WO2005003078A1 - A process for preparing 4-aminodiphenylamine - Google Patents

A process for preparing 4-aminodiphenylamine Download PDF

Info

Publication number
WO2005003078A1
WO2005003078A1 PCT/CN2004/000733 CN2004000733W WO2005003078A1 WO 2005003078 A1 WO2005003078 A1 WO 2005003078A1 CN 2004000733 W CN2004000733 W CN 2004000733W WO 2005003078 A1 WO2005003078 A1 WO 2005003078A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparing
reaction
catalyst
hydrogenation
aminodiphenylamine
Prior art date
Application number
PCT/CN2004/000733
Other languages
English (en)
French (fr)
Inventor
Nongyue Wang
Xiaogen Feng
Xiaohui Mao
Ruibiao Yu
Qianwen Cheng
Original Assignee
Shi, Guangqiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 03148198 external-priority patent/CN1253428C/zh
Priority claimed from CNB031485669A external-priority patent/CN1186124C/zh
Priority claimed from CN 03148199 external-priority patent/CN1202073C/zh
Priority claimed from CN 03148565 external-priority patent/CN1228310C/zh
Priority claimed from CNB031481957A external-priority patent/CN1185207C/zh
Priority claimed from CNB031481949A external-priority patent/CN1185206C/zh
Priority claimed from CNA031482007A external-priority patent/CN1470324A/zh
Priority claimed from CNB031481965A external-priority patent/CN1189445C/zh
Priority to MXPA05013788A priority Critical patent/MXPA05013788A/es
Priority to EA200501647A priority patent/EA009395B1/ru
Priority to BRPI0412101-5A priority patent/BRPI0412101A/pt
Priority to CA2515238A priority patent/CA2515238C/en
Priority to EP04738331A priority patent/EP1591438B1/en
Application filed by Shi, Guangqiang filed Critical Shi, Guangqiang
Priority to ES04738331T priority patent/ES2298762T3/es
Priority to DE602004010234T priority patent/DE602004010234T2/de
Priority to JP2006500463A priority patent/JP4500302B2/ja
Publication of WO2005003078A1 publication Critical patent/WO2005003078A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/60Preparation of compounds containing amino groups bound to a carbon skeleton by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone imines, or aziranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/06Evaporators with vertical tubes
    • B01D1/065Evaporators with vertical tubes by film evaporating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/38Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a method for preparing 4-aminodiphenylamine, and in particular, it uses nitrobenzene and aniline as raw materials, uses a composite base catalyst as a condensation catalyst, and uses a composite powder catalyst as a hydrogenation reaction catalyst. 5. Separation, recovery, and recycling of composite alkali catalysts, and separation, recovery, and recycling of powdery catalysts that are optionally at least partially regenerated, separation, recovery, and recycling of aniline, and separation, recovery, and recycling of hydrogenation solvents, and five processes of purification Method for continuously preparing 4-aminodiphenylamine in China. Background technique
  • 4-Amino diphenylamine is an important antioxidant and stabilizer intermediate, and is an important chemical product in the rubber industry and polymer industry.
  • the current methods for producing 4-aminodiphenylamine are: (1) Aniline method, which uses p-nitrochlorobenzene and aniline as raw materials, reacts under the action of a catalyst to produce 4-nitronitroaniline, and then uses sulfur Base reduction to 4-aminodiphenylamine; (2) Formylaniline method, using formic acid and aniline as raw materials to prepare formanilide, and then reacting with p-nitrochlorobenzene in the presence of an acid-binding agent (such as potassium carbonate) to generate 4-one Nitrodiphenylamine, followed by reduction with alkali sulfide to prepare 4-aminodiphenylamine; (3) Dianiline method, which uses diphenylamine as a raw material, and uses a nitrite to perform nitrosation in an organic solvent to obtain N-nitrosodiamine Aniline
  • the purpose of the present invention is to select a low-cost and superior catalyst for condensation and hydrogenation reactions and a process flow suitable for industrial-scale production to continuously prepare 4-aminodiphenylamine.
  • a composite base catalyst is used as a condensation catalyst, and a composite powder catalyst is used as a hydrogenation reaction catalyst.
  • the composite base catalyst includes condensation, hydrogenation, separation I (separation, recovery and recycling of the composite base catalyst and Separate recovery and recycling using optional at least partially regenerated composite powder catalyst), Separation II (separation recovery and recycling using aniline and optionally separation recovery and recycling using hydrogenation solvent), purification in five processes, in a continuous process. 4 Monoaminodiphenylamine. '' Brief description of the drawings
  • FIG. 1 is a process flow chart of an embodiment of a method for preparing 4-aminodiphenylamine according to the present invention.
  • FIG. 2 is a schematic diagram of a gas-assisted falling film evaporator used in one embodiment of the present invention. Detailed description of the invention
  • separation I refers to the separation, recovery, and recycling of a composite powder catalyst that is optionally at least partially regenerated, and separation, recovery, and recycling of a composite base catalyst
  • separation II refers to the separation, Recovery and recycling of aniline and optional separation, recovery and recycling of hydrogenation solvents.
  • optionally separating, recovering and recycling the hydrogenation solvent herein means that when water is used as the hydrogenation solvent, the water is optionally recovered and recycled, and the alcoholic solvent described below is used as the hydrogenation solvent. When the solvent is used, the alcoholic hydrogenation solvent should be separated, recovered and recycled.
  • the method for preparing 4-aminodiphenylamine according to the present invention includes: continuously feeding nitrobenzene, aniline, and a composite base catalyst through a metering pump to a condensation process in a certain ratio, and reacting to produce 4-mononitro group Condensate (7) of diphenylamine and 4-mononitrosodiphenylamine and / or their salts; condensate (7) and hydrogenation solvent (including supplementary hydrogenation solvent (2) and optionally recovered hydrogenation solvent (5) ) Continuously feed to the hydrogenation process at a certain ratio, and react with hydrogen under the catalysis of the composite powder catalyst (including the supplementary composite powder catalyst (1) and the recycled optional composite powder catalyst (4)).
  • a hydrogenation solution (8>) containing 4-aminodiphenylamine is obtained; the hydrogenation solution (8) is fed to the separation I step, where (a) a composite powder catalyst (4) is separated and directly recycled back to the hydrogenation step or at least After partial regeneration, it is recycled back to the hydrogenation step, and (b) the composite alkali catalyst (3), its recycling back to the condensation step, and (c) the aqueous phase obtained by evaporation and the organic phase (9) obtained by extraction; The aqueous phase obtained in step I and the extracted organic phase (9) are sent to the separation step II, respectively, where (a) aniline (6) is separated, which is recycled to the condensation step, and (b) most of the aniline is separated.
  • the molar ratio of nitrobenzene to aniline is 1: 1-1: 15; the reaction temperature is 20-150 ° C. Preferably 50-90 ° C, the control reaction temperature is not less than 9 '(TC can make the decomposition rate of the composite base catalyst in the condensation process less than 0.5%; the reaction pressure is 0.005-0. IMPa (absolute pressure); 5-6 ⁇ The residence time of the material in the entire condensation reaction is 3. 5-6 hours.
  • the composite base catalyst used in the condensation reaction contains three components, tetramethylammonium hydroxide, alkali metal hydroxide, and tetraalkylammonium salt, and optionally also contains water, of which tetramethylammonium hydroxide and alkali metal hydroxide
  • the total concentration of the three compounds and tetramethylammonium salt is 10-100% by weight, preferably 25-38% by weight, and the molar ratio of tetraalkylammonium hydroxide, alkali metal hydroxide and tetraalkylammonium salt is ( 0—9): (0. 5-3): (0. 5—3).
  • the composite base catalyst used in the condensation reaction can be prepared by the following methods: The temperature is controlled at 0-90 ° C, and tetramethylammonium hydroxide, alkali metal hydroxide or oxide, and tetramethylammonium salt are pressed as (0 — 9): (0. 5 — 3): (0. 5- 3) in a molar ratio and stir well in water to obtain a water-containing composite base catalyst. After the water-containing composite base catalyst is obtained, benzene is optionally added to azeotropically remove water completely to obtain an anhydrous composite base catalyst.
  • the raw materials tetramethylammonium hydroxide, alkali metal hydroxide or oxide, and tetramethylammonium salt may all be in a solid form or an aqueous solution form.
  • the reactants In the process of industrial production, the reactants inevitably come into contact with carbon dioxide and carbon monoxide contained in hydrogen in the outside air, resulting in a decrease in the amount of tetramethylammonium hydroxide and conversion to tetraalkylammonium carbonate.
  • the conversion to ammonium salt results in a reduction in the amount of catalyst, and the amount of catalyst must be increased to remove the ammonium salt.
  • the complex base catalyst of the present invention does not need a complicated process, and only needs to increase the proportion of the alkali metal hydroxide or oxide in the complex base catalyst.
  • the present invention uses the composite base catalyst to condense nitrobenzene and aniline to form 4-nitrodiphenylamine and 4-nitrosodiphenylamine and / or their salts.
  • an anhydrous composite base catalyst can be used to convert nitrobenzene and aniline into 4-nitrodiphenylamine and 4-nitrosodiphenylamine and / or their salts.
  • the selectivity and conversion of the reaction have reached the requirements we hope.
  • a composite alkaline catalyst is used, proton materials such as water and methanol may not be strictly controlled, and the loss of the composite alkaline catalyst caused by the control of the proton material and the trouble in operation may be avoided as much as possible.
  • it is not intended to be limited to any particular theory it is believed that it is the combined action of tetramethylammonium hydroxide, alkali metal hydroxide and tetraalkylammonium salt in the composite base catalyst that causes this phenomenon. Reduced the difficulty of handling the reaction. We think that there are three kinds of compounds: tetraalkylammonium hydroxide, alkali metal hydroxide, and tetramethylammonium salt.
  • composition-based composite base catalyst has no longer important restrictions on the proton materials such as water in the reaction system, that is, there is no proton material such as water in the reaction or the content of proton materials such as water in the solution system is relatively high.
  • the condensation reaction can proceed as usual, and the conversion and selectivity are not affected. This reduces the difficulty in controlling the reaction and reduces the amount of aniline carried out by dehydration and azeotrope, making the method more suitable for industrialized production.
  • the proton material such as moisture has not become a factor restricting the reaction. Whether the proton material is anhydrous or watery, it can reach the selectivity and conversion rate we require. Moreover, we also found that the use of composite base catalysts has a lower decomposition rate than a single tetraalkylammonium hydroxide.
  • the condensation reaction proceeds as follows: Nitrobenzene, aniline, and a composite base catalyst are continuously fed to the falling film reactor in proportion by a metering pump to be heated to perform the condensation reaction; the falling film reactor The condensation liquid in the middle is discharged from the lower part of the falling film reactor into the first-stage reactor to continue the condensation reaction; part of the condensation liquid at the bottom of the first-stage reactor is returned to the falling film reactor through the circulation pump, thus forming a part of the condensation reaction of the present invention.
  • Circulatory system The circulation system is mainly composed of a falling film reactor and a primary reactor, and the materials are continuously circulated in the system by a condensation cycle pump.
  • the heating medium of the falling film reactor uses alcohol vapor, or hot water, or steam, or methanol vapor, preferably alcohol vapor, so that the temperature in the system is very uniform, and local overheating is avoided. There is almost no back mixing of the reaction liquid in the falling film reactor, which greatly reduces the chance of contact between the product and the raw material, and minimizes side reactions.
  • a local circulation system with a falling film reactor the reaction speed of the condensation reaction is accelerated, the reaction time is reduced, and the original reaction time of more than ten hours is shortened to 3.5 to 6 hours.
  • nitrobenzene and aniline react to form 4-nitrosodiphenylamine.
  • Nitrobenzene can also react with 4-nitrosodiphenylamine to form 4-nitrodiphenylamine.
  • nitrobenzene is reduced to Nitrobenzene.
  • Nitrosobenzene can react with aniline to form azobenzene. This reaction is detrimental to the main reaction and reduces the selectivity of the reaction.
  • the relative amount of nitrobenzene is relatively large. As the reaction proceeds, nitrobenzene is gradually converted into 4-nitroso diphenylamine, and the amount of nitrobenzene is gradually reduced.
  • the main side reaction is the formation of azobenzene and phenazine by-products.
  • the inventors have discovered that the larger the amount of aniline, the side reaction of nitrobenzene to phenazine The less.
  • Another by-product in this reaction is azobenzene.
  • Azobenzene is easily converted to aniline in the hydrogenation process and can be recycled and applied in the production process. Therefore, the molar ratio of nitrobenzene to aniline in the present invention is selected to be 1: 1 to 1:15.
  • a solvent may not be introduced into the system, but a condensation reaction is performed under a suitable ratio of nitrobenzene and aniline, and a good yield is obtained.
  • the yield of the condensation reaction is improved by using the above method, and the reaction proceeds in a desired direction.
  • the condensation reaction of the present invention can use more stages of reactors in series.
  • the condensation step as the reaction proceeds, a part of the composite base catalyst used in the condensation step is inevitably lost.
  • the two components of the alkali metal hydroxide and the tetraalkylammonium salt in the composite alkali catalyst may be added, and the molar ratio of the two components is 4: 1-1: 4.
  • Alkali metal oxides can be used instead of alkali metal hydroxides, and the amount can be obtained by converting the corresponding hydroxides.
  • Tetraalkylammonium salts that can be used in the present invention have the following general formula:
