximum release of one
  • the minimum release amount is the amount of ca 1 cein released from the well containing only the target cells, and indicates the amount of spontaneous release of ca 1 cein from the target cells.
  • the maximum released amount is the amount of ca 1 cein released when the cells are completely destroyed by adding Triton X-100 (manufactured by Nacalai Tesque) to the target cells to a final concentration of 0.05%. Is shown. The results are shown in Table 25. In the table, “E / T” represents the ratio based on the number of effector cells and target cells (effector cells and target cells). Table 25
  • Example 2 LAK cells were induced and cultured in the same manner as in (1). Use this The medium was changed to AIMV containing l% huma nAB serum. The results are shown in Table 26. Table 26
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment (container) used in the following experiments.
  • the culture equipment (container) used in the following experiments.
  • 2 mL in the case of 12.5 cm 2 flask.
  • the FN fragment addition group is manufactured Final concentration of each fibronectin fragment (FN fr) described in Example 1
  • Example 27_ (1) After suspending PBMC prepared in Example 1 (1) in 1% AIMV at 5 ⁇ 10 5 cells / mL, anti-human CD 3 antibody immobilized plate prepared in Example 27_ (1), Alternatively, lm L Nowell was plated on anti-human CD 3 antibody and FN fr-immobilized plates, and IL-2 was added to a final concentration of 100 OU / mL. These plates 5% C_ ⁇ 2 in 37 t: were cultured in (0 day of culture). On the second and third days after the start of culture, 1% AIMV containing 1000 UZmL of IL-2 was added in lmLZ wells.
  • Anti-human CD 3 antibody immobilized flask prepared by the same method as (1), or anti-human CD 3 antibody and FN fr immobilized flask (however, the concentration of anti-human CD 3 antibody used for immobilization is 0.
  • S gZmL A portion of the culture solution adjusted to a cell concentration of 2 X 10 5 ce 1 1 s ZmL using 1% A IM V, and IL-2 was added to a final concentration of 500 U / mL .
  • IL-12 was added to a final concentration of 50 OUZmL.
  • the number of viable cells was measured by trypan blue staining method, and calculated as an expansion culture rate compared with the number of cells at the start of culture.
  • Table 27 shows the results of the average soil standard deviation. Table 27
  • each fibronectin fragment and anti-CD3 antibody were repeated in the early and middle stages of LAK cell induction using AIMV medium containing a low concentration of serum (1%).
  • the expansion culture rate of LAK cells is higher than that in the control group.
  • These expanded culture rates were much higher than those in the group using the culture equipment in which only the anti-CD3 antibody was immobilized repeatedly in the early and middle stages of LAK cell induction.
  • LAK cells can be induced and cultured at a high expansion rate even when using a medium containing a low concentration of serum. It became clear that it was possible to do.
  • Example 28 Content ratio of CD8 positive cells in LAK cell population using serum-free medium (A IM V) (expansion culture by repeated stimulation)
  • Example 2 LAK cells were induced and cultured in the same manner as in (1). At this time, the medium used was changed to AIMV without hum AB serum.
  • each fibroblast was induced in the early or middle phase of LAK cell induction using serum-free AIMV medium.
  • a high CD8-positive cell content in the post-LAK cell population in culture could be induced.
  • LAK cells are induced while increasing the content of CD8 positive cells in LAK cells by coexisting fibronectin fragment when LAK cells are induced using a medium containing low serum concentration. It became clear that it was possible to culture.
  • Example 2 LAK cells were induced and cultured in the same manner as in (1). The medium used at this time was changed to AIMV containing 1% human AB serum.
  • Example 4 The content of CD8 positive cells was measured in the same manner as in (2). The results are shown in Table 29. Table 29
  • Example 2 LAK cells were induced and cultured in the same manner as in (1). The medium used at this time was changed to AIMV medium not containing human AB serum.
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). The results are shown in Table 30. In this table, IL-2R expression positive cell content rate (%) is expressed as IL-1R expression rate (%). Table 30
  • Example 2 LAK cells were induced and cultured in the same manner as in (1). The medium used at this time was changed to AIMV medium containing 1% human nAB serum.
  • Example 3 The content of IL-2R expression positive cells was measured in the same manner as in (2). The results are shown in Table 31. In this table, IL-2R expression positive cell content rate (%) is expressed as IL-2R expression rate (%). Table 3
  • Serum concentration Fibronectin Start of culture 0 days Start of culture 9 days I L 1 2 R expression rate
  • LAK cells were induced and cultured in the same manner as in Example 1_ (3).
  • the medium used at this time was changed to AIMV medium containing 1% human AB serum.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 32. Table 32
  • Example 1 LAK cells were induced and cultured in the same manner as in (1) (3) or Example 2 (1).
  • the medium used at this time was changed to XV I V010, XV IV020 or A I M V medium containing 0% or 1% human AB serum.
  • Example 25 LAK cytotoxic activity on the 15th day after culturing was measured in the same manner as in (2). The results are shown in Table 33.
  • Example 34_ (1) Suspend the PBMC prepared in Example 1- (1) so that it becomes 1xiVI 6 ce 1 1 s / mL in 1 XV I VO 10, then immobilize the anti-human CD3 antibody prepared in Example 34_ (1) by 1 OmLZ bag for cell culture C_ ⁇ 2 gas permeable bag or anti-human CD 3 antibody and FN fr immobilized C_ ⁇ 2 gas permeable cell culture bag, placed the cell suspension, a final concentration of 100 OUZmL IL-2 was added as follows. These and C_ ⁇ 2 gas permeable cell culture bag were cultured in 5% C_ ⁇ 2 37 (0 day of culture).
  • 1% XV I VO10 containing 100 OU / mL IL-2 was added in 2 OmLZ bags.
  • IL-2 was added to a final concentration of 500 U ZmL.
  • 1% XV I VO 10 was added in 3 OmLZ bags, and IL-2 was added to a final concentration of 50 OUZmL.
  • nothing was transferred to 85 cm 2 C0 2 gas-permeable bag for cell culture that is not immobilized, to a final concentration of 500 U / mL IL — 2 was added.
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment (25 cm 2 cell culture flask) used in the following experiments. That is, 6 mL of PBS containing anti-human CD3 antibody (final concentration 5 / gZmL) was added to each 25 cm 2 cell culture flask (manufactured by Corning). At this time, each fibronectin fragment (FN fr) described in Production Example 1 was added to the FN fragment addition group so as to have a final concentration of 42.5 g / mL. As a control, a group not added with FN fr was also set. These culture devices were incubated at room temperature for 5 hours and then stored at 4: until use. Immediately before use, after removing PBS containing antibody and FN fr from these culture equipment, each flask was washed twice with PBS and XVI V0 10 medium containing 1% human AB serum.
  • Example 35_ Cell suspensions were placed in SmLZ flasks in immobilized flasks or anti-human CD3 antibody and FN fr-immobilized flasks, and IL-2 was added to a final concentration of 100 OU / mL. Were cultured These flasks in 5% C0 2 in 37 (0 day of culture). On the first or second day after the start of culture, 1% XV IV010 containing 100 OUZmL of IL-2 was added to each 7 mLZ flask.
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment (25 cm 2 cell culture flask) used in the following experiment in the same manner as in Example 35- (1). Immediately before use, PBS containing antibodies and FN fr was removed from these culture equipment, and each flask was washed twice with PBS in AIMV medium containing 1% human AB serum (hereinafter abbreviated as 1% AIMV). Washed once and used for each experiment.
  • AIMV medium containing 1% human AB serum hereinafter abbreviated as 1% AIMV
  • Example 1 so that 1 X 10 6 ce 1 1 s / mL in 1% AIMV
  • IL-2 was added to a final concentration of 100 OUZmL.
  • 1% AIMV containing 100 OUZmL of IL-12 was added to each 7 mLZ flask.
  • IL-1 was added to a final concentration of 500 U mL.
  • the number of viable cells was measured by trypan blue staining method, and calculated as an expansion culture rate compared with the number of cells at the start of the culture. The results are shown in Table 36.
  • Example 3 7 CD8 positive cell content ratio in LAK cell population using low serum medium (XV I VO 10) (culture using C0 2 gas permeable bag for cell culture)
  • Example 34 LAK cells were induced and cultured in the same manner as in (2).
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 37. Table 37
  • Example 35 LAK cells were induced and cultured in the same manner as in (2).
  • Example 4 The content of CD8 positive cells was measured in the same manner as in (2). The results are shown in Table 38. Table 38
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment used in the following experiments. Specifically, 1 mL of PBS containing anti-human CD3 antibody (final concentration 5 / ⁇ g / mL) was added to a 24-well cell culture plate. At this time, the fibronectin fragment (CH-296) described in Production Example 1 was added to the FN fragment addition group to a final concentration of 25 g / mL. As a control, a group to which CH-296 was not added was also set.
  • the cell concentration pattern 4, 5 and 6 should be 0.5 ⁇ 10 6 ce 1 1 s ZmL for cells cultured in AIMV containing 1% human AB serum with cell concentration patterns 1, 2 and 3. Incubate at 1 X 10 6 eel 1 s ZmL
  • Example 1 1 After suspending the PBMC prepared in (1), add the ImL well to the anti-human CD 3 antibody-immobilized plate prepared in (1) or the anti-human CD 3 antibody and CH-296-immobilized plate. Each time, IL-1 was added to a final concentration of 100 OUZmL. These plates were incubated at 5% C_ ⁇ 2 37 (0 day of culture). On the second and third days after the start of culture, 1% AIMV containing 100 OUZmL of IL-2 was added to each ImL well.
  • the cell concentration pattern 1 and 4 should be divided into 0.02 5 X 10 6 ce 1 1 s NO mL, and cultured with cell concentration patterns 2, 3, 5, and 6. Dilute with AIMV containing 1% human AB serum so that the concentration is 0.05 x 10 6 cells ZmL (maximum volume 6 mL) and nothing is immobilized. 12.5 cm 2 cell culture Each was transferred to a flask. IL_2 was added to a final concentration of 50 OUZmL in each category.
  • the cell culture pattern 1, 2, 4 and 5 should be divided into 0.2 ⁇ 10 6 ce 1 1 sZmL, and the cell concentration pattern 3,
  • the culture in 6 is diluted with AIMV containing 1% human AB serum (0.5 mL maximum) to 0.5 X 10 6 ce 1 1 s ZmL, and nothing is immobilized 12.
  • AIMV 1% human AB serum
  • IL-12 was added to a final concentration of 50 OU / mL in each section.
  • LAK cells were induced and cultured in the same manner as in Example 39.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 40.
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment used in the following experiments. That is, 1.9 mL of PBS containing anti-human CD 3 antibody (final concentration 5 g / mL) was added to each 12-well cell culture plate. At this time, the fibronectin fragment (CH-296) described in Production Example 1 was added to the FN fragment addition group to a final concentration of 25 gZmL. As a control, a group without CH_296 was also set.
  • Example 41 3 mL / well was added to the anti-human CD3 antibody-immobilized plate prepared in (1) or anti-human CD3 antibody and CH-296-immobilized plate, and IL-1 was added to a final concentration of 100 OUZmL. These plates were incubated at 5% C0 2 in 37 ⁇ (0 day of culture).
  • Anti-CD 3 + CH— 296 1 307 As shown in Table 41-2, the control group (anti-CD 3 antibody) in any of the normal culture, high concentration culture or high concentration 'high density culture' sections. Compared with the stimulation with only CD), a higher expansion rate was obtained in the group stimulated with CH-296 and anti-CD3 antibody. In other words, the effect on expansion culture was clearly observed by stimulation with CH-296 in high-density and high-density culture that can reduce the medium, materials, and labor.
  • Example 42 Content ratio of CD8 positive cells in LAK cell population cultured in low serum medium (A IM V) (high concentration, high density culture)
  • LAK cells were induced and cultured in the same manner as in Example 41.
  • Example 4 The content of CD8 positive cells was measured in the same manner as in (2). The results are shown in Table 42. Table 42
  • Anti-CD3 + CH— 296 65 As shown in Table 42, the control group (stimulation with anti-CD3 antibody only) was observed in either normal culture, high-concentration culture, or high-concentration culture. In contrast, the group stimulated with CH-296 and anti-CD3 antibody was able to induce a high CD8 positive cell content in LAK cells in culture. In other words, LAK cells are induced and cultured while clearly increasing the content of CD8 positive cells in LAK cells by stimulation with CH-296 in high-density and high-density culture that can reduce medium, materials and labor. It became clear that it was possible.
  • Example 43 Expansion of LAK cell culture system using low serum medium (A I M V) Measurement of culture rate (serum concentration 0%, 0.15%, 5% ⁇ 0.1%)
  • Collecting 3 OmL at a time in LAK cell culture will yield approximately 15mL of plasma. Considering that this is cultured in a medium of up to 10 L, the plasma concentration is 0.15%. In addition, if the culture is started from the 5% plasma concentration, the plasma concentration in the culture medium when the cells are passaged and diluted is about 0.1% after the 4th day. In view of the above, the effect of serum concentration in the LAK cell culture system was confirmed.
  • the divisions cultured with AIMV containing 0% and 0.15% human AB serum are 0% or 0, respectively, so that the maximum is 0.05 X l 0 6 cells ZmL.
  • 1 Diluted with A IM V containing 5% human AB serum, and transferred the culture solution to a 12.5 cm 2 cell culture flask with nothing immobilized (liquid volume 2.5 mL).
  • AIMV containing 5% human AB serum dilute with AIMV containing 0.1% human AB serum to a concentration of 0.05 X 10 6 ce 1 1 sZmL. Transfer to 12.5 cm 2 cell culture flask with nothing immobilized.
  • IL-2 was added to a final concentration of 50 OUZmL in each section.
  • the cells cultured with AIMV containing 0% and 0.15% human AB serum should be 0.11 X 1 0 6 cells ZmL with AIMV containing the same concentration of serum. Diluted and transferred to a standing 25 cm 2 cell culture flask with nothing immobilized (maximum volume 12.6 mL).
  • the cells cultured with A IM V containing 5% hum a nAB serum were diluted to 0.11 x 10 6 ce 1 1 sZmL with AIMV containing 0.1% humanAB serum, and nothing was immobilized.
  • a new 25 cm 2 cell culture flask was transferred to a standing one (maximum volume 12.6 mL).
  • IL-2 was added to a final concentration of 500 UZmL in each section.
  • the cells cultured with AIMV containing 0% and 0.15% human AB serum were each 0.2% X 1 0 6 ce 1 1 s / mL with AIMV containing the same concentration of serum. Diluted to a new 25 cm 2 cell culture flask with nothing immobilized (up to 12.6 mL). 5% hu
  • the cells cultured with AIMV containing man AB serum were diluted to 0.5 x 10 6 ce 1 1 sZmL with AIMV containing 0.1% humanAB serum. Transferred to a 2- cell culture flask (up to 12.6 mL).
  • IL-2 was added to a final concentration of 50 OUZmL in each section.
  • Anti-CD 3 + CH— 296 353 As shown in Table 43, in LA K cell culture using AIMV medium containing each serum concentration, the control group (anti-CD 3 antibody only) In comparison with the group stimulated by CH-296 and anti-CD3 antibody, a higher expansion rate was obtained. In other words, in LAK cell culture at a serum concentration assuming 3 OmL blood sampling, stimulation with CH-296 and anti-CD3 antibody could induce and culture LAK cells at a clearly high expansion rate. . In addition, the cells in the culture at this time are high concentration and high density. By stimulating with CH-296, even under such conditions, the expansion rate is clearly high, and the effectiveness of CH-296 was recognized.
  • Example 44 Expansion in a LAK cell culture system using low serum medium (AIMV) Measurement of culture rate (serum concentration 3% ⁇ 1% ⁇ 0% ⁇ 0%, 3 ⁇ 1 ⁇ 0.1% ⁇ 0%, 3% ⁇ 0.5% ⁇ 0.2% ⁇ 0.2% (final (Approximately half of the culture volume), 3% ⁇ 0.5% ⁇ 0.2% ⁇ 0.05%)
  • h uma n AB serum concentration was 3% at the start of culture, 1% or 0.5% hum nAB serum containing cells in AIMV medium containing 4% of culture, 0% on culture day 7 Groups in which cells are diluted with AIMV medium containing 0.1% or 0.2% huma nAB serum, with AIMV medium containing 0%, 0.05% or 0.2% hum a nAB serum on day 10 of culture A group for diluting the cells was set. The above pattern is shown in Table 44-11 below.
  • Example 41 (1) The PBMC prepared in Example 1 (1) was suspended in AIMV containing 3% hum nAB serum to be 0.33 X 10 6 cell sZ mL, and then prepared in Example 41 (1). 3 mL Zwell was plated on an anti-human CD 3 antibody-immobilized plate, or anti-human CD 3 antibody and CH_296-immobilized plate, and IL-2 was added to a final concentration of 1000 U ZmL. These plates were incubated at 5% C_ ⁇ 2 37 (0 day of culture).
  • culture with serum concentration patterns 1 and 2 is diluted with AIMV containing 1% hum an AB serum so that the concentration is 0.05 x 10 6 eel I s / mL. 6mL) 12.5 cm 2 cell culture with nothing immobilized Transferred to flask.
  • the cultures with serum concentration patterns 3 and 4 were diluted with AIMV containing 0.5% hum an AB serum (liquid volume 6mL) so that the concentration was 0.558 x 10 6 eel 1 sZmL. Not transferred to 12.5 cm 2 cell culture flask.
  • IL-2 was added to a final concentration of 50 OUZmL in each section.
  • the culture with the serum concentration pattern 1 is diluted with AIMV without hum an AB serum so that the concentration is 0.28 x 10 6 cells ZmL (fluid volume 12.6 mL).
  • AIMV concentration 1
  • concentration pattern 2 dilute with AIMV containing 0.1% human AB serum so that the concentration is 0.28 x 10 6 ce 1 1 sZmL.
  • Each fresh 25 cm 2 cell culture flask was transferred to a standing one.
  • the cultures with serum concentration patterns 3 and 4 should be diluted with AIMV containing 0.2% hum n AB serum (fluid volume 12.6 mL) to be 0.48 X 10 6 ce 11 sZmL.
  • a new 25 cm 2 cell culture flask that had not been immobilized was transferred to a standing one.
  • IL-2 was added to a final concentration of 50 OUZmL in each section.
  • the culture concentration in serum concentration patterns 1 and 2 is diluted with AIMV without human AB serum so that the concentration is 0.5 1 X 10 6 eel I s / mL. 12. 6 mL) was transferred to a fresh 25 cm 2 cell culture flask with nothing fixed.
  • the culture concentration of serum concentration pattern 3 is 0.88 x 10 6 cells / mL, diluted with AIMV containing 0.2% human AB serum (fluid volume 12.6 mL), and serum concentration pattern 4
  • the culture should be diluted to 0.43 x 10 6 ce 1 1 sZmL with AIMV containing 0.05% huma n AB serum (volume 12.6 mL) and nothing is immobilized. They were transferred respectively to those made a cm 2 cell culture flasks.
  • IL-2 was added to a final concentration of 500 U / mL in each section.
  • start the culture by counting the number of viable cells using trypan blue staining. It calculated as an expansion culture rate compared with the number of cells. Each experiment was performed in duplicate. The average results are shown in Table 44-2.
  • Table 44 1 2 Table 44 1 2
  • Example 36 LAK cells were induced and cultured in the same manner as in (2). Table 4 shows the results.
  • Example 46 Measurement of expansion culture rate in LAK cell culture system using freshly isolated PBMC and medium containing autologous plasma (AIMV medium containing 0.5% autologous plasma ⁇ Cell culture flask and CO 2 gas permeability for cell culture (1) Isolation and storage of P BMC
  • autologous plasma The collected autologous plasma was inactivated at 56 for 30 minutes, and then centrifuged at 800 ⁇ g for 30 minutes, and the supernatant was used as inactivated autoplasm (hereinafter abbreviated as autologous plasma).
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment (25 cm 2 cell culture flask) used in the following experiment in the same manner as in Example 35- (1). Immediately before use, PBS containing the antibody and FN fr was removed from these culture equipment, and each flask was washed twice with PBS and once with AIMV medium for each experiment.
  • each fibronectin fragment is suitably used for culturing LAK cells in combination with a cell culture flask using a medium containing low concentration of plasma and a CO 2 gas permeable bag for cell culture. It became clear.
  • Example 47 Measurement of CD8 positive cell ratio in LAK cell population using freshly isolated PBMC and medium containing autologous plasma (AIMV medium containing 0.5% autologous plasma • Flask for cell culture and CO 2 gas for cell culture Combined with permeable bag
  • Example 46 LAK cells were induced and cultured in the same manner as in (3).
  • the content of CD8 positive cells was measured in the same manner as in Example 4- (2) on the first 15th day of culture. The results are shown in Table 47.
  • Table 47 Table 47
  • Each Hui Bro nectin fragment from the Conoco is suitably used when L AK cell culture that combines C_ ⁇ 2 gas-permeable bag for cell culture flasks and cell culture using a medium containing low concentrations of plasma It became clear.
  • Example 48 Measurement of expansion culture rate in LAK cell culture system using freshly isolated PBMC and autologous plasma-containing medium (A IM V medium containing 0.5% autologous plasma ⁇ Cell culture flask and cell culture C ⁇ 2 (1) Immobilization of anti-human CD 3 antibody and FN fragment
  • Example 46- (1) Prepared in the same manner as in Example 46- (1) so that AIMV containing 0.5% autologous plasma (hereinafter abbreviated as 0.5% autologous plasma AIM V) was 1 X 10 6 eel 1 s ZmL.
  • 0.5% autologous plasma AIM V 0.5% autologous plasma
  • IL-2 was added to a final concentration of 100 OUZmL.
  • Were cultured These flasks in a 5% C_ ⁇ 2 in 37 (0 day of culture).
  • Plasma concentration ⁇ Medium ⁇ Cell Bag 1 1st culture Expansion Enlargement for culture C02 gas permeability Culture area Medium addition Days Lagment Culture rate Bag (magnification)
  • Example 48 LAK cells were induced and cultured in the same manner as in (2). On the fifth day after the start of culture, the content of CD8-positive cells was measured in the same manner as in Example 4-1 (2). The results are shown in Table 49. Table 49
  • Plasma concentration ⁇ Medium ⁇ Cell Bag 1 1 culture Fibronectin CD8 cell culture co 2 gas permeability Culture area Eye medium Days Fragment content ratio Bag addition (%)
  • each Huy blow nectin fragments that combine does not depend on the culture area, culture method, the final medium volume of cell culture co 2 gas permeable bag High CD8 cell positive ratio in LAK cell population. Therefore, each fibronectin fragment is preferably used for LAK cell culture combining a cell culture flask using a medium containing low-concentration plasma and a CO 2 gas permeable bag for cell culture.
  • Example 46 LAK cells were induced and cultured in the same manner as in (3).
  • Example 25 LAK cytotoxic activity on the 15th day after culturing was measured in the same manner as in (2). The results are shown in Table 50. Table 50
  • Plasma concentration ⁇ Medium ⁇ For cell culture Culture days Fibronectin E / T cell injury Cytotoxicity co 2 gas-permeable bag fragment ⁇ Activity) Activity) Target cell Target cell
  • each fibronectin fragment is preferably used for LAK cell culture in combination with a cell culture flask using a medium containing low-concentration plasma and a CO 2 gas permeable bag for cell culture. It turns out
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment (25 cm 2 cell culture flask) used in the following experiment in the same manner as in Example 35- (1). Immediately before use, PBS containing the antibody FN fr was removed from these culture equipment, and each flask was washed twice with PBS and once with AIMV medium for each experiment.
  • a IM V containing 5% autologous plasma (hereinafter abbreviated as 0.5% autologous plasma A IM V) should be 5 X 10 5 eel 1 sZmL. Kanto Chemical Co., Inc.)
  • Example 46 After suspension of freshly isolated PBMC prepared in the same manner as (1), Example 51— Immobilization of anti-human CD 3 antibody prepared in (1) Cell suspensions were placed in flasks or anti-human CD3 antibody and FN fr immobilized flasks in 3 mLZ flasks, and IL-2 was added to a final concentration of 100 OUZmL. And culturing these flasks in 5% C0 2 in 37 (culture 0 ⁇ ).
  • Plasma concentration ⁇ Medium ⁇ PBMC 1 1 ⁇ 1 10-capped caro culture medium Fibronectin Expansion rate Cell culture medium co 2 gustner eye medium Fragment ⁇ (, magnification) Permeability bag addition
  • Example 52 Measurement of ratio of CD8 positive cells in LAK cell population using freshly isolated PBMC and autologous plasma-containing medium (AIMV medium containing 0.5% autologous plasma-cell culture flask and C 0 2 gas permeability for cell culture Culture that combines bags)
  • Example 51 LAK cells were induced and cultured in the same manner as in (2). On the first 15th day of culture, the content of CD8-positive cells was measured in the same manner as in Example 4- (2). The results are shown in Table 52.
  • a IM V As shown in Table 52, cell culture flasks and cell culture C0 2 gas permeable bags are combined using medium (AIMV) containing autologous plasma at a low concentration (0.5%). was in the LAK cell induction early group using a fixed phased cell culture flasks each Huy blow vitronectin fragment, regardless of the culture area, culture method, the final medium volume of cell culture C_ ⁇ 2 gas permeable bag LAK High proportion of CD8 positive cells in cell population. Each Hui Bro nectin fragment from this is to be suitably used for LAK cell cultures that combine cell culture flasks and co cell culture 2 gas transparently property bags with a medium containing low concentrations of plasma Obviously
  • Example 1 1 LAK cells were induced and cultured in the same manner as in (3). The medium used at this time was changed to AIMV medium containing 1% human AB serum.
  • Example 3 The content of IL-12R expression positive cells was measured in the same manner as in (2). The results are shown in Table 53. In this table, the IL-2R expression positive cell content rate (%) is expressed as IL-1R expression rate (%). Table 53
  • Example 54 Expression of Retronectin Mutant Protein (CH—296 Na)
  • Construction of an expression vector for CH—296 Na Using the synthetic DNA primers of SEQ ID NOS: 27 and 28 (P ri me r CH-296 N a 1 and? Rim r CH- 296 N a 2 respectively), the CH- 296 expression vector P CH 102 is in a saddle shape. PCR reaction was performed, and the resulting DNA fragment was treated with Nde I and Hind III for restriction enzymes. On the other hand, an Nd e I site is added to the translation initiation codon prepared according to the method of Example 4 of the pamphlet ⁇ ⁇ from p Co 1 d 04 described in Example 5 of International Publication No. 99 No. 2711-7.
  • a pC o 1 d 14 ND 2 vector was prepared.
  • the vector pCodldl4ND2_CH296 was obtained by inserting the DNA fragment into the NdeI- HindIII restriction enzyme site of the pColdl4ND2 vector.
  • p LF 2435 vector containing cDNA coding from part of the cell binding domain of fibronectin to the C-terminus was used as a cage, and the synthetic DNA sequence primers of SEQ ID NOS: 28 and 29 (each P The PCR reaction was performed using r ime r CH—296 Na 2 and Primer CH-296 Na 3), and the obtained DNA fragment was subjected to restriction enzyme treatment with BamHI and HindIII.
  • the DNA fragment thus obtained was ligated with pCo1d14ND2-CH296 treated with restriction enzymes BamHI and HindIII to prepare a CH-296Na expression vector.
  • IPTG was added to a final concentration of 1. OmM, and the cells were incubated at 15 for 24 hours to induce expression. That After microbial cells were collected by centrifugation, a cell disruption solution [50 mM Tris-HC 1 (pH 7.5), 1 mM EDTA, 1 mM DTT, 1 mM PMS F, 5 OmM N] a C 1]. The cells were disrupted by ultrasonic disruption and separated into a supernatant extract and a precipitate by centrifugation (11,000 rpm 20 minutes).
  • Fractionated fractions 2 and 3 (approximately 20 OmL), which were found to contain a large amount of the target protein with a molecular weight of approximately 71 kDa as a result of subjecting the fractionated fraction to 10% SDS_PAGE, were collected. Dialysis was performed with buffer A.
  • Example 5 Expansion of LAK cell culture system using low serum medium (AIMV) Measurement of culture rate (serum concentration 5% ⁇ 1% ⁇ 0% ⁇ 0%, 5% ⁇ 1% ⁇ 0.05% ⁇ 0.05%, 3% ⁇ 1% ⁇ 0.05 ⁇ 0.05%, 3% ⁇ 1% ⁇ 0.1% ⁇ 0.05%, 1% ⁇ 1% ⁇ 0.1% ( ⁇ 0.0 5%)
  • the hum n AB serum concentration was set to 5%, 3% or 1% at the beginning of the culture, and the groups diluted with AIMV medium containing hum nAB serum concentrations shown in Table 54 below were set. In addition, as shown in Table 54 below, the categories where the passage concentration was changed on each passage day were also set.
  • Serum concentration pattern Serum concentration 5% 1% 0% 0%
  • the serum concentration in the table is the concentration at the start on the 0th day after the start of culture, and the serum concentration contained in the medium used for dilution thereafter.
  • Example 1- Suspend the PBMC prepared in Example 1- (1) in AIMV containing 5%, 3% or 1% human AB serum to give 0.33 X 10 6 ce 1 1 sZmL. 41 3mL wells were added to the anti-human CD 3 antibody-immobilized plate prepared in (1) above, or anti-human CD 3 antibody and CH-296-immobilized plate, and IL-2 was added to a final concentration of 100 OUZmL. . These plates were incubated at 5% C_ ⁇ 2 37 (0 day of culture).
  • the serum concentration pattern 1-1 1 is diluted with AIMV without human AB serum so that the culture concentration is 0.32 IX 10 6 eel I s / mL (volume: 12.6 mL) )
  • Serum concentration pattern 1 1 2 and 2 The culture medium is diluted with AIMV containing 0.05% human AB serum so that the concentration is 0.32 ixi 0 6 cells ZmL. 6mL), and the culture concentration in serum concentration patterns 2-2 and 3-1 is 0. 321 X 10 6 ce 1 1 sZmL, and the culture concentration in serum concentration pattern 3-2 is 0. 417. Incubate with serum concentration pattern 3_3 so that it becomes X 10 6 ce 1 1 s mL.
  • the culture concentration of serum concentration pattern 1 _ 1 is diluted with AIMV without hum an AB serum so that the concentration is 0. 873 X 10 6 eel I s / mL. 6mL), the category cultured with the serum concentration pattern 2-1 is 0. 746 X 10 6 ce 1 1 s_ mL, so that the category cultured with the serum concentration pattern 1-2 is 0.84 ⁇ 10 6 cells mL.
  • the culture concentration in serum concentration patterns 2-2 and 3-1 is 0.664 x 10 6 cells, so that the culture concentration in serum concentration pattern 3-2 is 1.2 x 14 x 10 Diluted with AIMV containing 0.05% human AB serum (fluid volume 12, 6mL) to make 6 ce 1 1 sZmL, and set up a new 25 cm 2 cell culture flask with nothing immobilized Moved to.
  • IL-2 was added to a final concentration of 500 U / mL in each section.
  • the number of viable cells was counted by trypan blue staining, and calculated as an expansion culture rate compared with the number of cells at the start of the culture. Each experiment was performed in duplicate. Table 55 shows the average results. Table 55
  • the control group (anti-CD3 antibody) in any serum concentration category or any subculture concentration category.
  • a higher expansion rate was obtained in the group stimulated with CH-296 and anti-CD3 antibody.
  • stimulation with CH-296 and anti-CD3 antibody resulted in LAK cells at a significantly higher expansion rate than stimulation with anti-CD3 antibody alone.
  • Induction ⁇ We were able to cultivate.
  • the cells in the culture at this time have a high concentration and a high density.
  • Example 56 Expansion of LAK cell culture system using low serum medium (AIMV) Measurement of culture rate (IL-2 concentration, 100 UZmL ⁇ l 50 U / mL ⁇ 150 U / m L ⁇ 300 U / mL, 200 U / (mL ⁇ 300 U / mL ⁇ 300 U / mL ⁇ 40 0 U / mL 1000 U / mL ⁇ 500 U / mL ⁇ 500 U / mL ⁇ 500 U / mL ⁇ 500 U / mL)
  • the IL-12 concentration added at the start of culture and at the time of passage was set as shown in Table 56-11.
  • Example 41- (1) Suspend the PBMC prepared in Example 1- (1) in AIMV containing 3% human AB serum so that the concentration is 0.33 X 10 6 cells / mL.
  • IL-2 concentration pattern 1 Each new 25 cm 2 cell culture flask was transferred to a standing one.
  • the final concentration is 150 UZmL
  • IL-2 concentration pattern 2 it is 30 OUZmL
  • IL-2 concentration pattern 3 it is 50 OUZmL. 2 was added.
  • Anti-CD 3 + CH— 296 57 1 As shown in Table 56-2, in the LAK cell cultures cultured at various IL-2 concentrations at the time of passage, the control group (anti CD 3 Compared to stimulation with the body alone, a higher expansion rate was obtained in the group stimulated with CH_296 and anti-CD3 antibody. That is, even when IL-2 concentration is changed, stimulation with CH-296 and anti-CD3 antibody induces and cultures LAK cells at a clearly higher expansion rate than when stimulated with anti-CD3 antibody alone. We were able to. In addition, the cells in this culture are highly concentrated and dense, and the serum concentration is assumed to be 3 OmL and the total culture volume is 10 L.
  • LAK cells were induced and cultured in the same manner as in Example 56.
  • Example 4 The content of CD8-positive cells was measured in the same manner as in (2). The results are shown in Table 57. Table 57
  • Anti-CD 3 + CH— 296 67 As shown in Table 57, compared to the control group (stimulation with anti-CD 3 antibody alone) in any category where the IL-12 concentration was to be changed at the start of culture or passage. In the LAK cells in culture in the group stimulated with CH_296 and anti-CD3 antibody It was possible to induce a high CD 8 positive cell content. That is, even if the IL-12 concentration is changed, stimulation with CH-296 can induce and culture LAK cells while clearly increasing the content of CD8 positive cells in LAK cells. It became clear.
  • Example 58 Expansion in LAK cell culture system using low serum medium (AIMV) Measurement of culture rate (Examination of initial concentration at start of culture)
  • the culture initiation initial cell concentration 0. 083 X 10 6 ce 1 1 s / mL, setting each segment of 0. 167 X 10 6 ce 1 1 s / mL or 0. 33 X l 0 6 cells ZmL .
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment used in the following experiments. That is, 1.9 mL or 4.8 mL of PBS containing anti-human CD3 antibody (final concentration 5 gZmL) was added to a 12-well cell culture plate or a 6-well cell culture plate (Falcon). At this time, the fibronectin fragment (CH-296) described in Production Example 1 was added to the FN fragment addition group to a final concentration of 25 gZmL. As a control, a group to which CH-296 was not added was also set.
  • 0.03 x 10 6 ce 1 1 s in AIMV with 3% hum n AB serum After suspending the P BMC prepared in Example 1 (1) so as to be ZmL, 0.167 X 10 6 ce 1 1 s / mL or 0.33 X 10 6 cel 1 s / mL, 0.
  • the culture start with 083 X 10 6 ce 1 1 s ZmL or 0.167 X 10 6 cells per mL is the anti-human CD 3 antibody immobilized 6-well cell culture plate prepared in Example 58— (1), or Anti-human CD 3 antibody and CH-296 immobilized on 6-well cell culture plate 7.
  • each section is diluted with AIMV containing 1% uma nAB serum to a maximum of 0.1 x 10 6 cell sZmL (volume 6 mL), and nothing is immobilized12. Transferred to a 5 cm 2 cell culture flask. IL-2 was added to a final concentration of 50 OUZmL in each section.
  • the culture started with 0.083 X 10 6 eel I s ZmL, and the culture started with 0.167 X 10 6 cells ZmL so that the division was 0.227 X 10 6 cells / mL.
  • the classification is 0.276 X 10 6 cells / mL, and the culture started with 0.33 X 10 6 ce 1 1 sZmL is 0. 465 X 10 6 cells sZmL.
  • Example 1 _ (1) Suspend the PBMCs prepared in Example 1 _ (1) so that the AIMV containing 3% human AB serum is 0.33 X 10 6 ce 1 1 sZmL in each category.
  • 3mLZ wells were added to the anti-human CD3 antibody-immobilized plate prepared in (1), or anti-human CD3 antibody and CH_296-immobilized plate, and IL-2 was added to a final concentration of 100 OUZmL.
  • the 2-day stimulation category and the 3-day stimulation category were transferred directly to a new 12-well culture plate with no immobilization.
  • Anti-human CD3 antibody and FN fragment were immobilized on the culture equipment used in the following experiments. Specifically, 1.9 mL of PBS containing anti-human CD3 antibody (final concentration 5 g / mL) was added to each 12-well cell culture plate. At this time, the fibronectin fragment (CH_296Na) described in Example 54 was added to the FN fragment addition group so that the final concentration was 28.6 g / mL. As a control, a group not added with CH-296 Na was also set.
  • Example 1— (1) The PBMCs prepared in Example 1— (1) were suspended in AIMV containing 3% human AB serum at 0.33 ⁇ 10 6 cells / mL, and then in Example 60— (1). 3 mL of each sample was spread on the prepared anti-human CD3 antibody-immobilized cell culture plate or anti-human CD3 antibody and CH-296Na-immobilized cell culture plate. In addition, in the category in which CH-296 Na is added as it is to the cell culture medium, the final concentration of CH-296 N is adjusted to 1 ⁇ gZmL for cells spread on the anti-human CD3 antibody-immobilized cell culture plate. a was added. IL-2 was added to a final concentration of 100 OU / mL in each section. Were cultured these flops rate at 5% C_ ⁇ 2 in 37 (0 day of culture).
  • each section should be 0.1 X 10 6 ce 1 1 sZmL. Diluted with AIMV containing 1% human AB serum (volume 6 mL) and transferred to a 12.5 cm 2 cell culture flask with nothing immobilized. IL-2 was added to a final concentration of 50 OUZmL in each section.
  • Anti-CD 3 + CH— 29 6 Na solution added 65 1
  • Table 60 compared to the control group (stimulation with anti-CD 3 antibody alone), either CH-296 Na was immobilized or added in solution.
  • a high expansion culture rate was also obtained in this category. That is, by stimulating with CH-296Na and anti-CD3 antibody, LAK cells could be induced and cultured at a clearly higher expansion rate than when stimulated with anti-CD3 antibody alone.
  • culture at this time is 3 OmL
  • Dynabeas M-450 Epoxy As a bead for immobilizing CH-296, Dynabeas M-450 Epoxy (manufactured by Dynal) was used. 2. 8 ⁇ 10 8 Dynabeas M-450 Epoxy were washed 3 times with 0.1M phosphate buffer (pH 7.0). 8 washed Dy nabeas M-450 Epoxy 2. 8 X 10 8 were suspended in 0.7 mL of PBS containing 140 g of CH-296, and the mixture was immobilized overnight at 4 t: with light mixing. After removing the reaction solution and replacing with 0.7 mL of PBS containing 0.1% human serum albumin (HSA) three times, the one stored in 4 was used as CH-296 beads.
  • HSA human serum albumin
  • a control bead was prepared by similarly treating the beads without CH_296.
  • Example 62 Preparation of CD 3 CH—296 beads
  • Dynabeas M-450 Epoxy was used as beads for immobilizing CH-296 and anti-human CD3 antibody. 4 ⁇ 10 8 Dynabeas M-450 Epoxy were washed 3 times with 0.1 M phosphate buffer (pH 7.0). Suspend 8 washed Dy nabeas M-450 E oxy 4X 10 in PB S lmL containing CH-296 160 g, anti-human CD 3 antibody 32 ⁇ g, and immobilize overnight at 4 with gentle mixing Went. After removing the reaction solution and substituting three times with 1 mL of PBS containing 0.1% human serum albumin (HSA), the one stored in 4 was used as CD 3 / CH-296 beads.
  • HSA human serum albumin
  • Example 1 _ A suspension of PBMC prepared in Example 1 _ (1) in AIMV containing 1% hum n AB serum to give 0.33 x 10 6 cells mL, and nothing is immobilized 12-well culture plate 3 mL Nowell each, and the CD 3 bead classification is CD 3 beads (Dyn abeads M-450 CD 3 (pa nT), Veritas, DB 1 1 1 13) 1 X 10 6 Nowell, Example 61 control bi one's tHAT prepared 3.
  • CD 3 beads + CH- 296 beads segment was prepared CD 3 beads 1 X 10 6 cells Z Ueru, in example 61 CH-2 96 beads to be 0.76 x 10 6 beads / well, and the CD 3ZCH-296 bead section is 2.3 x 10 6 CD 3 / CH-296 beads prepared in Example 62. It added so that it might become a well. IL-2 was added to each well to a final concentration of 100 OUZml. These plates were incubated at 5% C0 2 in 37 (zeroth day of culture).

