WO2004094683A1 - プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法 - Google Patents

プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法 Download PDF

Info

Publication number
WO2004094683A1
WO2004094683A1 PCT/JP2003/013281 JP0313281W WO2004094683A1 WO 2004094683 A1 WO2004094683 A1 WO 2004094683A1 JP 0313281 W JP0313281 W JP 0313281W WO 2004094683 A1 WO2004094683 A1 WO 2004094683A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oxide layer
based oxide
hot
oxide
Prior art date
Application number
PCT/JP2003/013281
Other languages
English (en)
French (fr)
Inventor
Shoichiro Taira
Masaki Tada
Yoshiharu Sugimoto
Masayasu Nagoshi
Takashi Kawano
Etsuo Hamada
Satoru Ando
Shinji Ootsuka
Masaaki Yamashita
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33307930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004094683(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2003113938A external-priority patent/JP4329387B2/ja
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP03758730A priority Critical patent/EP1616973B1/en
Priority to MXPA05002680A priority patent/MXPA05002680A/es
Priority to EP09156448.4A priority patent/EP2071048B1/en
Priority to CA002493040A priority patent/CA2493040C/en
Priority to MX2008010424A priority patent/MX342803B/es
Priority to BRPI0313873-9A priority patent/BR0313873B1/pt
Priority to US10/521,474 priority patent/US7338718B2/en
Publication of WO2004094683A1 publication Critical patent/WO2004094683A1/ja
Priority to US12/008,019 priority patent/US20080149228A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12542More than one such component
    • Y10T428/12549Adjacent to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a melt port having excellent press formability, a plated steel sheet, and its production. Background scythe
  • hot-dip galvanized steel sheet those that have been subjected to an alloying treatment after zinc plating and those that have not been subjected to alloying.
  • the former is called a galvannealed steel sheet and the latter is called a hot-dip galvanized steel sheet.
  • the coated steel sheet used for automotive panels has been subjected to alloying by heating at 500 ° C after hot-dip galvanizing, taking advantage of its excellent weldability and hardness.
  • An alloyed hot-dip galvanized steel sheet is used.
  • hot-dip coated steel sheets are effective for thickening.
  • ⁇ ⁇ sliding resistance with the mold is higher and the surface melting point is lower than that of alloyed molten steel and plated steel sheet. Therefore, adhesion tends to occur, and press cracking tends to occur.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 2002-4019
  • Patent Literature 2 Japanese Patent Application Laid-Open No. 20024020 discloses a technique for controlling the surface of a hot-dip coated steel sheet during press forming. A method for suppressing mold galling and a method for improving deep drawability have been proposed. However, a detailed study of such a hot-dip galvanized steel sheet revealed that Although the sliding distance with the mold is short, the effect of suppressing the nucleus with the mold is reduced. However, as the sliding distance becomes longer, this effect becomes smaller, and no improvement effect is obtained depending on the sliding conditions.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2-190483 proposes a dumbbell-coated steel sheet having an oxide film mainly composed of ZnO formed on a plating surface.
  • A1 is added to the bath to suppress excessive Fe-Zn alloying ⁇ : Is attached. Due to A1 contained in this trace amount, A1-based oxide is densely formed on the surface of the hot-dip coated steel sheet, so that the surface is inactive and an oxide film mainly composed of ZnO cannot be formed.
  • Patent Document 4 JP-A-3-191091 discloses a Mo oxide film
  • Patent Document 5 JP-A-3-191092 discloses a Co-based oxide film
  • Patent Document 6 Japanese Patent Application Laid-Open No. 3-191093 discloses a Ni oxide film
  • Patent Document 7 Japanese Patent Application Laid-Open No. 3-191094 discloses a Ca-based oxide film formed on a surface. Sufficient effects cannot be obtained for the same reason as the ZnO-based oxide film described above.
  • Patent Document 8 JP-A-2000-160358 describes a technique relating to a zinc-based plated steel sheet provided with an oxide film composed of an Fe-based oxide, a Zn-based oxide, and an A1-based oxide.
  • the surface of the hot-dip galvanized steel sheet is inactive, so the initially formed Fe oxide is not uniform, and the amount of oxide for obtaining the effect is large, and issues such as oxide peeling Occurs. Disclosure of the invention
  • An object of the present invention is to provide a molten zinc-plated steel sheet having low sliding resistance during press forming and exhibiting excellent press formability in a stable manner, and a method for producing the same.
  • the present invention provides a plating layer having substantially a 7J phase and an oxide layer on the surface of the plating layer, wherein the average thickness of the tirlB oxide layer is 1 Onm or more.
