WO2005007756A1 - プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法 - Google Patents

プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法 Download PDF

Info

Publication number
WO2005007756A1
WO2005007756A1 PCT/JP2004/007326 JP2004007326W WO2005007756A1 WO 2005007756 A1 WO2005007756 A1 WO 2005007756A1 JP 2004007326 W JP2004007326 W JP 2004007326W WO 2005007756 A1 WO2005007756 A1 WO 2005007756A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
primer
foil
content
Prior art date
Application number
PCT/JP2004/007326
Other languages
English (en)
French (fr)
Inventor
Kenji Tanaka
Kazumasa Takeuchi
Nobuyuki Ogawa
Katsuyuki Masuda
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to EP04734410.6A priority Critical patent/EP1627901B1/en
Priority to JP2005511783A priority patent/JPWO2005007756A1/ja
Priority to US10/557,728 priority patent/US7648770B2/en
Publication of WO2005007756A1 publication Critical patent/WO2005007756A1/ja
Priority to HK06110121A priority patent/HK1088031A1/xx
Priority to US12/688,276 priority patent/US8507100B2/en
Priority to US13/524,132 priority patent/US20120315438A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0358Resin coated copper [RCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention relates to a primer, a conductive foil with resin, a laminate, and a method for producing a laminate.
  • the mounting form of the elements on the printed wiring board has been changed from pin insertion type to surface mount type, and also BGA (ball grid array) using a plastic substrate. Area array type.
  • connection of the chip is generally performed by wire bonding by thermosonic compression bonding.
  • a predetermined number of pre-predas or the like having a matrix of an electrically insulating resin as a matrix are stacked, and are heated and pressed to be integrated.
  • the obtained laminate is used.
  • Thermosetting resins such as phenolic resin, epoxy resin, polyimide resin, and bismaleidamide triazine resin are generally used as the resin having electrical insulation properties.
  • a thermoplastic resin such as a fluorine resin or a polyphenylene ether resin is used.
  • a conductor-clad laminate in which a conductor foil such as a metal foil is laminated on the surface (one or both surfaces) of the above-mentioned laminate, and heated and pressed for integration. Then, a circuit pattern is formed by removing the conductor foil in the conductor-clad laminate by etching.
  • the printed wiring board obtained by using the conductor foil having a roughened surface has a problem that it is difficult to increase the frequency of a transmission signal due to a skin effect.
  • the "skin effect” means that as the frequency of a signal flowing through a conductor increases, the interference of the lines of magnetic force generated at the center of the conductor increases, so that it becomes difficult for current to flow at the center of the conductor, while the conductor surface It means that the current flowing in the vicinity increases. If the surface of the conductor foil is roughened when the skin effect occurs, the electric resistance tends to increase even near the surface, so that the current tends to hardly flow. Thus, the conductor foil The rougher the surface, the higher the frequency of the signal.
  • the resin primer of the present invention contains a resin, which has a film-forming ability and a breaking energy of 0.15 J or more. Characterized by the following.
  • the “breaking energy” of the resin is defined and measured as follows. First, the resin is molded into a strip film having a width of 10 mm and a thickness of 5 ⁇ . Next, the strip film is pulled in the length direction at a speed of 5 mmZ until it breaks. At this time, the relationship between the tensile stress applied to the strip film and the strain (elongation) of the film can be represented by a stress-strain curve as shown in FIG. The hatched portion in FIG. 1, that is, the integral value of the tensile stress until the strip film breaks (up to the breaking point) is defined as “breaking energy”.
  • the present inventors have found that by including a resin having such properties, the primer of the present invention enhances the adhesive force between the conductor foil and the insulator layer. Although the cause has not been clarified in detail at present, the present inventors consider as follows.
  • the resin obtained from this resin primer is used as a conductor foil and an insulator.
  • the pattern in which the conductor foil is peeled from the laminate provided between the conductor foil and the layer is as follows: (1) when the conductor foil peels from the insulator layer due to cohesive failure of the resin; and (2) when the conductor foil peels off. It is conceivable that peeling occurs with the resin. However, since the resin having the above-described characteristics is considered to have high resistance to cohesive failure, it is considered that such a resin is unlikely to cause peeling as described in (1) above. .
  • the resin having such properties is capable of dispersing the stress generated therein by being pulled over a wide range. Therefore, according to such a resin, even if a force for peeling the conductive foil is applied, the force per contact area with the conductive foil is reduced, and thus the peeling as described in (2) above is sufficient. It is thought that it becomes to be suppressed to.
  • another resin primer of the present invention contains a resin.
  • this resin is formed into a film, a positive point on the surface of the film (reference numeral 2 in FIG. 2) is obtained.
  • the average roughness is adjusted to 0.1 / zm or less and a formamide solution (1 in Fig. 2) is dropped on the surface of this film in a room temperature environment, the contact angle of the formamide solution to the film surface (Fig. ⁇ ) is 60 ° or less.
  • the primer of the present invention also enhances the adhesive strength between the conductor foil and the insulator layer by containing a resin having such properties.
  • the cause has not been clarified in detail at present, the present inventors consider as follows. That is, it is considered that a resin molded product having the above-described characteristics has a high surface free energy. Therefore, when the resin is adhered to the conductor foil, the interaction (attraction) at the interface between the resin and the conductor foil is considered to be large. As a result, the present inventors believe that the adhesive force between the conductor foil and the insulator layer is increased.
  • the resin films obtained from these primers can sufficiently suppress the peeling of the conductor foil from the laminate. Therefore, by using these primers, it is possible to manufacture printed wiring boards with higher density and better high frequency characteristics. It works.
  • the primer containing a resin having these two properties at the same time the bonding force between the insulator layer and the conductor foil can be further increased as compared with the primer having the individual properties.
  • the primer of the present invention is characterized in that one or more bonds selected from the group consisting of an imido bond, a carbamic acid ester bond and an aromatic carboxylic acid ester bond are bonded to the mass of the resin contained in the primer. It is preferable to use a resin containing 6% by mass or more based on the standard. By using such a primer, the adhesive force between the conductor foil and the insulator layer is further increased.
  • another resin primer of the present invention contains a resin, and includes, as the resin, a polyamideimide having a siloxane structure in a main chain, which is included in the resin. Assuming that the content of all amide groups is A wt% and the content of all silicon atoms contained in the resin is C wt%, the following formulas (a) and (b);
  • a resin primer that contains a polyamideimide having a siloxane structure in the main chain and satisfies the above conditions exhibits excellent adhesion even to a metal foil having a relatively smooth surface.
  • the resin primer of such a form contains the above resin, and has a film forming ability and a breaking energy of 0.15 J or more.
  • the contact angle of formamide at room temperature to the surface of the film may be 60 ° or less.
  • another resin primer of the present invention contains a resin, and the resin reacts with a polyamideimide having a siloxane structure in a main chain and an amide group contained in the polyamideimide. And has a functional group that produces And a reactive compound which may have a amide group and Z or a silicon atom, and the resin B is 100 parts by weight of the polyamideimide in the resin.
  • the content of amide group is P & wt%
  • the content of amide group in reactive compound is E a wt%
  • the content of silicon atom in polyamide is Pc% by weight
  • the content of silicon atom in reactive compound is When the content of E is expressed as Ec wt%, the following formulas (I) and (II);
  • the adhesiveness of the resin layer composed of the resin primer can be further enhanced. It can be improved. Further, if the amount of the reactive compound is adjusted as described above, the content of the amide group and the content of the silicon atom contained in the resin are likely to be within the above-mentioned preferred ranges. As a result, a resin primer that can exhibit more excellent adhesiveness is obtained.
  • the resin primer of such a form contains the above resin, and the resin has a film forming ability, a breaking energy of 0.15 J or more, and Z or When a film having a ten-point average roughness of 0.1 ⁇ or less is formed, the contact angle of formamide at room temperature to the surface of the film may be 60 ° or less.
  • a diimide dicarboxylic acid represented by the following general formula (1) obtained by reacting aromatic diamine and trimellitic anhydride can be used.
  • R 1 is a divalent group represented by the following general formula (4a) or (4b), R 21 is an alkyl group, a phenyl group or a substituted phenyl group, and R 22 is A valent organic group, R 3 is a divalent organic group having at least one aromatic ring, and n is an integer of 1 to 50.
  • R 4 is an alkylene group having 1 to 3 carbon atoms, a halogenated alkylene group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group or a single bond.
  • a plurality of R 21 and R 22 may be the same or different, and the aromatic ring in each compound may further have another substituent.
  • the polyamide imide is obtained by reacting 1.0 to 1.5 times the molar amount of aromatic diisocyanate with respect to the total molar amount of the diimide dicarboxylic acid mixture.
  • a diimidodicarboxylic acid mixture Is obtained by reacting a diamine mixture containing an aromatic diamine and a siloxane diamine with trimellitic anhydride, and in this diamine mixture, an aromatic diamine / siloxane diamine is used. More preferably, the molar ratio is 0/100 to 99.9 / 0.1.
  • another resin primer of the present invention contains a resin, contains a polyamideimide as the resin, and the polyamideimide has a structural unit composed of a saturated hydrocarbon.
  • the structural unit composed of a saturated hydrocarbon is preferably represented by the following chemical formula (5).
  • the resin has a film forming ability, a breaking energy of 0.15 J or more, and a Z or + point average roughness of 0.1; im.
  • the contact angle of formamide at room temperature to the surface of the film may be 60 ° or less.
  • polyamideimide contained in the resin in the resin primer of this embodiment examples include a polyamideimide obtained by reacting a diaminedicarboxylic acid obtained by reacting a diamine compound with trimellitic anhydride and diisocyanate. It is preferable to use a compound represented by the following general formula (6a), (6b) or (6c) as the diamine compound.
  • R 61 is a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a methyl halide group
  • R 62 is a group represented by the following general formulas (7a), (7b), (7c) and (7d )
  • R 63 is a carbon atom. It represents an alkylene group having 1 to 3 carbon atoms, an alkylene group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, or a canoleponyl group.
  • R 7 represents an alkylene group having 1 to 3 carbon atoms, a halogenated alkylene group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group or a single bond.
  • a plurality of R 61 may be the same or different.
  • the polyamide imide a compound obtained by further containing a compound represented by the following general formula (8) as the diamine compound is more preferable.
  • R 8 1 are methylene, sulfonyl Honoré group, an ether group, carbo - group or a single bond
  • R 8 2 and R 8 3 each independently represent a hydrogen atom, an alkyl group, Hue nil And m represents an integer of 1 to 50.
  • diisocyanate used in this polyamideimide an aromatic diisocyanate is preferable.
  • the resin in the resin primer in such a form contains a reactive compound having a functional group that reacts with the amide group of the polyamidoimide.
  • the resin primer of the present invention contains the resin as described above, and further contains a rubber component in addition to the resin, and the content of the rubber component is more preferably a 4 0 mass 0/0 or more by weight.
  • the resin primer containing such a rubber component makes it possible to further improve the adhesiveness between the conductor foil and the insulator layer.
  • the conductive foil with a resin according to the present invention comprises a conductive foil and a resin layer provided on the conductive foil, and the conductive foil has a ten-point average roughness of 3 ⁇ or less, and the resin layer is formed by applying the resin primer of the present invention.
  • the conductive foil with resin according to the present invention includes a conductive foil and a resin layer provided on the conductive foil, wherein the conductive foil is a metal foil, and the resin layer is It may be characterized by being made of the above resin primer.
  • these conductive foils with resin have a resin layer made of the resin primer of the present invention, the conductive foil is insulated from the conductive foil even though the surface of the conductive foil is sufficiently smooth. Adhesion with body layers is sufficiently high. Therefore, such a resin The body foil is suitable for producing high-density printed wiring boards.
  • the surface of the conductor foil is smooth as described above, according to the conductor foil with a strong resin, the current increase near the surface due to the skin effect described above is small, and therefore, it is possible to increase the frequency of the transmission signal. It is possible to manufacture a printed wiring board that can sufficiently cope with it.
  • the present invention provides a laminate that can be used as a substrate of a printed wiring board and is obtained by using the above resin primer. That is, the laminated board of the present invention is obtained by heating and pressurizing a laminate including the above-described conductive foil with a resin of the present invention and a pre-predger laminated on a resin layer of the conductive foil with a resin.
  • the laminate obtained in this manner is in contact with the conductive foil, the insulating layer containing resin disposed opposite to the conductive foil, and the conductive foil and the insulating layer. And a resin layer made of the resin primer of the present invention. Therefore, in this laminate, a conductor foil having at least a + point average roughness of 3 / im or less on a surface in contact with the resin layer can be preferably used as the conductor foil.
  • the laminate having the above-described configuration is a laminate including the resin-coated conductor foil of the present invention and a prepreg laminated on a layer of the resin-coated conductor foil on which a resin primer is applied.
  • the body can be suitably produced by heating and pressing.
  • FIG. 1 is a diagram showing a stress-strain curve of a resin.
  • FIG. 2 is a diagram showing a contact angle of a formamide solution on a resin surface.
  • FIG. 3 is a diagram schematically illustrating a cross-sectional structure of the conductive foil with resin according to the embodiment.
  • FIG. 4 is a diagram schematically illustrating a cross-sectional structure of a conductor-clad laminate (laminate) according to the embodiment.
  • FIG. 5 is a graph showing the F value of the double-sided copper-clad laminate obtained using the resin primer of Example 7.
  • FIG. 6 is a cross-sectional view of FIB processing on a commercially available double-sided copper-clad laminate.
  • FIG. 7 is a graph showing transmission loss values with respect to signal frequency.
  • the resin primer of the present invention contains a resin.
  • a resin examples include those having a film forming ability and a breaking energy of 0.15 J or more.
  • the two gripping tools are arranged at a distance of 6 O mm in the length direction with the film interposed therebetween. Then, the two grippers are moved away from each other at a speed of 5 mmZ along the length of the film, and the film is pulled. This pull is continued until the film breaks.
  • the relationship between the tensile stress applied to the strip film and the strain (elongation) of the film can be represented by a stress-strain curve as shown in FIG.
  • the hatched portion in FIG. 1, that is, until the strip film breaks (up to the breaking point) Calculate the integral value of the tensile stress, and define this value as “breaking energy (unit: J)”.
  • Such a measuring method is performed using, for example, Autograph AG-100C (manufactured by Shimadzu Corporation, trade name), and the breaking energy can be calculated from the resulting stress-strain curve force. it can.
  • the ten-point average roughness (Rz) of the surface of the resin film (reference numeral 2 in Fig. 2) is adjusted to be less than or equal to 0.1 ⁇ .
  • the contact angle of the formamide solution with the resin film surface ( ⁇ in Fig. 2) (hereinafter simply referred to as formamide A contact angle of less than 60 is also suitable.
  • the formamide contact angle can be measured by a conventional method, for example, using a contact angle measuring device CA-DT (trade name, manufactured by Kyowa Interface Science Co., Ltd.).
  • the "ten-point average roughness" of the resin film surface described above is derived, for example, using a commercially available stylus-type surface roughness measuring device or the like and by a measuring method according to JISB0601-1994. Can be.
  • a resin having any of the above-described characteristics can be applied without particular limitation.
  • a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, and a bismaleidamide triazine resin may be used.
  • a thermoplastic resin such as a fluororesin and a polyphenylene resin may also be used. These can be used alone or in combination of two or more.
  • the resin contains at least 6% by mass of at least one bond selected from the group consisting of an imido bond, a carbamic acid ester bond, and an aromatic carboxylic acid ester bond, based on the mass of the resin. Those are preferred.
  • “mass./.” Or “parts by mass” is substantially equivalent to a weight reference value (“% by weight” or “parts by weight”) (the same applies hereinafter).
  • the “aromatic carboxylic acid ester bond” is composed of one ester bond (COO).
  • the mass of each bond is calculated by multiplying the total atomic weight of the atoms constituting each bond by the number of moles of the bond. From the above, the total atomic weight of the atoms constituting each bond is 70 for an imido bond, 58 for a carbamic acid ester bond, and 44 for an aromatic carboxylic acid ester bond.
  • the content of each binding (mass%) is represented by the case where the reaction of the resin (condensation reaction or polycondensation reaction, etc.) is completed, the ratio of the binding relative to the total weight of resin solids (wt. / 0), Calculated from resin composition. Note that solvents and fillers that do not react with the resin component are not included in the resin solids.
  • the compound (resin) having such a bond has a property of reducing the formamide contact angle described above.
  • a resin include polyimide, polyetherimide, polyamideimide, polyurethane, polyarylate, and a resin obtained by modifying these. These resins may have a crushing energy of 0.15 J or more per se, or may have a formamide contact angle of 60 °.
  • the resin to be contained in the resin primer the following first resin and second resin, and other resins are also suitable. Among them, those containing polyamideimide, such as the first resin and the second resin, are preferable. It is more preferable that these resins have the above-mentioned properties of breaking energy and / or formamide contact angle. Further, the resin may be one containing the following individually, or one containing a plurality of types in combination. [0556] Hereinafter, the first resin, the second resin, other resins, and other components other than the resins, which are suitable as the resin to be contained in the resin primer of the embodiment, will be described.
  • the first resin contains a polyamideimide having a siloxane bond in the main resin.
  • a polyamideimide having a siloxane bond in the main resin.
  • the adhesive strength of the conductor-clad laminate obtained by using them is lowered, and the heat resistance is also poor. It tends to be sufficient.
  • the preferred range of the above A is 6 or more and 9 or less, and the preferred range of the above C is 5 or more and 12 or less.
  • Such a first resin contains, in addition to a polyamidimide having a siloxane structure in the main chain, a reactive compound containing a functional group reactive with the amide group of the polyamideimide. More preferred.
  • the content of the reactive compound preferably satisfies the following condition. That is, the weight part B of the reactive compound with respect to 100 weight parts of the polyamide imide is such that the content of the amide group in the polyamideimide is Pa weight%, and the content of the amide group in the amide reactive compound is The Ea weight. /.
  • the content of silicon atoms in the polyamidoimide is represented by Pc weight. /. It is preferable that the above formulas (I) and ( ⁇ ) be satisfied when the content of the silicon atom in the reactive compound is Ec wt%.
  • the lower limit of (Pa'X100 + EaXB) / (lOO + B) in the above formula (I) is preferably 6 and the upper limit is preferably 9. .
  • the lower limit of (PcXIOO + EcXB) / (100 + B) in the above formula (II) is preferably 5 and the upper limit is preferably 12.
  • a resin primer containing a resin that satisfies such conditions has not only excellent adhesiveness to a metal foil, but also excellent heat resistance. This is mainly due to polyamideimide having a siloxane structure introduced into polyamideimide having high heat resistance.
  • the polyamideimide having such a structure not only has a high adhesiveness to a metal foil or the like, but also can easily remove the residual organic solvent component contained in the resin at a temperature at which the resin is not cured. It has the property that it can be reduced to less than% by weight.
  • the polyamideimide having a siloxane structure in the main chain is a compound having a -siloxane structure, an amide bond, and an imido bond in the main chain.
  • the siloxane structure refers to a structure having a _Sio- bond in the structure.
  • the siloxane structure is preferably a structure in which two monovalent organic groups are bonded to a silicon atom.
  • diimidodicarboxylic acid represented by the above general formula (1) obtained by reacting aromatic diamine and trimellitic anhydride (hereinafter referred to as “polyamideimide”) 1) and a diimide dicarboxylic acid represented by the above general formula (2) obtained by reacting siloxane diamine with trimellitic anhydride (hereinafter referred to as “second diimide dicarboxylic acid”).
  • polyamideimide diimidodicarboxylic acid represented by the above general formula (1) obtained by reacting aromatic diamine and trimellitic anhydride
  • second diimide dicarboxylic acid a diimide dicarboxylic acid represented by the above general formula (2) obtained by reacting siloxane diamine with trimellitic anhydride
  • the functional group represented by R 1 in the general formula (1) is a divalent group represented by the above formula (4a). Is preferred.
  • the functional group represented by R 4 in the above formula (4a) includes a group represented by one C (CH 3 ) 2 — or a group represented by one C (CF 3 ) 2 — I like it.
  • Examples of the aromatic diamine for forming the first diimide dicarboxylic acid include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAP P) and bis [4-(3-aminophenoxy) phenyl] 'sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexaphnoleopropane , Bis [4- (4-aminophenoxy) phenyl] methane, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4-(4-aminophenoxy) phenyl ) [Feninole] ketone, 1,3-bis (4-aminophenoxy) benzene, and 1,4-bis (amino phenoxy) benzen
  • R 21 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
  • R 22 is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • a dimethyl oxaxane-based both terminal amine is preferable.
  • Such compounds are amino-modified silicone oils X_22-161 AS (amine equivalent 450), X-22-161A (amine equivalent 840), X-22-22-161B (amine equivalent 1500) (above Shin-Etsu) BY 16-853 (Amin equivalent 650), BY
  • the diimide dicarboxylic acid mixture containing the first and second diimide dicarboxylic acids may be prepared by (A) synthesizing each diimide dicarboxylic acid in advance and then mixing the two. (B) An aromatic diamine and siloxane diamine for forming each diimide dicarboxylic acid may be mixed to form a diamine mixture, and the mixture may be reacted with trimellitic anhydride to prepare the mixture.
  • the amounts of the aromatic diamine, siloxane diamine and trimellitic anhydride satisfy the following conditions. That is, when the number of moles of aromatic diamine is D, the number of moles of siloxanediamine is E, and the number of moles of trimellitic anhydride is F, the value of (D + E) ZF is 1.0 / 2.0. It is preferable to blend each component so as to be in the range of 1.0 to 2.2.
  • the mixing ratio DZE of D and E is desirably determined in accordance with the amine equivalent of E, and is usually 99.9 / 0.1 to 0Z100.
  • DZZ is 99.9 / 0.l to 0Zl00
  • DZ ⁇ is Is preferably 99.9 / 0.1 to 60 ⁇ 40
  • the amine equivalent is 1500 to 1600
  • 0 / £ is preferably 99.9 / 0.1 to 60_40.
  • a diimidedicarboxylic acid mixture is obtained by reacting the above-mentioned diamine mixture with anhydrous trimellitate. be able to.
  • an aromatic hydrocarbon capable of azeotroping with water is added to the solution after the reaction.
  • the reaction can be further carried out at 120 to 180 ° C. to cause a dehydration ring closure reaction.
  • examples of the aprotic polar solvent include dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, 4-butyrolactone, and sulfolane. Among them, N-methyl-2-pyrrolidone is particularly preferred.
  • Examples of the aromatic hydrocarbon azeotropic with water include toluene, benzene, xylene, and ethylbenzene, with toluene being preferred. It is preferable that the amount of the aromatic hydrocarbon is 0.1 to 0.5 in a weight ratio with respect to the aprotic polar solvent. After the completion of the dehydration ring closure reaction and before the reaction with the aromatic dissocyanate described below, the temperature of the solution is raised to about 190 ° C, and the aromatic hydrocarbon capable of azeotroping with water is heated. Is preferably removed.
  • the polyamide imide having a sioxaxane structure in the main chain is obtained by reacting the diimide dicarboxylic acid mixture obtained as described above with the aromatic diisocyanate represented by the general formula (3).
  • aromatic diisocyanates include 4,4'-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, and naphthalene_1,5-diene. Examples thereof include isocyanate and 2,4-trimethylbenzene.
  • Examples of the polyamideimide thus obtained include those having a repeating unit represented by the following general formula (9a) and a repeating unit represented by the following general formula (9b). Can be illustrated. These repeat units may be connected in blocks or may be connected randomly. Note that RR 2 in the equation
  • the reaction between the diimide dicarboxylic acid mixture and the aromatic diisocyanate is carried out, for example, when the solution containing the diimide dicarboxylic acid is heated to remove the aromatic hydrocarbon as described above. It is preferable that the subsequent solution is once cooled to room temperature and then carried out. After the aromatic diisocyanate is heated in the cooled solution, the temperature is raised to about 190 ° C. and the reaction is allowed to proceed for about 2 hours to obtain a polyamideimide.
  • the amount of the aromatic diisocyanate to be added is preferably 1.0 to 1.5 times the molar amount of the total amount of the diimide dicarboxylic acid mixture, and 1. ':! It is more preferable to use a molar amount of .about.1.3 times. If the amount of the aromatic disocyanate added is less than 1.0 times the molar amount, the flexibility of the resin layer composed of the resin primer tends to decrease. In addition, the flexibility of the resin layer tends to decrease.
  • Examples of the reactive compound contained in the first resin include the above-described thermosetting resin having a functional group that reacts with the amide group of the polyamideimide.
  • the reactive compound may have an amide group and a Z or silicon atom in the molecule.
  • thermosetting resins include polyfunctional epoxy compounds, polyimide resins, unsaturated polyester resins, polyurethane resins, bismaleimide resins, Triazine-bismaleimide resin, phenol resin and the like can be mentioned.
  • polyfunctional epoxy compounds are preferred.
  • the resin layer formed by the resin primer containing such a compound improves not only the adhesion to the conductive foil but also the heat resistance, mechanical properties, and electrical properties. become.
  • a polyfunctional epoxy compound a polyfunctional epoxy compound having two or more epoxy groups is preferable, and a polyfunctional epoxy compound having three or more epoxy groups is more preferable.
  • the polyfunctional epoxy compounds having two or more epoxy groups include, for example, polyphenols such as bisphenol A, novolak type phenol resin, and orthocresolno-polak type phenol resin, and epichlorohydrin.
  • Examples thereof include a polyglycidyl ester obtained by a reaction; an N-glycidyl derivative of a compound having an amine, an amide or a heterocyclic nitrogen base; an alicyclic epoxy resin.
  • Examples of the polyfunctional epoxy compound having three or more glycidyl groups include ZX-154S--2 (manufactured by Toto Kasei Co., Ltd.) and DR-331L (Dow Chemical).
  • Bisfuynol A-type epoxy resin manufactured by Tohoku Kasei Co., Ltd.) and cresol novolak-type epoxy resin manufactured by Toto Kasei Co., Ltd. are commercially available and can be suitably used.
  • the amount of the above-mentioned reactive compound in the resin containing the polyamide imide is determined according to the number of functional groups of the compound which react with the amide group. Is preferred. That is, the weight part B of the reactive compound with respect to 100 parts by weight of the polyamide amide is such that the content of the amide group in the polyamide amide is Pa weight%, the content of the amide group in the reactive compound is The content is Ea wt%, and the content of silicon atoms in polyamideimide is P. Weight percent, the content of silicon atoms in the reactive compound The weight is determined so that the above formulas (I) and (II) are satisfied.
  • a polyfunctional epoxy compound when contained as a reactive compound in a resin, it is preferable to further add a curing agent or a curing accelerator for the polyfunctional epoxy compound.
  • a curing agent for the polyfunctional epoxy compound.
  • the curing agent include amines such as dicyandiamid, diaminodiphenylmethane, and guanylurea; imidazoles; hydroquinone, resorcinol, bisphenol A, and halides thereof, nopolak-type phenolic resin, and resole-type phenolic resin.
  • polyfunctional phenols such as phthalic anhydride, benzophenone 'tracarboxylic dianhydride, and methylhymic acid.
  • curing accelerator include imidazoles such as alkyl-substituted imidazole and benzimidazole.
  • the blending amount of the curing agent can be determined according to the epoxy equivalent of the polyfunctional epoxy compound.
  • the compounding amount is preferably such that the equivalent of the active hydrogen of the amine and the epoxy equivalent of the polyfunctional epoxy compound are equal.
  • the curing agent is a polyfunctional phenol or an acid anhydride
  • the amount of the curing agent is one equivalent of the polyfunctional epoxy compound, and the amount of the phenol / hydroxyl group or carboxy! It is preferred that the groups be 0.6-6 to 1.2 equivalents.
  • the compounding amount of the curing accelerator is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the polyfunctional epoxy compound.