Abstract

本発明は、培地中における血清および血漿の総含有濃度が0容量%以上5容量%未満である培地を用いて、フィブロネクチン、そのフラグメントまたはそれらの混合物の存在下に細胞傷害性リンパ球の誘導、維持および拡大培養から選択される少なくとも1つを行う工程を含むことを特徴とする、細胞傷害徃リンパ球の製造方法を提供する。

Description

明 細 書 細胞傷害性リンパ球の製造方法 技術分野
本発明は、 医療分野において有用な、 細胞傷害性リンパ球を取得する方法に関 する。 背景技術
生体は主として免疫応答により異物から守られており、 免疫システムはさまざ まな細胞とそれが作り出す可溶性の因子によって成り立つている。 なかでも中心 的な役割を果たしているのが白血球、 特にリンパ球である。 このリンパ球は Bリ ンパ球 (以下、 B細胞と記載することがある) と Tリンパ球 (以下、 T細胞と記 載することがある) という 2種類の主要なタイプに分けられ、 いずれも抗原を特 異的に認識し、 これに作用して生体を防御する。
T細胞は、 CD (C l u s t e r o f D i f f e r e n t i a t i on) 4マーカーを有し、 主に抗体産生の補助や種々の免疫応答の誘導に関与するヘル パー T細胞 (以下、 TH と記載する) 、 CD 8マーカ一を有し、 主に細胞傷害活 性を示す細胞傷害性 T細胞 〔TC ;細胞傷害性 Tリンパ球 (c y t o t ox i c T 1 ymph o c y t e) 、 キラ一 T細胞とも呼ばれる。 以下、 CTLと記載 することがある〕 に亜分類される。 腫瘍細胞やウィルス感染細胞等を認識して破 壊、 除去するのに最も重要な役割を果たしている CTLは、 Β細胞のように抗原 に対して特異的に反応する抗体を産生するのではなく、 標的細胞膜表面上に存在 する主要組織適合複合体 〔MHC : ヒトにおいてはヒト白血球抗原 (HLA) と 称することもある〕 クラス I分子に会合した標的細胞由来の抗原 (抗原ペプチド ) を直接認識して作用する。 この時、 CTL膜表面の T細胞レセプ夕一 (以下、 TCRと称す) が前述した抗原べプチドおよび MH Cクラス I分子を特異的に認 識して、 抗原ペプチドが自己由来のものなのか、 あるいは、 非自己由来のものな のかを判断する。 そして、 非自己由来と判断された標的細胞は CTLによって特 異的に破壊、 除去される。
近年、 薬剤治療法や放射線治療法のように患者に重い肉体的負担がある治療法 が見直され、 患者の肉体的負担が軽い免疫治療法への関心が高まっている。 特に 免疫機能が正常なヒト由来のリンパ球から目的とする抗原に対して特異的に反応 する CTLを生体外 (e x v i v o) で誘導した後、 もしくは誘導を行わず、 リンパ球を拡大培養し、 患者へ移入する養子免疫療法の有効性が注目されている 。 例えば、 動物モデルにおいて養子免疫療法がウィルス感染および腫瘍に対して 有効な治療法であることが示唆されている (例えば、 Gr e e nb e r g, P . D. 著, 1992年発 Adv an c e s i n Immun o l o gy 及び Re u s s e r P. 他 3名, B l o od, 1991年, Vo l . 78, No. 5, P 1373〜1380) 。 この治療法では C T Lの抗原特異的傷害活 性を維持もしくは増強させた状態でその細胞数を維持あるいは増加させることが 重要である。
上記のような養子免疫療法において、 治療効果を得るためには一定量以上の細 胞数の細胞傷害性リンパ球を投与する必要がある。 すなわち、 e x v i v oで これらの細胞数を短時間に得ることが最大の問題であるといえる。
CTLの抗原特異的傷害活性を維持および増強するためには、 C T Lについて 抗原に特異的な応答を誘導する際に、 目的とする抗原を用いた刺激を繰り返す方 法が一般的である。 しかし、 通常、 この方法では最終的に得られる CTL数が減 少し、 十分な細胞数が得られない。
疾病の治療に有効な T細胞を調製する方法としては、 例えば、 リンフォカイン 活性化キラ一細胞 (LAK細胞) を用いる養子免疫療法 (例えば、 Ro s e n b e r g S. A. 他, N. Eng l . J. Me d. 1987年, Vo l . 3 16, No. 15, P 889〜897) 、 高濃度のインタ一ロイキン— 2 ( I L-2) を用いて誘導した腫瘍浸潤リンパ球 (T I L) を用いる養子免疫療法 (例えば、 Ro s e nb e r g S. A. 他, N. Eng l . J. Me d. 1988年, Vo l . 319, No. 25, P 1676〜 1680および H o M. 他 9名, B l o od, 1993年, Vo l . 8 1, No. 8, P 20 93〜2101) が知られている。
次に、 抗原特異的な CTLの調製に関しては、 自己 CMV感染線維芽細胞と I L- 2 (例えば、 R i d d e 1 1 S. A. 他 4名, J . I mmu n o 1 . , 1991年, Vo l . 146, No. 8, P 2795〜2804) 、 あるい は抗 CD 3モノクローナル抗体 (抗 CD 3mAb) と I L— 2を用いて、 それぞ れ CMV特異的 CTLクローンを単離ならびに大量培養する方法 (例えば、 G r e e n b e r g P. D. 他 1名, J. I mmu n o 1. Me t h o d s , 1990年, Vo l . 128, No. 2, P 189〜201) が報告されてい る。
さらに、 国際公開第 96/06929号パンフレツ卜には REM法 (r a p i d e xp an s i on me t h o d) が開示されている。 この R EM法は、 抗原特異的 CTLおよび THを含む T細胞の初期集団を短期間で増殖 (Exp a n d) させる方法である。 つまり、 個々の T細胞クローンを増殖させて大量の T 細胞を提供可能であり、 抗 CD 3抗体、 I L— 2、 並びに放射線照射により増殖 性をなくした P BMC (p e r i ph e r a l b l o o d mo n o n u c 1 e a r c e l l , 末梢血単核細胞) とェプス夕イン—バールウィルス (Ep s t e i n-B a r r v i r u s、 以下 EB Vと略す) 感染細胞とを用いて抗原 特異的 CTL数を増加させることが特徴である。
また、 国際公開第 97/32970号パンフレツ卜には改変 REM法が開示さ れており、 当該方法は PBMCとは区別される T細胞刺激成分を発現する分裂し ていない哺乳動物細胞株をフィーダ細胞として使用し、 PBMCの使用量を低減 させる方法である。
リンフォカイン活性化キラ一細胞 (LAK細胞) は、 リンパ球を含む末梢血液 (末梢血白血球) や臍帯血、 組織液等に I L一 2を加えて、 数日間試験管内で培 養することにより得られる細胞傷害活性を持つ機能的細胞集団である。 この際、 抗 C D 3抗体を加えて培養することにより、 さらに L AK細胞の増殖は加速する 。 このようにして得られた LAK細胞は非特異的にさまざまながん細胞やその他 のターゲットに対して傷害活性を有する。 LAK細胞も上記 CTLと同様に、 養 子免疫療法に使用される。
上記のとおり、 細胞傷害性リンパ球、 例えば CTL、 LAK細胞、 T I L等を 取得する工程においては I L— 2の利用を欠かすことができない。 I L_2が細 胞表面のインターロイキン— 2レセプ夕一 (I L— 2R) に結合することにより 細胞はさらに活性化される。 また、 I L一 2 Rはリンパ球の活性化マーカーとし て知られている。 これらの点において、 細胞表面の I L— 2 Rの発現を上昇させ ることは重要である。 また、 CTLの誘導においては、 抗原による刺激に供され た CTLの前駆細胞が CTLとして誘導される効率を向上させること、 すなわち 、 誘導後の細胞群における CD 8陽性細胞の割合 (比率) を向上させることが重 要である。
またこれらリンパ球を体外において拡大培養する際には通常血清または血漿が 5容量%から 20容量%添加される。 この血清 ·血漿はリンパ球等の細胞を e X
V i v oで培養する際に必要とされる成分であるが、 血清 ·血漿は非自己動物 (ヒト ·ゥシ等) の血液をその由来とするため各種ウィルス感染等の危険性が排 除できない。 また、 現在の検出技術では検出することが出来ないようなウィルス •病原性微生物の存在を完全否定することは不可能である。
この観点から、 近年、 患者由来の血清 ·血漿 (自己血清 ·血漿) の使用が進め られている。 しかし、 培養に必要な量の血清 ·血漿を確保するために患者自身の 血液を多量に採取することは、 患者への肉体的負担が大きく、 生命の危険につな がる可能性もある。 この危険を回避するため、 少量の血清 ·血漿を用いて、 治療 に必要なリンパ球を得る拡大培養を行うと必然的に低濃度血清 ·血漿での培養と なる。 一般にリンパ球等の細胞は低血清 ·低血漿条件における培養では増殖が不 安定となり治療に必要な量の細胞が得られない。 さらに、 上述の肉体的負担およ び感染の危険性を回避するためには無血清培養が強く求められるが、 このような 培養条件ではほとんどの細胞が増殖しなくなる。
このため、 低血清 ·無血清 (低血漿 ·無血漿) でのリンパ球拡大培養方法が強 く求められている。
無血清 (無血漿) 条件下でのリンパ球拡大培養方法が確立されれば、 血清 *血 漿のロット間の差を排除でき、 患者血清,血漿に由来する負要因 (免疫抑制成分 等) を排除することが出来ることから、 この系の確立によって得られる利益は計 り知れない。
フイブロネクチンは動物の血液中、 培養細胞表面、 組織の細胞外マトリックス に存在する分子量 25万の巨大な糖タンパク質であり、 多彩な機能を持つことが 知られている。 そのドメイン構造は 7つに分けられており (以下、 第 1図参照) 、 またそのアミノ酸配列中には 3種類の類似の配列が含まれており、 これら各配 列の繰返しで全体が構成されている。 3種類の類似の配列は I型、 I I型、 I I I型と呼ばれ、 このうち、 I I I型はアミノ酸残基 71〜96個のアミノ酸残基 で構成されており、 これらのアミノ酸残基の一致率は 17〜40%である。 フィ ブロネクチン中には 14の I I I型の配列が存在するが、 そのうち、 8番目、 9 番目、 10番目 (以下、 それぞれ 1 1 1—8、 1 1 1— 9、 I I I— 10と称す る。 ) は細胞結合ドメインに、 また 12番目、 13番目、 14番目 (以下、 それ ぞれ 1 1 1— 12、 1 1 1— 13、 I I I— 14と称する。 ) はへパリン結合ド メインに含有されている。 また、 I I I— 10には VL A (V e r y l a t e a c t i v a t i on an t i g e n) - 5結合領域が含まれており、 この コア配列は RGD Sである。 また、 へパリン結合ドメインの C末端側には I I I C Sと呼ばれる領域が存在する。 I I I CSには 25アミノ酸からなる VLA— 4に対して結合活性を有する CS— 1と呼ばれる領域が存在する (例えば、 De a n e F. Mome r著, 1988年発行, F I BRONECT I N, A CADEM I C PRES S I NC. , P l〜8、 K i m i z u k a F. 他 8名, J. B i o c h em. , 1991年, Vo l . 1 10, No. 2, p 284— 291および H a n e n b e r g H. 他 5名, Human Ge n e Th e r a py, 1997年, Vo l . 8, No. 18, p 2193 - 22 06) 。 発明の開示
本発明の目的は、 安全性が高く、 医療への使用に適した、 細胞傷害活性を高い レベルで保持した細胞傷害性リンパ球を取得する方法を提供することにある。 本発明を概説すれば、 本発明の第 1の発明は、 培地中における血清および血漿 の総含有濃度が 0容量%以上 5容量%未満である培地を用いて、 フイブロネクチ ン、 そのフラグメントまたはそれらの混合物の存在下に細胞傷害性リンパ球の誘 導、 維持および拡大培養から選択される少なくとも 1つを行う工程を含むことを 特徴とする、 細胞傷害性リンパ球の製造方法に関する。 本発明の第 1の発明で製 造される細胞傷害性リンパ球としては、 フイブロネクチン、 そのフラグメントま たはそれらの混合物の非存在下に製造されたものと比較して、 インターロイキン 一 2レセプ夕一を高発現する細胞傷害性リンパ球が例示される。 また、 本発明の 第 1の発明で製造される細胞傷害性リンパ球としては、 フイブロネクチン、 その フラグメントまたはそれらの混合物の非存在下に製造されたものと比較して、 C D 8陽性細胞を高比率で含有する細胞傷害性リンパ球が例示される。 また、 本発 明の第 1の発明で製造される細胞傷害性リンパ球としては、 フイブロネクチン、 そのフラグメントまたはそれらの混合物の非存在下での細胞傷害性リンパ球の製 造方法により製造されたものと比較して、 拡大培養率が高い細胞傷害性リンパ球 が例示される。 また、 本発明の第 1の発明で製造される細胞傷害性リンパ球とし ては、 フイブロネクチン、 そのフラグメントまたはそれらの混合物の非存在下に 製造されたものと比較して、 細胞傷害活性が増強されたもしくは高い細胞傷害活 性が維持された細胞傷害性リンパ球が例示される。
本発明の第 1の発明において、 フイブロネクチン、 そのフラグメントまたはそ れらの混合物の使用については、 これらが固相に固定化されて使用されることが 例示される。 ここで固相としては細胞培養用器材または細胞培養用担体が例示さ れる。 細胞培養用器材としては、 シャーレ、 フラスコまたはバッグが例示され、 細胞培養用担体としては、 ビーズ、 メンブレンまたはスライドガラスが例示され る。
本発明の第 1の発明において、 細胞傷害性リンパ球としては、 リンフォカイン 活性化キラー細胞が例示される。
本発明の第 1の発明において、 フイブロネクチンのフラグメントとしては、 配 列表の配列番号 1〜 8で表されるいずれかのアミノ酸配列を少なくとも 1つ含ん でなるポリペプチド (m) であるか、 または前記いずれかのアミノ酸配列におい て 1もしくは複数個のアミノ酸が置換、 欠失、 挿入もしくは付加したアミノ酸配 列を少なくとも 1つ含んでなるポリペプチドであって、 前記ポリペプチド (m) と同等な機能を有するポリペプチド (n ) が例示される。 フイブロネクチンのフ ラグメントとしては、 細胞接着活性および またはへパリン結合活性を有するも のが例示される。 また、 フイブロネクチンのフラグメントが、 配列表の配列番号 9〜2 0および 2 5で表されるいずれかのアミノ酸配列を有するポリペプチドか らなる群より選択される少なくとも 1つのポリペプチドが例示される。
本発明の第 1の発明において、 当該製造方法を細胞培養用器材中で行う場合の 一態様として、
( a ) 培養開始時の細胞数と細胞培養用器材における培養面積との比率が、 l c e 1 l / c m 2 〜5 X l 0 5 c e 1 1 s / c m 2である、 および/または (b) 培養開始時の培地中の細胞の濃度が、 1 c e 1 1 ZmL〜5 X 105 c e 1 1 s/mLである、
の条件を満たすことが例示される。
また、 このような製造方法としては、 細胞培養液を希釈する工程を要しない方 法が例示される。
本発明の第 1の発明において、 細胞傷害性リンパ球の誘導、 維持及び拡大培養 の少なくともいずれか 1つを、 フイブロネクチン、 そのフラグメントまたはそれ らの混合物の存在下、 培地を含む細胞培養用器材中で行なう場合、 例えば、 少な くとも 1回の、 細胞培養液の希釈工程、 培地の交換工程もしくは細胞培養用器材 の交換工程を包含し、 かつ少なくとも 1回の、 細胞培養液の希釈工程直後、 培地 の交換工程直後もしくは細胞培養用器材の交換工程直後の培養条件が、
(c ) 細胞培養液中の細胞の濃度が 2 X 105 c e 1 1 s 111 〜 1 X 108 c e 1 1 sZmLである、 もしくは
(d) 細胞培養液中の細胞数と細胞培養用器材における培養面積との比率が 1 X 105 c e 1 1 sZcm2 〜lx i 08 c e 1 1 s/cm2 である、
の条件を満たすことが例示される。
本発明の第 1の発明の製造方法において、 細胞傷害性リンパ球の誘導、 維持及 び拡大培養の少なくともいずれか 1つを、 フイブロネクチン、 そのフラグメント またはそれらの混合物の存在下、 培地を含む細胞培養用器材中で行なう場合、 特 に限定はないが、 例えば、 少なくとも 1回の、 細胞培養液の希釈工程、 培地の交 換工程もしくは細胞培養用器材の交換工程を包含し、 かつ少なくとも 1回の、 細 胞培養液の希釈工程直後、 培地の交換工程直後もしくは細胞培養用器材の交換ェ 程直後の培地中における血清および血漿の総含有濃度が培養開始時と同じか、 も しくは培養開始時よりも低減されていることが例示される。
本発明の第 1の発明において、 細胞傷害性リンパ球に外来遺伝子を導入するェ 程をさらに含む方法が例示される。 ここで外来遺伝子の導入としては、 レトロゥ ィルス、 アデノウイルス、 アデノ随伴ウィルスまたはシミアンウィルスを用いて 導入することが例示される。
本発明の第 2の発明は、 本発明の第 1の発明の方法により得られる細胞傷害性 リンパ球に関する。
本発明の第 3の発明は本発明の第 1の発明の方法により得られる細胞傷害性リ ンパ球を有効成分として含有する医薬に関する。
本発明の第 4の発明は、 フイブロネクチン、 そのフラグメントまたはそれらの 混合物を有効成分として含有し、 かっ血清および血漿の総含有濃度が 0容量%以 上 5容量%未満であることを特徴とする細胞傷害性リンパ球培養用培地に関する 本発明により、 安全性が高く、 患者への負担が軽減された細胞傷害性リンパ球 の製造方法が提供される。 図面の簡単な説明
第 1図は、 フイブロネクチンのドメイン構造を示す模式図である。 発明を実施するための最良の形態
本発明は、 細胞傷害性リンパ球の誘導、 維持又は拡大培養方法において、 フィ ンパ球を調製することにより、 培地中の血清や血漿の含有量を低減または除去し ても、 高い拡大培養率で充分な細胞傷害活性を有し、 I L一 2 Rの発現量が高く 、 さらに C D 8陽性細胞の比率が高い細胞傷害性リンパ球が得られることを見出 し、 完成するに至ったものである。
なお、 本明細書において細胞傷害性リンパ球の製造とは、 当該細胞の誘導 (活 性化) 、 維持、 拡大培養の各工程、 もしくはこれらを組み合わせた工程を包含す る操作を指す。 また、 本発明の細胞傷害性リンパ球の製造を、 細胞傷害性リンパ 球の培養とも称する。
以下、 本発明を具体的に説明する。
(1) 本発明に使用されるフイブロネクチン、 およびそのフラグメント 本明細書中に記載のフイブロネクチンおよびそのフラグメントは、 天然から得 られたもの、 または人為的に合成されたもののいずれでもよい。 フイブロネクチ ンおよびそのフラグメントは、 例えば、 ルオスラーティ E. ら 〔Ru o s 1 a h t i E. , e t a 1 · 、 ジャーナル ·ォブ ·バイオロジカル 'ケミスト リー (J. B i o l . Ch em. ) 、 第 256巻、 第 14号、 第 7277〜 7281頁 (1981) 〕 の開示に基づき、 天然起源の物質から実質的に純粋な 形態で製造することができる。 ここで、 本明細書に記載された実質的に純粋なフ ィブロネクチンまたはフイブロネクチンフラグメントとは、 これらが天然におい てフイブロネクチンと一緒に存在する他のタンパク質を本質的に含有していない ことを意味する。 上記のフイブロネクチンおよびそのフラグメントは、 それぞれ 単独で、 もしくは複数の種類のものを混合して本発明に使用することができる。 なお、 フイブロネクチンは多くのスプライシングバリアントの存在が知られて いるが、 本発明に使用されるフイブロネクチンとしては、 本発明の所望の効果を 発現するものであれば、 いずれのバリアントも使用することができる。 例えば、 血漿由来のフイブロネクチンの場合、 細胞結合ドメインの上流に存在する ED— Bと呼ばれる領域、 細胞結合ドメインとへパリン結合ドメインの間に存在する E D— Aと呼ばれる領域が欠失していることが知られているが、 このような血漿由 来のフイブロネクチンも本発明に使用することができる。
本発明に使用できるフイブロネクチンフラグメント、 ならびに該フラグメント の調製に関する有用な情報は、 キミヅカ F. ら 〔1: 11111 1111^ 3 F. , e t a 1. 、 ジャーナル ·ォブ ·バイオケミストリー ( J . B i'o c h em . ) 、 第 1 10巻、 第 284〜 291頁 (1991) 〕 、 コーンブリット A. R. ら 〔 0 1: 1113 1" 1 11 1; 1; A. R. , e t a l . 、 EMBO ジャ —ナル (EMBO J. ) 、 第 4巻、 第 7号、 1755〜 1759 ( 1985) 〕 、 およびセキグチ K. ら 〔S e k i g u c h i K. , e t a 1. 、 バ ィォケミストリー (B i o c h em i s t r y) 、 第 25巻、 第 17号、 493 6〜4941 ( 1986) 〕 等より得ることができる。 また、 フイブロネクチン のアミノ酸配列については、 G e n b a n k Ac c e s s i on No. N M— 002026 (NP_002017) に開示されている。
本発明において、 フイブロネクチンフラグメントとしては、 例えば、 I I I— 8 (配列表の配列番号 1で表されるアミノ酸配列) 、 I I I一 9 (配列表の配列 番号 2で表されるアミノ酸配列) 、 I I I一 10 (配列表の配列番号 3で表され るアミノ酸配列) 、 I I I一 1 1 (配列表の配列番号 4で表されるアミノ酸配列 ) 、 I I 1— 12 (配列表の配列番号 5で表されるアミノ酸配列) 、 I I 1— 1 3 (配列表の配列番号 6で表されるアミノ酸配列) 、 1 1 1— 14 (配列表の配 列番号 7で表されるアミノ酸配列) 、 および CS— 1 (配列表の配列番号 8で表 されるアミノ酸配列) のいずれかの領域を構成するアミノ酸配列を少なくとも 1 つ含んでなるポリペプチド (m) (第 1図参照) や、 前記いずれかのアミノ酸配 列において 1もしくは複数個のアミノ酸が置換、 欠失、 挿入もしくは付加したァ ミノ酸配列を少なくとも 1つ含んでなるポリペプチドであって、 前記ポリべプチ ド (m) と同等な機能を有するポリペプチド (n) が例示される。
また、 当該フラグメントとしては、 細胞接着活性および またはへパリン結合 活性を有するものが好適に使用できる。 細胞接着活性は、 本発明で使用されるフ ラグメント (その細胞結合ドメイン) と細胞との結合を公知の方法を使用してァ ッセィすることにより調べることができる。 例えば、 このような方法には、 ウイ リアムズ D. A. らの方法 〔Wi 1 1 i ams D. A. , e t a 1. 、 ネイチヤー (Na t u r e) 、 第 352巻、 第 438〜 441頁 (1991) 〕 が含まれる。 当該方法は、 培養プレートに固定化したフラグメントに対する細 胞の結合を測定する方法である。 また、 へパリン結合活性は、 本発明に使用され るフラグメント (そのへパリン結合ドメイン) とへパリンとの結合を公知の方法 を使用してアツセィすることにより調べることができる。 例えば、 上記のゥイリ アムズ D. A. らの方法において、 細胞に換えてへパリン、 例えば標識へパリ ンを使用することにより、 同様の方法でフラグメントとへパリンとの結合の評価 を行うことができる。
さらにフイブロネクチンのフラグメントとしては、 C— 274 (配列表の配列 番号 9で表されるアミノ酸配列) 、 H—27 1 (配列表の配列番号 10で表され るアミノ酸配列) 、 H— 296 (配列表の配列番号 1 1で表されるアミノ酸配列 ) 、 CH- 27 1 (配列表の配列番号 12で表されるアミノ酸配列) 、 CH—2 96 (配列表の配列番号 13で表されるアミノ酸配列) 、 C— CS 1 (配列表の 配列番号 14で表されるアミノ酸配列) 、 または CH_ 296 Na (配列表の配 列番号 25で表されるアミノ酸配列) より選択されるポリペプチドが例示される 。 なお、 CH— 296N aについては本願において初めて作製されたポリべプチ ドである。
上記の CH— 27 1、 CH_296、 CH- 296 N a, C_ 274、 C— C S 1の各フラグメントは V L A— 5に結合する活性を有する細胞結合ドメインを 有するポリペプチドである。 また、 C— CS 1、 H— 296、 CH— 296、 C H- 296 N aは V LA— 4に結合する活性を有する CS— 1を有するポリぺプ チドである。 さらに、 H— 271、 H— 296、 CH— 271、 CH— 296お よび CH— 296 N aはへパリン結合ドメィンを有するポリべプチドである。 な お、 CH_ 296 N aは血漿由来のフイブロネクチンにおける細胞結合ドメイン から C S_ 1までを含むポリペプチドである。 すなわち、 CH— 296Naは G e n b a n k Ac c e s s i on No. NM_002026 (NP— 00 201 7) に開示されているフイブロネクチンのアミノ酸配列の 1270番目の プロリンから 2016番目のスレオニンまでを含むポリペプチドより、 1631 番目のァスパラギンから 1720番目のスレオニンにわたる領域 (ED— A) が 欠失したポリペプチドである。
本発明においては、 上記の各ドメインが改変されたフラグメントも使用するこ とができる。 フイブロネクチンのへパリン結合ドメインは 3つの I I I型配列 ( 1 1 1— 1 2、 1 1 1— 13、 I I I— 14) によって構成されている。 前記 I I I型配列のうちの一つもしくは二つを欠失したへパリン結合ドメインを含むフ ラグメントも本発明に使用することが可能である。 例えば、 フイブロネクチンの 細胞結合部位 (VL A— 5結合領域、 P r o l 239〜S e r l 51 5) と一つ の I I I型配列とが結合したフラグメントである CHV— 89 (配列表の配列番 号 15で表されるアミノ酸配列) 、 CHV— 90 (配列表の配列番号 16で表さ れるアミノ酸配列) 、 CHV—92 (配列表の配列番号 17で表されるアミノ酸 配列) 、 あるいは二つの I I I型配列とが結合したフラグメントである CHV— 179 (配列表の配列番号 18で表されるアミノ酸配列) 、 CHV— 181 (配 列表の配列番号 19で表されるアミノ酸配列) が例示される。 CHV—89、 C HV— 90、 CHV- 92はそれぞれ I 1 1— 13、 1 1 1— 14、 I I I— 1 2を含むものであり、 CHV— 179は I I I一 13と I I 1— 14を、 CHV — 18 1は I I I— 12と I I I— 13をそれぞれ含んでいる。
また、 上記の各フラグメントにさらにアミノ酸を付加したフラグメントも本発 明に使用することができる。 当該フラグメントは、 例えば、 後述の製造例に記載 の H— 27 5 -Cy sの製造方法に準じて上記各フラグメントに所望のアミノ酸 を付加することにより製造可能である。 例えば、 H— 275— Cy s (配列表の 配列番号 20で表されるアミノ酸配列) は、 フイブロネクチンのへパリン結合ド メインを有し、 かつ C末端にシスティン残基を有するフラグメントである。
なお、 本発明に使用されるフラグメントとしては、 本発明の所望の効果が得ら れる限り、 上記に例示した天然のフイブロネクチンのアミノ酸配列の少なくとも 一部を含むフラグメントと同等な機能を有する、 当該フラグメントを構成するポ リペプチドのアミノ酸配列に 1もしくは複数個のアミノ酸の置換、 欠失、 挿入も しくは付加を有するアミノ酸配列を有するポリペプチドからなるものであっても よい。
アミノ酸の置換等は、 本来のポリペプチドの機能が維持され得る範囲内で該ポ リペプチドの物理化学的性状等を変化させ得る程度のものであるのが好ましい。 例えば、 アミノ酸の置換等は、 本来のポリペプチドの持つ性質 (例えば、 疎水性 、 親水性、 電荷、 P K等) を実質的に変化させない範囲の保存的なものが好まし い。 例えば、 アミノ酸の置換は、 1 . グリシン、 ァラニン; 2 . パリン、 イソ口 イシン、 ロイシン; 3 . ァスパラギン酸、 グルタミン酸、 ァスパラギン、 グルタ ミン; 4 . セリン、 スレオニン; 5 . リジン、 アルギニン; 6 . フエ二ルァラ二 ン、 チロシンの各グループ内での置換であり、 アミノ酸の欠失、 付加、 挿入は、 ポリペプチドにおけるそれらの対象部位周辺の性質に類似した性質を有するアミ ノ酸の、 対象部位周辺の性質を実質的に変化させない範囲での欠失、 付加、 挿入 が好ましい。
アミノ酸の置換等は種間や個体差に起因して天然に生ずるものであってもよく 、 また、 人工的に誘発されたものであってもよい。 人工的な誘発は公知の方法に より行えばよく、 特に限定はないが、 例えば、 公知の手法により、 天然のフイブ ロネクチン由来の前記領域や所定のフラグメントをコードする核酸において 1も しくは複数個の塩基が置換、 欠失、 付加もしくは挿入された所定の核酸を作製し 、 それを使用して、 天然のフイブロネクチン由来の前記領域や所定のフラグメン 卜と同等な機能を有する、 当該フラグメント等を構成するポリペプチドのァミノ 酸配列に置換等を有するアミノ酸配列を含むポリペプチドを製造することができ る。
また、 本明細書において 「同等な機能を有する」 とは、 比較対照であるポリべ プチドが、 天然由来のフイブロネクチンフラグメントの有する、 ( 1 ) 細胞傷害 性リンパ球の細胞傷害活性の増強又は維持機能、 ( i i ) I L一 2 Rの発現量の 増強機能、 ( i i i ) C D 8陽性細胞の比率向上機能、 または ( i v ) 細胞傷害 性リンパ球の拡大培養率の向上機能の少なくともいずれかの機能を有することを いう。 前記機能は後述の実施例に記載の方法に準じて適宜確認することができる 。 また、 アミノ酸の置換等を有するポリペプチドからなるフラグメントとしては 、 細胞接着活性およびノまたはへパリン結合活性を有するものが好適である。 細 胞接着活性およびへパリン結合活性は、 それらの前記活性測定方法に準じて評価 することができる。
アミノ酸の置換等を有するポリペプチドからなるフラグメントとして、 例えば
、 2つの異なるドメイン間にリンカ一として 1以上のァミノ酸が挿入されたフラ グメントも本発明に使用することができる。
なお、 フイブロネクチンについても、 上記のフラグメントと同様、 そのポリべ プチドのアミノ酸配列に 1もしくは複数個のアミノ酸の置換、 欠失、 挿入もしく は付加を有するアミノ酸配列を有するポリペプチドであって、 少なくとも前記 ( i ) 〜 (i v) のいずれかの機能を有するポリペプチドを、 本発明において使用 することができる。
本明細書中に記載のフイブロネクチンフラグメントは、 例えば、 米国特許第 5 , 198, 423号明細書の記載に基づいて遺伝子組換え体より製造することも できる。 例えば、 上記の H— 271 (配列番号 10) 、 H— 296 (配列番号 1 1) 、 CH- 271 (配列番号 12) 、 CH- 296 (配列番号 13 ) の各フラ グメン卜ならびにこれらを取得する方法は当該特許明細書に詳細に記載されてい る。 また、 CH_ 296 Na (配列番号 25) とその製造方法については後述の (3) CH— 296 Naについて、 および実施例に記載されている。 また、 上記 の C— 274 (配列番号 9) フラグメントは米国特許第 5, 102, 988号明 細書に記載された方法により得ることができる。 さらに、 C— CS 1 (配列番号 14) フラグメントは日本特許第 3 104178号明細書に記載された方法によ り得ることができる。 上記〇?1¥— 89 (配列番号 1 5) 、 CHV- 90 (配列 番号 16) 、 CHV- 179 (配列番号 18) の各フラグメントは、 日本特許第 2729712号明細書に記載された方法により得ることができる。 また、 CH V— 18 1 (配列番号 19) フラグメントは国際公開第 97 183 18号パン フレットに記載された方法に準じて得ることができる。 CHV— 92 (配列番号 1 7) フラグメントは、 日本特許第 2729712号明細書および国際公開第 9 7/18318号パンフレツトを参照し、 それらの文献に記載されたプラスミド に基づいて定型的にプラスミドを構築し、 該プラスミドを用いて遺伝子工学的に 取得することができる。
これらのフラグメントまたはこれらフラグメントから定型的に誘導できるフラ グメントは、 〒 305— 8566日本国茨城県つくば巿東 1丁目 1番地 1中央第 6 独立行政法人 産業技術総合研究所 特許生物寄託センターに下記受託番号 のもとで寄託された微生物を用いて製造する、 あるいは各微生物の保持するブラ スミドを公知の方法により改変することにより製造することができる;
FERM BP- 2264 (H— 271をコードするプラスミドを保有する大腸 菌;寄託日 1989年 1月 30日) 、
FERM BP— 2800 (CH— 296をコードするプラスミドを保有する大 腸菌;寄託日 1989年 5月 12日) 、
FERM BP- 2799 (CH_ 271をコードするプラスミドを保有する大 腸菌;寄託日 1989年 5月 12日) 、
FERM BP— 7420 (H— 296をコードするプラスミドを保有する大腸 菌;寄託日 1989年 5月 12日) 、
FERM BP— 191 5 (C— 274をコードするプラスミドを保有する大腸 菌;寄託日 1988年 6月 17日) 、
FERM BP— 5723 (C— C S 1をコードするプラスミドを保有する大腸 菌;寄託日 1990年 3月 5日) 、.
FERM BP— 10073 (CH— 296 N aをコードするプラスミド;寄託 曰 2004年 7月 23曰) FERM P— 12182 (CHV— 89をコードするプラスミドを保有する大 腸菌;寄託日 1 991年 4月 8日) 、
FERM P- 1 2183 (C HV— 179をコードするプラスミドを保有する 大腸菌;寄託日 1991年 4月 8日) 。
フイブロネクチンは巨大な糖タンパク質であるため、 天然起源のタンパク質を 調製して使用することは産業上および医薬品製造上、 必ずしも容易ではない。 ま た、 フイブロネクチンは多機能タンパク質であることから、 その使用の状況によ つては、 本発明の方法に効果を示す領域とは異なる領域に起因する不都合が起こ ることも考えられる。 これらのことから、 本発明においては、 入手、 取り扱いの 容易さ、 安全面の観点から、 好適にはフイブロネクチンフラグメント、 さらに好 適には前記のようにして得られる組換えフイブロネクチンフラグメントを使用す ることができる。 さらに、 後述するリンパ球の拡大培養率の向上、 拡大培養され たリンパ球における I L— 2 Rの発現量の上昇、 および拡大培養されたリンパ球 集団中の C D 8陽性細胞の比率の向上、 細胞傷害活性の上昇等の効果を示すこと ができるフイブロネクチンフラグメントが特に好適に使用できる。 また、 本発明 に使用されるフイブロネクチンフラグメントの分子量としては、 特に限定はない が、 好適には l〜200 kD、 より好適には 5〜 190 kD、 さらに好適には 1 0〜180 kDである。 当該分子量は、 例えば、 SDS—ポリアクリルアミドゲ ル電気泳動により測定することができる。
なお、 本発明のフイブロネクチンフラグメントを構成するポリペプチドのアミ ノ酸配列において、 天然由来のフイブロネクチンフラグメントを構成するポリべ プチドのアミノ酸配列以外のアミノ酸配列部分は、 本発明の所望の効果の発現を 阻害しない限り任意であり、 特に限定されるものではない。
(2) 本発明の細胞傷害性リンパ球の製造方法
以下、 本発明の細胞傷害性リンパ球の製造方法について具体的に説明する。 本 発明の方法は、 培地中における血清及び血漿の総含有濃度が 0容量%以上 5容量 %未満である培地を用いて、 フイブロネクチン、 そのフラグメントまたはそれら の混合物の存在下に細胞傷害性リンパ球の誘導、 維持および拡大培養の少なくと もいずれか 1つを行なう細胞傷害性リンパ球の製造方法である。
本明細書において細胞傷害性リンパ球とは細胞傷害性リンパ球を含有する細胞 群を意味する。 なお、 狭義には前記細胞群に含有されている細胞傷害性リンパ球 のみを示すことがある。 また、 本発明において細胞傷害性リンパ球の製造とは、 本発明の細胞傷害性リンパ球になり得る前駆細胞からの細胞傷害活性を有するリ ンパ球への誘導、 細胞傷害性リンパ球の維持、 細胞傷害性リンパ球および また は前駆細胞を用いた細胞傷害性リンパ球の拡大培養のいずれをも包含するもので ある。 本発明の細胞傷害性リンパ球の製造方法においては、 該方法に供する細胞 の種類や、 培養の条件等を適宜調整することにより、 細胞傷害性リンパ球の誘導 、 維持または拡大培養が行なわれることになる。
本発明の細胞傷害性リンパ球としては、 特に限定するものではないが、 例えば 細胞傷害活性を有する、 リンフォカイン活性化キラ一細胞 (L A K細胞) 、 細胞 傷害性 T細胞 (C T L ) 、 腫瘍浸潤リンパ球 (T I L ) 、 N K細胞等が挙げられ る。
本発明において、 細胞傷害性リンパ球になり得る、 すなわち、 該リンパ球への 分化能を有する前駆細胞としては、 末梢血単核球 (P B M C ) 、 N K細胞、 ナイ —ブ細胞、 メモリー細胞、 造血幹細胞、 臍帯血単核球等が例示される。 また、 血 球系細胞であれば本発明において前駆細胞として使用できる。 これらの細胞は生 体から採取されたものをそのままもしくは凍結保存したもののいずれも使用する ことができる。 なお、 本発明の細胞傷害性リンパ球の製造方法では、 前記細胞を 含有する材料、 例えば、 末梢血液、 臍帯血等の血液や、 血液から赤血球や血漿等 の成分を除去したもの、 骨髄液等を使用することができる。
本発明の細胞傷害性リンパ球の製造方法は、 フイブロネクチン、 そのフラグメ ントまたはそれらの混合物から選択される有効成分の存在下に細胞傷害性リンパ 球を製造することを 1つの大きな特徴とする。 なお、 本発明の細胞傷害性リンパ 球の製造方法は、 細胞傷害性リンパ球の培養の全期間、 もしくは任意の一部の期 間において行われる。 すなわち、 細胞傷害性リンパ球の製造工程の一部に前記ェ 程を含むものであれば本発明に包含される。
さらに、 従来の細胞傷害性リンパ球の拡大培養方法では、 培地中に 5〜2 0容 量%の血清 ·血漿の添加が必要であつたのに対し、 本発明の細胞傷害性リンパ球 の製造方法は、 これら血清および血漿の培地中の総含有濃度を 0容量%以上 5容 量%未満とすることを特徴とする。 血清および血漿の培地中の総含有濃度は、 好 適には 0容量%以上 4容量%以下、 特に好適には 0容量%以上 3容量%以下とす ることができる。 本発明の特に好適な態様においては、 培地中に血清 ·血漿を全 く添加することなく、 十分な細胞傷害性リンパ球の製造を行うことができ、 安全 面や患者への負担を軽減させる点で非常に有用な方法である。 また、 本発明にお いて、 使用する血清 '血漿の使用量をさらに低減させたい場合は、 培養途中にお いて血清 ·血漿の使用量を段階的に低減させることができる。 すなわち、 培養開 始時の血清 ·血漿濃度に対して、 後述する細胞培養液の希釈、 培地交換もしくは 細胞培養用器材の交換の際に使用される新たな培地中の血清 ·血漿濃度を低減さ せるもしくは添加しないことで、 血清 ·血漿の使用量を通常より低減させること ができる。 よって、 本発明によれば、 少なくとも 1回の、 細胞培養液の希釈工程 、 培地の交換工程もしくは細胞培養用器材の交換工程を包含し、 かつ少なくとも 1回の、 細胞培養液の希釈工程直後、 培地の交換工程直後もしくは細胞培養用器 材の交換工程直後の培地中における血清および血漿の総含有濃度が培養開始時と 同じか、 もしくは培養開始時よりも低減されている細胞傷害性リンパ球の製造方 法が提供される。
なお、 血清又は血漿の由来としては、 自己 (使用する細胞傷害性リンパ球の前 駆細胞と由来が同じであることを意味する) もしくは非自己 (使用する細胞傷害 性リンパ球の前駆細胞と由来が異なることを意味する) のいずれでも良いが、 好 適には安全性の観点から自己由来のものが使用できる。
本発明の方法において、 細胞傷害性リンパ球の製造、 すなわち、 細胞傷害性リ ンパ球の誘導、 維持および/または拡大培養は、 通常、 本発明の前記有効成分の 存在下に、 所定の成分を含む培地中で行なわれる。
例えば、 本発明の方法において、 細胞傷害性リンパ球の誘導もしくは拡大培養 を意図する場合、 本発明において使用される培養開始時の細胞 (細胞傷害性リン パ球および Zまたは前駆細胞) 数としては、 特に限定はないが、 例えば I c e 1 1 し〜 1 X 108 e e l I s /mL, 好適には 1 c e 1 1 /mL〜 5 X 10 7 c e 1 1 s /mL, さらに好適には 1 c e 1 1 mL〜 2 X 107 e e l I s ZmLが例示される。 また、 培養条件に特に限定はなく、 通常の細胞培養に使用 される条件を使用することができる。 例えば、 37 、 5%C〇2等の条件で培 養することができる。 また、 適当な時間間隔で細胞培養液を新鮮な培地を加えて 希釈するか、 培地を交換するか、 もしくは細胞培養用器材を交換することができ る。
本発明の細胞傷害性リンパ球の製造方法において使用される培地には血清およ び血漿の総含有濃度を除いては特に限定はなく、 細胞傷害性リンパ球、 その前駆 細胞の維持、 生育に必要な成分を混合して作製された公知の培地を使用すること ができ、 たとえば市販の培地を適宜選択して使用することができる。 これらの培 地はその本来の構成成分以外に適当なタンパク質、 サイト力イン類、 その他の成 分を含んでいてもよい。 好適には、 I L一 2を含有する培地が本発明に使用され る。 I L一 2の培地中の濃度としては、 特に限定はないが、 例えば、 好適には 0 . 0 1〜: L X 105 UZmL、 より好適には 0. 1〜: L X 104 UZmLである 本発明の細胞傷害性リンパ球の製造方法において使用される細胞培養用器材と しては、 特に限定はないが、 例えば、 シャーレ、 フラスコ、 バッグ、 大型培養槽 、 バイオリアクター等を使用することができる。 なお、 バッグとしては、 下記実 施例 3 4〜3 8および 4 5〜5 2に記載のとおり、 細胞培養用 C〇2 ガス透過性 バッグを使用することができる。 また、 工業的に大量のリンパ球を製造する場合 には、 大型培養槽を使用することができる。 また、 培養は開放系、 閉鎖系のいず れのものも使用することができるが、 好適には得られるリンパ球の安全性の観点 から閉鎖系で培養を行うことが好ましい。
また、 抗 C D 3抗体をさらに含有する培地中で細胞傷害性リンパ球になり得る 前駆細胞を培養することもできる。 抗 C D 3抗体の培地中の濃度としては、 特に 限定はないが、 例えば 0 . 0 0 1〜1 0 0 g Zm L、 特に 0 . 0 1〜1 0 0 g /m Lが好適である。 抗 C D 3抗体はリンパ球上のレセプ夕一を活性化する目 的で添加することができる。 また、 この他、 レクチン等のリンパ球刺激因子を添 加することもできる。 当該成分の培地中の濃度は、 所望の効果が得られれば特に 限定されるものではない。
なお、 本発明の有効成分を含め、 上記成分は培地中に溶解して共存させる他、 適切な固相、 例えばシャーレ、 フラスコ、 バッグ等の細胞培養用器材 (開放系の もの、 および閉鎖系のもののいずれをも含む) 、 またはビーズ、 メンブレン、 ス ライドガラス等の細胞培養用担体に固定化して使用してもよい。 なお、 ビーズへ の固定化としては、 下記実施例 6 1および 6 2に記載のとおりに行うことができ 、 製造されたビーズは下記実施例 6 3および 6 4に記載のとおりに使用すること ができる。 それらの固相の材質は細胞培養に使用可能なものであれば特に限定さ れるものではない。 該成分を、 例えば、 前記器材に固定化する場合、 培地を該器 材に入れた際に、 該成分を培地中に溶解して用いる場合の所望の濃度と同様の割 合となるように、 器材に入れる培地量に対して各成分の一定量を固定化するのが 好適であるが、 当該成分の固定化量は所望の効果が得られれば特に限定されるも のではない。 前記担体は、 細胞培養時に細胞培養用器材中の培養液に浸漬して使 用される。 前記成分を前記担体に固定化する場合、 該担体を培地に入れた際に、 該成分を培地中に溶解して用いる場合の所望の濃度と同様の割合となるように、 器材に入れる培地量に対して各成分の一定量を固定化するのが好適であるが、 当 該成分の固定化量は所望の効果が得られれば特に限定されるものではない。 例えば、 フイブロネクチンのフラグメントの固定化は、 国際公開第 9 7 Z 1 8 3 1 8号パンフレツト、 ならびに国際公開第 0 0ノ0 9 1 6 8号パンフレットに 記載の方法により実施することができる。
前記の種々の成分や、 本発明の有効成分を固相に固定化しておけば、 本発明の 方法により細胞傷害性リンパ球を得た後、 該リンパ球と固相とを分離するのみで 、 有効成分等と該リンパ球とを容易に分離することができ、 該リンパ球への有効 成分等の混入を防ぐことができる。
さらに、 国際公開第 0 2 / 1 4 4 8 1号パンフレットに記載された、 抗原特異 的な細胞傷害活性を有する細胞傷害性 T細胞の誘導に有効な酸性多糖、 酸性オリ ゴ糖、 酸性単糖およびそれらの塩からなる群より選択される化合物や、 下記 (A ) 〜 (D) から選択される物質を前記成分と共に用いてもよい。
(A) C D 4 4に結合活性を有する物質
( B ) C D 4 4リガンドが C D 4 4に結合することにより発せられるシグナルを 制御し得る物質
( C ) 成長因子の成長因子レセプターへの結合を阻害し得る物質
(D) 成長因子が成長因子レセプ夕一に結合することにより発せられるシグナル を制御し得る物質
前記 C D 4 4に結合活性を有する物質としては、 例えば C D 4 4リガンドおよ びノまたは抗 C D 4 4抗体が例示される。 C D 4 4リガンドが C D 4 4に結合す ることにより発せられるシグナルを制御し得る物質としては、 例えば各種リン酸 化酵素および脱リン酸化酵素の阻害剤又は活性化剤が挙げられる。 成長因子の成 長因子レセプ夕一への結合を阻害し得る物質としては、 例えば成長因子に結合活 性を有し、 成長因子と複合体を形成することにより成長因子が成長因子レセプ夕 一に結合するのを阻害する物質、 もしくは成長因子レセプ夕一に結合活性を有し 、 成長因子が成長因子レセプ夕一に結合するのを阻害する物質が挙げられる。 さ らに、 成長因子が成長因子レセプターに結合することにより発せられるシグナル を制御し得る物質としては、 例えば各種リン酸化酵素および脱リン酸化酵素の阻 害剤又は活性化剤が挙げられる。 これらの成分の培地中の濃度は、 所望の効果が 得られれば特に限定されるものではない。 また、 これらの成分は培地中に溶解し て共存させる他、 前記のような適切な固相に固定化して使用してもよい。