  • a certain molten steel and plated steel sheet are used. It is desirable that the oxidized layer has an average thickness of 10 to 200 nm.
  • the disturbing S oxide layer is composed of a Zn-based oxide layer having an atomic ratio of Zn / A1 exceeding 1 and an A1-based oxide layer having an atomic concentration ratio of Zn / A1 of less than 1. .
  • the IGfS plating layer has a concave portion and a convex portion on its surface, and preferably exists at least in the concave portion of the Zn-based oxide layer. .
  • the Zn-based oxide layer has fine irregularities, and the fine irregularities preferably have an average interval (S) of roughness curves of 100 nm or less and an average roughness (Ra) of 100 nm or less. .
  • the Zn-based oxide layer has fine irregularities, and the Zn-based oxide layer has a network structure formed by convex portions and discontinuous concave portions surrounded by the convex portions.
  • the Zn-based oxide layer contains an oxide containing Zn and Fe, and preferably has a Fe atom concentration ratio defined by 1 to 50 at% FeZ (Zn + Fe).
  • the Zn-based oxide layer desirably has an area ratio occupying 15% or more of the plating surface.
  • the Zn-based oxide layer has a ZnZA1 ratio of 4 or more in terms of the atomic concentration ratio. In the case of the Zn / A 1 ratio of 4 or more, the following is more preferable.
  • the Zn-based oxide layer has an area ratio occupying 70% or more of the plating surface.
  • the Zn-based oxide layer is formed in a concave portion on a plating surface formed by temper rolling, and a convex portion or a flat portion other than the concave portion.
  • the Zn-based oxide layer contains an oxide containing Zn and Fe and has a Fe atom concentration ratio defined by FeZ (Zn + Fe) of 1 to 50 at%.
  • the Zn-based oxide layer has fine irregularities, and the Zn-based oxide layer has a network structure formed of convex portions and discontinuous concave portions surrounded by the convex portions.
  • the present invention has a plating layer substantially consisting of 7 phase and a Zn-based oxide layer containing Fe on the surface of the tfif self-coating layer.
  • a hot-dip galvanized steel sheet having an Fe atomic ratio defined by 5050% Fe / (Fe + Zn).
  • the above-mentioned Zn-based oxide layer has a mesh formed by a convex portion and a discontinuous concave portion surrounded by the convex portion. It is preferable to have a gauze-like structure having a shape like a letter.
  • the Zn-based oxide layer preferably has an area ratio occupying 15% or more of the plating surface.
  • the present invention has a plating layer substantially consisting of a 7] phase and a Zn-based oxide layer containing Fe on the surface of the plating layer, wherein the Fujimi Zn-based oxide layer has a convex portion,
  • a hot-dip galvanized steel sheet having fine irregularities having a network structure formed of discontinuous concave portions surrounded by convex portions.
  • the Zn-based oxide layer preferably has an average interval (S) of a roughness curve of 10 to 1000 nm and an average roughness (Ra) of 4 to 10 Onm.
  • the Zn-based oxide layer preferably has an area ratio occupying 70% or more of the plating surface.
  • the Zn-based oxide layer is formed on a flat portion other than the concave portion on the surface to be formed formed by the temper rolling.
  • the Zn-based oxide layer formed on the flat portion preferably has an average interval (S) of a roughness curve of 10 to 50 Onm and an average roughness (Ra) of 4 to L00 nm.
  • the “Zn-based oxide” present on the plating surface may include not only a Zn + -based oxide but also a Zn-based hydroxide, or may be a Zn-based hydroxide. It may be an oxide.
  • the present invention provides a method for producing a hot-dip galvanized steel sheet having a hot-dip galvanizing step, a temper rolling step and an oxidation treatment step.
  • hot-dip galvanizing step hot-dip galvanizing is applied to the steel sheet to form a hot-dip galvanized film.
  • the temper rolling step the steel sheet on which the hot-dip galvanized coating is formed is temper-rolled.
  • the temper-rolled steel sheet is brought into contact with an acidic solution having a pH buffering action, and is subjected to an oxidizing treatment in which the holding time until water washing is 1 to 30 seconds.
  • the acidic solution desirably contains 11 200 g / 1 of Fe ions.
  • the method for producing a hot-dip galvanized steel sheet preferably includes an activation treatment step for activating the surface before or after the temper rolling step. More preferably, the 191 self-activation treatment step is performed before the step of temper rolling.
  • the IfrlB activation treatment step consists of contacting with an alkali of pH 11 or more and 50 ° C. or more for 1 second or more. Previous IB treatment Thereby, the A1-based oxide contained in the surface oxide layer before the t & tS oxidation treatment step is controlled to an A1 concentration of less than 20 at%.