  • the amount of these curing agents or curing accelerators is less than the above range, the curing of the polyfunctional epoxy compound will be insufficient, and the glass transition of the resin layer obtained by the resin primer containing the resin will be insufficient. The temperature tends to decrease. On the other hand, if the amount is larger than the above range, the electric characteristics of the resin layer obtained by the resin primer tend to be reduced due to the remaining curing agent or curing accelerator.
  • the resin containing polyamide imide includes, in addition to the polyamide imide, the reactive compound, the curing agent, and the like, a filler, a coupling agent, a flame retardant, and the like. It may further be contained as another component.
  • the second resin contains a polyamide imide having a structural unit composed of a saturated hydrocarbon.
  • a structural unit one having a cycloalkylene group is preferable, one having one or two cyclohexylene groups is more preferable, and one represented by the chemical formula (5) is more preferable.
  • a resin primer containing polyamideimide it is possible to form a resin layer having not only excellent adhesiveness to the conductor foil but also high Tg and excellent in moisture resistance and heat resistance.
  • the polyamideimide contained in the second resin includes a diimide dicarboxylic acid obtained by reacting a diamine compound having a structural unit as described above between two amino groups with trimellitic anhydride, Those obtained by reacting with diisocyanate are preferred.
  • a compound represented by the above general formula (6a), (6b) or (6c) is preferable.
  • a compound represented by the above general formula (6a), (6b) or (6c) is preferable.
  • the polyamide in the second resin is more preferably obtained using a diamine compound represented by the general formula (8) in addition to the diamine compound described above.
  • R 82 and R 83 are each independently preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group or a substituted phenyl group.
  • substituent in the substituted phenyl group include an alkyl group having 1 to 3 carbon atoms and a halogen atom.
  • those represented by R 81 is an ether group.
  • the polyamide imide, and eventually the resin primer containing the same have low elastic modulus and high Tg characteristics.
  • a diamine compound As such a diamine compound, Jeffamine D-400, Jeffamine D-2000 (all manufactured by Sun Techno Chemical Co., Ltd.) and the like are commercially available and suitable.
  • the polyamide in the second resin may be a compound obtained by further containing an aromatic diamine / siloxane diamine in addition to the above-mentioned diamine compound as the diamine compound.
  • the aromatic diamine and the siloxane diamine are not particularly limited, and examples thereof include those used for the synthesis of the polyamide imide in the first resin described above. Addition of aromatic diamine makes polyamide It is possible to improve the heat resistance by increasing the imide and thus the resin primer to a high ⁇ g .
  • the addition of siloxane diamine makes it possible to lower the elastic modulus of the resin primer.
  • the polyamideimide in the second resin can be synthesized, for example, as described below. That is, first, the above-mentioned diamine compound and anhydrous trimellitic acid are reacted in an aprotic solvent at 70 to 100 ° C.
  • examples of the aprotic solvent include the same ones as those used for synthesizing the polyamideimide in the first resin, and NMP is preferable.
  • the content of the non-protonic polar solvent is such that the solid content is 10 to 70% by weight, preferably 20 to 60% by weight based on the total weight of the solution. It is preferable that the amount is such that If the solid content in the solution exceeds 70% by weight, the solubility of the solid content tends to decrease, and the reaction tends to be insufficient. On the other hand, if it is less than 10% by weight, the amount of solvent used becomes too large, which is disadvantageous in cost.
  • an aromatic hydrocarbon capable of azeotroping with water was added to the obtained solution to form an aromatic hydrocarbon of 150 to 20 as in the case of the polyamide synthesis of the first resin.
  • the mixture is heated to 0 ° C., thereby causing a dehydration ring closure reaction to obtain diimidedicarboxylic acid.
  • aromatic ketones may be distilled off at the same time as the outflow of water and may drop below a desired amount.
  • water may be removed from the distilled liquid and returned to the reaction solution.
  • the concentration of the aromatic hydrocarbon in the solution may be kept constant.
  • Polyamide imide can be obtained by reacting diimidodicarboxylic acid obtained as described above with diisocyanate.
  • the compounding amounts of the diamine compound, trimellitic anhydride and diisocyanate are as follows: the diamine compound: trimellitic anhydride: diisocyanate is in a molar ratio of 1: 2 to 2.2: 1. It is preferably set to 1.5, more preferably 1: 2 to 2.2: 1 to 1.3. In this way, the synthesis reaction of diimide dicarboxylic acid and polyamide imidide can be efficiently generated, and the polymer having higher molecular weight and excellent film forming property can be obtained. It becomes possible to obtain amide / imide. ⁇ .
  • R 11 includes a group represented by one Ph_CH 2 —P h—, a tolylene group, a naphthylene group, a hexamethylene group or an isophorone group.
  • aromatic diisocyanate those similar to those used for the synthesis of polyamideimide in the first resin described above are preferable, and among them, MDI is preferable. Inclusion of MDI improves film forming properties of resin primer In addition, the flexibility of the resin layer made of such a primer is improved.
  • the aliphatic diisocyanate include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and isophorone diisocyanate.
  • the diisocyanate either an aromatic diisocyanate or an aliphatic diisocyanate may be used alone or in combination. However, it is preferable that the diisocyanate contains at least an aromatic diisocyanate. It is more preferable to use both.
  • the mixing ratio thereof is such that the content of the aliphatic diisocyanate is about 5 to 10 mol% with respect to the aromatic diisocyanate.
  • the reaction between diimidedicarboxylic acid and these diisocyanates is preferably carried out by adding diisocyanate to a solution containing diimidedicarboxylic acid after the above-mentioned reaction.
  • the temperature is preferably 30 to 200 ° C. '.
  • Such a reaction is more preferably performed in the presence of a basic catalyst.
  • the reaction temperature is preferably from 70 to 180 ° C, and more preferably from 120 to 150 ° C. can do.
  • a side reaction such as a reaction between diisocyanates can be suppressed, and a polyamideimide having a higher molecular weight can be obtained.
  • Examples of the basic catalyst include trialkylamines such as trimethylamine, triethylamine, tripropylamine, tri (2-ethylhexyl) amine, and trioctylamine. Of these, triethylamine is preferred because it can favorably promote the reaction and can be easily removed after the reaction.
  • the polyamideimide thus obtained has, for example, the following It has a repeating unit represented by the general formula (12a), and preferably has a repeating unit represented by the following general formula (12b).
  • R 10, R 11, R 81, R 82, scale 83 and 1! 1 are as defined above.
  • the polyamide in the second resin thus obtained, those having a weight average molecular weight of 20,000 to 300,000 are preferred, and those having a weight average molecular weight of 30,000 to 200,000 to Certain ones are more preferred, and those with 40,000 to 150,000 are even more preferred.
  • the weight-average molecular weight is a value obtained by measurement by gel permeation chromatography and conversion by a calibration curve prepared using standard polystyrene. '.
  • the second resin further includes, in addition to the polyamideimide, a reactive compound having a functional group reactive with an amide group in the polyamideimide.
  • a reactive compound those suitable for the first resin described above can be applied, and the compounding amount is preferably 5 to 25% by weight based on the total amount of the resin primer.
  • the amount of the reactive compound is less than 5% by weight, the film forming property of the resin primer containing the second resin may be reduced. On the other hand, if it exceeds 25% by weight, the resin layer composed of the resin primer becomes brittle, and the adhesiveness to the conductor foil tends to decrease.
  • the reactive compound is contained as described above, It is more preferable to further contain the same curing agent and Z or curing accelerator as in the resin (1). .
  • the second resin may contain a filler, a coupling agent, a flame retardant, and the like as other components.
  • the resin to be contained in the resin primer of the embodiment in addition to the first or second resin, other resins described below can also be applied.
  • another resin there is firstly a rubbamate ester obtained by reacting a resin having a hydroxyl group in the structure with an isocyanate.
  • the iso 'cyanates include phenyl isocyanate, ethyl isocyanate, propyl isocyanate, butynoleic isocyanate, phenylinocyanate, and phenylenocyanate, and phenyl isocyanate.
  • bromophenyl isocyanate but are not limited thereto.
  • Examples of other resins also include aromatic carboxylic acid esters obtained by reacting a resin having a hydroxyl group in the structure with an aromatic carboxylic acid or a derivative thereof.
  • aromatic carboxylic acid esters obtained by reacting a resin having a hydroxyl group in the structure with an aromatic carboxylic acid or a derivative thereof.
  • this reaction for example, direct esteno I conversion of an aromatic carboxylic acid and a hydroxyl group using a mineral acid as a catalyst can be exemplified.
  • aromatic carboxylic acid derivatives examples include benzoic acid chloride, benzoic acid bromide, methyl benzoic acid chloride, methyl benzoic acid bromide, ethyl benzoic acid lauride, ethyl benzoic acid promide, and propyl benzoic acid.
  • examples include, but are not limited to, mouth light, propyl benzoic acid bromide, butyl benzoic acid chloride, and butyl benzoic acid bromide.
  • the resin primer according to the embodiment contains the various resins described above, but may further contain other components in addition to these resins.
  • a rubber component is exemplified.
  • the resin primer further contains a rubber component, the adhesiveness of the resin layer composed of the resin primer to the metal foil is further improved.
  • the "rubber component” refers to a polymer having rubber-like elasticity.
  • the rubber component include, but are not limited to, acrylic rubber, natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, nitrile / silicone rubber, silicone rubber, and urethane rubber. It is more preferable that this rubber be contained in the resin in an amount of 40% by mass or more.
  • engineering plastics such as nylon, polycarbonate and polyarylate may be contained as other components.
  • the resin to which these are added has higher breaking energy, and the resulting resin layer has stronger adhesion to the metal foil.
  • FIG. 3 is a diagram schematically illustrating a cross-sectional structure of the conductive foil with resin according to the embodiment.
  • the illustrated conductor foil with resin 10 includes a conductor foil 12 and a resin layer 14 formed thereon and made of the resin primer of the above-described embodiment.
  • the conductor foil 12 preferably has at least a 10-point average roughness (R z) of 3 ⁇ or less on the surface on which the resin primer is applied, and 2 ⁇ m or less. More preferably, it is m or less.
  • the Rz of the surface of the conductor foil 12 is the same as the "ten-point average roughness" of the surface of the resin film, and is derived using a measuring method according to JISB0601-1994. For example, it can be measured using a commercially available stylus type surface roughness measuring instrument.
  • Magnetic field lines are generated in the vicinity of the current flowing in the conductor, but since the interference of the magnetic field lines is greater at the center of the conductor, the current is concentrated at the periphery and the corner. This is called the skin effect, and the higher the frequency, the stronger this tendency.
  • the conductor circuit obtained from the conductor foil 12 described above has a sufficiently smooth Rz of 3 ⁇ or less, so it is considered that the increase in resistance due to the skin effect described above can be suppressed. It is considered to be advantageous.
  • the conductive foil 12 is not particularly limited as long as it has the above-described characteristics, but is preferably a metal foil from the viewpoint of good conductivity, and is preferably a copper foil. More preferred.
  • As the copper foil an electrolytic copper foil, a rolled copper foil, or the like can be used, and a copper foil having no irregularities formed by a roughening treatment or the like is preferable.
  • the glossy surface of a normal electrolytic copper foil satisfies these conditions, and when such a copper foil is used, the glossy surface can be used directly as the resin primer-coated surface.
  • the glossy surface of these commercially available copper foils has an Rz of 1.5 to 2.0 im.
  • F 0 -WS manufactured by Furukawa Circuit Oil Co., Ltd.
  • R z l. 2 ⁇ ⁇ .
  • the thickness of these copper foils is preferably about 9-18 / xm.
  • a beer-pull copper foil obtained by subjecting the surface of a carrier copper foil to a release treatment and laminating an extremely thin copper foil thereon can be used.
  • the copper foil is 3 ⁇ m. m or a thickness of 5 ⁇ can be used.
  • MTS manufactured by Mitsui Kinzoku
  • NAP manufactured by ⁇ Electrolysis
  • FCF manufactured by Furukawa Circuit Oil
  • the copper foil one having an appropriate thickness can be used as necessary.
  • Commercially available copper foils have a thickness in the range of about 10 to 150 ⁇ , but copper foils having a thickness of 18 / ⁇ m and 35 / zm are generally used for circuit board applications.
  • it is more preferable in the present invention to use a relatively thin copper foil such as one having a thickness of 12 im or 9 ⁇ .
  • an aluminum foil having a thickness of 5 to 200 / zm, a copper foil layer having a thickness of 0.5 to 15; / m and a copper foil layer having a thickness of 10 to 300 ⁇ A three-layer composite foil with an intermediate layer made of nickel, nickel-phosphorus, nickel-iron alloy, nickel-iron alloy, 0 % lead-tin alloy, etc., and two layers of aluminum and copper foil And a composite foil having a structure. It is preferable that the surface roughness of these metal foils also satisfies the above conditions.
  • the application of the resin primer onto the conductive foil 12 can be performed by a known method, and examples thereof include a method using a comma coater, a -dip coater, a kiss coder, and a natural casting method. Such coating is preferably performed in a state where the resin primer is dissolved or dispersed in an organic solvent or the like to form a varnish having a resin primer concentration of 0.1 to 10%, preferably 2 to 6%.
  • Examples of the organic solvent used for the varnish include dimethylacetamide, dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, ⁇ -petit mouth ratataton, sulfolane, cyclohexanone, and the like.
  • the organic solvent be volatilized by heating after application so that the resin primer is not cured.
  • FIG. 4 is a diagram schematically illustrating a cross-sectional structure of the conductor-clad laminate (laminate) according to the embodiment.
  • the conductor-clad laminate 20 has a structure including an insulator layer 26, an adhesive layer 24, and a conductor foil 22 in this order.
  • the insulator layer 26 can be applied without any particular limitation as long as it is generally used for a conductor-clad laminate. That is, examples of the insulator layer 26 include a pre-preda made of a B-stage curable resin having no reinforcing fiber, and a pre-preda made of a B-stage curable resin provided with the reinforcing fiber. . Above all, it is preferable to use a prepreg made of a B-stage curable resin having reinforcing fibers.
  • the former pre-preparant made of a B-stage curable resin without reinforcing fibers can be obtained by forming the curable resin into a film and then setting it in a semi-cured state (B stage).
  • B stage a pre-preparant made of a B-stage curable resin with reinforced fibers, the reinforced fibers are impregnated with the curable resin, and then the impregnated resin is brought into a semi-cured state (B stage).
  • the curable resin may be the same as or different from the resin constituting the resin primer.
  • Specific examples of the curable resin include an epoxy resin, a polyimide resin, and a phenol resin.
  • the reinforcing fibers include glass fibers made of E glass, D glass, S glass, Q glass, and the like, organic fibers made of polyimide, polyester, tetrafluoroethylene, and the like. Can be exemplified. These fibers can be used as, for example, reinforced fibers having a shape such as woven fabric, nonwoven fabric, roving, chopped strand mat, and surfing mat.
  • a commercially available pre-predader can be used.
  • a prepreg (GEA-67, GEA-679, GEA-679F; manufactured by Hitachi Chemical Co., Ltd.) in which a thermosetting resin containing an epoxy resin as a main component is impregnated into a glass cloth which is a glass fiber woven fabric, High frequency compatible pre-preda impregnated with resin with low dielectric constant (GEA-LX-67; manufactured by Hitachi Chemical Co., Ltd.), and a pre-preda impregnated into a glass cloth with resin in which a thermosetting component is mixed with polyimide (GE A-I- 671; manufactured by Hitachi Chemical Co., Ltd.).
  • the insulator layer 26 may be a layer using only one of these pre-predaders or a layer obtained by stacking a plurality of layers.
  • the adhesive layer 24 is a layer made of the resin primer of the present invention. Specifically, the layer is preferably formed by drying the resin primer. Further, as the conductor foil 22, the one used in the conductor foil with resin 10 described above can be preferably applied, and the one having an Rz of 3 or less on the bonding surface with the bonding layer 24 is more preferable.
  • Such a conductor-clad laminate 20 can be manufactured as described below. That is, first, a single layer or a plurality of layers of the above-described pre-preda are stacked, and the above-described conductive foil with resin 10 is stacked thereon so as to be in contact with the resin layer 14 to obtain a laminate.
  • the thickness of the resin layer 14 in the resin-carrying conductive foil 10 should be such that the protrusions on the surface of the conductive foil are reduced from the viewpoint of reducing the thickness and shortening the drying time of the printed wiring board and the equipment provided with the printed wiring board.
  • it is preferably 5 / zm or less, more preferably 4 ⁇ or less, and particularly preferably 3 ⁇ or less.
  • the laminate is heated and / or pressed under predetermined conditions to obtain the conductor-clad laminate 20.
  • the resin in the pre-preda and the resin layer 14 in the resin-coated conductor foil 10 are cured to form an insulator layer 26 and an adhesive layer 24, respectively.
  • the heating is preferably performed at a temperature of 160 to 250 ° C., and the pressure is set to 0.1. It is preferable to carry out under a pressure of 1 to 8. OMPa, particularly under vacuum. Heating and pressurization are preferably performed simultaneously using a vacuum press or the like.
  • the adhesion between the conductor foil 22 and the insulating layer 26 (prepredder) is excellent.
  • the conductor-clad laminate 20 can be manufactured.
  • the conductor-clad laminate of the present invention may have a conductor foil on both sides of the insulating layer via an adhesive layer.
  • Such a conductor-clad laminate can be manufactured by laminating the above-described conductor foil with resin on both sides of a pre-preda or a laminate thereof.
  • the conductor foil is adhered to the cured product (insulator layer) of the pre-preda via the adhesive layer made of the cured resin primer of the present invention. Also, the cured product of the insulating layer and the adhesive layer is integrated by curing. For this reason, the conductor foil in the conductor-clad laminate is firmly bonded to the insulating layer.
  • the circuit pattern formed from the strongly bonded conductor foil is- Very little peeling from the substrate.
  • the cured product of the adhesive layer has high heat resistance because it is formed from a resin primer containing the above-described resin. For this reason, such an adhesive layer is extremely unlikely to cause blisters even when the conductor-clad laminate is exposed to a high temperature due to plating or the like.
  • Examples 1 to 3 Each raw material shown in Table 1 was blended and dissolved by stirring to obtain resin primers of Examples 1 to 3.
  • HP-85 ON hydroxyl group
  • Equivalent 106, Hitachi Chemical Co., Ltd., trade name
  • W-248 DR Shin Nakamura Chemical Co., Ltd., trade name
  • the precipitate was reprecipitated in ethanol and dried to obtain a phenoxy resin to which phenylcarbamate was added.
  • this resin was dissolved in dimethylformamide (DMF) so as to have a concentration of 30% by mass to obtain a resin primer of Example 4.
  • DMF dimethylformamide
  • the resin primer of Example 5 was obtained by dissolving a commercially available adhesive sheet AS-3000E (manufactured by Hitachi Chemical Co., Ltd.) in methyl ethyl ketone (MEK) so as to have a concentration of 30% by mass. Obtained. (Comparative Examples 1-3)
  • a resin primer was obtained by dissolving a polysulfone resin (Cordel P-1700, trade name, manufactured by Amoco) in DMF so that the concentration was 30% by mass.
  • a polyether sulfone resin (5003P, manufactured by Sumitomo Chemical Co., Ltd., trade name) was dissolved in DMF so as to have a concentration of 30% by mass to obtain a resin primer.
  • the breaking energy was measured using Autograph AG-100C (trade name, manufactured by Shimadzu Corporation).
  • test pieces for measuring breaking energy according to Examples 1 to 3 and Comparative Examples 1 to 3 were obtained.
  • Example 4 and Comparative Examples 4 and 5 first, a resin primer was applied on a carrier film so that the film thickness after drying was 50 Aim.
  • the test piece (resin film) for measuring the breaking energy was obtained by drying for 10 minutes in a hot-air circulation dryer heated to 20 ° C.
  • the primer of Example 5 was prepared using the adhesive sheet AS-300
  • test piece resin film
  • Example 1 0.81 65 2.10.3 Example 2 0.77 64 1.9 0.3 Example 3 0.32 64 1.1 0.4 Example 4 0. 058 55 0.4.0.9 Example 5 0.18 58 0.9.0.9 Comparative example 1 0.058 64 0.5.0.3 Comparative example 2 0.012 63 0.4.0.3 Comparative Example 3 0.0044 63 0.4.0.3 Comparative Example 4 0.054 72 0.01 0.2 Comparative Example 5 0.081 69 0.05 0.3 Comparative Example 6 0.1
  • a peel test for measuring the peel strength of a copper foil is used for evaluating the adhesiveness between a resin and a metal foil. Therefore, in order to evaluate the adhesiveness between the resin obtained from the primer and the conductor foil in the conductor-clad laminate of the present invention, the copper foil peeling strength was measured as follows.
  • a hot air circulation type drier heated at 120 ° C for 10 minutes to prepare a resin-coated copper foil.
  • five layers of low dielectric constant pre-preda (G EA-LX-67, manufactured by Hitachi Chemical Co., Ltd.) are laminated, and the resin-coated copper foil is placed on both sides, and the resin (adhesive layer) and the pre-preda face each other.
  • the double-sided copper-clad laminate was obtained by pressing at 230 ° C. and 3. OMPa for 90 minutes.
  • Example 5 Regarding the primer of Example 5, first, AS-3000E was dissolved in methyl ethyl ketone (MEK) so that its concentration became 30% by weight, and the obtained resin solution was placed on a carrier film. The resin was coated so that the film thickness after drying was 50 / xm, and dried in a hot air circulation type dryer heated at 120 ° C for 1 C minute to prepare a resin-coated copper foil. Next, five layers of low dielectric constant pre-preda (GEA-LX-67, manufactured by Hitachi Chemical Co., Ltd.) are laminated, and the resin-coated copper foil is placed on both sides so that the resin (adhesive layer) and the pre-preda face each other. And pressed at 230 ° C. and 3.0 MPa for 90 minutes to obtain a double-sided copper-clad laminate.
  • MEK methyl ethyl ketone
  • GTS-18 low dielectric constant pre-preda
  • the bonding interface between the resin obtained from the primer and the conductive foil becomes smoother, the bonding area decreases, so not only the physical properties of the resin constituting the primer but also the distance between the resin and the conductive foil.
  • the chemical interaction that acts on becomes important. Therefore, in order to remove the effects of the resin properties and evaluate the adhesiveness involved in the chemical interaction, use a cutting method that measures the adhesive force by shaving off the resin from the metal foil. The peel strength at the interface with the adhesive layer was measured.
  • the same adhesive layer as the copper foil with resin according to Examples 1 to 5 and Comparative Examples 1 to 5 used for measuring the copper foil peel strength is provided with an adhesive layer made of resin.
  • the sample was fixed to the supporting substrate, and this was used as a measurement sample.
  • the peel strength at the copper foil / resin interface of the resin-coated copper foil was measured using a Cycus CN-100 model manufactured by Daibra Wintes Co., Ltd.
  • the peel strength at the copper foil Z resin interface is 0.3 k NZm or less, Both showed low values. Furthermore, in Comparative Example 6, in which the copper foil and the pre-preda were directly laminated, the copper foil peeling strength was 0.1 kNZm, which was lower than those of Examples 1 to 5.
  • TMA trimellitic anhydride
  • NMP N-methyl-1-pyrrolidone
  • BAP as aromatic diamine was placed in a 1-mL separable flask equipped with a faucet connected to a reflux condenser and equipped with a 25-mL water content receiver, thermometer, and stirrer.
  • 41.1 g (0.1 mol) of P, 84.2 g (0.1 mol) of reactive silicone oil KF 8010 as siloxane diamine, 80.7 g (0.42 mol) of TMA, 494 g of NMP was charged as an aprotic polar solvent, and the mixture was stirred at 80 ° C for 30 minutes.
  • the mixture was stirred at 80 ° C for 30 minutes.
  • Dimethylacetoamide was added to 63.3 g (solid content: 30% by weight) of an NMP solution of the polyamideimide obtained in Synthesis Example 2, and the solid content was 5% by weight. After adjusting to / 0 , the mixture was allowed to stand at room temperature for 2 hours for defoaming, and the amide group content was 7.38 weight. /. Thus, a resin primer having an atomic content of 13.26% by weight was obtained.
  • a base material hereinafter, referred to as a “low dielectric constant base material” or imide obtained by laminating a predetermined number of low dielectric constant pre-predas (GEA-LX-67, manufactured by Hitachi Chemical Co., Ltd.) or imide
  • the above-mentioned copper foil with resin is applied to both sides of a base material (hereinafter referred to as “imide base material”) in which a predetermined number of base pre-predas (GE A-I-671 manufactured by Rissei Kasei Kogyo Co., Ltd.) are stacked.
  • Each resin (adhesive layer) was overlapped so as to be in contact with each other, and pressed at 230 ° C and 3. OMPa for 90 minutes to produce a double-sided copper-clad laminate.
  • the copper foil in each of the obtained double-sided copper-clad laminates was measured by measuring the peel strength (90 ° peel strength, in accordance with JISC 6481) when the copper foil was peeled in the 90-degree direction. Peel strength (kNZm) was measured. Table 4 shows the obtained results.
  • FIG. 5 is a cross-sectional view of FIB processing on a double-sided copper-clad laminate obtained using the resin primer of Example 7, and
  • FIG. 6 is a cross-sectional view of FIB processing on a commercially available double-sided copper-clad laminate.
  • Table 4 shows that the double-sided copper-clad laminates obtained using the resin primers of Examples 6 to 10 all had a copper foil adhesive strength of 0.8 kNZm or more. No blistering or peeling occurred in the solder heat resistance test. Therefore, it was found that the resin had good adhesive strength and solder heat resistance.
  • the copper-clad laminate according to the example has a copper foil A, an adhesive layer
  • the bonding interface between the laminate in which B and the base material C are integrated is extremely smooth compared to the bonding interface between the copper foil D and the base material E in Fig. 6, which is a conventional laminate.
  • the thickness of the adhesive layer 2 between the copper foil 1 and the substrate 3 in the copper-clad laminate shown in FIG. 5 was 1 to 2 ⁇ .
  • the conductor-clad laminate of the embodiment has a cured product of the adhesive layer having extremely high heat resistance between the metal foil and the base material, the conductor-clad laminate may be exposed to high heat with solder or the like. However, the occurrence of blisters and the like is extremely small.
  • a printed wiring board formed from a conductor-clad laminate having such characteristics can have a wiring circuit with a smooth surface, so that the frequency of a transmission signal can be increased, and this printed wiring board can be used. It has been confirmed that the operation speed of the electronic device used can be increased.
  • a resin primer was obtained in the same manner as in Example 11 except that the blending amount of DER 33 1 L was changed to 4.2 g (Example 12) and 9.5 g (Example 13). Was.
  • PAI_100 (trade name, manufactured by 3Rikasei Co., Ltd., polyamideimide resin, resin solid content 30% by weight) was used, and DER 33 1 L which is a reactive conjugate was used.
  • a resin primer 63.3 g of PAI_100 (trade name, manufactured by 3Rikasei Co., Ltd., polyamideimide resin, resin solid content 30% by weight) was used, and DER 33 1 L which is a reactive conjugate was used.
  • a resin primer 63.3 g of PAI_100 (trade name, manufactured by 3Rikasei Co., Ltd., polyamideimide resin,
  • each resin primer is applied on a PET film, and dried at 160 ° C for 10 minutes in a hot-air circulating drier. To obtain a film.
  • the thickness of the resin layer after drying was 8 ⁇ .
  • the resin primer was spontaneously cast and applied on a low dielectric constant pre-predator GXA-67N, and this was heated at 160 ° C for 10 minutes in a hot-air circulation dryer. It was dried to obtain a prepreg with resin. The thickness of the resin layer after drying was set to 1 to 2 / im.
  • Comparative Example 13 a predetermined number of the above-described pre-preda were stacked.
  • An electrolytic copper foil having no resin (adhesive layer) was pressure-bonded to the laminate to produce a double-sided copper-clad laminate.
  • Example 1 1 (1) 0.8 0.8 0.8 ⁇ ⁇
  • Table 5 shows that the double-sided copper-clad laminate obtained using the resin primers of Examples 11 to 13 has a smooth surface even with a copper foil. It was found that the adhesiveness of this was extremely good. Further, these double-sided copper-clad laminates were excellent in solder heat resistance. Furthermore, it was found that the solder heat resistance was well maintained even when stored under high temperature and high humidity.
  • the copper foil in the laminates was removed by etching to obtain an inner layer plate.
  • the resin primers of Examples 11 to 13 and Comparative Examples 10 to 12 were placed on one side of each inner layer plate.
  • those having the same components as the resin layer exposed on the surface of the inner layer plate that is, the same type of resin primer
  • the thickness of the resin layer (inner adhesive layer) consisting of the resin primer after drying is 2 to 3 ⁇ m.
  • Comparative Example 14 an electrolytic copper foil having no resin (adhesive layer) was pressure-bonded to a substrate on which four GEA-679 layers were laminated to form a double-sided copper-clad laminate.
  • the copper foil of the double-sided copper-clad laminate was etched, and GEA-679 was further laminated on one side to produce a laminate which was pressed under the above-mentioned press conditions.
  • the transmission loss was measured in the same manner for the Torihi wire obtained in the same manner as described above, except that a copper foil having an Rz of 5.0 zm was used.
  • Fig. 7 is a graph showing the value of the transmission loss with respect to the signal frequency when these wiring boards are used.
  • Etching resists having a comb pattern of 30/30, 50/50, 75/75, 100/100 were formed.
  • unnecessary portions of the copper foil were etched with an aqueous ferric chloride solution, and then the etching resist was peeled off to form a comb-shaped circuit pattern.
  • the top interval of the circuit, the bottom interval, and the presence or absence of the etching residue were observed by an optical microscope.
  • those obtained using the resin primers of Comparative Examples 10 to 12 and those of Comparative Example 13 are such that when such a pattern is to be formed, the conductor pattern is peeled off. It became.