なお、 上記の各種物質は単独で、 もしくは 2種以上混合して用いることができ る。
本発明において前記有効成分の存在下とは、 細胞傷害性リンパ球の誘導、 維持 または拡大培養を行なう際に、 前記有効成分がその機能を発揮し得る状態で存在 することをいい、 その存在状態は特に限定されるものではない。 例えば、 有効成 分を使用する培地に溶解させる場合、 培養を行う培地中における、 本発明の有効 成分の含有量は所望の効果が得られれば特に限定するものではないが、 例えば、 好ましくは 0 . 0 0 0 1〜: L 0 0 0 0 g Zm L、 より好ましくは 0 . 0 0 1〜 1 0 0 0 0 ^ g /m L , さらに好ましくは 0 . 0 0 5〜 5 0 0 0 g Zm L、 特 に好ましくは 0 . 0 1〜: L 0 0 0 g Zm Lである。
本発明の製造方法によつて得られた細胞傷害性リンパ球について I L一 2 Rの 発現量を測定すると、 フイブロネクチン、 そのフラグメントまたはそれらの混合 物の非存在下に誘導、 維持および拡大培養の少なくともいずれか 1つを行なった 細胞傷害性リンパ球に比較して有意な I L— 2 R発現量の増加が認められる。 こ こで、 I L— 2 R発現量は公知の方法、 例えば、 抗 I L一 2 R抗体を使用して測 定することができる。
上記のように、 本発明の方法により得られた細胞傷害性リンパ球は I L一 2 R の発現量が増加している。 I L— 2 Rは活性化 T細胞表面に発現する活性化マ一 カーであり、 この分子の発現に伴い、 サイト力イン産生、 細胞傷害活性、 増殖活 性等が活性化される。 よって、 本発明の方法により得られる細胞傷害性リンパ球 は高い機能を有する細胞群である。
また、 本発明の方法により得られる細胞傷害性リンパ球は、 1 ー 21 の発現 量が増加していることから、 培地中に添加された I L— 2、 あるいは細胞傷害性 リンパ球の前駆細胞、 リンパ球自体もしくは共存するその他の細胞が産生した I L— 2による刺激に対する感受性が向上している。 このため、 I L一 2の少ない 環境下 (例えば体内等) でも自ら活性化することができる。
さらに、 本発明の方法により得られた細胞傷害性リンパ球では、 フイブロネク チン、 そのフラグメントまたはそれらの混合物の非存在下に誘導、 維持および拡 大培養の少なくともいずれか 1つを行なったものに比べて CD 8マーカーを有す る (CD&陽性) 細胞の存在する比率が高い。 このことは、 例えば、 1. CD 8 陽性細胞はインターフェロン _ァ等のサイトカインを産生して、 免疫賦活を引き 起こし、 ヘルパー T細胞バランスを Th 1系にする、 2. CD 8陽性細胞は細胞 性免疫担当細胞であり、 ウイルスや腫瘍細胞等の異物を効率よく排除することが できる、 3. CD 8陽性細胞を得る場合は、 従来はマグネットビーズゃフローサ ィトメ一夕一で CD 8陽性細胞を精製していたが、 本発明の方法では培養しなが ら CD 8陽性細胞をエンリッチにすることができる、 4. CD 8陽性細胞比が多 いことから、 CTLを誘導する際の前駆細胞としての使用に適している、 5. C D 8陽性細胞比の少ない細胞集団からでも、 CD 8陽性細胞比率を高めながら培 養することができる、 等の利点がある。 よって、 本発明の方法は細胞傷害性リン パ球の調製において極めて有用である。
なお、 本発明の方法により得られた細胞傷害性リンパ球における CD 8陽性細 胞の比率は、 特に限定するものではないが、 例えば抗 CD 8抗体を使用して測定 することができる。
また、 本発明の方法により調製された細胞傷害性リンパ球は培養後の細胞を長 期間にわたって維持、 あるいはこれを増殖させても、 従来観察されたような高い 細胞傷害活性が維持されているという性質を有している。 すなわち、 該細胞傷害 性リンパ球は、 フイブロネクチン、 そのフラグメントまたはそれらの混合物の非 存在下に誘導、 維持および拡大培養の少なくともいずれか 1つを行なったものと 比べて、 細胞傷害活性が高く維持される。 従って、 培養された細胞傷害性リンパ 球をクローン化することにより、 安定した細胞傷害活性を有するリンパ球として 維持することもできる。 また、 誘導された細胞傷害性リンパ球に抗原、 各種サイ トカイン、 抗 C D 3抗体刺激を与えることにより増殖させ、 拡大培養することが できる。 この細胞傷害性リンパ球の維持、 拡大培養には、 特に限定はなく、 公知 の方法を用いることができる。
上記の細胞傷害性リンパ球の維持とは、 細胞傷害性リンパ球を細胞傷害活性を 保ったままで維持することをいう。 その際の培養条件に特に限定はなく、 通常の 細胞培養に使用される条件を適用することができる。 例えば、 3 7 、 5 % C O 2等の条件で培養することができる。 また、 適当な時間間隔で培地を新鮮なもの に交換することができる。 使用される培地や、 同時に使用されるその他の成分等 は前記と同様である。
本発明の方法における細胞傷害性リンパ球の維持および拡大培養は、 本発明の 有効成分、 すなわちフイブロネクチン、 そのフラグメントまたはそれらの混合物 の存在下、 培地中における血清及び血漿の総含有濃度が 0容量%以上 5容量%未 満である培地中で細胞傷害性リンパ球をそれぞれ継続培養および拡大培養するこ とを 1つの大きな特徴とする。 拡大培養によれば、 細胞傷害性リンパ球の有する 細胞傷害活性を維持させた状態でその細胞数を増加させることができる。 すなわ ち、 本発明の方法は、 1つの態様として、 細胞傷害性リンパ球の拡大培養方法を 提供する。
本発明の方法により得られる細胞傷害性リンパ球は所望の標的細胞を認識する 能力を有しており、 例えば標的となる細胞を、 その細胞傷害活性により破壊する 。 この細胞傷害性リンパ球の細胞傷害活性は公知の方法により評価できる。 例え ば、 放射性物質、 蛍光物質等で標識した標的細胞に対する細胞傷害性リンパ球の 細胞傷害活性を、 細胞傷害性リンパ球により破壊された標的細胞に由来する放射 活性や蛍光強度を測定することによって評価できる。 また、 細胞傷害性リンパ球 や標的細胞より特異的に遊離される GM_CSF、 I FN_ァ等のサイトカイン 量を測定することにより検出することもできる。 その他蛍光色素等によって標識 された抗原べプチドー MH C複合体の使用によって直接確認することもできる。 この場合、 例えば細胞傷害性リンパ球を細胞傷害性リンパ球特異性抗体とカップ リングさせた第 1蛍光マーカ一と接触させた後に第 2蛍光マーカ一と力ップリン グさせた抗原ペプチド一 MHC複合体を接触させ、 そして二重標識細胞の存在を FACS (fluorescence-activated cell sorting) 分析することにより細胞傷 害性リンパ球の細胞傷害活性を評価することができる。
さらに、 本発明の細胞傷害性リンパ球の製造方法の特徴として、 低細胞数から 培養を開始することが可能である。 養子免疫療法を行うためには大量のリンパ球 が必要となるが、 患者から大量のリンパ球を取得することは困難である。 また、 通常の細胞傷害性リンパ球の拡大培養では、 使用する細胞数に応じた適切な培養 面積の細胞培養用器材の選択や、 適切な培地量での培養が必要となる。 すなわち 、 通常は細胞培養用器材における培養面積 〔すなわち、 培地に接触している器材 表面部分の面積 (cm2 ) 〕 に対する細胞量 (個数) は l x i 06 c e l l s/ cm2以上、 細胞濃度は 1 X 106 c e l l s ZmL以上の高密度で培養が開始 され、 これ以下の細胞量条件では、 拡大培養率 〔拡大培養前の細胞数に対する拡 大培養後の細胞数の比 (拡大培養後の細胞数 Z拡大培養前の細胞数) 〕 が非常に 低くなり、 大量の細胞傷害性リンパ球を得るまでに長期の培養期間を要する。 よ つて、 一般的には、 例えば、 小さな細胞培養用器材を用いて培養を開始した後、 段階的に大きなスケールの細胞培養用器材を使用する、 もしくは細胞培養用器材 の数を増やして希釈操作を繰り返す等の方法により、 大量のリンパ球を製造する のが現状である。 このように、 通常の細胞傷害性リンパ球の拡大培養では、 複数 の培養系を必要とする。
本発明の方法により、 少量の細胞量より開始された場合でも細胞培養用器材の 大きさに関わらず、 高い拡大培養率で培養を行うことができる。 よって、 従来の ような面倒な細胞培養用器材や細胞培養液の交換、 細胞培養液の希釈操作は不要 となる。 すなわち、 本発明の方法によれば、 1つの細胞培養用器材を用いた培養 操作により、 換言すれば、 1つの培養系により、 充分な細胞傷害性リンパ球の拡 大培養を行なうことができる。 よって、 本発明の方法により、 細胞培養液を希釈 する工程を要しない細胞傷害性リンパ球の製造方法を実現することができる。 特 に、 本発明の方法で LAK細胞を拡大培養する場合、 大容量の細胞培養用器材に LAK細胞となり得る前駆細胞と培地を添加し、 それ以降は I L一 2を添加する のみで LAK細胞の拡大培養を行うことが可能である。 簡便な操作で大量の L A K細胞を得ることができる点において、 本発明は非常に有用である。 この際、 使 用する本発明の有効成分としては、 より高い拡大培養率を得るという観点から、 好適にはフイブロネクチンフラグメントが使用できる。 このように、 本発明の方 法によれば、 短時間に必要量の細胞傷害性リンパ球を得ることができる。
例えば、 細胞傷害性リンパ球の誘導、 維持および拡大培養の少なくともいずれ か 1つを、 本発明の有効成分の存在下、 培地を含む細胞培養用器材中で低細胞数 から開始する場合、 培養開始時において、 下記 (a) および (b) から選択され る条件を満たす低濃度もしくは低密度の細胞量を使用して行うことができる。
(a) 使用する細胞培養用器材における培養面積に対する細胞量の比率が、 好適 には 1 e e l ΐ Ζοιτ^ δ Χ Ι Ο5 e e l 1 s /cm2 , より好適には 10 c e 1 1 じ!^^ 〜:! ;! 。 5 c e 1 1 s /cm2 , 特に好適には 1 X 102 c e 1 1 sZcm2 〜5 X 104 c e 1 1 s /cm2である。
(b) 培地中の細胞の濃度が、 好適には 1 c e l l /mL〜5 X 105 c e 1 1 s ZmL、 より好適には 10 c e 1 I s ZmL 1 X 105 e e l I s /mL、 特に好適には 1 X 102 e e l I s ZmL 5 X 104 c e 1 1 sノ mLである なお、 ここで細胞量とは、 細胞傷害性リンパ球および または前駆細胞の個数 をいう。
また、 本発明の方法においては、 細胞培養液の希釈操作の工程を要しない、 細 胞傷害性リンパ球の誘導、 維持および拡大培養の少なくともいずれか 1つを 1つ の培養系で行なう方法が例示される。
さらに本発明の細胞傷害性リンパ球の製造方法の特徴として、 高細胞数での培 養を行うことも可能となる。 すなわち、 細胞傷害性リンパ球の製造を培地を含む 細胞培養用器材中で行なう方法であって、 培養途中に、 少なくとも 1回の、 細胞 培養液を新鮮な培地で希釈する工程、 培地を交換する工程、 もしくは細胞培養用 器材を交換する工程を包含する場合、 これらの工程直後の培養条件を高濃度 (例 えば、 細胞培養液中の細胞の濃度が 2 X 1 05 e e l I s mL〜 1 X 1 08 c e l l s /mL, 好適には 2 X 1 05 c e 1 1 s mL〜 5 X 1 07 e e l I s mL、 さらに好適には 2 X 1 05 e e l I sノ!^し〜? X 1 07 c e 1 1 s / mL) もしくは高密度 (例えば、 細胞培養液中の細胞数と細胞培養用器材におけ る培養面積との比率が 1 X 1 05 e e l l s /cm2〜: 1 X 1 08 e e l 1 s / c m2 、 好適には 1 X 1 05 c e 1 1 sZcm2 〜5 X 1 07 c e 1 1 s / cm 2 、 さらに好適には 1 X 1 05 e e l l sZcm2 〜2 X 1 07 e e l \ s / c m2 ) に設定した場合においても、 本発明の方法は従来法と比較して、 良好な拡 大培養率を実現することができる。 通常の細胞傷害性リンパ球の拡大培養におい ては、 培養開始時は細胞数を比較的高濃度もしくは高密度に設定されることが多 いが、 細胞の増殖率が上がってくると細胞培養液中の細胞濃度や細胞培養用器材 中の細胞密度が低く設定される。 本発明の高細胞数での培養とは、 このような培 養途中における細胞濃度や細胞密度の設定時において細胞培養液中の細胞の濃度 が、 2 X 1 05 c e 1 1 s /mL〜 1 X 1 08 e e l I s /mL, もしくは細胞 培養液中の細胞数と細胞培養用器材における培養面積との比率が 1 X 1 05 c e 1 l sZcm2 〜l X 108 e e l 1 s/cm2 という高濃度又は高密度な条件 に設定される細胞傷害性リンパ球の製造をいう。 なお、 ここでいう細胞培養液を 新鮮な培地で希釈する工程直後、 培地を交換する工程直後、 もしくは細胞培養用 器材を交換する工程直後とは、 培養開始時を包含するものではない。
このような高細胞数での培養が実施できる利点としては、 使用する培地、 血清 •血漿等の培地添加物、 細胞培養用器材、 労力および培養スペースの削減が挙げ られる。 養子免疫療法では大量のリンパ球を必要とするため、 使用される培地や 細胞培養用器材が非常に多く必要となり、 それに伴つて大規模な培養スペースや 多くの人員も必要となる。 これらは養子免疫療法が普及する上で大きな課題とな るものである。 従って、 本発明の方法はこのような課題を解決することができる ことから施設の設営、 運営上、 非常に有意義な発明である。
前述したとおり、 本発明の方法は、 低濃度もしくは低密度での細胞培養、 高濃 度もしくは高密度での細胞培養のいずれにも適用可能な方法であることから、 本 発明の方法を用いることにより、 培養状況に応じてさまざまな細胞濃度もしくは 細胞密度での細胞傷害性リンパ球の製造が可能となる。
また、 本発明の方法においては、 適切なフィーダ細胞と共培養することもでき る。 細胞傷害性リンパ球をフィーダ細胞と共培養する場合には、 細胞傷害性リン パ球、 フィーダ細胞の両者の維持、 生育に適した培地であることが望ましい。 当 該培地としては、 市販の培地が使用できる。
本発明の方法に使用されるフィーダ細胞は、 抗 CD 3抗体と協同して細胞傷害 性リンパ球を刺激し、 T細胞レセプターを活性化するものであれば特に限定はな い。 本発明には、 例えば、 P BMCやェプスタイン—バールウィルスによって形 質転換された B細胞 (EBV— B細胞) が使用される。 通常、 フィーダ細胞は放 射線照射のような手段で増殖能を奪ったうえで使用される。 なお、 フィーダ細胞 の培地中における含有量は公知の方法に従って決定すればよく、 例えば、 1 X 1 05 c e 1 1 s mL〜 1 X 107 e e l I s /mLが好適である。 特に好ましい態様においては、 フィーダ細胞として、 非ウィルス感染細胞、 例 えば、 E B V— B細胞以外のものが使用される。 これにより、 拡大培養された細 胞傷害性リンパ球中に E B V一 B細胞が混在する可能性を排除することができ、 養子免疫療法のような細胞傷害性リンパ球を利用した医療の安全性を高めること が可能となる。
また、 本発明の方法においては、 適切な抗原提示細胞と共培養することもでき る。 抗原提示細胞は、 抗原提示能を有する細胞に抗原ペプチドを付加し、 その表 面に抗原ペプチドを提示させることにより調製することができる 〔例えば、 ベン ドナレク M. A. ら (B e n d n a r e k M. A. , e t a 1 . ) 、 J . I mm u n o 1 . 、 第 1 4 7巻、 第 1 2号、 第 4 0 4 7〜4 0 5 3頁 ( 1 9 9 1 ) を参照〕 。 また、 抗原提示能を有する細胞が抗原を処理 (p r o c e s s ) する能力を有している場合には、 当該細胞に抗原を負荷することにより、 抗原が細胞内に取り込まれてプロセッシングを受け、 断片化された抗原ペプチド が細胞表面に提示される。 なお、 抗原ペプチドを抗原提示能を有する細胞に付加 する場合、 使用される抗原提示細胞、 誘導しょうとする細胞傷害性リンパ球の M H C拘束性に合致する抗原ペプチドまたは MH C非拘束性の抗原ペプチドが使用 される。
なお、 本発明において使用される抗原は特に限定されるものではなく、 例えば 、 細菌、 ウィルスなどの外来性抗原や腫瘍関連抗原 (癌抗原) などの内存性抗原 等が挙げられる。
本発明においては、 抗原提示細胞は非増殖性とすることが好ましい。 細胞を非 増殖性とするためには、 例えば X線等の放射線照射またはマイトマイシン (m i t o m y c i n ) 等の薬剤による処理を行えばよい。
本発明の製造方法により L A K細胞を製造する場合、 前記有効成分の存在下、 I L— 2とともに L A K細胞となり得る前駆細胞をィンキュペートすることによ り実施される。 L A K細胞となり得る前駆細胞としては、 特に限定されるもので はなく、 例えば末梢血単核球 (PBMC) 、 NK細胞、 臍帯血単核球、 造血幹細 胞、 これらの細胞を含有する血液成分等が挙げられる。
また、 LAK細胞を培養するための一般的な条件は、 上記の培地を使用する点 を除いては、 公知の条件 〔例えば、 細胞工学、 Vo l . 14、 No. 2、 p 22 3〜227、 (1995年) ;細胞培養、 17、 (6) 、 p l 92〜: 1 95、 ( 199 1年) ; THE LANCET, Vo l . 356、 p 802〜807、 ( 2000) ; Cu r r e n t P r o t o c o l s i n I mm u n o 1 o g y, s u p p l eme n t 17, UN I T 7. 7を参照〕 に従えばよい。 培養条件には特に限定はなく、 通常の細胞培養に使用される条件を使用すること ができ、 例えば、 37 、 5 %C〇2等の条件下で培養することができる。 この 培養は通常、 2〜1 5日程度実施される。 また、 適当な時間間隔で細胞培養液を 希釈する工程、 培地を交換する工程もしくは細胞培養用器材を交換する工程を行 つても良い。
上記の LAK細胞の誘導、 維持、 拡大培養と同様に、 フイブロネクチン、 その フラグメントまたはそれらの混合物の存在下に培養することにより、 CTL、 T I Lについても高い細胞傷害活性を有する細胞群を調製することができる。 本発 明においては、 これらの細胞の活性化操作においてフイブロネクチン、 そのフラ グメントまたはそれらの混合物を共存させ、 かつ培地中における血清及び血漿の 総含有濃度が 0容量%以上 5容量%未満である培地を使用する他には特に限定は なく、 前記細胞の培養、 活性化に適した培地を使用して実施することができる。 フイブロネクチン、 そのフラグメントまたはそれらの混合物の使用量、 添加方法 等については前記方法に準じて適切なものを選択すればよい。
なお、 本発明の細胞傷害性リンパ球の拡大培養方法については、 前記有効成分 が、 当該方法に使用される培養系に存在しており、 さらに培地中の血清及び血漿 の総含有濃度が 0容量%以上 5容量%未満であれば特に限定は無く、 上記以外の 従来の細胞傷害性リンパ球の拡大培養方法において、 その培養系に前記有効成分 を存在させて、 さらに培地中の血清及び血漿の総含有濃度が 0容量%以上 5容量 %未満であれば本発明に包含される。
本発明の方法により製造される細胞傷害性リンパ球を投与される疾患としては 、 特に限定はないが、 例えば、 癌、 悪性腫瘍、 肝炎や、 インフルエンザ等のウイ ルス、 細菌、 カビが原因となる感染性疾患が例示される。 また、 後述のようにさ らに外来遺伝子を導入した場合は、 各種遺伝子疾患に対しても効果が期待される 。 また、 本発明の方法により製造される細胞傷害性リンパ球は骨髄移植や放射線 照射後の感染症予防を目的としたドナーリンパ球輸注等にも利用できる。
本発明の別の態様として、 フイブロネクチン、 そのフラグメントまたはそれら の混合物を有効成分として含有し、 かつ培地中における血清及び血漿の総含有濃 度が 0容量%以上 5容量%未満である細胞傷害性リンパ球培養用培地が提供され る。 当該培地は、 さらにその他の任意の成分、 たとえば、 公知の細胞培養に用い られる培地成分、 タンパク質、 サイト力イン類 (好適には I L一 2 ) 、 所望のそ の他の成分とからなる。 なお、 当該培地は、 本発明の有効成分、 および培地中の 総含有濃度が 0容量%以上 5容量%未満となるように自己又は非自己の血清や血 漿を用い、 公知の方法に準じて製造することができる。 当該培地中の本発明の有 効成分等の含有量は、 本発明の所望の効果が得られれば特に限定されるものでは なく、 例えば、 本発明の方法に使用される前記培地中の有効成分等の含有量に準 じて、 所望により、 適宜、 決定することができる。 本発明の培地の一態様として は、 フイブロネクチン、 そのフラグメントまたはそれらの混合物が固定化された 細胞培養用担体を含有する培地、 フイブロネクチン、 そのフラグメントまたはそ れらの混合物が固定化された細胞培養用器材に封入して提供される培地が包含さ れる。
上記の細胞傷害性リンパ球の製造方法を用いて得られたリンパ球含有培養物中 には、 通常、 ヘルパー T細胞等の細胞傷害性リンパ球以外の細胞も混在している 。 しかしながら、 本発明により得られたリンパ球含有培養物中には細胞傷害活性 を保持するリンパ球が多く含まれているため、 該培養物から遠心分離等により該 培養物中の細胞を回収し、 本発明の方法により得られた細胞傷害性リンパ球とし てそのまま使用することができる。 しかも、 前記有効成分等を細胞培養用器材等 に固定化しておけば、 得られた細胞傷害性リンパ球における該成分等の混入の心 配はない。
また、 さらに該培養物から公知の方法により、 細胞傷害性リンパ球を高含有す る細胞集団 (あるいは培養物) を分離し、 本発明の方法により得られた細胞傷害 性リンパ球として使用することもできる。 すなわち、 本発明の細胞傷害性リンパ 球の製造方法は、 当該方法により得られた培養物から細胞傷害性リンパ球を高含 有する細胞集団を選択する工程を含むことができる。
細胞傷害性リンパ球を高含有する該細胞集団の選択方法については特に限定は ないが、 例えば培養物から所望の細胞表面上に発現している細胞表面抗原に対す る抗体、 例えば抗 C D 8抗体を結合させた細胞培養用器材もしくは担体を用いて 目的の細胞のみを選択的に回収する方法や、 フローサイトメ一夕一を用いる方法 が挙げられる。 前記担体としては磁気ビーズやカラムが例示される。 また、 培養 物から所望の細胞以外の細胞を吸着除去することにより、 目的の細胞を高含有す る細胞集団を得ることもできる。 例えば、 ヘルパー T細胞表面上に発現している 細胞表面抗原に対する抗体、 例えば抗 C D 4抗体を使用し、 当該リンパ球培養物 からヘルパー T細胞を除去することができる。 この工程にはフローサイトメ一夕 一を用いることもできる。
さらに本発明は、 上記の本発明の細胞傷害性リンパ球の製造方法で得られた、 細胞傷害性リンパ球を提供する。 当該リンパ球は高い細胞傷害活性を有しており 、 長期間にわたる継続培養や拡大培養を行っても細胞傷害活性の低下が少ないと いう性質を有する。 また、 本発明は、. 当該リンパ球を有効成分として含有する医 薬 (治療剤) を提供する。.特に、 当該リンパ球を含有する前記治療剤は養子免疫 療法への使用に適している。 養子免疫療法においては、 患者の治療に適した細胞 傷害活性を有するリンパ球が、 例えば静脈への投与によって患者に投与される。 当該治療剤は前述の疾患やドナ一リンパ球輸注での使用において非常に有用であ る。 当該治療剤は製薬分野で公知の方法に従い、 例えば、 本発明の方法により調 製された当該リンパ球を有効成分として、 たとえば、 公知の非経口投与に適した 有機または無機の担体、 賦形剤、 安定剤等と混合することにより調製できる。 な お、 治療剤における本発明のリンパ球の含有量、 治療剤の投与量、 当該治療剤に 関する諸条件は公知の養子免疫療法に従って適宜、 決定できる。
本発明の細胞傷害性リンパ球の製造方法においては、 当該リンパ球に外来遺伝 子を導入する工程をさらに包含することができる。 すなわち、 本発明は、 その一 態様として、 細胞傷害性リンパ球に外来遺伝子を導入する工程をさらに含む細胞 傷害性リンパ球の製造方法を提供する。 なお、 「外来」 とは、 遺伝子導入対象の リンパ球に対して外来であることをいう。
本発明の細胞傷害性リンパ球の製造方法、 特に細胞傷害性リンパ球の拡大培養 方法を行うことにより、 培養されるリンパ球の増殖能が増強される。 よって、 本 発明の細胞傷害性リンパ球の製造方法を、 遺伝子の導入工程と組み合わせること により、 遺伝子の導入効率の上昇が期待される。
外来遺伝子の導入手段には特に限定はなく、 公知の遺伝子導入方法により適切 なものを選択して使用することができる。 遺伝子導入の工程は、 細胞傷害性リン パ球の製造の際、 任意の時点で実施することができる。 例えば、 前記リンパ球の 誘導、 維持およびノまたは拡大培養のいずれかの工程と同時に、 あるいは該工程 の後に実施するのが、 作業効率の観点から好適である。
前記の遺伝子導入方法としては、 ウィルスベクターを使用する方法、 該ベクタ 一を使用しない方法のいずれもが本発明に使用できる。 それらの方法の詳細につ いてはすでに多くの文献が公表されている。
前記ウィルスベクタ一には特に限定はなく、 通常、 遺伝子導入方法に使用され る公知のウィルスベクタ一、 例えば、 レトロウイルスベクター、 レンチウィルス ベクター、 アデノウイルスベクター、 アデノ随伴ウィルスベクタ一、 シミアンゥ ィルスべクタ一、 ワクシニアウィルスベクターまたはセンダイウィルスベクター 等が使用される。 特に好適には、 ウィルスベクターとしては、 レトロウイルス、 アデノウイルス、 アデノ随伴ウィルスまたはシミアンウィルスが使用される。 上 記ウィルスベクターとしては、 感染した細胞中で自己複製できないように複製能 を欠損させたものが好適である。
レトロウイルスベクタ一は、 当該べクタ一が導入される細胞の染色体 D N A中 に該ベクターに挿入されている外来遺伝子を安定に組み込むことができ、 遺伝子 治療等の目的に使用されている。 当該べクタ一は分裂、 増殖中の細胞に対する感 染効率が高いことから、 本発明における、 細胞傷害性リンパ球の製造工程、 例え ば、 拡大培養の工程において遺伝子導入を行なうのに好適である。
ウィルスベクターを使用しない遺伝子導入方法としては、 本発明を限定するも のではないが、 例えば、 リボソーム、 リガンドーポリリジンなどの担体を使用す る方法やリン酸カルシウム法、 エレクト口ポレーシヨン法、 パーティクルガン法 などを使用することができる。 この場合にはプラスミド D N Aや直鎖状 D N Aに 組み込まれた外来遺伝子が導入される。
本発明において細胞傷害性リンパ球に導入される外来遺伝子には特に限定はな く、 前記細胞に導入することが望まれる任意の遺伝子を選ぶことができる。 この ような遺伝子としては、 例えば、 タンパク質 (例えば、 酵素、 サイト力イン類、 レセプター類等) をコードするものの他、 アンチセンス核酸や s i R N A ( smal l in ter fer ing RNA) 、 リポザィムをコードするものが使用できる。 また、 遺伝子導入された細胞の選択を可能にする適当なマーカー遺伝子を同時に導入し てもよい。
前記の外来遺伝子は、 例えば、 適当なプロモーターの制御下に発現されるよう にベクターやプラスミド等に挿入して使用することができる。 また、 効率のよい 遺伝子の転写を達成するために、 プロモーターや転写開始部位と協同する他の調 節要素、 例えば、 ェンハンサ一配列やターミネータ一配列がベクター内に存在し ていてもよい。 また、 外来遺伝子を相同組換えにより導入対象のリンパ球の染色 体へ挿入することを目的として、 例えば、 該染色体における該遺伝子の所望の標 的挿入部位の両側にある塩基配列に各々相同性を有する塩基配列からなるフラン キング配列の間に外来遺伝子を配置させてもよい。 導入される外来遺伝子は天然 のものでも、 または人工的に作製されたものでもよく、 あるいは起源を異にする
DN A分子がライゲ一シヨン等の公知の手段によって結合されたものであっても よい。 さらに、 その目的に応じて天然の配列に変異が導入された配列を有するも のであってもよい。
本発明の方法によれば、 例えば、 がん等の患者の治療に使用される薬剤に対す る耐性に関連する酵素をコードする遺伝子を細胞傷害性リンパ球に導入して該リ ンパ球に薬剤耐性を付与することができる。 そのような細胞傷害性リンパ球を用 いれば、 養子免疫療法と薬剤療法とを組み合わせることができ、 従って、 より高 い治療効果を得ることが可能となる。 薬剤耐性遺伝子としては、 例えば、 多剤耐 '性遺伝子 (mu l t i d r u g r e s i s t an c e g e n e) 力 s例示され る。
一方、 前記の態様とは逆に、 特定の薬剤に対する感受性を付与するような遺伝 子を細胞傷害性リンパ球に導入して、 該薬剤に対する感受性を付与することもで きる。 かかる場合、 生体に移植した後のリンパ球を当該薬剤の投与によって除去 することが可能となる。 薬剤に対する感受性を付与する遺伝子としては、 例えば 、 チミジンキナーゼ遺伝子が例示される。
(3) CH- 296 N aについて
本発明においては、 配列表の配列番号 25に記載のアミノ酸配列 (x) (CH - 296N a) 、 またはアミノ酸配列 (X) において 1もしくは複数個のァミノ 酸が欠失、 挿入、 付加もしくは置換したアミノ酸配列 (y) を有するポリべプチ ドであって、 アミノ酸配列 (y ) を有するポリペプチドがアミノ酸配列 (X ) を 有するポリペプチドと同等な機能を有するものである、 新規なポリペプチド、 お よびこれをコードする核酸も提供される。 当該核酸としては、 (1)配列番号 2 6 に記載の塩基配列からなる D N A ( C H— 2 9 6 N aをコードする核酸) 、 (2) 配列番号 2 6に記載の塩基配列において 1もしくは複数個の塩基が欠失、 置換、 挿入もしくは付加した塩基配列からなり、 かつ D N A (l)にコードされるポリべ プチドと同等な機能を有するポリペプチドをコードする D N A、 または(3)配列 番号 2 6に記載の塩基配列からなる D N Aとストリンジェントな条件下でハイブ リダィズし、 かつ D N A (1)にコードされるポリペプチドと同等な機能を有する ポリべプチドをコ一ドする D N Aからなる核酸が例示される。
なお、 本明細書において、 前記新規なポリペプチドを本発明のポリペプチドと 称し、 これをコードする核酸を本発明の核酸と称することがある。
以下、 本発明のポリペプチド、 該ポリペプチドをコードする核酸、 該ポリぺプ チドの製造方法について説明する。
本発明のポリペプチドは、 前述のような細胞傷害性リンパ球の製造において所 望の機能 〔前記 ( i ) 〜 ( i v ) の機能〕 のいずれかを有するものであれば、 上 記アミノ酸配列において 1ないし複数個の置換、 欠失、 挿入あるいは付加の 1以 上が生じた配列のものも本発明のポリペプチドに含まれる。 C H— 2 9 6 N a以 外の本発明のポリペプチドとしては、 好適には配列表の配列番号 2 5に記載のァ ミノ酸配列に 1〜2 0個のアミノ酸の置換、 欠失、 挿入あるいは付加のいずれか 1以上が生じたもの、 より好適には 1〜1 0個のアミノ酸の置換、 欠失、 揷入ぁ るいは付加のいずれか 1以上が生じたもの、 さらに好適には 1〜 5個のアミノ酸 の置換、 欠失、 挿入あるいは付加のいずれか 1以上が生じたものが例示される。 なお、 アミノ酸の置換等は、 本来のポリペプチドの機能が維持され得る範囲内で 該ポリペプチドの物理化学的性状等を変化させ得る程度のものであってもよい。 その詳細、 該ポリペプチドの作製法は前記の通りである。 本発明のポリペプチドをコードする配列表の配列番号 26で表される核酸は血 漿由来のヒトフイブロネクチンをコードする c DNAを铸型に P CR反応を行い 、 CH— 296Naをコードする DNA断片として取得することができる。 この 際に使用されるプライマーとしては、 特に限定はないが、 例えば配列表の配列番 号 27、 28に記載される P r i me r CH- 296 N a 1 > P r ime r CH— 296 Na 2を使用することができる。 また、 当該核酸としては、 前述の FERM BP- 2800 (CH— 296をコードするプラスミドを保有する大 腸菌) のプラスミドと、 ネイティブの血漿由来のフイブロネクチンの細胞結合ド メインとへパリン結合ドメインの間に存在する配列 (第 1図における I I I型繰 り返し配列の 1 1) を有する DNA断片を適当な制限酵素サイトを用いて結合す ることにより取得することができる。
また、 本発明の核酸としては、 配列表の配列番号 26で表される核酸の塩基配 列において、 1ないし複数個の置換、 欠失、 挿入あるいは付加のいずれか 1以上 が生じたものも含まれる。 例えば配列表の配列番号 26に記載の塩基配列から 1 〜60塩基の置換、 欠失、 挿入あるいは付加のいずれか 1以上が生じたもの、 よ り好適には 1〜30塩基の置換、 欠失、 挿入あるいは付加のいずれか 1以上が生 じたもの、 さらに好適には 1〜15塩基の置換、 欠失、 挿入あるいは付加のいず れか 1以上が生じたものが例示される。 なお、 塩基の置換等は、 核酸にコードさ れるポリぺプチドの機能が維持され得る範囲内で該ポリぺプチドの物理化学的性 状等を変化させ得る程度のものであってもよい。 その詳細、 塩基の置換等の方法 については前記のアミノ酸の置換等に関する記載に準ずる。
さらに配列番号 26に記載の塩基配列からなる核酸とストリンジェントな条件 下でハイブリダィズし、 本発明のポリペプチドと同等な機能、 すなわち前述の細 胞傷害性リンパ球の製造における前記 ( i) 〜 ( i v) の少なくともいずれかの 機能を有するポリペプチドをコードする核酸も本発明の核酸に含まれる。 上記 「 ストリンジェン卜な条件」 とは特に限定されず、 配列番号 26に記載の塩基配列 からなる DN Aにハイブリダィズさせる DN Aに応じて、 ハイブリダィゼーショ ン時の、 好ましくはさらに洗浄時の温度および塩濃度を適宜決定することにより 設定し得るが、 ストリンジェン卜な条件としては、 例えば、 モレキュラー クロ 一二ング ァ ラボラトリー マニュアル 第 3版 〔サンブルーク (s amb r o o k ) ら、 Mo l e c u l a r c l on i ng, A l a b o r a t o r y manu a l 3 rd e d i t i on, 2001年、 コールド スプリング ハーバ一 ラボラトリ一 プレス (Co l d S p r i n g Ha r b o r L a b o r a t o r y P r e s s) 社発行〕 等の文献に記載の条件が挙げられる 具体的には、 例えば、 6 XS SC (1 XS SCは、 0. 15M N a C 1 , 0 . 015M クェン酸ナトリウム、 pH7. 0) と 0. 5%SDSと 5 Xデンハ ルト CDe nh a r d t ' s、 0. 1 %ゥシ血清アルブミン (B S A) 、 0. 1 %ポリビニルピロリドン、 0. 1 %フイコール 400〕 と l O O gZmLサケ 精子 DNAとを含む溶液中、 50で、 好ましくは 65 で保温する条件が例示さ れる。 前記の温度は用いる DNAの Tm値が既知である場合は、 その値より 5〜 12 低い温度としてもよい。 さらに、 非特異的にハイブリダィズした DNAを 洗浄により除去するステップ、 ここで、 より精度を高める観点から、 より低ィォ ン強度、 例えば、 2 XS SC、 よりストリンジェントには、 0. 1 XS SC等の 条件およびノまたはより高温、 例えば、 用いられる核酸の Tm値により異なるが 、 25 以上、 よりストリンジェントには、 37 :以上、 さらにストリンジェン 卜には、 42 以上、 よりさらにストリンジェン卜には、 50で以上等の条件下 で洗浄を行なう、 という条件等を追加してもよい。
より低いストリンジエンシーのハイブリダィゼ一シヨン条件で本発明のポリヌ クレオチドにハイブリダィズする核酸分子もまた本発明に包含される。 ハイプリ ダイゼーションのストリンジエンシーおよびシグナル検出の変化は、 主として、 ホルムアミド濃度 (より低い百分率のホルムアミドが、 低下したストリンジェン シ一を生じる) 、 塩濃度、 または温度の操作によって行われる。 例えば、 より低 いストリンジェンシ一条件は、 6 XS SPE (20 XS SPE=3M N a C 1 ; 0. 2M N aH2 P04 ; 0. 02M EDTA、 pH 7. 4) 、 0. 5 % SDS、 30%ホルムアミド、 100 / gZmLサケ精子ブロッキング DNAを 含む溶液中での 37 でのー晚ィンキュベ一シヨン;次いで 1 X S S P E、 0. 1 %SDSを用いた 50 での洗浄を含む。 さらに、 より低いストリンジェンシ —を達成するために、 ストリンジェントなハイプリダイゼ一シヨン後に行われる 洗浄は、 より高い塩濃度 (例えば、 5 XS SC) で行うことができる。
上記の条件は、 ハイブリダイゼ一ション実験においてバックグラウンドを抑制 するために使用される代替的なブロッキング試薬を添加および または置換する ことによって改変することができる。 代表的なブロッキング試薬としては、 デン ハルト試薬、 BLOTT〇、 へパリン、 変性サケ精子 DNA、 および市販の製品 処方物が挙げられる。 また、 この改変に応じて、 上記のハイブリダィゼーシヨン 条件の他の要素の改変が必要な場合もある。
一方、 このようにして得られた核酸を用いて、 配列表の配列番号 25で表され るァミノ酸配列を有するポリべプチドを遺伝子工学的に取得することができる。 すなわち、 当該核酸を適切な発現用ベクター、 特に限定はないが、 例えば pET ベクタ一や PC o 1 dベクタ一等に挿入し、 公知の方法により、 当該ポリべプチ ドを、 例えば、 大腸菌等で発現させることにより取得することができる。 実施例
以下、 実施例を挙げて、 本発明を更に具体的に説明するが、 本発明はこれらの 記載に何ら限定されるものではない。 製造例 1 フィブロネクチンフラグメントの調製
(1) フイブロネクチンフラグメントの調製 ヒトフイブロネクチン由来のフラグメント H—27 1は、 E s c h e r i c h i a c o l i HB l O l/pHD I O l (FERM BP— 2264) よ り、 米国特許第 5, 198, 423号明細書に記載の方法により調製した。
また、 ヒトフイブロネクチン由来のフラグメント H— 296、 CH- 27 1 、 CH- 296はそれぞれ、 E s c h e r i c h i a c o l i HB 10 1 / pHD 102 (FERM BP- 7420) , E s c h e r i c h i a c o l i HB l O l/pCHl O l (FERM BP-2799) , E s c h e r i c h i a c o l i HB 101/pCH102 (FERM BP— 2800) を用い、 これを上記の明細書に記載の方法で培養し、 該培養物より調製した。 ヒトフイブロネクチン由来のフラグメント C—274は、 E s c h e r i c h i a c o l i JM109/ TF 7221 (FERM BP - 19 1 5) を用い、 これを米国特許第 5, 102, 988号明細書に記載の方法で培養し、 該培養物より調製した。
ヒトフイブロネクチン由来のフラグメント C— CS 1は、 E s c h e r i c h i a c o l i HB 101/p C S 25 (FERM BP— 5723) を用 い、 日本特許 3104178号明細書に記載の方法で培養し、 該培養物より調製 した。
ヒトフイブロネクチン由来のフラグメント CHV— 89、 CHV— 179は 、 それぞれ E s c h e r i c h i a c o l i HB 101 /p CHV 89 (F ERM P— 12182) 、 E s c h e r i c h i a c o l i HB 10 1 / p CHV 179 (FERM P— 12183) を用い、 日本特許 27297 12 号明細書に記載の方法で培養し、 該培養物より調製した。
また、 ヒトフイブロネクチン由来のフラグメント CHV— 90は日本特許 2 7297 12号明細書に記載の方法で調製した。 すなわち、 当該明細書に記載の 操作によってプラスミド PCHV90を構築したうえ、 該プラスミドを保有する 形質転換体を培養し、 該培養物より CHV— 90を調製した。 ヒトフイブロネクチン由来のフラグメント CHV— 181は、 国際公開第 9 7/18318号パンフレツ卜に記載の方法で、 CHV— 181をコードする D NAを含有するプラスミド (PCHV 18 1) を構築した後、 該プラスミドを導 入された大腸菌 (E s c h e r i c h i a c o l i HB 101/p CHV 1 81) を培養し、 該培養物より、 上記の CHV— 179と同様の方法で調製した
(2) CHV- 92の調製
上記のポリペプチド CHV— 18 1を発現させるためのプラスミド p CHV 18 1について、 CHV— 181をコ一ドする領域中の I I I— 13領域をコ一 ドする領域を欠失したプラスミド CHV92を構築した。 欠失操作は日本特許 2
729712号明細書に記載の、 プラスミド p CHV 179からの I I 1— 14 コード領域の欠失操作に準じて行った。 '
上記のプラスミド p CHV92で形質転換された大腸菌 HB 101 (E s c h e r i c h i a c o l i H B 101 Z p C H V 92 ) を培養し、 該培養物よ り日本特許第 2729712号明細書に記載の CHV_ 89ポリペプチドの精製 方法に準じて精製操作を行い、 精製 CHV— 92標品を得た。
(3) H- 275 -C y sの調製
ポリペプチド H— 275 -Cy sを発現させるためのプラスミドは以下に示す 操作に従って構築した。 E s c h e r i c h i a c o l i HB l O lZpC H 102 (FERM BP— 2800) よりプラスミド p C H 102を調製した 。 このプラスミドを铸型とし、 配列表の配列番号 21に塩基配列を示すプライマ - 12 Sと配列表の配列番号 22に塩基配列を示すプライマー 14 Aとを用いた PCRを行い、 フイブロネクチンのへパリン結合ドメインをコードする約 0. 8 k bの DNA断片を得た。 得られた PNA断片を Nc o I、 B amH I (ともに タカラバイオ社製) で消化した後、 Nc o I、 B amH Iで消化した pTV 1 1
8 N (夕カラバイオ社製) とライゲーシヨンすることにより、 プラスミド pRH 1を構築した。
プラスミドベクター p I N I I I— omp 〔グーライエプ J. ら (Gh r ay e b J. , e t a l . ) 、 EMB〇 J . 、 第 3巻、 第 10号、 第 2437〜 2442頁 (1984) 〕 を B amH Iと H i n c l I (夕カラバイ ォ社製) とで消化し、 リポプロテイン夕一ミネ一夕一領域を含む約 0. 9 k bの DNA断片を回収した。 これを B amH Iと H i n c I Iで消化した上記のプラ スミド p RH 1と混合してライゲーシヨンを行い、 l a cプロモー夕一、 へパリ ン結合ドメィンをコ一ドする DNA断片およびリポプロティンターミネータ一を この順に含むプラスミド p RH 1— Tを得た。
このプラスミド pRHl— Tを铸型とし、 配列表の配列番号 23に塩基配列を 示すプライマー Cy s一 Aと配列表の配列番号 24に塩基配列を示すプライマ一 Cy s— Sとを用いた PCR反応の後、 回収した増幅 DNA断片を No t I (夕 カラバイオ社製) で消化し、 さらに該 DNA断片をセルフライゲ一シヨンさせた 。 こうして得られた環状 DNAを S p e Iと S c a I (夕カラバイオ社製) とで 消化して得られる 2. 3 kbの DNA断片と、 プラスミド p R H 1— Tを S p e Iと S e a I (夕カラバイオ社製) とで消化して得られる 2. 5 kbのDNA断 片とを混合してライゲ一シヨンを行い、 プラスミド pRH— Cy sを得た。 該プ ラスミドには、 前記の H— 271の N末端側に Me t - A 1 a - A 1 a - S e r の 4ァミノ酸が付加され、 さらに C末端に C y sが付加されたポリペプチド H _ 275 -Cy sがコードされている。
ポリペプチド H— 275 -Cy sは以下の方法により調製した。 上記のプラス ミド pRH— Cy sで形質転換された大腸菌 HB 10 1 (E s c h e r i c h i a c o l i HB l O lZpRH— Cy s) を 12 OmLの LB培地中、 37 "Cで 1晚培養した。 培養液より回収レた菌体を 4 OmLの破碎用緩衝液 (50m M T r i s -HC 1 , 1 mM EDTA、 15 OmM N a C 1 1 mM D TT、 ImM PMSF、 pH7. 5) に懸濁し、 超音波処理を行って菌体を破 砕した。 遠心分離を行って得られた上清を精製用緩衝液 (5 OmM T r i s - HC 1、 pH7. 5) で平衡化されたハイトラップ一へパリンカラム (フアルマ シァ社製) にかけた。 同緩衝液でカラム内の非吸着画分を洗浄した後、 0〜1M NaC 1濃度勾配を持つ精製用緩衝液で溶出を行った。 溶出液を SDS—ポリア クリルアミドゲル電気泳動で分析し、 H— 275—Cy sの分子量に相当する画 分を集めて精製 H— 275 -Cy s標品を得た。 実施例 1 低血清培地を用いた LAK細胞 (L ymp h o k i n e— a c t i v a t e d k i l l e r e e l I s) 培養系における拡大培養率の測定
(1) PBMCの分離および保存
インフォ一ムド ·コンセントの得られたヒト健常人ドナーより成分採血を実施 後、 採血液を PB S (—) で 2倍希釈し、 F i c o l 1 - a q u e (フアルマ シァ社製) 上に重層して 50 O Xgで 20分間遠心分離した。 中間層の末梢血単 核細胞 (PBMC) をピペットで回収、 洗浄した。 採取した PBMCは 90% FB S (B i 0 Wh i t t a k e r社製) /10%DMS〇 (S I GMA社製 ) からなる保存液に懸濁し、 液体窒素中にて保存した。 LAK誘導時にはこれら 保存 P BMCを 37°C水浴中にて急速融解し、 l O /z gZmL DNa s e (C a 1 b i o c h e m社製) を含む RPM 1 1640培地 (B i o Wh i t t a k e r社製) で洗浄後、 トリパンブル一染色法にて生細胞数を算出して各実験に 供した。