  • the present invention also provides a method for producing a hot-dip coated steel sheet comprising:
  • Hot-dip galvanizing process to apply hot-dip galvanizing to steel sheet to form hot-dip galvanized film
  • Temper rolling process for temper rolling of steel sheet with hot-dip galvanized film formed temper-rolled steel sheet has pH buffering action, 5 to 200 g / 1 Fe ion
  • the present invention eliminates a method for producing a molten steel and a coated steel sheet comprising:
  • Hot-dip galvanizing process to apply hot-dip galvanizing to steel sheet to form hot-dip galvanized film
  • Temper rolling step of temper rolling the steel sheet with the hot-dip galvanized film formed Temper-rolled steel sheet has pH buffering action, is brought into contact with an acidic solution of ⁇ 1-5, and is washed with water
  • an activation step for activating the surface Before or after the temper rolling step, an activation step for activating the surface.
  • FIG. 1 is a schematic front view showing friction measurement. '
  • FIG. 2 is a schematic perspective view showing the bead shape and dimensions in FIG.
  • FIG. 3 is a view showing a surface Auger profile of Sample No. 1 in Table 4 of Embodiment 2 after activation treatment and before oxidation treatment.
  • FIG. 4 is a diagram showing a surface Auger profile of Sample No. 11 in Table 4 of Embodiment 2 after the activation treatment and before the oxidation treatment.
  • FIG. 5 is a diagram showing a surface Auger profile after the activation treatment and before the oxidation treatment of Sample No. l2 in Table 4 of the second embodiment.
  • the present inventors have found that by forming a Zn-based oxide together with an A1-based oxide specific to the surface of a hot-dip galvanized steel sheet, good pressability can be obtained under a wide range of sliding conditions. This is for the following reasons.
  • the A1-based oxide layer is formed on the surface of the hot-dip galvanized steel sheet, it is possible to suppress a certain degree of contact with the die during press forming. Therefore, it is considered effective to form a thicker A1-based oxide layer in order to further improve the sliding characteristics '14 at the time of pressing.However, in order to grow the A1-based oxide layer thicker, however, in addition to this, it is necessary to oxidize at a high temperature for a long time, which is not only practically difficult, but also has a disadvantage in that the Fe—Zn alloying reaction gradually progresses, thereby deteriorating the plating adhesion. Conversely, in order to form a Zn-based oxide layer, it is necessary to completely remove the A1-based oxide layer on the surface, and therefore, there is a disadvantage that this process requires a long time.
  • the surface is oxidized after exposing the nascent surface after partially destroying the A1-based oxide layer, a Zn-based oxide is formed on the nascent surface, and Zn-based oxide is formed on the nascent surface.
  • the oxidized layer can be easily applied.
  • the oxide layer formed in this way has a zinc oxide and an A1 oxide coexisting on the surface, thereby suppressing the adhesion to the press die. And good press formability can be obtained. It was also found that the formation of such a Zn-based oxide layer in at least the four concave portions formed on the plated surface has a low dynamic resistance.
  • a zinc-plated steel sheet is immersed in an acid solution, an acid film is formed on the surface of the steel sheet, and then left for a predetermined time to effectively form a Zn-based oxide. it can.
  • it can be inverted to anorecalic acid and destroy and dissolve some A1-based oxide layers, so that the above oxide layers can be formed more effectively.
  • the inventors have found that slidability can be further improved by imparting fine irregularities to the Zn-based oxide formed on the plating surface.
  • the Gage unevenness is an average roughness Ra (hereinafter, also simply referred to as “ Ra ”) of a roughness curve of 100 nm or less, and an average interval S of a local circuit (hereinafter, also simply referred to as “S”). ) Is the surface roughness of 1000 nm or less, which is an order of magnitude of the surface fiber (Ra: around 1 m) described in fiffS Patent Document 1 It is a small size.
  • roughness parameters such as Ra in the present invention are long Is different from the typical roughness parameter, which defines irregularities of the order of a micron (m) or more, measured on a roughness curve on the order of millimeters or more, and is calculated from a roughness curve several microns long. Things.
  • the above-mentioned prior art specifies the roughness of the surface of the hot-dip coated steel sheet
  • the present invention specifies the roughness of the oxide layer applied to the surface of the hot-dipped steel sheet.
  • the inventors have found that it is effective to add Fe to the Zn-based oxide in order to impart fine irregularities to the Zn-based oxide.
  • the method of providing a Zn-based oxide by forming the acidic oxide on the surface of the steel sheet for a predetermined time after forming the Zn-based oxide by adding Fe to the acidic oxide By using an oxide containing Zn and Fe, fine oxide protrusions can be effectively imparted to the oxide.