  • Non-limiting examples of tetraalkylammonium salts include: polymethylated triethylenetetramine sulfate, polymethylated diethylenetriamine carbonate, ⁇ , ⁇ -dimethyl-N, N- Dimethoxyethylammonium carbonate, N-methyl-N, N, N-trimethoxyethylammonium carbonate, N, N, N-trimethyl-N-hydroxyethylammonium carbonate, Trimethylhydroxyethylammonium chloride, N, N, N-trimethyl-N-ethoxylated (1-4 moles E0) ethylammonium carbonate,, N, N-trimethyl-N-ethyl Oxylated (1-4 moles E0) propylammonium carbonate, N, N, N-trimethyl-N-ethoxylated (1-4 moles E0) propylammonium hydrochloride, ⁇ , ⁇ -Dimethyl-N, N-bis (ethoxyl
  • the structural formula of tetraalkylammonium hydroxide used in the above-mentioned composite base catalyst is R, 4 N + 0H ⁇ , where R ′ independently represents an alkyl group having 1 to 2 carbon atoms. It can be prepared by reacting the corresponding tetraalkylammonium salt and base in a polar solvent.
  • Alkali metal hydroxides or oxides include hydroxides or oxides of lithium, sodium, potassium, or rhenium, such as hydroxide Sodium, potassium hydroxide, lithium hydroxide, sodium oxide or potassium oxide.
  • Tetramethylammonium carbonate and tetramethylammonium sulfate used in the present invention are composed of trimethylamine and difluorenyl carbonate (CI-C2) ester or difluorenyl sulfate (CI-C2) ester. Prepared by reaction in a solvent.
  • the reaction temperature of the present invention for the preparation of fluorenyl tetrafluorenyl ammonium carbonate or tetraalkyl ammonium sulfonate is 50-200 (° C), preferably 60-150 ( ⁇ ), and the reaction pressure is 0.1 to 3 (MPa) (gauge pressure).
  • MPa gauge pressure
  • the pressure is closely related to the selected temperature, the type and amount of the solvent, that is, the less the amount of solvent, the higher the system pressure; the higher the temperature, the higher the pressure.
  • the reaction pressure of the present invention is preferably controlled at 0.4-2 (MPa), and a product with higher yield can be obtained.
  • the raw materials selected for the reaction for preparing fluorenyl tetraalkylammonium carbonate or fluorenyl tetraalkylammonium sulfate in the present invention are trimethylamine and dialkyl carbonate (CI-C2) ester or difluorenyl sulfate (CI-C2).
  • CI-C2 trimethylamine and dialkyl carbonate
  • CI-C2 ester or difluorenyl sulfate
  • the ratio of the ester is 2: 1-1: 2 (mole).
  • the ratio of trimethylamine is too large, it will be excessive in the reaction system, which will cause difficulties in the operation of subsequent processes and pollute the environment; if the ratio of trimethylamine is too small, the dialkyl carbonate (CI-C2 ) Excess of esters or bissulfonyl sulfate (C1-C2) esters, which will cause loss of dialkyl carbonate (C1-C2) or dialkyl sulfate (CI-C2) esters in the next reaction and increase production costs.
  • the trimethylamine and dialkyl carbonate (CI-C2) ester or dialkyl sulfate (CI-C2) ester used in the reaction for preparing the alkyl tetramethylammonium carbonate or tetraalkylammonium sulfate used in the reaction for preparing the alkyl tetramethylammonium carbonate or tetraalkylammonium sulfate
  • the response time is 1.5 to 6 hours.
  • the initial reaction speed is fast and the exothermic phenomenon is obvious. As the raw materials are gradually consumed, the reaction slows down and the exothermic gradually decreases.
  • a certain reaction temperature and pressure can be controlled by continuously adjusting the amount of cooling water.
  • the polar solvent used in the condensation reaction in the present invention includes methanol, ethanol, or isopropanol, and the amount of the solvent used is 1-10 times the weight of the trimethylamine.
  • hydrogen can be used as a reducing agent.
  • the reaction temperature is 50-100 ° C, the pressure 3 ⁇ 4 0. 2-3. OMPa (absolute pressure), the reaction time is 2-7 hours, the gas-liquid ratio is 10: 1-1500: 1 (volume), and the solid-liquid ratio is 0. 5: 100- 16: 100 (weight).
  • Gas means hydrogen, liquid includes hydrogenation solvent and condensation liquid, solid means composite powder catalyst.
  • the hydrogenation reaction may use alcohols and / or water as a hydrogenation solvent.
  • the alcohol is preferably methanol, ethanol or isopropanol.
  • the hydrogenation solvent is an alcohol, it needs to be separated and recycled after hydrogenation.
  • the hydrogenation solvent is water, the extracted aqueous phase described below need only be concentrated to obtain the composite base catalyst of the present invention, and the condensed water obtained during the concentration process may be optionally recycled to the hydrogenation step.
  • the composite powdery catalyst used in the hydrogenation reaction of the present invention contains nickel, aluminum, and element A, the A is selected from At least one of Fe, Cu, Co, Mn, Cr, Mo, B, P, wherein the content of nickel is 25-99.9% by weight, and the total content of aluminum and element A is 0.1-75% by weight.
  • the particle size of the catalyst can be 40-300 mesh.
  • the above-mentioned modulation aid A which is at least one selected from the group consisting of Fe, Cu, Cr, Co, Mn, Mo, B, and P, can modify the crystal state of the nickel-aluminum alloy to achieve the purpose of improving the selectivity of the hydrogenation reaction and the catalyst activity .
  • the composite powdery catalyst of the present invention can be prepared by the following methods: After mixing nickel powder, aluminum powder and element A in a desired ratio, they are melted at a high temperature, crushed into a powder of 40-300 mesh after discharging, and then hydrogen is used. Oxide solution treatment.
  • the hydroxide concentration can be 5% -50% by weight, and the reaction temperature can be 50-90 ° C.
  • the composite powder catalyst of the present invention can be prepared as follows: nickel powder, aluminum powder, iron powder, and optionally selected from Cu, Cr, Co, Mn Other modulation aids A, Mo, B, and P are melted into an alloy in an induction furnace, and the molten alloy is sprayed on the high-speed rotating copper drum through a nozzle under the pressure of gas, and quenched rapidly.
  • the cooling speed can reach 10 5 - 103 ⁇ 4 / S.
  • the cooled alloy is rolled into a 40-300 mesh, preferably 100-200 mesh powder with a ball mill, and then treated with a 5% -50% by weight aqueous hydroxide solution at 50-90'C.
  • the hydrogenation reaction can be performed as follows: the condensation liquid, the hydrogenation solvent and the recovered composite powder catalyst and the fresh composite powder catalyst supplemented as needed are transported into the first stage by the solid-liquid conveying device, In the second-level and optional higher-level hydrogenation reactors, hydrogen enters the reactor from the bottom of each reactor in a bubble form through a hydrogen cycler, and the hydrogenation reaction is performed under the above-mentioned hydrogenation reaction conditions to produce a crude product containing 4-aminodiphenylamine.
  • the hydrogenation liquid separates the composite powdered catalyst entrained by the crude hydrogenation liquid through a settler and a magnetic separator, and separates the hydrogenated liquid from the solidified liquid phase of the composite powdered catalyst with a high concentration, and then re-exists through a solid-liquid mixing and conveying device. It enters the primary reactor for recycling, and at the same time, a hydrogenated solution containing 4-aminodiphenylamine is obtained.
  • the composite powdery catalyst of the present invention is a solid substance.
  • Hydrogenation catalysts are generally circulated by pumps in the industry, but the use of pumps to circulate catalysts containing high-concentration powdered metals tends to damage the pump cavity, and the delivery effect is not ideal.
  • the composite powdery catalyst in the crude hydrogenation liquid is recovered by sedimentation and a magnetic separator, and is circulated through a Venturi-type solid-liquid conveying device, and the hydrogen gas is circulated in a bubbling form. Enter the reactor.
  • the entire hydrogenation reaction process is carried out in a continuous mixed flow mode with continuous feeding and multi-stage reactors connected in series.
  • the hydrogenation solvent may be recycled.
  • Part of the hydrogenation solution of the composite powder catalyst recovered through the sedimentation and magnetic separator enters the separation step I, where the composite powder catalyst remaining in the hydrogenation solution is recovered by filtration, and directly recycled to the hydrogenation step or recycled at least partially after regeneration Hydrogenation process.
  • the deactivation of the catalyst is generally due to the carbon deposits of the inorganic or organic substances blocking the catalyst pores, which results in the active sites of the catalyst being covered, resulting in a decrease in the activity of the catalyst. Therefore, in the present invention, the catalyst is regenerated by using a higher concentration of an alkaline solution, for example, a 5--50% by weight aqueous solution of an alkali metal hydroxide combined with ultrasonic vibration. Ultrasonic vibration helps to remove inorganic deposits or organic carbon deposits, while a high-concentration alkali solution can dissolve the aluminum in the catalyst that did not dissolve during the first alkali dissolution, forming a new loose pore structure, thereby increasing the catalyst activity.
  • an alkaline solution for example, a 5--50% by weight aqueous solution of an alkali metal hydroxide combined with ultrasonic vibration.
  • Ultrasonic vibration helps to remove inorganic deposits or organic carbon deposits, while a high-concentration alkali solution can dissolve the aluminum in the catalyst that did not dissolve during the first
  • the inventor recovered the magnetic hydrogenation catalyst through sedimentation and a magnetic recoverer, and designed a Venturi-type solid-liquid mixing and conveying device, which used the power of feeding to send the catalyst back to the hydrogenation reactor to realize a composite powder catalyst In the cycle, we also filter out the catalyst and regenerate it to restore its original activity.
  • the two-pronged approach greatly reduces the catalyst consumption and increases the catalyst's active life.
  • the filtrate is extracted with an extractant and a co-extractant to obtain an organic phase and an aqueous phase, wherein the organic phase is sent to the step of separation II.
  • the aqueous phase is concentrated in one or more stages, the composite alkali catalyst of the present invention is obtained, which is recycled and condensed Procedure.
  • polyether organic compounds are used as auxiliary extraction agents, and examples thereof include, but are not limited to, polyethylene glycol ethers, such as polyethylene glycol dimethyl ether (molecular weight 200-1000), polyethylene glycol diethyl ether (molecular weight 200-1000) And polyethylene glycol methyl ether (molecular weight 200-1000); polypropylene glycol ethers such as polypropylene glycol dimethyl ether (molecular weight 200-1000), polypropylene glycol diethyl ether (molecular weight 200-1000) and polypropylene glycol methyl ether (molecular weight 200-1000) 1000); fatty alcohol polyoxyethylene ethers, such as those in which the carbon number of the fatty alcohol is 12-18, and the degree of polymerization of the polyoxyethylene is 3-15.
  • polyethylene glycol ethers such as polyethylene glycol dimethyl ether (molecular weight 200-1000), polyethylene glycol diethyl ether (molecular weight 200-1000) And polyethylene glyco
  • Concentration of the water phase can use one or more stages of gas-assisted falling film evaporator device.
  • the medium is water, water vapor or secondary vapor from the previous stage evaporator.
  • the shell side is heated by steam, and the other part of the steam enters the tube side through the steam port at the top of the first-stage falling film evaporator, that is, the flow assist port, and the water phase falls from the gas-assisted flow and falling film.
  • the low-concentration aqueous phase inlet of the evaporator enters the tube side. With steam as the driving force, the movement direction of steam and water phase is in the same direction.
  • the gas-assisted flow falling film evaporator includes a shell side (2,), a tube side (3 '), a steam inlet (8,) installed at an upper end of the shell side (2'), and a shell side (2) ') Steam condensate outlet (1,) at the lower end, low-concentration aqueous phase inlet (6') installed at the top of the tube side (3 '), high-concentration aqueous phase outlet (9) installed at the bottom of the tube side (3') '), A flow-aid steam inlet (5', 7 ') installed at the top of the tube side (3'), a low-concentration aqueous phase inlet (a distribution plate (4 ') below 6).
  • the water phase passes through the distribution plate and flows in a film form from top to bottom inside the tube.
  • the controlled residence time is 2 to 60 seconds, and the temperature can be 30 to 105 °. C.
  • the pressure of the shell-side steam used in the concentration is 0.005-0. IMPa (absolute pressure).
  • the condensate obtained by condensing the evaporate (which is a mixture of alcohol and water ') can be sent to the separation step to recover the hydrogenation solvent; if the hydrogenation solvent is an alcohol / water mixture, the condensate obtained by condensing the evaporate (It is a mixture of alcohol and water) can be recycled back to the hydrogenation step or sent to the separation II step to recover the alcohol; if the hydrogenation solvent is water, the condensate (which is water) obtained by condensing the evaporate can be recycled back to the hydrogenation step.
  • aniline is obtained by evaporation from the extracted organic phase sent in the step of separation I, and the aniline is recycled to the condensation step, and the tower liquid from which most of the aniline is separated is sent to the purification step.
  • the operating pressure of the evaporator can be 0.005-0. IMPa (absolute pressure), the temperature of the tower kettle is 120-320 ° C, and the gas phase temperature is 60-190 ° C.
  • the hydrogenation solvent is an alcohol or an alcohol / water mixture
  • the evaporator condensate obtained when the aqueous phase is concentrated in the separation step I is rectified to obtain an alcohol as a hydrogenation solvent, which is recycled back to the hydrogenation step.
  • the organic phase in which most of the aniline was separated in the separation step II contained 4-aminoaminoaniline, aniline, azobenzene, phenazine, and the like.
  • the refining step is performed using three-column continuous distillation and batch distillation, wherein the organic phase to be purified is pumped into a No. 1 distillation column, and aniline and phenoxide are taken out from the top of the column.
  • the hydrazine and azobenzene, the output of the tower kettle is crude 4-aminodiphenylamine; the top of the 1st distillation column enters the 3rd distillation column, and the aniline is distilled off from the top of the 3rd distillation column, and its content is about 99%, can be directly recycled to the condensation process, phenazine and azobenzene remain in the tower kettle; the tower kettle liquid from the 1st distillation tower is pumped to the 2nd tower, and the finished product is distilled from the top of the 2nd distillation tower.
  • the vacuum degree of the No. 1 distillation column is 0.09-0.098MPa
  • the reflux ratio is 2: 1-10: 1
  • the top temperature is 80-130 ° C
  • the tower kettle The temperature is 260-290 ° C
  • the vacuum degree of No. 2 rectification tower is 0.09-0. 098MPa
  • the reflux ratio is 1: 0. 5- 1: 1: 4
  • the top temperature is 140-190 ° C
  • the tower kettle The temperature is 260-300 ° C
  • the vacuum degree of No. 3 rectification column is 0.09-0. 098MPa
  • the reflux ratio is 1: 0.