(2) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材に抗ヒト C D 3抗体および F Nフラグメントを 固定化した。 すなわち 24穴細胞培養プレートまたは 12. 5 cm2細胞培養フ ラスコ (F a I c on社製) に抗ヒト CD 3抗体 (ヤンセン協和社製) (終濃度 5 u g/mL) を含む PBSを lmL (24穴プレートの場合) または 2mL ( 12. 5 cm2 フラスコの場合) ずつ添加した。 この時、 FNフラグメント添加 群には製造例 1に記載の各フイブロネクチンフラグメント (FN f r) を終濃度 10 g/mL (24穴プレートの場合) または 25 gZmL (1 2. 5 cm 2 フラスコの場合) となるように添加した。 対照として、 FN f rを添加しない 群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗体 · FN f rを含む PBSを吸引除去 後、 各ゥエルを PBSで 2回、 XV I V020培地 (B i o wh i t t a k e r社製) で 1回洗浄し各実験に供した。
(3) LAK細胞の誘導および培養
1 %h uma n AB血清を含む XV I VO 20 (以下 1 %XV I VO20と略 す) に 1 X 106 e e l 1 s ZmLとなるように実施例 1— (1) で調製した P BMCを懸濁後、 実施例 1一 (2) で調製した抗ヒト CD 3抗体固定化プレート 、 または抗ヒト CD 3抗体および FN f r固定化プレートに lmL ウエルずつ まき、 終濃度 100 OUZmLとなるように I L— 2 (塩野義製薬社製) を添加 した。 これらのプレートを 5% C〇2 中 37 で培養した (培養 0日目) 。 培養 開始後 2日目、 3日目には 100 OUZmLの I L— 2を含む 1 %XV I VO 2 0を lmLノウエルずつ添加した。 培養開始後 4日目には適宜 1 %XV I V02 0を用いて希釈した培養液を何も固定化していない新しいフラスコに移し、 終濃 度 50 OUZmLとなるよう I L— 2を添加した。 培養を継続し、 2〜3日毎に 培養開始 4日目と同様に適宜 1 %XV I V020を用いて希釈し終濃度 300〜 50 OUZmLとなるよう I L— 2を添加した。 培養開始後 1 1日目または 15 日目にトリパンブル一染色法にて生細胞数を計測し、 培養開始時の細胞数と比較 しての拡大培養率として算出した。 結果を表 1に示す。 血清濃度 (%) 培養日数 フイブロネクチンフラグメント 拡大培養率
1 1 1日間 対照 (FN f r非固定化) X 2 52
1 1 1日間 CH- 296 X 6 70
1 1 1日間 H- 296 X 6 1 5. 6
1 1 5日間 対照 (FN f r非固定化) X 403. 2
1 1 5日間 CH- 296 X 588
1 1 5日間 H- 296 X 708 表 1に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘導 初期に各フイブロネクチンフラグメントを固定化した培養器材を使用した群にお いては、 対照群に比較して LAK細胞の拡大培養率が高い。 このことから各フィ ブロネクチンフラグメントは低濃度の血清を含んだ培地を用いた LAK細胞培養 時に好適に使用されることが明らかとなった。 実施例 2 低血清培地を用いた LAK細胞培養系における拡大培養率の測定 (繰 り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
0. 5%または1 % ¥ I VO20に 1 X 106 c e 1 1 sZmLとなるよう に実施例 1— (1) で調製した PBMCを懸濁後、 実施例 1一 (2) で調製した 抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体および FN f r固定 化プレートに lmL ウエルずつまき、 終濃度 100 OUZmLとなるように I L- 2 (塩野義製薬社製) を添加した。 これらのプレートを 5%C02 中 37で で培養した (培養 0日目) 。 培養開始後 2日目、 3日目には 100 OUZmLの I L一 2を含む 0. 5 %または 1 %XV I V020を 1 mL ウエルずつ添加し た。 培養開始後 4日目には適宜 0. 5 %または 1 %XV I VO 20を用いて希釈 した培養液を何も固定化していない新しいフラスコに移し、 終濃度 50 OUZm Lとなるよう I L_ 2を添加した。 培養開始 9日目には実施例 1一 (2) と同様 の方法で調製した抗ヒト CD 3抗体固定化フラスコ、 または抗ヒト CD 3抗体お よび FN f r固定化フラスコ (ただし、 固定化に用いる抗ヒト CD 3抗体の濃度 は 0. 5 gZmLとした) に適宜 0. 5%または 1 %XV I V〇20を用いて 希釈した培養液を移し、 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 12日目に再度適宜 0. 5%または 1 %XV I V020を用いて希釈し た培養液を何も固定化していない新しいフラスコに移し、 終濃度 50 OU/mL となるよう I L— 2を添加した。 培養開始 1 5日目にトリパンブル一染色法にて 生細胞数を計測し、 培養開始時の細胞数と比較しての拡大培養率として算出した 。 結果を表 2に示す。 表 2
血清濃度 フイブロネクチン 培養開始 0日目 培養開始 9日目 拡大培養率
(%) フラグメント 刺激 刺激 (倍率)
0. 5 対照 (FN f r非固定化) 抗 CD3 なし X 1 3
0. 5 FN f r非固定化 抗 CD3 抗 CD3 X 88 .
0. 5 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 X 4 1 0
1 対照 (FN f r非固定化) 抗 CD3 なし X 40 3
1 FN f r非固定化 抗 CD3 抗 CD3 X 1 6 24
1 CH- 296 抗 CD3+CH- 296 なし X 58 8
1 CH- 296 抗 CD3+CH- 296 抗 CD3+CH-296 X 3 5 60
1 H- 296 抗 CD3+H-296 なし X 70 8
1 H- 296 抗 CD3+H- 296 抗 CD3+H-296 X 3000
表 2に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘導 時初期および中期に繰り返し各フイブロネクチンフラグメントおよび抗 CD 3抗 体を固定化した培養器材を使用した群においては、 対照群に比較して LAK細胞 の拡大培養率が高い。 これらの拡大培養率は、 LAK細胞誘導時初期および中期 に繰り返し抗 CD 3抗体のみを固定化した培養器材を使用した群における拡大培 養率よりもはるかに高いものであった。 すなわち LAK細胞誘導初期および中期 にフイブロネクチンフラグメントおよび抗 CD 3抗体を用いて刺激することによ り、 低濃度の血清を含んだ培地を用いた場合でも高い拡大培養率で LAK細胞を 誘導 ·培養することが可能であることが明らかとなった。 実施例 3 低血清培地を用いた LAK細胞培養系における I L一 2レセプ夕一 ( I L - 2 R) 発現の誘導
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 '培養した。
(2) LAK細胞における I L— 2 R発現率の測定
実施例 3— ( 1) で調製した 2 X 105 e e l I sの LAK細胞を 1 %パラホ ルムアルデヒド (ナカライテスク社製) を含む PBS (二ッスィ社製) を用いて 固定した後、 PBSで洗浄した。 固定細胞を 1 %BSA (S I GMA社製) を含 む 100 //しの?83中に懸濁し、 F I TC標識マウス I gG lもしくは F I T C標識マウス抗ヒト I L— 2 R (CD 25) 抗体 (ともに DAKO社製) を添加 後、 氷上で 30分間インキュベートした。 インキュベート後、 細胞を PBSで洗 浄し、 再度 1 %パラホルムアルデヒドを含む P B Sに懸濁した。 この細胞を F A CS Van t a g e (べクトン ·ディッキンソン社製) を用いたフローサイト メトリーに供し、 I L一 2 R発現陽性細胞含有率を測定した。 結果を表 3に示す 。 かかる表では I L一 2 R発現陽性細胞含有率 (%) を I L— 2R発現率 (%) と表示する。
血清濃度 フイブロネクチン 培養開始 0日 培養開始 9日 I L一 2 R発現率
(%) フラグメント 目刺激 目刺激 (%)
0. 5 対照 (FN f r非固定化) 抗 CD3 なし 3 • 48
0. 5 FN f r非固定化 抗 CD3 抗 CD3 43 . 22
0. 5 CH- 296 抗 CD3+CH-296 抗 CD3+CH- 296 8 1 . 1 1
0. 5 H- 2 96 抗 CD3+H- 296 抗 CD3+H- 296 7 1 . 49
1 対照 (FN f r非固定化) 抗 CD3 なし 8 . 02
1 FN f r非固定化 抗 CD3 抗 CD3 42 . 8
1 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 77 • 94
1 H- 296 抗 CD3+H-296 抗 CD3+H-296 70 . 29 表 3に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘導 初期および中期に各フイブロネクチンフラグメントを固定化した培養器材を使用 した群においては、 培養中の LAK細胞表面上における I L一 2 R発現率を高く 誘導することができた。 すなわち低濃度の血清を含んだ培地を用いて LAK細胞 を誘導する際にフイブロネクチンフラグメントを共存させることにより、 I L— 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能であることが 明らかとなった。 実施例 4 低血清培地を用いた LAK細胞集団中における CD 8陽性細胞含有比 率
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 ·培養した。
(2) LA K細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (1) で調製した 2 X 105 e e l I sの LAK細胞を 1 %パラホ ルムアルデヒドを含む PBSを用いて固定した後、 PBSで洗浄した。 固定細胞 を 1 %BS Aを含む 100 しの?83中に懸濁し、 F I TC標識マウス I gG 1もしくは F I TC標識マウス抗ヒト CD 8抗体 (ともに DAKO社製) を添加 後、 氷上で 30分間インキュベートした。 インキュベート後、 細胞を PBSで洗 浄し、 再度 1 %パラホルムアルデヒドを含む PB Sに懸濁した。 この細胞を F A CS V a n t a g eを用いたフロ一サイトメトリーに供し、 CD 8陽性細胞の 含有率を測定した。 結果を表 4に示す。 表 4
血清濃度 フイブロネクチン 培養開始 0日 培養開始 9日 CD 8陽性細胞
( ) フラグメント 目刺激 目刺激 含有率 (%)
0. 5 対照 (FN f r非固定化) 抗 CD3 抗 CD3 26. 9 5
0. 5 CH- 296 抗 CD3+CH-296 抗 CD3+CH- 296 44. 6 7
1 対照 (FN f r非固定化) 抗 CD3 なし 53. 26
1 FN f r非固定化 抗 CD3 抗 CD3 3 5. 56
1 CH- 296 抗 CD3+CH- 296 なし 6 1. 2 9
1 CH- 2 96 抗 CD3+CH- 296 抗 CD3+CH-296 62. 58 表 4に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘導 初期または初期および中期に各フイブロネクチンフラグメントを固定化した培養 器材を使用した群においては、 培養中の LAK細胞中における CD 8陽性細胞含 有率を高く誘導することができた。 すなわち低濃度の血清を含んだ培地を用いて
LAK細胞を誘導する際にフイブロネクチンフラグメントを共存させることによ り、 LAK細胞中の CD 8陽性細胞の含有率を高くしながら LAK細胞を誘導 · 培養することが可能であることが明らかとなった。 実施例 5 無血清培地を用いた LAK細胞培養系における拡大培養率の測定
(1) LAK細胞の誘導および培養
血清を含まない XV I V〇 20 (以下 0 %XV I VO 20と略す) に I X 10 6 c e 1 1 sZmLとなるように実施例 1— (1) で調製した P B M Cを懸濁後 、 実施例 1一 (2) で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体および FN f r固定化プレートに lmL/ゥエルずつまき、 終濃度 1 00 OUZmLとなるように I L— 2を添加した。 これらのプレートを 5%C〇 2 中 37T:で培養した (培養 0日目) 。 培養開始後 2日目、 3日目には 1000 UZmLの I _2を含む0% ¥ 1 V020を 1 mL /ゥエルずつ添加した。 培養開始後 4日目には適宜 0%XV I VO 20を用いて希釈した培養液を何も固 定化していない新しいフラスコに移し、 終濃度 50 OU/mLとなるよう I L— 2を添加した。 培養を継続し、 2〜3日毎に培養開始 4日目と同様に適宜 0%X V I VO 20を用いて希釈し終濃度 300〜50 OUZmLとなるよう I L— 2 を添加した。 培養開始後 1 1日目または 15日目にトリパンブルー染色法にて生 細胞数を計測し、 培養開始時の細胞数と比較しての拡大培養率として算出した。 結果を表 5に示す。 表 5
血清濃度 (%) 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
0 1 1日間 対照 (FN f r非固定化) 36
0 1 1日間 CH- 296 103. 7
0 15日間 対照 (FN f r非固定化) 76. 3
0 15日間 CH- 296 134. 6
0 15日間 対照 (FN f r非固定化) 28. 8
0 15日間 H- 296 46. 8 表 5に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期に 各フイブロネクチンフラグメントを固定化した培養器材を使用した群においては 、 対照群に比較して LAK細胞の拡大培養率が高い。 このことから各フイブロネ クチンフラグメントは血清を含まない培地を用いた LAK細胞培養時に好適に使 用されることが明らかとなった。 実施例 6 無血清培地での LAK細胞培養系における拡大培養率の測定 (繰り返 し刺激による拡大培養)
(1) LAK細胞の誘導および培養
0%XV I VO20に l X 106 c e l l s/mLとなるように実施例 1一 ( 1) で調製した PBMCを懸濁後、 実施例 1— (2) で調製した抗ヒト CD3抗 体固定化プレート、 または抗ヒト C D 3抗体および F N f r固定化プレートに 1 mLノウエルずつまき、 終濃度 10り OUZmLとなるように I L一 2を添加し た。 これらのプレートを 5% C〇2 中 37でで培養した (培養 0日目) 。 培養開 始後 2日目、 3日目には 100 OU/mLの I L— 2を含む 0%XV I VO 20 を lmL ウエルずつ添加した。 培養開始後 4日目には適宜 0 %XV I VO 20 を用いて希釈した培養液を何も固定化していない新しいフラスコに移し、 終濃度 50 OUZmLとなるよう I L_ 2を添加した。 培養開始 9日目には実施例 1一 (2) と同様の方法で調製した抗ヒト CD 3抗体固定化フラスコ、 またほ抗ヒト CD 3抗体および FN f r固定化フラスコ (ただし、 固定化に用いる抗ヒト CD 3抗体の濃度は 0. 5 gZmLとした) に適宜 0%XV I V020を用いて希 釈した培養液を移し、 終濃度 50 OUZmLとなるよう I L一 2を添加した。 培 養開始 12日目に再度適宜 0%XV I VO 20を用いて希釈した培養液を何も固 定化していない新しいフラスコに移し、 終濃度 50 OU/mLとなるよう I L— 2を添加した。 培養開始 15日目にトリパンブルー染色法にて生細胞数を計測し 、 培養開始時の細胞数と比較しての拡大培養率として算出した。 結果を表 6に示 す。
血清濃度 フイブロネクチン 培養開始 0日目 培養開始 9日目 拡大培養率
(%) フラグメント 刺激 刺激 (倍率)
0 対照 (FN f r非固定化) 抗 CD3 なし X 2 9
0 FN f r非固定化 抗 CD3 抗 CD3 X 3 6
0 CH- 296 抗 CD3+CH- 296 なし X 5 6
0 CH— 296 抗 CD3+CH-296 抗 CD3+CH-296 X 1 99
0 H- 296 抗 CD3+H- 296 なし X 47
0 H- 296 抗 CD3+H-296 抗 CD3+H- 296 X 209
表 6に示されるように、 血清を含まない培地を用いての LAK細胞誘導時初期 定化した培養器材を使用した群においては、 対照群に比較して LAK細胞の拡大 培養率が高い。 これらの拡大培養率は、 LAK細胞誘導時初期および中期に繰り 返し抗 CD 3抗体のみを固定化した培養器材を使用した群における拡大培養率よ りもはるかに高いものであった。 すなわち LAK細胞誘導初期および中期にフィ ブロネクチンフラグメントおよび抗 CD 3抗体を用いて刺激することにより、 血 清を含まない培地を用いた場合でも高い拡大培養率で LAK細胞を誘導 ·培養す ることが可能であることが明らかとなつた。 実施例 7 無血清培地を用いた LAK細胞培養系における I L一 2 R発現の誘導
(1) LAK細胞の誘導および培養
実施例 6— (1) と同様の方法で LAK細胞を誘導 '培養した。
(2) L A K細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 結果を表 7に示す。 かかる表では I L一 2 R発現陽性細胞含有率 (%) を I L 一 2 R発現率 (%) と表示する。
血清濃度 フイブロネクチン 培養開始 0日 培養開始 9日 I L - 2 R発現率
(%) フラグメント 目刺激 目刺激 (%)
0 対照 (FN f r非固定化) 抗 CD3 なし 1. 7
0 FN f r非固定化 抗 CD3 抗 CD3 50. 5
0 CH- 296 抗 CD3+CH-296 なし 3. 0
0 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 82. 2
0 H— 29 6 抗 CD3+H-296 なし 3. 2
0 H- 29 6 抗 CD+H- 296 抗 CD3+H- 296 9 1. 9
表 7に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期お よび中期に各フイブロネクチンフラグメントを固定化した培養器材を使用した群 においては、 培養中の LAK細胞表面上における I L一 2 R発現率を高く誘導す ることができた。 すなわち血清を含まない培地を用いて LAK細胞を誘導する際 にフイブロネクチンフラグメントを共存させることにより、 I L— 2 R発現率を 高くしながら LAK細胞を誘導 ·培養することが可能であることが明らかとなつ た。 実施例 8 無血清培地 (A I M V) を用いた LAK細胞培養系における拡大培 養率の測定
(1) LAK細胞の誘導および培養
実施例 5— (1) と同様の方法で LAK細胞を誘導 '培養した。 ただし、 この 際使用する培地を血清を含まない A I M V培地 (インビトロジェン社製、 以下 0 %A I M Vと略す) に変更した。 結果を表 8に示す。 表 8
血清濃度 ·:培地 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
0 %A I M V 12日間 対照 (FN f r非固定化) X 2 1
0 A I M V 12日間 CH- 296 X 1 10
0 %A I M V 15日間 対照 (FN f r非固定化) X 44
0 A I M V 15日間 CH- 296 X 498
0 %A I M V 12日間 対照 (FN f r非固定化) 増殖せず測定不能
0 %A I M V 12日間 H- 296 X 33
0 %A I M V 15日間 対照 (FN f r非固定化) 増殖せず測定不能
0 %A I M V 1 5日間 H- 296 X 245
表 8に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期に 各フイブロネクチンフラグメントを固定化した培養器材を使用した群においては 、 対照群に比較して LAK細胞の拡大培養率が高い。 またこの効果は無血清培養 用の基本培地を変えても発揮される。 このことから各フィブロネクチンフラグメ ントは血清を含まない培地を用いた LAK細胞培養時に好適に使用されることが 明らかとなった。 実施例 9 無血清培地での LAK細胞培養系における拡大培養率の測定 (低細胞 数からの L AK細胞誘導 ·培養ノ希釈操作なしでの培養)
(1) LAK細胞の誘導および培養
XV I VO 20 (血清を含まない) に 1 X 105 e e l 1 s/mLとなるよう に実施例 1— (1) で調製した PBMCを懸濁後、 実施例 1一 (2) と同様の方 法で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体および FN f r固定化 6ゥエルプレートに lmLZゥエルずつまき、 XV I VO20 ( 血清を含まない) 4mLを加え (1 X 104 e e l 1 sZcm2 ) 、 さらに終 濃度 50 OUZmLとなるように I L— 2を添加した。 これらのプレートを 5% C02 中 37 で培養した (培養 0日目) 。 培養開始後 2日目、 3日目、 4日目 には終濃度 50 OUZmLとなるように I L_2を添加した。 培養を継続し、 培 養開始後 7日目以降 2〜 3日毎に終濃度 50 OUZmLとなるよう I L— 2を添 加した。 この間培養液の希釈操作は全く行わなかった。
培養開始後 15日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始 時の細胞数と比較しての拡大培養率を算出した。 結果を表 9に示す。 表 9
培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
1 5日間 対照 (FN f r非固定化) 増殖しないため測定不可能
15日間 CH- 296 X 64. 3 表 9に示されるように、 低細胞数からの LAK細胞誘導時に各フィブロネクチ ンフラグメントを固定化した培養器材を使用した群においては、 誘導途中の細胞 の希釈操作を必要とすることなしに培養開始後 15日目に高い拡大培養率が得ら れた。 これに対して対照群では培養開始 15日目でもほとんど増殖しなかった。 すなわち無血清培地を用いて低細胞数から LAK細胞を誘導する際にフイブロネ クチンフラグメントを共存させることにより、 全く希釈操作を必要とすることな く、 高い拡大培養率で LAK細胞を誘導 ·培養することが可能であることが明ら かとなつた。 実施例 10 無血清培地を用いた LAK細胞培養系における I L一 2 R発現の誘 導 (低細胞数からの LAK細胞誘導 ·培養/希釈操作なしでの培養)
(1) LAK細胞の誘導および培養 実施例 9一 (1) と同様の方法で LAK細胞を誘導,培養した。
(2) LAK細胞における I L一 2R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 結果を表 10に示す。 かかる表では I L一 2 R発現陽性細胞含有率 (%) を I L一 2 R発現率 (%) と表示する。 表 10
培養日数 フイブロネクチンフラグメント I L- 2 R発現率 (%)
15日間 対照 (FN f r非固定化) 増殖しないため測定不可能
15日間 CH- 296 98. 0 表 10に示されるように、 低細胞数からの LAK細胞誘導時に各フイブロネク チンフラグメントを固定化した培養器材を使用した群においては、 誘導途中の細 胞の希釈操作を必要とすることなしに培養中の LAK細胞表面上における I L_ 2 R発現率を高く誘導することができた。 すなわち無血清培地を用いて低細胞数 から LAK細胞を誘導する際にフイブロネクチンフラグメントを共存させること により、 全く希釈操作を必要とすることなく、 I L一 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 1 1 無血清培地 (A I M V) を用いて培養した LAK細胞集団中にお ける CD 8陽性細胞含有比率
(1) LAK細胞の誘導および培養
実施例 8— (1) と同様の方法で LAK細胞を誘導 ·培養した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 1 1に示す。 血清濃度 ·培地 CD 8陽性細胞含有率 (%)
0 %A I M V 対照 (FN f r非固定化) 24. 7
0 A I M V CH- 296 45. 8
0 %A I M V H- 296 62. 6 表 1 1に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期 に各フイブロネクチンフラグメントを固定化した培養器材を使用した群において は、 培養中の LAK細胞中における CD 8陽性細胞含有率を高く誘導することが できた。 すなわち血清を含まない培地を用いて LAK細胞を誘導する際にフイブ ロネクチンフラグメントを共存させることにより、 LAK細胞中の CD 8陽性細 胞の含有率を高くしながら LAK細胞を誘導 ·培養することが可能であることが 明らかとなった。 実施例 12 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定
(1) LAK細胞の誘導および培養
実施例 1一 (3) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を 1 %または 5 %h uma n AB血清を含む A I M V培地 (以 下、 1 %A I M Vまたは 5%A I M Vと略す) に変更した。 結果を表 12に 示す。
表 12
血清濃度 · i 地 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
1 %A I M V 1 1日間 対照 (FN f r非固定化) X 7
1 A I M V 1 1日間 CH- 296 X 156
1 %A I M V 1 1日間 H- 296 X 39
1 %A I M V 15日間 対照 (FN f r非固定化) X 3
1 %A I M V 1 5日間 CH- 296 X 651
1 %A I V 1 5日間 H- 296 X 305
5 %A I M V 1 1日間 対照 (FN f r非固定化) X 454
5 %A I M V 1 1日間 CH- 296 X 1087
5 A I M V 1 1日間 H- 296 X 727
5 %A I M V 15日間 対照 (FN f r非固定化) X 778
5 %A I M V 15日間 CH- 296 X 1548
5 %A I M V 15日間 H- 296 X 882
表 12に示されるように、 低濃度の血清を含んだ培地 (A I M V) を用いて の LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化した培養器材 を使用した群においては、 対照群に比較して LAK細胞の拡大培養率が高い。 こ のことから各フイブロネクチンフラグメントは低濃度の血清を含んだ A I M V 培地を用いた LAK細胞培養時に好適に使用されることが明らかとなった。 実施例 13 種々の低血清培地を用いた LAK細胞培養系における拡大培養率の 効果
(1) LAK細胞の誘導および培養
実施例 1一 (3) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を 1 %h uma n AB血清を含む XV I VO 20培地 · XV I V 010培地または A I M V培地 (以下それぞれ 1 %XV I VO 20 · 1 %XV I VO 10または 1 %A I M Vと略す) に変更し、 各培地における拡大培養率 を測定した。 結果を表 13に示す。 . 表 13
血清濃度 ·培地 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
1 %XV I VO 20 1 1日間 対照 (FN f r非固定化) X 49
1 XV I VO 20 1 1日間 CH -296 X 1 53
1 A I M V 1 1日間 対照 (FN f r非固定化) X 79
1 %A I M V 1 1日間 CH -296 X 832
1 %XV I VO 20 15日間 対照 (FN f r非固定化) X 272
1 %XV I VO 20 15日間 CH -296 X 513
1 %XV I VO 10 15日間 対照 (FN f r非固定化) X 1 13
1 %XV I VO 10 15日間 CH -296 X 162
1 %A I M V 15日間 対照 (FN f r非固定化) X 744
1 A I M V 15日間 CH -296 X 8928
表 13に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘 導初期に各フイブロネクチンフラグメントを固定化した培養器材を使用した群に おいては、 対照群に比較して LAK細胞の拡大培養率が高い。 またこの効果は基 本培地を変えても発揮される。 このことから各フイブロネクチンフラグメントは 低濃度の血清を含んだいずれの培地を用いた LAK細胞培養時にも好適に使用さ れることが明らかとなった。 実施例 14 低血清培地を用いた LAK細胞培養系における拡大培養率の測定 (1) LAK細胞の誘導および培養
実施例 1— (3) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を 0. 2 %h uma n AB血清を含む XV I VO 20培地に変更 した。 結果を表 14に示す。 表 14
血清濃度 ·培地 培養日数 フイブロネクチン 拡大培養率
フラグメン卜 (倍率)
0. 2 %XV I VO 20 1 5日間 対照 (FN f r非固定化) X I I
0. 2 XV I VO 20 15日間 CH- 296 X 67 表 14に示されるように、 低濃度 (0. 2%) の血清を含んだ培地 (XV I V 020) を用いての LAK細胞誘導初期に各フイブロネクチンフラグメントを固 定化した培養器材を使用した群においては、 対照群に比較して LAK細胞の拡大 培養率が高い。 このことから各フイブロネクチンフラグメントは低濃度の血清を 含んだ培地を用いた LAK細胞培養時に好適に使用されることが明らかとなった
実施例 15 低血清培地を用いた LAK細胞培養系における拡大培養率の測定 ( 繰り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 '培養した。 この際使用す る培地を 0. 2 %h uma n AB血清を含む XV I VO 20培地または 1 %h u ma nAB血清を含む XV I VO 10に変更した。 結果を表 15に示す。 表 1 5
血清濃度 ·培地 フイブロネクチン 培養開始 0曰 培養開始 9日目 拡大培養率 フラグメント 目刺激 刺激 (倍率)
0.2¾XVIV020 対照 (FN f r非固定化) 抗 CD3 なし X I I
0.2¾XVIV020 F f r非固定化 抗 CD3 抗 CD3 X 9
0.2HVIV020 CH- 296 抗 CD3+CH-296 抗 CD3+CH-296 X 86 ιπνινοιο 対照 (FN f r非固定化) 抗 CD3 なし X 1 1 3 ιπνινοιο FN f r非固定化 抗 CD3 抗 CD3 X 28 1 lUVIVOlO CH- 296 抗 CD3+CH- 296 抗 CD3+CH-296 X 1282
1¾XVIV010 対照 (FN f r非固定化) 抗 CD3 なし X 24 ιπνινοιο FN f r非固定化 抗 CD3 抗 CD3 X 367
1SSXVIV010 CH - 296 抗 CD3+CH- 296 抗 CD3+CH-296 X 1030 ιπνινοιο H— 296 抗 CD3+H- 296 抗 CD3+H- 296 X 100 1
表 1 5に示されるように、 低濃度の血清 (0. 2%) を含んだ培地を用いての LAK細胞誘導時初期および中期に繰り返し各フイブロネクチンフラグメントお よび抗 CD 3抗体を固定化した培養器材を使用した群においては、 対照群に比較 して LAK細胞の拡大培養率が高い。 これらの拡大培養率は、 LAK細胞誘導時 初期および中期に繰り返し抗 CD 3抗体のみを固定化した培養器材を使用した群 における拡大培養率よりもはるかに高いものであった。 またこの効果は基本培地 を変えても発揮される。 すなわち LAK細胞誘導初期および中期にフイブロネク チンフラグメントおよび抗 CD 3抗体を用いて刺激することにより、 低濃度の血 清を含んだ培地を用いた場合でも高い拡大培養率で LAK細胞を誘導 ·培養する ことが可能であることが明らかとなつた。 実施例 16 低血清培地を用いた LAK細胞培養系における I L一 2レセプ夕一 ( I L-2 R) 発現の誘導
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 '培養した。 この際使用す る培地を 0. 2 %h uma n AB血清を含む XV I VO 20培地または 1 %hu ma nAB血清を含む XV I VO 10に変更した。
(2) LAK細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L— 2 R発現陽性細胞含有率を測定した 。 結果を表 16に示す。 かかる表では I L— 2 R発現陽性細胞含有率 (%) を I L一 2R発現率 (%) と表示する。 表 1 6
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9日 I L- 2 R フラグメント 目刺激 目刺激 発現率
(%)
0.2%XV匿 0 対照 (FN f r非固定化) 抗 CD3 なし 3. 0 1
0.2 XVIV020 FN f r非固定化 抗 CD3 抗 CD3 59. 0 8
0.2%XVIV020 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 77. 8 8
1%XVIV010 対照 (FN f r非固定化) 抗 CD3 なし . 1 3. 7 7
1%XVIV010 FN f r非固定化 抗 CD3 抗 CD3 58. 2 8
1%XVIV010 CH- 2 96 抗 CD3+CH- 296 抗 CD3+CH- 296 9 1. 1 1
6 表 16に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘 導初期および中期に各フイブロネクチンフラグメントを固定化した培養器材を使 用した群においては、 培養中の LAK細胞表面上における I L_ 2 R発現率を高 く誘導することができた。 またこの効果は基本培地を変えても発揮される。 すな わち低濃度の血清を含んだ培地を用いて LAK細胞を誘導する際にフイブロネク チンフラグメントを共存させることにより、 I L一 2 R発現率を高くしながらし A K細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 17 低血清培地を用いた LAK細胞集団中における CD 8陽性細胞含有 比率
(1) LAK細胞の誘導および培養
実施例 1— (3) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を 0. 2%もしくは 1 %h uma n AB血清を含む XV I VO 20培地ま たは 1 %h uma n AB血清を含む XV I VO 10に変更した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 17に示す。
血清濃度 ·培地 フイブロネクチンフラグメント CD 8陽性細胞含有率 (%)
0.2%XV I VO 20 対照 (FN f r非固定化) 50. 9
0.2%XV I VO 20 CH- 296 70. 9
1 %XV I VO 20 対照 (FN f r非固定化) 36. 2
1 %XV I VO 20 CH- 296 53. 6
1 XV I VO 20 H- 296 50. 6
1 %XV I VO 10 対照 (FN f r非固定化) 19. 9
1 %XV I VO 10 CH- 296 45. 5
1 %XV I VO 10 H- 296 53. 6
表 1 7に示されるように、 低血清を含む培地を用いての LAK細胞誘導初期に 各フィブロネクチンフラグメントを固定化した培養器材を使用した群においては
、 培養中の LAK細胞中における CD 8陽性細胞含有率を高く誘導することがで きた。 またこの効果は基本培地を変えても発揮された。 すなわち低濃度の血清を 含む培地を用いて LAK細胞を誘導する際にフイブロネクチンフラグメントを共 存させることにより、 LAK細胞中の CD 8陽性細胞の含有率を高くしながらし AK細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 18 低血清培地を用いた LAK細胞集団中における CD 8陽性細胞含有 比率 (繰り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 '培養した。 この際使用す る培地を 0. 2 %h uma n AB血清を含む XV I VO 20培地または 1 %hu ma nAB血清を含む XV I VO 10に変更した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 18に示す。 表 1 8
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9曰 CD 8陽性細 フラグメント 目刺激 目刺激 胞含有率
(%)
0.2HVIV020 対照(FN f r非固定化) 抗 CD3 抗 CD3 38. 9
0.2¾XVIV020 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 44. 5 ιπνινοιο 対照(FN f r非固定化) 抗 CD3 抗 CD3 2 5. 6 ιπνινοιο CH- 296 抗 CD3+CH-296 抗 CD3+CH-296 38. 3 表 18に示されるように、 低濃度の血清を含んだ培地を用いての LAK細胞誘 導初期または中期に各フイブロネクチンフラグメントを固定化した培養器材を使 用した群においては、 培養中の L AK細胞中における C D 8陽性細胞含有率を高 く誘導することができた。 またこの効果は基本培地を変えても発揮された。 すな わち低濃度の血清を含んだ培地を用いて LAK細胞を誘導する際にフイブロネク チンフラグメントを共存させることにより、 LAK細胞中の CD 8陽性細胞の含 有率を高くしながら LAK細胞を誘導 ·培養することが可能であることが明らか となった。 実施例 19 無血清培地を用いた LAK細胞培養系における拡大培養率の測定 (1) LAK細胞の誘導および培養
実施例 5— (1) と同様の方法で LAK細胞を誘導 '培養した。 ただし、 この 際使用する培地を血清を含まない XV I VO 10培地または A I M V培地に変 更した。 結果を表 19に示す。 表 19
血清濃度 ·培地 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
0 %XV I VO 10 1 1曰間 対照 (FN f r非固定化) X 32
0 %XV I VO 10 1 1日間 CH- 296 X 95
0 %XV I VO 10 15日間 対照 (FN f r非固定化) X 205
0 XV I VO 10 15日間 CH- 296 X 407
0 % X V I V O 10 1 1日間 対照 (FN f r非固定化) X 29
0 %XV I VO 10 1 1日間 H- 296 X 78
0 %XV I VO 10 15日間 対照 (FN f r非固定化) X 27
0 %XV I VO 10 15日間 H- 296 X 194
0 %A I M V 1 1日間 対照 (FN f r非固定化) X 25
0 A I M V 1 1日間 CH- 296 X 85
0 A I M V 1 1日間 H- 296 X 69
0 %A I M V 15日間 対照 (FN f r非固定化) X 61
0 %A I M V 15日間 CH- 296 X 202
0 %A I M V 15日間 H- 296 X 392
表 1 9に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期 に各フイブロネクチンフラグメントを固定化した培養器材を使用した群において は、 対照群に比較して LAK細胞の拡大培養率が高い。 またこの効果は基本培地 を変えても発揮された。 このことから各フイブロネクチンフラグメントは血清を 含まない培地を用いた LAK細胞培養時に好適に使用されることが明らかとなつ た。 実施例 20 無血清培地での LAK細胞培養系における拡大培養率の測定 (繰り 返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 6— (1) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を血清を含まない XV I VO 10培地に変更した。 結果を表 20 に示す。 表 20
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9日 拡大培養率 フラグメント 目刺激 目刺激 (倍率) οπνινοιο 対照 (FN f r非固定化) 抗 CD3 なし X 27 οπνινοιο F f r非固定化 抗 CD3 抗 CD3 X 288
0¾XVIV010 CH- 2 96 抗 CD3+CH- 296 抗 CD3+CH- 296 X 845
0¾XVIV010 H- 296 抗 CD3+H-296 抗 CD3+H - 296 X 893 表 20に示されるように、 血清を含まない培地を用いての LAK細胞誘導時初 期および中期に繰り返し各フイブロネクチンフラグメントおよび抗 CD 3抗体を 固定化した培養器材を使用した群においては、 対照群に比較して LAK細胞の拡 大培養率が高い。 これらの拡大培養率は、 LAK細胞誘導時初期および中期に繰 り返し抗 CD 3抗体のみを固定化した培養器材を使用した群における拡大培養率 よりもはるかに高いものであった。 またこの効果は基本培地を変えても発揮され た。 すなわち LAK細胞誘導初期および中期にフイブロネクチンフラグメントお よび抗 CD 3抗体を用いて刺激することにより、 血清を含まない培地を用いた場 合でも高い拡大培養率で L AK細胞を誘導 ·培養することが可能であることが明 らかとなつた。 実施例 21 無血清培地を用いた LAK細胞培養系における I L一 2 R発現の誘 導
(1) LAK細胞の誘導および培養
実施例 6— (1) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を血清を含まない XV I VO 10培地に変更した。
(2) LAK細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 結果を表 21に示す。 かかる表では I L一 2 R発現陽性細胞含有率 (%) を I L一 2R発現率 (%) と表示する。 表 2
血清濃度 ·培地 フィフロネクチン 培養開始 0日 培養開始 9曰 I L- 2 R フラグメン卜 目刺激 目刺激 発現率
(%)
0簡 V010 対照 (FN f r非固定化) 抗 CD3 なし 24. 99 οπνινοιο FN f r非固定化 抗 CD3 抗 CD3 80. 5 8 οπνινοιο CH- 296 抗 CD3+CH- 296 なし 40. 1 7 οπνινοιο CH- 296 抗 CD3+CH-296 抗 CD3+CH- 296 92. 59
0¾XVIV010 H- 296 抗 CD3+H-296 なし 30. 09 οπνινοιο H- 296 抗 CD3+H- 296 抗 CD3+H- 296 87. 1 5 表 21に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期 および中期に各フイブロネクチンフラグメントを固定化した培養器材を使用した 群においては、 培養中の LAK細胞表面上における I L— 2 R発現率を高く誘導 することができた。 すなわち血清を含まない培地を用いて L A K細胞を誘導する 際にフイブロネクチンフラグメントを共存させることにより、 I L— 2 R発現率 を高くしながら LAK細胞を誘導 ·培養することが可能であることが明らかとな つた。 実施例 22 無血清培地を用いて培養した LAK細胞集団中における CD 8陽性 細胞含有比率 (1) LAK細胞の誘導および培養
実施例 5— (1) と同様の方法で LAK細胞を誘導 '培養した。 ただし、 この 際使用する培地を血清を含まない XV I VO 20または XV I VO 10または A I M V培地に変更した。
( 2 ) L A K細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。
結果を表 22に示す。 表 22
血清濃度 ·培地 フイブロネクチンフラグメント CD 8陽性細胞含有率 (%)
0 %XV I VO 20 対照 (FN f r非固定化) 20. 01
0 %XV I VO 20 CH- 296 64. 48
0 %XV I VO 10 対照 (FN f r非固定化) 27. 91
0 %XV I VO 10 CH- 296 47. 72
0 %A I M V 対照 (FN f r非固定化) 2 1. 14
0 %A I M V CH- 296 58. 8
0 %XV I VO 10 対照 (FN f r非固定化) 16. 53
0 XV I VO 10 CH- 296 35. 22
0 %XV I VO 10 H- 296 27. 29