  • a hot-dip galvanized steel sheet is usually produced by immersing it in a zinc bath containing a small amount of A1, so that the plating film is mainly composed of phases, and the surface layer is composed of A1 from A1 contained in the zinc bath.
  • This is a film on which a system oxide layer is formed.
  • the 7J phase is softer and has a lower power melting point than the ⁇ phase and ⁇ phase, which are the alloy phases of the alloyed hot-dip galvanized coating, so that adhesion is likely to occur and the slidability during press forming is reduced. Inferior.
  • the mold removes the oxide layer of the Zn-based oxide and the A1-based oxide, but the A1-based oxide layer is scraped off due to the sliding conditions, and adhesion is likely to occur. Even if the situational force S occurs, the coexisting Zn-based oxide layer can exhibit the effect of suppressing, so that the press formability can be improved.
  • the thickness becomes greater in the portion where the Zn-based oxide is present, and not in the portion where the A1-type oxide layer remains, so that the entire surface of the plated steel sheet is It can be seen from the graph that an oxide layer having a non-uniform thickness in which thick and thin portions of oxide coexist is formed.However, an improvement in the slidability can be obtained for the same reason as the mechanism described above. it can. In addition, even if, for some reason, the portion where the oxide layer is not formed in a part of the thin portion, the slidability can be improved by the same mechanism.
  • the oxide layer in the plating surface layer good slidability can be obtained by setting the average thickness to 10 nm or more, but it is more effective to set the average thickness of the oxide layer to 20 nm or more. This is because, in the press forming process in which the area of the mold and the first product becomes large, even if the surface oxide layer is covered, the oxide layer remains and does not reduce the slidability. On the other hand, there is no upper limit on the average thickness of the oxide layer from the viewpoint of slidability. However, when a thick oxide layer is formed, the reactivity of the surface is extremely reduced, and a sintering treatment film is formed. Because it is difficult, it is desirable to be 200nra or less.
  • the average thickness of the oxide layer can be determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering.
  • AES Auger electron spectroscopy
  • 3 ⁇ 43 ⁇ 43 ⁇ 4 at the depth can be obtained by correcting the relative sensitivity factor from the spectrum intensity of each element of the measurement 3 ⁇ 4.
  • the content of 0 due to oxides reaches a maximum at a certain depth (this is also the surface layer), then decreases and becomes constant.
  • the oxide thickness is defined as the depth at which the content of 0 is 1/2 the depth plus the maximum value and the constant value at the depth t / standing from the maximum value.
  • the results of Auger electron spectroscopy can be used to determine the presence or absence of an oxide layer with a non-uniform thickness. This is because the thick part is mainly composed of Zn-based oxide, and the thin part is composed of A1-based oxide.
  • This can be evaluated by the Zn / Al ratio (at ratio) in the surface layer. it can. That is, the portion where the Zn / Al ratio exceeds 1.0 is a thick portion, and the portion where the Zn / Al ratio is 1.0 or less is a thin portion.
  • this decision If an analysis is carried out on any point and a part with a Zn / Al ratio of 1.0 or less is machined at any one point, it can be determined that an oxide layer having a non-uniform thickness is formed.
  • the ratio of the thick portion and the thin portion is not particularly specified, but if there are many thin portions, the average thickness of the oxidized material is less than 10 nm, and the effect of improving the sliding property cannot be obtained. If the average thickness is within the range of the present invention, the following can be satisfied.
  • the shape of the region where the Zn-based oxide is present is not particularly limited, but a good sliding resistance can be obtained by forming irregularities on the surface of the target and at least having the Zn-based oxide present in the concave portion. It was found that there was a reduction effect.
  • the recess on the plated surface is different from the » ⁇ unevenness of Zn oxide.
  • the recess is replaced with a circle of the same area as the size: the diameter of ⁇ is a macro of 111 ⁇ 100 ⁇ 1113 ⁇ 4 ⁇ It refers to irregularities.
  • the sliding resistance is relatively low when the sliding distance is short due to the presence of the A1-based oxide layer on the surface, but the sliding resistance increases with long sliding.
  • Zn 7 is soft and easily deformed compared to cold-rolled steel sheets and galvannealed steel sheets; For the most part, the sliding area is greatly increased and the sliding resistance is increased.
  • Non-Patent Document 1 Masayasu Nagoshi, et al., “Surface of Real Material Observed by Ultra-low Acceleration Scanning Electron Microscope”, Surface Technology, 2003, Vol. 54, No. 1, 31-34
  • the sliding resistance is reduced if the thick portion of the oxide is at least 15% of the plating surface in terms of area ratio. It was found that it had the effect of lowering. There is no upper limit on the ratio of the thick oxide portion to the sliding resistance reduction effect.