Description

明糸田
プライマ、 樹脂付き導体箔、 積層板並びに積層板の製造方法
技術分野
【0 0 0 1】 本発明は、 プライマ、 樹脂付き導体箔、 積層板並びに積層板の製 造方法に関する。
背景技術
[ 0 0 0 2 ] 近年、 パーソナルコンピュータ及び携帯電話等の情報端末機器の 小型化及び軽量化に伴い、 これらの機器に搭載されるプリント配線板には、 さら なる小型化及び配線の高密度化が要求されている。 これらの要求に対応するため には、 配線幅を細くし、 各配線間の間隔を密にする必要がある。 また、 電子機器 の処理の高速化に対応するために、 電子機器に備えられるデバイスの入出力数を 増大することも求められている。
【0 0 0 3】 これらの要求に応じるために、 プリント配線板上への素子の実装 形態は、 ピン挿入型から表面実装型へ、 さらにはプラスチック基板を使用した B G A (ボールグリッドアレイ) に代表されるエリアアレイ型へと進んでいる。 B
G Aのようなベアチップを直接実装する基板において、 チップの接続は、 熱超音 波圧着によるワイヤボンディングで行われるのが一般的である。 そして、 上述し たような要求に応じるためには、 このワイヤボンディングにより接続する端子数 を増加させる力 或いは、 その端子幅を狭小化させる必要がある。
【0 0 0 4】 従来、 これらのプリント配線板の基板としては、 電気絶縁性を有 する樹脂をマトリックスとするプリプレダ等を所定の枚数重ねて、 これを加熱圧 着して一体化させることにより得られた積層体が用いられる。 電気絶縁性を有す る樹脂としては、 フエノール樹脂、 エポキシ樹脂、 ポリイミ ド樹脂、 ビスマレイ ミドートリアジン樹脂等の熱硬化性樹脂が一般的に用いられる。 また、 フッ素樹 脂やポリフエ二レンエーテル樹脂等の熱可塑性樹脂等も用いられる場合がある。 【0 0 0 5】 プリント配線板における導体回路を形成する方法としては、 サブ トラクティブ法が広く用いられている。 この方法においては、 上述した積層体の 表面 (片面又は両面) に金属箔等の導体箔を積層し、 加熱加圧して一体化させた 導体張積層板が用いられる。 そして、 この導体張積層板における導体箔をエッチ ングにより除去することによって回路パターンが形成される。
【0 0 0 6】 導体張積層板においては、 回路パターンの剥離等を防ぐために、 導体箔とプリプレダの積層体からなる絶縁体層とが強固に接着していることが望 ましい。 このため、 従来では、 特開平 4— 2 1 1 9 4 1号公報や 「高密度プリン ト配線板技術」 (電子材料編集部編、 工業調査会、 昭和 6 1年 5月 2 0日、 p i 4 9 - 1 5 7 ) に記載されているように、 導体箔の表面を粗化して、 絶縁体層中' の樹脂とのアンカー効果を発現させることによって、 導体箔と絶縁体層との接着 力を向上させていた。
発明の開示
【0 0 0 7】 しかしながら、 本発明者らが検討を行ったところ、 上記従来の方 法により接着力の向上を図った導体張積層板は、 エッチングにより導体箔の一部 を除去しようとした場合、除去したい部分の導体箔が残存し易いことを見出した。 これは、 粗化された導体箔表面の凹部にまでエッチング液が進入し難く、 その部 分の導体箔の除去を十分に行うことが困難であるためであると考えられる。 この ように除去したい部分の導体箔が残存すると、 回路の短絡等を引き起こすおそれ があるため、 好ましくない。
【0 0 0 8】 また、 表面が粗化された導体箔を用いて得られたプリント配線板 には、 表皮効果に起因して、 伝達信号の高周波数化が困難であるという問題もあ つた。 ここで、 「表皮効果」 とは、 導体を流れる信号の周波数が高くなるほど、 そ の導体の中心部に生じる磁力線の干渉が大きくなるため、 導体中心部で電流が流 れ難くなる一方、 導体表面付近に流れる電流が増加することをいう。 この表皮効 果が生じた場合に導体箔の表面が粗化されていると、 かかる表面付近においても 電気抵抗が増加するため、 電流が流れ難くなる傾向にある。 このように、 導体箔 の表面を粗くするほど信号の高周波化を妨げることになる。
【0 0 0 9】 さらに、上述したようなプリント配線板における配線の高密度化、 或いは、 この配線板上に実装される素子の端子数の増加及ぴ端子幅の狭小化を行 うと、 回路パターンと基材との接触面積が小さくなることになる。 こうなると、 この接触面積の低下に伴って、 回路パターンと基材との接着性が低下するため、 導体箔が基材から容易に剥離する傾向にある。 よって、 上記従来技術を適用した 場合、 小型化や配線の高密度化の要求に十分応え得るプリント配線板を得ること が困難であった。
【0 0 1 0】 そこで、 本発明は上記事情に鑑みてなされたものであり、 '絶縁体 層と表面が比較的粗化されていない導体箔とを十分強力に接着できる樹脂プライ マ、 樹脂付き導体箔、 積層板及びその製造方法を提供することを目的とする。
【0 0 1 1】 上記目的を達成するために、 本発明の樹脂プライマは、 樹脂を含 有するものであって、 この樹脂は、 フィルム形成能を有し、破断エネルギーが 0 . 1 5 J以上のものであることを特徴とする。
【0 0 1 2】 ここで、 樹脂の 「破断エネルギー」 とは以下のとおりに定義され 測定されるものである。 まず、 樹脂を、 幅 1 0 mm、 厚み 5 Ο μηαの短冊状フィ ルムに成形する。 続いて、 その短冊状フィルムを長さ方向に 5 mmZ分の速度で 破断するまで引っ張る。 この際、 短冊状フィルムに与えた引張り応力と該フィル ムの歪み (伸び率) との関係は、 図 1に示すような応力一歪み曲線で表すことが できる。 この図 1中の斜線部、 すなわち短冊状フィルムが破断するまで (破断点 まで) の引張り応力の積分値を 「破断エネルギー」 として定義するものとする。 【0 0 1 3】 本発明者らは、 このような特性を有する樹脂を含有することによ り、 本発明のプライマが導体箔と絶縁体層との接着力を高めることを見出した。 その原因は、 現在のところ詳細には明らかにされていないが、 本発明者らは以下 のように考えている。
【0 0 1 4】 すなわち、 この樹脂プライマから得られる樹脂を導体箔と絶縁体 層との間に備える積層板から、導体箔が剥離するパターンとしては、 (1 )樹脂が 凝集破壊を起こすことにより導体箔が絶縁体層から剥離する場合、及び、 (2 )導 体箔と樹脂との間で剥離が生じる場合が考えられる。 しカゝし、 上述したような特 性を有する樹脂は凝集破壊に対する耐性が高いものと考えられるので、 かかる樹 脂によれば、 上記 (1 ) のような剥離が起こり難くなるものと考えられる。
【0 0 1 5】 さらには、 このような特性を有する樹脂は、 引っ張られることに よりその内部に発生する応力が広範囲に分散するものと考えられる。したがって、 このような樹脂によれば、 導体箔を剥離しょうとする力が加えられても、 導体箔 との接触面積当たりに受ける力が小さくなるため、 上記 (2 ) のような剥離も十 分に抑制されるようになるものと考えられる。
【0 0 1 6】 また、本発明の別の樹脂プライマは、樹脂を含有するものであり、 この樹脂を膜状に成形した場合において、 その膜 (図 2中の符号 2 ) 表面の +点 平均粗さを 0 . 1 /z m以下に調整し、 室温環境下でこの膜の表面上にホルムアミ ド液 (図 2中の 1 ) を滴下すると、 そのホルムアミド液の膜表面に対する接触角 (図 2中の Θ ) が 6 0 ° 以下となるものである。
【0 0 1 7】 このような特性を有する樹脂を含有することによつても、 本発明 のプライマが導体箔と絶縁体層との接着力を高めることを、 本発明者らは見出し た。 その原因は、 現在のところ詳細には明らかにされていないが、 本発明者らは 以下のように考えている。 すなわち、 上述したような特性を有する樹脂の成形物 は、 高い表面自由エネルギーを有すると考えられる。 したがって、 その樹脂を導 体箔に接着させた場合、 その樹脂と導体箔との間の界面の相互作用 (引力) が大 きくなると考えられる。 その結果、 導体箔と絶縁体層との間の接着力が高くなる と本発明者らは考えている。
【0 0 1 8】 これらのプライマから得られる樹脂膜は、 積層板からの導体箔の 剥離を十分に抑制することができる。 よって、これらのプライマを用いることで、 より高密度であってより高周波特性に優れたプリント配線板を製造することが可 能となる。 特に、 これら二つの特性を同時に有する樹脂を含有するプライマによ れば、 個々の特性を有するプライマと比較しても、 絶縁体層と導体箔との間の接 着力を更に高めることができる。
【0 0 1 9】 上記本発明のプライマは、 ィミド結合、 力ルバミン酸エステル結 合及び芳香族カルボン酸エステル結合からなる群より選ばれる一種以上の結合 を、 そのプライマに含有される樹脂の質量基準で 6質量%以上含有する樹脂から なると好ましい。 このようなプライマを用いることにより、 導体箔と絶縁体層と の間の接着力が一層高くなる。
【0 0 2 0】 さらに、 本発明の別の樹脂プライマは、 樹脂を含有するものであ り、 当該樹脂として、 主鎖にシロキサン構造を有するポリアミドイミドを含んで おり、 当該樹脂中に含まれる全てのアミド基の含有量を A重量%、 前記樹脂中に 含まれる全てのケィ素原子の含有量を C重量%としたときに、 以下の式 (a ) 及 び (b ) ;
3≤A≤ 1 1 ··· ( a )
1≤C≤ 1 6 ··· ( b )
を満たすものである。 主鎖にシ口キサン構造を有するポリアミドイミドを含み、 上記条件を満たす樹脂プライマは、比較的平滑な表面を有する金属箔に対しても、 優れた接着性を示すものとなる。
【0 0 2 1】 かかる形態の樹脂プライマとしては、 上記樹脂を含有しており、 且つ、 当該樹脂が、 フィルム形成能を有し、 破断エネルギーが 0 . 1 5 J以上の もの、 及びノ又は、 十点平均粗さが 0 . 1 / m以下である膜を形成したときに、 その膜の表面に対する室温におけるホルムアミドの接触角が 6 0 ° 以下となるも のであってもよい。
【0 0 2 2】 さらにまた、 本発明の別の樹脂プライマは、 樹脂を含有するもの であり、 当該樹脂は、 主鎖にシロキサン構造を有するポリアミドイミドと、 この ポリアミドイミドの有するアミド基と反応を生じる官能基を有しており、 且つ、 ァミド基及び Z又はケィ素原子を有していてもよい反応性化合物とを含有するも のであり、 樹脂中における、 ポリアミドイミド 100重量部に対する反応性化合 物の重量部 Bは、 ポリアミ ドイミド中のアミド基の含有量を P &重量%、 反応性 化合物中のアミド基の含有量を E a重量%、 ポリアミド中のケィ素原子の含有量 を P c重量%、反応性化合物中のケィ素原子の含有量を E c重量%としたときに、 下記式 (I) 及び (II) ;
3≤ (P a X l O O + E a XB) / (100 + B) ≤ 1 1 ··· (I)
1≤ (P c X I O O + E c XB) / (100 + B) ≤ 1 6 ··· (II)
を満たすものであってもよい。 '
【0023】 主鎖にシロキサン構造を有するポリアミドイミドに加え、 上述の ような反応性化合物を更に含有させることにより、 樹脂プライマからなる樹脂層 の接着性を更に高めることができるほ力 \耐熱性も向上させることが可能となる。 また、 この反応性化合物の配合量を上述のように調整すれば、 樹脂中に含まれる ァミド基の含有量及びケィ素原子の含有量が上述した好適範囲となり易くなる。 その結果、 更に優れた接着性を発揮し得る樹脂プライマが得られる。
【0024】 このような形態の樹脂プライマとしては、 上記樹脂を含有してお り、 且つ、 当該樹脂が、 フィルム形成能を有し、 破断エネルギーが 0. 1.5 J以 上のもの、 及び Z又は、 十点平均粗さが 0. 1 μπι以下である膜を形成したとき に、 その膜の表面に対する室温におけるホルムアミドの接触角が 60° 以下とな るものであってもよい。
【0025】 より具体的には、 上述した主鎖にシロキサン構造を有するポリア ミドィミドとしては、 芳香族ジァミンと無水トリメリツト酸とを反応させて得ら れる下記一般式 (1) で表されるジイミドジカルボン酸、 及び、 シロキサンジァ ミンと無水トリメリット酸とを反応させて得られる下記一般式 (2) で表される ジイミドジカルボン酸を含むジイミドジカルボン酸混合物と、 下記一般式 (3) で表される芳香族ジィソシァネートとを反応させて得られるものが好ましい。
Figure imgf000009_0001
OCN― R3— NCO ;··(3)
[式中、 R1は、 下記一般式 (4 a) 又は下記一般式 (4 b) で表される 2価の 基、 R 21はアルキル基、フエニル基又は置換フエニル基、 R22は、 2価の有機基、 R 3は少なくとも一つの芳香環を有する 2価の有機基、 nは 1〜50の整数を示 す。
Figure imgf000009_0002
ただし、 式 (4 a) 中、 R4は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜3の ハロゲン化アルキレン基、 スルホニル基、 エーテル基、 カルボニル基又は単結合 である。 なお、複数存在する R21及び R22はそれぞれ同一でも異なっていてもよ く、 また、 それぞれの化合物における芳香環は更に他の置換基を有していてもよ い。] ,
【0026】 また、 このポリアミ ドイミ ドは、 ジィミ ドジカルボン酸混合物の 合計モル量に対して、 1. 0〜1. 5倍モル量の芳香族ジイソシァネ一トを反応 させて得られたものであると好ましく、 この場合、 ジイミ ドジカルボン酸混合物 は、 芳香族ジァミン及びシロキサンジァミンを含むジァミン混合物と無水トリメ リット酸とを反応させて得られたものであり、 しかも、 このジァミン混合物にお いては、芳香族ジァミン /シロキサンジァミンが、 モル比で、 0/1 00〜9 9. 9/0. 1であることがより好ましい。
【002 7】 さらに、 本発明の別の樹脂プライマは、 樹脂を含有するものであ り、 当該樹脂としてポリアミドイミドを含有しており、 このポリアミドイミドが 飽和炭化水素からなる構造単位を有するものであることを特徴とする。 ここで、 飽和炭化水素からなる構造単位としては、 下記化学式 (5) で表されるものが好 ましい。
Figure imgf000010_0001
【0 028】 このような樹脂プライマにおいても、 上記樹脂は、 フィルム形成 能を有し、 破断エネルギーが 0. 1 5 J以上のもの、 及び Z又は、 +点平均粗さ が 0. 1 ;im以下である膜を形成したときに、 その膜の表面に対する室温におけ るホルムアミドの接触角が 60° 以下となるものであってもよい。
【002 9】 この形態の樹脂プライマにおける樹脂に含まれるポリアミドイミ ドとしては、 .ジァミン化合物と無水トリメリット酸とを反応させて得られるジィ ミドジカルボン酸と、 ジイソシァネートとを反応させて得られるものであり、 ジ ァミン化合物として、 下記一般式 (6 a)、 (6 b) 又は (6 c) で表される化合 物を用いたものが好ましい。
Figure imgf000011_0001
[式中、 R61は水素原子、 ヒドロキシル基、 メ トキシ基、 メチル基又はハロゲン 化メチル基、 R62は、 下記一般式 (7 a)、 (7 b)、 (7 c) 及び (7 d) のうち のいずれかで表される基、 炭素数 1〜 3のアルキレン基、 炭素数 1〜 3のハロゲ ン化アルキレン基、 スルホニル基、 エーテル基、 カルボニル基又は単結合、 R63 は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜 3のハ口ゲン化アルキレン基、 ス ルホニル基、 エーテル基又はカノレポ二ル基を示す。
Figure imgf000011_0002
Figure imgf000011_0003
ただし、 式 (7 a) 中、 R7は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜3の ハロゲン化アルキレン基、 スルホニル基、 エーテル基、 カルボ-ル基又は単結合 を示す。 なお、 複数存在する R 61はそれぞれ同一でも異なっていてもよい。] 【0030】 また、 このポリアミ ドイミ ドとしては、 上記ジァミン化合物とし て、 下記一般式 (8) で表される化合物を更に含有して得られたものがより好ま しい。
Figure imgf000012_0001
[式中、 R 8 1は、 メチレン基、 スルホ二ノレ基、 エーテル基、 カルボ-ル基又は単 結合、 R 8 2及び R 8 3は、 それぞれ独立に、 水素原子、 アルキル基、 フエ二ル基又 は置換フエ二ル基を示し、 mは 1〜5 0の整数を示す。]
[ 0 0 3 1 ] さらに、 このポリアミ ドイミドにおいて用いるジイソシァネート としては、 芳香族ジィソシァネートが好ましい。
【 0 0 3 2】 さらにまた、 かかる形態の樹脂プライマにおける樹脂は、 ポリア ミドイミドのアミド基と反応を生じる官能基を有する反応性化合物を含むもので あると一層好ましい。 , 【0 0 3 3】 本発明の樹脂プライマは、 上述したような樹脂を含有するもので あるが、この樹脂に加えてゴム成分を更に含んでおり、このゴム成分の含有量は、 樹脂の質量基準で 4 0質量0 /0以上であるとより好ましい。 このようなゴム成分を 含む樹脂プライマにより、 導体箔と絶縁体層との接着性を更に向上させることが 可能となる。
〖0 0 3 4〗 本発明による樹脂付き導体箔は、 導体箔とこの導体箔上に設けら れた樹脂層とを備えるものであって、 導体箔はその表面の十点平均粗さが 3 μ ΐη 以下であるものであり、 且つ、 樹脂層は上記本 明の樹脂プライマが塗布されて なるものであることを特徴とする。 また、 本発明の樹脂付き導体箔としては、 導 体箔とこの導体箔上に設けられた樹脂層とを備えるものであって、 導体箔が金属 箔であり、 且つ、 樹脂層が上記本発明の樹脂プライマからなるものであることを 特徴とするものであってもよい。
【0 0 3 5】 これらの樹脂付き導体箔は、 上記本発明の樹脂プライマからなる 樹脂層を有するものであるため、 導体箔の表面が十分に平滑であるにもかかわら ず、 導体箔と絶縁体層との間の接着力が十分に高い。 よって、 かかる樹脂付き導 体箔は、 高密度のプリント配線板を製造するのに適したものとなる。 しかも、 こ のように導体箔の表面が平滑であることから、 力かる樹脂付き導体箔によれば、 上述した表皮効果による表面付近の電流増大が少なく、 そのため伝達信号の高周 波数化にも十分対応できるプリント配線板を製造することが可能となる。
【0 0 3 6】 また、 本発明は、 プリント配線板の基板として使用可能であり、 上記樹脂プライマを用いて得られる積層板を提供する。 すなわち、 本発明の積層 板は、 上記本発明の樹脂付き導体箔と、 この樹脂付き導体箔における樹脂層上に 積層されたプリプレダとを備える積層体を、 加熱及び加圧して得られたことを特 徴とする。
【0 0 3 7】 こうして得られた積層体は、 すなわち、 導体箔と、 この導体箔と 対向して配置された樹脂を含む絶縁層と、 導体箔と絶縁層との間に、 これらに接 するように設けられた上記本宪明の樹脂プライマからなる樹脂層とを備えるもの となる。 よって、 この積層体においては、 導体箔として、 少なくとも樹脂層に接 する面の +点平均粗さが 3 /i m以下であるものを好ましく適用できる。
【0 0 3 8】 これらの構成を有する積層体は、上記本発明の樹脂付き導体箔と、 この樹脂付き導体箔における樹脂プライマが塗布してなる層上に積層されたプリ プレグとを備える積層体を、 加熱及び加圧することによって好適に製造すること ができる。
図面の簡単な説明
【0 0 3 9】 図 1は、 樹脂の応力一歪み曲線を示す図である。
図 2は、 樹脂表面上のホルムアミド液の接触角を表す図である。
図 3は、 実施形態に係る樹脂付き導体箔の断面構造を模式的に示す図である。 図 4は、 実施形態に係る導体張積層板 (積層体) の断面構造を模式的に示す図 である。
図 5は、 実施例 7の樹脂プライマを用いて得られた両面銅張積層板における F
I B加工断面図である。 図 6は、 市販の両面銅張積層板における F I B加工断面図である。
図 7は、 信号の周波数に対する伝送損失の値を示すグラフである。
発明を実施するための最良の形態
【0 0 4 0】 以下、 本発明の好適な実施形態について詳細に説明する。
[樹脂プライマ]
【0 0 4 1】 まず、 本発明の樹脂プライマについて説明する。 本発明の樹脂プ ライマは、 樹脂を含有するものである。 かかる樹脂としては、 まず、 フィルム成 形能を有し、 0 . 1 5 J以上の破断エネルギーを有するものが挙げられる。
【ひ 0 4 2】 ここで、 樹脂の 「破断エネルギー」 を測定する方法は以下のとお りである。 まず、樹脂を幅 1 O mm、厚み 5 0 mの短冊状フィルムに成形する。 具体的には、 例えば、 まず 1種類または 2種類以上からなる樹脂溶液を銅箔の光 沢面 (R Z = 2 /z m) 上に、 乾燥後の膜厚が 5 0 μ ΐηになるように塗布し乾燥す る。 -
【0 0 4 3】 次に、 この樹脂付銅箔の、 まだ銅箔と接していない側の樹脂面に もう 1枚の銅箔を光沢面と向かい合うようにして積層し、 その銅箔の樹脂層と接 していない側からプレスを行う。 そして、 この樹脂層の両面の銅箔をエッチング で除去し、 1' O mm幅を有するように切断して短冊状フィルムを得る.。 ,この際、 フィルムの長さは、 当該フィルムを引っ張る前のつかみ具間の距離、 すなわち 6 O mmより長ければよい。
【0 0 4 4】 続いて、 二つのつかみ具を長さ方向に 6 O mmの距離をおいてフ イルムを挟んで配置する。 そして、 二つのつかみ具を、 このフィルムの長さ方向 に 5 mmZ分の速度で、 互いに離れるように移動させて、 フィルムを引っ張る。 この引っ張りをフィルムが破断するまで続ける。
【0 0 4 5】 この際、 短冊状フィルムに与えた引張り応力とこのフィルムの歪 み (伸び率) との関係を図 1に示すような応力一歪み曲線で表すことができる。 この図 1中の斜線部、 すなわち短冊状フィルムが破断するまで (破断点まで) の 引張り応力の積分値を求め、 この値を「破断エネルギー(単位: J)」 と定義する。
【0046】 このような測定法は、 例えばオートグラフ AG— 100 C (島津 製作所社製、 商品名) を用いて行われ、 その結果として得られる応力一歪み曲線 力 ら破断エネルギーを算出することができる。
【0047】 また、 樹脂としては、 当該樹脂を膜状に成形した場合において、 この樹脂膜 (図 2中の符号 2) 表面の十点平均粗さ (R z) を 0. Ι μπι以下に 調整じ、 室温環境下で樹脂膜表面上にホルムアミド液 (図 2中の 1) を滴下する と、そのホルムアミド液の樹脂膜表面に対する接触角 (図 2中の Θ) (以下、単に ' '「ホルムアミド接触角」 という。) 力 60 以下となるようなものも好適である。 【0048】 このホルムァミド接触角は、 従来の方法で測定することができ、 例えば接触角測定器 C A— DT (協和界面科学株式会社製、 商品名) を用いて測 定することができる。
【0049】 ここで、 上述した樹脂膜表面の 「十点平均粗さ」 は、 例えば市販 の触針式表面粗さ測定器等を用い、 J I S B 0601— 1 994に準じた測定 法により導出することができる。
【0050】 実施形態の樹脂プライマに含有される樹脂としては、 上述したよ うないずれかの特性を有しているものを、特に制限なく適用できる。具体的には、 例えば、 フエノール樹脂、 エポキシ樹脂、 ポリイミド樹脂及びビスマレイミ ドー トリアジン樹脂などの熱硬化性樹脂が挙げられる。 また、 フッ素樹脂及びポリフ ェニレン樹脂等の熱可塑性樹脂も挙げられる。 これらは 1種類を単独で或いは 2 種類以上を組み合わせて用いることができる。
【0051】 また、 樹脂としては、 ィミド結合、 力ルバミン酸エステル結合及 ぴ芳香族カルボン酸エステル結合からなる群より選ばれる一種以上の結合を、 そ の樹脂の質量基準で 6質量%以上含有するものが好適である。 なお、 本発明にお いて、 「質量。/。」 又は 「質量部」 とは、 重量基準値 ( 「重量%」 又は 「重量部」 ) と実質的に同等である (以下同様) 。 【0 0 5 2】 ここで、上記各結合の含有量について説明する。 「ィミド結合」 と は一つの窒素原子と二つのカルボニル結合(C =〇)からなるものとし、 「力ルバ ミン酸エステル結合」 とは一つの窒素原子と一つのエステル結合 (C O O) から なるものとし、 「芳香族カルボン酸エステル結合」 とは一つのエステル結合(C O O) からなるものとする。
【0 0 5 3】 各結合の質量は、 各結合を構成する原子の原子量合計に、 その結 合のモル数を乗じて算出される。 各結合を構成する原子の原子量合計は、 上記よ り、 ィミド結合については 7 0となり、 力ルバミン酸エステル結合については 5 8となり、 芳香族カルボン酸エステル結合については 4 4となる。 各結合の含有 量 (質量%) は、 樹脂の反応 (縮合反応或いは重縮合反応等) が完了した場合の、 樹脂固形分の総質量に対する各結合の割合 (質量。 /0) で表され、 樹脂の配合から 算出される。 なお、 樹脂成分と反応しない溶剤や充填剤は、 この榭脂固形分に含 まれないものとする。
【0 0 5 4】 このような結合を有する化合物 (樹脂) は、 上述したホルムアミ ド接触角を低下させる性質を有するものである。 かかる樹脂としては、 具体的に は、 ポリイミ ド、 ポリエーテルイミド、 ポリアミドイミド、 ポリウレタン、 ポリ ァリレート及びこれらを変性し.た樹脂等が挙げられる。 これらの樹脂は、 それ自 身が 0 . 1 5 J以上の破壌エネルギーを有するものであってもよく、 6 0 ° のホ ルムアミド接触角を有するものであってもよい。
【0 0 5 5】 さらに、 樹脂プライマに含有させる樹脂としては、 以下に示す第 1の樹脂及び第 2の樹脂、 並びにその他の樹脂も好適である。 なかでも、 第 1の 樹脂及び第 2の樹脂のような、 ポリアミドイミドを含むものが好ましい。 これら の樹脂は、 上述した破断エネルギーの特性、 及び 又は、 ホルムアミド接触角の 特性を合わせて具備していると一層好ましい。 また、 樹脂は、 以下に示すものを それぞれ単独で含有するものであってもよく、 複数種組み合わせて含有するもの であってもよい。 【0 0 5 6】 以下、 実施形態の樹脂プライマに含有させる樹脂として好適な、 第 1の樹脂、 第 2の樹脂及びその他の樹脂、 並びに、 樹脂以外の他の成分につい て説明する。
(第 1の樹脂)
【0 0 5 7】 まず、 第 1の樹脂について説明する。 第 1の樹脂は、 主鎮にシ口 キサン結合を有するポリアミドイミ ドを含むものである。 このような樹脂として は、 樹脂中に含まれている全てのアミド基の含有量を 重量%、 樹脂中に含まれ ている全てのケィ素原子の含有量を C重量%としたときに、上記式( a )及ぴ( b ) を満たすものが好ましい。 '