表 22に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期 に各フイブロネクチンフラグメントを固定化した培養器材を使用した群において は、 培養中の LAK細胞中における CD 8陽性細胞含有率を高く誘導することが できた。 またこの効果は基本培地を変えても発揮された。 すなわち血清を含まな い培地を用いて LAK細胞を誘導する際にフイブロネクチンフラグメントを共存 させることにより、 LAK細胞中の CD 8陽性細胞の含有率を高くしながら L A K細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 23 無血清培地を用いた LAK細胞集団中における CD 8陽性細胞含有 比率 (繰り返し刺激による拡大培養) (1) LAK細胞の誘導および培養
実施例 6— (1) と同様の方法で LAK細胞を誘導 ·培養した。 ただし、 この 際使用する培地を血清を含まない XV I VO 20または XV I VO 10培地に変 更した。
( 2 ) L AK細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 23に示す。 表 23
血清濃度 ·培地 フイブロネクチン 培養開始 0曰 培養開始 9日 CD 8陽性 フラグメント 目刺激 目刺激 細胞含有率
(%)
OHVIV020 対照(FN f r非固定化) 抗 CD3 なし 20. 0 1
0HVIV020 CH- 296 抗 CD3+CH- 296 なし 64. 48
0¾XVIV020 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 35. 2 1 οπνινοιο 対照(FN f r非固定化) 抗 CD3 なし 27. 91 οπνινοιο CH- 296 抗 CD3+CH- 296 なし 47. 7 2 οπνινοιο FN f r非固定化 抗 CD3 抗 CD3 37. 9 7 οπνινοιο CH- 296 抗 CD3+CH- 296 抗 CD3+CH-296 50. 2 2 οπνινοιο 対照(FN f r非固定化) 抗 CD3 なし 16. 53
0¾XVIV010 CH- 296 抗 CD3+CH- 296 なし 3 5. 2 2
0¾XVIV010 H- 296 抗 CD3+H- 296 なし 2 7. 2 9
0¾XVIV010 CH- 296 抗 CD3+CH-296 抗 CD3+CH-296 75. 33
0¾XVIV010 H- 296 抗 CD3+H-296 抗 CD3+H-296 6 1. 0 8
表 23に示されるように、 血清を含まない培地を用いての LAK細胞誘導初期 または初期中期に各フイブロネクチンフラグメントを固定化した培養器材を使用 した群においては、 培養中の LAK細胞中における CD 8陽性細胞含有率を高く 誘導することができた。 またこの効果は基本培地を変えても発揮された。 すなわ ち低濃度の血清を含んだ培地を用いて LAK細胞を誘導する際にフイブロネクチ ンフラグメントを共存させることにより、 LAK細胞中の CD 8陽性細胞の含有 率を高くしながら LAK細胞を誘導 ·培養することが可能であることが明らかと なった。 実施例 24 低血清培地を用いた LAK細胞培養系における I L— 2 R発現の誘 導 (低細胞数からの LAK細胞誘導 ·培養/希釈操作なしでの培養)
(1) LAK細胞の誘導および培養
1 %h uma n AB血清を含む XV I VO 20 (以下 1 %XV I V020と省 略) に 1 X 105 c e 1 1 sZmLまたは 5 X 104 c e 1 1 s/mLとなるよう に実施例 1一 (1) で調製した PBMCを懸濁後、 実施例 1一 (2) と同様の方 法で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体および FN f r固定化 6ゥエルプレートに lmLZゥエルずつまき、 1 %XV I VO 2 0 4mLを加え (1 X 104 e e l 1 s/cm2 または 5 X 103 e e l 1 s/ cm2 ) 、 さらに終濃度 50 OUZmLとなるように I L— 2 (塩野義製薬社製 ) を添加した。 これらのプレートを 5 %C〇2 中 37 で培養した (培養 0日目 ) 。 培養開始後 2日目、 3日目、 4日目には終濃度 50 OUZmLとなるように I L一 2を添加した。 培養を継続し、 培養開始後 7日目以降 2〜3日毎に終濃度 50 OUZmLとなるよう I L— 2を添加した。 この間培養液の希釈操作は全く 行わなかった。 培養開始後 16日目に細胞を回収した。
(2) L AK細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 かかる表では I L一 2 R発現陽性細胞含有率 (%) を I L— 2R発現率 (%) と表示する。 結果を表 24に示す。 表 24
血清濃度 ·培地 フイブロネクチンフラグメント I L- 2 R発現率 (%)
1 %XV I VO 20 対照 (FN f r非固定化) 1 2. 15
CH- 296 97. 47
H- 296 95. 43 表 24に示されるように、 低細胞数からの LAK細胞誘導時に各フイブロネク チンフラグメントを固定化した培養器材を使用した群においては、 誘導途中の細 胞の希釈操作を必要とすることなしに培養中の LAK細胞表面上における I L— 2 R発現率を高く誘導することができた。 すなわち低血清培地を用いて低細胞数 から LAK細胞を誘導する際にフイブロネクチンフラグメントを共存させること により、 全く希釈操作を必要とすることなく、 I L一 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 25 無血清 ·低血清培地を用いた LAK細胞培養系における細胞傷害活 性の測定
(1) LAK細胞の誘導および培養
実施例 1一 (3) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を 0 %から 5 %h uma n AB血清を含む XV I VO 20または 0 %から 5 %h uma n AB血清を含む A I M V培地または 5 % h u m a n A B血清を 含む X V I VO 10培地に変更した。
(2) 培養した LAK細胞の細胞傷害活性の測定
実施例 25— (1) で調製した培養後 15日目の LAKの細胞傷害活性は、 C a 1 c e i n—AMを用いた細胞傷害活性測定法 〔リヒテンフェルズ R. ら ( L i c h t e n f e l s R. , e t a l . ) 、 J. I mmn o 1. M e t h od s、 第 172巻、 第 2号、 第 227〜 239頁 (1994) 〕 にて評 価した。 細胞株 K562、 Daud iを l X 106 c e l l s/mLとなるよ う 5%FBS (B i o Wh i t t a k e r社製) を含む R PM 1 1640培地 に懸濁後、 終濃度 25 となるように C a 1 c e i n -AM (ドータイト社製 ) を添加し、 37でで 1時間培養しこ。 細胞を C a 1 c e i n—AMを含まない 培地にて洗浄後、 C a 1 c e i n標識標的細胞とした。
実施例 25— (1) で調製した LAK細胞をエフェクター細胞として 1 X 10 6〜3 X 106 c e 1 1 5/111しとなるょぅに5%1111111&1血清を含む1^?^1 I (以下 5 HRPM Iと省略) で段階希釈後、 96穴細胞培養プレートの各ゥェ ルに 100 LZゥエルずつ分注しておき、 これらに 1 X 105 c e 1 1 s /m Lに調製した C a 1 c e i n標識標的細胞を 100 L Zゥエルずつ添加した。 上記細胞懸濁液の入ったプレートを 400 X gで 1分間遠心後、 37での湿式 C 02インキュベーター内で 4時間インキュベートした。 4時間後、 各ゥエルから 培養上清 100 /Lを採取し、 蛍光プレートリーダ一 (485 nm/538 nm ) によって培養上清中に放出された c a 1 c e i n量 (蛍光強度) を測定した。 L A K細胞の細胞傷害活性は以下の式 1にしたがつて算出した。 式 1 :
細胞傷害活性 (%) = 〔 (各ゥエルの測定値一最小放出量) / (最大放出量一
最小放出量) 〕 X 100 上式において最小放出量は標的細胞のみ含有するゥエルの c a 1 c e i n放出 量であり、 標的細胞からの c a 1 c e i n自然放出量を示す。 また、 最大放出量 は標的細胞に界面活性剤である T r i t o n X— 100 (ナカライテスク社製 ) を終濃度 0. 05 %となるように加えて細胞を完全破壊した際の c a 1 c e i n放出量を示している。 結果を表 25に示す。 なお、 表中、 「E/T」 とはェフエ クタ一細胞と標的細胞の細胞数に基づく比 (エフェクター細胞 標的細胞) を表 す。 表 25
血清濃度 フイブロネクチン E/T 細胞傷害活性 (%) 細胞傷害活性 (%)
•培地 フラグメント (標的細胞 K562) (標的細胞 Daudi)
0¾XVIV020 対照 (FN f r非固定化) 20 28. 7 1 3. 3
0¾XVIV020 CH- 296 20 46. 7 23. 8
0¾XVIV020 H— 296 20 49. 9 19. 0
0.2¾XVIVO20 対照 (FN f r非固定化) 10 13. 3 1 1. 6
0.2HVIV020 CH- 296 10 18. 2 18. 6
1%XVIV020 対照 (FN f r非固定化) 20 36. 5 24. 8
UXVIV020 H- 296 20 62. 8 39. 0
5¾XVIV020 対照 (FN f r非固定化) 30 57. 0 56. 6
5SKXVIV020 CH- 296 30 78. 1 59. 1
0¾AIM V 対照 (FN f r非固定化) 30 25. 2 23. 4
0¾AIM V CH- 296 30 36. 8 28. 1
5¾AIM V 対照 (FN f r非固定化) 30 55. 3 49. 8
5¾AIM V CH- 296 30 77. 2 53. 6
5¾AIM V 対照 (FN f r非固定化) 10 35. 1 50. 5
5¾AIM V CH- 296 10 71. 6 51. 8
5¾AIM V H- 296 10 73. 9 57. 8
5¾XVIV010 対照 (FN f r非固定化) 10 72. 6 51. 1
5¾XVIV010 CH- 296 10 84. 6 57. 4
5ΠΥΙΥ010 H- 296 10 89. 3 69. 5
表 25に示されるように、 血清を含まない培地もしく低濃度の血清を含んだ培 地を用いての LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化し た培養器材を使用した群においては、 対照群に比較して LAK細胞の細胞傷害活 性が高い。 またこの効果は基本培地を変えても発揮された。 このことから各フィ ブロネクチンフラグメントは血清を含まない培地または低濃度の血清を含んだ培 地を用いた LAK細胞培養時に好適に使用されることが明らかとなった。 実施例 26 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (繰り返し刺激による拡大培養) 一 1
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を l%huma nAB血清を含む培地 A I M Vに変更した。 結果を表 2 6に示す。 表 2 6
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9日 拡大培養率 フラグメント 目刺激 目刺激 (倍率) 蘭 M V 対照 (FN f r非固定化) 抗 CD3 抗 CD3 X 1 30
1¾AIM V CH- 296 抗 CD3+CH-296 抗 CD3+CH- 296 X 24 1 9
表 26に示されるように、 低濃度の血清 (1 %) を含んだ A I M V培地を用 いての LAK細胞誘導時初期および中期に繰り返し各フイブロネクチンフラグメ ントおよび抗 CD 3抗体を固定化した培養器材を使用した群においては、 対照群 に比較して LAK細胞の拡大培養率が高い。 これらの拡大培養率は、 LAK細胞 誘導時初期および中期に繰り返し抗 CD 3抗体のみを固定化した培養器材を使用 した群における拡大培養率よりもはるかに高いものであった。 すなわち LAK細 胞誘導初期および中期にフイブロネクチンフラグメントおよび抗 CD 3抗体を用 いて刺激することにより、 低濃度の血清を含んだ培地を用いた場合でも高い拡大 培養率で LAK細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 27 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (繰り返し刺激による拡大培養) 一 2
( 1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (容器) に抗ヒト CD 3抗体および FNフラグ メントを固定化した。 すなわち 1 2穴細胞培養プレートまたは 1 2. 5 cm2細 胞培養フラスコ (F a 1 c on社製) に抗ヒト CD 3抗体 (終濃度 S gZmL ) を含む PBSを 1.9mL (1 2穴プレートの場合) または 2mL (1 2. 5 c m2 フラスコの場合) ずつ添加した。 この時、 FNフラグメント添加群には製造 例 1に記載の各フイブロネクチンフラグメント (FN f r) を終濃度
mL (12穴プレートの場合) または 25 g/mL (12. 5 cm2 フラスコ の場合) となるように添加した。 対照として、 FN f rを添加しない群も設定し た。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗体 ' FN f rを含む PBSを吸引除去 後、 各ゥエルを PBSで 2回、 A I M V培地で 1回洗浄し各実験に供した。
(2) LAK細胞の誘導および培養
1 %A I M Vに 5 X 105 c e l l s /mLとなるように実施例 1一 ( 1 ) で調製した PBMCを懸濁後、 実施例 27 _ (1) で調製した抗ヒト CD 3抗体 固定化プレート、 または抗ヒト CD 3抗体および FN f r固定化プレートに lm Lノウエルずつまき、 終濃度 100 OU/mLとなるように I L— 2を添加した 。 これらのプレートを 5%C〇2 中 37 t:で培養した (培養 0日目) 。 培養開始 後 2、 3日目には 1000 UZmLの I L— 2を含む 1 %A I M Vを lmLZ ゥエルずつ添加した。 培養開始後 4日目には培養液を何も固定化していない 25 cm2細胞培養フラスコ (F a I c on社製) に移し、 さらに 1 %A I M V 7mLを添加し、 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開 始 7日目には 1 %A I M Vを用いて細胞濃度を 2 X 105 c e 1 I s ZmLに 調整した培養液の一部を何も固定化していない新しいフラスコに移し、 終濃度 5 0 OUZmLとなるよう I L— 2を添加した。 培養開始 9日目には実施例 27 -
(1) と同様の方法で調製した抗ヒト CD 3抗体固定化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラスコ (ただし、 固定化に用いる抗ヒト CD 3抗体の濃度は 0. S gZmLとした) に 1 %A IM Vを用いて細胞濃度を 2 X 105 c e 1 1 s ZmLに調整した培養液の一部を移し、 終濃度 500 U/ mLとなるよう I L— 2を添加した。 培養開始 12日目に再度適宜 1 %A I M Vを用いて細胞濃度を 2 X 105 c e 1 1 s ZmLに調整した培養液の一部を何 も固定化していない新しいフラスコに移し、 終濃度 50 OUZmLとなるよう I L一 2を添加した。 培養開始 15日目にトリパンブルー染色法にて生細胞数を計 測し、 培養開始時の細胞数と比較しての拡大培養率として算出した。 同条件にて n = 3で拡大培養を行い、 その平均土標準偏差の各結果を表 27に示す。 表 27
血清濃度 フイブロネクチン 培養開始 0日 培養開始 9日 拡大培養率
•培地 フラグメント 目刺激 目刺激 (倍率) 蘭 M V 対照(FN f r非固定化) 抗 CD3 なし X 3392 ± 7 7 9
1¾AIM V FN f r非固定化 抗 CD3 抗 CD3 X4389 ± 1 234
1¾AIM V CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 X 8545 ± 1 3 28
平均値土標準偏差 表 27に示されるように、 低濃度の血清 (1 %) を含んだ A I M V培地を用 いての LAK細胞誘導時初期および中期に繰り返し各フイブロネクチンフラグメ ントおよび抗 CD 3抗体を固定化した培養器材を使用した群においては、 対照群 に比較して LAK細胞の拡大培養率が高い。 これらの拡大培養率は、 LAK細胞 誘導時初期および中期に繰り返し抗 CD 3抗体のみを固定化した培養器材を使用 した群における拡大培養率よりもはるかに高いものであった。 すなわち LAK細 胞誘導初期および中期にフイブロネクチンフラグメントおよび抗 CD 3抗体を用 いて刺激することにより、 低濃度の血清を含んだ培地を用いた場合でも高い拡大 培養率で L A K細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 28 無血清培地 (A IM V) を用いた LAK細胞集団中における CD 8陽性細胞含有比率 (繰り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を h uma n AB血清を含まない A I M Vに変更した。
(2) L A K細胞における CD 8陽性細胞集団含有比率の測定 実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 28に示す。 表 28
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9日 CD 8陽性細胞 フラグメント 目刺激 目刺激 含有率 (%)
0¾AIM V 対照 (FN f r非固定化) 抗 CD3 なし 43. 8
0¾AIM V CH- 296 抗 CD3+CH- 296 なし 64. 4
0¾AIM V CH- 2 96 抗 CD3+CH-296 抗 CD3+CH- 296 76. 6 表 28に示されるように、 血清を含まない A I M V培地を用いての LAK細 胞誘導初期または中期に各フイブロネクチンフラグメントを固定化した培養器材 を使用した群においては、 培養中の L AK細胞後細胞集団における C D 8陽性細 胞含有率を高く誘導することができた。 すなわち低濃度の血清を含んだ培地を用 いて LAK細胞を誘導する際にフイブロネクチンフラグメントを共存させること により、 LAK細胞中の CD 8陽性細胞の含有率を高くしながら LAK細胞を誘 導 ·培養することが可能であることが明らかとなった。 実施例 29 低血清培地 (A I M V) を用いた LAK細胞集団中における CD 8陽性細胞含有比率 (繰り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を 1 %h uma n AB血清を含む A I M Vに変更した。
( 2 ) L AK細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 29に示す。 表 29
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9日 CD 8陽性細胞 フラグメント 目刺激 目刺激 含有率 (%)
1 ¾AIM V 対照 (FN f r非固定化) 抗 CD3 なし 39. 2
1 ¾AIM V 対照 (FN f r非固定化) 抗 CD3 抗 CD3 60. 0
1 ¾AIM V CH- 296 抗 CD3+CH-296 なし 49. 2
1 ¾AIM V CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 7 1. 0 表 29に示されるように、 低濃度の血清を含んだ A I M V培地を用いての L AK細胞誘導初期または初期および中期に各フイブロネクチンフラグメントを固 定化した培養器材を使用した群においては、 培養後の LAK細胞集団における C D 8陽性細胞含有率を高く誘導することができた。 すなわち低濃度の血清を含ん だ培地を用いて LAK細胞を誘導する際にフイブロネクチンフラグメントを共存 させることにより、 LAK細胞中の CD 8陽性細胞の含有率を高くしながら L A K細胞を誘導 ·培養することが可能であることが明らかとなった。 実施例 30 無血清培地 (A I M V) を用いた LAK細胞培養系における I L 一 2レセプ夕一 ( I L一 2 R) 発現の誘導
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を h uma n AB血清を含まない A I M V培地に変更した。
(2) LAK細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 結果を表 30に示す。 かかる表では I L— 2 R発現陽性細胞含有率 (%) を I L一 2 R発現率 (%) と表示する。 表 30
血清濃度 ·培地 フイブロネクチン 培養開始 0日 培養開始 9曰 I L- 2 R フラグメント 目刺激 目刺激 発現率 (%)
0¾AIM V 対照 (FN f r非固定化) 抗 CD3 なし 22. 0
0¾AIM V 対照 (FN f r非固定化) 抗 CD3 抗 CD3 39. 9
0%AIM V CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 51. 9
表 30に示されるように、 血清を含まない A I M V培地を用いての LAK細 胞誘導初期および中期に各フイブロネクチンフラグメントを固定化した培養器材 を使用した群においては、 培養後の LAK細胞表面上における I L一 2 R発現率 を高く誘導することができた。 すなわち血清を含まない培地を用いて LAK細胞 を誘導する際にフイブロネクチンフラグメントを共存させることにより、 I L— 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能であることが 明らかとなった。 実施例 31 低血清培地 (A IM V) を用いた LAK細胞培養系における I L 一 2レセプ夕一 ( I L— 2R) 発現の誘導 (繰り返し刺激による拡大培養)
(1) LAK細胞の誘導および培養
実施例 2— (1) と同様の方法で LAK細胞を誘導 '培養した。 この際使用す る培地を 1 %h uma nAB血清を含む A I M V培地に変更した。
(2) LAK細胞における I L一 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L— 2 R発現陽性細胞含有率を測定した 。 結果を表 31に示す。 かかる表では I L— 2 R発現陽性細胞含有率 (%) を I L— 2 R発現率 (%) と表示する。 表 3
血清濃度 フイブロネクチン 培養開始 0日 培養開始 9日 I L一 2 R発現率
•培地 フラグメント 目刺激 目刺激 (%)
1 ¾AIM V 対照 (FN f r非固定化) 抗 CD3 なし 23. 6
1¾AIM V CH- 296 抗 CD3+CH-296 なし 27 - 2
1¾AIM V CH- 296 抗 CD3+CH-296 抗 CD3+CH-296 69. 1 表 31に示されるように、 低濃度の血清を含んだ A I M V培地を用いての L AK細胞誘導初期および中期に各フイブロネクチンフラグメントを固定化した培 養器材を使用した群においては、 培養中の LAK細胞表面上における I L— 2R 発現率を高く誘導することができた。 すなわち低濃度の血清を含んだ培地を用い て LAK細胞を誘導する際にフイブロネクチンフラグメントを共存させることに より、 I L— 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能 であることが明らかとなった。 実施例 32 低血清培地 (A I M V) を用いた LAK細胞集団中における CD 8陽性細胞含有比率
(1) LAK細胞の誘導および培養
実施例 1 _ (3) と同様の方法で LAK細胞を誘導 ·培養した。 この際使用す る培地を 1 %h uma n AB血清を含む A I M V培地に変更した。
( 2 ) L A K細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 32に示す。 表 32
血清濃度 ·培地 フイブロネクチンフラグメント CD 8陽性細胞含有率 (%)
1 %A I M V 対照 (FN f r非固定化) 41. 02
1 %A I M V CH- 296 56. 78 表 32に示されるように、 低血清を含む A IM V培地を用いての LAK細胞 誘導初期に各フイブロネクチンフラグメントを固定化した培養器材を使用した群 においては、 培養中の LAK細胞中における CD 8陽性細胞含有率を高く誘導す ることができた。 すなわち低濃度の血清を含む培地を用いて LAK細胞を誘導す る際にフイブロネクチンフラグメントを共存させることにより、 LAK細胞中の CD 8陽性細胞の含有率を高くしながら LAK細胞を誘導 ·培養することが可能 であることが明らかとなった。 実施例 33 無血清 ·低血清培地を用いた LAK細胞培養系における細胞傷害活 性の測定
(1) LAK細胞の誘導および培養
実施例 1一 (3) または実施例 2— (1) と同様の方法で LAK細胞を誘導 · 培養した。 この際使用する培地を 0 %または 1 %h uma n AB血清を含む XV I V〇 10、 XV I V〇 20または A I M V培地に変更した。
(2) 培養した LAK細胞の細胞傷害活性の測定
実施例 25— (2) と同様の方法で培養後 15日目の LAKの細胞傷害活性を 測定した。 結果を表 33に示す。
表 33
血清濃度 · フイブロネクチン 培養開始 培養開始 E/T 細胞傷害 細胞傷害 培地 フラク'メント 0日目刺激 9日目刺激 活性 (¾) 活性 (《 標的細胞 標的細胞
K562 Daudi οπνινοιο 対照 抗 CD3 なし 10 11.88 10.84
(FNfr非固定化)
οπνινοιο CH- 296 抗 CD3+CH - 296 なし 10 19.55 26.23
1¾AIM V 対照 抗 CD3 なし 10 16.82 33.02
(FNfr非固定化)
觀 M V CH- 296 抗 CD3+CH- 296 なし 10 46.54 42.3
0HVIV020 対照 抗 CD3 抗 CD3 10 24.5 13.3
(FNfr非固定化)
0¾XVIV020 CH- 296 抗 CD3+CH- 296 抗 CD3+CH- 296 10 30.8 23.3
1¾XVIV020 対照 抗 CD3 抗 CD3 10 18.5 13.9
(FNfr非固定化)
1¾XVIV020 CH- 296 抗 CD3+CH-296 抗 CD3+CH- 296 10 30.8 28.5
1¾XVIV010 対照 抗 CD3 抗 CD3 10 13.8 8.4
(FNfr非固定化)
XVI V010 CH- 296 抗 CD3+CH- 296 抗 CD3+CH-296 10 33.0 31.8 表 33に示されるように、 血清を含まない培地もしくは低濃度の血清を含んだ 培地を用いての LAK細胞誘導初期または初期および中期に各フイブロネクチン フラグメントを固定化した培養器材を使用した群においては、 対照群に比較して LAK細胞の細胞傷害活性が高い。 またこの効果は基本培地を変えても発揮され た。 このことから各フイブロネクチンフラグメントは血清を含まない培地または 低濃度の血清を含んだ培地を用いた LAK細胞培養時に好適に使用されることが 明らかとなった。 実施例 34 低血清培地 (XV I VO 10) を用いた LAK細胞培養系におけ る拡大培養率の測定 (細胞培養用 co2 ガス透過性バッグを用いた培養) (1) 抗ヒト CD3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (細胞培養用 C〇2 ガス透過性バッグ) に抗ヒ ト CD 3抗体および FNフラグメントを固定化した。 すなわち 85 cm2細胞培 養用 C02 ガス透過性バッグ (B ax t e r社製) に抗ヒト CD 3抗体 (終濃度 5 g/mL) を含む PBSを 2 OmLずつ添加した。 この時、 FNフラグメン ト添加群には製造例 1に記載の各フイブロネクチンフラグメント (FN f r) を 終濃度 42. 5 gZmLとなるように添加した。 対照として、 FN f rを添加 しない群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4でで保存し た。 使用直前にはこれらの培養器材から抗体 ' FN f rを含む PBSを除去後、 各バッグを P B Sで 2回、 1 %h uma n AB血清を含む XV I VO 10培地 ( 以下 1 %XV I VO 10と略す) で 1回洗浄し各実験に供した。
(2) LAK細胞の誘導および培養
1 XV I VO 10に i x i 06 c e 1 1 s /mLとなるように実施例 1― ( 1) で調製した PBMCを懸濁後、 実施例 34_ (1) で調製した抗ヒト CD3 抗体固定化細胞培養用 C〇2 ガス透過性バッグ、 または抗ヒト CD 3抗体および FN f r固定化細胞培養用 C〇2ガス透過性バッグに 1 OmLZバッグずつ細胞 懸濁液を入れ、 終濃度 100 OUZmLとなるように I L— 2を添加した。 これ らの細胞培養用 C〇2 ガス透過性バッグを 5%C〇2 中 37 で培養した (培養 0日目) 。 培養開始後 2日目には 100 OU/mLの I L— 2を含む 1 %XV I VO l 0を 2 OmLZバッグずつ添加した。 培養開始 4日目には終濃度 500 U ZmLとなるよう I L— 2を添加した。 培養開始後 6日目には 1 %XV I VO 1 0を 3 OmLZバッグずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2を 添加した。 培養開始後 8日目には培養液の一部を適宜希釈した後、 何も固定化し ていない 85 cm2細胞培養用 C02 ガス透過性バッグに移し、 終濃度 500 U /mLとなるよう I L— 2を添加した。 培養開始 1 1、 13日目には終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 15日目にトリパンブルー 染色法にて生細胞数を計測し、 培養開始時の細胞数と比較しての拡大培養率とし て算出した。 結果を表 34に示す。 表 34
血清濃度 ·培地 培養日数 フイブロネクチンフラグメント 拡大培養率 (倍率)
1 XV I VO 10 1 5日間 対照 (FN f r非固定化) X 34
1 %XV I VO 10 1 5日間 CH- 296 X 10 1 表 34に示されるように、 低濃度 (1 %) の血清を含んだ培地 (XV I VO l 0) と細胞培養用 C〇2 ガス透過性バッグを用いての LAK細胞誘導初期に各フ イブロネクチンフラグメントを固定化した細胞培養用 C〇 2 ガス透過性バッグを 使用した群においては、 対照群に比較して LAK細胞の拡大培養率が高い。 この ことから各フイブロネクチンフラグメントは低濃度の血清を含んだ培地および細 胞培養用 C02 ガス透過性バッグを用いた LAK細胞培養時に好適に使用される ことが明らかとなった。 実施例 35 低血清培地 (XV I VO 10) を用いた LAK細胞培養系における 拡大培養率の測定 (細胞培養用フラスコおよび細胞培養用 co2 ガス透過性バッ グを組み合わせた培養)
(1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (25 cm2 細胞培養用フラスコ) に抗ヒト C D 3抗体および FNフラグメントを固定化した。 すなわち 25 cm2 細胞培養用 フラスコ (コ一ニング社製) に抗ヒト CD 3抗体 (終濃度 5 / gZmL) を含む PBSを 6mLずつ添加した。 この時、 FNフラグメント添加群には製造例 1に 記載の各フイブロネクチンフラグメント (FN f r) を終濃度 42. 5 g/m Lとなるように添加した。 対照として、 FN f rを添加しない群も設定した。 これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 :で保存し た。 使用直前にはこれらの培養器材から抗体 · FN f rを含む PBSを除去後、 各フラスコを P B Sで 2回、 1 %h uma n AB血清を含む XV I VO 10培地
(以下 1 %XV I VO 10と略す) で 1回洗浄し各実験に供した。 (2) LAK細胞の誘導および培養
l %XV I VO 10に i x i 06 c e 1 1 s /mLとなるように実施例 1― ( 1) で調製した PBMCを懸濁後、 実施例 35_ (1) で調製した抗ヒト CD 3 抗体固定化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラスコに SmLZフラスコずつ細胞懸濁液を入れ、 終濃度 100 OU/mLとなるように I L— 2を添加した。 これらのフラスコを 5%C02 中 37 で培養した (培養 0日目) 。 培養開始後 1日目または 2日目には 100 OUZmLの I L— 2を含 む 1 %XV I V〇 10を 7 mLZフラスコずつ添加した。 以下抗 CD 3抗体土 C H— 296刺激期間により 2つの方法で培養した。 ( i) 培養開始後 4日目に培 養液をなにも固定化していない 85 cm2細胞培養用 C〇2 ガス透過性バッグに 移した後、 1 %XV I V〇 10を 2 OmLZバッグずつ添加し終濃度 500 U/ mLとなるよう I L— 2を添加、 さらに培養開始後 6日目に 1 %XV I VO 10 を 3 OmLZバッグずつ添加後、 終濃度 50 OUZmLとなるよう I L _ 2を添 加した (抗 CD 3抗体土 CH_ 296刺激期間 4日間) 。 ( i i) 培養開始 4日 目または 5日目に終濃度 50 OU/mLとなるよう I L— 2を添加し、 培養開始 後 6日目に培養液をなにも固定化していない 85 cm2細胞培養用 C〇2 ガス透 過性バッグに移した後、 1 % X V I V O 10を 50 m L バッグずつ添加、 終濃 度 50 OUZmLとなるよう I L— 2を添加した (抗 CD 3抗体土 CH_ 296 刺激期間 6日間) 。 両条件とも培養開始後 8日目には培養液の一部を適宜希釈し た後、 何も固定化していない 85 cm2細胞培養用 C〇2 ガス透過性バッグに移 し、 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 1 1、 13 日目には終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 1 5日 目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時の細胞数と比較し ての拡大培養率として算出した。 結果を表 35に示す。 表 35
血清濃度 ·培地 抗 CD3土 CH- 296 培養日数 フイブロネクチン 拡大培養率 刺激期間 フラグメント (倍率)
1 %XV I VO 1 0 4日間 1 5日間 対照 (FN f r非固定化) X 23 5
1 %XV I VO 1 0 4日間 1 5日間 CH- 296 X 49 8
1 %XV I VO 1 0 6日間 1 5日間 対照 (FN f r非固定化) X 42 5
1 XV I VO 1 0 6日間 1 5日間 CH- 2 96 X 690 表 35に示されるように、 低濃度 (1 %) の血清を含んだ培地 (XV I VO l 0) を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッグを 組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化し た細胞培養用フラスコを使用した群においては、 対照群に比較して LAK細胞の 拡大培養率が高い。 このことから各フイブロネクチンフラグメントは低濃度の血 清を含んだ培地を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過 性バッグを組み合わせた L A K細胞培養時に好適に使用されることが明らかとな つた。 実施例 36 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッグを 組み合わせた培養)
(1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (25 cm2 細胞培養用フラスコ) に実施例 3 5 - (1) と同様に抗ヒト CD 3抗体および FNフラグメントを固定化した。 使 用直前にはこれらの培養器材から抗体 · FN f rを含む PBSを除去後、 各フラ スコを PBSで 2回、 1 %h uma n AB血清を含む A I M V培地 (以下 1 % A I M Vと略す) で 1回洗浄し各実験に供した。
(2) LAK細胞の誘導および培養
1 %A I M Vに 1 X 106 c e 1 1 s /mLとなるように実施例 1一 ( 1 ) で調製した PBMCを懸濁後、 実施例 36— (1) で調製した抗ヒト CD 3抗体 固定化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラスコに 3m LZフラスコずつ細胞懸濁液を入れ、 終濃度 100 OUZmLとなるように I L —2を添加した。 これらのフラスコを 5%C〇2 中 37 で培養した (培養 0日 目) 。 培養開始後 1日目には 100 OUZmLの I L一 2を含む 1 %A I M V を 7 mLZフラスコずつ添加した。 培養開始後 4日目には培養液を何も固定化し ていない 85 cm2細胞培養用 C〇2 ガス透過性バッグに移した後、 1 %A I M Vを 2 OmLZバッグずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2 を添加した。 培養開始 6日目には 1 %A I M Vを 3 OmLZバッグずつ添加し 、 終濃度 50 OUZmLとなるよう I L一 2を添加した。 培養開始後 8日目には 培養液の一部を適宜希釈した後、 何も固定化していない 85 cm2細胞培養用 C 02 ガス透過性バッグに移し、 終濃度 50 OUZmLとなるよう I L— 2を添加 した。 培養開始 1 1、 13日目には終濃度 500Uノ mLとなるよう I L一 2を 添加した。 培養開始 15日目にトリパンブルー染色法にて生細胞数を計測し、 培 養開始時の細胞数と比較しての拡大培養率として算出した。 結果を表 36に示す
表 36
血清濃度 ·培地 培養日数 フイブロネクチンフラグメン卜 拡大培養率 (倍率)
1 %A I M V 15日間 対照 (FN f r非固定化) X 327
1 %A I M V 15日間 CH- 296 X 566 表 36に示されるように、 低濃度 (1 %) の血清を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッグを組み 合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化した細 胞培養用フラスコを使用した群においては、 対照群に比較して LAK細胞の拡大 培養率が高い。 このことから各フイブロネクチンフラグメントは低濃度の血清を 含んだ培地を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バ ッグを組み合わせた LAK細胞培養時に好適に使用されることが明らかとなった
実施例 3 7 低血清培地 (XV I VO 1 0) を用いた LAK細胞集団中における CD 8陽性細胞含有比率 (細胞培養用 C02 ガス透過性バッグを用いた培養)
( 1) LAK細胞の誘導および培養
実施例 34— (2) と同様の方法で LAK細胞を誘導 '培養した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 3 7に示す。 表 37
血清濃度 ·培地 培養日数 フイブロネクチンフラグメント CD 8陽性細胞
含有率 (%).
1 %XV I VO 10 15日間 対照 (FN f r非固定化) 45. 7
1 %XV I VO 10 1 5日間 CH- 296 6 1. 6 表 3 7に示されるように、 低濃度 (1 %) の血清を含んだ培地 (XV I VO l 0) と細胞培養用 C〇2 ガス透過性バッグを用いての LAK細胞誘導初期に各フ イブロネクチンフラグメントを固定化した細胞培養用 C〇2 ガス透過性バッグを 使用した群においては、 培養後の LAK細胞中における CD 8陽性細胞含有率を 高く誘導することができた。 このことから各フイブロネクチンフラグメントは低 濃度の血清を含んだ培地および細胞培養用 C O 2 ガス透過性バッグを用いた L A K細胞培養時に好適に使用されることが明らかとなった。 実施例 3 8 低血清培地 (XV I VO 1 0) を用いた LAK細胞集団中における CD 8陽性細胞含有比率 (細胞培養用フラスコおよび細胞培養用 C02 ガス透過 性バッグを組み合わせた培養) (1) LAK細胞の誘導および培養
実施例 35— (2) と同様の方法で LAK細胞を誘導 '培養した。
( 2 ) L AK細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 38に示す。 表 38
血清濃度 ·培地 抗 CD3土 CH-296 培養日数 フイブロネクチン C D 8陽性 刺激期間 フラグメント 細胞含有率
(%)
1 %XV I VO 1 0 4日間 15日間 対照 (FN f r非固定化) 58. 1
1 %XV I VO 1 0 4日間 15日間 CH- 296 70. 3
1 %XV I VO 1 0 6日間 15日間 対照 (FN f r非固定化) 58. 3
1 %XV I VO 1 0 6日間 15日間 CH- 296 72. 7 表 38に示されるように、 低濃度 (1 %) の血清を含んだ培地 (XV I VO l 0) を用いて、 細胞培養用フラスコおよび細胞培養用 co2ガス透過性バッグを 組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化し た細胞培養用フラスコを使用した群においては、 対照群に比較して培養後の L A K細胞中における C D 8陽性細胞含有率を高く誘導することができた。 このこと から各フィブロネクチンフラグメントは低濃度の血清を含んだ培地を用いて、 細 胞培養用フラスコおよび細胞培養用 C O 2 ガス透過性バッグを組み合わせた L A K細胞培養時に好適に使用されることが明らかとなった。 実施例 39 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (培養開始時、 継代時の濃度)
LAK細胞培養系における培養開始時および継代時の細胞濃度が拡大培養率に 及ぼす影響を確認した。
培養開始時の細胞濃度として 0. 5 X 106 e e l I s ZmLおよび 1 X 10 6 c e 1 1 sZmLを設定した。 培養 4日目の継代細胞濃度として、 0. 025 X 106 e e l I sノ mLおよび 0. 05 X 106 c e l l s ZmLを設定した 。 培養 7、 9および 1 1日目の継代細胞濃度として、 0. 2 X 106 c e l l s ZmLおよび 0. 5 X 106 e e l I s /mLを設定した。 下記表 39— 1に上 記パターンを示す。 表 39
培養開始時濃度 培養 4日目濃度 培養 7、 9 日目濃度 細胞濃度パターン 1 0 500 0, 025 0. 2
細胞濃度パターン 2 0 500 0 05 0. 2
細胞濃度パターン 3 0 500 0 05 0. 5
細胞濃度パターン 4 000 0 025 0. 2
細胞濃度パターン 5 000 0 05 0. 2
細胞濃度パターン 6 000 0 05 0. 5
*細胞濃度 (X 106c e 1 1 s/mL)
(1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD 3抗体および FNフラグメントを 固定化した。 すなわち 24穴細胞培養プレートに抗ヒト CD 3抗体 (終濃度 5 /^ g/mL) を含む PB Sを lmLずつ添加した。 この時、 FNフラグメント添加 群には製造例 1に記載のフイブロネクチンフラグメント (CH— 296) を終濃 度 25 gノ mLとなるように添加した。 対照として、 CH— 296を添加しな い群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗ヒト CD 3抗体, CH— 296を含む PBSを吸引除去後、 各ゥエルを PBSで 2回、 RPM I培地で 1回洗浄し各実 験に供した。
(2) L A K細胞の誘導および培養
1 %の h uma n AB血清を含む A I M Vに細胞濃度パターン 1、 2および 3で培養する区分は 0. 5 X 106 c e 1 1 s ZmLとなるように、 細胞濃度パ ターン 4、 5および 6で培養する区分は 1 X 106 e e l 1 s ZmLとなるよう に実施例 1一 (1) で調製した PBMCを懸濁後、 (1) で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体および CH— 296固定化プレ —トに ImL ウエルずつまき、 終濃度 100 OUZmLとなるように I L一 2 を添加した。 これらのプレートを 5% C〇2 中 37でで培養した (培養 0日目) 。 培養開始後 2、 3日目には 100 OUZmLの I L— 2を含む 1 %A I M V を ImL ウエルずつ添加した。
培養開始後 4日目に細胞濃度パターン 1および 4で培養する区分は、 0. 02 5 X 106 c e 1 1 sノ mLとなるように、 また細胞濃度パターン 2、 3、 5、 6で培養する区分は、 0. 05 X 106 c e l l s ZmLとなるように 1 %h u ma n AB血清を含む A I M Vにより希釈し (液量最大 6mL) 、 何も固定化 していない 12. 5 cm2細胞培養フラスコにそれぞれ移した。 各区分において 終濃度 50 OUZmLとなるよう I L_ 2を添加した。