  • a technique for forming such an oxide layer it is effective to contact a hot-dip galvanized steel sheet with an acidic solution having a pH buffering action, then leave it for 1 to 30 seconds, and then rinse and dry.
  • the pH of acid ⁇ 3 ⁇ 4 used for such oxidation treatment is in the range of 1.0 to 5.0. This is because if the pH exceeds 5.0, the dissolution of is slow, whereas if it is less than 1.0, the dissolution of zinc is excessively promoted, and both the formation rate of the oxides are slowed.
  • a chemical solution having a pH buffering effect is preferably used for the acidity. This is because not only does the treatment solution have pH stability during actual production, but it also activates the increase in pH required for oxides, and can efficiently produce thick oxide films.
  • the chemical solution having such a pH buffering property is not limited as long as it has a pH buffering property in an acid region.
  • examples thereof include acetates such as sodium acetate (CH 3 C00Na) and potassium hydrogen phthalate. ((K00C) 2 C 6 H 4) Futanore salts such as, Kuen salts such as sodium Kuen acid (Na 3 C 6 3 ⁇ 40 7) Yaku E phosphate potassium dihydrogen (KH 2 C 6 H 5 0 7) , Sodium succinate
  • succinate such as, lactates such as sodium lactate (NaCH 3 CH0HC0 2), tartrates such as sodium tartrate acid (N3 ⁇ 4C 4 H 4 0 6) , borates, One or more of the phosphates can be used.
  • lactates such as sodium lactate (NaCH 3 CH0HC0 2)
  • tartrates such as sodium tartrate acid (N3 ⁇ 4C 4 H 4 0 6)
  • borates One or more of the phosphates can be used.
  • the concentration is preferably in the range of 5 to 50 g / l, respectively, because if it is less than 5 g / l, the pH buffer effect is insufficient and a predetermined oxide layer cannot be formed. If the amount exceeds 50 g / l, the effect is not only saturated but also it takes a long time to form oxides. In the acid sea, Zn is eluted and mixed in from the plating by reciting the coated steel sheet, but this does not significantly hinder the formation of Zn-based oxides. Therefore, the Zn concentration in the acid
  • the method of inverting to acidic ⁇ There is no particular limitation on the method of inverting to acidic ⁇ .
  • the amount of the liquid film is desirably adjusted to 3 g / m 2 or less, and the amount of the liquid film can be adjusted with a squeezing roll, air wiping, or the like.
  • the hot-dip coated steel sheet Before performing such treatment for forming an oxide layer, it is necessary to subject the hot-dip coated steel sheet to temper rolling. This is because the main purpose is usually material reversal, but the present invention also has the effect of simultaneously ruptured part of the A1-based oxide layer on the surface of the steel sheet.
  • the inventors observed each surface of the plated steel sheet before and after the oxide forming treatment with a scanning electron microscope, and found that the Zn-based oxide film was mainly formed by a rolling roll during temper rolling. It was found that the A1 oxide layer was formed at the broken part due to being pressed by the convex part of the roll roll due to the infestation of the plating surface. Therefore, the area ratio and distribution of the Zn-based oxide film are controlled by controlling the roughness and elongation of the rolling roll in the temper rolling, thereby controlling the area in which the A1-based oxide layer is destroyed. The area ratio at which the Zn-based oxide is formed can be controlled. In addition, such a temper rolling can simultaneously form a concave portion on the plating surface.
  • temper rolling any technique that can mechanically destroy the A1-based oxide layer on the plating surface is effective for forming a Zn-based oxide and controlling the area ratio.
  • the method includes, for example, treatment with a metal brush and shot blasting.
  • a treatment for activating the surface of the worms by alkali wake up before the oxidation treatment and then activating the surface.
  • the purpose of this is to further remove the A1-based oxide and expose a new surface on the surface.
  • a treatment for removing the A1-based oxide layer is required to activate the surface. Because it is necessary.
  • the method of contacting with alkali there is no particular limitation on the method of contacting with alkali, and the effect can be obtained by immersion or spraying. If the pH is alkaline, the surface can be activated.However, if the pH is low, HJ ⁇ is slow and the treatment takes a long time. No. There is no limitation on the type of any at P H within the above range, it is Rukoto using a sodium hydroxide.
  • the term “fine convexity” means that the roughness curve has a surface roughness with an average roughness (Ra) of about 100 nm or less and an average interval (S) of local irregularities of about 1000 nm or less.