【0 0 5 8】 ここで、 アミド基及びケィ素原子の含有量が上述した範囲を満た さない場合、 これらを用いて得られる導体張積層板の接着強度が低下するほか、 耐熱性も不充分となる傾向にある。 上記 Aの好ましい範囲は、 6以上 9以下であ り、 上記 Cの好ましい範囲は 5以上 1 2以下である。
【0 0 5 9】 このような第 1の樹脂は、 主鎖にシロキサン構造を有するポリア ミドィミドに加え、 このポリアミドィミドのアミド基と反応性を有する官能基を 含む反応性化合物を含むものであるとより好ましい。
〖0 0 6 0】 反応性化合物を更に含有する場合、 この反応性化合物の含有量は、 以下に示す条件を満たすことが好ましい。 すなわち、 ポリアミ ドイミ ド 1 0 0重 量部に対する、 反応性化合物の重量部 Bは、 ポリアミドイミド中のアミド基の含 有量を P a重量%、 了ミド反応性化合物中のァミド基の含有量を E a重量。/。、 ポ リアミドイミド中のケィ素原子の含有量を P c重量。/。、 反応性化合物中のケィ素 原子の含有量を E c重量%としたときに、 上記式 (I) 及び (Π) を満たすことが 好ましい。
【0 0 6 1】 樹脂の各成分の配合量が上記式 (I) 及び (II) を具備する場合に は、 全アミド基量及び全ケィ素量が上記式 (a ) 及ぴ (b ) の範囲内に含まれる ようになり、 この樹脂を用いて得られる導体張積層板における、 導体箔と絶縁層 との接着強度がより向上するほか、 耐熱性も優れるようになる。 一方、 各成分の 配合量が上記式 (I) 及び(Π) を満たさないと、 これらの特性が不充分となる傾 向にある。 かかる特性を更に向上させる観点からは、 上記式 (I) における (P a' X 1 0 0 + E a X B ) / ( l 0 O + B ) の下限は 6が好ましく、 上限は 9が好ま しい。 また、 同様の観点から上記式 (I I) の ( P c X I O O + E c X B ) / ( 1 0 0 + B ) の下限は 5が好ましく、 上限は 1 2が好ましい。
【0 0 6 2】 このような条件を満たす樹脂を含む樹脂プライマは、 金属箔との 優れた接着性のみならず、 優れた耐熱性を有するものとなる。 これは、 主に耐熱 性の高いポリアミドイミド中にシロキサン構造を導入したポリアミ ドィミドに起 因するものである。 このような構成のポリアミドイミドは、 金属箔等との高い接 着性を有しているばかりでなく、 樹脂を硬化しない温度において、 その樹脂中に 含まれる残存有機溶媒成分を極めて容易に' 5重量%以下にまで低減することがで きるという特性を有する。 このように樹脂中の残存有機溶媒量が 5重量%以下に 低減されると、 後のはんだ等の工程で接着層が高温に晒された場合であっても、 有機溶媒の揮発によるふくれ等が極めて生じ難くなる。
【0 0 6 3】 主鎖にシロキサン構造を有するポリアミドィミドとは、すなわち、 その主鎖に-シロキサン構造、 アミド結合及びイミ ド結合を有するものである。 こ こで、 シロキサン構造とは、 その構造中に _ S i O—結合を有している構造をい う。 なお、 シロキサン構造としては、 ケィ素原子に 1価の有機基が 2つ結合して いる構造が好ましい。
【0 0 6 4】 このようなポリアミドィミドとしては、 芳香族ジァミンと無水ト リメリット酸とを反応させて得られる上記一般式 (1 ) で表されるジイミ ドジカ ルボン酸 (以下、 「第 1のジイミドジカルボン酸」 という)、 及び、 シロキサンジ ァミンと無水トリメリット酸とを反応させて得られる上記一般式 (2 ) で表され るジイミドジカルボン酸(以下、 「第 2のジイミドジカルボン酸」 という) を含む ジイミドジカルボン酸混合物と、 上記一般式 (3 ) で表される芳香族ジイソシァ ネートとを反応させて得られるものが好ましい。
【0065】 ここで、 第 1のジィミ ドジカルボン酸としては、 上記一般式 ( 1 ) において R1で表される官能基が、 上記式 (4 a) で表される 2価の基であるも のが好ましい。 この場合、 上記式 (4 a) における R4で表される官能基として は、 一 C (CH3) 2—で表される基、 又は一 C (CF3) 2—で表される基が好ま しい。
【0066】 このような第 1のジィミ ドジカルボン酸を形成するための芳香族 ジァミンとしては、 例えば、 2, 2—ビス [4- (4一アミノフエノキシ) フエ ' ニル] プロパン (BAP P) 、 ビス [4 - (3 _アミノフエノキシ) フエニル] ' スルホン、 ビス [4— (4ーァミノフエノキシ) フエニル] スルホン、 2 , 2 - ビス [4- (4—アミノフエノキシ) フエ-ノレ] へキサフノレオ口プロパン、 ビス [4— (4—アミノフエノキシ) フエニル] メタン、 4, 4 ' -ビス (4ーァミ ノフエノキシ) ビフエニル、 ビス [4 - (4一アミノフエノキシ) フエニル] ェ 一テル、 ビス [4 - (4—アミノフエノキシ) フエ二ノレ] ケトン、 1, 3一ビス (4一アミノフエノキシ) ベンゼン、 1 , 4一ビス (ァミノフエノキシ) ベンゼ ンが例示できる。 なかでも、 B AP Pが特に好ましい。
【0067】 また、 第 2.のジイミ ドジカルボン酸としては、 上記式 (2) にお いて、 R 21が好ましくは炭素数 1〜6のアルキル基、 より好ましくは炭素数 1〜 3のアルキル基であるもの、 R 22が好ましくは炭素数 1〜6のアルキレン基、 よ り好ましくは炭素数 1〜 3のアルキレン基であるものが挙げられる。
【0068】 これらの第 2のジイミ ドジカルボン酸を形成するためのシロキサ ンジァミンとしては、 ジメチルシ口キサン系両末端ァミンが好ましい。 かかる化 合物はァミノ変性シリコーンオイル X_ 22— 161 AS (ァミン当量 450)、 X-22- 16 1A (ァミン当量 840)、 X— 22— 16 1 B (ァミン当量 1 5 00) (以上、信越化学工業社製)、 BY 16— 853 (ァミン当量 650)、 BY
- 16-853 B (ァミン当量 2200) (以上、東レダウコーニングシリコーン 社製) 等として商業的に入手可能である。 なお、 これらは単独で、 または組み合 わせて用いることができる。
【0069】 これらの第 1及び第 2のジィミドジカルボン酸を含むジィミドジ カルボン酸混合物は、 (A) 予めそれぞれのジイミドジカルボン酸を合成した後、 両者を混合することにより調製してもよく、また、 (B)それぞれのジイミドジカ ルボン酸を形成するための芳香族ジァミン及びシロキサンジァミンを混合させて ジァミン混合物とした後、 この混合物に無水トリメリット酸を反応させて調製し てもよい。
【0070】 (B) の方法を採用する場合、 芳香族ジァミン、 シロキサンジァ ミン及び無水トリメリット酸の配合量は、 以下の条件を満たすようにすることが 好ましい。 すなわち、 芳香族ジァミンのモル数を D、 シロキサンジァミンのモル 数を E、 無水トリメリット酸のモル数を Fとしたとき、 (D + E) ZFの値が 1. 0/2. 0〜1. 0/2. 2の範囲となるように各成分を配合することが好まし い。
【0071】 この際、 Dと Eとの混合比率 DZEは、 Eのァミン当量に応じて 決定することが望ましく、 通常 99. 9/0. l〜0Zl 00とされる。 具体的 には、 例えば、 シロキサンジァミンのァミン当量が 4 C 0〜 50'0の場合、 DZ Εは 99. 9/0. l〜0Zl 00、 ァミン当量が 800~1000の場合、 D ΖΕは 99. 9/0. 1〜60Ζ40、 ァミン当量が 1500〜1600場合、 0/£は99. 9/0. 1〜60_ 40とすることが好ましい。 D、 E及び Fを このような範囲内とすることによって、 ジイミ ドジカルボン酸混合物における第 1及び第 2のジィミドジカルボン酸の成分比が良好となり、 ポリアミドイミド中 のアミド基及ぴケィ素原子の含有量について上記式 (a) 及び (b) の条件を具 備させやすくなる。
【0072】 そして、 (B) の方法においては、 上述したジァミン混合物に、 無 水トリメリツト酸を反応させることによってジイミドジカルボン酸混合物を得る ことができる。 この反応は、 例えば、 両者を非プロトン性極性溶媒に溶解又は分 散して 50〜90°Cで反応させた後に、 反応後の溶液に水と共沸可能な芳香族炭 化水素を加えて、 120〜1 80°Cで更に反応させて脱水閉環反応を生じさせる ようにして実施することができる。
[0073] ここで、非プロトン性極性溶媒としては、 ジメチルァセトアミド、 ジメチルホルムアミ ド、 ジメチルスルホキシド、 N—メチルー 2—ピロリ ドン、 4—ブチロラクトン、 スルホラン等が例示できる。 なかでも、 N—メチルー 2— ピロリ ドンが特に好適である。
【0074】 また、 水と共沸可能な芳香族炭化水素としては、 トルエン、 ベン ゼン、 キシレン、 ェチルベンゼン等が例示でき、 トルエンが好ましい。 この芳香 族炭化水素は非プロトン性極性溶媒に対して、 重量比で 0. 1〜0. 5となる量 を加えることが好ましい。 なお、 この脱水閉環反応の終了後、 後述する芳香族ジ ィソシァネートとの反応を行う前には、 溶液の温度を約 1 90°C程度に上昇させ て、 水と共沸可能な芳香族炭化水素を除去しておくことが好ましい。
【0075】 主鎖にシ口キサン構造を有するポリアミ ドイミドは、 上述のよう にして得られたジィミドジカルボン酸混合物に対して、 上記一般式 (3) で表さ れる芳香族ジィソシァネートを反応させることにより合成することができる。 こ のような芳香族ジィソシァネートとしては、 4, 4 '—ジフエニルメタンジィソ シァネート (MD I)、 2, 4 _トリレンジイソシァネート、 2, 6—トリレンジ イソシァネート、 ナフタレン _ 1, 5ージイソシァネート、 2, 4一トリ レンダ イマ一等が例示できる。
【0076】 このようにして得られるポリアミドイミ ドとしては、 下記一般式 (9 a) で表される繰り返し単位、 及び、 下記一般式 (9 b) で表される繰り返 し単位を有するものが例示できる。 これらの操り返し単位は、 ブロック的に結合 していてもよく、 ランダム的に結合していても構わない。 なお、 式中の R R2
\ R22、 1 3及ぴ11は、 上記と同義である。
Figure imgf000022_0001
【0 0 7 7】 ジイミドジカルボン酸混合物と芳香族ジィソシァネートとの反応- は、 例えば上述したように芳香族炭化水素を除去するためにジィミドジカルボン 酸を含む溶液を加熱した場合などには、 反応後の溶液を一旦室温まで冷却してか ら行うことが好ましい。 こうして冷却された溶液に芳香族ジィソシァネートをカロ えた後、 温度を約 1 9 0 °C程度に上昇させ、 2時間程度反応させることによって ポリアミドイミ ドを得ることができる。
1 0 0 7 8 ] かかる反応においては、 ジィミドジカルボン酸混合物の合計モル 量に対する芳香族ジイソシァネートの添加量は 1 . 0 ~ 1 . 5倍モル量とするこ とが好ましく、 1 . ':!〜.1 . 3倍モル量とするこ がより好ましい。 芳香族ジ ソシァネートの添加量が 1 . 0倍モル量未満であると、 樹脂プライマからなる樹 脂層の可撓性が低下する傾向があり、 また 1 . 5倍モル量を超えても、 同様に樹 脂層の可撓性が低下する傾向がある。
【0 0 7 9】 また、 第 1の樹脂に含有させる反応性化合物としては、 上述した ポリアミドィミ ドのアミド基と反応を生じる官能基を備えた熱硬化性樹脂が例示 できる。 この反応性化合物は、 分子中にアミド基及び Z又はケィ素原子を有する ものであってもよい。
【0 0 8 0】 このような熱硬化性樹脂としては、 多官能エポキシ化合物、 ポリ イミド樹脂、不飽和ポリエステル樹脂、 ポリウレタン樹脂、 ビスマレイミド樹脂、 トリアジンービスマレイミ ド樹脂、 フエノール樹脂等が挙げられる。 なかでも、 多官能エポキシ化合物が好ましい。 反応性化合物として多官能エポキシ化合物を 用いると、 これらを含む樹脂プライマにより形成される樹脂層は、 導体箔との接 着性が向上するほか、 耐熱性、 機械的特性及び電気的特性も優れるようになる。 このような多官能エポキシ化合物としては 2個以上のエポキシ基を有する多官能 エポキシ化合物が好ましく、 . 3個以上のエポキシ基を有する多官能エポキシ化合 物がより好ましい。
【0 0 8 1】 2個以上のエポキシ基を有する多官能エポキシ化合物としては、 例えば、 ビスフエノール A、 ノボラック型フエノール樹脂、 オルトクレゾールノ · ポラック型フエノール榭脂等の多価フエノールとェピクロルヒ ドリンとを反応さ せてなるエポキシ樹脂; 1, 4—ブタンジオール等の多価アルコールとェピクロ ルヒ ドリンとを反応させてなるエポキシ樹脂; フタル酸、 へキサヒ ドロフタル酸 等の多塩基酸とェピクロルヒ ドリンとを反応させてなるポリグリシジルエステ ル;ァミン、 アミ ド又は複素環式窒素塩基を有する化合物の N—グリシジル誘導 体;脂環式エポキシ樹脂等が例示できる。
【0 0 8 2】 また、 3個以上のグリシジル基を有する多官能エポキシ化合物と しては、 Z X— 1 5 4 S-—2 (東都化成社製) 、 D R—3 3 1 L (ダウケミカ ル社製ビスフユノール A型エポキシ樹脂) 、 Y D C N— 1 9 5 (東都化成社製ク レゾールノボラック型エポキシ樹脂) 等が商業的に入手可能であり、 好適に用い ることができる。
【0 0 8 3】 ポリアミ ドイミ ドを含む樹脂中における、 上述した反応性化合物 の配合量は、 当該化合物が有している、 アミ ド基と反応を生じる官能基の数に応 じて決定することが好ましい。 すなわち、 ポリアミ ドイミ ド 1 0 0重量部に対す る反応性化合物の重量部 Bは、 ポリアミ ドイミ ド中のアミ ド基の含有量を P a重 量%、 反応性化合物中のァミ ド基の含有量を E a重量%、 ポリアミ ドイミ ド中の ケィ素原子の含有量を P。重量%、 反応性化合物中のケィ素原子の含有量を E c 重量%としたときに、 上記の式 (I) 及び (II) を満たすように決定する。
【0 0 8 4】 このように、 樹脂中に、 反応性化合物として多官能エポキシ化合 物を含有させる場合には、 当該多官能エポキシ化合物の硬化剤や硬化促進剤を更 に加えることが好ましい。 硬化剤及び硬化促進剤としては、 公知のものを適用で きる。 例えば、 硬化剤としては、 ジシアンジアミ ド、 ジアミノジフエエルメタン、 グァニル尿素等のァミン類;ィミダゾール類; ヒ ドロキノン、 レゾルシノール、 ビスフエノール A及びこれらのハロゲン化物、 ノポラック型フエノール樹脂、 レ ゾール型フエノール樹脂等の多官能フエノール類;無水フタル酸、 ベンゾフエノ ンテ'トラカルボン酸二無水物、 メチルハイミック酸等の酸無水物類等が挙げられ る。 また、 硬化促進剤としては、 アルキル基置換イミダゾール、 ベンゾイミダゾ ール等のィミダゾール類が挙げられる。
【0 0 8 5】 硬化剤の配合量は、 多官能エポキシ化合物におけるエポキシ当量 に応じて決定することができる。 例えば、 硬化剤としてアミン化合物を添加する 場合、 その配合量は、 ァミンの活性水素の当量と、 多官能エポキシ化合物のェポ キシ当量が等しくなるように配合することが好ましい。 また、 硬化剤が多官能フ ェノール類又は酸無水物類である場合、 その配合量は、 多官能エポキシ化合物 1 当量に対して、 フエノー/レ性水酸基又はカルボキシノ!基が 0 . ·6〜1 . 2当量ど なるようにすることが好ましい。 さらに、 硬化促進剤の配合量は、 多官能ェポキ シ化合物 1 0 0重量部に対して、 0 . 0 0 1〜1 0重量部とすることが好ましい。 【0 0 8 6】 これらの硬化剤又は硬化促進剤の配合量が上記範囲より少ないと、 多官能エポキシ化合物の硬化が不充分となって、 樹脂を含む樹脂プライマにより 得られる樹脂層のガラス転移温度が低下する傾向にある。 一方、 上記範囲よりも 多いと、.残存の硬化剤又は硬化促進剤によって、 樹脂プライマにより得られる樹 脂層の電気的特性が低下する傾向にある。
【0 0 8 7】 なお、 ポリアミ ドイミ ドを含む樹脂は、 上述したポリアミ ドイミ ド、 反応性化合物、 硬化剤等に加え、 充填剤、 カップリング剤、 難燃剤等をその 他の成分として更に含有していてもよい。
(第 2の樹脂)
【008 8】 次に、 第 2の樹脂について説明する。 第 2の樹脂は、 ポリアミド イミドとして、 飽和炭化水素からなる構造単位を有するものを含有している。 こ のような構造単位としては、 シクロアルキレン基を有するものが好ましく、 シク 口へキシレン基を一つ又は二つ有するものがより好ましく、 上記化学式 (5) で 表されるものがさらに好ましい。 このようなポリアミ ドイミ ドを含む樹脂プライ マによれば、 導体箔との接着性に優れるのみならず、 T gが高く、 耐湿性及び耐 熱性に優れる樹脂層を形成することができる。
【008 9】 第 2の樹脂に含まれるポリアミドイミドとしては、 2つのアミノ 基の間に上述したような構造単位を有するジァミン化合物と無水トリメリット酸 とを反応させて得られるジイミドジカルボン酸と、 ジイソシァネートとを反応さ せて得られるものが好ましい。
【009 0】 このようなジァミン化合物としては、上記一般式(6 a )、 (6 b) 又は (6 c) で表される化合物が好ましい。 具体的には、 例えば、 2, 2 -ビス
[4一 (4一アミノシクロへキシノレオキシ) シクロへキシル] プロパン、 ビス [4 - (3—アミノシクロへキシ /レオキシ) シク口へキシル] スルホン、 ビス [4 - (4ーァミノシク口へキシルォキシ) シクロへキシノレ] スルホン、 2, 2 -ビス [4 - (4 _アミノシク口へキシノレオキシ) シク口へキシル] へキサフルォロプ 口パン、 ビス [4一 (4一アミノシクロへキシノレオキシ) シクロへキシル] メタ ン、 4, 4 一ビス [4一アミノシクロへキシノレオキシ] ジシクロへキシノレ、 ビ ス [4— (4一アミノシクロへキシノレオキシ) シク口へキシノレ] エーテル、 ビス [4一 (4一アミノシクロへキシルォキシ) シクロへキシル] ケトン、 1, 3— ビス (4一アミノシク口へキシルォキシ) ベンゼン、 1, 4一ビス (4一アミノ シクロへキシノレオキシ) ベンゼン、 2, 2—ジメチノレジシクロへキシノレ一 4, 4
'—ジァミン、 2, 2—ビス (トリフルォロメチル) ジシクロへキシルー 4, 4 '一ジァミン、 2, 6, 2 ' , 6 '—テトラメチルー 4, 4 一一ジァミン、 5,
5 '—ジメチルー 2, 2 '—スルホ二ルージシクロへキシル一 4, 4 'ージアミ ン、 3, 3 '—ジヒ ドロキシジシクロへキシノレ一 4, 4 '—ジァミン、 (4, 4 ' ージァミノ) ジシク口へキシルメタン、 (4, 4 '—ジァミノ) ジシクロへキシノレ エーテル、 (4, 4 '—ジァミノ) ジシクロへキシルスルホン、 (4, 4 'ージァ ミノ) ジシク口へキシルケトン、 (3, 3 '—ジァミノ) ジシク口へキシルエーテ ル、 2, 2—ビス (4一アミノシクロへキシル) プロパン等が例示できる。 なか でも、 (4, 4 'ージァミノ) ジシク口へキシルメタンが好ましい。 これらのジァ ミン化合物は、 単独で用いてもよく、 組み合わせて用いてもよい。 '
【009 1】 第 2の樹脂におけるポリアミ ドィミ ドは、ジァミン化合物として、 上述したものに加え、 更に上記一般式 (8) で表されるジァミン化合物を用いて 得られたものであるとより好ましい。 上記一般式 (8) で表される化合物におい て、 R 82及び R 83としては、 それぞれ独立に、 水素原子、 炭素数 1〜3のアルキ ル基、 フエ-ル基又は置換フエニル基が好ましい。 この置換フエニル基における 置換基としては、 炭素数 1〜 3のアルキル基やハロゲン原子が挙げられる。
[0092] 特に、 上記一般式 (8) で表される化合物としては、 R 81で表さ れる基がエーテル基であるものが好ましい。 かかるジァミン化合物を含有させる ことによって、 ポリアミ ドイミ ド、 ひいてはこれを含む樹脂プライマが、 低弾性 率及び高 T gの特性を有するようになる。 このようなジァミン化合物としては、 ジェファーミン D— 400、 ジェファーミン D— 2000 (以上、 サンテクノケ ミカル社製) 等が、 商業的に入手可能であり、 好適である。
【0093】 第 2の樹脂におけるポリアミ ドィミドは、ジァミン化合物として、 上述したものに加え、 更に芳香族ジァミンゃシロキサンジァミン等を含有させて 得られたものであってもよい。 この場合、 芳香族ジァミン及びシロキサンジアミ ンは、 特に制限されないが、 例えば上述した第 1の樹脂におけるポリアミ ドイミ ドの合成に用いたものが例示できる。 芳香族ジァミンの添加により、 ポリアミ ド ィミド、ひいては樹脂プライマを高 τ g化して耐熱性を高めることが可能となる。 また、 シロキサンジァミンの添加により、 樹脂プライマの低弾性率化が可能とな
' る。
【0 0 9 4】 第 2の樹脂におけるポリアミドイミドは、 例えば、 以下に示すよ うにして合成することができる。 すなわち、 まず、 上述したジァミン化合物と無 水トリメリット酸とを、 非プロトン性溶媒中、 7 0〜1 0 0 °Cで反応させる。 こ こで、 非プロトン性溶媒としては、 上記第 1の樹脂におけるポリアミドイミド合 成に用いたのと同様のものが挙げられ、 NM Pが好ましい。
ί 0 0 9 5】 ここで、 非プロ'トン性極性溶媒の含有量は、 溶液の全重量に対し て、 固形分重量が 1 0〜7 0重量%、 好ましくは 2 0〜 6 0重量%となる量とす ることが好ましい。 溶液中の固形分が 7 0重量%を超える場合、 固形分の溶解性 が低下して反応が不十分となる傾向にある。 一方、 1 0重量%未満である場合、 溶媒使用量が多くなりすぎ、 コス ト的に不利となる。
【0 0 9 6】 上記反応後、 得られた溶液中に、 上記第 1の樹脂のポリアミドィ ミド合成と同様に、 水と共沸可能な芳香族炭化水素を加えて 1 5 0〜2 0 0 °Cに 加熱し、 これにより脱水閉環反応を生じさせてジイミドジカルボン酸を得る。 こ の際、 水の流出と同時に芳香族炭化 7k素が留出して所望の量から下足する場合が あるため、例えば、留出した液体から水を除去して、再び反応溶液に戻す等して、 溶液中の芳香族炭化水素の濃度を一定に保つようにするとよい。 なお、 脱水閉環 反応の終了後には、 溶液を加熱する等して芳香族炭化水素を留去することが好ま しい。
【0 0 9 7】 こうして得られるジィミドジカルボン酸としては、下記一般式(1 0 a ) で表されるものが挙げられ、 上記一般式 (8 ) で表されるジァミン化合物 を併用した場合、 下記一般式(1 0 b ) で表されるものも併せて生成する。 なお、 下記式中、 R 1 Qは、 上記一般式 (6 a )、 (6 b ) 又は (6 c ) で表される化合物 からアミノ基を除いてなる 2価の基を示し、 R 8 1、 R 8 2、 R 8 3及び mは上記と 同義である t
Figure imgf000028_0001
【0098】 そして、 ポリアミ ドイミ ドは、 上述のようにして得られたジイミ ドジカルボン酸と、 ジィソシァネートとを反応させることによって得ることがで きる。 このようにしてポリアミ ドイミ ドを合成する場合、 ジァミン化合物、 無水 トリメリット酸及びジィソシァネートの配合量は、 ジァミン化合物:無水トリメ リット酸:ジイソシァネートが、 モル比で、 1 : 2〜2. 2 : 1〜1. 5となる ようにすることが好ましく、 1 : 2〜2. 2 : 1〜1. 3となるようにすること が好ましい。 こうすれば、 ジィミ ドジカルボン酸、 さらにポリアミ ドイミ ドの合 成反応が効率良く生じるようになり、 より高分子量であり、 フィルム形成性に優 れるポ?ァミド.イミドを得るこどが可能となる。 · .
[0099] ジィソシァネートとしては、 芳香族ジィソシァネート及び脂肪族 ジイソシァネートの両方を適用できる。 例えば、 下記一般式 (1 1) で表される ものが好適である。 下記式中、 R11としては、 一 P h_CH2— P h—で表され る基、 トリレン基、 ナフチレン基、 へキサメチレン基又はイソホロン基が挙げら れる。
OCN— R11— NC0 ···(")
【0100】 芳香族ジイソシァネートとしては、 上述した第 1の樹脂における ポリアミ ドイミ ド合成に用いたのと同様のものが好適であり、 なかでも、 MD I が好ましい。 MD Iを含有させることにより、 樹脂プライマのフィルム形成性が 向上するほか、 かかるプライマからなる樹脂層の可撓性が向上するようになる。 また、脂肪族ジイソシァネートとしては、へキサメチレンジイソシァネート、 2, 2 , 4一トリメチルへキサメチレンジィソシァネート、 イソホロンジイソシァネ 一ト等が例示できる。
【0 1 0 1】 ジイソシァネートとしては、 芳香族ジィソシァネート及ぴ脂肪族 ジィソシァネートのいずれか一方を単独で用いてもよく、 組み合わせて用いても よいが、 少なくとも芳香族ジィソシァネートを含んでいると好ましく、 両者を併 用することがより好ましい。
【0 1 0 2〗 両者を併用する場合、 これらの配合比は、 芳香族ジィソシァネー トに対して、 脂肪族ジイソシァネートの含有量が 5〜1 0モル%程度となるよう にすると好ましい。 このように芳香族ジィソシァネートと脂肪族ジィソシァネー ドとを併用することによって、 ポリアミドイミド、 ひいては樹脂プライマの耐熱 性を更に向上させることができるようになる。
[ 0 1 0 3 ] ジイミドジカルボン酸とこれらのジィソシァネートとの反応は、 上記反応後のジイミドジカルボン酸を含む溶液中に、 ジイソシァネートを添加す るようにして行うことが好ましく、 その反応温度は、 1 3 0〜2 0 0 °Cとするこ とが好ましい。 ' . .
【0 1 0 4】 かかる反応は、 塩基性触媒の存在下で行うとより好ましく、 この 場合、 反応温度は、 7 0〜1 8 0 °C、 好ましくは 1 2 0〜1 5 0 °Cとすることが できる。 これにより、 例えば、 ジイソシァネート同士による反応等の副反応を抑 制でき、 より高分子量のポリアミドイミドが得られるようになる。
【0 1 0 5】 塩基性触媒としては、 トリメチルァミン、 トリェチルァミン、 ト リプロピルァミン、 トリ (2—ェチルへキシル) ァミン、 トリオクチルァミン等 のトリアルキルァミンが挙げられる。 なかでも、 トリェチルァミンは、 反応を好 適に促進でき、 反応後の除去も容易であるため好ましい。
【0 1 0 6】 こうして得られたポリアミドイミドは、 例えば、 分子中に下記一 般式 (12 a) で表される繰り返し単位を有するものとなり、 好適な場合、 下記 一般式 (1 2 b) で表される繰り返し単位を併せて有するものとなる。 なお、 下 記式中、 R10、 R11, R81、 R82、 尺83及び1!1は、 上記と同義である。
Figure imgf000030_0001