培養開始後 7、 9および 1 1日目には細胞濃度パターン 1、 2、 4および 5で 培養する区分は、 0. 2 X 106 c e 1 1 sZmLとなるように、 また細胞濃度 パターン 3、 6で培養する区分は、 0. 5 X 106 c e 1 1 s ZmLとなるよう に 1 %h uma n AB血清を含む A I M Vにより希釈し (液量最大 6mL) 、 何も固定化していない 12. 5 cm2細胞培養フラスコにそれぞれ移した。 各区 分において終濃度 50 OU/mLとなるよう I L一 2を添加した。
培養開始 15日目にトリパンブル一染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 3連で行った。 その 平均の各結果を表 39— 2に示す。 表 39— 2
培養開始 0日目刺激 拡大培養率 (倍率)
細胞濃度パター 'ン 1 抗 CD 3 1427
抗 CD 3 +CH- 296 2649
細胞濃度パターン 2 抗 CD 3 3401
抗 CD 3 +CH— 296 3691
細胞濃度パターン 3 抗 CD 3 749
抗 CD 3 +CH - 296 2508
細胞濃度パターン 4 抗 CD 3 256
抗 CD 3 + CH- 296 436
細胞濃度パターン 5 抗 CD 3 1091
抗 CD 3 +CH- 296 1 1 79
細胞濃度パターン 6 抗 CD 3 +CH— 296 476 表 39— 2に示されるように、 培養開始時および継代時において種々の細胞濃 度での LAK細胞培養において、 いずれの細胞濃度区分においても、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH— 296および抗 CD 3抗体により 刺激した群において高い拡大培養率が得られた。 すなわち、 諸状況下で変化しう る培養開始時および継代時の細胞濃度に対して、 CH— 296により刺激するこ とにより、 明らかに高い拡大培養率で LAK細胞 ¾誘導 ·培養できることが示さ れた。 実施例 40 低血清培地 (A I M V) を用いて培養した LAK細胞集団中にお ける CD 8陽性細胞含有比率 (培養開始時、 継代時の濃度)
(1) LAK細胞の誘導および培養
実施例 39と同様の方法で LAK細胞を誘導 ·培養した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 40に示す。
9 表 40
培養開始 0日目刺激 CD 8陽性細胞含有率 (%) 細胞濃度パターン 1 抗 CD 3 55
抗 CD 3 +CH— 296 63 細胞濃度パターン 2 抗 CD 3 62
抗 CD 3 +CH— 296 73 細胞濃度パターン 3 抗 CD 3 71
抗 CD3 +CH - 296 75 細胞濃度パターン 4 抗 CD 3 56
抗 CD3+CH - 296 70 細胞濃度パターン 5 抗 CD 3 61
抗 CD 3 +CH - 296 70 細胞濃度パターン 6 抗 CD3 +CH— 296 76 表 40に示されるように、 培養開始時および継代時において種々の細胞濃度で の LAK細胞培養において、 いずれの細胞濃度区分においても、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH_ 296および抗 CD 3抗体により刺激 した群において培養中の L AK細胞中における C D 8陽性細胞含有率を高く誘導 することができた。 すなわち、 諸状況下で変化しうる培養開始時および継代時の 細胞濃度に対して、 CH— 296により刺激することにより、 明らかに LAK細 胞中の CD 8陽性細胞の含有率を高くしながら LAK細胞を誘導 ·培養すること が可能であることが明らかとなった。 実施例 41 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (高濃度 ·高密度培養)
L A K細胞培養系において、 最終培養液量および最終培養面積を極力抑えるこ とができれば、 培地、 資材および労力を低減することができる。 細胞を高濃度、 高密度で培養したときの拡大培養率に及ぼす影響を確認した。
継代時の細胞濃度および細胞密度を抑えない区分 (普通培養区分) 、 培養 7お よび 10日目の継代時の細胞濃度を普通培養区分のそれぞれ 1. 8倍および約 6 倍にした区分 (高濃度培養区分、 ただし細胞密度は濃度に比例して同じく 1. 8 倍および約 6倍となる) 、 培養 7および 10日目の継代時の細胞濃度を普通培養 区分のそれぞれ 1. 3倍および約 2. 5倍に、 かつ細胞密度をそれぞれ約 3. 9 倍および 7. 5倍にした区分 (高濃度 ·高密度培養区分) を設定した。 下記表 4 1一 1に上記各群での継代時細胞濃度および細胞密度を示す。 表 4 1一 1
培養 0日目 培養 4曰目 培養 7日目 培養 1 0曰目 普通培養 細胞濃度(X 1 06 c 0. 333 0. 050 0. 1 00 0. 1 5 区分 e l l s /mL)
細胞密度(X 1 0 B c 0. 263 0. 024 0. 048 0. 07 2 e 1 1 s / c m')
高濃度培養 細胞濃度 (X 1 06 c 0. 333 0. 050 0. 1 80 0. 893 区分 e l l s /mL)
細胞密度 (X 1 06 c 0. 263 0. 024 0. 086 0. 429 e 1 1 s / cm2)
高濃度 · 細胞濃度 (X 1 06 c 0. 333 0. 050 0. 1 3 0. 38 高密度培養 e 1 1 s / mL)
区分
細胞密度 (X 106 c 0. 263 0. 024 0. 1 86 0. 543 e 1 1 s / cm2)
(1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材に抗ヒト C D 3抗体および F Nフラグメントを 固定化した。 すなわち 12穴細胞培養プレートに抗ヒト CD 3抗体 (終濃度 5 g/mL) を含む PBSを 1. 9mLずつ添加した。 この時、 FNフラグメント 添加群には製造例 1に記載のフイブロネクチンフラグメント (CH— 296) を 終濃度 25 gZmLとなるように添加した。 対照として、 CH_ 296を添加 しない群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗ヒト CD 3抗体 · CH— 296を含む PBSを吸引除去後、 各ゥエルを PBSで 2回、 RPM I培地で 1回洗浄し各実 験に供した。
(2) LAK細胞の誘導および培養 各培養区分とも 1 %の h uma n AB血清を含む A I M Vに 0. 33 X 10 6 c e 1 1 sZmLとなるように、 実施例 1 _ (1) で調製した PBMCを懸濁 後、 実施例 41一 (1) で調製した抗ヒト CD3抗体固定化プレート、 または抗 ヒト CD 3抗体および CH— 296固定化プレートに 3mL/ゥエルずつまき、 終濃度 100 OUZmLとなるように I L一 2を添加した。 これらのプレートを 5%C02 中 37^で培養した (培養 0日目) 。
培養開始後 4日目に各培養区分とも、 0. 05 X 106 c e 1 1 sZmLとな るように 1 %h uma n AB血清を含む A I M Vにより希釈し (液量最大 6 m L) 、 何も固定化していない 12. 5 cm2細胞培養フラスコに移した。 各区分 において終濃度 50 OUZmLとなるよう I L— 2を添加した。
培養開始後 7日目には、 普通培養区分は 0. 1 X 106 c e 1 1 sZmLとな るように、 高濃度培養区分は 0. 18 X 106 e e l 1 sZmLとなるように 1 %h uma n AB血清を含む A I M Vにより希釈し (液量最大 6mL) 、 何も 固定化していない 12. 5 cm2細胞培養フラスコに移した。 また、 高濃度 '高 密度培養区分は 0. 13 X 106 e e l 1 s ZmLとなるように 1 % h um a n AB血清を含む A I M Vにより希釈し (液量最大 9mL) 、 何も固定化してい ない 25 cm2細胞培養フラスコを立てたものに移した。 各区分において終濃度 50 OUZmLとなるよう I L一 2を添加した。
培養開始後 10日目には、 普通培養区分は 0. 15 X 106 c e 1 1 s ZmL となるように、 高濃度培養区分は 0. 893 X 106 c e 1 1 sZmLとなるよ うに 1 %h uma n AB血清を含む A I M Vにより希釈し (液量最大 6mL) 、 何も固定化していない 12. 5 cm2細胞培養フラスコに移した。 また、 高濃 度 ·高密度培養区分は 0. 38 X 106 c e 1 1 s /mLとなるように 1 %h u ma n AB血清を含む A I M Vにより希釈し (液量最大 9mL) 、 何も固定化 していない 25 cm2細胞培養フラスコを立てたものに移した。 各区分において 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始後 1 1日目には各区分に終濃度 50 OUZmLとなるよう I L一 2を 添加した。
培養開始 15日目にトリパンプル一染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を 41一 2に示す。 表 41一 2
培養開始 0日目刺激 拡大培養率 (倍率) 普通培養区分 抗 CD 3 60 1
抗 CD 3 +CH- 296 2325
高濃度培養区分 抗 CD 3 1 12
抗 CD 3 + CH- 296 1 13 1
高濃度 ·高密度培養区分 抗 CD 3 21 5
抗 CD 3 + CH— 296 1 307 表 41— 2に示されるように、 普通培養区分あるいは高濃度培養区分あるいは 高濃度 '高密度培養区分において、 いずれの区分においても、 対照群 (抗 CD 3 抗体のみによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激し た群において高い拡大培養率が得られた。 すなわち、 培地、 資材および労力を低 減することができる高濃度 ·高密度培養において CH— 296による刺激により 明らかに拡大培養に対する効果が認められた。 実施例 42 低血清培地 (A IM V) を用いて培養した LAK細胞集団中にお ける CD 8陽性細胞含有比率 (高濃度、 高密度培養)
(1) LAK細胞の誘導および培養
実施例 41と同様の方法で LAK細胞を誘導 ·培養した。
(2) LAK細胞における CD 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 42に示す。 表 42
培養開始 0日目刺激 CD 8陽性細胞含有率 (%) 普通培養区分 抗 CD 3 53
抗 CD3+CH—296 63
高濃度培養区分 抗 CD 3 55
抗〇03+(^—296 72
高濃度 ·高密度培養区分 抗 CD 3 63
抗 CD3+CH— 296 65 表 42に示されるように、 普通培養区分あるいは高濃度培養区分あるいは高濃 度 '高密度培養区分において、 いずれの区分においても、 対照群 (抗 CD 3抗体 のみによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激した群 において培養中の LAK細胞中における CD 8陽性細胞含有率を高く誘導するこ とができた。 すなわち、 培地、 資材および労力を低減することができる高濃度, 高密度培養において CH— 296による刺激により、 明らかに LAK細胞中の C D 8陽性細胞の含有率を高くしながら LAK細胞を誘導 ·培養することが可能で あることが明らかとなった。 実施例 43 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (血清濃度 0%、 0. 15%、 5 %→0. 1 %)
LAK細胞培養において 1回に 3 OmLを採血すると、 大体 15mLの血漿が 得られる。 これを最終 10 Lまでの培地により培養することを考慮すると、 血漿 濃度として 0. 15%となる。 また、 5%の血漿濃度から培養を開始すると 4日 目以降、 細胞を継代、 希釈するときの培地における血漿濃度は 0. 1 %程度とな る。 以上を鑑みて LAK細胞培養系における血清濃度の影響を確認した。
培養開始時に h uma n AB血清が 0 %、 0. 1 5 %あるいは 5 %それぞれ含 まれる区分を設定した。 各濃度の h uma n AB血清を含む A I M Vに 0. 3 3 X 106 c e 1 1 s ZmLとなるように実施例 1— ( 1) で調製した P BMC を懸濁後、 実施例 41一 (1) で調製した抗ヒト CD3抗体固定化プレート、 ま たは抗ヒト CD 3抗体および CH— 296固定化プレートに 3 mLZゥエルずつ まき、 終濃度 100 OUZmLとなるように I L一 2を添加した。 これらのプレ ートを 5%C〇2 中 37 :で培養した (培養 0日目) 。
培養開始後 4日目に 0%、 0. 15 %h uma n AB血清を含む A I M Vで 培養した区分は、 最大 0. 05 X l 06 c e l l s ZmLとなるように、 それぞ れ 0%あるいは 0. 1 5%humanAB血清を含む A IM Vにより希釈し、 何も固定化していない 12. 5 cm2細胞培養フラスコに培養液を移した (液量 2. 5mL) 。 5 %h uma n AB血清を含む A I M Vで培養した区分は、 0 . 05 X 106 c e 1 1 sZmLとなるように 0. 1 % h u m a n A B血清を含 む A I M Vにより希釈し (液量 6mL) 、 何も固定化していない 12. 5 cm 2細胞培養フラスコに移した。 各区分において終濃度 50 OUZmLとなるよう I L - 2を添加した。
培養開始 7日目には 0%、 0. 15 %h uma n AB血清を含む A I M Vで 培養した区分はそれぞれ同濃度の血清を含む A I M Vにより 0. 1 1 X 1 06 c e l l s ZmLとなるように希釈し、 何も固定化していない新しい 25 cm2 細胞培養フラスコを立てたものに移した (液量最大 12. 6mL) 。 5%hum a nAB血清を含む A IM Vで培養した区分は、 0. l %humanAB血清 を含む A I M Vにより 0. 1 1 X 106 c e 1 1 sZmLとなるように希釈し 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたものに移し た (液量最大 12. 6mL) 。 各区分において終濃度 500 UZmLとなるよう I L- 2を添加した。
培養開始 10日目には 0 %、 0. 15 %h uma n AB血清を含む A I M V で培養した区分はそれぞれ同濃度の血清を含む A I M Vにより 0. 2 2 X 1 0 6 c e 1 1 s /mLとなるように希釈し、 何も固定化していない新しい 25 cm 2細胞培養フラスコを立てたものに移した (液量最大 12. 6mL) 。 5%hu ma n AB血清を含む A I M Vで培養した区分は、 0. l %humanAB血 清を含む A I M Vにより 0. 6 X 106 c e 1 1 sZmLとなるように希釈し 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたものに移し た (液量最大 12. 6mL) 。 各区分において終濃度 50 OUZmLとなるよう I L - 2を添加した。
培養開始 1 5日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 43に示す。 表 43
血清濃度 ·培地 培養開始 0日目刺激 拡大培養率 (倍率)
0 %A I M V 抗 CD 3 25
抗 CD 3 +CH— 296 322
0. 1 5 %A I M V 抗 CD 3 42
抗 CD 3 + CH- 296 197
5 %→0. 1 A I M V 抗 CD 3 175
抗 CD 3 +CH— 296 353 表 43に示されるように、 各血清濃度を含んだ A I M V培地を用いての LA K細胞培養において、 いずれの血清濃度区分においても、 対照群 (抗 CD 3抗体 のみによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激した群 において高い拡大培養率が得られた。 すなわち、 3 OmL採血を想定した血清濃 度における LAK細胞培養において、 CH— 296および抗 CD 3抗体により刺 激することで、 明らかに高い拡大培養率で LAK細胞を誘導 ·培養することがで きた。 また、 このときの培養における細胞は高濃度 ·高密度であり、 CH— 29 6で刺激することにより、 このような条件下においても、 明らかに高い拡大培養 率であり、 CH— 296の有効性が認められた。 実施例 44 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (血清濃度 3 %→ 1 %→0 %→0 %、 3 →1 →0. 1 %→0 % 、 3 %→0. 5 %→0. 2 %→0. 2 % (最終培養液量約半量) 、 3%→0. 5 %→0. 2 %→0. 05%)
実施例 43と同様の観点で 3 OmL採血により得られる血漿濃度を考慮して L AK細胞培養系における血清濃度の影響を確認した。
h uma n AB血清濃度は培養開始時は 3 %で、 培養 4日目に 1 %あるいは 0 . 5 %h uma nAB血清を含む A I M V培地で細胞を希釈する群、 培養 7日 目に 0%、 0. 1 %あるいは 0. 2 % h uma nAB血清を含む A I M V培地 で細胞を希釈する群、 培養 10日目に 0%、 0. 05%あるいは 0. 2%hum a nAB血清を含む A I M V培地で細胞を希釈する群をそれぞれ設定した。 下 記表 44一 1に上記パターンを示す。
表 44— 1
培養開始 4日目 培養開始 7日目 培養開始 1 0曰目 血清濃度パタ- -ン 1 1 % 0 % 0 % 血清濃度パタ- -ン 2 1 % 0. 1 % 0 % 血清濃度パタ- -ン 3 0. 5 % 0. 2% 0. 2 % 血清濃度パタ- -ン 4 0. 5 % 0. 2 % 0. 05%
*細胞培養液を希釈する培地に含まれる h uma nAB血清濃度を示す
3 %の h uma nAB血清を含む A I M Vに 0. 33 X 106 c e l l sZ mLとなるように実施例 1一 (1) で調製した PBMCを懸濁後、 実施例 41一 (1) で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体お よび CH_ 296固定化プレートに 3mLZゥエルずつまき、 終濃度 1000U ZmLとなるように I L— 2を添加した。 これらのプレートを 5%C〇2 中 37 でで培養した (培養 0日目) 。
培養開始後 4日目に血清濃度パターン 1および 2で培養する区分は、 0. 05 X 106 e e l I s /mLとなるように 1 % h um a n AB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も固定化していない 12. 5 cm2細胞培養 フラスコに移した。 血清濃度パターン 3および 4で培養する区分は、 0. 058 X 106 e e l 1 sZmLとなるように 0. 5 % h um a n AB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も固定化していない 12. 5 cm2細胞 培養フラスコに移した。 各区分において終濃度 50 OUZmLとなるよう I L— 2を添加した。
培養開始 7日目には血清濃度パターン 1で培養する区分は、 0. 28 X 106 c e l l s ZmLとなるように hum an AB血清を含まない A I M Vにより 希釈し (液量 12. 6mL) 、 また血清濃度パターン 2で培養する区分は、 0. 28 X 106 c e 1 1 sZmLとなるように 0. 1 %h uma n A B血清を含む A I M Vにより希釈し (液量 12. 6mL) 、 何も固定化していない新しい 2 5 cm2細胞培養フラスコを立てたものにそれぞれ移した。 血清濃度パターン 3 および 4で培養する区分は、 0. 48 X 106 c e 1 1 sZmLとなるように 0 . 2 %h uma n AB血清を含む A I M Vにより希釈し (液量 12. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたものに移し た。 各区分において終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 10日目には血清濃度パターン 1および 2で培養する区分は、 0. 5 1 X 106 e e l I s /mLとなるように h uma n A B血清を含まない A I M Vにより希釈し (液量 12. 6mL) 、 何も固定化していない新しい 25 cm2 細胞培養フラスコを立てたものに移した。 血清濃度パターン 3で培養する区分は 、 0. 839 X 106 c e l l s /mLとなるように 0. 2%humanAB血 清を含む A I M Vにより希釈し (液量 12. 6mL) 、 また血清濃度パターン 4で培養する区分は、 0. 43 X 106 c e 1 1 sZmLとなるように 0. 05 % h uma n AB血清を含む A I M Vにより希釈し (液量 12. 6mL) 、 何 も固定化していない新しい 25 cm2細胞培養フラスコを立てたものにそれぞれ 移した。 各区分において終濃度 500Uノ mLとなるよう I L— 2を添加した。 培養開始 15日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 44-2に示す。 表 44一 2
培養開始 0日目刺激 拡大培養率 (倍率) 血清濃度パターン 1 抗 CD 3 1 82
抗 CD 3 +CH - 296 425 血清濃度パターン 2 抗 CD 3 1 95
抗 CD 3 +CH- 296 430 血清濃度パターン 3 (最終培養液量半量) 抗 CD 3 101
抗 CD 3 +CH— 296 242 血清濃度パターン 4 抗 CD 3 190
抗 CD 3 +CH— 296 416
表 44— 2に示されるように、 各血清濃度を含んだ A I M V培地を用いての LAK細胞培養において、 いずれの血清濃度区分においても、 対照群 (抗 CD 3 抗体のみによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激し た群において高い拡大培養率が得られた。 すなわち、 3 OmL採血を想定した血 清濃度における LAK細胞培養において、 CH_ 296および抗 CD 3抗体によ り刺激することで、 抗 CD 3抗体単独で刺激するよりも、 明らかに高い拡大培養 率で LAK細胞を誘導 ·培養することができた。 また、 このときの培養における 細胞は高濃度 '高密度であり、 CH— 296で刺激することにより、 このような 条件下においても、 明らかに高い拡大培養率であり、 CH— 296の有効性が認 められた。 実施例 45 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッグを 組み合わせた培養)
(1) LAK細胞の誘導および培養
実施例 36— (2) と同様の方法で LAK細胞を誘導 '培養した。 結果を表 4
0 5に示す c 表 45
血清濃度 ·培地 抗 CD3土 CH- 296 培養日数 フイブロネクチン 拡大培養率 刺激期間 フラグメント (倍率)
1 %A I M V 4日間 15日間 対照 (FN f r非固定化) X 327
1 A I M V 4日間 15日間 CH- 296 X 566
1 %A I M V 6日間 15日間 対照 (FN f r非固定化) X 37 1
1 %A I M V 6日間 15日間 CH- 296 X 425 表 4 5に示されるように、 低濃度 (1 %) の血清を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 co2ガス透過性バッグを組み 合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定化した細 胞培養用フラスコを使用した群においては、 対照群に比較して LAK細胞の拡大 培養率が高い。 このことから各フイブロネクチンフラグメントは低濃度の血清を 含んだ培地を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バ ッグを組み合わせた L AK細胞培養時に好適に使用されることが明らかとなつた
実施例 46 新鮮分離 PBMCおよび自己血漿含有培地を用いた L A K細胞培養 系における拡大培養率の測定 (0. 5 %自己血漿を含む A I M V培地 ·細胞培 養用フラスコおよび細胞培養用 C O 2 ガス透過性バッグを組み合わせた培養) (1) P BMCの分離および保存
インフォ一ムド ·コンセントの得られたヒト健常人ドナーより採血用注射筒に て 3 0mL採血を実施後、 採血液を 5 0 0 X g 2 0分間遠心し、 自己血漿およ びバフィ一コート層を回収した。 回収したバフィーコート層は P B Sで希釈後 F i c o l 1 - p a q u e (フアルマシア社製) 上に重層して 5 O O X gで 2 0分 間遠心分離した。 中間層の末梢血単核細胞 (P BMC) をピペットで回収、 洗浄 した。 採取した新鮮分離 P BMCはトリパンブルー染色法にて生細胞数を算出し て各実験に供した。
回収した自己血漿は 56で 30分非働化後、 800 X gで 30分間遠心分離し、 その上清を非働化自己血漿として使用した (以下自己血漿と略す) 。
(2) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (25 cm2細胞培養用フラスコ) に実施例 3 5 - (1) と同様に抗ヒト CD3抗体および FNフラグメントを固定化した。 使 用直前にはこれらの培養器材から抗体 · FN f rを含む PBSを除去後、 各フラ スコを PBSで 2回、 A I M V培地で 1回洗浄し各実験に供した。
(3) LAK細胞の誘導および培養
0. 5%自己血漿を含む A IM V (以下 0. 5%自己血漿 A IM Vと略す ) に 1 X 106 e e l 1 s ZmLとなるように実施例 46— (1) で調製した新 鮮分離 PBMCを懸濁後、 実施例 46— (2) で調製した抗ヒト CD 3抗体固定 化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラスコに 3mL// フラスコずつ細胞懸濁液を入れ、 終濃度 100 OU/mLとなるように I L— 2 を添加した。 これらのフラスコを 5 %C〇2 中 37 :で培養した (培養 0日目) 。 培養開始後 1日目には 100 OUZmLの I L— 2を含む 0. 5%自己血漿 A I M Vを 7 mL/フラスコずつ添加した。 培養開始後 4日目には培養液を何も 固定化していない 85 cm2細胞培養用 C02ガス透過性バッグ (ォプティサイ トバッグまたは X— F o 1 dバッグ バクスター社製) に移した後、 0. 5%自 己血漿 A I M Vを 2 OmLZバッグずつ添加し、 終濃度 500 UZmLとなる よう I L— 2を添加した。 培養開始 6日目には 0. 5%自己血漿 ZA I M Vを 3 OmL/バッグずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2を添加 した。 培養開始後 8日目には培養液の一部を適宜希釈した後、 何も固定化してい ない 85 cm2細胞培養用 C〇2 ガス透過性バッグ (ォプティサイトバッグまた は X— F o 1 dバッグ) に移し、 終濃度 50 OU/mLとなるよう I L— 2を添 加した。 培養開始 1 1、 13日目には終濃度 50 OU/mLとなるよう I L— 2 を添加した。 培養開始 15日目にトリパンブル一染色法にて生細胞数を計測し、 培養開始時の細胞数と比較しての拡大培養率として算出した。 結果を表 46に示 す。 表 46
血漿濃度 ·培地 ·細胞培養 P BMC 培養日数 フイブロネクチン 拡大培養率 用 C02ガス透過性バッグ ドナー フラグメント (倍率)
0.5%自己血漿 A IM V A 15日間 対照 X 22
•ォプティサイトバッグ (FN f r非固定化)
0.5%自己血漿 A IM V A 15日間 CH- 296 X 259
•ォプティサイトバッグ
0.5%自己血漿 A IM V A 15日間 CH- 296 X 360
• X— Foldバッグ
0.5%自己血漿 A IM V B 15日間 対照 X 34
•ォプティサイトバッグ (FN f r非固定化)
0.5%自己血漿 A IM V B 1 5日間 CH- 296 X 432
•ォプティサイトバッグ
0.5%自己血漿 A IM V B 15日間 CH- 296 X 360
• X_Foldバッグ
表 46に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 co2ガス透過 性バッグの種類によらず LAK細胞の拡大培養率が高い。 このことから各フイブ ロネクチンフラグメントは低濃度の血漿を含んだ培地を用いての細胞培養用フラ スコおよび細胞培養用 C O 2ガス透過性バッグを組み合わせた L AK細胞培養時 に好適に使用されることが明らかとなった。 実施例 47 新鮮分離 PBMCおよび自己血漿含有培地を用いた L AK細胞集団 中における CD 8陽性細胞比率の測定 (0. 5%自己血漿を含む A I M V培地 •細胞培養用フラスコおよび細胞培養用 C O 2 ガス透過性バッグを組み合わせた
04 培養)
(1) LAK細胞の誘導および培養
実施例 46— (3) と同様の方法で LAK細胞を誘導 ·培養した。 培養開始 1 5曰目に実施例 4— (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を表 47に示す。 表 47
血漿濃度 ·培地 ·細胞培養 P B M C 培養日数 フイブロネクチン CD8細胞陽性 用 C02ガス透過性バッグ ドナー フラグメント 比率 (%)
0.5%自己血漿 A IM V B 15日間 対照 (FN f r非固定化) 45. 0
•ォプティサイトバッグ
0.5%自己血漿 A IM V B 15日間 CH - 296 89. 8
-ォプティサイトバッグ
0.5%自己血漿 A IM V B 15日間 CH—296 90. 0
• X-Foldバッグ
表 47に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C02 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 C〇2 ガス透過 性バッグの種類によらず LAK細胞集団中の CD 8細胞陽性比率が高い。 このこ とから各フイブロネクチンフラグメントは低濃度の血漿を含んだ培地を用いての 細胞培養用フラスコおよび細胞培養用 C〇 2 ガス透過性バッグを組み合わせた L AK細胞培養時に好適に使用されることが明らかとなった。 実施例 48 新鮮分離 P B M Cおよび自己血漿含有培地を用いた L A K細胞培養 系における拡大培養率の測定 (0. 5%自己血漿を含む A IM V培地 ·細胞培 養用フラスコおよび細胞培養用 C〇 2 ガス透過性バッグを組み合わせた培養) (1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (25 cm2細胞培養用フラスコ) に実施例 3 5 - (1) と同様に抗ヒト CD3抗体および FNフラグメントを固定化した。 使 用直前にはこれらの培養器材から抗体 · FN f rを含む PBSを除去後、 各フラ スコを PBSで 2回、 A I M V培地で 1回洗浄し各実験に供した。
(2) LAK細胞の誘導および培養
0. 5%自己血漿を含む A I M V (以下 0. 5%自己血漿 A IM Vと略す ) に 1 X 106 e e l 1 s ZmLとなるように実施例 46— (1) と同様の方法 で調製した新鮮分離 PBMCを懸濁後、 実施例 48— (1) で調製した抗ヒト C D 3抗体固定化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラス コに 3 mLZフラスコずつ細胞懸濁液を入れ、 終濃度 100 OUZmLとなるよ うに I L— 2を添加した。 これらのフラスコを 5%C〇2 中 37でで培養した ( 培養 0日目) 。 培養開始後 1日目には 100 OUZmLの I L— 2を含む 0. 5 %自己血漿 A I M Vを 7mLZフラスコずつ添加した。 培養開始後 4日目には 培養液を何も固定化していない 85 cm2細胞培養用 C〇2ガス透過性バッグ ( ォプティサイトバッグ) に移した後、 0. 5%自己血漿 A I M Vを 20mLZ バッグずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養 開始 6日目には 0. 5%自己血漿/ A IM Vを 3 OmLZバッグずつ添加し、 終濃度 50 OU/mLとなるよう I L一 2を添加した。 培養開始後 8日目には培 養液の一部を適宜希釈した後、 何も固定化していない 85 cm2細胞培養用 CO 2 ガス透過性バッグ (ォプティサイトバッグ) に移し、 終濃度 500UZmLと なるよう I L— 2を添加した。 培養開始 1 1、 13日目には終濃度 50 OU/m Lとなるよう I L_ 2を添加した。
また、 同様に 4日目まで培養した培養液を何も固定化していない 180 cm2 細胞培養用 C〇2 ガス透過性バッグに一部 (1 OmL中 7mL) 移した後、 0. 5%自己血漿 A IM Vを 58mL/バッグずつ添加し、 終濃度 500UZmL となるよう I L— 2を添加した。 培養開始 6日目には 0. 5%自己血漿ノ A I M
Vを 65 mLZバッグずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2 を添加した。 培養開始後 8日目には培養液の一部を適宜希釈した後、 何も固定化 していない 180 cm2細胞培養用 C〇2 ガス透過性バッグ (ォプティサイトバ ッグ) に移し、 終濃度 50 OU/mLとなるよう I L— 2を添加した。 培養開始 1 1、 13日目には終濃度 50 OUZmLとなるよう I L一 2を添加した。 この 際培養開始 1 1日目に 0. 5%自己血漿/ A I M Vを 13 OmL添加する系も 設定した。 培養開始 15日目にトリパンブル一染色法にて生細胞数を計測し、 培 養開始時の細胞数と比較しての拡大培養率として算出した。 結果を表 48に示す
表 48
血漿濃度 ·培地 ·細胞 バッグ 1 1曰目 培養 拡大 培養用 C02ガス透過性 培養面積 培地添加 日数 ラグメント 培養率 バッグ (倍率)
0.5%自己血漿 A I M 85 cm2 なし 15日間 対照 X22
V ·オフ。テイ 1Hトハ'ック' (FN f r非固定化)
0.5%自己血漿 A I M 85 cm2 なし 15日間 CH- 296 X259
V ·オフ。ティサイトハ'ック'
0.5%自己血漿 A I M 180 cm2 なし 15曰間 CH- 296 X473
V ·オフ。ティサイトハ'ック'
0.5%自己血漿 A I M 180cm2 あり 15曰間 CH- 296 X911
V ·オフ。ティサイトハ'ック'
表 48に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 co2ガス透過 性バッグの培養面積 ·培養方法 ·最終培地量によらず LAK細胞の拡大培養率が 高い。 このことから各フィブロネクチンフラグメントは低濃度の血漿を含んだ培 地を用いての細胞培養用フラスコおよび細胞培養用 C02 ガス透過性バッグを組 み合わせた LAK細胞培養時に好適に使用されることが明らかとなった。
07 実施例 49 新鮮分離 P BMCおよび自己血漿含有培地を用いた LAK細胞集団 中における CD8陽性細胞比率の測定 (0. 5%自己血漿を含む A I M V培地 •細胞培養用フラスコおよび細胞培養用 C〇2ガス透過性バッグを組み合わせた 培養)
(1) LAK細胞の誘導および培養
実施例 48— (2) と同様の方法で LAK細胞を誘導 ·培養した。 培養開始 1 5日目に実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を表 49に示す。 表 49
血漿濃度 ·培地 ·細胞 バッグ 1 1曰 培養 フイブロネクチン CD8細胞 培養用 co2ガス透過性 培養面積 目培地 日数 フラグメント 含有比率 バッグ 添加 (%)
0.5%自己血漿 A I M 85 cm2 なし 15日間 対照 37. 4
V ·才フ。ティサ仆ハ'ック' (FN f r非固定化)
0.5%自己血漿 A I M 85 cm2 なし 15日間 CH- 296 70. 0
V ·オフ'ティサイトハ'ック'
0.5%自己血漿 A I M 180cm2 なし 15曰間 CH- 296 56. 2
V ·オフ。ティサイトハ'ック'
0.5%自己血漿 A I 180cm2 あり 15日間 CH- 296 58. 4
V ·オフ。ティサイトハ'ック' 表 49に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C02 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 co2ガス透過 性バッグの培養面積 ·培養方法 ·最終培地量によらず LAK細胞集団中の CD 8 細胞陽性比率が高い。 このことから各フイブロネクチンフラグメントは低濃度の 血漿を含んだ培地を用いての細胞培養用フラスコおよび細胞培養用 C O 2 ガス透 過性バッグを組み合わせた LAK細胞培養時に好適に使用されることが明らかと
08 なった, 実施例 50 新鮮分離 P BMCおよび自己血漿含有培地を用いた LAK細胞培養 培養系における細胞傷害活性の測定 (0. 5%自己血漿を含む A IM V培地 - 細胞培養用フラスコおよび細胞培養用 C O 2 ガス透過性バッグを組み合わせた培
(1) LAK細胞の誘導および培養
実施例 46— (3) と同様の方法で LAK細胞を誘導 ·培養した。
(2) 培養した LAK細胞の細胞傷害活性の測定
実施例 25— (2) と同様の方法で培養後 15日目の LAKの細胞傷害活性を 測定した。 結果を表 50に示す。 表 50
血漿濃度 ·培地 ·細胞培養用 培養日数 フイブロネクチ E/T 細胞傷害 細胞傷害 co2ガス透過性バッグ ンフラグメン卜 活性 ) 活性 ) 標的細胞 標的細胞
K562 Daudi
0.5%自己血漿 A I M V - 1 5日間 対照 (FN f r 90 50. 9 56. 2 ォプティサイトバッグ 非固定化) 30 32. 9 49. 6
10 16. 9 35. 7
0.5%自己血漿 A IM V - 1 5日間 CH- 296 90 75. 9 62. 3 ォプティサイトバッグ 30 48. 3 53. 7
10 19. 6 40. 2 表 50に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 対照群に比較して LAK細 胞の細胞傷害活性が高い。 このことから各フイブロネクチンフラグメントは低濃 度の血漿を含んだ培地を用いての細胞培養用フラスコおよび細胞培養用 C O 2 ガ ス透過性バッグを組み合わせた L AK細胞培養時に好適に使用されることが明ら
09 かとなつた。 実施例 51 新鮮分離 P BMCおよび自己血漿含有培地を用いた LAK細胞培養 系における拡大培養率の測定 (0. 5%自己血漿を含む A I M V培地 ·細胞培 養用フラスコおよび細胞培養用 C O 2 ガス透過性バッグを組み合わせた培養)
(1) 抗ヒト CD 3抗体および FNフラグメント固定化
以下の実験で使用する培養器材 (25 cm2細胞培養用フラスコ) に実施例 3 5— (1) と同様に抗ヒト CD 3抗体および FNフラグメントを固定化した。 使 用直前にはこれらの培養器材から抗体 ' FN f rを含む PBSを除去後、 各フラ スコを PBSで 2回、 A I M V培地で 1回洗浄し各実験に供した。
(2) LAK細胞の誘導および培養
0. 5%自己血漿を含む A IM V (以下 0. 5%自己血漿 A IM Vと略す ) に 5 X 105 e e l 1 sZmLとなるように (ただし、 生細胞数の計測はチュ ルク液 (関東化学社製) で実施した。 ) 実施例 46— (1) と同様の方法で調製 した新鮮分離 PBMCを懸濁後、 実施例 51— (1) で調製した抗ヒト CD 3抗 体固定化フラスコ、 または抗ヒト CD 3抗体および FN f r固定化フラスコに 3 mLZフラスコずつ細胞懸濁液を入れ、 終濃度 100 OUZmLとなるように I L— 2を添加した。 これらのフラスコを 5%C02 中 37 で培養した (培養 0 曰目) 。 培養開始後 1日目には 100 OUZmLの I L— 2を含む 0. 5%自己 血漿 A I M Vを 7mLZフラスコずつ添加した。 培養開始後 4日目には培養液 を何も固定化していない 180 cm2細胞培養用 C〇2 ガス透過性バッグに一部 ( 1 OmL中 7mL) 移した後、 0. 5%自己血漿 A IM Vを 58mLZバッ グずつ添加し、 終濃度 50 OUZmLとなるよう I L— 2を添加した。 培養開始 6日目には 0. 5%自己血漿 ZA I M Vを 65mL バッグずつ添加し、 終濃 度 50 OUZmLとなるよう I L— 2を添加した。 培養開始後 8日目には培養液 の一部を適宜希釈した後、 何も固定化していない 180 cm2細胞培養用 C02 ガス透過性バッグ (ォプティサイトバッグ) に移し、 終濃度 500 UZmLとな るよう I L— 2を添加した。 培養開始 1 1、 13日目には終濃度 500 U/mL となるよう I L一 2を添加した。 この際培養開始 1 1日目に自己血漿を含まない A I M Vまたは 0. 5%自己血漿 八 11^ Vを 13 OmL添加する系も設定 した。 培養開始 1 5日目にトリパンブルー染色法にて生細胞数を計測し、 培養開 始時の細胞数と比較しての拡大培養率として算出した。 結果を表 5 1に示す。 表 51
血漿濃度 ·培地 · PBMC 1 1曰 1 10目添カロ培地 フィブロネクチン 拡大培 率 細胞培卷用 co 2ガス ト'ナ- 目培地 フラグメン卜 ( 、倍率) 透過性バッグ 添加
n 5%白 Prfn將 A c なし し U'JBS X 7 Π
I M V ·ォプテ (FN f r非固定化)
Λ 廿リィっ K / /\、*ッ/ Ηン
なし なし CH- 296 X 1034 あり 0.5%自己血漿 CH- 296 X 1 857 A IM V
あり 0%自己血漿 CH- 296 X 1 882 A IM V
0.5%自己血漿 A D なし なし 対照 X 947
I M V ·ォプテ (FN f r非固定化)
イザイトバッグ
なし なし CH- 296 X 1 2 1 3 あり 0.5%自己血漿 CH- 296 X 1 647 A IM V
あり 0%自己血漿 CH- 296 X 1832 A IM V
0.5%自己血漿 A E なし なし 対照 X 743
I M V ·ォプテ (FN f r非固定化)
ィサイトバッグ
なし なし CH- 296 X 93 1 あり 0.5%自己血漿 CH- 296 1 960 A IM V
あり 0%自己血漿 CH- 296 X 1747 A I M V 表 5 1に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C02 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 C〇2 ガス透過 性バッグの培養面積 ·培養方法 ·最終培地量によらず LAK細胞の拡大培養率が 高い。 このことから各フイブロネクチンフラグメントは低濃度の血漿を含んだ培 地を用いての細胞培養用フラスコおよび細胞培養用 C〇2 ガス透過性バッグを組 み合わせた LAK細胞培養時に好適に使用されることが明らかとなった。 実施例 52 新鮮分離 PBMCおよび自己血漿含有培地を用いた LAK細胞集団 中における CD8陽性細胞比率測定 (0. 5%自己血漿を含む A I M V培地 - 細胞培養用フラスコおよび細胞培養用 C 02 ガス透過性バッグを組み合わせた培 養)
(1) LAK細胞の誘導および培養
実施例 51— (2) と同様の方法で LAK細胞を誘導 ·培養した。 培養開始 1 5日目に実施例 4— (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を表 52に示す。
2 表 52
血漿濃度 ·培地 · P BMC 1 1曰 1 1日目添加 フイブロネクチン CD8陽性細 細胞培養用 co2ガス ドナー 目培地 培地 フラグメント 胞率 (¾) 透過性バッグ 添加
0.5%自己血漿 A C なし なし 対照 59. 1
I M V ·ォプテ (FN f r非固定化)
ィサイトバッグ
なし なし CH- 296 80. 8 あり 0.5%自己血漿 CH- 296 83. 3
A IM V
あり 0%自己血漿 CH- 296 83. 6
A IM V
0.5%自己血漿 A D なし なし 対照 77. 2
I M V ·ォプテ (FN f r非固定化)
ィサイトバッグ
なし なし CH- 296 83. 4 あり 0.5%自己血漿 CH- 296 84. 0
A IM V
あり 0%自己血漿 CH- 296 85. 9
A IM V
0.5%自己血漿 A E なし なし 対照 72. 6
I M V .ォプテ (FN f r非固定化)
イザイトバッグ
なし なし CH- 296 84. 6 あり 0.5%自己血漿 CH- 296 86. 8
A IM V
あり 0%自己血漿 CH- 296 89. 4
A IM V 表 52に示されるように、 低濃度 (0. 5%) の自己血漿を含んだ培地 (A I M V) を用いて、 細胞培養用フラスコおよび細胞培養用 C02 ガス透過性バッ グを組み合わせた LAK細胞誘導初期に各フイブロネクチンフラグメントを固定 化した細胞培養用フラスコを使用した群においては、 細胞培養用 C〇2 ガス透過 性バッグの培養面積 ·培養方法 ·最終培地量によらず LAK細胞集団中の CD 8 陽性細胞比率が高い。 このことから各フイブロネクチンフラグメントは低濃度の 血漿を含んだ培地を用いての細胞培養用フラスコおよび細胞培養用 co2ガス透 過性バッグを組み合わせた L A K細胞培養時に好適に使用されることが明らかと
13 なった。 実施例 53 低血清培地 (A IM V) を用いた LAK細胞培養系における I L 一 2レセプ夕一 ( I L _ 2 R) 発現の誘導