  • the reason that the sliding resistance is reduced by the fine unevenness is considered to be that the concave portion of the fine unevenness functions as a group of fine oil pits and that the lubricating oil can be effectively retained therein.
  • the lubricating oil holding effect of such a micro-convexity has a relatively smooth surface from a macroscopic point of view, making it difficult to hold the lubricating oil macroscopically. This is particularly effective for stably reducing the sliding resistance of hot-dip plating, where it is difficult to provide a stable roughness.
  • the sliding condition is particularly effective under a sliding condition with low surface pressure.
  • the configuration of the fine irregularities is, for example, a structure in which the surface of the Zn-based oxide layer has fine irregularities, or a granular structure directly on the plating surface or on the layered oxide layer and the Z or hydroxide layer. Fine irregularities may be formed by distributing a Zn-based oxide having a shape such as plate, flake, or the like. It is preferable that Ra is 100 nm or less and S is 800 ran or less. Even if Ra and S are further increased, no significant improvement in the oil sump effect can be seen, and the oxides need to be thickened, which makes production difficult.
  • Ra is 3 nm or more and S is 50 nm or more, which has a sliding resistance effect. Note that Ra is more preferably 4 nm or more than force S. Ra of 3 nm or more, if the fine irregularities are too small, the surface approaches a smooth surface, and the effect of the oil with viscosity [4] as an oil sump is reduced, which is considered to be undesirable.
  • Ra and S One effective way to control Ra and S is to include Fe in the Zn-based oxide as described below.
  • Fe When Fe is included in the Zn-based oxide, the number of the Zn oxide increases due to the removal depending on the content.
  • the size and distribution of Zn oxide can be adjusted, and therefore Ra and S can be adjusted.
  • the shape of the unevenness in the field is not limited to this.
  • the surface roughness parameters of Ra and S determine the surface shape of the Zn-based oxide and the three-dimensional shape measurement function.
  • the "surface roughness-terms" of Japanese Industrial Standards B-0660- It can be calculated according to the formula described in 1998.
  • the shape of the fine irregularities can be observed using a high-performance electron microscope. Since the thickness of the oxide is as thin as several tens of nm, it is effective to observe it using a low acceleration, for example, 1 kV or less. In particular, when a secondary electron image is observed except for low-energy secondary electrons centered at several eV as electron energy, the contrast caused by oxide charging can be reduced. Good observation of the shape can be performed (see Non-Patent Document 1).
  • the method for imparting fine irregularities to the Zn-based oxide there is no particular limitation on the method for imparting fine irregularities to the Zn-based oxide, but one effective method is to use a Zn-based oxide as an oxide containing Zn and Fe.
  • a Zn-based oxide By including Fe in the Zn-based oxide, the size of the Zn-based oxide can be reduced. As a set of such fine-sized oxides, Gageta unevenness can be formed.
  • the oxide containing Zn and Fe becomes an oxide having fine irregularities is not clear, but it is presumed that the growth of Zn oxide is suppressed by Fe or the oxide of Fe.
  • the suitable ratio (percentage) of Fe to the sum of Zn and Fe is not clear, the inventors have found that Fe is effective at least in the range of lat% or more and 50 at% or less.
  • Such an oxide containing Zn and Fe is formed by adding Fe to the acidic ⁇ in the above-mentioned method of forming a Zn-based oxide that has a pH buffering action and which is capable of inverting insects. be able to.
  • the concentration is not particularly limited, but as an example, it can be produced by adding ferrous sulfate (77 solvate) in the range of 5 to 400 g / l under the same conditions as described above.
  • A1 be added to the plating bath. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, or the like is present or added in addition to A1, the effect of the present invention is not impaired.
  • Hot-dip galvanized film was formed on the cold-rolled steel sheet of 0.8 thigh, and temper rolling was performed.
  • 50. C immersed in sodium acetate aqueous solution of pH 2.0 (20g / l), left for a while, washed with water and dried to form an oxide layer on the plating surface.
  • the average oxidized thigh was adjusted by varying the duration of the clothes.
  • treatment was performed by immersion in aqueous sodium hydroxide having ⁇ ⁇ 12.
  • the press formability test and the measurement of the oxide layer thickness were performed as follows.
  • FIG. 1 is a schematic front view showing the number-of-listenings.
  • the sample for friction measurement taken from the sample ⁇ is fixed to the sample stage 2 and the sample stage 2 is fixed to the upper surface of the horizontally movable slide table 3.
  • I have.
  • the first load cell for measuring the load N is installed on the slide table support 5.