【0107】 このようして得られる第 2の樹脂におけるポリアミ ドイミ ドとし ては、 その重量平均分子量が、 20, 000〜300, 000であるものが好ま しく、 30, 000〜 200, 000〜であるものがより好ましく、 40, 00 0〜150, 000であるものが更に好ましい。 なお、 ここでいう重量平均分子 量とは、 ゲルパーミエーシヨンクロマトグラフィーにより測定を行い、 標準ポリ スチレンる-用いて作成した検量線により換算して得られた値である。 ' .
【0108】 第 2の樹脂も、 上記第 1の樹脂と同様に、 ポリアミドイミドに加 え、 このポリアミドイミドにおけるアミド基と反応性を有する官能基を含む反応 性化合物を更に含有するものであると好ましい。 このような反応性化合物として は、 上述した第 1の樹脂に好適なものを適用でき、 その配合量は、 樹脂プライマ の総量に対して 5〜25重量%とすることが好ましい。
【0109】 反応性化合物の配合量が 5重量%未満であると、 第 2の樹脂を含 む樹脂プライマのフィルム形成性が低下する場合がある。 一方、 25重量%を超 えると、 樹脂プライマからなる樹脂層が脆くなるほか、 導体箔との接着性が低下 する傾向にある。 なお、 このように反応性化合物を含有させる場合には、 上記第 lの樹脂におけるのと同様の硬化剤及び Z又は硬化促進剤を更に含有させるとよ り好ましい。 .
【0 1 1 0】 なお、 第 2の樹脂中には、 その他の成分として、 充填剤、 カップ リング剤、 難燃剤等を含有していてもよい。
(その他の樹脂)
【0 1 1 1】 実施形態の樹脂プライマに含有させる樹脂としては、 上記第 1又 は第 2の樹脂以外に、 以下に示すその他の樹脂も適用できる。 その他の樹脂とし ては、 まず、 構造中にヒ ドロキシル基を有する樹脂とイソシァネート類を反応さ せて得られる力ルバミン酸ェステルが挙げられる。 ここで、 イソ'シァネート類と しては、 フエ二ルイソシァネート、 ェチルイソシァネート、 プロピルイソシァネ 一ト、 ブチノレイソシァネート、 フ /レオ口フエニノレイソシァネート、 クロ口フエ二 ルイソシァネート、 ブロモフエ二ルイソシァネートなどが挙げられるが、 これら に限られるものではない。
【0 1 1 2】 また、 その他の樹脂としては、 構造中にヒ ドロキシル基を有する 樹脂と芳香族カルボン酸またはその誘導体とを反応させることによって得られる 芳香族カルボン酸エステルも挙げられる。 この反応としては、 例えば、 鉱酸を触 媒とした芳香族カルボン酸とヒ ドロキシル基との直接エステノ I化が例示できる。
【0 1 1 3】 芳香族カルボン酸誘導体としては、 安息香酸ク口ライド、 安息香 酸ブロマイド、 メチル安息香酸クロライド、 メチル安息香酸ブロマイド、 ェチル 安息香酸ク口ライド、ェチル安息香酸プロマイ ド、プロピル安息香酸ク口ライ ド、 プロピル安息香酸ブロマイド、 ブチル安息香酸クロライド、 プチル安息香酸ブロ マイドなどが挙げられるが、 これらに限られるものではない。
【0 1 1 4】 芳香族カルボン酸エステルの合成において、 芳香族ジカルボン酸 エステル結合を形成する方法としては、 上記以外にヒ ドロキシル基のトシル (パ ラ トルエンスルホン) 化を経由する方法も挙げられる。 例えば、 ヒ ドロキシル基 とトシルク口ライ ド (塩化パラトルエンスルホ -ル)を反応させて、 構造中にトシ ル基 (パラトルエンスルホン酸イオン)を付与させることができる。 このトシル基 は優れた脱離基であり、 カルボン酸ィオンと容易に入れ替わることができる。 (その他成分)
【0 1 1 5】 このように、 実施形態に係る樹脂プライマは、 上述した各種の樹 脂を含むものであるが、 これらの樹脂に加えて、 他の成分を更に含有するもので あってもよい。 かかる他の成分としては、 まず、 ゴム成分が挙げられる。 樹脂プ ライマがゴム成分を更に含有していると、 樹脂プライマからなる樹脂層の金属箔 に対する接着性が更に向上するようになる。
【0 1 1· 6】 ここで 「ゴム成分」 とは、 ゴム状弾性を有する高分子のことをい うものとする。 ゴム成分としては、 例えば、 アクリルゴム、 天然ゴム、 イソプレ ンゴム、 ブタジエンゴム、 クロロプレンゴム、 二トリ /レゴム、 シリコーンゴム、 ウレタンゴムなどが挙げられるが、 これらに限定されるものではない。 このゴム は、 樹脂中に 4 0質量%以上含有されると、 より好ましい。
【0 1 1 7】 また、 その他の成分としては、 ゴム成分のほかに、 ナイロン、 ポ リカーボネート、 ポリアリレートなどといったエンジニアリングプラスチックな どが含有されてもよい。 これらのものが添加された樹脂は、 さらに大きな破断ェ ネルギーを有するようになり、 これより得られる樹脂層は、 金属箔に対する更に 強力な接着性を有するものとなる。
[樹脂付き導体箔]
【0 1 1 8】 次に、 好適な実施形態に係る樹脂付き導体箔について説明する。 樹脂付き導体箔は、 導体箔に、 上記樹脂プライマが塗布されてなるものである。 図 3は、 実施形態に係る樹脂付き導体箔の断面構造を模式的に示す図である。 図 示された樹脂付き導体箔 1 0は、 導体箔 1 2と、 この上に形成された、 上述した 実施形態の樹脂プライマからなる樹脂層 1 4とを備えている。
【0 1 1 9】 ここで、 導体箔 1 2としては、 少なくとも樹脂プライマが塗布さ れる側の表面の十点平均粗さ (R z ) が 3 μ ΐη以下であるものが好ましく、 2 μ m以下であるものがより好ましい。
【0120】 なお、 導体箔 1 2表面の R zは、 樹脂膜表面の 「十点平均粗さ」 と同様のものであり、 J I S B 0601— 1 994に準じた測定法を用いて導 出され、 例えば市販の触針式表面粗さ測定器等を用いて測定することができる。 【0121】 導体中を流れる電流付近には磁力線が発生するが、 導体の中心部 ほど磁力線の干渉が大きいため、 電流は周辺とコーナーに集中する。 これを表皮 効果と呼び、 周波数が.高いほどこの傾向は強まる。 これに対し、 上述した導体箔 1 2から得られる導体回路は、 その R zが 3 μπι以下と十分円滑であるので、 上 記表皮効果による抵抗の増加を抑えられると考えられ、 高周波信号の伝送に有利 と考えられる。
【0122】 導体箔 12としては、 上述のような特性を有していれば、 特に限 定されることなく用いられるが、 良導性の観点から金属箔であると好ましく、 銅 箔であるとさらに好ましい。 銅箔としては、 電解銅箔や圧延銅箔等を用いること ができ、 表面に粗化処理等により凹凸が形成されていないものが好ましい。
【0123】 通常の電解銅箔の光沢面は、 これらの条件を満たしており、 この ような銅箔を用いる場合、 その光沢面をそのまま榭脂プライマの塗布面とするこ とができる。このような条件を満.たす銅箔としては、 F O—WS (R ζ = 1. 2)、 F 1— WS、 F 2 -WS (R z = 3. 0) 、 GTS、 GTS— MP、 GTS— F LP、 GY、 GY— MP、 TSTO、 DT_GL、 DT— GLD (以上、 古河サ 一キットフオイル社製) 、 3 EC-VLP (三井金属社製、 R z = 3. 0) 、 S LP、 YGP (日本電解社製) 等が挙げられる。 これらの市販の銅箔の光沢面は、 1. 5〜2. 0 imの R zを有しており、 特に表面粗さの小さい銅箔としては、 F 0 -WS (古河サーキットフオイル社製、 R z = l. 2 μ ΐΏ.) が商業的に入手 可能である。 これらの銅箔の厚さは 9〜18 /xm程度が好ましい。
【0124】 また、 キャリア銅箔の表面に離型処理を施し、 この上に極薄の銅 箔を積層したビーラプル銅箔も使用可能であり、 この場合の銅箔としては、 3 μ mや 5 μπιの厚みのものを用いることができる。 このような銅箔としては、 例え ば、 MTS (三井金属社製) 、 NAP (β本電解社製) 、 FCF (古河サーキッ トフオイル社製) 等が商業的に入手可能である。
【0125】 また、 銅箔は、 必要に応じて適当な厚みを有するものを用いるこ とができる。 市販の銅箔は約 10〜1 50 μπιの範囲の厚みを有するが、 回路基 板用途としては 18 /^m及び 35 /zmの厚みを有する銅箔が一般に用いられる。 しかしながら、 より微細な回路パターンを形成する観点から、 本発明においては 1 2 im或いは 9 μιηの厚みを有するものなど、 比較的薄膜の銅箔を用いること がより好ましい。 '
【0126】 銅箔以外の金属箔としては、 厚さ 5〜200 /zmのアルミニウム 箔、 厚さ 0. 5〜15;/mの銅箔層と厚さ 10〜300 μπιの銅箔層の間に、 二 ッケル、 ニッケル一リン、 ニッケルースズ合金、 ニッケル一鉄合金、 0\ 鉛ース ズ合金等からなる中間層を設けた 3層構造の複合箔ゃ、 アルミニウムと銅箔を複 合した 2層構造の複合箔等が挙げられる。 これらの金属箔も、 その表面粗さが上 述の条件を満たしていることが好ましい。
【0127】 これらの導体箔 12上への樹脂プライマの塗布は、 公知の方法に より実施することができ、 例えば、 コンマコータ、-ディップコータ、 キスコーダ や自然流延塗布等による方法が挙げられる。 かかる塗布は、 樹脂プライマを有機 溶媒等に溶解又は分散させて、 樹脂プライマの濃度が 0. 1〜10%、 好ましく は 2〜 6 %であるワニスとした状態で行うことが好ましい。
【0128】 ワニスに用いる有機溶媒としては、 ジメチルァセトアミ ド、 ジメ チルホルムアミ ド、 ジメチルスルホキシド、 N—メチル一2—ピロリ ドン、 γ— プチ口ラタトン、 スルホラン、 シクロへキサノン等が挙げられる。 なお、 榭脂プ ライマをワニスの状態で塗布した場合、 塗布後、 樹脂プライマの硬化が生じない 程度に加熱等することにより有機溶媒を揮発しておくことが望ましい。
(導体張積層板) 【0 1 2 9】 図 4は、 実施形態に係る導体張積層板 (積層体) の断面構造を模 式的に示す図である。 導体張積層板 2 0は、 絶縁体層 2 6、 接着層 2 4及び導体 箔 2 2をこの順に備える構造を有している。
【0 1 3 0】 絶縁体層 2 6としては、 導体張積層板に通常用いられるものであ れば、 特に制限なく適用できる。 すなわち、 絶縁体層 2 6としては、 強化繊維を 備えていない Bステージ状態の硬化性樹脂からなるプリプレダや、 強化繊維を備 えた Bステージ状態の硬化性樹脂からなるプリプレダからなるものが挙げられ る。 なかでも、 強化繊維を備えた Bステージ状態の硬化性樹脂からなるプリプレ グからなるものであると好ましい。
【0 1 3 1】 前者の強化繊維を備えていない Bステージ状態の硬化性樹脂から なるプリプレダは、硬化性樹脂をフィルム状に成形した後に半硬化状態(Bステー ジ)にすることにより得ることができる。また、後者の強化繊維を備えた Bステー ジ状態の硬化性樹脂からなるプリプレダは、 強化繊維に硬化性樹脂を含浸させた 後、 その含浸させた樹脂を半硬化状態(Bステージ)にすることにより得ることが できる。
【0 1 3 2】 硬化性樹脂は、 樹脂プライマを構成する樹脂と同一であってもよ く、 異なっていてもよい。 硬化性樹脂としては、 具体的には、 エポキシ樹脂、 ポ. リイミド樹脂、 フエノール榭脂等が好ましい。
【0 1 3 3】 また、 強化繊維としては、 Eガラス、 Dガラス、 Sガラス、 Qガ ラス等からなるガラス繊維、 ポリイミ ド、 ポリエステル、 テトラフルォロェチレ ン等からなる有機繊維、 及びこれらを混合した繊維を例示することができる。 こ れらの繊維は、 例えば、 織布、 不織布、 ロービング、 チョップドス トランドマツ ト、サーフエシングマット等の形状を有する強化繊維として用いることができる。 【0 1 3 4】 強化繊維を備えたプリプレダにおける硬化性樹脂と強化繊維との 配合比は、 質量比で、 硬化性樹脂/強化繊維 = 2 0 8 0〜8 0 Z 2 0であるこ とが好ましく、 4 0 / 6 0〜6 0 4 0であることがより好ましい。 【0135】 このようなプリプレダとしては、 市販されているプリプレダを用 いることもできる。 例えば、 エポキシ樹脂を主成分とする熱硬化性樹脂をガラス 繊維織布であるガラスクロスに含浸させたプリプレダ(GEA— 67、GEA— 6 79、 GEA-679 F;日立化成工業株式会社製)、低誘電率の樹脂を含浸した 高周波対応プリプレダ(GEA—LX— 67 ; 日立化成工業株式会社製)、 ポリイ ミドに熱硬化成分を配合した樹脂をガラスクロスに含浸させたプリプレダ( G E A- I -671;日立化成工業株式会社製)が挙げられる。なお、絶縁体層 26は、 これらのプリプレダを一層のみ用いたものであってもよく、 複数枚重ねて得られ たものであってもよい。
【0136】 接着層 24は、 上記本発明の樹脂プライマからなる層である。 具 体的には、上記樹脂プライマを乾燥させて形成された層であると好ましい。また、 導体箔 22としては、 上述した樹脂付き導体箔 10において用いられるものを好 ましく適用でき、 接着層 24との接着面の R zが 3 以下であるものがより好 ましい。
【0137】 このような導体張積層板 20は、 以下に示すようにして製造する ことができる。すなわち、 まず、上述したプリプレダを単層又は複数層重ねた後、 これに、 上述した樹脂付き導体箔 10を、 その樹脂層 14力接するように積層し て積層体を得る。 この場合、 樹脂付き導体箔 10における樹脂層 14の厚みは、 プリント配線板、 ひいてはそのプリント配線板が備えられる機器の薄型化及び乾 燥時間の短縮化の観点から、 導体箔表面の凸部を基準として、 5 /zm以下である と好ましく、 4 μπι以下であるとより好ましく、 3 μπι以下であると特に好まし レ、。
【0138】 その後、 この積層体を、 所定の条件で加熱及び/又は加圧して導 体張積層板 20を得る。 これにより、 プリプレダにおける樹脂及び樹脂付き導体 箔 10における樹脂層 14が硬化して、 それぞれ絶縁体層 26及ぴ接着層 24と なる。 加熱は、 160〜250°Cの温度で実施することが好ましく、加圧は、 0. 1〜8 . O M P aの圧力、 特に真空下で実施することが好ましい。 加熱及び加圧 は真空プレス等を用いて同時に行うことが好ましい。 この場合、 これらの処理を 1 0分以上、好ましくは 3 0分以上、より好ましくは 6 0分以上実施することで、 導体箔 2 2と絶縁体層 2 6 (プリプレダ) との接着性に優れた導体張積層板 2 0 を製造することができる。
【0 1 3 9】 なお、 本発明の導体張積層板は、 絶縁層の両面に接着層を介して 導体箔を備えるものであってもよい。 このような導体張積層板は、 プリプレダ又 はその積層体の両面に、 上述した樹脂付き導体箔を積層するようにして製造する ことができる。
【0 1 4 0】 このような構成を有する導体張積層板においては、 導体箔が、 本 発明の樹脂プライマの硬化物からなる接着層を介してプリプレダの硬化物 (絶緣 体層) に接着されており、 また硬化により絶縁層と接着層の硬化物が一体化され た状態となっている。 このため、 導体張積層板における導体箔は、 絶縁層と強固 に接着されている。
【0 1 4 1】 よって、 この導体張積層板を用いて微細な回路パターンを有する プリント配線板を形成させた場合であっても、 強固に接着された導体箔から形成 される回路パターンは-基材から剥離することが極めて少ないものとなる。また- -- 接着層の硬化物は、 上述したような樹脂を含む樹脂プライマから形成されるもの であるため高い耐熱性も有している。 このため、 かかる接着層は、 導体張積層板 がめつき等において高温に晒された場合であつてもふくれ等を生じることが極め て少ない。
[実施例]
【0 1 4 2】 以下、 本発明を実施例により更に詳細に説明するが、 本発明はこ れらの実施例に限定されるものではない。
<樹脂プライマの調製 >
(実施例 1〜 3 ) 【0143】 表 1に示した各原料を配合し、 撹拌することにより溶解して、 実 施例 1〜 3の樹脂プライマを得た。 なお、 表 1中、 ビスフエノール A型エポキシ 樹脂として、 DER—33 1 L (エポキシ当量 = 184、 ダウケミカル社製、 商 品名) を用い、 ノボラック型フエノール樹脂として、 HP— 85 ON (ヒドロキ シル基当量 = 106、 日立化成工業株式会社製、 商品名)を用い、 ァクリルゴム として、 W— 248 D R (新中村化学工業株式会社製、 商品名)を用いた。
(表 1)
Figure imgf000038_0001
(実施例 4)
【0144】 還流冷却器、 温度計、 撹拌機を備えた 1リツトルセ
スコにフエノキシ樹脂 (YP— 50、 ヒドロキシル基当量 = 284、 東都化成株 式会社製、 商^名) 100 g及びシク口へチサノン 330 gを入れ、 加熱撹拌し て溶解させた。 次いで、 フエ-ルイソシァネート 41. 9 g、 トリェチルァミン 0. 3 gを添加し 1 30°Cで 3時間反応させた。続いて、エタノール中で再沈後、 乾燥させて、 フエ二ルカルバメートが付加したフエノキシ樹脂を得た。 そして、 この樹脂を濃度が 30質量%になるようにジメチルホルムアミド (DMF) に溶 解させることにより、 実施例 4の樹脂プライマを得た。
(実施例 5 )
【0145】 市販の接着シート AS— 3000 E (日立化成工業社製)を、 その 濃度が 30質量%となるようにメチルェチルケトン (MEK) に溶解することに より実施例 5の樹脂プライマを得た。 (比較例 1〜 3 )
【01.46】 表 2に示した各原料を配合し、 撹拌することにより溶解して、 樹 脂プライマを得た。 なお、 表 2中、 ビスフエノール A型エポキシ樹脂、 ノポラッ ク型フエノール樹脂及びァクリルゴムとして、 実施例 1〜3において用いたもの と同じものを採用した。
(表 2)
Figure imgf000039_0001
(比較例 4 )
【0147】 ポリスルホン樹脂(コーデル P— 1 700、 ァモコ社製、 商品名) をその濃度が 30質量%になるように DMFに溶解させることにより樹脂プライ マを得た。
(比較例 5 )
[0148] ポリエーテルスルホン樹脂(5003 P、住友化学工業株式会社製、 商品名)をその濃度が 30質量%になるように DM Fに溶解させ樹脂プライマを 得た。
<破断エネルギーの測定 >
【0149】 破断エネルギーの測定はオートグラフ AG— 100 C (島津製作 所社製、 商品名) を用いて行った。
【0150】 実施例 1〜 3及び比較例 1〜 3で得られた樹脂プライマについて は、 まず、 樹脂プライマを、 銅箔(GTS— 18、 古河サーキットフオイル社製、 商品名)の光沢面(R z = 2 /i m)上に、乾燥後の膜厚が 50 μ mになるように塗布 し、 1 2 0 °Cに熱した温風循環型乾燥機中で 1 0分間乾燥した。 次いで銅箔に備 えられた接着層の、 まだ銅箔と接着していない側の面に、 もう 1枚の銅箔を光沢 面と向かい合うようにして積層し、 その銅箔の接着層と接していない側から、 1
7 0 °C、 3 . O M P aの条件下で 1時間プレスを行った。 続いて、 両面の銅箔を ェツチングで除去した。 これにより、 実施例 1〜 3及び比較例 1〜 3にかかる破 断エネルギー測定用の試験片 (樹脂フィルム) を得た。
【0 1 5 1】 実施例 4及び比較例 4 , 5の樹脂プライマについては、 まず、 樹 脂プライマを、 キャリアフィルム上に乾燥後の膜厚が 5 0 Ai mになるように塗布 し、 1 2 0 °Cに熱した温風循環型乾燥機中で 1 0分間乾燥することによつて破断 エネルギー測定用の試験片 (樹脂フィルム) を得た。
【0 1 5 2】 また、 実施例 5のプライマについては、 接着シート A S— 3 0 0
0 Eを硬化させることによって破断エネルギー測定用の試験片 (樹脂フィルム) を得た。
【0 1 5 3】 次いで、二つのつかみ具を、長さ方向に 6 O mmの距離をおいて、 上記各試験片を挟んで配置した。 そして、 二つのつかみ具を、 この試験片の長さ 方向に 5 mmZ分の速度で、 互いに離れるように移動させ、 この試験片を引っ張 つた。 この際、 歪みと引っ張り応力値を上記装置により測定した。 そしてフィル, ムが破断した時点でこの引っ張りを終了した。 得られた応力一歪み曲線中の、 試 験片が破断するまでの引張り応力の積分値を破断エネルギーとして求めた。 結果 を表 3に示す。
(表 3 ) ホルムアミド接 銅箔引き剥がし 銅箔ノ樹脂界面 破断エネルギー
触角 強さ の剝離強度 (J)
) ( k NZm) ( k NZm) 実施例 1 0. 81 65 2. 1 0. 3 実施例 2 0. 71 64 1. 9 0. 3 実施例 3 0. 32 64 1. 1 0. 4 実施例 4 0. 058 55 0. 4 0. 9 実施例 5 0. 18 58 0. 9 0. 9 比較例 1 0. 058 64 0. 5 0. 3 比較例 2 0. 012 63 0. 4 0. 3 比較例 3 0. 0044 63 0. 4 0. 3 比較例 4 0. 054 72 0. 01 0. 2 比較例 5 0. 081 69 0. 05 0. 3 比較例 6 0. 1
<ホルムアミド接触角の測定 >
【0154】 ホルムァミドの接触角測定は協和界面科学社製の接触角測定器 C A— DTを用いて以下のようにして行った。 実施例 1 3及び比較例 1 3の榭 脂プライマについては、この樹脂プライマを銅箔(GTS— 1 8、古河サーキット フオイル株式会社製、商品名)の光沢面(R z = 2 ^m)上に塗布し、 1 20°Cに熱 した温風循環型乾燥機中で 10分間乾燥した後、 170 °Cの環境下で 1時間硬化 させて得られた樹脂フィルムの表面におけるホルムァミドの接触角を測定した。
【0155】 実施例 4及び比較例 4 5のプライマについては、 このプライマ をキャリアフィルム上に塗布し、 120°Cに加熱した温風循環型乾燥機中で 10 分間乾燥することにより得られた樹脂フィルムの表面におけるホルムアミドの接 触角を測定した。
【0156】 また、 実施例 5のプライマについては、 接着シート AS— 300 0 Eを硬化させることにより得られた樹脂フィルムの表面におけるホルムァミド の接触角を測定した。 結果を表 3に示す。 <銅箔引き剥がし強さの測定 >
【01 57】 一般に配線板分野では、 樹脂と金属箔との間の接着性評価に銅箔 引き剥がし強さを測定するピール試験が用いられている。 そこで、 本発明の導体 張積層板におけるプライマから得られる樹脂と導体箔との間の接着性を評価する ために、 銅箔引き剥がし強さを以下のようにして測定した。
【0158】 まず、 上述のようにして得られた実施例 1〜 4及ぴ比較例 1〜 5 のプライマを銅箔 (GTS— 18) の光沢面(R z = 2 /zm)上に乾燥後の膜厚が 5 mになるように塗布し、 1 20 °Cに熱した温風循環型乾燥機中で、 10分間 乾燥させることにより樹脂付銅箔を作製した。 次いで、 低誘電率プリプレダ (G EA-LX-67, 日立化成工業株式会社製、 商品名) を 5層積層し、 その両側 に、 上記樹脂付銅箔を、 樹脂 (接着層) とプリプレダが向かい合うようにして重 ね、 230°C、 3. OMP aの条件下で 90分間プレスを行うことにより両面銅 張積層板を得た。
【0159】 また、 実施例 5のプライマについては、 まず、 AS— 3000E をその濃度が 30重量%になるようにメチルェチルケトン(MEK)に溶解させ、 得られた樹脂溶液をキャリアフィルム上に乾燥後の膜厚が 50 /xmになるように 塗布し、 1 20 °Cに熱した温風循環型乾燥機中で 1 C分間乾燥することにより樹 脂付銅箔を作製した。 次いで、 低誘電率プリプレダ (GEA— LX— 67、 日立 化成工業株式会社製、 商品名) を 5層積層し、 その両側に、 上記樹脂付銅箔を、 樹脂 (接着層) とプリプレダが向かい合うようにして重ね、 230°C、 3. 0M P aの条件下で 90分間プレスを行うことにより両面銅張積層板を得た。
【0160】 さらに、 比較例 6として、 低誘電率プリプレダ (GEA—LX— 67) を 5層積層し、その両側に、銅箔(GTS— 1 8) を光沢面(Ι Ζ = 2 μΐη) とプリプレダが向かい合うようにして重ね、 230° (、 3. OMP aの条件下で 90分間プレスを行うことにより両面銅張積層板を得た。
【0161】 そして、 各両面銅張積層板上の 1 c m幅の銅箔を、 5 c mZ分の 速度で引き剥がすことによつて銅箔引き剥がし強さを測定した。 結果を表 3に示 す。
<銅箔 Z樹脂界面の剥離強度測定〉
【0162】 プライマから得られる樹脂と導体箔との間の接着界面が平滑にな ればなるほど接着面積は減少するため、プライマを構成する樹脂物性のみ.ならず、 その樹脂と導体箔との間に働く化学的な相互作用が重要になってくる。 そこで、 樹脂物性による影響を取り除いて、 化学的な相互作用にかかる接着性を評価する ために、 金属箔から樹脂を削り取ることによって接着力を測定する切削法を用い て、 導体箔と樹脂からなる接着層との界面における剥離強度を測定した。
【0163】 まず、 銅箔引き剥がし強さの測定のために用いた実施例 1〜5及 び比較例 1〜 5にかかる樹脂付銅箔とおなじものを、 樹脂からなる接着層が上に なるようにして支持基板に固定し、 これを測定用サンプルとした。 この樹脂付銅 箔の銅箔/樹脂界面の剥離強度を、ダイブラ ·ウインテス株式会社製サイカス C N -100型を用いて測定した。
〖0164】 具体的には、 水平速度 10 μ mZ秒、 垂直速度 0. 5 μ mZ秒の 速度で、 接着層に幅 2 mmの刃を切り込み、 その刃が接着層と銅箔との界面に達 した時点で刃の進行方向を水平移動のみにすることによって、 銅箔/樹脂界面の · 剥離強度を測定した。 結果を表 3に示す。
【0165】 破断エネルギーが 0. 1 5 J以上である実施例 1〜 3及び 5にか かるものは、 十点平均粗さが 2 μπιと平滑な銅箔を用いても、 0. 9 kN/m以 上の銅箔引き剥がし強さが得られた。 ホルムアミ ド接触角が 60° 以下である実 施例 4, 5にかかるものは、 十点平均粗さが 2 μιηと平滑な銅箔を用いても、 そ の銅箔と樹脂との間の界面における剥離強度は 0. 9 kNZmであった。
【0166】 一方、 破断エネルギーが 0. 1 5 J未満であり、 ホルムァミド接 触角が 60° を超える比較例 1〜5にかかるものは、 銅箔引き剥がし強さが 0.
5 k N/m以下であり、銅箔 Z樹脂界面の剥離強度は 0. 3 k NZm以下となり、 共に低い値を示した。 さらに、 銅箔とプリプレダを直接積層した比較例 6は、 そ の銅箔引き剥がし強さが 0. l kNZmであり、 実施例 1〜5と比べて低い値を 示した。
くポリアミドイミドの合成〉
(合成例 1 )
【0167】 還流冷却器を連結したコック付き 25 m Lの水分定量受器、 温度 計、 攪拌器を備えた 1 Lのセパラブルフラスコに、 芳香族ジァミンとして 2, 2 一ビス [4- (4一アミノフエノキシ) フエニル] プロパン (BAPP) 57.
5 g (0. 14mo 1 ) 、 シロキサンジァミンとして反応性シリコーンオイル K F 8010 (信越化学工業社製、 ァミン当量 42 1) 50. 5 g (0. 06mo