  • the top temperature is 80-120 ° C, the tower kettle The temperature is 120-170 ° C; the vacuum degree of the column distillation of the batch distillation is 0.09-0. 098MPa, the temperature of the top of the column is 235-250 ° C, and the temperature of the column is 280-330 ° C.
  • the temperature of the distillation vessel of the No. 2 distillation column is relatively low, which can reduce the coking degree of 4-aminodiphenylamine, and it accounts for 96% or more of the total amount of 4-aminodiphenylamine at a relatively low temperature
  • the top of the No. 2 rectification column was separated, so the amount of 4-aminodiphenylamine in the feed liquid for batch distillation was greatly reduced.
  • the selected composite base catalyst and composite powder catalyst have low production cost and high catalytic activity; the entire preparation process can be continuously performed, and is suitable for industrial scale production; in the condensation process
  • the use of a composite alkali catalyst greatly reduces the difficulty of handling the reaction, so that the water in the reaction system is no longer a limiting factor for the reaction; the decomposition of the composite alkali catalyst is much lower than that of a single tetramethylammonium hydroxide catalyst; falling film reaction
  • the choice of the ratio of the reactor and the reaction raw materials increases the selectivity of the reaction; no solvent is required; the hydrogenation reaction temperature is low, the reaction conditions are mild, the hydrogenation catalyst has good toxicity, few by-products, and high conversion and selectivity; Magnetic recoverer to recover magnetic composite powdery catalyst; through a Venturi-type solid-liquid, mixing and conveying device, and using the power of feeding to return the hydrogenation catalyst to the hydrogenation reactor; using chemical and / or physical methods Regenerating
  • Preparation of composite powder catalyst Take 46 grams of nickel powder, 51 grams of aluminum powder, and 3 grams of iron powder. After mixing and mixing, melt into an alloy in an induction furnace, and spray the molten alloy under high pressure through the nozzle to high-speed rotation. It is rapidly quenched on the copper mat (the cooling rate can reach 10 5 -103 ⁇ 4 / S). 7 ⁇ Cooled alloy was rolled into a powder with a ball mill, sieved to obtain a powder of 40-300 mesh 99.7 g. A 500-ml three-necked flask equipped with a thermometer and a stirrer was charged with 375 g of a 20% (by weight) aqueous solution of NaOH, and the powder prepared above was slowly added. The mixture was stirred at 60 ° C for 4 hours, and then The deionized water was used to wash the solid to neutrality to obtain a composite powdery catalyst.
  • Nitrobenzene, aniline, and composite base catalyst are continuously fed to the falling film reactor for heating to carry out the condensation reaction;.
  • the condensation liquid in the falling film reactor is discharged from the lower part into the primary reactor to continue the condensation reaction; part
  • the condensation liquid at the bottom of the primary reactor is returned to the falling film reactor through the circulation pump to form a local circulation system.
  • the heating medium of the falling film reactor is 78-90 ° C alcohol vapor.
  • the reaction temperature was controlled to be 75 ° C, the pressure was set to 0.008 MPa (absolute pressure), and the circulating liquid flow rate was 1 m V for hours.
  • the material from the primary reactor overflows to the secondary reactor.
  • the process conditions such as operating temperature and pressure of the secondary reactor are the same as those of the primary reactor.
  • the total residence time of the control materials in the falling film reactor, the primary reactor and the secondary reactor was 5 hours.
  • the composite base catalyst recovered according to the method of the following example can be used, and only a small amount of fresh composite base catalyst prepared according to example 1 can be added to control the hydroxyl and nitrobenzene in the reaction system.
  • the molar ratio is not less than 1: 1.
  • the material discharged from the secondary reactor was analyzed. Nitrobenzene was ⁇ 0.1%, moisture content was 24.9%, and the content of 4-nitrosodiphenylamine and 4-mononitrodiphenylamine was 16.1% by weight.
  • Nitrobenzene, aniline, and composite base catalyst are continuously fed to the falling film reactor in proportion for heating to perform the condensation reaction; the condensation liquid in the falling film reactor is discharged from the lower part into the first-stage reactor to continue the condensation reaction; The condensation liquid at the bottom of part of the primary reactor is returned to the falling film reactor through the circulation pump to form a local circulation system. Falling film
  • the heat medium of the reactor is 78-90 ° C alcohol vapor. .
  • the reaction temperature was controlled at 75 ° C, the pressure was 0.008 MPa (absolute pressure), and the circulating liquid flow rate was 1 mV hours.
  • the material from the primary reactor overflows to the secondary reactor.
  • the process conditions such as operating temperature and pressure of the secondary reactor are the same as those of the primary reactor.
  • the total residence time of the control materials in the falling film reactor, the primary reactor and the secondary reactor was 5 hours.
  • An alkali catalyst was added at a ratio of 1: 1 (mole) of sodium hydroxide: tetramethylammonium salt (tetramethylammonium carbonate according to Example 1) to control the concentration of hydroxide ions and the concentration of nitrobenzene in the reaction system.
  • the molar ratio is not less than 1: 1.
  • the material discharged from the secondary reactor was analyzed, and the content of nitrobenzene was ⁇ 0.1%, the moisture content was 15.6%, and the content of 4-nitrosodiphenylamine and 4-nitronitroaniline was 17.6% (weight).
  • Example 5 The material discharged from the secondary reactor was analyzed, and the content of nitrobenzene was ⁇ 0.1%, the moisture content was 15.6%, and the content of 4-nitrosodiphenylamine and 4-nitronitroaniline was 17.6% (weight).
  • the condensate made according to the method of Example 3 was filtered and fed to a primary hydrogenation reactor with a sealed magnetic stirrer, and a cooling and heating system. Replace with hydrogen and pressurize to 1.3 MPa. Start the hydrogen cycle machine to keep the circulating hydrogen flow rate at 1 standard cubic meter / hour, and the circulating hydrogen enters the hydrogenation reactor in the form of bubbles to improve the gas-liquid mass transfer effect during the reaction.
  • the flow rate of the condensation liquid of nitrobenzene and aniline was controlled to be 306 kg / h, and the flow rate of methanol was controlled to be 60 liters (48 Kg) / h.
  • the composite powder catalyst prepared above was added to the reactor so that the solid-liquid ratio was 6: 100 (weight ratio).
  • the hydrogenated reducing solution overflows from the first-stage reaction kettle to the second-stage reaction kettle, and then overflows to the third-stage reaction kettle, and then overflows to the sedimentation tank.
  • the reaction temperature is 75-80 ° C
  • the pressure is 1.3MPa
  • the total residence time is 5 hour.
  • the composite powdery catalyst can be recovered to the greatest possible extent.
  • the solid-liquid mixture containing a large concentration of solid catalyst at the bottom of the sedimentation tank is returned to the first-stage hydrogenation reactor by means of the feeding power of the Venturi-type solid-liquid conveying device.
  • the activity of the catalyst in the hydrogenation reaction can be judged by monitoring the end point of the reduction reaction, thereby determining whether it is necessary to add a composite powdery hydrogenation catalyst.
  • Example 5 After the hydrogenation liquid produced according to the method of Example 5 was recovered by sedimentation and magnetic separation to recover the composite powdery catalyst, it was filtered to recover the extremely fine composite powdery hydrogenation catalyst that could not be recovered by magnetic separation. After regeneration, it was recycled and returned to the hydrogenation step.
  • the hydrogenation reduction solution without solid catalyst was continuously fed to the top of the extraction tower with a metering pump at a flow rate of 360 liters / hour.
  • the extractant water was fed at the same flow rate of 360 liters / hour.
  • Glycol dimethyl ether continuously entered the bottom of the extraction column at a flow rate of 0.1 liters / hour. After extraction, An aqueous phase was obtained from the top of the column, and an organic phase was obtained from the bottom of the column.
  • the extraction time was 3 hours, and the extraction pressure was normal pressure. Both the methanol in the hydrogenation reduction solution and the condensation composite base catalyst were extracted into the aqueous phase with water, and the amount of the obtained aqueous phase was 540 liters / hour and the amount of the organic phase was 180 liters / hour.
  • the water phase preheated to 80 ° C was fed to the top of the gas-assisted falling-film evaporator with a metering pump at a flow rate of 540 liters / hour.
  • the residence time in the evaporator was 10 seconds.
  • the first-stage concentrated liquid is sent to a tube-type two-stage falling film evaporator at a pressure of 0.1 MPa (absolute pressure).
  • the residence time of the material in the evaporator is about 10 seconds.
  • the temperature of the liquid mixture is 80-95 ° C. 7% ⁇
  • the recovery rate of the composite alkali catalyst in the entire concentration process can reach 99.7%.
  • the composite base catalyst is recycled to the condensation step.
  • the gas phase evaporated from the falling film evaporator was condensed to obtain a methanolic aqueous solution containing about 28% by weight of methanol.
  • the methanol-aqueous solution was continuously fed to a rectification column for separation by a pump, and more than 99% by weight of methanol was obtained at the top of the column, which could be recycled to the hydrogenation process, and the tower kettle was water. 3 ⁇ % ⁇ Using gas chromatography to measure the tower kettle water, the methanol content can be less than 0.3% by weight.
  • the organic phase obtained by the extraction and separation is sent to a column-type rising film evaporation separator to separate most of the aniline.
  • the operating pressure (absolute pressure) of the rising-film evaporation separator is 0.01 MPa, and the shell side is heated with 180 ° C steam.
  • the vapor-liquid separator at the top of the rising film evaporation separator separates a gas phase of 75-105 F and a liquid phase of 160 ° C.
  • the condensed gas phase material was detected by chromatography, and the aniline content was measured to be 99% by weight. Most of the aniline is distilled out in this step, and the aniline distilled out can be recycled to the condensation process as a raw material for the condensation reaction.
  • the liquid phase material is a crude product of 4-aminodiphenylamine, which contains 78.1% 4-aminodiamine. Aniline, 21. 75% aniline, and balance of other organic impurities.
  • a crude product of 4-aminodiphenylamine (containing 78.1% of 4-aminodiphenylamine, 21.75% of aniline, 0.15% of azobenzene, 0.1% of phenazine) was passed through the gear at a flow rate of 120 kg / hour
  • the pump is continuously fed into the No. 1 rectification column.
  • the temperature of the control tower was 270 ° C
  • the temperature at the top of the tower was ⁇
  • the degree of vacuum was 0.094MPa
  • the reflux ratio was 5: 1.
  • the light components aniline, azobenzene, and phenazine were extracted from the top of the tower with a flow rate of about 26.2 kg / hour and sent to the No. 3 distillation column.
  • the batch distillation kettle has a kettle temperature of 285-320 ° C, a vacuum of 0.094 MPa, and a top temperature of 235-250 ° C.
  • the remaining 4-aminodiphenylamine is distilled off and recycled to the No. 2 rectification column for re-distillation.
  • the entire 4-aminodiphenylamine refining process is performed continuously. 4 ° C ⁇
  • the purity of the obtained 4-aminodiphenylamine was 99.1%, the melting point was 72 ° C, and the freezing point was 72.4 ° C. 1% ⁇ Industrial scale production yield of this process is 95.1%.
  • the methanol was distilled off under heating for 8 hours with stirring, and filtered to obtain 355 g of a tetramethylammonium hydroxide solution.
  • the analysis showed that the content of tetramethylammonium hydroxide was 24.4%, and the overall reaction yield was 95.2%.
  • a small reactor equipped with a vacuum system and a temperature control system, a falling film reactor and a circulation pump constitute a local circulation system, with a total volume of 1 liter. Fill with aniline first and set the flow rate of the circulation pump to 2 liters / hour.
  • a mixed solution containing nitrobenzene, aniline and the composite base catalyst prepared in Example 1 with a molar ratio of 0H— in a nitrobenzene: aniline: composite base catalyst of 1: 1: 1.8 was 200 ml / 008MPa (Absolute Pressure). Feed to the reactor for an hour, the residence time is 5 hours, the system temperature is maintained at 75 ⁇ , and the pressure is 0.008MPa (absolute pressure).
  • a vacuum pump and a local circulation system composed of a temperature measurement heating system, a membrane reactor and a circulation pump are installed, with a total volume of 1 liter, first filled with aniline, and the flow rate of the circulation pump is 2 liters / hour.
  • the mixed solution containing nitrobenzene, aniline, and composite base catalyst enters the reactor at a certain speed, and the molar ratio of nitrobenzene: aniline: is maintained to 1: 7, nitrobenzene: composite base catalyst 0H-molar The ratio is 1: 1.15, keeping the temperature of the system at 75 ° C and the pressure of 0.008 MPa (absolute pressure).
  • the reaction residence time is adjusted by adjusting the feed flow rate. Until the detection of nitrobenzene ⁇ 0.1%, according to the reaction When the calculated yield of the 4-nitroso-diphenylamine and 4-nitrodiphenylamine reached 97%, the water content at the outlet of the reaction solution was measured, and the results obtained were as follows:
  • reaction liquid was analyzed by high performance liquid chromatography, and it was found that the reaction liquid did not contain 4-nitrosodiphenylamine and 4-nitrodiphenylamine, and the content of 4-aminodiphenylamine was 14.6% (chromatographic content). Comparison of composite powder catalyst and precious metal catalyst
  • a Pd / C catalyst containing 5% by weight of palladium was compared with the composite powder catalyst of the present invention.
  • the test was carried out under the process conditions described in the above intermittent hydrogenation example, the amounts of the catalysts added were the same, and both catalysts were recovered and applied after the reaction was completed.
  • 1% ⁇ 4 Within 21 times of the two catalyst recovery kits, 4-nitrosodiphenylamine was not detected in the reaction solution of both, and the reaction solution containing Pd / C catalyst contained 0.1% 4 in the 21st application.
  • -Nitrodiphenylamine, and 4-nitrodiphenylamine was not detected in the reaction solution obtained by using the composite powder catalyst of the present invention. It is shown that the catalyst of the present invention is more resistant to toxicity than the precious metal catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