  • a second load cell 8 for measuring a sliding resistance force F for moving the slide tape notch 3 in the horizontal direction with the above pressing force applied is attached to one end of the slide table 3.
  • c as lubricants KoTsuta test by applying a Sugimura chemical Co. press wash ⁇ Bretton R352L on the front surface of the sample 1 are.
  • FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used.
  • Bead 6 slides with the lower surface pressed against the surface of sample 1.
  • the shape of the bead 6 shown in Fig. 2 is 10 mm wide, the length of the sample in the sliding direction is 69 thighs, the lower part of both ends in the sliding direction is a curved surface with a curvature of 4.5 ramR, and the lower surface of the bead where the sample is pressed is 10 width
  • the thigh has a flat surface with a length of 60 in the sliding direction.
  • the content (at%) of each element in the flat part was measured by Auger electron spectroscopy (AES), and then the surface was swollen to a predetermined depth. After the sputtering, the content of each element in the plating film was measured by AES, and this was repeated to measure the I ⁇ distribution of each element in the depth direction.
  • the content of 0 due to oxides and hydroxides reaches a maximum at a certain depth, then decreases and becomes constant.
  • the depth at which the sum of the maximum value and the constant value is 1/2 is defined as the oxide thickness, and the average value is obtained from the average value of the results measured at any five points Oxidation was used.
  • Ar sputtering was performed for 30 seconds to remove the contamination layer on the surface of the test material.
  • No. 1 has a high friction value because it is not oxidized after temper rolling.
  • No.8 ⁇ : 12 is an example of immersion in Alkali ⁇ before oxidation treatment. Compared with the retention time until the same water washing of No.3 ⁇ 7, Is low.
  • a hot-dip galvanized film having a Zn adhesion amount of 60 g / m 2 was formed on a cold-rolled steel sheet of 0.8 thigh, and further temper rolling was performed.
  • temper rolling two types of temper rolling were performed.
  • the temper rolling type X was rolled using a Ra-dall roll with a roughness Ra of 3 so that the elongation was 0.8%.
  • temper rolling type Y rolling was performed by using a pressure adjusting port with a roughness Ra of 1.4 / m by shot dull to achieve an elongation of 0.7%.
  • the fiber area ratio of the pressure control roll was evaluated by scanning electron microscope observation at an acceleration of 0.5 kV to 2 kV for a steel sheet not subjected to oxide formation treatment. % Met.
  • the area ratio of the mouth-to-mouth was determined by measuring the area of the area in contact with the mouth from a secondary electron image of a scanning electron microscope. The plating surface is very smooth if the mouth is not fibered, whereas the area where the mouth is in contact is easy to distinguish between the two because the surface is not smooth.
  • Treatment solution ⁇ sodium acetate aqueous solution (40 g / l) with pH 1.7 at operating temperature for 3 seconds, 3 ⁇ 4g for 5 seconds, wash and dry to form an oxide layer on the plating surface.
  • Treatment solution ⁇ ⁇ 2.0 sodium acetate aqueous solution ⁇ (40 g / l) obtained by ferrous sulfate (heptahydrate) was used, The same processing was performed.
  • Treatment solution B with a fermentation rate of ferrous sulfate (heptahydrate) of 5 g / l, treatment solution C of 40 g / l, and treatment solution D of 450 g / l were used.
  • the temperature of the processing liquid is 30 for processing liquids A to C. ) Is 20 ° C. Before the above treatment, some parts were immersed in aqueous sodium hydroxide solution of pH12. Next, for the specimens obtained by the above IB ⁇ method, a press formability test, measurement of the average thickness of the oxide layer, Hffi as a chromium element of Zn-based oxide, and area ratio of formed Zn-based oxide were performed. Measurements, observation of fine tetraconvex of the Zn-based oxide, and measurement of surface roughness of the Zn-based oxide were performed.
  • the press formability test and the measurement of the thickness of the oxide layer were performed in the same manner as in Example 1.
  • the qualitative analysis was used to evaluate the skin element of the Zn-based oxide.
  • the press formability evaluation test of Example 1 is also an evaluation method of the friction number under sliding conditions with a low fiber surface pressure.
  • the formation of the unevenness of the Zn-based oxide was confirmed by using a scanning electron microscope (LEO LE01530) with an Everhart-Thornly type secondary electron detector installed in the sample chamber at an acceleration of 0.5 kV. By observing a high-magnification secondary electron image using the method described above.