1 ) 、 無水トリメリット酸 (TMA) 80. 7 g (0. 42mo 1 ) 、 非プロト ン性極性溶媒として N—メチル一 2—ピロリ ドン (NM P) 580 gを仕込み、 80°Cで 30分間攪拌した。
【0168】 攪拌終了後、 水と共沸可能な芳香族炭化水素としてトルエン 10 OmLを加え、 温度を 160 °Cに上昇させて 2時間還流させた。 水分定量受器に 水が約 7. 2mL以上たまり、 水の留出が見られなくなつていることを確認した -ら、 水分定量受器中の水を除去しながら温度を 1 90°Cまで:ヒ昇させて、 トルェ ンを除去した。
【0169】 フラスコの溶液を室温まで戻した後、 芳香族イソシァネートとし て 4, 4 ' ージフエニルメタンジイイソシァネート (MD I) 60. 1 g (0.
24mo 1) を加え、 温度を 1 90°Cに上昇させて 2時間反応させた。 反応後、 溶液を室温まで冷却して、 アミ ド基含有量 8. 05重量。 /0、 ケィ素原子含有量 8.
68重量%のポリアミドィミドの NMP溶液を得た。
(合成例 2)
【01 70】 還流冷却器を連結したコック付き 25 m Lの水分定量受器、 温度 計、 攪拌器を備えた 1 Lのセパラブルフラスコに、 芳香族ジァミンとして BAP Pの 41. 1 g (0. 1 Omo 1 ) 、 シロキサンジァミンとして反応性シリコー ンオイル KF 8010の 84. 2 g (0. 10mo l) 、 TMAの 80. 7 g (0. 42mo 1 ) 、 非プロトン性極性溶媒として NMPの 494 gを仕込み、 80°C で 30分間攪拌した。
【0171】 攪拌終了後、 水と共沸可能な芳香族炭化水素としてトルエン 10 OmLを加え、 温度を 160°Cに上昇させて 2時間還流させた。 水分定量受器に 水が約 7. 2mL以上たまり、 水の留出が見られなくなつていることを確 した ら、 水分定量受器中の水を除去しながら温度を 1 90°Cまで上昇させて、 トルェ ンを除去した。
【0172】 フラスコの溶液を室温まで戻した後、 芳香族ィソシァネートとし て MD Iの 60. 1 g (0. 24mo 1 ) を加え、 温度を 1 90°Cに上昇させて 2時間反応させた。 反応後、 溶液を室温まで冷却して、 アミド基含有量 7. 38 重量%、 ケィ素原子含有量 13. 26重量%のポリアミドィミドの NMP溶液を 得た。
(合成例 3 )
【0173】 還流冷却器を連結したコック付き 25 m Lの水分定量受器、 温度 計、 攪拌器を備えた 1 Lのセパラブルフラスコに、 芳香族ジァミンとして BAP Pの 41. 05 g (0. l Omo l) 、 シロキサンジァミンとしてジメチノレフエ ニル型反応性シリコーンオイル X— 22- 9409 (信越化学工業社製、 ァミン 当量 679) 135. 8 g (0. l Omo l ) 、 TMAの 80. 7 g (0. 42 mo 1) 、 非プロトン性極性溶媒として NMPの 590 gを仕込み、 80°Cで 3 0分間攪拌した。
【0174】 攪拌終了後、 水と共沸可能な芳香族炭化水素としてトルエン 10 OmLを加え、 温度を 160°Cに上昇させて 2時間還流させた。 水分定量受器に 水が約 7. 2mL以上たまり、 水の留出が見られなくなつていることを確認した ら、 水分定量受器中の水を除去しながら温度を 1 90°Cまで上昇させて、 トルェ ンを除去した。
【0175】 フラスコの溶液を室温まで戻した後、 芳香族イソシァネートとし て MD Iの 60. 1 g (0. 24mo 1 ) を加え、 温度を 1 90°Cに上昇させて 2時間反応させた。 反応後、 溶液を室温まで冷却して、 アミド基含有量 6. 1 2 重量%、 ケィ素原子含有量 10. 99重量%のポリアミドィミドの NMP溶液を 得た。
(比較合成例 1 )
【0176】 還流冷却器を連結したコック付き 25 m Lの水分定量受器、 温度 計、 攪拌器を備えた 1 Lのセパラプルフラスコに、 シロキサンジァミンとしてジ メチルフェニル型反応性シリコーンオイル X— 22- 1 6 1 A (信越化学工業社 製、 ァミン当量 805) 16 1. 0 g (0. 10mo l ) 、 TMAの 40. 34 g ( 0. 21 m o 1 ) 、 非プロトン性極性溶媒として NMPの 430 gを仕込み、
80 °Cで 30分間攪拌した。
【0177】 攪拌終了後、 水と共沸可能な芳香族炭化水素としてトルエン 10 OmLを加え、 温度を 160°Cに上昇させて 2時間還流させた。 水分定量受器に 水が約 3. 6niL以上たまり、 水の留出が見られなくなつていることを確認した ら、 水分定量受器中の水を除去しながら温度を 1 90°Cまで上昇させて、 トルェ ンを除去した。
【0178】 フラスコの溶液を室温まで戻した後、 芳香族イソシァネートとし て MD Iの 30. 1 g (0. 12mo 1 ) を加え、 さらにトリェチルァミン 1.
0 gを投入して、 温度を 1 10°Cに上昇させて 4時間反応させた。 反応後、 溶液 を室温まで冷却して、 アミ ド基含有量 4. 07重量%、 ケィ素原子含有量 27.
96重量%のポリアミドイミドの NMP溶液を得た。
<樹脂プライマの調製〉
(実施例 6 )
【01 79】 合成例 1で得られたポリアミ ドィミ ドの NMP溶液 63. 3 g (固 形分 30重量%) 、 反応性化合物としてエポキシ樹脂である DER 33 1 L (ダ ゥ -ケミカル社製、 ビスフエノール A型エポキシ樹脂) 2. O g (樹脂固形分 5 0重量0 /0のジメチルァセトアミ ド溶液) 、 2—ェチルー 4—メチルイミダゾーノレ の 0. 02 gを配合し、 組成物が均一になるまで約 1時間攪拌した。 その後、 ジ メチ /レアセトアミ ドを加えて固形分を 5重量%に調整した後、 脱泡のため 2時間 室温で諍置して、 アミ ド基含有量 7. 65重量%、 ケィ素原子含有量 8. 25重 量%の樹脂プライマを得た。
(実施例 7)
【0180】 合成例 2で得られたポリアミ ドイミ ドの NMP溶液 63. 3 g (固 形分 30重量%)、反応性化合物としてエポキシ樹脂である DER 33 1 Lの 2.
0 g (樹脂固形分 50重量%のジメチルァセトアミ ド溶液) 、 2—ェチルー 4一 メチルイミダゾールの 0. 02 gを配合し、 組成物が均一になるまで約 1時間攪 拌した。その後、ジメチルァセトアミ ドを加えて固形分を 5重量%に調整した後、 脱泡のため 2時間室温で静置して、 アミ ド基含有量 7. 38重量%、 ケィ素原子 含有量 1 2. 56重量%の樹脂プライマを得た。
(実施例 8 )
【ひ "I 81 ] 合成例 3で得られた-ポリアミ ドィミ ドの NM P溶液 60. ,0 g (固 形分 30重量%) 、 反応性化合物としてエポキシ樹脂である YD CN 500—1 0 (東都化成社製、 ビスフユノール A型エポキシ樹脂) 4. O g (樹脂固形分 5 0重量0 /0のジメチルァセトアミ ド溶液) 、 2—ェチル一 4ーメチルイミダゾール
0. 04 gを配合し、 組成物が均一になるまで約 1時間攪拌した。 その後、 ジメ チルァセトアミ ドを加えて固形分を 5重量。/。に調整した後、 脱泡のため 2時間室 温で静置して、 アミド基含有量 5. 8 1重量%、 ケィ素原子含有量 10. 44重 量%の樹脂プライマを得た。
(実施例 9 )
【0182】 合成例 1で得られたポリアミ ドイミドの NM P溶液 63. 3 g (固 形分 30重量%) 、 反応性化合物としてエポキシ樹脂である NC 3000H (日 本化薬社製、 ザィロック型エポキシ樹脂) 2. O g (樹脂固形分 50重量%のジ メチルァセトアミ ド溶液) 、 2—ェチルー 4—メチルイミダゾールの 0. 02 g を配合し、 組成物が均一になるまで約 1時間攪拌した。 その後、 ジメチルァセト アミドを加えて固形分を 5重量%に調整した後、 脱泡のため 2時間室温で静置し て、 アミド基含有量 7. 25重量%、 ケィ素原子含有量 7. 81重量。/。の樹脂プ ライマを得た。
(実施例 10)
【0183】 合成例 2で得られたポリアミドイミドの NM P溶液 63. 3 g (固 形分 30重量%) にジメチルァセトアミドを加えて固形分を 5重量。 /0に調整した 後、 脱泡のため 2時間室温で静置して、 アミド基含有量 7. 38重量。/。、 ケィ素 原子含有量 1 3. 26重量%の樹脂プライマを得た。
(比較例 7 )
【0184】 合成例 2で得られたポリアミ ドイミドの NMP溶液 26. 7 g (固 形分 30重量%) 、 反応性化合物としてエポキシ樹脂である DER 331 Lの 2 4. 0 g (樹脂固形分 50重量%のジメチルァセトアミド溶液) 、 2—ェチルー 4—メチルイミダゾールの 0. 24 gを配合し、 組成物が均一になるまで約 1時 間攪拌した。 その後、 ジメチルァセトアミドを加えて固形分を 5重量%に調整し た後、 脱泡のため 2時間室温で静置して、 アミド基含有量 2. 95重量%、 ケィ 素原子含有量 5. 30重量%の樹脂プライマを得た。
(比較例 8 )
【0185】 比較合成例 1で得られたポリアミ ドイミ ドの NMP溶液 60. 0 g (固形分 30重量 °/0) 、 反応性化合物としてエポキシ樹脂である DER 33 1 Lの 4. 0 g (樹脂固形分 50重量0 /0のジメチルァセトアミド溶液) 、 2—ェチ ルー 4ーメチルイミダゾールの 0. 04 gを配合し、 組成物が均一になるまで約 1時間攪拌した。 その後、 ジメチルァセトアミドを加えて固形分を 5重量%に調 整した後、 脱泡のため 2時間室温で静置して、 アミド基含有量 3. 66重量%、 ケィ素原子含有量 25. 1 6重量。 /0の硬化性樹脂のワニスを得た。
<銅箔引き剥がし強さの測定〉
【0186】 実施例 6〜 1 0及び比較例 7 ~ 8の樹脂プライマを、電解銅箔(厚 み 12 m) の光沢面 (R z = l. 5 /zm ; R zは、 J I S B 0601— 1 99
4に準拠した表面粗さである。 ) にそれぞれ自然流延塗布した後、 1 30°Cで 2 0分間乾燥させて樹脂付き銅箔を作製した。 乾燥後の樹脂層の厚みは 1〜2 im であった。
〖01 ¾ 7〗 次いで、 低誘電率プリプレダ (日立化成工業社製、 GEA-LX -67) を所定の枚数重ねてなる基材 (以下、 「低誘電率系基材」 という。 ) 又 はイミド系プリプレダ (曰立化成工業社製、 GE A— I—671) を所定の枚数 重ねてなる基材 (以下、 「イミド系基材」 という。 ) の両面に、 上述した各樹脂 付き銅箔を、 それぞれの樹脂 (接着層) が接するようにして重ね、 230°C、 3. OMP a、 90分のプレス条件で圧着して、 両面銅張積層板を作製した。
【0188】 さらに、 比較例 9として、 上述のプリプレグを所定の枚数重ねた 積層体に、 樹脂 (接着層) を有しない電解銅箔を圧着して両面銅張積層板を作製 レ /
【0189】 得られた各両面銅張積層板における銅箔を、 それぞれ 90度方向 に引き剥がす際の引き剥がし強さ (90° 剥離強さ、 J I S C 6481に準拠) を測定することにより銅箔引き剥がし強さ (kNZm) の測定を行った。 得られ た結果を表 4に示す。
ぐはんだ耐熱性評価 >
【0190】 上記各両面銅張積層板を 2 OmmX 2 Ommに切断して、 はんだ 耐熱性試験用の試料を作製した。 この試料を 260°Cのはんだ浴にそれぞれ浸漬 して、 銅箔と基材との接着界面におけるふくれや、 基材からの金属箔の剥がれが 生じていないかを目視により確認してはんだ耐熱性の評価を行った。 はんだ浴に 浸漬してから 1 8 0秒以上ふくれ及び剥がれの発生が見られなかったものを、 は んだ耐熱性に優れるものとして〇で表し、 1 8 0秒以内にふくれ又は剥がれの生 じたものを、 はんだ耐熱性に劣るものとして Xで表した。 得られた結果を表 4に 示す。
<接着界面の形状評価〉
【0 1 9 1】 上記各両面銅張積層板における垂直方向 (厚さ方向) に、 F I B (フォーカスド イオン ビーム) により穴加工を施し、 形成された穴の 4 5度 方向から走査イオン像(イオンビームで放出される 2次電子の画像)を観察した。 図 5は、 実施例 7の樹脂プライマを用いて得られた両面銅張積層板における F I B加工断面図であり、 図 6は、 市販の両面銅張積層板における F I B加工断面図 である。
(表 4 )
Figure imgf000050_0001
【0 1 9 2】 表 4より、 実施例 6〜1 0の樹脂プライマを用いて得られた両面 銅張積層板は、 銅箔の接着強度が全て 0 . 8 k NZm以上であった。 また、 はん だ耐熱性試験においてもふくれ及び剥がれが生じていなかった。 よって、 良好な 接着強度及びはんだ耐熱性を有していることが判明した。
【0 1 9 3】 また、 図 5より、 実施例にかかる銅張積層板は、 銅箔 A、 接着層 B及び基材 Cが一体化した積層体との接着界面が、 従来の積層板である図 6にお ける銅箔 Dと基材 Eとの接着界面と比較して極めて平滑になっていることが判明 した。 なお、 図 5に示す銅張積層板における銅箔 1と基材 3の間の接着層 2の厚 みは 1〜2 μπιであった。
【0194】 これより、 実施例 6〜10の樹脂プライマによれば、 平滑な表面 を有する金属箔を用いた場合であっても、 金属箔と基材との接着性に極めて優れ た導体張積層板を得ることができることが判明した。 このため、 この導体張積層 板を用いることにより、 微細な回路パターンを有するプリント配 f泉板を製造する ことができることが確認された。 '
【0195】 また、 実施例の導体張積層板は、 金属箔と基材との間に極めて耐 熱性の高い接着層の硬化物を有していることから、 はんだ等において高熱に晒さ れた場合であってもふくれ等を生じることが極めて少ない。 これより、 このよう な特性を有する導体張積層板から形成されるプリント配線板は、 平滑な表面の配 線回路を有することができるため、 伝達信号の高周波数化、 ひいてはこのプリン ト配線板を用いた電子機器の動作の高速化も可能となることが確認された。
くポリアミドィミドの合成〉
(合成例 4 . - .
【0196】 還流冷却器を連結した水分定量受器、 温度計及び攪拌器を備えた 1 Lのセパラブルフラスコに、 ジァミン化合物として、 (4, 4一-ジァミノ)ジシ ク口へキシルメタン(ワンダミン HM (略号 WHM) :新日本理化社製商品名) 14 Ommo 1、及び、ジェファーミン D— 2000 (サンテクノケミカル社製商品名) 35mmo l、 TMAの 368mmo l、 非プロトン性極性溶媒として NMPの 41 3 gを仕込み、 80 °Cで 30分間攪拌した。
【0197】 攪拌終了後、 水と共沸可能な芳香族炭化水素としてトルエン 12 OmLを加え、 温度を 160°Cに上げて 2時間還流させた。 水分定量受器に理論 量の水がたまり、 水の留出が見られなくなつていることを確 したら、 水分定量 受器中の水を除去しながら温度を 1 90°Cまで上げて、 トルエンを除去した。 【0198】 フラスコの溶液を室温まで戻した後、 ジィソシァネートとして M D Iの 21 Omm o 1を加え、 温度を 1 90°Cに上げて 2時間反応させた。 反応 後、 溶液を室温まで冷却して、 ポリアミドイミドの NMP溶液を得た。
<樹脂プライマの調製 >
(実施例 1 1 )
【0199】 合成例 4で得られたポリアミドイミドの NMP溶液 76. 0 g (樹 脂固形分 25重量%)、反応性化合物としてエポキシ樹脂である DER 33 1 の 2. 0 g (樹脂固形分 50重量%のジメチルァセトアミ ド溶液) 、 反応性化合物 に対して 1重量%の 2—ェチルー 4ーメチルイミダゾールを配合し、 この組成物 を、 均一になるまで約 1時間攪拌した。 その後、 脱泡のため 2時間室温で静置し て樹脂プライマを得た。
(実施例 1 2及び 13)
【0200】 DER 33 1 Lの配合量を、 4. 2 g (実施例 12) 及び 9. 5 g (実施例 1 3 ) としたこと以外は、 実施例 1 1と同様にして樹脂プライマを得 た。
匕較例 10〜; 1 2) -
【0201】 ポリアミドイミドとして、 PA I _100 (3立化成社製商品名、 ポリアミドイミド樹脂、 樹脂固形分 30重量%) の 63. 3 gを用い、 反応性ィ匕 合物である DER 33 1 Lの配合量を、 それぞれ 2. 0 g (比較例 10)、 4. 2 g (比較例 1 1 )、 及び 9. 5 g (比較例 1 2) としたこと以外は、 実施例 1 1と 同様にして樹脂プライマを得た。
<銅箔引き剥がし強さの測定 >
【0202】 まず、 実施例 1 1〜: L 3及び比較例 10〜 1 2の樹脂プライマを 用い、 以下に示す (1) 〜 (3) の方法にしたがって各種の両面銅張り積層板を 製造した。 【0203】 (1) の方法においては、 まず、 各樹脂プライマに、 ジメチルァ セトアミドを加えて固形分 7重量%となるように調整した後、 これを、 電解銅箔 の光沢面 (Ι Ζ = 2μιη) に自然流延塗布し、 更に、 温風循環型乾燥機中で、 1 60° (、 10分間乾燥して樹脂付き導体箔を得た。
【0204】 次に、 低誘電率プリプレダ GXA— 67Ν (日立化成工業社製) を 4枚重ねて基材とし、 その両面に、 上述した各樹脂付き銅箔を、 それぞれの樹 月旨 (接着層) が接するようにして重ね、 230°C、 3. OMP a、 90分のプレ ス条件で圧着して、 両面銅張積層板を作製した。
【0205】 (2) の方法においては、 まず、 各樹脂プライマを P ETフィル ム上に塗布し、 これを、 温風循環型乾燥機中で 1 60°C、 10分間乾燥して樹月旨 付きフィルムを得た。 なお、 乾燥後の樹脂層の厚みは 8 μιηとした。
【0206】 次に、 低誘電率プリプレダ GXA— 67 Νを 4枚重ねた基材の両 側に、 上記樹脂付きフィルムから PETフィルムを除いてなる樹脂層、 及び、 電 解銅箔を順に重ね、 230°C、 3. OMP a、 90分のプレス条件で圧着して、 両面銅張積層板を作製した。 なお、 電解銅箔は、 その光沢面が樹脂層が接するよ うに配置した。
【0207〗 (3) の方法においては、 まず、 上記樹脂プライマを、 低誘電率 プリプレダ GXA— 67N上に自然流延塗布し、 これを、 温風循環型乾燥機中で 160°C、 10分間乾燥して樹脂付きプリプレダを得た。 なお、 乾燥後の樹脂層 の厚みは 1〜 2 /i mとした。
【0208】 次に、 低誘電率プリプレダ GXA— 67Nを 4枚重ねた基材の両 側に、 上記樹脂付きプリプレダを、 プリプレダ層が基材に接するように重ねると ともに、 外側の樹脂層上に電解銅箔を重ね、 これらを230° (:、 3. 0MP a、 90分のプレス条件で圧着して、両面銅張積層板を作製した。 なお、電解銅箔は、 その光沢面が樹脂層に接するように配置した。
【0209】 また、 比較例 1 3として、 上述のプリプレダを所定の枚数重ねた 積層体に、 樹脂 (接着層) を有しない電解銅箔を圧着して両面銅張積層板を作製 した。
【0210】 得られた各両面銅張積層板における銅箔を、 5 mm幅、 5 cm/ 分の条件でそれぞれ 90度方向に引き剥がす際の引き剥がし強さ (90° 剥離強 さ、 J I S C 6481に準拠) を測定することにより銅箔引き剥がし強さ (kN /m) の測定を行った。 また、 同様にして得られた両面銅張積層板を、 12 1°C、 100%RHの恒温恒湿槽に 2時間静置した (PCT処理) のちの銅箔引き剥が し強さについても同様に測定した。 得られた結果を表 5に示す。
<はんだ耐熱性の評価 >
【021 1】 上述した各両面銅張積層板を、 5 mm X 5 mmに切断し、 更に両 面の銅箔を、 その半分の面積が残るようにエッチングしたものを、 260°Cのは んだ槽に 20秒間浸漬した。 このときに、 銅箔と基材との接着界面にふくれが生 じるか否かを目視により確認した。 また、 PCT処理後の各両面銅張積層板につ いても同様の試験を行った。 ふくれの発生が見られなかったものを、 はんだ耐熱 性に優れるものとして〇で表し、 ふくれの発生がみられたものを、 はんだ耐熱性 に劣るものとして Xで表した。 得られた結果を表 5に示す。
(表 5) ' -
積層板の 銅箔引き剥がし強さ はんだ耐熱性 製 ¾法
初期 PCT後 初期 PCT後
実施例 1 1 (1 ) 0. 8 0. 8 〇 〇
(2) 0. 8 0. 7 O 〇
(3) 0. 8 0. 8 o 〇 実施例 12 (1 ) 0. 8 0. 7 〇 〇
(2) 0. 8 0. 8 o 〇
(3) 0. 8 0. 7 o o 実施例 13 (1 ) 0. 9 0. 8 〇 o
(2) 0. 8 0. 7 o o
(3) 0. 7 0. 7 o 〇 比較例 1 0 (1 ) 0. 2 0. 2 X X
(2) 0. 1 0. 1 X X
(3) 0. 1 0. 1 X X
比較例 1 1 ( 1 ) 0. 2 0. 1 X X
(2) 0. 1 0. 1 X X
(3) 0. 1 0. 1 X X
比較例 12 (1 ) 0. 1 0. 1 X X
(2) 0. 1 0. 1 X X
(3) 0. 1 0. 1 X X 比較例 13 0. 2 0. 1 O X
【0 2 1 2】 表 5より、 実施例 1 1〜1 3の樹脂プライマを用いて得られた両 面銅張積層板においては、 平滑な表面を有する銅箔であっても、 基材との接着性 が極めて良好であることが判明した。 また、 これらの両面銅張積層板は、 はんだ 耐熱性に優れていた。 さらに、 はんだ耐熱性は、 高温高湿下に保管した場合であ つても良好に維持されることが判明した。
<内層接着層のはんだ耐熱性の評価 >
【0 2 1 3】 まず、 上記 (1 ) の方法と同様にして各種の両面銅張積層板を得 た後、 この積層板における銅箔をエッチングにより除去して内層板を得た。 次い で、 各内層板の片面に、 実施例 1 1〜1 3及び比較例 1 0〜1 2の樹脂プライマ のうち、 内層板の表面に露出している樹脂層と同様の成分のもの (すなわち、 同 じ種類の樹脂プライマ) を、 それぞれ自然流延塗布して、 160°Cで 10分乾燥 した。 なお、 乾燥後の樹脂プライマからなる樹脂層 (内層接着層) の厚さは、 2 〜 3 μ mでめつ 7こ。
【0214】 次いで、 内層板表面に形成された樹脂層 (内層接着層) 上に、 プ リプレダである GEA—679 (日立化成工業社製) を一枚重ねた後、 得られた 積層体を 180°C、 70分、 2. 5MP aのプレス条件で圧着して、 内層接着層 の耐熱性を評価するための積層体を得た。
【021 5】 また、 比較例 14として、 GEA— 679を 4枚重ねた基材に、 樹脂 (接着層) を有しない電解銅箔を圧着して両面銅張積層板を形成した後、 こ の両面銅張積層板の銅箔をエッチングし、 さらに、 片面に GEA— 679を積層 して上述したプレス条件で圧着した積層体を作製した。
【0216】 これらの積層体を 5 mmX 5 mmに切断してはんだ耐熱性評価用 のサンプルを作製し、 得られた各サンプルを、 260°Cのはんだ槽に 20秒浸漬 した場合に、 外層のプリプレダ (GEA—679) と基材との間の界面にふくれ が生じているか否かを目視により確認した。 また、 また、 ?。丁処理1時間後及 び 2時間後の各両面銅張積層板についても同様の試験を行った。 ふくれの発 :が 見られなかったものを、 はんだ耐熱性に優れるものとして〇で表し、 ふくれの発 生がみられたものを、 はんだ耐熱性に劣るものとして Xで表した。 得られた結果 を表 6に示す。
(表 6) 内層接着層のはんだ耐熱性
初期 PCT1時、間画 後 PCT2時間後
実施例 11 O O 〇
室施例 12 o 〇 o
実施例 13 〇 〇 O
比較例 10 X X X
比較例 11 X X X
比較例 12 X X X
比較例 14 O X X
【021 7】 表 6より、実施例 1 1〜1 3の樹脂プライマは、積層板において、 内層の接着層として用いた場合であっても優れたはんだ耐熱性を発揮し得ること が確認された。
<プリント配線板の伝送損失の測定 >
【021 8】 実施例 1 1の樹脂プライマを用いて上記 (3) の方法により得ら れた両面銅張積層板における銅箔をェッチングして、 直線状のパターンを有する 導体を備える配線板を得た。 この配線板の導体に、 0. l〜10GHzの周波数 を有する信号を伝送し、 このときの伝送損失を測定した。
【021 9】 また、 銅箔として R zが 5. 0 zmであるものを用いたこと以外 は、 上記と同様にして得られた酉己線板についても、 同様に伝送損失を測定した。
【0220】 図 7は、 これらの配線板を用いた場合の、 信号の周波数に対する 伝送損失の値を示すグラフである。 図 7中、 実線が R z = 2. 0 πιの銅箔を用 いた場合を示し、 点線が R z = 5. 0 / mの銅箔を用いた場合を示している。 図 7より、 R zが 2 μΐηである銅箔を用いて得られた配線板は、 1^ 2が5 111でぁ る銅箔を用いた場合に比して、 伝送損失が小さいことが確認された。
く微細パタ一ンの形成性の評価 >
【0221】 実施例 1 1〜1 3及び比較例 10〜1 2の樹脂プライマを用いて 上記 (1) 〜 (3) の方法により得られた各種の両面銅張積層板、 並びに、 比較 例 1 3の両面銅張積層板について、 微細パターンの形成性の評価を行った。 すな わち、 まず、 各両面銅張積層板における回路形成を形成すべき銅箔上に、 レジス トとして N I T— 2 1 5 (日本合成化学社製、 厚さ 1 5 μπι) をラミネートによ り積層した。 次に、 露光 '現像によりライン/スペースがそれぞれ2 OZ 20、
30/30、 50/5 0、 7 5/7 5、 1 00/1 00である櫛型パターンを有 するエッチングレジストを形成した。 次いで、 塩化第二鉄水溶液により銅箔の不 要部分をエッチングした後に、 エッチングレジス トを剥離して、 櫛型回路パター ンを形成した。得られた回路パターンにおける、回路のトップ間隔、 ボトム間隔、 及びエッチング残りの有無を、 光学顕微鏡により観察した。
【0 22 2】 その結果、 実施例 1 1~1 3の樹脂プライマを用いて得られた両 面銅張積層板は、 ライン Zスペース == 20/20 (μτη) のパターン形成が可能 であった。 これに対し、比較例 1 0〜1 2の樹脂プライマを用いて得られたもの、 及び、 比較例 1 3のものは、 このようなパターンを形成しようとした場合、 導体 パターンの剥離が生じる結果となった。 このように、 実施例 1 1〜1 3の樹脂プ ライマによれば、 微細なパターンを有する導体箔であっても、 基板に対して十分 に接着できるようになるこ,''が判明した。 ' 産業上の利用可能性
【0 22 3】 本発明によれば、 絶縁体層と表面が比較的粗化されていない導体 箔とを十分強力に接着できる樹脂プライマ、 樹脂付き導体箔及び積層板を提供す ることが可能となる。