(1) LAK細胞の誘導および培養
実施例 1一 (3) と同様の方法で LAK細胞を誘導 '培養した。 この際使用す る培地を 1 %h uma n AB血清を含む A I M V培地に変更した。
(2) LAK細胞における I L— 2 R発現率の測定
実施例 3— (2) と同様の方法で、 I L一 2 R発現陽性細胞含有率を測定した 。 結果を表 53に示す。 かかる表では I L_ 2 R発現陽性細胞含有率 (%) を I L一 2R発現率 (%) と表示する。 表 53
血清濃度 ·培地 フイブロネクチン I L- 2 R発現率 (%)
フラグメント
1%A I M V 対照 (FN f r非固定化) 23. 5
1¾A I M V CH- 296 27. 2 表 53に示されるように、 低濃度の血清を含んだ A I M V培地を用いての L AK細胞誘導初期各フイブロネクチンフラグメントを固定化した培養器材を使用 した群においては、 培養中の LAK細胞表面上における I L一 2 R発現率を高く 誘導することができた。 すなわち低濃度の血清を含んだ培地を用いて LAK細胞 を誘導する際にフイブロネクチンフラグメントを共存させることにより、 I L一 2 R発現率を高くしながら LAK細胞を誘導 ·培養することが可能であることが 明らかとなった。 実施例 54 レトロネクチン変異体タンパク質の発現 (CH— 296 Na) (1) CH— 296 N a発現ベクターの構築 配列番号 27、 28の合成 DNAプライマ一 (それぞれ P r i me r CH— 296 N a 1および? r ime r CH- 296 N a 2) を用い、 CH— 296 発現ベクターである P CH 102を铸型に PCR反応を行い、 得られた DNA断 片を Nd e Iおよび H i nd I I Iで制限酵素処理した。 一方、 国際公開第 99 ノ 271 1 7号パンフレツ卜の実施例 5記載の p C o 1 d 04から同パンフレツ 卜の実施例 4の方法に従い調製した翻訳開始コドンのところに Nd e Iサイ卜を 有する p C o 1 d 14 ND 2ベクターを作製した。 pCo l d l 4ND 2ベクタ —の Nd e I— H i n d I I I制限酵素部位に前記 D N A断片を挿入することで 、 ベクタ一 pCo l d l 4ND2_CH296を得た。 次に、 フイブロネクチン の細胞結合ドメインの一部から C末端までをコ一ドする c DNAを有する p L F 2435ベクタ一を铸型に、 配列番号 28、 29の合成 DN Aプライマ一 (それ ぞれ P r ime r CH— 296 N a 2および P r i me r CH- 296 N a 3) を用いて P CR反応を行い、 得られた DNA断片を B amH Iおよび H i n d I I Iで制限酵素処理した。 こうして得られた DNA断片を p C o 1 d 14N D2— CH296を B amH Iおよび H i n d I I Iで制限酵素処理したものと ライゲーシヨンすることにより CH— 296 N a発現用ベクターを作成した。 (2) CH— 296 Naの発現、 精製
上記実施例 54- (1) で調製した p Co 1 d 14 -CH 296 Naを用いて 大腸菌 BL 21を形質転換し、 その形質転換体を 1. 5% (w/v) 濃度の寒天 を含む LB培地 (アンピシリン 50 gノ mL含む) 上で生育させた。 生育した コロニーを 3 OmLの L B液体培地 (アンピシリン 50 gZmL含む) に植菌 し、 37 :で一晩培養した。 全量を 3 Lの同 LB培地に植菌し、 37 で対数増 殖期まで培養した。 なお、 この培養の際には、 5 L容ミニジャーフアーメン夕一 (B i o t t社製) を使用し、 150 r pm、 A i r = 1. 0 L/m i nの条件 で行なった。 前記培養後、 15T:まで冷却した後、 I PTGを終濃度 1. OmM になるように添加し、 そのまま 15でで 24時間培養して発現誘導させた。 その 後菌体を遠心分離により集め、 菌体容量の 4倍量の細胞破砕溶液 [50mM T r i s -HC 1 (pH 7. 5) , 1 mM EDTA, 1 mM DTT, 1 mM PMS F, 5 OmM N a C 1 ] に再懸濁した。 超音波破砕により菌体を破砕し 、 遠心分離 (1 1, 000 r pm 20分) により上清の抽出液と沈殿とに分離 した。 これを 2 Lの bu f f e rA [5 OmM T r i s— HC 1 (pH 7. 5 ) , 5 OmM N a C 1 ] で透析を行い、 その約 4 OmLを用いてさらにイオン 交換クロマトによる精製を以下のように行なった。
すなわち、 樹脂容積にして 10 OmL分の SP— S e ph a r o s e (アマシ ャムフアルマシア社製) を b u f f e r Aで飽和させたカラム (Φ4 cm 20 cm) を準備し、 これに透析後のサンプルをアプライした。 300:11しの1) 11 f e r Aでカラムを洗浄した後、 b u f f e r B [5 OmM T r i s -HC 1 (pH 7. 5) , 20 OmM N a C 1 ] 、 bu f f e r C [ 5 OmM T r i s -HC 1 (pH 7. 5) , 30 OmM NaC l ] 、 bu f f e rD [50m M T r i s— HC 1 (pH 7. 5) , 50 OmM NaC l ] の各 200mL を用いて順にカラムからの溶出を行い、 約 10 OmLずつ分取し画分 1〜6を得 た。 分取した分画を、 10%SDS_PAGEに供じた結果、 分子量約 7 1 kD aの目的タンパク質を多く含むことが分かった画分 2、 3 (約 20 OmL) を回 収し、 2 Lの b u f f e r Aで透析を行なった。
次に、 樹脂容積にして 5 OmL分の Q— S e ph a r 0 s e (アマシャムファ ルマシア社製) を b u f f e r Aで飽和させたカラム (Φ 3 cm 16 c m) を 準備し、 これに透析後のサンプルをアプライした。 カラムを 20 OmLの b u f f e r Aで洗浄した後、 bu f f e r E [5 OmM T r i s— HC 1 (pH 7 . 5) , 14 OmM NaC l ] 、 bu f f e r B、 bu f f e r Cの各 1 50 mLを用いて順にカラムからの溶出を行い、 約 10 OmLずつ分取し画分 1〜 5 を得た。 10%SDS— PAGEに供じた結果、 目的タンパク質のみを多く含む ことが分かった画分 1 約 10 OmLを回収し、 2Lの bu f f e r F [50m M 炭酸ナトリウム緩衝液 PH 9. 5] で透析を行なった。
その後、 セントリコンー 1 0 (ミリポア社製) で約 4倍の 2 5 mLまで濃縮を 行い、 1 0 % SD S— PAGEで確認したところ、 分子量約 7 1 kD aの目的夕 ンパク質がほぼ単一バンドで検出され、 これを CH— 2 9 6 N aとした。 その後 、 M i c r o B CAキット (ピアース社製) を使用して、 タンパク質濃度を測定 したところ、 3. 8mgZmLであった。 実施例 5 5 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (血清濃度 5 %→ 1 %→0 %→0 %、 5 %→ 1 %→0. 0 5 %→0 . 0 5 %、 3 %→ 1 %→0. 0 5 →0. 0 5 %、 3 %→ 1 %→0. 1 %→0. 0 5 %、 1 %→1 %→0. 1 %→0. 0 5 %)
実施例 4 3と同様の観点で 3 OmL採血により得られる血漿濃度を考慮して L AK細胞培養系における血清濃度の影響を確認した。
h uma n AB血清濃度は培養開始時に 5 %、 3 %あるいは 1 %含有する区分 を設定し、 以降下記表 54に示す h uma nAB血清濃度を含む A I M V培地 により希釈する群をそれぞれ設定した。 なお、 下記表 54に示すように各継代日 に継代濃度を変更した区分もそれぞれ設定した。
表 54 血清濃度パターン
培養開始 培養開始 培養開始 培養開始
0曰目 4曰目 7曰目 10曰目 血清濃度パターン 血清濃度 5 % 1 % 0 % 0 %
1一 1 継代濃度 ― 0. 1 0. 32 1 0. 873 血清濃度パターン 血清濃度 5 % 1 % 0. 05% 0. 05%
1一 2 継代濃度 ― 0. 2 0. 32 1 0. 841 血清濃度パターン 血清濃度 3 % 1 % 0. 05% 0. 05%
2- 1 継代濃度 0. 1 0. 32 1 0. 746 血清濃度パターン 血清濃度 3 % 1 % 0. 1 % 0. 05%
2-2 継代濃度 0. 2 0. 32 1 0. 643 血清濃度パターン 血清濃度 1 % 1 % 0. 1 % 0. 05%
3一 1 継代濃度 0. 1 0. 32 1 0. 643 血清濃度パターン 血清濃度 1 % 1 % 0. 1 % 0. 05%
3-2 継代濃度 0. 05 0. 41 7 1. 214 血清濃度パターン 血清濃度 1 % 1 % 0. 1 % 継代、 培地添加なし
3-3 継代濃度 0. 05 0. 23
*細胞継代濃度: (X 106 c e 1 1 s /mL)
*表中の血清濃度は培養開始 0日目は開始時の濃度、 以降は希釈に使用した培地に含まれる 血清濃度
5 %, 3 %あるいは 1 %の h uma n AB血清を含む A I M Vに 0. 33 X 106 c e 1 1 sZmLとなるように実施例 1— (1) で調製した PBMCを懸 濁後、 実施例 41一 (1) で調製した抗ヒト CD 3抗体固定化プレート、 または 抗ヒト CD 3抗体および CH— 296固定化プレートに 3mL ウエルずつまき 、 終濃度 100 OUZmLとなるように I L— 2を添加した。 これらのプレート を 5%C〇2 中 37 で培養した (培養 0日目) 。
培養開始後 4日目に血清濃度パターン 1一 1、 2— 1および 3_ 1で培養する 区分は、 0. 1 X 106 c e 1 1 s ZmLとなるように、 血清濃度パターン 1— 2および 2— 2で培養する区分は、 0. 2 X 106 c e l l s /mLとなるよう に、 血清濃度パターン 3— 2および 3— 3で培養する区分は、 0. 05 X 106 c e 1 1 s ZmLとなるように、 1 % h um a n AB血清を含む A I M Vによ り希釈し (液量 6mL) 、 何も固定化していない 12. 5 cm2細胞培養フラス コに移した。 各区分において終濃度 50 OUZmLとなるよう I L_ 2を添加し た。
培養開始 7日目には血清濃度パターン 1一 1で培養する区分は、 0. 32 I X 106 e e l I s /mLとなるように h u m a n A B血清を含まない A I M V により希釈し (液量 12. 6mL) 、 血清濃度パターン 1一 2および 2— 1で培 養する区分は、 0. 32 i x i 06 c e l l s ZmLとなるように 0. 05 %h uma n AB血清を含む A I M Vにより希釈し (液量 12. 6mL) 、 また血 清濃度パターン 2— 2および 3— 1で培養する区分は 0. 321 X 106 c e 1 1 sZmLとなるように、 血清濃度パターン 3— 2で培養する区分は 0. 417 X 106 c e 1 1 s mLとなるように、 血清濃度パターン 3 _ 3で培養する区 分は 0. 23 X 106 c e 1 1 sZmLとなるようにそれぞれ 0. l %huma nAB血清を含む A I M Vによりそれぞれ希釈し (液量 12. 6mL) 、 各区 分は何も固定化していない新しい 25 cm2細胞培養フラスコを立てたものにそ れぞれ移した。 各区分において終濃度 50 OUZmLとなるよう I L— 2を添加 した。
培養開始 10日目には血清濃度パターン 1 _ 1で培養する区分は、 0. 873 X 106 e e l I s /mLとなるように h um a n AB血清を含まない A I M Vにより希釈し (液量 12. 6mL) 、 血清濃度パターン 1—2で培養する区分 は 0. 841 X 106 c e l l s mLとなるように、 血清濃度パターン 2— 1 で培養する区分は 0. 746 X 106 c e 1 1 s_ mLとなるように、 血清濃度 パターン 2— 2および 3— 1で培養する区分は 0. 643 X 106 c e l l sノ mLとなるように、 血清濃度パターン 3— 2で培養する区分は 1. 2 14X 10 6 c e 1 1 sZmLとなるように、 0. 05 % h u m a n A B血清を含む A I M Vによりそれぞれ希釈し (液量 12, 6mL) 、 何も固定化していない新しい 2 5 cm2細胞培養フラスコを立てたものに移した。 各区分において終濃度 500 U/mLとなるよう I L— 2を添加した。 培養開始 15日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 55に示す。 表 55
培養開始 0日目刺激 拡大培養率 (倍率)
血清濃度パターン 1一 1 抗 CD 3 460
抗 CD 3 + CH— 296 708
血清濃度パターン 1 - 2 抗 CD 3 354
抗 CD 3 + CH— 296 616
血清濃度パターン 2 - 1 抗 CD 3 338
抗 CD3+CH - 296 630
血清濃度パターン 2一 2 抗 CD 3 289
抗 CD 3 + CH - 296 514
血清濃度パターン 3一 1 抗 CD 3 317
抗 CD 3 + CH— 296 55 1
血清濃度パターン 3一 2 抗 CD 3 243
抗 CD 3 + CH— 296 587
血清濃度パターン 3一 3 抗 CD 3 257
抗 CD 3 + CH- 296 564
表 55に示されるように、 各血清濃度を含んだ A I M V培地を用いての LA K細胞培養において、 いずれの血清濃度区分、 またいずれの継代濃度区分におい ても、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激した群において高い拡大培養率が得られた。 すなわち、 3 OmL採血を想定した血清濃度における LAK細胞培養において、 CH— 296 および抗 C D 3抗体により刺激することで、 抗 CD3抗体単独で刺激するよりも 、 明らかに高い拡大培養率で LAK細胞を誘導 ·培養することができた。 また、 このときの培養における細胞は高濃度 ·高密度であり、 CH— 296で刺激する ことにより、 このような条件下においても、 明らかに高い拡大培養率であり、 C H- 296の有効性が認められた。
20 実施例 56 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 ( I L— 2濃度、 100UZmL→l 50 U/mL→ 150 U/m L→300 U/mL, 200 U/mL→300 U/mL→300 U/mL→40 0 U/mL 1000 U/mL→500U/mL→500 U/mL→500 U/ mL)
LAK細胞培養系における I L一 2濃度の影響を確認した。
培養開始時および継代時に添加する I L一 2濃度を下記表 56一 1に示すよう に設定した。
表 56
培養開始 培養開始 培養開始 培養開始
0曰目 4曰目 7曰巨 10曰目
I L一 2濃度パターン 1 100 150 150 300
I L - 2濃度パターン 2 200 300 300 400
I L - 2濃度パターン 3 1000 500 500 500
* I L一 2濃度 (UZmL)
3 %の h uma n AB血清を含む A I M Vに 0. 33 X 106 c e l l sノ mLとなるように実施例 1— (1) で調製した PBMCを懸濁後、 実施例 41— (1) で調製した抗ヒト CD 3抗体固定化プレート、 または抗ヒト CD 3抗体お よび CH— 296固定化プレートに 3mLノウエルずつまき、 終濃度 100 mL、 200 UZmLあるいは 1000 UZmLとなるように I L— 2を添加し た。 これらのプレートを 5 %C〇2 中 37 で培養した (培養 0日目) 。
培養開始後 4日目に各区分とも、 0. 1 X 106 c e 1 1 sZmLとなるよう に 1 %h uma n AB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も 固定化していない 12. 5 cm2細胞培養フラスコにそれぞれ移した。 I L— 2 濃度パターン 1においては終濃度 15 OU/mLとなるように、 I L— 2濃度パ ターン 2においては 30 OUZmLとなるように、 I L— 2濃度パターン 3にお いては 50 OUZmLとなるようにそれぞれ I L— 2を添加した。 培養開始 7日目には各区分とも、 0. 262 X 106 c e 1 1 sZmLとなる ように 05 %h uma n AB血清を含む A I M Vにより希釈し (液量 12 . 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てた ものにそれぞれ移した。 I L一 2濃度パターン 1においては終濃度 1 50UZm Lとなるように、 I L— 2濃度パターン 2においては 30 OUZmLとなるよう に、 I L— 2濃度パターン 3においては 50 OUZmLとなるようにそれぞれ I L - 2を添加した。
培養開始 10日目には各区分とも、 0. 585 X 106 c e l l sZmLとな るように 0. 05 %h uma n AB血清を含む A I M Vにより希釈し (液量 1 2. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立て たものにそれぞれ移した。 I L一 2濃度パターン 1においては終濃度 300 U/ mLとなるように、 I L— 2濃度パターン 2においては 40 OUZmLとなるよ うに、 I L— 2濃度パターン 3においては 50 OUZmLとなるようにそれぞれ I L - 2を添加した。
培養開始 1 5日目にトリパンブル一染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 56— 2に示す。
表 56— 2
培養開始 0日目刺激 拡大培養率 (倍率)
I L - 2濃度パターン 1 抗 CD 3 312
抗 CD3+CH— 296 522
I L一 2濃度パターン 2 抗 CD 3 331
抗 CD 3 +CH— 296 730
I L- 2濃度パターン 3 抗 CD 3 146
抗 CD 3 +CH— 296 57 1 表 56— 2に示されるように、 継代時に種々の I L— 2濃度で培養した LAK 細胞培養において、 いずれの I L一 2濃度区分においても、 対照群 (抗 CD 3抗 体のみによる刺激) と比較して CH_ 296および抗 CD 3抗体により刺激した 群において高い拡大培養率が得られた。 すなわち、 I L— 2濃度を変更しても、 CH- 296および抗 CD3抗体により刺激することで、 抗 CD 3抗体単独で刺 激するよりも、 明らかに高い拡大培養率で LAK細胞を誘導 ·培養することがで きた。 また、 このときの培養における細胞は高濃度 ·高密度であり、 また、 血清 濃度も 3 OmL採血で総培養液量が 10 Lであることを想定しており、 CH_ 2 96で刺激することにより、 このような条件下においても、 明らかに高い拡大培 養率であり、 CH_ 296の有効性が認められた。 実施例 57 低血清培地 (A I M V) を用いて培養した LAK細胞集団中にお ける C D 8陽性細胞含有比率 ( I L一 2濃度の検討)
(1) LAK細胞の誘導および培養
実施例 56と同様の方法で LAK細胞を誘導 ·培養した。
( 2 ) L A K細胞における C D 8陽性細胞集団含有比率の測定
実施例 4一 (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 57に示す。 表 57
培養開始 0日目刺激 CD 8陽性細胞含有率 (%)
I L— 2濃度パ夕一ン 1 抗 CD 3 60
抗じ03+(:1^-296 65
I L一 2濃度パターン 2 抗 CD 3 60
抗 CD 3 +CH— 296 62
I L— 2濃度パ夕一ン 3 抗 CD 3 59
抗 CD 3 +CH— 296 67 表 57に示されるように、 培養開始時、 継代時に I L一 2濃度を変更したいず れの区分においても、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH_ 296および抗 CD 3抗体により刺激した群において培養中の LAK細胞中にお ける CD 8陽性細胞含有率を高く誘導することができた。 すなわち、 I L一 2濃 度を変更しても CH— 296による刺激により、 明らかに LAK細胞中の CD 8 陽性細胞の含有率を高くしながら LAK細胞を誘導 ·培養することが可能である ことが明らかとなった。 実施例 58 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (培養開始初期濃度の検討)
3 OmL採血、 最終培養液量約 10 Lと想定したときの LAK細胞培養系にお ける培養開始時の細胞初期濃度の拡大培養率に及ぼす影響を確認した。
培養開始初期細胞濃度を 0. 083 X 106 c e 1 1 s/mL, 0. 167 X 106 c e 1 1 s /mLあるいは 0. 33 X l 06 c e l l s ZmLの各区分を 設定した。
(1) 抗ヒト CD3抗体および FNフラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD 3抗体および FNフラグメントを 固定化した。 すなわち 12穴細胞培養プレートあるいは 6穴細胞培養プレート ( ファルコン社製) に抗ヒト CD3抗体 (終濃度 5 gZmL) を含む PBSを 1 . 9mLあるいは 4. 8 mLずつそれぞれ添加した。 この時、 FNフラグメント 添加群には製造例 1に記載のフイブロネクチンフラグメント (CH— 296) を 終濃度 25 gZmLとなるように添加した。 対照として、 CH— 296を添加 しない群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗ヒト CD 3抗体 · CH— 296を含む PBSを吸引除去後、 各ゥエルを PBSで 2回、 RPM I培地で 1回洗浄し各実 験に供した。
(2) LAK細胞の誘導および培養
3 %の h uma n AB血清を含む A I M Vに 0. 083 X 106 c e 1 1 s ZmL、 0. 167 X 106 c e 1 1 s /mLあるいは 0. 33 X 106 c e l 1 s/mLとなるように実施例 1一 (1) で調製した P BMCをそれぞれ懸濁後 、 0. 083 X 106 c e 1 1 s ZmLあるいは 0. 167 X 106 c e l l s ノ mLで培養開始する区分は実施例 58— (1) で調製した抗ヒト CD 3抗体固 定化 6穴細胞培養プレート、 または抗ヒト CD 3抗体および CH— 296固定化 6穴細胞培養プレートに 7. SmLZゥエルずつ、 また、 0. 33 X 106 c e 1 1 sZmLで培養開始する区分は実施例 58— (1) で調製した抗ヒト CD 3 抗体固定化 12穴細胞培養プレート、 または抗ヒト CD 3抗体および CH— 29 6固定化 12穴細胞培養プレートに 3mL/ゥエルずつ、 それぞれまき、 終濃度 100 OUZmLとなるように I L— 2を添加した。 これらのプレートを 5%C 02 中 37 で培養した (培養 0日目) 。
培養開始後 4日目に各区分は、 最大 0. l X 106 c e l l sZmLとなるよ うに 1 %h uma nAB血清を含む A I M Vにより希釈し (液量 6mL) 、 何 も固定化していない 12. 5 cm2細胞培養フラスコに移した。 各区分において 終濃度 50 OUZmLとなるよう I L— 2を添加した。
培養開始 7日目には 0. 083 X 106 e e l I s ZmLで培養開始した区分 は、 0. 227 X 106 c e l l s/mLとなるように、 0. 167 X 106 c e l l s ZmLで培養開始した区分は 0. 276 X 106 c e l l s /mLとな るように、 また、 0. 33 X 106 c e 1 1 sZmLで培養開始した区分は 0. 465 X 106 c e l l sZmLとなるように、 それぞれ 0. 05%human AB血清を含む A I M Vにより希釈し (液量最大 12. 6mL) 、 何も固定化 していない新しい 25 cm2細胞培養フラスコを立てたものにそれぞれ移した。 各区分において終濃度 50 OUZmLとなるよう I L一 2を添加した。
培養開始 10日目には 0. 083 X l 06 c e l l s ZmLで培養開始した区 分は、 0. 58 X 106 c e l l sZmLとなるように、 0. 167 X 106 c e 1 1 sZmLで培養開始した区分は 0. 75 x 106 e e l 1 sZmLとなる ように、 また、 0. 33 X 106 c e 1 1 sZmLで培養開始した区分は 0. 7 9 X 106 e e l 1 sZmLとなるように、 それぞれ 05%humanAB 血清を含む A IM Vにより希釈し (液量 12. 6mL) 、 何も固定化していな い新しい 25 cm2細胞培養フラスコを立てたものにそれぞれ移した。 各区分に おいて終濃度 50 OUZmLとなるよう I L_ 2を添加した。
培養開始 1 5日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時の 細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その平 均の各結果を表 58に示す。 表 58
培養開始細胞初期濃度 培養開始 0日目刺激 拡大培養率 (倍率)
(X 106 c e 1 1 s /mL)
0. 083 抗 CD 3 70
抗 CD 3 +CH - 296 593
0. 167 抗 CD 3 104
抗 CD3+CH—296 525
0. 33 抗 CD 3 272
抗 CD 3 +CH— 296 565
表 58に示されるように、 いずれの細胞濃度で培養開始した区分においても、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH_ 296および抗 CD 3 抗体により刺激した群において高い拡大培養率が得られた。 すなわち、 種々の細 胞濃度で培養開始しても CH— 296および抗 CD 3抗体により刺激することで 、 抗 CD 3抗体単独で刺激するよりも、 明らかに高い拡大培養率で LAK細胞を 誘導 ·培養することができた。 また、 このときの培養は 3 OmL採血、 最終培養 液量 10 Lを想定したものであり、 CH— 296で刺激することにより、 このよ うな条件下においても、 明らかに高い拡大培養率であり、 CH— 296の有効性 が認められた。 さらに、 対照群においては培養開始細胞初期濃度により拡大培養 率が大きく変動する様子が確認されたが、 CH— 296により刺激した区分では 、 培養開始細胞初期濃度に関わらず、 安定した拡大培養率が得られた。 実施例 59 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (刺激期間)
LAK細胞培養系における抗 CD 3抗体単独あるいは抗 CD 3抗体および CH -296による培養開始時における刺激の日数が拡大培養率に与える影響につい て確認した。
刺激日数として 2日、 3日あるいは 4日の各区分を設定した。
3 %の h uma n AB血清を含む A I M Vに各区分とも 0. 33 X 106 c e 1 1 sZmLとなるように、 実施例 1 _ (1) で調製した PBMCをそれぞれ懸 濁後、 実施例 41 _ (1) で調製した抗ヒト CD 3抗体固定化プレート、 または 抗ヒト CD 3抗体および CH_ 296固定化プレートに 3mLZゥエルずつまき 、 終濃度 100 OUZmLとなるように I L— 2を添加した。 これらのプレート を 5%C02 中 37 X:で培養した (培養 0日目) 。
培養開始後 2日目あるいは 3日目にそれぞれ 2日刺激の区分、 3日刺激の区分 を何も固定化していない新しい 12穴培養プレートにそのまま移した。
培養開始後 4日目に各区分とも、 0. 1 X 106 c e 1 1 sZmLとなるよう に 1 %h uma nAB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も 固定化していない 12. 5 cm2細胞培養フラスコにそれぞれ移した。 各区分に おいて終濃度 50 OUZmLとなるようにそれぞれ I L_ 2を添加した。
培養開始 7日目には各区分とも、 0. 45 X 106 c e 1 1 sZmLとなるよ うに 0. 05 %h uma n AB血清を含む A I M Vにより希釈し (液量 1 2. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたも のにそれぞれ移した。 各区分において終濃度 50 OUZmLとなるようにそれぞ れ I L— 2を添加した。
培養開始 10日目には各区分とも、 0. 6 X 106 c e 1 1 s ZmLとなるよ うに 0. 05 %h uma nAB血清を含む A I M Vにより希釈し (液量 1 2. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたも のにそれぞれ移した。 各区分において終濃度 50 OU/mLとなるようにそれぞ れ I L一 2を添加した。
培養開始 15日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 59に示す。 表 59
培養開始 0日目刺激 拡大培養率 (倍率) 刺激期間 2日 抗 CD 3 266
抗 CD3+CH— 296 438
刺激期間 3日 抗 CD 3 424
抗 CD3+CH—296 562
刺激期間 4日 抗 CD 3 257
抗 CD3+CH— 296 568 表 59に示されるように、 培養開始時より種々の刺激期間で培養した LAK細 胞培養において、 いずれの刺激期間の区分においても、 対照群 (抗 CD 3抗体の みによる刺激) と比較して CH— 296および抗 CD 3抗体により刺激した群に おいて高い拡大培養率が得られた。 すなわち、 刺激期間を変更しても、 CH— 2 96および抗 CD 3抗体により刺激することで、 抗 CD 3抗体単独で刺激するよ りも、 明らかに高い拡大培養率で LAK細胞を誘導 ·培養することができた。 ま た、 このときの培養における細胞は高濃度 ·高密度であり、 また、 血清濃度も 3 OmL採血で総培養液量が 10 Lであることを想定しており、 CH— 296で刺 激することにより、 このような条件下においても、 明らかに高い拡大培養率であ り、 C H— 296の有効性が認められた。 実施例 60 低血清培地 (A I M V) を用いた LAK細胞培養系における拡大 培養率の測定 (CH— 296Na)
28 FNフラグメントして CH— 296 N aを用いたときの LAK細胞培養系にお ける拡大培養率を測定した。
CH- 296 N aは細胞培養プレートに固定化する区分とそのまま細胞培養液 中に添加する区分を設定した。
(1) 抗ヒト CD3抗体および FNフラグメント固定化
以下の実験で使用する培養器材に抗ヒト CD 3抗体および FNフラグメントを 固定化した。 すなわち 12穴細胞培養プレートに抗ヒト CD3抗体 (終濃度 5 g/mL) を含む PBSを 1. 9 mLずつそれぞれ添加した。 この時、 FNフラ グメント添加群には実施例 54に記載のフイブロネクチンフラグメント (CH_ 296 N a) を終濃度 28. 6 g/mLとなるように添加した。 対照として、 CH- 296 N aを添加しない群も設定した。
これらの培養器材を室温で 5時間インキュベート後、 使用時まで 4 で保存し た。 使用直前にはこれらの培養器材から抗ヒト CD 3抗体 · CH— 296 Naを 含む PBSを吸引除去後、 各ゥエルを PBSで 2回、 RPM I培地で 1回洗浄し 各実験に供した。
(2) LAK細胞の誘導および培養
3 %の h uma n AB血清を含む A I M Vに 0. 33 X 106 c e l l s/ mLとなるように実施例 1— (1) で調製した PBMCをそれぞれ懸濁後、 実施 例 60— (1) で調製した抗ヒト CD 3抗体固定化細胞培養プレート、 または抗 ヒト CD 3抗体および CH— 296 N a固定化細胞培養プレートに 3 mLノウェ ルずつまいた。 また、 CH— 296 Naを細胞培養液中にそのまま添加する区分 においては、 抗ヒト CD 3抗体固定化細胞培養プレートにまいた細胞に対して、 終濃度 1 ^ gZmLとなるように CH— 296 N aを添加した。 それぞれの区分 において終濃度 100 OU/mLとなるように I L— 2を添加した。 これらのプ レートを 5%C〇2 中 37でで培養した (培養 0日目) 。
培養開始後 4日目に、 各区分とも 0. 1 X 106 c e 1 1 sZmLとなるよう に 1 %h uma n AB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も 固定化していない 12. 5 cm2細胞培養フラスコに移した。 各区分において終 濃度 50 OUZmLとなるよう I L— 2を添加した。
培養開始 7日目には各区分とも 0. 5X 106 e e l 1 sZmLとなるように 、 それぞれ 0. 05 %h uma nAB血清を含む A I M Vにより希釈し (液量 12. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立 てたものにそれぞれ移した。 各区分において終濃度 500 Uノ mLとなるよう I L - 2を添加した。
培養開始 10日目には各区分とも 0. 94 X 106 c e 1 1 sZmLとなるよ うに、 それぞれ 0. 05 %h uma n AB血清を含む A I M Vにより希釈し ( 液量 12. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコ を立てたものにそれぞれ移した。 各区分において終濃度 50 OUZmLとなるよ う I L— 2を添加した。
培養開始 1 5日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 60に示す。 表 60
培養開始 0日目刺激 拡大培養率 (倍率)
抗 CD 3 222
抗 CD 3 +CH- 29 6 N a固定化 922
抗 CD 3 + CH— 29 6 N a溶液添加 65 1 表 60に示されるように、 対照群 (抗 CD 3抗体のみによる刺激) と比較して CH- 296 Naを固定化あるいは溶液で添加したいずれの区分においても高い 拡大培養率が得られた。 すなわち、 CH— 296 N aおよび抗 CD 3抗体により 刺激することで、 抗 CD 3抗体単独で刺激するよりも、 明らかに高い拡大培養率 で LAK細胞を誘導 ·培養することができた。 また、 このときの培養は 3 OmL
30 採血、 最終培養液量 10 Lを想定したものであり、 CH— 296Naで刺激する ことにより、 このような条件下においても、 明らかに高い拡大培養率であり、 C H- 296 N aの有効性が認められた。 実施例 61 CH- 296ビーズの作成
CH— 296を固定化するためのビーズとして、 Dyn a b e a s M— 45 0 Ep o xy (Dyn a l社製) を使用した。 2. 8 X 108個の Dyn a b e a s M—450 Ep oxyを 0. 1Mリン酸緩衝液 ( p H 7. 0 ) で 3回 洗浄した。 洗浄した Dy n a b e a s M— 450 Ep oxy 2. 8 X 10 8個を、 CH— 296 140 gを含む PBS 0. 7mLに懸濁し、 軽く混 合しながら 4t:で一晩固定化反応を行った。 反応液を除去し、 0. 1 %のヒト血 清アルブミン (HSA) を含む PBS 0. 7 mLで 3回置換した後、 4 で保 存したものを CH— 296ビーズとした。
また、 CH_ 296を含まずにビーズを同様に処理したものを対照ビーズとし た。 実施例 62 CD 3 CH— 296ビーズの作成
CH— 296と抗ヒト CD 3抗体とを固定化するためのビーズとして、 Dy n a b e a s M- 450 Ep oxyを使用した。 4 X 108個の D y n a b e a s M- 450 Epo xyを 0. 1Mリン酸緩衝液 ( p H 7. 0 ) で 3回洗 浄した。 洗浄した Dy n a b e a s M- 450 E oxy 4X 108個を 、 CH— 296 160 g、 抗ヒト CD 3抗体 32 ^ gを含む PB S lmL に懸濁し、 軽く混合しながら 4でで一晩固定化反応を行った。 反応液を除去し、 0. 1 %のヒト血清アルブミン (HS A) を含む P B S lmLで 3回置換した 後、 4 で保存したものを CD 3/CH— 296ビーズとした。
31 実施例 63 低血清培地 (A IM V) を用いた LAK細胞培養系における拡大 培養率の測定 (FN f r固定化ビーズによる刺激)
細胞培養用担体 (ビーズ) に固定化されたフイブロネクチンフラグメント (C H- 296) を用いての LAK細胞培養に対する効果を確認した。
抗 CD 3抗体がビーズに固定化されている CD 3ビーズと何も固定化されてい ない対照ビーズで刺激する区分 (CD 3ビーズ区分) 、 CD 3ビーズと CH— 2 96がビーズに固定化されている CH— 296ビーズにより刺激する区分 (CD 3ビーズ +CH— 296ビーズ区分) 、 抗 CD 3抗体と CH— 296がビーズに 固定化されている CD 3/CH— 296ビーズにより刺激する区分 (CD 3ZC H- 296ビーズ区分) を設定した。
1 %の h uma n AB血清を含む A I M Vに 0. 33 X 106 c e l l s mLとなるように実施例 1 _ (1) で調製した PBMCを懸濁後、 何も固定化し ていない 12穴培養プレートに 3mLノウエルずつまき、 CD 3ビーズ区分は C D 3ビーズ (Dyn ab e ad s M—450 CD 3 (p a nT) 、 ベリタス 社、 DB 1 1 1 13) を 1 X 106個ノゥエル、 実施例 61で調製した対照ビ一 ズを 3. 8 X 106個 ウエルとなるように、 CD 3ビーズ +CH— 296ビー ズ区分は CD 3ビーズを 1 X 106個 Zゥエル、 実施例 61で調製した CH— 2 96ビーズを 0. 76 X 106個/ゥエルとなるように、 また、 CD 3ZCH— 296ビーズ区分は実施例 62で調製した CD 3 /CH— 296ビーズを 2. 3 X 106個 ウエルとなるように添加した。 各ゥエルには終濃度 100 OUZm Lとなるように I L— 2を添加した。 これらのプレートを 5 %C02 中 37 で 培養した (培養 0日目) 。
培養開始後 4日目に各区分とも培養液中に含まれる各ビーズをマグネティック スタンドにより除去したのち、 0. Q 7 X 106 c e l l sZmLとなるように 、 1 %h uma n AB血清を含む A I M Vにより希釈し (液量 6mL) 、 何も 固定化していない 12. 5 cm2細胞培養フラスコに移した。 各区分において終 濃度 50 OUZmLとなるよう I L一 2を添加した。
培養開始 7日目には各区分とも 0. 25 X 106 e e l 1 s/mLとなるよう に 1 %h uma nAB血清を含む A I M Vによりそれぞれ希釈し (液量 12. 6mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたも のにそれぞれ移した。 各区分において終濃度 50 OUZmLとなるよう I L— 2 を添加した。
培養開始 10日目には各区分とも 0. 685 X 106 c e 1 1 sZmLとなる ように、 1 %h uma n AB血清を含む A I M Vにより希釈し (液量 12. 6 mL) 、 何も固定化していない新しい 25 cm2細胞培養フラスコを立てたもの に移した。 各区分において終濃度 50 OUZmLとなるよう I L— 2を添加した 培養開始 1 5日目にトリパンブルー染色法にて生細胞数を計測し、 培養開始時 の細胞数と比較しての拡大培養率として算出した。 各実験は 2連で行った。 その 平均の各結果を表 61に示す。 表 6
培養開始 0日目刺激 拡大培養率 (倍率)
CD 3ビーズ 抗 CD 3 420
CD 3ビーズ +CH— 296ビーズ 抗 CD 3 +CH— 296 830
CD3ZCH— 296ビーズ 抗 CD3+CH—296 748 表 61に示されるように、 各ビーズにより刺激した LAK細胞培養において、 CD 3ビーズ区分と比較して CD 3ビーズ +CH— 296ビーズ区分および CD 3/CH- 296ビーズ区分により刺激した区分において高い拡大培養率が得ら れた。 すなわち、 細胞培養用担体としてビーズを用いた LAK細胞培養において 、 CH- 296および抗 CD 3抗体を固定化したビーズにより刺激することで、 抗 CD 3抗体単独のビーズで刺激するよりも、 明らかに高い拡大培養率で LAK 細胞を誘導 ·培養することができた。 また、 このときの培養における細胞は高濃 度 '高密度であり、 CH— 296ビーズで刺激することにより、 このような条件 下においても、 明らかに高い拡大培養率であり、 CH— 296の有効性が認めら れた。 実施例 64 低血清培地 (A I M V) を用いて培養した LAK細胞集団中にお ける CD 8陽性細胞含有比率 (FN f r固定化ビーズによる刺激)
(1) LAK細胞の誘導および培養
実施例 63と同様の方法で LAK細胞を誘導 ·培養した。
( 2 ) L AK細胞における C D 8陽性細胞集団含有比率の測定
実施例 4— (2) と同様の方法で CD 8陽性細胞の含有率を測定した。 結果を 表 62に示す。 表 62
培養開始 0日目刺激 CD 8陽性細胞含有率 (%)
CD 3ビーズ 抗 CD 3 47
CD 3ビーズ + CH- 296ビーズ 抗 CD 3 +CH - 296 49
CD3/CH-296ビーズ 抗 CD3+CH— 296 59 表 62に示されるように、 各ビーズにより刺激した LAK細胞培養において、 CD 3ビーズ区分と比較して CD 3ビーズ +CH_ 296ビーズ区分および CD 3/CH- 296ビーズ区分により刺激した区分において培養中の LAK細胞中 における CD 8陽性細胞含有率を高く誘導することができた。 すなわち、 細胞培 養用担体としてビーズを用いた LAK細胞培養において、 CH— 296および抗 CD 3抗体を固定化したビーズにより刺激することで、 抗 CD 3抗体単独のビー ズで刺激するよりも、 明らかに LAK細胞中の CD8陽性細胞の含有率を高くし ながら L A K細胞を誘導 ·培養することが可能であることが明らかとなった。 配列表フリーテキスト
34 SEQ ID N0:1 Partial region of f ibronectin named II] - 8.
SEQ ID NO :2 Par t ial region of f ibronectin named III -9.
SEQ ID NO :3 Part ial region of f ibronectin named III -10.
SEQ ID NO :4 Partial region of fibronect in named III -11.
SEQ ID NO :5 Partial region of f ibronect in named II [-12.
SEQ ID NO: 6 Partial region of f ibronect in named II [-13.
SEQ ID NO: 7 Par t ial region of f ibronect in named II [-14.
SEQ ID NO: 8 Par t ial region of f ibronect in named CS- -1.
SEQ ID NO :9 Fibronect in fragment named C - 274.
SEQ ID NO: 10 Fibronect in fragment named H-271.
SEQ ID NO: 11 Fibronect in fragment named H-296.
SEQ ID NO: 12 Fibronect in fragment named CH-271.
SEQ ID NO: 13 Fibronect in fragment named CH-296.
SEQ ID NO: 14 Fibronect in fragment named C-CSl.
SEQ ID N0:15 Fibronect in fragment named CHV-89.
SEQ ID NO: 16 Fibronect in fragment named CHV-90.
SEQ ID NO: 17 Fibronect in fragment named CHV-92.
SEQ ID NO: 18 Fibronect in fragment named CHV-179.
SEQ ID NO: 19 Fibronect in fragment named CHV-181.
SEQ ID NO: 20 Fibronect in fragment named Η-275-Cys.
SEQ ID N0:21 Primer 12S.
SEQ ID NO: 22 Primer HA.
SEQ ID NO :23 Primer Cys-A.
SEQ ID NO :24 Primer Cys-S.
SEQ ID NO:25 Fibronect in fragment named CH-296Na.
SEQ ID NO:26 Polynucleotide coding Fibronect in fragment named CH-296Na.
SEQ ID N0:27 Primer CH-296Nal.
SEQ ID N0:28 Primer CH-296Na2.
SEQ ID N0:29 Primer CH-296Na3. 産業上の利用可能性
本発明の細胞傷害性リンパ球の製造方法によれば、 無血清 ·低血清濃度培地を 用いた場合でも、 拡大培養率が高く、 細胞傷害活性が高く維持され、 I L一 2R の発現量が有意に上昇し、 CD 8陽性細胞の比率が向上した細胞傷害性リンパ球 が得られる。 当該リンパ球は、 例えば、 養子免疫療法に好適に使用される。 従つ て、 本発明の方法は、 医療分野への多大な貢献が期待される。
36