制备 4一氨基二苯胺的方法 相关申请的交叉参考
本申请要求 2003 年 7 月 4 日提交的 CN03148566. 9, CN03148195. 7,
CN03148194. 9, CN03148199. X, CN03148565. 0, CN03148200. 7, CN03148198. 1, CN03148196. 5的优先权, 通过引用将其整体结合在本申请中。 技术领域
本发明涉及制备 4一氨基二苯胺的方法, 具体而言, 涉及以硝基苯和苯胺为原料, 使用复合型碱催化剂作为縮合催化剂, 使用复合粉末状催化剂作为氢化反应催化剂, 在包括缩合、 氢化、 分离回收和循环使用复合型碱催化剂以及分离回收和循环使用任 选至少部分再生后的复合粉末状催化剂、 分离回收和循环使用苯胺和任选分离回收和 循环使用氢化溶剂、 精制的五个工序中连续制备 4一氨基二苯胺的方法。 背景技术
4一氨基二苯胺是重要的抗氧化剂和稳定剂的中间体, 是橡胶工业和聚合物工业 中重要的化工产品。 根据使用原料的不同, 目前生产 4一氨基二苯胺的方法有: (1 ) 苯胺法, 以对硝基氯苯和苯胺为原料, 在催化剂作用下反应生成 4一硝基二苯胺, 然 后用硫化碱还原为 4一氨基二苯胺; (2) 甲酰苯胺法, 以甲酸和苯胺为原料制备甲酰 苯胺, 再与对硝基氯苯在缚酸剂 (例如碳酸钾) 存在下反应生成 4一硝基二苯胺, 然 后用硫化碱还原制备 4一氨基二苯胺; (3 ) 二苯胺法, 即以二苯胺为原料, 在有机溶 剂中用亚硝酸盐进行亚硝化, 得到 N—亚硝基二苯胺, 再用无水氯化氢进行重排得 4 一亚硝基二苯胺盐酸盐, 用碱中和生成 4一亚硝基二苯胺, 最后用硫化碱还原得 4一 氨基二苯胺。 这些方法尽管原料不同, 但都用传统的硫化碱作还原剂生产 4一氨基二 苯胺。 这些反应的缺点是反应条件苛刻, 操作复杂, 能耗高, 收率低, 成本高以及伴 有 "三废"产生而污染环境等。
制备 4-氨基二苯胺的路线中还有一条路线是使用硝基苯或硝基苯和苯胺或亚硝 基苯作为原料进行缩合反应, 然后用氢气氢化来制备 4一氨基二苯胺的方法。 其实, 在碱的作用下, 硝基苯和苯胺反应生成 4-亚硝基二苯胺和 4-硝基二苯胺在 1901年和 1903 年都已经有报道 (Wohl, Cheraische Berichte, 34, p. 2442 (1901)和 Wohl, Chemische Berichte, 36, p. 4135 (1903) ), 只是收率相对较低, 所以一直没有得 到重视和发展。 进入九十年代以来, 世界上对这条路线重新进行研究开发, 取得了一 些进步 (参见 DE19734055. 5, DE19810929. 6, DE 19709124. 5)。 这些方法存在一些 共同的缺点: 一是所选用的催化剂价格昂贵, 应用于工业规模生产会导致生产成本过 高, 与目前的生产工艺相比较没有优势。 例如, 缩合反应使用的氢氧化四烷基铵和氟 化物以及氢化反应采用的贵金属钯、 铂、 铑等价格昂贵, 由于氢氧化四烷基铵的不稳 定性, 给回收套用带来了一定的难度, 贵金属氢化催化剂的选用则对原料和设备的要 求都比较高; 二是收率比较低, 仅仅是试验室的做法, 这也是很难工业化的一个重要 原因; 三是操作比较繁琐, 不利于连续化操作, 使得生产规模受到限制; 四是分离困 难, 产品纯度不高。
在 US 6, 395, 933中, 公开了用硝基苯和取代苯胺在一定温度下, 在强碱和相转 移催化剂存在下合成 4-氨基二苯胺的方法。 该方法的收率不理想, 副反应很多; 合成 中产生的 4-硝基二苯胺和 4-亚硝基二苯胺混合物中, 4-硝基二苯胺的比例过大, 导 致氢化反应中氢气消耗过大, 增加了生产成本; 而且需要氧化剂, 因此很难适合工业 化的生产。
在 W09300324中, 公开了硝基苯和苯胺在合适的溶剂中, 在碱的作用下, 控制 质子材料在溶液中的含量, 在合适的温度下反应生产 4-氨基二苯胺的方法。在这个专 利中必须要有溶剂和控制质子材料在溶液中的含量, 溶剂的引入带来了能耗增加和带 来了分离难度, 控制质子材料给反应操控带来了难度, 尤其在缩合反应的后期, 控制 溶液中的质子材料的含量 (主要是指脱水到一个相对小的含量) 会延长反应的时间, 带走一部分的苯胺, 越到后期越难脱去质子材料, 控制质子材料到一定的范围操作难 度大, 不利于工业生产; 控制质子材料在 0. 5- 4%的范围内时会使昂贵的四垸基季胺碱 催化剂快速分解, 导致生产成本增加。 发明概述
本发明的目的在于选择用于缩合和氢化反应的、 价廉并性能优越的催化剂和一 条适于工业规模生产的工艺流程, 连续地制备 4一氨基二苯胺。
本发明使用复合型碱催化剂作为缩合催化剂, 使用复合粉末状催化剂作为氢化 反应催化剂, 在包括缩合、 氢化、 分离 I (分离回收和循环使用复合型碱催化剂以及 分离回收和循环使用任选至少部分再生后的复合粉末状催化剂)、 分离 II (分离回收 和循环使用苯胺和任选分离回收和循环使用氢化溶剂)、 精制五个工序中, 以连续工 艺制备 4一氨基二苯胺。 ' 附图简要说明
附图 1为本发明的制备 4一氨基二苯胺的方法的一个实施方案的工艺流程图。 附图 2为用于本发明一个实施方案中的气助流降膜蒸发器的示意图。 发明详述
本发明的工艺流程中, "分离 I "是指分离、 回收和循环使用任选至少部分再生 后的复合粉末状催化剂以及分离、 回收和循环使用复合型碱催化剂, "分离 II "是指 分离、 回收和循环使用苯胺和任选分离、 回收和循环使用氢化溶剂。 在本文中的术语 "任选分离、 回收和循环使用氢化溶剂"是指, 在使用水作为氢化溶剂时, 任选回收 和循环使用所述水, 而在使用下文所述的醇类溶剂作为氢化溶剂时, 应分离、 回收和 循环使用所述醇类氢化溶剂。
参考附图 1, 本发明的制备 4一氨基二苯胺的方法包括: 将硝基苯、 苯胺和复 合型碱催化剂按一定比例, 通过计量泵连续进料至缩合工序, 反应生成含 4一硝基二 苯胺和 4一亚硝基二苯胺和 /或它们的盐的缩合液 (7); 缩合液 (7) 和氢化溶剂 (包 括补充的氢化溶剂 (2) 和任选回收的氢化溶剂 (5)) 按一定比例连续进料至氢化工 序, 在复合粉末状催化剂 (包括补充的复合粉末状催化剂 (1) 和循环使用的任选再 生的复合粉末状催化剂 (4)) 的催化作用下和氢气反应, 得到含 4一氨基二苯胺的氢 化液 (8〉; 氢化液 (8) 进料至分离 I工序, 在此分离得到 (a)复合粉末状催化剂 (4), 其直接循环回氢化工序或者至少部分再生后循环回氢化工序, 和(b)复合型碱催化剂 (3), 其循环回缩合工序, 和 (c) 浓缩时蒸发得到的水相和萃取得到的有机相 (9); 将分离 I工序中得到的水相和萃取后的有机相 (9) 分别送至分离 II工序, 在此分离 得到 (a)苯胺 (6), 其循环回缩合工序, (b)分离了大部分苯胺的 4一氨基二苯胺粗 品 (10) ,和任选地(c), 氢化溶剂(5), 其循环回氢化工序; 将 4一氨基二苯胺粗品 ( 10) 进料至精制工序, 在此分离出(a)部分苯胺 (6), 其循环回缩合工序, 和 (b)4 一氨基二苯胺成品。 整个工艺流程连续进行。
在缩合反应中, 硝基苯与苯胺的摩尔比为 1: 1-1: 15; 反应温度为 20— 150°C, 优选 50— 90°C, 控制反应温度不髙于 9'(TC可以使得缩合过程中复合型碱催化剂的分 解率小于 0. 5 % ; 反应压力为 0. 005— 0. IMPa (绝压); 物料在整个缩合反应中的停留 时间为 3. 5— 6小时。
缩合反应使用的复合型碱催化剂含有氢氧化四垸基铵、碱金属氢氧化物, 四烷基 铵盐三种组分, 任选还含有水, 其中氢氧化四垸基铵、 碱金属氢氧化物和四垸基铵盐 三者浓度总和为 10— 100重量%, 优选为 25— 38重量%, 并且氢氧化四烷基铵、 碱 金属氢氧化物和四烷基铵盐的摩尔比为 (0— 9 ) : ( 0. 5-3): ( 0. 5— 3)。 组合使用一 部分的氢氧化四烷基铵与较廉价的碱金属氢氧化物或氧化物和四烷基铵盐, 达到了现 有技术中使用高纯度的氢氧化四烷基铵作为催化剂同样的目的。 在缩合反应混合物 中, 复合型碱催化剂中氢氧根离子与硝基苯的摩尔比为 1 : 4-4; 1。
缩合反应所釆用的复合型碱催化剂可以通过如下方法制备: 控制温度在 0— 90°C, 将氢氧化四垸基铵、 碱金属氢氧化物或氧化物、 四垸基铵盐按 (0— 9 ) : (0. 5 — 3 ) : ( 0. 5- 3 ) 的摩尔比例在水中搅拌均匀, 即得含水的复合型碱催化剂。 在得到 含水的复合型碱催化剂后, 任选加苯共沸完全脱去水分, 得到无水复合型碱催化剂。 所述原料氢氧化四垸基铵、 碱金属氢氧化物或氧化物、 四垸基铵盐均可以是固体形式 或水溶液形式。
在工业生产的过程中, 反应物不可避免地要和外界的空气中, 氢气中夹杂的二 氧化碳和一氧化碳接触, 导致氢氧化四垸基铵的量减少, 转化成四烷基碳酸铵盐。 在 单单以氢氧化四烷基铵为催化剂的反应中, 转化成铵盐导致了催化剂量的减少, 必须 增加催化剂的量, 去除掉铵盐。 而釆用本发明的复合型碱催化剂则无须复杂的工艺, 只需提高复合型碱催化剂中的碱金属氢氧化物或氧化物的比例即可。
本发明在一定的条件下, 釆用所述复合型碱催化剂, 将硝基苯和苯胺缩合生成 4-硝基二苯胺和 4-亚硝基二苯胺和 /或它们的盐。 本发明的缩合反应中, 可以使用无 水型的复合型碱催化剂使硝基苯和苯胺转化成 4-硝基二苯胺和 4-亚硝基二苯胺和 /或 它们的盐, 在体系无水的环境下, 反应的选择性和转化率达到了我们所希望的要求。
如果釆用复合型碱催化剂也可以不对水、 甲醇等质子材料进行苛刻地控制, 尽量 避免因为质子材料的控制而引起的复合型碱催化剂的损失以及引起的操作上的麻烦。 虽然不希望局限于任何特定的理论, 但相信正是复合型碱催化剂中氢氧化四垸基铵、 碱金属氢氧化物、 四烷基铵盐三种物质的综合作用造成了这种现象, 这样降低了反应 的操控难度。 我们认为釆用由氢氧化四烷基铵、 碱金属氢氧化物、 四垸基铵盐三种物 质组成的复合型碱催化剂, 对反应体系中的水等质子材料的限制已经不再重要, 也就 是说在反应中没有水分等质子材料或者在溶液体系中水份等质子材料的含量比较高 的时候, 缩合反应都可以照常进行, 转化率和选择性不受影响, 这样就降低了反应的 操控难度,并且降低了因脱水共沸带出的苯胺量,使所述方法更加适宜工业化的生产。
在本发明中水分等质子材料已经不成为制约反应的因素, 无论无水或有水等的 质子材料, 都能达到我们所要求的选择性和转化率。 而且我们还发现, 使用复合型碱 催化剂其分解率比单一的氢氧化四烷基铵降低。
在本发明的一个优选实施方案中, 缩合反应如下进行: 通过计量泵将硝基苯、苯 胺以及复合型碱催化剂按比例连续进料至降膜反应器进行加热以进行缩合反应; 降膜 反应器中的缩合液从降膜反应器下部排出进入一级反应器, 以继续进行缩合反应; 部 分一级反应器底部的缩合液通过循环泵再返回降膜反应器, 这样构成本发明缩合反应 的局部循环系统。 该循环系统主要由降膜反应器和一级反应器构成, 物料通过缩合循 环泵在此系统不断地循环。 循环过程中保持缩合液的量能在降膜反应器中形成均匀的 膜。 降膜反应器热媒采用酒精蒸气、 或热水、 或蒸汽、 或甲醇蒸气, 优选酒精蒸气, 使得体系中温度十分均匀, 避免了局部过热现象。 降膜反应器中反应液几乎无返混, 大大降低了产物与原料物的接触机会, 使得副反应降到最低限度。 通过一个带有降膜 反应器的局部循环系统, 加快了缩合反应的反应速度, 减少了反应时间, 使原来长达 · 十多小时的反应时间缩短为 3. 5-6小时。
本发明人还发现, 连续膜式反应比全混反应选择性及收率均高。 在这个反应中, 硝基苯和苯胺反应生成了 4-亚硝基二苯胺, 硝基苯还可以和 4-亚硝基二苯胺反应生 成 4-硝基二苯胺, 同时硝基苯自身还原成亚硝基苯。亚硝基苯能和苯胺反应生成偶氮 苯, 这个反应对主反应是不利的, 降低了反应的选择性。 在反应开始的时候硝基苯相 对的量比较大, 随着反应的进行, 硝基苯逐渐转化成 4-亚硝基二苯胺, 硝基苯的量逐 渐减少。 由于釆用连续膜式反应器, 减少了加入时硝基苯和后来生成的 4-亚硝基二苯 胺接触与反应的机会(进入反应器开始反应时硝基苯的浓度相对较高但 4-亚硝基二苯 胺浓度相对较低,反应结束时 4-亚硝基二苯胺浓度相对较高但硝基苯浓度相对较低), 减少了硝基苯被 4-亚硝基二苯胺还原成亚硝基苯的机会,也就减少了硝基苯和苯胺生 成偶氮苯的反应。
在硝基苯和苯胺在复合型碱催化剂存在下进行的缩合反应中,主要的副反应是生 成副产物偶氮苯和吩嗪。 本发明人发现, 苯胺的量越大, 硝基苯转化为吩嗪的副反应 就越少。 这个反应中的另外一个副产物是偶氮苯, 偶氮苯在氢化工序很容易转化为苯 胺, 可以在生产过程中循环套用。 所以本发明中硝基苯与苯胺的摩尔比选择为 1 : 1 - 1: 15。
同时在本发明方法中,在体系中可以不引入溶剂,只是在合适的硝基苯和苯胺配 比条件下进行缩合反应, 得到了很好的收率。
本发明利用上述方法提高了缩合反应的收率, 使反应向需要的方向进行。
本领域技术人员可以想到, 本发明的缩合反应可以采用更多级的串联反应器。 在缩合工序中, 随着反应的进行, 缩合工序使用的复合型碱催化剂不可避免地 要损失一部分。 补加催化剂的时候可以仅添加复合型碱催化剂中碱金属氢氧化物和四 烷基铵盐两个组分, 两者的摩尔比为 4: 1-1: 4。 可以采用碱金属氧化物代替碱金属 氢氧化物, 其用量可以通过相应的氢氧化物换算而得。 可用于本发明的四烷基铵盐具有如下通式:
[ (Rl) (R2) (R3) (R4) N] +Jn
其中 Rl、 R2、 R3、 R4相同或不相同, 为具有 1-4个碳原子的垸基, 并且所述垸 基可以具有亲水取代基团, 该亲水取代基团选自羟基、 甲氧基、聚醚、 阳离子聚酰胺、 聚酯、 多乙烯多铵、 强水溶性含季铵盐的基团等, Xn—选自卤根、 硫酸根、 碳酸根、 磷 酸根、 碳酸氢根、 硫酸氢根、 烷基 (CI- C2) 碳酸根、 烷基 (CI- C2)硫酸根等, n= l— 2。 四烷基铵盐的非限制性实例包括: 多甲基化三亚乙基四胺硫酸盐, 多甲基化二亚 乙基三胺碳酸盐, Ν, Ν-二甲基 - N, N-二甲氧乙基铵碳酸盐, N-甲基- N,N, N-三甲氧乙 基铵碳酸盐, N, N, N-三甲基 -N-羟乙基铵碳酸盐, 氯化三甲基羟乙基铵, N, N, N-三 甲基- N-乙氧基化(1-4摩尔 E0)乙基碳酸铵, , N, N-三甲基 -N -乙氧基化(1-4摩尔 E0) 丙基铵碳酸盐, N,N, N-三甲基 -N-乙氧基化(1-4摩尔 E0)丙基铵盐酸盐, Ν, Ν-二甲基 - Ν, Ν -二(乙氧基化(1-4摩尔 Ε0)丙基)铵碳酸盐, 四甲基铵碳酸盐, 甲基碳酸四甲基 铵, 四乙基铵碳酸盐, 乙基碳酸四乙基铵, 四甲基铵硫酸盐, 甲基硫酸四甲基铵, 四 乙基铵硫酸盐和乙基硫酸四乙基铵。
上述复合型碱催化剂中使用的氢氧化四烷基铵的结构式为 R,4N+0H―, 其中 R'独立 地表示含 1一 2个碳原子的烷基。 可采用相应的四烷基铵盐和碱在极性溶剂中反应来 制备。
碱金属氢氧化物或氧化物包括锂、 钠、 钾或铷的氢氧化物或氧化物, 例如氢氧化 钠、 氢氧化钾、 氢氧化锂、 氧化钠或氧化钾。
本发明中采用的垸基碳酸四垸基铵或垸基硫酸四垸基铵是由三垸基胺和碳酸二 垸基 (CI- C2) 酯或硫酸二垸基 (CI- C2) 酯在极性溶剂中反应制得。