Claims

請求の範函
1. 樹脂を含有する樹脂プライマであって、
前記樹脂は、 フィルム形成能を有し、 破断エネルギーが 0. 15 J以上のもの である、 樹脂プライマ。
2. 樹脂を含有する樹脂プライマであって、
前記樹脂は、 十点平均粗さが 0. 1 //m以下である膜を形成したときに、 その 膜の表面に対する室温におけるホルムアミ ドの接触角が 60° 以下となるもので ある、 樹脂プライマ。
3. 前記樹脂'は、 イミド結合、 力ルバミン酸エステル結合及び芳香族カルボン 酸エステル結合からなる群より選ばれる 1種以上の結合を、 当該樹脂の質量基準 で 6質量%以上含有するものである、 請求項 1又は 2記載の樹脂プライマ。
4. 樹脂を含有する樹脂プライマであって、
前記樹脂は、 主鎖にシロキサン構造を有するポリアミ ドイミドを含んでおり、 前記樹脂中に含まれる全てのアミド基の含有量を 重量%、 前記樹脂中に含ま れる全てのケィ素原子の含有量を C重量%としたときに、 以下の式 (a) 及び (b) ;
3≤A≤: 1 1··· (a)
1≤C≤ 16 ··· (b)
を満たすものである、 樹脂プライマ。
5. 前記樹脂は、 主鎖にシロキサン構造を有するポリアミドイミドを含んでお り、
前記樹脂中に含まれる全てのアミド基の含有量を A重量%、 前記樹脂中に含ま れる全てのケィ素原子の含有量を C重量%としたときに、 以下の式 (a) 及び (b) ;
3≤A≤ 11… (a)
1≤C≤ 16- (b) を満たすものである、 請求項 1〜 3のいずれか一項に記載の樹脂プライマ。
6. 樹脂を含有する樹脂プライマであって、
前記樹脂は、 主鎖にシロキサン構造を有するポリアミドイミドと、 前記ポリア ミドイミドの有するアミド基と反応を生じる官能基を有しており、 且つ、 アミド 基及び/又はケィ素原子を有していてもよい反応性化合物と、 を含有するもので あり、 ,
前記樹脂中における、 前記ポリアミドィミド 100重量部に対する前記反応性 化合物の重量部 Bは、前記ポリアミドィミド中のアミド基の含有量を P &重量%、 前記反応性化合物中のアミ ド基の含有量を E a重量%、 前記ポリアミ ド中のケィ 素原子の含有量を P€重量%、 前記反応性化合物中のケィ素原子の含有量を E c 重量%としたときに、 下記式 (I) 及び (Π) ;
3≤ (P a X l O O + E a XB) / (100 + B) ≤ 1 1 ··· (I)
1≤ (P c X I O O + E c XB) / (l O O + B) ≤ 16 ··· (II)
を満たしている、 樹脂プライマ。
7. 前記樹脂は、 主鎖にシロキサン構造を有するポリアミドイミドと、 前記ポ リアミドイミドの有するアミド基と反応を生じる官能基を有しており、 且つ、 ァ ミド基及び Z又は:ケィ素原子を有していてもよい反応性化合物と、 を含有するも のであり、
前記樹脂中における、 前記ポリアミドィミド 100重量部に対する前記反応性 化合物の重量部 Bは、前記ポリアミドィミド中のアミ ド基の含有量を P a重量%、 前記反応性化合物中のアミド基の含有量を E &重量%、 前記ポリアミド中のケィ 素原子の含有量を P c重量%、 前記反応性化合物中のケィ素原子の含有量を E c 重量%としたときに、 下記式 (I) 及び (II) ;
3≤ (P a X l O O + E a XB) / (100 + B) ≤ 1 1 ··· (I)
1≤ (P c X 100 + E c XB) / (l O O + B) ≤ 16 ··· (II)
を満たしている、 請求項 1〜 3のいずれか一項に記載の樹脂プライマ。
8. 前記ポリアミ ドィミ ドは、
芳香族ジァミンと無水トリメリット酸とを反応させて得られる下記一般式(1) で表されるジィミ ドジカルボン酸、 及び、 シロキサンジァミンと無水トリメリッ ト酸とを反応さ て得られる下記一般式 (2) で表されるジィミ ドジカルボン酸 を含むジィミ ドジカルボン酸混合物と、
下記一般式 (3) で表される芳香族ジイソシァネートと、
を反応させて得られるものである、 請求項 4〜 7のレ、ずれか一項に記載の樹脂 プライマ。
Figure imgf000061_0001
OG — R3— NC。 -"(3)
[式中、 R1は、 下記一般式 (4 a) 又は下記一般式 (4 b) で表される 2価の 基、 R 21はアルキル基、 フユニル基又は置換フエニル基、 R22は、 2価の有機基、 R3は少なくとも一つの芳香環を有する 2価の有機基を示す。
Figure imgf000061_0002
ただし、 式 (4 a) 中、 R4は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜3の ハロゲン化アルキレン基、 スルホニル基、 エーテル基、 カルボニル基又は単結合 である。 なお、複数存在する R 21及び R 22はそれぞれ同一でも異なっていてもよ く、 また、 それぞれの化合物における芳香環は更に他の置換基を有していてもよ い。]
9. 前記ポリアミドイミ ドは、 前記ジィミ ドジカルボン酸混合物の合計モル量 に対して、 1. 0〜1. 5倍モル量の前記芳香族ジイソシァネートを反応させて 得られたものであり、
前記ジイミ ドジカルボン酸混合物は、 前記芳香族ジァミン及び前記シロキサン ' ジァミンを含むジァミン混合物と、 無水トリメリット酸と、 を反応させて得られ たものであり、 且つ、 前記ジァミン混合物において、 前記芳香族ジァミンノ前記 シロキサンジァミンは、 モル比で、 Ο,Ι Ο Ο Θ Θ. 9/0. 1である、 請求 項 8記載の樹脂プライマ。
10. 樹脂を含有する樹脂プライマであって、
前記樹脂は、 ポリアミ ドイミ ドを含有しており、 且つ、
前記ポリアミ ドイミ ドは、飽和炭化水素からなる構造単位を有するものである、 樹脂プライマ。
1 1. 前記樹脂は、 ポリアミ ドイミ ドを含有しており、 且つ、
前記ポリアミ ドイミ ドは、飽和炭化水素からなる構造単位を有するものである、 請求項 1〜 3のいずれか一項に記載の樹脂プライマ。
1 2. 前記構造単位は、 下記化学式 ( 5 ) で表されるものである、 請求項 10 又は 11記載の樹脂プライマ。
Figure imgf000062_0001
1 3. 前記ポリアミ ドイミ ドは、 ジァミン化合物と無水トリメリット酸とを反 応させて得られるジイミ ドジカルボン酸と、 ジイソシァネートと、 を反応させて 得られるものであり、 前記ジァミン化合物として、 下記一般式 (6 a)、 (6 b) 又は (6 c) で表さ れる化合物を含有させる、 請求項 10又は 1 1記載の樹脂プライマ。
(6b)
Figure imgf000063_0001
[式中、 R61は水素原子、 ヒドロキシル基、 メ トキシ基、 メチル基又はハロゲン 化メチル基、 R 62は、 下記一般式 (7 a)、 (7 b)、 (7 c) 及び ( 7 d ) のうち のいずれかで表される基、 炭素数 1〜 3のアルキレン基、 炭素数 1〜3のハロゲ ン化アルキレン基、 スルホニル基、 エーテル基、 力ルポエル基又は単結合、 R63 は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜 3のハロゲン化アルキレン基、 ス ノレホニル基、 エーテル基又はカルボ二ル基を示す。 … )
Figure imgf000063_0002
Figure imgf000063_0003
ただし、 式 (7 a) 中、 R7は、 炭素数 1〜 3のアルキレン基、 炭素数 1〜3の ハロゲン化アルキレン基、 スルホ-ル基、 エーテル基、 力ルポニル基又は単結合 を示す。 なお、 複数存在する R 61はそれぞれ同一でも異なっていてもよい。] 14. 前記ジァミン化合物として、 下記一般式 (8) で表される化合物を更に 含有させる、 請求項 1 3記載の樹脂プライマ。
Figure imgf000064_0001
[式中、 R 8 1は、 メチレン基、 スルホニル基、 エーテル基、 カルボニル基又は単 結合、 R 8 2及び R 8 3は、 それぞれ独立に、 水素原子、 アルキル基、 フエ二ル基又 は置換フエ二ル基を示し、 mは 1〜5 0の整数を示す。]
1 5 . 前記ジィソシァネートとして、 芳香族ジイソシァネートを含有させる、 請求項 1 3又は 1 4記載の樹脂プライマ。
1 6 . 前記ポリアミドイミドのアミド基と反応を生じる官能基を有する反応性 化合物を更に含む、 請求項 1 0〜1 5のいずれか一項に記載の樹脂プライマ。
1 7 . ゴム成分を更に含有し、 該ゴム成分の含有量は、 前記樹脂の質量基準で 4 0質量%以上である、 請求項 1〜1 6のいずれか一項に記載の樹脂プライマ。
1 8 . 導体箔と、 該導体箔上に設けられた樹脂層と、 を備える樹脂付き導体箔 であって、
前記導体箔は、 その表面の十点平均粗さが 3 μ m以下であるものであり、 前記樹脂層が、 請求項 1〜1 7のいずれか一項に記載の樹脂プライマが塗布さ れてな ものである、 樹脂付き導体箔。 -
1 9 . 導体箔と、 該導体箔上に設けられた樹脂層と、 を備える樹脂付き導体箔 であって、
前記導体箔が、 金属箔であり、
前記樹脂層が、 請求項 1〜1 7のいずれか一項に記載の樹脂プライマからなる ものである、 樹脂付き導体箔。
2 0 . 請求項 1 8又は 1 9記載の樹脂付き導体箔と、 該樹脂付き導体箔におけ る前記樹脂層上に積層されたプリプレダと、 を備える積層体を、 加熱及び加圧し て得られた、 積層板。
2 1 . 導体箔と、 前記導体箔と対向して配置された樹脂を含む絶縁層と、
前記導体箔と前記絶縁層との間に、 これらに接するように設けられた請求項 1 〜 1 7のいずれか一項に記載の樹脂ブライマからなる樹脂層と、
を備える、 積層板。
2 2 . 前記導体箔は、 少なくとも前記樹脂層に接する面の十点平均粗さが 3 m以下である、 請求項 2 1記載の積層板。
2 3 . 請求項 1 8又は 1 9記載の樹脂付き導体箔と、 該樹脂付き導体箔におけ る前記樹脂層上に積層されたプリプレダと、 を備える積層体を、 加熱及び加圧す る、 積層板の製造方法。
PCT/JP2004/007326 2003-05-21 2004-05-21 プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法 WO2005007756A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04734410.6A EP1627901B1 (en) 2003-05-21 2004-05-21 Primer, conductor foil with resin, laminate and process for producing the laminate
JP2005511783A JPWO2005007756A1 (ja) 2003-05-21 2004-05-21 プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法
US10/557,728 US7648770B2 (en) 2003-05-21 2004-05-21 Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
HK06110121A HK1088031A1 (en) 2003-05-21 2006-09-12 Primer, conductor foil with resin, laminate and process for producing the laminate
US12/688,276 US8507100B2 (en) 2003-05-21 2010-01-15 Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
US13/524,132 US20120315438A1 (en) 2003-05-21 2012-06-15 Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003144059 2003-05-21
JP2003143940 2003-05-21
JP2003-143940 2003-05-21
JP2003-144059 2003-05-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/557,728 A-371-Of-International US7648770B2 (en) 2003-05-21 2004-05-21 Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
US12/688,276 Division US8507100B2 (en) 2003-05-21 2010-01-15 Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet

Publications (1)

Publication Number Publication Date
WO2005007756A1 true WO2005007756A1 (ja) 2005-01-27

Family

ID=34082281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007326 WO2005007756A1 (ja) 2003-05-21 2004-05-21 プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法

Country Status (6)

Country Link
US (3) US7648770B2 (ja)
EP (1) EP1627901B1 (ja)
JP (4) JPWO2005007756A1 (ja)
KR (4) KR100772295B1 (ja)
HK (1) HK1088031A1 (ja)
WO (1) WO2005007756A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205694A (ja) * 2005-01-31 2006-08-10 Hitachi Chem Co Ltd 導体張積層板、並びに、これを用いた印刷配線板及び多層配線板
JP2006241414A (ja) * 2005-03-07 2006-09-14 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂成形材料接着用プライマー組成物及び半導体装置
WO2007047940A3 (en) * 2005-10-19 2007-07-19 World Properties Inc Circuit board materials with improved bond to conductive metals and methods of the manufacture thereof
JP2007313881A (ja) * 2006-04-25 2007-12-06 Hitachi Chem Co Ltd 接着層付き金属箔、金属張積層板、印刷配線板及び多層配線板
JP2008132750A (ja) * 2006-10-24 2008-06-12 Hitachi Chem Co Ltd 導体張積層板、印刷配線板及び多層配線板
US20100170701A1 (en) * 2006-10-04 2010-07-08 Masaki Takeuchi Polyamideimide resin, adhesive agent, material for flexible substrate, flexible laminate, and flexible print wiring board
US20100196703A1 (en) * 2007-04-25 2010-08-05 Yoshitsugu Matsuura Adhesive sheet
JP2011183807A (ja) * 2011-04-18 2011-09-22 Hitachi Chem Co Ltd 導体張積層板、並びに、これを用いた印刷配線板及び多層配線板
US8507100B2 (en) 2003-05-21 2013-08-13 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
JP2014501448A (ja) * 2010-12-24 2014-01-20 エルジー イノテック カンパニー リミテッド 印刷回路基板及びその製造方法
TWI423882B (zh) * 2006-04-25 2014-01-21 Hitachi Chemical Co Ltd A conductor foil having an adhesive layer, a laminated board for bonding the conductor, a printed wiring board, and a multilayer wiring board
JP2014518789A (ja) * 2011-05-12 2014-08-07 エランタス ピー・ディー・ジー インコーポレイテッド 複合絶縁フィルム
US8802206B2 (en) 2009-05-04 2014-08-12 Bsh Bosch Und Siemens Hausgerate Gmbh Refrigeration appliance, and method for the production of a refrigeration appliance
JP2016005909A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
WO2019135366A1 (ja) * 2018-01-04 2019-07-11 東洋紡株式会社 フィルム積層体製造方法およびフィルム積層体製造装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035567A1 (en) * 2005-06-23 2009-02-05 Kimoto Co., Ltd. Tacky-Adhesive and Tacky-Adhesive Sheet
NO325564B1 (no) * 2006-06-22 2008-06-23 Litex As Damptette bygningsplater for vatrom
JP4668148B2 (ja) * 2006-08-10 2011-04-13 株式会社リコー 電子写真感光体の製造方法
JPWO2009107453A1 (ja) * 2008-02-29 2011-06-30 日本板硝子株式会社 表示装置用ガラス基板、液晶表示パネル、並びに液晶表示装置
KR100961633B1 (ko) 2008-05-27 2010-06-09 주식회사 화인텍 Lng 저장탱크용 2차 방벽의 형성 방법
KR101048329B1 (ko) * 2008-10-06 2011-07-14 주식회사 엘지화학 우레탄계 다관능성 모노머, 그의 제조방법 및 이를 포함하는 감광성 수지 조성물
KR101222268B1 (ko) * 2009-07-03 2013-01-16 주식회사 두산 탄화수소계 점착제 조성물 및 이를 이용한 기판의 표면처리방법
EP2496061A4 (en) * 2009-10-30 2014-01-08 Panasonic Corp PRINTED CIRCUIT BOARD AND SEMICONDUCTOR DEVICE COMPRISING A COMPONENT MOUNTED ON A PRINTED CIRCUIT BOARD
US9332642B2 (en) 2009-10-30 2016-05-03 Panasonic Corporation Circuit board
JP5624368B2 (ja) * 2010-06-01 2014-11-12 ソマール株式会社 積層体
TWI542264B (zh) * 2010-12-24 2016-07-11 Lg伊諾特股份有限公司 印刷電路板及其製造方法
TWI590394B (zh) * 2011-03-10 2017-07-01 住友電木股份有限公司 半導體裝置之製造方法
KR20140010262A (ko) * 2012-07-16 2014-01-24 삼성전기주식회사 금속층이 도금된 절연 기재, 이의 도금방법, 및 이를 이용한 투명전극
KR20140048564A (ko) * 2012-10-16 2014-04-24 삼성전기주식회사 코어기판, 그의 제조방법 및 메탈 비아용 구조체
TWI567110B (zh) * 2015-12-04 2017-01-21 張綺蘭 樹脂組合物、以及包含此樹脂組合物之絕緣基材及電路板
TWI655263B (zh) 2017-12-27 2019-04-01 台燿科技股份有限公司 黏著劑組合物及其應用
CN112400216A (zh) * 2018-06-26 2021-02-23 琳得科株式会社 半导体加工用粘着胶带及半导体装置的制造方法
CN111152452B (zh) * 2020-01-14 2023-04-18 青岛理工大学 一种PDMS/SiC功能梯度衬底及其制备方法与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126437A (en) * 1976-04-16 1977-10-24 Daicel Chem Ind Ltd Method of manufacturing a metallic article coated with synthetic resin
JPS5575285A (en) * 1978-11-30 1980-06-06 Hitachi Chemical Co Ltd Method of fabricating flexible printed circuit board
JPS58172819A (ja) * 1982-04-02 1983-10-11 日東電工株式会社 電気絶縁用部材
JPS6383176A (ja) * 1986-09-29 1988-04-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai 下塗り組成物
JPH01215818A (ja) * 1988-02-23 1989-08-29 Hitachi Chem Co Ltd 耐熱性樹脂組成物
JPH01268778A (ja) * 1988-04-20 1989-10-26 Hitachi Chem Co Ltd ホツトメルト接着剤,ホツトメルト接着剤層付ポリイミドフイルム及び印刷回路用基板
JPH08113646A (ja) * 1994-10-14 1996-05-07 Toyobo Co Ltd ポリアミドイミド樹脂組成物及びそのワニス並びに該ワニスの製造方法
JPH09302313A (ja) * 1996-05-09 1997-11-25 Hitachi Chem Co Ltd 接着剤付き金属箔、接着シート及び多層配線板
JPH11130832A (ja) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd シロキサン含有ポリアミドイミド及びその製造方法並びにそれを含むワニス
JPH11130831A (ja) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd シロキサン含有ポリアミドイミド及びその製造方法並びにそれを含むワニス
JPH11279482A (ja) * 1998-03-30 1999-10-12 Hitachi Chem Co Ltd プリント配線板用絶縁樹脂フィルムの製造方法
JP2000345035A (ja) * 1999-06-08 2000-12-12 Hitachi Chem Co Ltd 耐熱性樹脂組成物、これを用いた接着フィルム及び接着層付ポリイミドフィルム
JP2001164201A (ja) * 1999-12-10 2001-06-19 Hitachi Chem Co Ltd プライマー組成物及びそれを用いたシクロオレフィン重合体複合物並びにその複合物の製造方法
JP2002309166A (ja) * 2001-04-11 2002-10-23 Daikin Ind Ltd エラストマー用下塗り塗料組成物、塗装物及びフッ素ゴムコートガスケット材料

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721592U (ja) 1971-03-17 1972-11-10
US3903046A (en) * 1972-02-24 1975-09-02 Ciba Geigy Corp Process for the production of shapeable polymers containing N-silyl groups
US3959233A (en) * 1973-04-09 1976-05-25 Standard Oil Company (Indiana) Process for preparing polyamide-imide from trimellitic acid, diamine and diisocyanate and polyamide imide shaped articles
JPH01138235A (ja) 1987-11-25 1989-05-31 Hitachi Chem Co Ltd 銅張積層体の製造方法
US5395870A (en) * 1988-12-28 1995-03-07 Asahi Kasei Kogyo Kabushiki Kaisha Vinyl resin composition
US5364703A (en) 1990-01-16 1994-11-15 General Electric Company Copper-clad polyetherimide laminates with high peel strength
JP3296056B2 (ja) * 1993-11-08 2002-06-24 東洋紡績株式会社 ポリアミドイミドまたは/およびポリイミド溶液の製造法
JP3421776B2 (ja) * 1994-10-14 2003-06-30 東洋紡績株式会社 ポリアミドイミド樹脂組成物及びそのワニス並びに該ワニスの製造法
JP3589316B2 (ja) * 1995-02-27 2004-11-17 東洋紡績株式会社 ポリアミドイミドエステル樹脂およびその製造方法
JP3286117B2 (ja) 1995-06-01 2002-05-27 日立化成工業株式会社 エポキシ樹脂硬化物のエッチング液
JPH10168409A (ja) * 1996-12-16 1998-06-23 Hitachi Chem Co Ltd 耐熱性接着剤層付き銅箔、放熱板付きリードフレーム及び半導体装置
JP3620199B2 (ja) 1997-02-27 2005-02-16 日立化成工業株式会社 積層体の製造方法
JPH10265760A (ja) * 1997-03-24 1998-10-06 Sumitomo Bakelite Co Ltd フィルム接着剤とその製造方法
JPH1121454A (ja) * 1997-07-03 1999-01-26 Toyobo Co Ltd ポリアミドイミド樹脂組成物およびそれを用いた非水電解質二次電池および回路基板
JP3931387B2 (ja) * 1997-07-03 2007-06-13 東洋紡績株式会社 ポリアミドイミド樹脂およびそれを用いた非水電解質二次電池および回路基板
DE69832944T2 (de) 1997-10-29 2006-10-26 Hitachi Chemical Co., Ltd. Siloxanmodifizierte Polyamidharzzusammensetzung, Klebefilme, Klebefolie und Halbleiterbauelement
JP4210875B2 (ja) * 1998-03-17 2009-01-21 日立化成工業株式会社 耐熱性難燃樹脂組成物及びそれを用いた接着フィルム、接着剤付金属箔
JPH11335652A (ja) * 1998-05-22 1999-12-07 Sumitomo Bakelite Co Ltd フィルム接着剤
JP4845241B2 (ja) 1998-07-31 2011-12-28 日立化成工業株式会社 シロキサン含有ポリアミドイミド及びその製造方法並びにそれを含むワニス
JP2000239640A (ja) * 1998-12-22 2000-09-05 Hitachi Chem Co Ltd 接着剤付き銅箔並びにそれを用いた銅張り積層板及び印刷配線板
JP2000204245A (ja) * 1999-01-12 2000-07-25 Toyobo Co Ltd プラスチック添加材
JP4686798B2 (ja) * 1999-06-29 2011-05-25 東洋紡績株式会社 半導体用接着剤フィルム、これを用いたリードフレーム及び半導体装置
JP4686799B2 (ja) * 1999-06-29 2011-05-25 東洋紡績株式会社 半導体用接着剤フィルム、これを用いたリードフレーム及び半導体装置
JP2001139809A (ja) 1999-11-17 2001-05-22 Hitachi Chem Co Ltd 耐熱性樹脂組成物、これを用いた接着剤フィルム及び接着剤付ポリイミドフィルム
JP4441834B2 (ja) 1999-11-29 2010-03-31 日立化成工業株式会社 耐熱性樹脂組成物
JP5318306B2 (ja) 2001-02-09 2013-10-16 東洋紡株式会社 耐熱性組成物
JP5158397B2 (ja) * 2001-03-08 2013-03-06 日立化成株式会社 耐熱性接着シート、金属箔張り積層板及びエリアアレイ半導体パッケージ用配線基板
JP2003138241A (ja) 2001-08-21 2003-05-14 Hitachi Chem Co Ltd 耐熱性接着剤並びにこの接着剤を用いた積層物、接着剤付き放熱板、接着剤付金属箔
JP4206685B2 (ja) * 2002-03-29 2009-01-14 東洋紡績株式会社 接着剤組成物、接着剤シートおよびこれらを用いたプリント回路基板
US7648770B2 (en) 2003-05-21 2010-01-19 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
TWI262041B (en) * 2003-11-14 2006-09-11 Hitachi Chemical Co Ltd Formation method of metal layer on resin layer, printed wiring board, and production method thereof
JP4834962B2 (ja) 2004-05-07 2011-12-14 日立化成工業株式会社 ポリアミドイミド樹脂及びその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126437A (en) * 1976-04-16 1977-10-24 Daicel Chem Ind Ltd Method of manufacturing a metallic article coated with synthetic resin
JPS5575285A (en) * 1978-11-30 1980-06-06 Hitachi Chemical Co Ltd Method of fabricating flexible printed circuit board
JPS58172819A (ja) * 1982-04-02 1983-10-11 日東電工株式会社 電気絶縁用部材
JPS6383176A (ja) * 1986-09-29 1988-04-13 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai 下塗り組成物
JPH01215818A (ja) * 1988-02-23 1989-08-29 Hitachi Chem Co Ltd 耐熱性樹脂組成物
JPH01268778A (ja) * 1988-04-20 1989-10-26 Hitachi Chem Co Ltd ホツトメルト接着剤,ホツトメルト接着剤層付ポリイミドフイルム及び印刷回路用基板
JPH08113646A (ja) * 1994-10-14 1996-05-07 Toyobo Co Ltd ポリアミドイミド樹脂組成物及びそのワニス並びに該ワニスの製造方法
JPH09302313A (ja) * 1996-05-09 1997-11-25 Hitachi Chem Co Ltd 接着剤付き金属箔、接着シート及び多層配線板
JPH11130832A (ja) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd シロキサン含有ポリアミドイミド及びその製造方法並びにそれを含むワニス
JPH11130831A (ja) * 1997-10-29 1999-05-18 Hitachi Chem Co Ltd シロキサン含有ポリアミドイミド及びその製造方法並びにそれを含むワニス
JPH11279482A (ja) * 1998-03-30 1999-10-12 Hitachi Chem Co Ltd プリント配線板用絶縁樹脂フィルムの製造方法
JP2000345035A (ja) * 1999-06-08 2000-12-12 Hitachi Chem Co Ltd 耐熱性樹脂組成物、これを用いた接着フィルム及び接着層付ポリイミドフィルム
JP2001164201A (ja) * 1999-12-10 2001-06-19 Hitachi Chem Co Ltd プライマー組成物及びそれを用いたシクロオレフィン重合体複合物並びにその複合物の製造方法
JP2002309166A (ja) * 2001-04-11 2002-10-23 Daikin Ind Ltd エラストマー用下塗り塗料組成物、塗装物及びフッ素ゴムコートガスケット材料

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507100B2 (en) 2003-05-21 2013-08-13 Hitachi Chemical Company, Ltd. Primer, conductor foil with resin, laminated sheet and method of manufacturing laminated sheet
JP2006205694A (ja) * 2005-01-31 2006-08-10 Hitachi Chem Co Ltd 導体張積層板、並びに、これを用いた印刷配線板及び多層配線板
JP2006241414A (ja) * 2005-03-07 2006-09-14 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂成形材料接着用プライマー組成物及び半導体装置
JP4609645B2 (ja) * 2005-03-07 2011-01-12 信越化学工業株式会社 半導体封止用エポキシ樹脂成形材料接着用プライマー組成物及び半導体装置
WO2007047940A3 (en) * 2005-10-19 2007-07-19 World Properties Inc Circuit board materials with improved bond to conductive metals and methods of the manufacture thereof
JP2007313881A (ja) * 2006-04-25 2007-12-06 Hitachi Chem Co Ltd 接着層付き金属箔、金属張積層板、印刷配線板及び多層配線板
TWI423882B (zh) * 2006-04-25 2014-01-21 Hitachi Chemical Co Ltd A conductor foil having an adhesive layer, a laminated board for bonding the conductor, a printed wiring board, and a multilayer wiring board
US20100170701A1 (en) * 2006-10-04 2010-07-08 Masaki Takeuchi Polyamideimide resin, adhesive agent, material for flexible substrate, flexible laminate, and flexible print wiring board
US8956732B2 (en) * 2006-10-04 2015-02-17 Hitachi Chemical Company, Ltd. Polyamideimide resin, adhesive agent, material for flexible substrate, flexible laminate, and flexible print wiring board
JP2008132750A (ja) * 2006-10-24 2008-06-12 Hitachi Chem Co Ltd 導体張積層板、印刷配線板及び多層配線板
JP2013237846A (ja) * 2007-04-25 2013-11-28 Hitachi Chemical Co Ltd 接着シート
TWI423740B (zh) * 2007-04-25 2014-01-11 Hitachi Chemical Co Ltd Adhesive sheet
US20100196703A1 (en) * 2007-04-25 2010-08-05 Yoshitsugu Matsuura Adhesive sheet
US8802206B2 (en) 2009-05-04 2014-08-12 Bsh Bosch Und Siemens Hausgerate Gmbh Refrigeration appliance, and method for the production of a refrigeration appliance
JP2014501448A (ja) * 2010-12-24 2014-01-20 エルジー イノテック カンパニー リミテッド 印刷回路基板及びその製造方法
JP2011183807A (ja) * 2011-04-18 2011-09-22 Hitachi Chem Co Ltd 導体張積層板、並びに、これを用いた印刷配線板及び多層配線板
JP2014518789A (ja) * 2011-05-12 2014-08-07 エランタス ピー・ディー・ジー インコーポレイテッド 複合絶縁フィルム
JP2016005909A (ja) * 2014-05-30 2016-01-14 トッパン・フォームズ株式会社 積層体及び電子機器
WO2019135366A1 (ja) * 2018-01-04 2019-07-11 東洋紡株式会社 フィルム積層体製造方法およびフィルム積層体製造装置
JPWO2019135366A1 (ja) * 2018-01-04 2021-01-07 東洋紡株式会社 フィルム積層体製造方法およびフィルム積層体製造装置
JP7211374B2 (ja) 2018-01-04 2023-01-24 東洋紡株式会社 フィルム積層体製造方法およびフィルム積層体製造装置

Also Published As

Publication number Publication date
HK1088031A1 (en) 2006-10-27
US7648770B2 (en) 2010-01-19
JP2009132929A (ja) 2009-06-18
EP1627901A4 (en) 2006-08-02
US20120315438A1 (en) 2012-12-13
KR20060015271A (ko) 2006-02-16
EP1627901B1 (en) 2020-02-19
US8507100B2 (en) 2013-08-13
EP1627901A1 (en) 2006-02-22
US20100119853A1 (en) 2010-05-13
US20070185297A1 (en) 2007-08-09
JPWO2005007756A1 (ja) 2006-08-31
KR100825526B1 (ko) 2008-04-25
KR20070086838A (ko) 2007-08-27
JP2009221480A (ja) 2009-10-01
JP2013136752A (ja) 2013-07-11
KR100772296B1 (ko) 2007-11-02
KR100772295B1 (ko) 2007-11-02
KR20070086839A (ko) 2007-08-27
JP5648677B2 (ja) 2015-01-07
KR20070020154A (ko) 2007-02-16
KR100791667B1 (ko) 2008-01-04

Similar Documents

Publication Publication Date Title
JP5648677B2 (ja) プライマ、樹脂付き導体箔、積層板並びに積層板の製造方法
US8956732B2 (en) Polyamideimide resin, adhesive agent, material for flexible substrate, flexible laminate, and flexible print wiring board
JP4455806B2 (ja) プリプレグ及び積層板
WO2007125922A1 (ja) 接着層付き導体箔、導体張積層板、印刷配線板及び多層配線板
JP4929634B2 (ja) 接着層付き金属箔及び金属張積層板
JP5417778B2 (ja) 接着層付き導体箔、導体張積層板、印刷配線板及び多層配線板
JP2009214525A (ja) 金属箔張積層板及びプリント配線板
JP4363137B2 (ja) 金属箔層付き基板フィルム及び両面金属箔付き基板フィルム
JP2004182792A (ja) ポリアミドイミド樹脂及びそれを用いた接着剤組成物
JP5522426B2 (ja) 多層フレキシブル基板用接着剤及びこれを用いた多層フレキシブル基板材料、積層板並びに印刷配線板
JP5444825B2 (ja) 絶縁性樹脂組成物、プリプレグ、金属箔張積層板、プリント配線板及び多層配線板
TWI419621B (zh) Printed wiring board and electronic equipment
JP4997690B2 (ja) 樹脂組成物、樹脂付き基材及び導体層張り積層板
JP2008132750A (ja) 導体張積層板、印刷配線板及び多層配線板
JP4075581B2 (ja) 接着剤層付きプリプレグ、金属張積層板の製造方法及び金属張積層板
JP4075580B2 (ja) 接着剤層付きプリプレグの製造方法及び接着剤層付きプリプレグ
JP2010037489A (ja) 接着フィルム及び樹脂付き金属箔
JP2012140010A (ja) 導体張積層板、印刷配線板及び多層配線板
JP2004051910A (ja) 樹脂フィルム及び金属張り積層板
JP2005200532A (ja) プリプレグ及び積層板
JP2005330433A (ja) プリプレグ、積層板及びこれらを使用した印刷回路板
JP2008019444A (ja) プリプレグ及び積層板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511783

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057022087

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048138707

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004734410

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022087

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004734410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10557728

Country of ref document: US

Ref document number: 2007185297

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10557728

Country of ref document: US