Claims

請求の範囲
1 . 培地中における血清および血漿の総含有濃度が 0容量%以上 5容量%未満 である培地を用いて、 フイブロネクチン、 そのフラグメントまたはそれらの混合 物の存在下に細胞傷害性リンパ球の誘導、 維持および拡大培養から選択される少 なくとも 1つを行う工程を含むことを特徴とする、 細胞傷害性リンパ球の製造方 法。
2 . 細胞傷害性リンパ球が、 フイブロネクチン、 そのフラグメントまたはそれ らの混合物の非存在下に製造されたものと比較して、 イン夕一ロイキン— 2レセ プ夕一を高発現するものである請求項 1記載の方法。
3 . 細胞傷害性リンパ球が、 フイブロネクチン、 そのフラグメントまたはそれ らの混合物の非存在下に製造されたものと比較して、 C D 8陽性細胞を高比率で 含有するものである請求項 1記載の方法。
4 . フイブロネクチン、 そのフラグメントまたはそれらの混合物の非存在下で の細胞傷害性リンパ球の製造方法と比較して、 拡大培養率が高い方法である請求 項 1記載の方法。
5 . 細胞傷害性リンパ球が、 フイブロネクチン、 そのフラグメントまたはそれ らの混合物の非存在下に製造されたものと比較して、 細胞傷害活性が増強された もしくは高い細胞傷害活性が維持されたものである請求項 1〜 4いずれか 1項に 記載の方法。
6 . フイブロネクチン、 そのフラグメントまたはそれらの混合物が固相に固定 化されてなるものである請求項 1〜 5いずれか 1項に記載の方法。
7 . 固相が細胞培養用器材または細胞培養用担体である請求項 6記載の方法。
8 . 細胞培養用器材がシャーレ、 フラスコまたはバッグであり、 細胞培養用担 体がビーズ、 メンブレンまたはスライドガラスである請求項 7記載の方法。
9 . 細胞傷害性リンパ球がリンフォカイン活性化キラー細胞である請求項 1〜 8いずれか 1項に記載の方法。
1 0 . フイブロネクチンのフラグメントが、 配列表の配列番号 1〜 8で表され るいずれかのアミノ酸配列を少なくとも 1つ含んでなるポリペプチド (m) であ るか、 または前記いずれかのアミノ酸配列において 1もしくは複数個のアミノ酸 が置換、 欠失、 挿入もしくは付加したアミノ酸配列を少なくとも 1つ含んでなる ポリペプチドであって、 前記ポリペプチド (m) と同等な機能を有するポリぺプ チド (n ) である請求項 1〜9いずれか 1項に記載の方法。
1 1 . フイブロネクチンのフラグメントが、 細胞接着活性および またはへパ リン結合活性を有するものである請求項 1 0記載の方法。
1 2 . フイブロネクチンのフラグメントが、 配列表の配列番号 9〜 2 0および 2 5で表されるいずれかのアミノ酸配列を有するポリペプチドからなる群より選 択される少なくとも 1つのポリペプチドである請求項 1 0記載の方法。
1 3 . 細胞培養用器材中で行なう請求項 1記載の方法であって、
( a ) 培養開始時の細胞数と細胞培養用器材における培養面積との比率が、 l c e l 1ノ cm2 〜5xi 05 e e l l s/cm2 である、 およびノまたは
(b) 培養開始時の培地中の細胞の濃度が、 l c e l lZmL〜5 X 105 c e 1 1 sZmLである、
の条件を満たす方法。
14. 細胞培養液を希釈する工程を要しない請求項 13記載の方法。
1 5. 細胞傷害性リンパ球の誘導、 維持及び拡大培養の少なくともいずれか 1 つを、 フイブロネクチン、 そのフラグメントまたはそれらの混合物の存在下、 培 地を含む細胞培養用器材中で行なう請求項 1記載の方法であつて、 少なくとも 1 回の、 細胞培養液の希釈工程、 培地の交換工程もしくは細胞培養用器材の交換ェ 程を包含し、 かつ少なくとも 1回の、 細胞培養液の希釈工程直後、 培地の交換ェ 程直後もしくは細胞培養用器材の交換工程直後の培養条件が、
(c) 細胞培養液中の細胞の濃度が 2 X 105 e e l 1 s/mL~l X 108 c e 1 1 sZmLである、 または
(d) 細胞培養液中の細胞数と細胞培養用器材における培養面積との比率が 1 X 105 e e l l sZcm2 〜lx i 08 e e l 1 s/cm2である、
の条件を満たす方法。
16. 細胞傷害性リンパ球の誘導、 維持及び拡大培養の少なくともいずれか 1 つを、 フイブロネクチン、 そのフラグメントまたはそれらの混合物の存在下、 培 地を含む細胞培養用器材中で行なう請求項 1記載の方法であって、 少なくとも 1 回の、 細胞培養液の希釈工程、 培地の交換工程もしくは細胞培養用器材の交換ェ 程を包含し、 かつ少なくとも 1回の、.細胞培養液の希釈工程直後、 培地の交換ェ 程直後もしくは細胞培養用器材の交換工程直後の培地中における血清および血漿 の総含有濃度が培養開始時と同じか、 もしくは培養開始時よりも低減されている 請求項 1記載の方法。
17. 請求項 1〜16いずれか 1項に記載の方法により得られる細胞傷害性リ ンパ球。
18. 請求項 1〜16いずれか 1項に記載の方法により得られる細胞傷害性リ ンパ球を有効成分として含有する医薬。
19. フイブロネクチン、 そのフラグメントまたはそれらの混合物を有効成分 として含有し、 かっ血清および血漿の総含有濃度が 0容量%以上 5容量%未満で あることを特徴とする細胞傷害性リンパ球培養用培地。
20. 細胞傷害性リンパ球に外来遺伝子を導入する工程をさらに含む請求項 1 〜 16いずれか 1項に記載の方法。
21. 外来遺伝子をレトロウイルス、 アデノウイルス、 アデノ随伴ウィルスま たはシミアンウィルスを用いて導入する請求項 20記載の方法。
22. 配列表の配列番号 25に記載のアミノ酸配列 (X) 、 またはアミノ酸配 列 (X) において 1もしくは複数個のアミソ酸が欠失、 挿入、 付加もしくは置換 したアミノ酸配列 (y) を有するポリペプチドであって、 アミノ酸配列 (y) を 有するポリペプチドがアミノ酸配列 (X) を有するポリペプチドと同等な機能を 有するものである、 ポリペプチド。
23. 請求項 22のポリペプチドをコードする核酸。
40
24. (1) 配列番号 26に記載の塩基配列からなる DNA、 (2) 配列番号 26に記載の塩基配列において 1もしくは複数個の塩基が欠失、 置換、 挿入もし くは付加した塩基配列からなり、 かつ DNA (1) にコードされるポリペプチド と同等な機能を有するポリペプチドをコードする DNA、 または (3) 配列番号 26に記載の塩基配列からなる DN Aとストリンジェントな条件下でハイプリダ ィズし、 かつ DNA (1) にコードされるポリペプチドと同等な機能を有するポ リペプチドをコードする D N Aからなる請求項 23記載の核酸。
4
PCT/JP2004/012238 2003-08-22 2004-08-19 細胞傷害性リンパ球の製造方法 WO2005019450A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020127008838A KR101331746B1 (ko) 2003-08-22 2004-08-19 세포 상해성 림프구의 제조 방법
CA2536492A CA2536492C (en) 2003-08-22 2004-08-19 Process for producing cytotoxic lymphocytes
EP04772194A EP1666589B1 (en) 2003-08-22 2004-08-19 Process for producing cytotoxic lymphocytes
AU2004267313A AU2004267313B2 (en) 2003-08-22 2004-08-19 Process for producing cytotoxic lymphocytes
JP2005513357A JP4870432B2 (ja) 2003-08-22 2004-08-19 細胞傷害性リンパ球の製造方法
DE602004025591T DE602004025591D1 (de) 2003-08-22 2004-08-19 Verfahren zur herstellung zytotoxischer lymphozyten
EA200600459A EA012520B1 (ru) 2003-08-22 2004-08-19 Способ получения цитотоксических лимфоцитов
MXPA06002039A MXPA06002039A (es) 2003-08-22 2004-08-19 Proceso para producir linfocitos citotoxicos.
CN2004800241727A CN1839202B (zh) 2003-08-22 2004-08-19 细胞毒性淋巴细胞的制备方法
AT04772194T ATE458046T1 (de) 2003-08-22 2004-08-19 Verfahren zur herstellung zytotoxischer lymphozyten
US10/568,745 US8927273B2 (en) 2003-08-22 2004-08-19 Process for producing cytotoxic lymphocytes
HK07102871.3A HK1095606A1 (en) 2003-08-22 2007-03-16 Process for producing cytotoxic lymphocytes

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003298208 2003-08-22
JP2003-298208 2003-08-22
JP2004-000699 2004-01-05
JP2004000699 2004-01-05
JP2004-115648 2004-04-09
JP2004115648 2004-04-09
JP2004-222441 2004-07-29
JP2004222441 2004-07-29

Publications (1)

Publication Number Publication Date
WO2005019450A1 true WO2005019450A1 (ja) 2005-03-03

Family

ID=34222501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012238 WO2005019450A1 (ja) 2003-08-22 2004-08-19 細胞傷害性リンパ球の製造方法

Country Status (14)

Country Link
US (1) US8927273B2 (ja)
EP (1) EP1666589B1 (ja)
JP (1) JP4870432B2 (ja)
KR (2) KR20060039940A (ja)
CN (1) CN1839202B (ja)
AT (1) ATE458046T1 (ja)
AU (1) AU2004267313B2 (ja)
CA (1) CA2536492C (ja)
DE (1) DE602004025591D1 (ja)
EA (1) EA012520B1 (ja)
HK (1) HK1095606A1 (ja)
MX (1) MXPA06002039A (ja)
TW (1) TW200517501A (ja)
WO (1) WO2005019450A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007020880A1 (ja) 2005-08-17 2007-02-22 Takara Bio Inc. リンパ球の製造方法
JP2007061020A (ja) * 2005-08-31 2007-03-15 Takara Bio Inc リンパ球の製造方法
WO2007040105A1 (ja) 2005-09-30 2007-04-12 Takara Bio Inc. T細胞集団の製造方法
WO2007142300A1 (ja) 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法
WO2008111430A1 (ja) * 2007-03-09 2008-09-18 Takara Bio Inc. γδT細胞集団の製造方法
WO2009119793A1 (ja) 2008-03-27 2009-10-01 タカラバイオ株式会社 遺伝子導入細胞の製造方法
WO2011024791A1 (ja) 2009-08-25 2011-03-03 タカラバイオ株式会社 レチノイン酸存在下でのt細胞集団の製造方法
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
CN106574245A (zh) * 2014-06-10 2017-04-19 保利比奥斯博特有限公司 用于细胞免疫治疗的培养基
CN107099503A (zh) * 2017-06-01 2017-08-29 溯源生命科技股份有限公司 具有高杀伤力的自然杀伤性细胞高效体外扩增培养方法
JP2017531448A (ja) * 2014-10-06 2017-10-26 アシスタンス パブリック−ホピトー デ パリ T細胞前駆細胞を生成するための方法
WO2018135646A1 (ja) * 2017-01-20 2018-07-26 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
WO2019146673A1 (ja) 2018-01-25 2019-08-01 タカラバイオ株式会社 リンパ球の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2601896T3 (es) * 2004-11-24 2017-02-16 Fred Hutchinson Cancer Research Center Procedimientos de uso de la IL-21 en la inmunoterapia adoptiva y la identificación de antígenos tumorales
JPWO2008143014A1 (ja) * 2007-05-11 2010-08-05 タカラバイオ株式会社 がん治療剤
RU2596505C1 (ru) * 2015-07-02 2016-09-10 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский радиологический центр" Министерства здравоохранения Российской Федерации (ФГБУ "НМИРЦ" Минздрава России) Способ лечения онкологических больных цитотоксическими лимфоцитами
RU2652752C1 (ru) * 2017-06-15 2018-04-28 Федеральное государственное бюджетное научное учреждение "Научно-исследовательский институт фундаментальной и клинической иммунологии" Способ лечения бронхиальной астмы

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102988A (en) 1988-06-30 1992-04-07 Takara Shuzo Co., Ltd. Polypeptide with cell-spreading activity
US5198423A (en) 1989-05-26 1993-03-30 Takara Shuzo Co., Ltd. Functional polypeptide containing a cell binding domain and a heparin binding domain of fibronectin
WO1996006929A2 (en) 1994-08-31 1996-03-07 Fred Hutchinson Cancer Research Center Rapid expansion method ('rem') for in vitro propagation of t lymphocytes
WO1997018318A1 (en) 1995-11-13 1997-05-22 Takara Shuzo Co., Ltd. Method for gene introduction into target cells by retrovirus
WO1997032970A1 (en) 1996-03-04 1997-09-12 Targeted Genetics Corporation Modified rapid expansion methods ('modified-rem') for in vitro propagation of t lymphocytes
JP2729712B2 (ja) 1991-04-23 1998-03-18 寳酒造株式会社 機能性ポリペプチド
WO2000009168A1 (en) 1998-08-11 2000-02-24 The United States Of America, Represented By Department Of Health And Human Services A method of transducing mammalian cells, and products related thereto
JP3104178B2 (ja) 1990-03-30 2000-10-30 寶酒造株式会社 機能性ポリペプチド
WO2002014481A1 (fr) 2000-08-16 2002-02-21 Takara Bio Inc. Procede de culture extensive de lymphocytes t cytotoxiques specifiques de l'antigene
WO2003016511A1 (en) * 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8516421D0 (en) * 1985-06-28 1985-07-31 Biotechnology Interface Ltd Fibronectins
EP0287652B1 (en) * 1986-10-20 1994-01-12 Life Technologies Inc. Serum-free medium for the proliferation of lymphokine-activated killer cells
US5019646A (en) 1987-08-25 1991-05-28 Regents Of The University Of Minnesota Polypeptides with fibronectin activity
GB8909916D0 (en) 1989-04-29 1989-06-14 Delta Biotechnology Ltd Polypeptides
GR1001034B (el) 1989-07-21 1993-03-31 Ortho Pharma Corp Μεθοδος διεγερσης του πολλαπλασιασμου λεμφοκυτταρων περιφερειακου αιματος.
US5188959A (en) 1989-09-28 1993-02-23 Trustees Of Tufts College Extracellular matrix protein adherent t cells
JPH04108377A (ja) * 1990-08-27 1992-04-09 Ube Nitto Kasei Co Ltd 細胞培養用基材
JPH04297494A (ja) 1991-03-26 1992-10-21 Fuji Photo Film Co Ltd ペプチド誘導体とその用途
JPH07102131B2 (ja) 1991-07-15 1995-11-08 日本石油株式会社 ヒトリンパ球の癌細胞に対する傷害活性を高める方法
JPH06172203A (ja) 1992-12-02 1994-06-21 Takara Shuzo Co Ltd フィブロネクチンレセプター産生異常細胞抑制剤
JPH06306096A (ja) 1993-02-26 1994-11-01 Fuji Photo Film Co Ltd ペプチド誘導体及びその用途
US5405772A (en) * 1993-06-18 1995-04-11 Amgen Inc. Medium for long-term proliferation and development of cells
GB9315810D0 (en) 1993-07-30 1993-09-15 Univ London Stabilised materials
DE4336399A1 (de) * 1993-10-26 1995-04-27 Augustinus Dr Med Bader Verfahren zur Verbesserung der Matrixbedingungen bipolar adhärierter Hepatozyten und zur Herstellung eines entsprechend konfigurierten Zellkulturkits
US6821778B1 (en) 1993-12-01 2004-11-23 The Board Of Trustees Of Leland Stanford Junior University Methods for using dendritic cells to activate gamma/delta-T cell receptor-positive T cells
DE4412794A1 (de) 1994-04-14 1995-12-14 Univ Ludwigs Albert Verfahren zur Herstellung von dendritischen Zellen, so erhaltene Zellen und Behälter zur Durchführung dieses Verfahrens
GB9413029D0 (en) 1994-06-29 1994-08-17 Common Services Agency Stem cell immobilisation
WO1996017073A1 (fr) 1994-11-29 1996-06-06 Takara Shuzo Co., Ltd. Procede pour la production de cellules transformees
EP0797450A4 (en) 1994-12-01 2000-02-02 New England Deaconess Hospital IN VITRO T-LYMPHOPOIESE SYSTEM
US6692964B1 (en) 1995-05-04 2004-02-17 The United States Of America As Represented By The Secretary Of The Navy Methods for transfecting T cells
ATE292689T1 (de) 1995-05-04 2005-04-15 Us Navy Verbesserte verfahren zur transfektion der t- zellen
US7067318B2 (en) 1995-06-07 2006-06-27 The Regents Of The University Of Michigan Methods for transfecting T cells
DE19624887A1 (de) 1995-06-21 1997-01-02 Fraunhofer Ges Forschung Elektrochemisches Festelektrolyt-Zellsystem
JPH0925299A (ja) 1995-07-13 1997-01-28 Sumitomo Electric Ind Ltd Cd44リガンド
JP2001520509A (ja) 1995-07-25 2001-10-30 セルセラピー・インコーポレイテツド 自己免疫細胞療法:細胞組成物、方法およびヒト疾患の治療への応用
DE19537494C2 (de) 1995-09-25 1997-10-02 Desitin Arzneimittel Gmbh Kreatin zum Schutz von neuralem Gewebe
CN1326999C (zh) 1995-09-29 2007-07-18 印地安纳大学研究及科技有限公司 使用含有病毒和细胞结合区域的分子增强病毒介导的dna转移的方法
US6734014B1 (en) 1996-02-08 2004-05-11 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for transforming dendritic cells and activating T cells
ATE476496T1 (de) 1996-03-04 2010-08-15 Calyx Bio Ventures Inc Modifizierte schnellvermehrungsmethode ('modified-rem') zur in vitro vermehrung von t-lymphozyten
JPH1029952A (ja) 1996-07-16 1998-02-03 Takara Shuzo Co Ltd ヒト免疫不全ウイルス感染の制御用組成物および制御方法
JP2001501085A (ja) 1996-09-23 2001-01-30 オントジニー インコーポレーテッド 造血幹細胞およびこのような細胞を生成するための方法
GB9625175D0 (en) * 1996-12-04 1997-01-22 Medi Cult As Serum-free cell culture media
EP1012238A4 (en) 1997-01-31 2003-03-05 Epimmune Inc CELLS WITH PEPTIDES OR ANTIGENS WITH PEPTIDES
TWI239352B (en) * 1997-07-23 2005-09-11 Takara Bio Inc Gene transfer method with the use of serum-free medium
JP2002507387A (ja) 1997-12-24 2002-03-12 コリクサ コーポレイション 乳癌の免疫療法および診断のための化合物ならびにそれらの使用のための方法
EP1047708B1 (en) 1997-12-24 2007-09-26 Bracco International B.V. Peptide chelators that predominately form a single stereoisomeric species upon coordination to a metal center
KR100674140B1 (ko) 1999-03-23 2007-01-26 다카라 바이오 가부시키가이샤 유전자 치료제
JP2004500095A (ja) 2000-02-24 2004-01-08 エクサイト セラピーズ, インコーポレイテッド 細胞の同時の刺激および濃縮
US6797514B2 (en) 2000-02-24 2004-09-28 Xcyte Therapies, Inc. Simultaneous stimulation and concentration of cells
JP3904374B2 (ja) 2000-02-29 2007-04-11 独立行政法人科学技術振興機構 キラー活性を増強したリンパ球
EP1401495A4 (en) 2001-06-01 2005-11-23 Xcyte Therapies Inc T CELL-INDUCED TISSUE PARA- TURE AND REGENERATION
JP4759890B2 (ja) 2001-09-12 2011-08-31 大日本印刷株式会社 パール調印刷物の印刷濃度管理方法
US7745140B2 (en) 2002-01-03 2010-06-29 The Trustees Of The University Of Pennsylvania Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool
ES2397319T3 (es) * 2002-03-25 2013-03-06 Takara Bio Inc. Proceso para producir linfocitos citotóxicos
JP4406607B2 (ja) 2002-08-26 2010-02-03 オンコセラピー・サイエンス株式会社 ペプチド及びこれを含む医薬
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
JP4297494B2 (ja) 2003-11-06 2009-07-15 タイヨーエレック株式会社 組合せ式遊技機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102988A (en) 1988-06-30 1992-04-07 Takara Shuzo Co., Ltd. Polypeptide with cell-spreading activity
US5198423A (en) 1989-05-26 1993-03-30 Takara Shuzo Co., Ltd. Functional polypeptide containing a cell binding domain and a heparin binding domain of fibronectin
JP3104178B2 (ja) 1990-03-30 2000-10-30 寶酒造株式会社 機能性ポリペプチド
JP2729712B2 (ja) 1991-04-23 1998-03-18 寳酒造株式会社 機能性ポリペプチド
WO1996006929A2 (en) 1994-08-31 1996-03-07 Fred Hutchinson Cancer Research Center Rapid expansion method ('rem') for in vitro propagation of t lymphocytes
WO1997018318A1 (en) 1995-11-13 1997-05-22 Takara Shuzo Co., Ltd. Method for gene introduction into target cells by retrovirus
WO1997032970A1 (en) 1996-03-04 1997-09-12 Targeted Genetics Corporation Modified rapid expansion methods ('modified-rem') for in vitro propagation of t lymphocytes
WO2000009168A1 (en) 1998-08-11 2000-02-24 The United States Of America, Represented By Department Of Health And Human Services A method of transducing mammalian cells, and products related thereto
WO2002014481A1 (fr) 2000-08-16 2002-02-21 Takara Bio Inc. Procede de culture extensive de lymphocytes t cytotoxiques specifiques de l'antigene
WO2003016511A1 (en) * 2001-08-15 2003-02-27 Takara Bio Inc. Method of extended culture for antigen-specific cytotoxic t lumphocytes

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, vol. 6, pages 1 - 1
BENDNAREK M. A. ET AL., J. IMMUNOL., vol. 147, no. 12, 1991, pages 4047 - 4053
CELL IMMUNOL., vol. 135, no. 1, 1991, pages 105 - 117, XP002904129 *
CURRENT PROTOCOLS IN IMMUNOLOGY, vol. 17
DEANE F. MOMER: "FIBRONECTIN", 1988, ACADEMIC PRESS INC., pages: 1 - 8
DEANE F. MOMER: "FIBRONECTIN", 1988, ACADEMIC PRESS INC., pages: PI-8
EUR. J. IMMUNOL., vol. 21, 1991, pages 1559 - 1562, XP002961789 *
GREENBERG, P. D.: "Advances in Immunology and Reusser P. and three others", BLOOD, vol. 78, no. 5, 1991, pages 1373 - 1380
HANENBERG H.; FIVE OTHERS, HUMAN GENE THERAPY, vol. 8, no. 18, 1997, pages 2193 - 2206
KIMIDUKA F. ET AL., J. BIOCHEM., vol. 110, 1991, pages 284 - 291
PROC. NATL. ACAD. SCI. USA, vol. 80, no. 16, 1983, pages 3218 - 3222, XP002904128 *
REUSSER P., BLOOD, vol. 78, no. 5, 1991, pages 1373 - 1380
RIDDELL S. A.; FOUR OTHERS, J IMMUNOL., vol. 146, no. 8, 1991, pages 2795 - 2804
RIDDELL S. A.; FOUR OTHERS, J. IMMUNOL., vol. 146, no. 8, 1991, pages 2795 - 2804
ROSENBERG S. A. ET AL., N. ENGL. J. MED., vol. 319, no. 25, 1988, pages 1676 - 1680
SAIBO BAIYO, CELL CULTURE, vol. 17, no. 6, 1991, pages 192 - 195
SAIBO KOGAKU, CELL TECHNOLOGY, vol. 14, no. 2, 1995, pages 223 - 227
See also references of EP1666589A4
SEKIGUCHI K. ET AL., BIOCHEMISTLY, vol. 25, no. 17, 1986, pages 4936 - 4941
THE LANCET, vol. 356, 2000, pages 802 - 807

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975070B2 (en) 2002-03-25 2015-03-10 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8728811B2 (en) 2002-03-25 2014-05-20 Takara Bio Inc. Process for producing cytotoxic lymphocyte
US8927273B2 (en) 2003-08-22 2015-01-06 Takara Bio Inc. Process for producing cytotoxic lymphocytes
US8765469B2 (en) 2005-08-17 2014-07-01 Takara Bio Inc. Method of producing lymphocytes
KR101279172B1 (ko) 2005-08-17 2013-06-27 다카라 바이오 가부시키가이샤 림프구의 제조 방법
WO2007020880A1 (ja) 2005-08-17 2007-02-22 Takara Bio Inc. リンパ球の製造方法
JP4929174B2 (ja) * 2005-08-17 2012-05-09 タカラバイオ株式会社 リンパ球の製造方法
JP4741906B2 (ja) * 2005-08-31 2011-08-10 タカラバイオ株式会社 リンパ球の製造方法
JP2007061020A (ja) * 2005-08-31 2007-03-15 Takara Bio Inc リンパ球の製造方法
JP5156382B2 (ja) * 2005-09-30 2013-03-06 タカラバイオ株式会社 T細胞集団の製造方法
CN101400785B (zh) * 2005-09-30 2013-09-25 宝生物工程株式会社 T细胞群的制备方法
AU2006298188B2 (en) * 2005-09-30 2012-03-15 Takara Bio Inc. Method for production of T cell population
WO2007040105A1 (ja) 2005-09-30 2007-04-12 Takara Bio Inc. T細胞集団の製造方法
EA016168B1 (ru) * 2005-09-30 2012-02-28 Такара Био Инк. Способ получения т-клеточной популяции и ее применение
WO2007142300A1 (ja) 2006-06-09 2007-12-13 Takara Bio Inc. リンパ球の製造方法
JPWO2007142300A1 (ja) * 2006-06-09 2009-10-29 タカラバイオ株式会社 リンパ球の製造方法
US8216837B2 (en) 2006-06-09 2012-07-10 Takara Bio Inc. Method of producing lymphocytes
JP2013176403A (ja) * 2007-03-09 2013-09-09 Takara Bio Inc γδT細胞集団の製造方法
JPWO2008111430A1 (ja) * 2007-03-09 2010-06-24 タカラバイオ株式会社 γδT細胞集団の製造方法
WO2008111430A1 (ja) * 2007-03-09 2008-09-18 Takara Bio Inc. γδT細胞集団の製造方法
WO2009119793A1 (ja) 2008-03-27 2009-10-01 タカラバイオ株式会社 遺伝子導入細胞の製造方法
WO2011024791A1 (ja) 2009-08-25 2011-03-03 タカラバイオ株式会社 レチノイン酸存在下でのt細胞集団の製造方法
CN106574245A (zh) * 2014-06-10 2017-04-19 保利比奥斯博特有限公司 用于细胞免疫治疗的培养基
JP2021072779A (ja) * 2014-10-06 2021-05-13 アシスタンス パブリック−ホピトー デ パリ T細胞前駆細胞を生成するための方法
JP2017531448A (ja) * 2014-10-06 2017-10-26 アシスタンス パブリック−ホピトー デ パリ T細胞前駆細胞を生成するための方法
JPWO2018135646A1 (ja) * 2017-01-20 2019-11-07 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
WO2018135646A1 (ja) * 2017-01-20 2018-07-26 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
JP7136454B2 (ja) 2017-01-20 2022-09-13 国立大学法人京都大学 CD8α+β+細胞傷害性T細胞の製造方法
CN107099503A (zh) * 2017-06-01 2017-08-29 溯源生命科技股份有限公司 具有高杀伤力的自然杀伤性细胞高效体外扩增培养方法
WO2019146673A1 (ja) 2018-01-25 2019-08-01 タカラバイオ株式会社 リンパ球の製造方法
KR20200112868A (ko) 2018-01-25 2020-10-05 다카라 바이오 가부시키가이샤 림프구의 제조방법

Also Published As

Publication number Publication date
EP1666589A4 (en) 2006-10-04
EA200600459A1 (ru) 2006-08-25
CN1839202B (zh) 2012-07-18
US8927273B2 (en) 2015-01-06
CN1839202A (zh) 2006-09-27
CA2536492C (en) 2013-10-08
KR101331746B1 (ko) 2013-11-20
DE602004025591D1 (de) 2010-04-01
HK1095606A1 (en) 2007-05-11
CA2536492A1 (en) 2005-03-03
EA012520B1 (ru) 2009-10-30
TW200517501A (en) 2005-06-01
MXPA06002039A (es) 2006-05-25
ATE458046T1 (de) 2010-03-15
US20090221077A1 (en) 2009-09-03
EP1666589B1 (en) 2010-02-17
AU2004267313B2 (en) 2009-09-24
AU2004267313A1 (en) 2005-03-03
KR20060039940A (ko) 2006-05-09
JPWO2005019450A1 (ja) 2006-10-19
JP4870432B2 (ja) 2012-02-08
EP1666589A1 (en) 2006-06-07
KR20120051089A (ko) 2012-05-21

Similar Documents

Publication Publication Date Title
JP4929174B2 (ja) リンパ球の製造方法
AU2008243221B2 (en) Process for producing cytotoxic lymphocyte
AU2006298188B2 (en) Method for production of T cell population
WO2005019450A1 (ja) 細胞傷害性リンパ球の製造方法
WO2009139413A1 (ja) サイトカイン誘導キラー細胞含有細胞集団の製造方法
JPWO2007142300A1 (ja) リンパ球の製造方法
JP4741906B2 (ja) リンパ球の製造方法
CN111655842B (zh) 淋巴细胞生产方法
JP2010099022A (ja) リンパ球の製造方法
JP2010063455A (ja) リンパ球の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024172.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513357

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067003419

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2536492

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10568745

Country of ref document: US

Ref document number: 2004267313

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/002039

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004772194

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004267313

Country of ref document: AU

Date of ref document: 20040819

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004267313

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200600459

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2004772194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020127008838

Country of ref document: KR