本发明的制备垸基碳酸四垸基铵或垸基硫酸四烷基铵的反应温度为 50— 200 ( °C ), 优选温度为 60— 150 ( Ό ), 反应的压力为 0. 1— 3 (MPa) (表压)。 一般说来, 压力与所选定的温度、 溶剂的种类和用量有密切关系, 即溶剂用量越少, 体系压力越 高; 温度越高, 压力越大。 本发明反应的压力最好控制在 0. 4— 2 (MPa), 可得到较高 收率的产物。
本发明的制备垸基碳酸四烷基铵或垸基硫酸四烷基铵的反应所选用的原料三垸 基胺和碳酸二烷基(CI- C2)酯或硫酸二垸基(CI- C2)酯的配比为 2: 1 - 1: 2 (摩尔)。 如果三垸基胺的比例过大, 则在反应体系中过剩, 从而给后续工艺的操作带来困难, 而且污染环境; 如果三垸基胺的比例过小, 则碳酸二烷基 (CI- C2) 酯或硫酸二垸基 (C1-C2)酯过剩,在下一步反应时造成碳酸二烷基(C1-C2)酯或硫酸二烷基(CI- C2) 酯的损失, 增加生产成本。
本发明的制备烷基碳酸四垸基铵或垸基硫酸四烷基铵的反应采用的三垸基胺和 碳酸二烷基 (CI- C2) 酸酯或硫酸二烷基 (CI- C2) 酯的反应时间为 1. 5— 6 小时。 反 应初期速度快, 放热现象明显, 随着原料的逐渐消耗, 反应减缓, 放热逐渐减少。 在 反应中可通过不断地调节冷却水的用量来控制一定的反应温度、 压力。
本发明中缩合反应所选用的极性溶剂包括甲醇或乙醇或异丙醇,溶剂用量为三垸 基胺重量的 1— 10倍。 '
在本发明的氢化反应中, 可以釆用氢气为还原剂。反应温度为 50— 100°C, 压力 ¾ 0. 2-3. OMPa (绝压), 反应时间为 2— 7小时, 气液比为 10: 1— 1500: 1 (体积), 固液比为 0. 5: 100- 16: 100 (重量)。 气体即指氢气, 液体包括氢化溶剂和缩合液, 固体是指复合粉末状催化剂。
本发明中, 氢化反应可以釆用醇类和 /或水作氢化溶剂。 醇类优选甲醇、 乙醇或 异丙醇。 氢化溶剂的用量应使得氢化溶剂: 缩合液 = 1 : 10-5: 10 (重量)。 氢化溶 剂为醇类时, 需要在氢化后进行分离并循环使用。 氢化溶剂为水时, 下文所述的萃取 后的水相只需进行浓縮即得本发明的复合型碱催化剂, 浓缩过程中得到的冷凝水任选 循环回氢化工序。
本发明的氢化反应中使用的复合粉末状催化剂包含镍、 铝和元素 A, 所述 A选自 Fe、 Cu、 Co、 Mn、 Cr、 Mo、 B、 P中的至少一种, 其中镍的含量为 25— 99. 9重量%, 铝、 元素 A的总含量为 0. 1— 75重量%。 催化剂的粒径可以为 40—300目。
上述的选自 Fe、 Cu、 Cr、 Co、 Mn、 Mo、 B和 P中至少一种的调变助剂 A可修饰镍 -铝合金晶态, 达到提高氢化反应选择性, 提高催化剂活性的目的。
本发明的复合粉末状催化剂可以通过如下方法制备: 将镍粉, 铝粉和元素 A按 所需比例混合后, 在高温状态下熔融, 出料后碾碎成 40— 300目的粉末, 然后用氢氧 化物水溶液处理。 氢氧化物浓度可以是 5%_50% (重量), 反应温度可以为 50- 90°C。
为了改善在后续的工艺中采用的磁分离器回收氢化催化剂的效果, 优选至少采 用铁作为调变助剂, 以增加复合粉末状催化剂的铁磁性。 因此, 在本发明的一个优选 实施方案中, 本发明的复合粉末状催化剂可如下制备:按照需要的比例取镍粉, 铝粉, 铁粉, 及任选的选自 Cu、 Cr、 Co, Mn、 Mo、 B和 P的其它调变助剂 A, 在电感炉内熔 融成合金状,将熔化的合金靠气体的压力通过喷嘴喷到高速旋转的铜鼓上,迅速淬冷, 冷却的速度可以达到 105- 10¾/S。 冷却后的合金用球磨机碾压成 40— 300 目, 优选 100-200目的粉末, 然后用 5%- 50% (重量) 的氢氧化物水溶液在 50- 90'C处理。
按照本发明的一个优选实施方案, 氢化反应可以按照如下方式进行: 缩合液、 氢 化溶剂和回收的复合粉末状催化剂及根据需要的补充的新鲜复合粉末状催化剂被固 液输送装置输送进入一级、 二级及任选的更高级氢化反应器, 氢气通过氢气循环机以 鼓泡的形式从各反应器底部进入反应器, 在上述氢化反应条件下进行氢化反应, 生成 含 4一氨基二苯胺的粗氢化液, 将被粗氢化液夹带的复合粉末状催化剂经沉降器和磁 分离器分离, 与氢化液分离的含很高浓度的复合粉末状催化剂固液相, 通过一固液混 合输送装置以重新进入一级反应器循环使用, 同时得到含 4一氨基二苯胺的氢化液。
在氢化过程中, 本发明的复合粉末状催化剂是一固态物质。 氢化催化剂在工业 上一般采用泵进行循环, 但是用泵循环含高浓度粉末状金属的催化剂往往容易损坏泵 腔, 输送效果也不是很理想。 我们设计了一种类似文丘里式的固液输送装置, 并且巧 妙地借用进缩合液时泵的动力进行的无泵循环, 实现了复合粉末状催化剂在氢化体系 中的循环, 大大增加了催化剂在缩合液中的浓度, 大大减少了催化剂的损耗。
按照一种优选的实施方案, 在连续氢化过程中, 粗氢化液中的复合粉末状催化剂 通过沉降和磁分离器回收, 通过文丘里式固液输送装置进行循环, 循环氢气釆用鼓泡 的形式进入反应器。 整个氢化反应过程采取连续进料、 多级反应器串联的全混流方式 进行。 氢化溶剂可以是循环使用的。 经沉降和磁分离器回收了部分复合粉末状催化剂的氢化液进入分离 I工序, 在 此通过过滤回收氢化液中剩余的复合粉末状催化剂, 并直接循环回氢化工序或者在至 少部分再生后循环回氢化工序。
本发明的氢化反应中, 在任选连续进行少量氢化催化剂更新的同时, 可以始终 保持反应系统内催化剂的高浓度。 这样的催化剂循环使用的方法使体系内催化剂的总 活性始终稳定地保持在较高的范围内, 避免了采用固定床催化剂的方法中催化剂活性 逐渐减低的问题。 磁分离器的使用方便了催化剂的回收, 固液混合输送装置的设计应 用则使复合粉末状催化剂在氢化工序中形成了循环流动。
在本发明中,催化剂的失活一般都是由于无机物或有机物积碳堵塞催化剂孔穴, 导致催化剂活性位被覆盖, 引起催化剂活性的降低。 因此, 本发明采用较高浓度的碱 溶液, 例如 5- 50%重量的碱金属氢氧化物水溶液洗涤结合超声波震荡来再生催化剂。 超声波震荡有助于除去无机物沉积物或有机物积碳, 而高浓度的碱溶液可以溶解催化 剂的在第一次碱溶时没有溶解的铝, 形成新的疏松状孔结构, 从而增加催化剂活性。
本发明人通过沉降和磁回收器来回收含磁性的氢化催化剂, 并设计了一种文丘 里式的固液混合输送装置, 借用加料的动力将催化剂送回氢化反应器, 实现了复合粉 末状催化剂循环, 我们还将催化剂过滤后拿出进行再生恢复原来的活性, 双管齐下, 大大降低了催化剂的消耗, 增加了催化剂的活性寿命。
滤液用萃取剂和助萃取剂萃取, 得到有机相和水相, 其中有机相送到分离 II 工 序, 水相经一级或多级浓缩后, 得到本发明的复合型碱催化剂, 循环回缩合工序。
具体地, 在本发明中, 以水为萃取剂, 它和氢化液的比例为 0. 5: 1 -5: 1 (体 积), 优选为 0. 8: 1 - 1. 2: 1 (体积)。 以聚醚类有机物为助萃取剂, 其实例包括但不 限于: 聚乙二醇醚, 如聚乙二醇二甲醚 (分子量 200-1000)、 聚乙二醇二乙醚 (分子 量 200-1000) 和聚乙二醇甲乙醚 (分子量 200-1000); 聚丙二醇醚, 如聚丙二醇二甲 醚 (分子量 200-1000)、 聚丙二醇二乙醚 (分子量 200-1000) 和聚丙二醇甲乙醚 (分 子量 200-1000); 脂肪醇聚氧乙烯醚, 例如其中脂肪醇的碳数为 12-18, 聚氧乙烯的 聚合度为 3- 15的那些。 其与萃取剂水的比例为 0. 0001 : 1 -0. 005: 1 (体积)。 萃取 的压力为 0. 005-0. IMPa, 萃取的温度为 0— 80°C , 萃取时间 2— 5小时。 分液后, 得 到含氢化溶剂和复合型碱催化剂的上层水相, 和主要含苯胺和 4一氨基二苯胺及其少 量有机杂质的有机相。
水相的浓缩可以采用一级或多级气助流降膜蒸发器装置。一般地,用于浓缩的热 媒为水, 水蒸气或前一级蒸发器的二次蒸气。 本发明的气助流降膜蒸发器, 壳程采用 蒸汽加热, 另一部分蒸汽由一级降膜蒸发器的顶部的蒸汽口, 即助流口, 进入管程, 水相从气助流降膜蒸发器的低浓度水相进口进入管程内。 以蒸汽为助动力, 蒸汽和水 相运动方向同向。 具体地, 所述气助流降膜蒸发器包括壳程 (2,)、 管程 (3' )、 安装 在壳程 (2') 上端的蒸汽进口 (8,)、 安装在壳程 (2' ) 下端的蒸汽冷凝水出口 (1,)、 安装在管程 (3' ) 顶部的低浓度水相进口 (6' )、 安装在管程 (3') 底部的高浓度水相 出口 (9'), 安装在管程(3')顶部的助流蒸汽进口 (5', 7'), 安装在低浓度水相进口 (6 下方的分布盘 (4' )。
在所述降膜蒸发器内, 在蒸汽的带动下, 水相通过分布盘, 在管子内侧从上到下 呈膜状流动, 控制停留时间为 2— 60秒, 其温度可以为 30— 105°C。 浓缩时采用的壳 程蒸汽的压力为 0. 005-0. IMPa (绝对压力)。通过釆用气助流降膜蒸发器, 利用蒸汽 带动水相从上到下流动, 加快了液体流动速度, 控制了停留时间, 同时在较髙的温度 下, 将水相中的低沸物质大量地蒸发。 这样可最大限度地减少含氢氧化四垸基铵的复 合型碱催化剂的分解。 如果氢化溶剂为醇, 则蒸发物冷凝得到的冷凝物 (其为醇和水' 的混合物) 可送分离 Π工序以回收氢化溶剂; 如果氢化溶剂为醇 /水混合物, 则蒸发 物冷凝得到的冷凝物 (其为醇和水的混合物) 可循环回氢化工序或送分离 II工序以回 ' 收醇; 如果氢化溶剂是水, 则蒸发物冷凝得到的冷凝物(其为水)可循环回氢化工序。
在本发明的分离 Π工序中, 从分离 I 工序送来的经萃取的有机相中蒸发得到苯 胺, 其循环回缩合工序, 而分离了大部分苯胺的塔釜液送精制工序。 蒸发器的操作压 力可以为 0. 005-0. IMPa (绝对压力), 塔釜温度为 120— 320°C, 气相温度为 60—190 °C。
在氢化溶剂为醇或醇 /水混合物的情况下,将分离 I工序中浓缩水相时得到的蒸 发器冷凝物精馏得到作为氢化溶剂的醇, 其循环回氢化工序。
在分离 II工序中分离了大部分苯胺的有机相中, 含有 4一氨基二苯胺、苯胺、偶 氮苯和吩嗪等。 在本发明的一种实施方案中, 精制工序采用三塔连续精馏及间歇精馏 进行, 其中所述待精制的有机相通过泵输送入 1号精馏塔内, 从塔顶取出苯胺、 吩嗪 与偶氮苯, 塔釜出料为粗品 4一氨基二苯胺; 1号精馏塔的塔顶出料进入 3号精馏塔, 3号精馏塔塔顶蒸出苯胺, 其含量为约 99%, 可直接循环回缩合工序, 塔釜剩下吩嗪 和偶氮苯; 1号精馏塔塔釜液通过泵输送到 2号塔, 2号精馏塔塔顶蒸馏出成品 4一氨 基二苯胺, 塔釜料液积累到一定量, 进入间歇蒸馏釜蒸馏, 蒸馏出料液中余下的少量 4一氨基二苯胺, 并将其返回 2号精馏塔, 其它料渣由釜底放出。
在上述的本发明的精制工艺中, 1 号精馏塔的真空度为 0. 09— 0. 098MPa, 回 流比为 2: 1 - 10: 1, 塔顶温度为 80—130°C, 塔釜温度为 260—290°C ; 2号精馏塔 的真空度为 0. 09— 0. 098MPa, 回流比为 1 : 0. 5- 1: 4, 塔顶温度为 140— 190°C, 塔 釜温度为 260- 300°C ; 3号精馏塔的真空度为 0. 09-0. 098MPa, 回流比为 1: 0. 5- 1: 2, 塔顶温度为 80— 120°C, 塔釜温度为 120— 170°C ; 间歇精馏的塔釜真空度为 0. 09 -0. 098MPa, 塔顶温度为 235— 250°C, 塔釜温度为 280— 330°C。 2号精馏塔的塔釜温 度相对较低, 这样可以降低 4一氨基二苯胺的结焦程度, 并且占总量达 96%或更高的 4 一氨基二苯胺可在相对较低塔釜温度的 2号精馏塔的塔顶分离出去, 因而进行间歇蒸 馏的料液中 4一氨基二苯胺的量大大减少。
本发明的制备 4一氨基二苯胺的方法中, 所选用的复合型碱催化剂和复合粉末状 催化剂生产成本低, 催化活性高; 整个制备过程可连续进行, 适于工业规模生产; 在 缩合工序中采用了复合型碱催化剂极大地降低了反应的操控难度, 使反应体系中的水 分不再成为反应制约的因素; 复合型碱催化剂分解大大低于单一的氢氧化四垸基铵催 化剂; 降膜反应器和反应原料的配比的选择使反应的选择性提高; 无须溶剂; 氢化反 应温度较低, 反应条件温和, 氢化催化剂抗毒性好, 副产物少, 转化率和选择性高; 氢化时采用了磁回收器来回收含磁性的复合粉末状催化剂; 通过一种文丘里式的固液., 混合输送装置, 并借用加料的动力将氢化催化剂送回氢化反应器; 用化学和 /或物理 的方法进行催化剂的再生, 降低了催化剂的消耗; 选择了在氢化后回收复合型碱催化 剂, 并且用含有助萃取剂的水作为萃取剂来分离复合型碱催化剂; 萃取后水相采用一 效或多效气助流降膜蒸发器浓缩进行复合型碱催化剂的回收; 全过程连续, 劳动强度 低, 没有产生腐蚀性液体, 基本消除了对环境的污染。 4一氨基二苯胺的纯度可高于 99 % , 并且整个工业规模生产的工艺过程的收率可以高于 95 %。 具体实施方式
下面给出的实施例是为了进一步说明实施本发明的方式, 而不在任何方面对本 发明构成限制。
实施例 1 .
复合型碱催化剂的制备:
在配有冷凝器和搅拌器的 1000毫升三颈烧瓶中,以任意顺序加入 227. 5克 20% (重 量) 的氢氧化四甲基铵水溶液(0. 50摩尔)、 10克氢氧化钠 (0. 25摩尔)、 346克 30% 四甲基铵碳酸盐水溶液 (0. 5摩尔), 在 72— 77Ό下搅拌均匀, 即制得复合型碱催化 剂, 浓度 27. 3 % (重量)。
实施例 2
复合粉末状催化剂的制备- 取镍粉 46克, 铝粉 51克, 铁粉 3克, 混合均勾后在电感炉内熔融成合金状, 将 熔化的合金靠气体的压力通过喷嘴喷到高速旋转的铜轱上, 迅速淬冷 (冷却的速度可 以达到 105-10¾/S)。冷却后的合金用球磨机碾压成粉末状, 过筛得到 40— 300目的粉 末 99. 7克。 在容量为 500毫升的装有温度计和搅拌器的三口烧瓶内, 装入 375克浓 度为 20 % (重量) 的 NaOH水溶液, 缓缓加入上述制得的粉末, 在 60Ό搅拌处理 4小 时, 然后用去离子水洗涤固体至中性, 即得到复合粉末状催化剂。
实施例 3
在真空下同时打开所述复合型碱催化剂、 苯胺和硝基苯输送泵, 调节流量至苯胺 150千克 /小时、 硝基苯 30千克 /小时、 复合型碱催化剂 200千克 /小时, 将上述组分 硝基苯、 苯胺以及复合型碱催化剂连续进料至降膜反应器进行加热以进行缩合反应; . 降膜反应器中的縮合液从下部排出进入一级反应器, 以继续进行缩合反应; 部分一级 反应器底部的缩合液通过循环泵再返回降膜反应器, 形成局部循环系统。 降膜反应器 的热媒采用 78- 90°C酒精蒸气。控制反应温度为 75°C, 压力为 0. 008MPa (绝对压力), 循环液流量 1米 V小时。 一级反应器的物料溢流至二级反应器。 二级反应器的操作温 度和压力等工艺条件与一级反应器相同。 控制物料在降膜反应器、 一级反应器和二级 反应器中的总停留时间为 5小时。 在缩合反应稳定后, 可使用按下面实施例方法回收 的复合型碱催化剂, 仅补加少部分新鲜的按实施例 1制备的复合型碱催化剂, 控制反 应体系中氢氧根与硝基苯的摩尔比不小于 1 : 1。 二级反应器排出的物料经分析, 硝基 苯≤0. 1 %,水分为 24. 9 % , 4—亚硝基二苯胺和 4一硝基二苯胺含量为 16. 1 % (重量)。
实施例 4
在真空下同时打开所述复合型碱催化剂、 苯胺和硝基苯输送泵, 调节流量至苯胺 150千克 /小时、 硝基苯 30千克 /小时、 复合型碱催化剂 200千克 /小时, 将上述组分 硝基苯、 苯胺以及复合型碱催化剂按比例连续进料至降膜反应器进行加热以进行缩合 反应; 降膜反应器中的缩合液从下部排出进入一级反应器, 以继续进行缩合反应; 部 分一级反应器底部的缩合液通过循环泵再返回降膜反应器, 形成局部循环系统。 降膜 反应器的热媒采用 78- 90°C酒精蒸气。。 控制反应温度 75Ό, 压力 0. 008MPa (绝对压 力), 循环液流量 1米 V小时。 一级反应器的物料溢流至二级反应器。 二级反应器的 操作温度和压力等工艺条件与一级反应器相同。 控制物料在降膜反应器、 一级反应器 和二级反应器中的总停留时间为 5小时。 在缩合反应稳定后, 使用回收的复合型碱催 化剂。 按照氢氧化钠: 四垸基铵盐 (按照实施例 1是四甲基碳酸铵) 1 : 1 (摩尔) 的 比例补加碱催化剂,控制反应体系中氢氧根离子的浓度与硝基苯的摩尔比不小于 1 : 1。 二级反应器排出的物料经分析, 硝基苯≤0. 1 % , 水分 15. 6%, 4一亚硝基二苯胺和 4 一硝基二苯胺含量为 17. 6 % (重量)。 实施例 5
氢化
将按实施例 3的方法所做的缩合液,过滤后进料到一级氢化反应器, 该反应器带 有密封的磁搅拌器, 冷却和加热系统。 用氢气置换, 并充压到 1. 3MPa。 开动氢气循环 机, 保持循环氢的流量在 1 标准立方米 /小时, 并且循环氢气以鼓泡的形式进入氢化 反应器, 以改善反应时的气液传质效果。 控制硝基苯和苯胺的缩合液的流量为 306千 克 /小时, 甲醇的流量为 60升 (48Kg) /小时。 同时向反应器中添加上述制得的复合 粉末状催化剂, 使固液比为 6: 100 (重量比)。 氢化还原液从一级反应釜溢流到二级 反应釜,再溢流到三级反应釜,然后溢流到沉降槽,反应温度 75—80°C ,压力 1. 3MPa, 总停留时间为 5小时。 在磁分离器的作用下, 可以最大可能地回收所述复合粉末状催 化剂。 沉降槽底部的含有较大浓度固体催化剂的固液混合物经文丘里式的固液输送装 置借用加料的动力重新返回到一级氢化反应器。 可以通过监测还原反应终点情况来判 断氢化反应中催化剂的活性, 从而决定是否需要补加复合粉末状氢化催化剂。
氢化还原液经过高效液相色谱检测, 不含 4一硝基二苯胺和 4一亚硝基二苯胺。 实施例 6
分离 I
按照实施例 5的方法所生产的氢化液,经过沉降和磁分离回收复合粉末状催化剂 后, 进行过滤回收磁分离不能回收的极其微细的复合粉末状氢化催化剂, 再生后循环 使用返回到氢化工序。 将不含固体催化剂的氢化还原液用计量泵以 360升 /小时的流 量连续送至萃取塔的顶部, 同时萃取剂水以相同的 360升 /小时流量, 助萃取剂分子 量为 400— 800的聚乙二醇二甲醚以 0. 升 /小时流量连续进入萃取塔的底部。萃取后, 从塔顶得到水相, 塔底得到有机相。 萃取时间为 3小时, 萃取压力为常压。 氢化还原 液中的甲醇和缩合复合型碱催化剂均被水萃取到水相中, 得到的水相量为 540升 /小 时, 有机相量为 180升 /小时。
将预热到 80°C的水相用计量泵以 540升 /小时的流量,进料至气助流降膜蒸发器 顶部, 气助流降膜蒸发器壳程用 12CTC水蒸汽加热, 物料在该蒸发器内的停留时间为 10秒。 将一级浓缩液送入 0. IMPa压力 (绝对压力) 下的列管式二级降膜蒸发器, 物 料在该蒸发器内的停留时间约 10秒, 从二级降膜蒸发器出来的汽液混合物温度为 80 一 95°C。 然后经二级汽液分离器分离后, 整个浓缩工序中复合型碱催化剂的回收率可 以达到 99. 7%。 将复合型碱催化剂循环回缩合工序。
实施例 7
分离 II
降膜蒸发器蒸发出来的气相经冷凝后, 得到含甲醇约 28重量%的甲醇一水溶液。 该甲醇一水溶液用泵连续进料至精馏塔进行分离, 塔顶得到大于 99重量%的甲醇, 可 循环使用回氢化工序, 塔釜为水。 用气相色谱测塔釜水, 甲醇含量可小于 0. 3重量%。
将萃取分离得到的有机相送入列管式升膜蒸发分离器分离出大部分苯胺。升膜蒸 发分离器的操作压力 (绝对压力) 为 0. 01MPa, 壳程用 180°C蒸汽加热。 经升膜蒸发 分离器顶部汽液分离器分离得到 75— 105Ό的气相及 160°C的液相。 用色谱检测冷凝 后的气相物料, 测得苯胺含量达 99重量%。 大部分苯胺在这个工序中蒸出, 并且蒸出 的苯胺可循环回缩合工序用作缩合反应的原料, 液相物料为 4一氨基二苯胺的粗品, 包含 78. 1%的 4—氨基二苯胺, 21. 75%的苯胺, 和余量的其他有机杂质。
实施例 8
精制
将 4一氨基二苯胺的粗品 (含有 4一氨基二苯胺 78. 1%, 苯胺 21. 75%, 偶氮苯 0, 05%, 吩嗪 0. 1%) , 以 120千克 /小时流量通过齿轮泵连续地送入 1号精馏塔。 控制 塔釜温度 270°C, 塔顶温度 Ι ΙΟΌ , 真空度在 0. 094MPa, 回流比 5: 1。 轻组分苯胺、 偶氮苯、 吩嗪三种物质从塔顶采出, 流量为约 26. 2千克 /小时, 并送入 3号精馏塔。 3号精馏塔塔釜温度 150°C, 塔顶温度 90°C, 真空度 0. 094MPa, 回流比 1 : 1, 塔顶以 24千克 /小时的流量蒸馏出苯胺, 塔釜剩下的是偶氮苯、 吩嗪。 1号精馏塔塔釜液送 入 2号精馏塔。 2号精馏塔塔釜温度 280Ό,塔顶温度控制在 170Ό,真空度为 0. 097MPa, 回流比 1 : 1。 2号精馏塔的塔顶得到是成品 4一氨基二苯胺。 2号精馏塔塔釜液送入 间歇蒸馏釜。 间歇蒸馏釜的釜温为 285— 320°C, 真空度 0. 094MPa, 顶温保持在 235 -250°C , 蒸出余下的 4-氨基二苯胺, 并循环回 2号精馏塔重新蒸馏。 整个 4一氨基 二苯胺精制工艺连续进行。 得到的成品 4-氨基二苯胺纯度为 99. 1%, 熔点 72°C, 凝固 点 72. 4°C。 该工艺过程的工业规模生产收率为 95. 1%。
实施例 9
催化剂的再生方法
取通过过滤氢化液回收的复合粉末状催化剂 20克,加入装有搅拌装置和温度计 的 100毫升三口烧瓶内, 再加入 20毫升的 40%氢氧化钠溶液。将该混合物在搅拌下升 温至 90Ό , 维持在该温度下反应 1小时。 反应结束后, 将催化剂放入超声波清洗槽清 洗 30分钟, 用水多次洗涤直到洗涤水的 pH值为 7-8, 所得的固体即为再生后的复合 型粉末状催化剂。
实施例 10
复合型碱催化剂的制备
在配有冷凝器和搅拌器的 500毫升三颈烧瓶中, 加入水 230克, 任意顺序加入 五水合氢氧化四甲基铵 91克 (含 0. 50摩尔氢氧化四甲基铵)、 氢氧化钠 20克 (0. 5 摩尔)、 氯化三甲基羟乙基铵 70克 (0. 5摩尔), 控制温度 75 ± 2°C, 搅拌均匀, 制得 复合型碱催化剂, 浓度为 32. 85 (重量%)。
实施例 11
复合型碱催化剂的制备
在配有冷凝器和搅拌器的 500毫升三颈烧瓶中, 加入水 230克, 不按顺序加入 五水合氢氧化四甲基铵 91克 (含 0. 50摩尔氢氧化四甲基铵)、 氢氧化钠 20克 (0. 5 摩尔)、 甲基碳酸四甲基铵 [ (C ) 4N] +[C03CH3n4. 5 克 ( 0. 5 摩尔), 控制混合温度 75 ± 2°C, 搅拌均匀, 制得复合型碱催化剂, 浓度 33. 7 (重量%)。
实施例 12
在配有冷凝器, 搅拌器和分水器的 500毫升四口烧瓶中, 加入水 150克, 不按 顺序加入五水合氢氧化四甲基^ 91克 (含 0. 50摩尔氢氧化四甲基铵)、 氢氧化钠 20 克 (0. 5摩尔)、 甲基碳酸四甲基铵 [ (CH3) 4N] +[C03CH3n4. 5克 (0. 5摩尔), 加入 25克 苯, 升温回流, 在分水器中有水和油层, 油层重新回到四口烧瓶, 水层分出, 直到蒸 出的液体没有水为止, 得到无水复合型碱催化剂。
实施例 13 甲基碳酸四甲基铵 [(C¾)4N]+[C03C¾]'的制备
在一个带有搅拌装置, 加热装置的 1.5升的髙压釜内, 加入碳酸二甲酯 90克 (1.0摩尔), 三甲胺 59克 (1.0摩尔), 甲醇 510克 (15摩尔)。 密闭后开动搅拌, 升温到 140°C, 压力为 1.5MPa, 维持在该温度下反应时间 4小时。 然后降温到 50°C, 出料至 1升三口烧瓶中, 得到甲基碳酸四甲基铵的甲醇溶液, 减压脱去一部分甲醇, 冷却到室温, 有白色晶体析出, 过滤, 烘干再用甲醇作重结晶, 得到甲基碳酸四甲基 铵 119.5克, 色谱分析纯度为 99.2%, 收率为 80.2%
实施例 14
将 1一氯一 2, 3—环氧丙烷 92.5克(1摩尔),和 N-甲基二乙醇胺 3克(1摩尔), 和 2克氢氧化钠, 再加入 700克水, 加入一带有搅拌, 加热, 测温装置的反应釜中, 开动搅拌,逐渐升温到 120Ό, 向反应釜通入环氧乙垸气体,保持反应釜压力 0.3Mpa, 反应压力降低后再通环氧乙垸, 直到通入的环氧乙垸的量达到 150克, 继续在这条件 下反应 2小时, 得到的 C1C¾[C¾C 0]25H, 再通入三甲胺气体 60克, 升温到 140Ό, 压力为 1.5MPa, 维持在该温度下反应时间 4小时。然后降温到室温, 按照常规方法脱 水干燥, 得到 Ν,Ν, Ν-三甲基 乙氧基化 (1- 4摩尔 Ε0) 丙基铵盐酸盐 105克。
实施例 15
氢氧化四甲基铵的制备:
在一个带有搅拌装置,加热装置的 1.5升的髙压釜内,加入碳酸二甲酯 90克(1.0 摩尔), 三甲胺 59克 (1.0摩尔), 甲醇 510克 (15摩尔)。 密闭后开动搅拌, 升温到 140 , 压力为 1.5MPa, 维持在该温度下反应时间 4小时。 然后降温到室温, 出料至 1升三口烧瓶中, 加入 148克 (2.0摩尔)氢氧化钙和 350克水配制成的桨状物。 搅 拌下用 8小时加热蒸出甲醇, 过滤得到 355克氢氧化四甲基铵溶液。 分析知氢氧化四 甲基铵含量为 24.4%, 整个反应收率为 95.2%。
实施例 16
氢氧化四乙基铵的制备
在一个带有搅拌装置,加热装置的 1.5升的高压釜内,加入硫酸二乙酯 154克(1.0 摩尔), 三乙胺 101克 (1.0摩尔), 乙醇 690克 (15摩尔), 密闭后开动搅拌, 升温 到 140°C维持, 压力为 l.OMPa , 维持在该温度下反应时间 4小时。 然后降温到室温, 出料至 1升三口烧瓶, 加入氢氧化钠 80克 (2.0摩尔), 在搅拌下加热, 控制反应温 度为 45°C, 反应 4小时。 过滤, 滤液先蒸出部分乙醇, 加入 500克水, 加入水的同时 蒸乙醇 (其中有部分水被带走), 得到 604克氢氧化四乙基铵溶液。 分析知氢氧化四 乙基铵含量为 23. 3% (重量), 整个反应收率为 95. 7%。
实施例 17
苯胺和硝基苯的量对反应的影响
一个装有真空系统和控温系统的小型反应器与降膜式反应器和循环泵组成局部 循环系统, 总体积为 1升。 先装满苯胺, 循环泵的流量设定为 2升 /小时。 将硝基苯: 苯胺: 复合型碱催化剂中 0H—的摩尔比为 1 : 1: 1. 8 的含有硝基苯、 苯胺和实施例 1 中制备的复合型碱催化剂的混合液以 200毫升 /小时进料至反应器, 停留时间为 5小 时, 保持体系温度为 75Ό , 压力为 0. 008MPa (绝对压力)。 等反应液置换出苯胺, 反 应液组成稳定后, 取样分析, 基本检测不到硝基苯的存在。 根据反应生成的 4-亚硝基 二苯胺和 4-硝基二苯胺的总摩尔数计算反应的选择性。
采用同样的条件, 只是改变硝基苯与苯胺的配比, 得到结果见表 1。
表 1苯胺和硝基苯的量对反应的影响
Figure imgf000018_0001
从表中数据可以看出,增大苯胺和硝基苯的摩尔比可以提高反应的选择性,增加 目标产物, 减少副产物。 但在实际应用中, 若苯胺的量过大, 会增加分离时苯胺的消 耗和分离时能源的消耗。
实施例 18
水对缩合反应的影响:
在一个连续反应装置中,装有真空泵及由测温加热系统、膜式反应器和循环泵组 成的局部循环系统, 总体积为 1升, 先装满苯胺, 循环泵的流量为 2升 /小时, 将含 有硝基苯, 苯胺, 复合型碱催化剂的混合液以一定的速度进入反应器, 保持硝基苯: 苯胺: 的摩尔比例为 1 : 7, 硝基苯: 复合型碱催化剂 0H—摩尔比例为 1 : 1. 15, 保持 体系温度为 75°C , 压力为 0. 008MPa (绝对压力), 等反应液置换出苯胺, 反应液组成 稳定后, 通过调节进料流量来调整反应停留时间, 直到检测硝基苯 ^ 0. 1%, 根据反应 生成的 4-亚硝基二苯胺和 4硝基二苯胺计算的收率达到 97%时, 测量反应液出口处 的水分含量, 得到的结果如下:
Figure imgf000019_0001
可以看到, 随着复合型碱催化剂中 Ν,Ν-二甲基 - Ν,Ν-二(乙氧基化(1-4摩尔 Ε0) 丙基)铵碳酸盐比例的提高, 反应终点时的含水量在 高。 采用本发明的复合型碱催 化剂, 反应结束时反应混合物中允许的水分含量的范围宽了很多, 在体系中含有比较 高的水含量时, 也能取得满意的收率。 因为在反应后期水分越少, 脱水的效率越低, 本发明方法减少了反应的难度。 而若是单单釆用氢氧化四甲基铵作为催化剂, 则须将 体系脱水到 1. 2%, 才有 97%的收率, 这给反应的控制带来了难度, 也增加了能耗。
实施例 19 '
将实施例 12所制得的无水复合型催化剂, 和苯胺 651克装入一带有搅拌装置, 温度计的四口烧瓶中, 开动搅拌, 保持温度为 75°C, 压力为 O. OOSMPa (绝对压力〉, 蒸馏出的苯胺和水共沸物分层后苯胺重新回到四口烧瓶中, 直到体系中含水量小于 0. 5%, 滴加硝基苯 123克, 滴加时间为 2小时, 维持 4小时, 维持的时候继续脱水, 用色谱分析 4-亚硝基二苯胺和 4-硝基二苯胺的收率为 97. 4%,检测体系中含水量为小 于 0. 5%。 实施例 20
连续膜式反应与全混反应结果的比较
控制苯胺、 硝基苯和复合型碱催化剂中 0H—的比例为 7. 5 : 1 : 1. 5 (mol/mol ), 反 应温度为 75°C, 反应时间为 5小时, 压力为 0. 005MPa (绝压), 比较连续膜式反应和 全混反应, 结果见表 2和表 3。
表 2: 全混反应的结果
Figure imgf000020_0001
实施例 21
间歇氢化实施例
在带有搅拌装置、 控温装置的 1升的高压釜中, 加入 500克含 17. 5 %4-亚硝基 二苯胺和 3. 0 %4-硝基二苯胺的缩合液。 加入 150克乙醇和本发明实施例 2中制备的 复合粉末状催化剂 5克。 用氢气置换三次后, 充压到 0. 8MPa。 在搅拌下, 将反应混合 物升温到 100Ό, 并维持在该温度下反应 4小时。 反应结束后冷却, 泄压出料。 用高 效液相色谱分析反应液, 发现反应液里不含 4-亚硝基二苯胺和 4-硝基二苯胺, 4-氨 基二苯胺的含量为 14. 6 % (色谱含量)。 复合粉末状催化剂和贵金属催化剂的比较
用含钯 5 % (重量) 的 Pd/C催化剂和本发明的复合粉末状催化剂做比较。 试验 在上述间歇氢化实施例所述工艺条件下进行, 所加催化剂的量一致, 反应结束之后两 种催化剂均回收套用。 在两种催化剂回收套用 21 次之内, 两者反应液中均检测不到 4 -亚硝基二苯胺, 第 21次套用时, 用 Pd/C催化剂所得反应液里含有 0. 1 %的 4-硝基 二苯胺, 而用本发明的复合粉末状催化剂所得的反应液内检测不到 4-硝基二苯胺。表 明本发明的催化剂的抗毒性优于贵金属催化剂。

Claims

权 利 要 求
1. 一种制备 4一氨基二苯胺的方法, 该方法以硝基苯和苯胺为原料, 包括缩合、 氢 化、 分离 I即分离回收和循环使用复合型碱催化剂以及分离回收和循环使用任选至少 部分再生的复合粉末状催化剂、 分离 II即分离回收和循环使用苯胺和任选分离回收和 循环使用氢化溶剂、 精制五个工序, 使用复合型碱催化剂作为缩合催化剂, 使用复合 粉末状催化剂作为氢化反应催化剂。
2. 根据权利要求 1的制备 4一氨基二苯胺的方法, 其特征在于缩合反应的条件是: 硝 基苯:苯胺 = 1: 1— 1 : 15 (摩尔),反应温度为 20— 150°C,反应压力为 0. 005—0. IMPa (绝压), 反应时间为 3. 5— 6小时。
3. 根据权利要求 1或 2的制备 4一氨基二苯胺的方法, 其特征在于复合型碱催化剂中 氢氧根离子与硝基苯的摩尔比为 1 : 4-4: 1。
4. 根据权利要求 1-3中任意一项的制备 4一氨基二苯胺的方法, 其特征在于缩合反应 所釆用的复合型碱催化剂含有氢氧化四垸基铵、 碱金属氢氧化物, 以及四垸基铵盐三 种组分。
5.根据权利要求 4的制备 4一氨基二苯胺的方法, 其特征在于复合型碱催化剂中氢氧 化四垸基铵: 碱金属氢氧化物: 四烷基铵盐 = (0— 9): (0. 5-3): (0. 5-3) (摩尔), 氢氧化四烷基铵、 碱金属氢氧化物、 四垸基铵盐三者浓度总和为 10— 100重量%。
6. 根据权利要求 1-5中任一项的制备 4—氨基二苯胺的方法, 其特征在于所釆用的复 合型碱催化剂通过如下方法制备: 控制温度在 0— 90°C, 将氢氧化四烷基铰、 碱金属 氢氧化物或氧化物、 四垸基铵盐按要求的摩尔比例在水中搅拌均匀, 即得含水的复合 型碱催化剂,其中所述原料氢氧化四垸基铵、 碱金属氢氧化物或氧化物、 四垸基铵盐 均为固体形式或水溶液形式。
7. 根据权利要求 1-5中任一项的制备 4一氨基二苯胺的方法, 其特征在于所釆用的复 合型碱催化剂通过如下方法制备: 控制温度在 0— 90°C, 将氢氧化四烷基铵、 碱金属 氢氧化物或氧化物、 四垸基铵盐按要求的摩尔比例在水中搅拌均匀, 然后加苯共沸完 全脱去水分, 得到无水复合型碱催化剂, 其中所述原料氢氧化四垸基铵、 碱金属氢氧 化物或氧化物、 四烷基铵盐均为固体形式或水溶液形式。
8. 根据权利要求 1一 7中任一项所述的制备 4—氨基二苯胺的方法, 其特征在于所述 的四烷基铵盐具有如下通式-
[ (Rl) (R2) (R3) (R4) N] +„Χη'
其中 Rl、 R2、 R3、 R4相同或不相同, 为具有 1-4个碳原子的烷基, 并且所述烷基可 以具有亲水取代基团, X 选自卤根、硫酸根、碳酸根、磷酸根、碳酸氢根、硫酸氢根、 烷基 (C1-C2) 碳酸根、 烷基 (C1-C2)硫酸根等, n= l— 2。
9. 根据权利要求 8的制备 4一氨基二苯胺的方法, 其特征在于所述的四烷基铵盐通式 中的 Rl、 R2、 R3、 R4 中至少一个具有亲水取代基团, 该亲水取代基团选自羟基、 甲 氧基、 聚醚、 阳离子聚酰胺、 聚酯、 多乙烯多铵、 强水溶性含季铵盐的基团等.
10. 根据权利要求 9的制备 4一氨基二苯胺的方法, 其特征在于所述的四烷基铵盐为 选自多甲基化三亚乙基四胺硫酸盐, 多甲基化二亚乙基三胺碳酸盐, Ν, Ν-二甲基 -N,
Ν -二甲氧乙基铵碳酸盐, Ν-甲基- Ν,Ν, Ν-三甲氧乙基铵碳酸盐, Ν, Ν, Ν-三甲基 - Ν-羟 乙基铵碳酸盐, 氯化三甲基羟乙基铵, Ν,Ν, Ν-三甲基 -Ν-乙氧基化(1-4摩尔 Ε0)乙基 铵碳酸盐, Ν, Ν, Ν-三甲基 -Ν-乙氧基化(1-4摩尔 Ε0)丙基铵碳酸盐, Ν, Ν, Ν-三甲基 - Ν -乙氧基化(1-4摩尔 Ε0)丙基铵盐酸盐, Ν, Ν 二甲基 - Ν, Ν-二(乙氧基化(1-4摩尔 Ε0) 丙基)铵碳酸盐的含亲水取代基的四烷基铵盐。
11. 根据权利要求 8的制备 4一氨基二苯胺的方法, 其特征在于所述的四垸基铵盐选 自四甲基铵碳酸盐、 甲基碳酸四甲基铵、 四乙基铵碳酸盐、 乙基碳酸四乙基铵、 四甲 基铵硫酸盐、 甲基硫酸四甲基铵、 四乙基铵硫酸盐和乙基硫酸四乙基铵。
12. 根据权利要求 8 11中任一项的制备 4一氨基二苯胺的方法, 其特征在于所述的四 烷基铵盐, 是由三垸基胺与碳酸二垸基 (C1-C2)酯或硫酸二垸基 (CI- C2)酯在极性溶剂 中反应制得的。
13. 根据权利要求 12所述的的制备 4一氨基二苯胺的方法, 其特征在于制备所述的四 垸基铵盐的反应中, 反应压力为 0. 1— 3 (MPa); 反应温度为 50— 200 ( Ό ); 反应时 间为 1. 5— 6小时;三烷基胺与碳酸二垸基 (CI- C2)酯或硫酸二垸基 (CI- C2)酯的比为 2: 1 - 1: 2 (摩尔); 所选的极性溶剂为甲醇、 乙醇或异丙醇; 极性溶剂的用量为三烷基 胺的重量的 1一 10倍。
14. 根据权利要求 1-13中任意一项的制备 4一氨基二苯胺的方法, 其特征在于缩合反 应在无氧条件下进行。
15. 根据权利要求 1-14中任意一项的制备 4一氨基二苯胺的方法, 其特征在于缩合反 应中, 无须另加或控制质子材料。
16.根据权利要求 1-15中任意一项的制备 4一氨基二苯胺的方法, 其特征在于縮合反 应中无溶剂。
17.根据权利要求 1-16中任意一项的制备 4一氨基二苯胺的方法, 其特征在于縮合反 应中只需在反应的初期添加部分复合型碱催化剂, 反应过程中仅补充复合型碱催化剂 中的四烷基铵盐和碱金属氢氧化物或碱金属氧化物两个成分。
18.根据权利要求 1-17中任意一项的制备 4一氨基二苯胺的方法, 其特征在于縮合工 序是在由缩合循环泵、 降膜反应器和一级反应器形成的循环系统及任选的后续反应器 中进行。
19.根据权利要求 1一 18的制备 4一氨基二苯胺的方法,其特征在于所述缩合工序采用 了降膜反应器, 降膜反应器的热媒采用酒精蒸气、 热水、 蒸汽或甲醇蒸气。
20.根据权利要求 1-19中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应的条件为: 釆用氢气为还原剂, 气液比为 10: 1 - 1500: 1 (体积), 固液比为 0. 5: 100- 16: 100 (重量), 溶剂: 缩合液 = 1 : 10— 5: 10 (重量), 气体指氢气, 液体包 括溶剂和缩合液, 固体指复合粉末状催化剂, 氢化反应的温度为 50— 100Ό, 反应器 的压力为 0. 2-3. OMPa (绝压), 反应时间为 2-7小时。
21.根据权利要求 1-20中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应所釆用的复合粉末状催化剂包含镍、铝和元素 A, 所述 A选自 Fe、 Cu、 Co、 Mn、 Cr、 Mo、 B和 P中的至少一种, 其中镍的含量为 25—99. 9重量%, 铝和元素 A的总含量为 0. 1— 75重量%。
22.根据权利要求 1-21中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应所釆用的复合粉末状催化剂通过如下方法制备: 将镍粉, 铝粉和元素 A按所需比例 混合后, 在高温下熔融, 淬冷出料后碾碎成粉末, 然后用氢氧化物水溶液处理。
23.根据权利要求 1-22中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应后利用磁分离器来回收磁性的复合粉末状催化剂。
24. '根据权利要求 1-23中任意一项的制备 4一氨基二苯胺的方法, 其特征在于通过文 丘里式固液混合输送装置, 借助加料的动力将回收的复合粉末状催化剂送回氢化反应 器
25.根据权利要求 1-24中任意一项的制备 4一氨基二苯胺的方法, 其特征在于失活的 复合粉末状催化剂通过超声波震动和 /或用强碱处理进行再生。
26..根据权利要求 1-25中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应使用的溶剂为醇类或 /和水。
27.根据权利要求 1-26中任意一项的制备 4一氨基二苯胺的方法, 其特征在于氢化反 应后的氢化液用包含聚醚类助萃取剂的水萃取剂萃取, 其中萃取剂和氢化液的比例为
0.5: 1-5: 1 (体积), 优选 0.8: 1-1.2: 1 (体积), 萃取时间 2— 5小时。
28.根据权利要求 27的制备 4一氨基二苯胺的方法, 其特征在于所述聚醚类助萃取剂 选自聚乙二醇醚、 聚丙二醇醚和脂肪醇聚氧乙烯醚, 及其混合物, 其与水萃取剂的体 积比为 0.0001: 1-0.005: 1。
29.根据权利要求 1-28中任意一项的制备 4-氨基二苯胺的方法,其特征在于氢化液萃 取后得到的水相采用一级或多级气助流降膜蒸发器浓缩回收复合型碱催化剂。
30.根据权利要求 29的制备 4-氨基二苯胺的方法,其特征在于所述气助流降膜蒸发器 包括壳程(2,)、管程(3,)、安装在壳程(2,)上端的蒸汽进口 (8')、安装在壳程(2,) 下端的蒸汽冷凝水出口 ( )、 安装在管程 (3') 顶部的低浓度水相进口 (6')、 安装 在管程(3')底部的高浓度水相出口(9'),安装在管程(3')顶部的助流蒸汽迸口(5', 7'), 安装在低浓度水相进口 (6') 下方的分布盘 (4')。
31.根据权利要求 29或 30的制备 4一氨基二苯胺的方法,其特征在于水相浓缩时的压 力 (绝对压力) 为 0.005— 0.1 (MPa), 停留时间为 2— 60秒, 助流蒸汽压力保持在 0.01-0.5MPa。
32.根据权利要求 1-31中任意一项的制备 4-氨基二苯胺的方法,其特征在于精制采用 三塔连续精馏与间歇精馏, 其中 1、 2、 3 号精馏塔的真空度各自独立地为 0.09— 0.098MPa,塔釜温度分别为 260— 290°C、 260— 300°C和 120—170°C,回流比分别为 2: 1— 10: 1, 1: 0.5-1: 4和 1: 0.5-1: 2, 间歇精馏的塔釜真空度为 0.09— 0.098MPa, 塔釜温度为 280— 330°C。
33.制备 4一氨基二苯胺的方法, 包括:
(i) 将硝基苯、 苯胺和复合型碱催化剂按比例, 通过计量泵连续进料至缩合工 序, 反应生成含 4一硝基二苯胺和 4一亚硝基二苯胺和 /或它们的盐的缩合液 (7);
(ii)缩合液(7)和氢化溶剂(包括补充的氢化溶剂(2)和任选回收的氢化溶 剂 (5)) 按比例连续进料至氢化工序, 在复合粉末状催化剂 (包括补充的复合粉末状 催化剂 (1 ) 和循环的、 任选再生的复合粉末状催化剂 (4) ) 的催化作用下和氢气反 应, 得到含 4一氨基二苯胺的氢化液 (8);
( iii )氢化液(8)进料至分离 I工序,在此分离得到 (a)复合粉末状催化剂 (4), 其直接循环回氢化工序或者至少部分再生后循环回氢化工序, (b)复合型碱催化剂
(3), 其循环回缩合工序, 和(c)浓缩时蒸发得到的水相和萃取得到的有机相(9) ;
( iv) 将分离 I工序中得到的水相和有机相 (9) 分别送至分离 II工序, 在此分 离得到(a)苯胺 (6), 其循环回缩合工序, (b)分离了大部分苯胺的 4一氨基二苯胺 粗品 (10) ,和任选地 (c), 氢化溶剂 (5), 其循环回氢化工序; 和
(v) 将 4一氨基二苯胺粗品 (10)进料至精制工序, 在此分离出 (a) 部分苯胺 (6 ), 其循环回缩合工序, 和 (b) 4—氨基二苯胺成品。
PCT/CN2004/000733 2003-07-04 2004-07-02 A process for preparing 4-aminodiphenylamine WO2005003078A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006500463A JP4500302B2 (ja) 2003-07-04 2004-07-02 4−アミノジフェニルアミンの製造方法
DE602004010234T DE602004010234T2 (de) 2003-07-04 2004-07-02 Verfahren zur herstellung von 4-aminodiphenylamin
ES04738331T ES2298762T3 (es) 2003-07-04 2004-07-02 Proceso para preparar 4-aminodifenilamina.
MXPA05013788A MXPA05013788A (es) 2003-07-04 2004-07-02 Proceso para preparar 4-aminodifenilamina.
EP04738331A EP1591438B1 (en) 2003-07-04 2004-07-02 A process for preparing 4-aminodiphenylamine
CA2515238A CA2515238C (en) 2003-07-04 2004-07-02 Process for preparing 4-aminodiphenylamine
BRPI0412101-5A BRPI0412101A (pt) 2003-07-04 2004-07-02 processo para a preparação da 4-aminodifenilamina
EA200501647A EA009395B1 (ru) 2003-07-04 2004-07-02 Способ получения 4-аминодифениламина

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN03148198.1 2003-07-04
CN 03148198 CN1253428C (zh) 2003-07-04 2003-07-04 一种合成4-硝基二苯胺和4-亚硝基二苯胺和/或它们的盐的方法
CNB031481965A CN1189445C (zh) 2003-07-04 2003-07-04 精制4-氨基二苯胺的方法
CNA031482007A CN1470324A (zh) 2003-07-04 2003-07-04 一种复合粉末状催化剂及其制备方法
CNB031481949A CN1185206C (zh) 2003-07-04 2003-07-04 一种含4-氨基二苯胺组合物的分离方法及其设备
CN03148200.7 2003-07-04
CNB031481957A CN1185207C (zh) 2003-07-04 2003-07-04 一种连续氢化制备4-氨基二苯胺的方法
CN 03148565 CN1228310C (zh) 2003-07-04 2003-07-04 一种制备氢氧化四烷基铵的方法
CN 03148199 CN1202073C (zh) 2003-07-04 2003-07-04 制备4-氨基二苯胺的方法
CNB031485669A CN1186124C (zh) 2003-07-04 2003-07-04 一种复合型碱催化剂及其制备方法
CN03148196.5 2003-07-04
CN03148195.7 2003-07-04
CN03148565.0 2003-07-04
CN03148194.9 2003-07-04
CN03148566.9 2003-07-04
CN03148199.X 2003-07-04

Publications (1)

Publication Number Publication Date
WO2005003078A1 true WO2005003078A1 (en) 2005-01-13

Family

ID=33569032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000733 WO2005003078A1 (en) 2003-07-04 2004-07-02 A process for preparing 4-aminodiphenylamine

Country Status (11)

Country Link
US (7) US7084302B2 (zh)
EP (1) EP1591438B1 (zh)
JP (1) JP4500302B2 (zh)
KR (1) KR100612922B1 (zh)
BR (1) BRPI0412101A (zh)
CA (1) CA2515238C (zh)
DE (1) DE602004010234T2 (zh)
EA (1) EA009395B1 (zh)
ES (1) ES2298762T3 (zh)
MX (1) MXPA05013788A (zh)
WO (1) WO2005003078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302588A (ja) * 2006-05-10 2007-11-22 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612922B1 (ko) 2003-07-04 2006-08-14 농유 왕 4-아미노 디페닐아민의 제조방법
US8034972B2 (en) * 2007-06-27 2011-10-11 H R D Corporation System and process for production of toluene diisocyanate
US7750188B2 (en) * 2007-06-27 2010-07-06 H R D Corporation System and process for the production of aniline and toluenediamine
US8540870B2 (en) * 2009-06-25 2013-09-24 Uop Llc Process for separating pitch from slurry hydrocracked vacuum gas oil
US8202480B2 (en) * 2009-06-25 2012-06-19 Uop Llc Apparatus for separating pitch from slurry hydrocracked vacuum gas oil
CN102020567B (zh) * 2009-09-11 2013-11-06 上海安赐机械设备有限公司 一种粗硝基苯精制方法及其装置
CN102259029B (zh) 2010-05-24 2014-12-10 江苏圣奥化学科技有限公司 固体碱催化剂
US9006489B2 (en) 2011-06-07 2015-04-14 Jiangsu Sinorgchem Technology Co., Ltd. Method for pretreating and using copper-based catalyst
US9150470B2 (en) 2012-02-02 2015-10-06 Uop Llc Process for contacting one or more contaminated hydrocarbons
IN2014KN01593A (zh) 2012-03-07 2015-10-23 Nocil Ltd
IN2014KN01594A (zh) 2012-04-13 2015-10-23 Nocil Ltd
CN102895785A (zh) * 2012-10-31 2013-01-30 南通海发水处理工程有限公司 一种降膜小螺旋高速分离蒸发器
WO2014098775A1 (en) 2012-12-19 2014-06-26 Slovenská Technická Univerzita V Bratislave, Strojnícka Fakulta Automobile bodies and their manufacturing processes
RU2553984C2 (ru) * 2013-02-28 2015-06-20 Олег Александрович ГОДЗОЕВ Способ получения 4-аминодифениламина и его алкилированных производных
CN103709045A (zh) * 2013-12-12 2014-04-09 江苏集贤绿色化学科技研究院有限公司 一种4-氯-3-三氟甲基苯胺盐酸盐的制备方法
WO2015094128A1 (en) * 2013-12-16 2015-06-25 Duslo, A.S. Process for the preparation of 4-aminodiphenylamine precursors
CN104729949A (zh) * 2013-12-23 2015-06-24 北京橡胶工业研究设计院 一种评价抗氧剂对溶剂体系污染性的分析方法
CN105585507B (zh) * 2014-11-13 2019-04-30 江苏圣奥化学科技有限公司 4-氨基二苯胺的制备方法
CN106267869B (zh) * 2015-05-13 2018-06-15 中国石油化工股份有限公司 侧向进料的降膜蒸发器
JP2017018910A (ja) * 2015-07-13 2017-01-26 CO2M‐Tech株式会社 複合膜及びその製造方法
CN105237408A (zh) * 2015-10-30 2016-01-13 重庆长风化学工业有限公司 硝基苯萃取苯胺的萃取方法
CN105294451A (zh) * 2015-10-30 2016-02-03 重庆长风化学工业有限公司 用于硝基苯萃取苯胺的处理方法
RU2681527C1 (ru) * 2016-12-30 2019-03-07 Бейджинг Хуаши Юнайтед Энерджи Технолоджи энд Девелопмент Ко., Лтд. Способ и устройство для получения светлых нефтепродуктов из тяжелого масла способом гидрирования в псевдоожиженном слое
US10876056B2 (en) * 2016-12-30 2020-12-29 Beijing Huashi United Energy Technology And Development Co., Ltd. Process and device for hydrogenation of heavy oil using a suspension-bed
CN108325478A (zh) * 2018-02-12 2018-07-27 北京国能中林科技开发有限公司 一种适用于液态储氢载体的加氢反应的降膜反应器
CN111072502B (zh) * 2019-12-27 2022-11-15 大连奇凯医药科技有限公司 一种固定床连续加氢制备苯胺类化合物的方法
CN113019270B (zh) * 2021-03-25 2022-10-28 高洪东 一种液相硝基苯加氢催化剂循环工艺及其装置
CN113248390A (zh) * 2021-05-13 2021-08-13 山东阳谷华泰化工股份有限公司 N-苯基-n’-(1-甲基-4苯基)对苯二胺及其制备方法
CN114917853A (zh) * 2022-05-11 2022-08-19 顶峰油脂化工(泰兴)有限公司 一种间歇加氢反应的方法
US20240117149A1 (en) 2022-09-28 2024-04-11 The Goodyear Tire & Rubber Company Rubber - forming additives from end of life tires through syngas production
US20240124683A1 (en) 2022-09-28 2024-04-18 The Goodyear Tire & Rubber Company Rubber - forming additives from biomass through syngas production
CN115784977A (zh) * 2023-02-06 2023-03-14 淄博新农基作物科学有限公司 2-氯-3-三氟甲基吡啶的合成工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566783A1 (en) * 1992-04-21 1993-10-27 Akzo N.V. Process for the production of nitrodiarylamines
US5453541A (en) * 1991-06-21 1995-09-26 Monsanto Company Method of preparing 4-aminodiphenylamine
US5739403A (en) * 1996-01-11 1998-04-14 Bayer Ag Process for the production of optionally substituted 4-aminodiphenylamines
CN1307556A (zh) * 1998-05-18 2001-08-08 弗莱克斯塞思美国有限合伙公司 制备4-氨基二苯胺类的方法
US6395934B1 (en) * 1997-12-03 2002-05-28 Bayer Aktiengesellschaft Raney nickel catalysts, a method for producing said raney nickel catalysts and the use of the same for hydrogenating organic compounds
US6395933B1 (en) * 2001-07-23 2002-05-28 Flexsys America, L.P. Process for preparing 4-aminodiphenylamine intermediates

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635100A (en) * 1949-11-15 1953-04-14 Du Pont Monoquaternary ammonium carbonates and their preparation
GB947082A (en) 1961-02-01 1964-01-22 Ici Ltd Preparation of 4-aminodiphenyl amine
DE1543385A1 (de) 1966-12-02 1969-09-25 Basf Ag Verfahren zur Herstellung von quaternaeren Ammoniumhydroxyden
US3768539A (en) * 1971-07-12 1973-10-30 Westinghouse Electric Corp Modular arrangement of falling film multiple effect evaporator
US3768538A (en) 1971-08-09 1973-10-30 G Saveliev Wheel rim for pneumatic tyre
JPS5237992B2 (zh) * 1972-02-25 1977-09-26
US4072713A (en) * 1972-07-27 1978-02-07 Phillips Petroleum Company Method for separating tetraalkylammonium salts
US3797552A (en) * 1972-10-24 1974-03-19 Aerojet General Co Multiple effect evaporators
US4094734A (en) * 1973-10-15 1978-06-13 Henderson Industrial Corporation Evaporator and treatment of viscous brines
DE2355737C2 (de) * 1973-11-08 1982-10-21 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von 4-Amino-diphenylamin
DE2614587A1 (de) * 1976-04-05 1977-10-13 Metallgesellschaft Ag Verfahren zum eindampfen wasserhaltiger fluessigkeiten
US4102926A (en) * 1977-01-06 1978-07-25 Aldan Alexandrovich Usvyatsov Method for producing 4-nitrosodiphenylamine
DE2713374B2 (de) * 1977-03-25 1980-02-14 Bayer Ag, 5090 Leverkusen Raney-Nickel-Eisen-Katalysator
DE2713602C3 (de) 1977-03-28 1980-03-20 Akzo Gmbh, 5600 Wuppertal Verfahren zur Herstellung von Nitrosobenzol
US4187248A (en) 1977-11-23 1980-02-05 Monsanto Company Making a nitrodiarylamine by reacting an alkali metal salt of a formamide with a nitrohaloarene
DE2810666B2 (de) 1978-03-11 1981-01-29 Akzo Gmbh, 5600 Wuppertal Verfahren zur Herstellung von p-Amino-diphenylamin
NL7810941A (nl) * 1978-11-03 1980-05-07 Philips Nv Combinatie van stroomafnemer en spanningsrail, alsmede een der delen van deze combinatie.
US4404401A (en) 1979-02-23 1983-09-13 Akzona Incorporated Process for the preparation of para-amino-diphenylamine
US4313002A (en) * 1980-10-29 1982-01-26 Uop Inc. Preparation of p-aminodiphenylamines
US4900868A (en) 1982-01-18 1990-02-13 Monsanto Company Process for producing N,N'-disubstituted paraphenylene diamine mixtures by sequential reductive alkylation
US4614817A (en) 1983-12-19 1986-09-30 Monsanto Company Making nitrodiarylamines
DE3461788D1 (en) 1983-12-19 1987-02-05 Monsanto Co Process for making nitrodiarylamines
ZA858835B (en) 1984-12-05 1986-07-30 Uniroyal Chem Co Inc Process for preparing 4-aminodiphenylamines
US4683332A (en) 1985-05-20 1987-07-28 The Goodyear Tire & Rubber Company Para-nitrodiphenylamine synthesis
JPS6262841A (ja) 1985-09-13 1987-03-19 Mitsuboshi Belting Ltd 感圧導電性ゴムシ−ト
JPS6262814A (ja) * 1985-09-11 1987-03-19 Dai Ichi Kogyo Seiyaku Co Ltd アルキレンオキサイド付加重合物の製法
DE3537247A1 (de) * 1985-10-19 1987-04-23 Bayer Ag Verwendung von modifizierten raney-katalysatoren zur herstellung von aromatischen diaminoverbindungen
US4714530A (en) * 1986-07-11 1987-12-22 Southwestern Analytical Chemicals, Inc. Method for producing high purity quaternary ammonium hydroxides
US4760186A (en) * 1986-09-15 1988-07-26 Monsanto Company Preparation of substituted aromatic amines
US4776929A (en) * 1986-11-25 1988-10-11 Mitsubishi Gas Chemical Company, Inc. Process for production of quaternary ammonium hydroxides
US4764254A (en) 1987-05-21 1988-08-16 Rosenblad Corporation Falling film liquor heater having a screen to prevent clogging of a liquid distributing tray
US5118388A (en) 1990-04-12 1992-06-02 Polysar Financial Services S.A. Polymer melt distributor
US5253737A (en) * 1991-11-25 1993-10-19 Datwyler Ag Auxiliary brake force multiplying spring in a multidisc service and auxiliary brake system
US5552531A (en) * 1992-05-22 1996-09-03 Monsanto Company Process for preparing substituted aromatic azo compounds
US5331099A (en) * 1992-05-22 1994-07-19 Monsanto Company Process for preparing p-nitroaromatic amides and products thereof
JPH06306020A (ja) 1993-04-22 1994-11-01 Sumitomo Chem Co Ltd 4−アミノジフェニルアミンの製造方法
JP3541396B2 (ja) * 1993-04-23 2004-07-07 住友化学工業株式会社 4−アミノジフェニルアミンの製造方法
US5451702A (en) 1993-04-26 1995-09-19 Monsanto Company Process for preparing substituted aromatic amines
US5438034A (en) * 1993-06-09 1995-08-01 Lonza, Inc. Quaternary ammonium carbonate compositions and preparation thereof
FR2710856B1 (fr) 1993-10-07 1995-12-29 Rhone Poulenc Chimie Composition de matière utile comme catalyseur de type Raney, pour l'hydrogénation d'halogénonitroaromatiques en halogénoaminoaromatiques et procédé en faisant application.
US5420354A (en) * 1994-10-06 1995-05-30 Uniroyal Chemical Company, Inc. Process of preparing para phenylamines
TW340806B (en) 1995-03-28 1998-09-21 Mitsui Toatsu Chemicals Modified Raney catalyst and process for preparation thereof
FI107382B (fi) * 1996-02-23 2001-07-31 Valtion Teknillinen Menetelmä aromaattisten nitroyhdisteiden pelkistämiseksi
EP0846653B1 (en) * 1996-12-05 2001-03-21 Ammonia Casale S.A. High efficiency catalytic carbon monoxide conversion process
DE19651688A1 (de) * 1996-12-12 1998-06-18 Bayer Ag Verfahren zur Herstellung von aromatischen Aminen durch Gasphasenhydrierung
CN2294446Y (zh) 1996-12-14 1998-10-14 河北工业大学 蒸发室与分离室分开的管式降膜蒸发器
DE69733832T2 (de) 1996-12-25 2006-06-01 Sumitomo Chemical Co., Ltd. Verfahren zur herstellung von alkenylsubstituierten aromatischen kohlenwasserstoffen
DE19709124A1 (de) * 1997-03-06 1998-09-10 Bayer Ag Verfahren zur Herstellung von 4-Aminodiphenylamin
US5977411A (en) * 1997-06-10 1999-11-02 Flexsys America L.P. Catalytic hydrogeneration of nitrobenzene to 4-aminodiphenylamine in the presence of a hydroxyl compound and a solvent
TW500712B (en) 1997-08-06 2002-09-01 Bayer Ag Process for the preparation of 4-aminodiphenylamine
DE19810929A1 (de) 1998-03-13 1999-09-16 Bayer Ag Verfahren zur Herstellung von 4-Aminodiphenylamin
US5840982A (en) * 1998-06-04 1998-11-24 Uniroyal Chemical Company, Inc. Process for preparing para-phenylenediamine derivatives
SK283209B6 (sk) * 1998-12-11 2003-03-04 Duslo, A. S. Spôsob prípravy 4-aminodifenylamínu
DE19909176A1 (de) 1999-03-03 2000-09-07 Kataleuna Gmbh Catalysts Hydrierkatalysator und Verfahren zu seiner Herstellung
DE60032767T2 (de) * 1999-04-29 2007-10-31 China Petrochemical Corp. Katalysator zur hydrierung und seine herstellung
KR100298572B1 (ko) * 1999-08-19 2001-09-22 박찬구 카바아닐라이드로부터 4-니트로디페닐아민과 4-니트로소디페닐아민의 제조방법
JP2001192701A (ja) 2000-01-11 2001-07-17 Hitachi Metals Ltd ニッケル−アルミニウム合金からなる球状の触媒用粉末及びそれからなるスポンジニッケル触媒、並びにそれらの製造方法
FR2803856B1 (fr) 2000-01-13 2002-07-05 Atofina Synthese de l'hydroxyde de tetramethylammonium
DE10005601A1 (de) * 2000-02-09 2001-08-16 Bayer Ag Verfahren zur Herstellung von Aminodiphenylaminen
CN1313400A (zh) 2000-03-10 2001-09-19 上海博德基因开发有限公司 一种新的多肽——人atp依赖的丝氨酸蛋白水解酶13和编码这种多肽的多核苷酸
FR2807036B1 (fr) 2000-03-28 2002-05-10 Rhodia Chimie Sa Hydrogenation continue de composes nitres aromatiques utilisant un catalyseur a faible teneur en aluminium
US6495723B1 (en) * 2000-06-21 2002-12-17 Flexsys America Zeolite support loaded with a base material for use in the coupling of aniline and nitrobenzene
US6365745B1 (en) 2000-07-14 2002-04-02 Sumika Fine Chemicals Co., Ltd. Method for producing hydrazine derivative
FI112781B (fi) * 2000-09-25 2004-01-15 Steris Europe Inc Menetelmä ja laitteisto puhtaan höyryn tuottamiseksi
DE10055221A1 (de) * 2000-11-08 2002-05-29 Bayer Ag Verfahren zur Herstellung von 4-Aminodiphenylamin
JP4256078B2 (ja) 2001-02-21 2009-04-22 住友化学株式会社 4−アミノジフェニルアミンの製造方法
IL159994A0 (en) 2001-07-23 2004-06-20 Flexsys America Lp Process for preparing 4-aminodiphenylamine
DE10147674A1 (de) 2001-09-27 2003-04-24 Gea Wiegand Gmbh Einrichtung zur Fallstromverdampfung einer flüssigen Substanz und anschließenden Kondensation des entstandenen Brüdens
FR2834984B1 (fr) * 2002-01-21 2005-08-19 Rhodia Polyamide Intermediates Procede continu d'hydrogenation de nitriles ou composes nitres en amines
WO2003075332A1 (fr) * 2002-03-04 2003-09-12 Fujimi Incorporated Composition de polissage et creation d'une structure en fil
US7183439B2 (en) * 2002-12-10 2007-02-27 Flexsys America L.P. Process for preparing 4-aminodiphenylamine intermediates
JP4546958B2 (ja) * 2003-07-04 2010-09-22 チアンス・シノケム・テクノロジー・カンパニー・リミテッド 4−アミノジフェニルアミンの製造方法
KR100612922B1 (ko) * 2003-07-04 2006-08-14 농유 왕 4-아미노 디페닐아민의 제조방법
CN100336796C (zh) 2004-07-15 2007-09-12 王农跃 制备4-氨基二苯胺的方法
KR100621310B1 (ko) 2005-05-16 2006-09-06 금호석유화학 주식회사 4-아미노디페닐아민의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453541A (en) * 1991-06-21 1995-09-26 Monsanto Company Method of preparing 4-aminodiphenylamine
EP0566783A1 (en) * 1992-04-21 1993-10-27 Akzo N.V. Process for the production of nitrodiarylamines
US5739403A (en) * 1996-01-11 1998-04-14 Bayer Ag Process for the production of optionally substituted 4-aminodiphenylamines
US6395934B1 (en) * 1997-12-03 2002-05-28 Bayer Aktiengesellschaft Raney nickel catalysts, a method for producing said raney nickel catalysts and the use of the same for hydrogenating organic compounds
CN1307556A (zh) * 1998-05-18 2001-08-08 弗莱克斯塞思美国有限合伙公司 制备4-氨基二苯胺类的方法
US6395933B1 (en) * 2001-07-23 2002-05-28 Flexsys America, L.P. Process for preparing 4-aminodiphenylamine intermediates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1591438A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302588A (ja) * 2006-05-10 2007-11-22 Sumitomo Chemical Co Ltd 4−ニトロソジフェニルアミン及び4−ニトロジフェニルアミンの製造方法

Also Published As

Publication number Publication date
KR20050004106A (ko) 2005-01-12
ES2298762T3 (es) 2008-05-16
JP2006524188A (ja) 2006-10-26
US20090048465A1 (en) 2009-02-19
US7989662B2 (en) 2011-08-02
MXPA05013788A (es) 2006-06-27
EP1591438B1 (en) 2007-11-21
US7235694B2 (en) 2007-06-26
US7084302B2 (en) 2006-08-01
BRPI0412101A (pt) 2006-08-15
US20070227675A1 (en) 2007-10-04
US20050240058A1 (en) 2005-10-27
US20130066113A1 (en) 2013-03-14
US9029603B2 (en) 2015-05-12
US20080039657A1 (en) 2008-02-14
EA009395B1 (ru) 2007-12-28
US20060247473A1 (en) 2006-11-02
CA2515238C (en) 2011-06-28
JP4500302B2 (ja) 2010-07-14
EP1591438A1 (en) 2005-11-02
DE602004010234D1 (de) 2008-01-03
DE602004010234T2 (de) 2008-10-02
KR100612922B1 (ko) 2006-08-14
EA200501647A1 (ru) 2006-06-30
US20070232832A1 (en) 2007-10-04
US8293673B2 (en) 2012-10-23
EP1591438A4 (en) 2006-02-01
CA2515238A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
WO2005003078A1 (en) A process for preparing 4-aminodiphenylamine
WO2005003079A1 (fr) Procede de production d'une 4-aminodiphenylamine
CN101691332B (zh) 一种催化加氢制备4-氨基二苯胺的方法
WO2000035853A1 (en) Method of preparation of 4-aminodiphenylamine
CN107434769A (zh) 一种rt培司生产除盐方法
CN100453525C (zh) 制备4-氨基二苯胺的方法
US8686188B2 (en) Process for preparing 4-aminodiphenylamine
CN100336796C (zh) 制备4-氨基二苯胺的方法
CN1202073C (zh) 制备4-氨基二苯胺的方法
CN1470497A (zh) 制备4-氨基二苯胺的方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004738331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2515238

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3623/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006500463

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004738331

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200501647

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/013788

Country of ref document: MX

ENP Entry into the national phase

Ref document number: PI0412101

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2004738331

Country of ref document: EP