  • the surface roughness of the Zn-based oxide was measured using an electron beam three-dimensional roughness analyzer (ERA-8800FE manufactured by Elio-Tas Corporation). The measurement was performed at an acceleration voltage of 5 kV and a working distance (working distance) of 15 mm, and the sampling interval in the in-plane direction during the measurement was set to 5 nra or less (observation magnification was 40,000 or more). Note that gold vapor deposition was performed to avoid charging due to electron beam irradiation. From the scanning direction of the electron beam, a roughness curve of more than 450 lines was cut out per one area of the Zn-based oxide. There were three or more locations measured per sample.
  • the average roughness (Ra) of the roughness curve and the average interval (S) of the local convexity of the roughness curve were calculated using the ⁇ f software attached to the apparatus.
  • Ra and S are parameters for evaluating the roughness and period of the fine irregularities, respectively. These general definitions are described in Japanese Industrial Standards, “Surface Roughness-Terminology”, B-0660-1998.
  • the force, Ra, S which is a roughness parameter for a roughness curve having a length of several u ra, is calculated according to an equation defined in the above-mentioned document.
  • Examples of the present invention For! To 7, it was confirmed from the results of Auger electron spectroscopy that the presence of a Zn-based oxide and an A1-based oxide force S was present on the plating surface. In addition, Examples 1 to 7 of the present invention had several times lower friction, reduced sliding resistance, and higher press formability than Comparative Examples 1 and 2 which did not undergo the oxide formation treatment. I understand.
  • Example of the present invention by scanning electron microscope; In the regions where the Zn-based oxides of Nos. 6 to 6 were present, clear fine protrusions were observed.
  • Example 7 of the present invention had a smoother surface as compared with Examples 1 to 6 of the present invention, although the projections of the present invention were different.
  • Inventive Examples 1 to 6 had Ra force S of 4 m or more, and Inventive Example 7 had Ra of 3.1 nm.
  • the area ratio covered by the Zn-based oxide is 15% or more, so that the sliding resistance reduction effect is excellent.
  • the sliding properties of the hot-dip galvanized steel sheet are largely dependent on the surface pressure during operation due to the soft plating. It was found that the surface pressure was high and the slidability was good, but the slidability tended to be poor when the surface pressure was low. Under conditions of low surface pressure, the surface of the plating is less deformed, so that the mold resembles a mold mainly on the protrusions. In order to further improve the sliding properties of the hot-dip galvanized steel sheet under low surface pressure conditions, we found that it was necessary to form an oxide layer also on the convex part.
  • the surface of a hot-dip galvanized steel sheet is flat when it is not rolled by a pressure regulating roll. Rolling transfers the unevenness of the roll and forms unevenness on the plating surface.
  • the surface of the surface is mechanically destroyed by the A1-based acid in the concave portion, and is more active than the convex portion.
  • the convex portion is a portion that is hardly deformed by the roll, and is generally maintained in a flat state as it is clinging to the surface, and the surface A1-based acid substance is less damaged. Therefore, the surface of the hot-dip galvanized steel sheet after temper rolling has non-uniformly active and inactive parts.
  • the inventors have found that slidability can be further improved by imparting fine irregularities to the Zn-based oxide formed on the plating surface.
  • the fine unevenness means a surface roughness of 100 nm or less in the average roughness Ra of the roughness curve and 1000 nm or less in the average interval S of the local unevenness, which is described in Patent Documents 1 and 2 described above.
  • the surface (Ra: around 1 ra) is a size that is one order of magnitude smaller. Therefore, roughness parameters such as Ra in the present invention are the same as general roughness parameters that define irregularities on the order of micron (; / m) or more measured on a roughness curve whose length is on the order of millimeters or more.
  • the above-mentioned prior art specifies the roughness of the surface of the hot-dip galvanized steel sheet
  • the present invention specifies the roughness of the acid layer applied to the hot-dip galvanized steel sheet surface.
  • the surface layer A1-based oxide of the hot-dip coated steel sheet has an effect on the chemical conversion treatment property and the adhesive bonding property.
  • the etching property may be reduced, and phosphate crystals may not be formed.
  • A1 oxides are removed due to the alkalinity before the chemical conversion treatment and the chemical conversion treatment does not pose a problem.However, even in such a case, if the alkaline degreasing is exposed to mild conditions, the effect can be obtained. And non-uniform A1-based oxide distribution. Irregularities after the dangling treatment cause irregularities and defects after the subsequent electrodeposition coating.
  • adhesives are used for the purpose of preventing corrosion, preventing vibration, and improving joint strength.
  • Some adhesives applied to cold-rolled steel sheets and Zn-Fe alloy-based plating have poor compatibility with A1-based oxides and may not provide sufficient adhesive strength.
  • the present invention improves the mobility under low surface pressure and realizes good press molding, and also improves the chemical conversion treatment property and adhesive bonding, and achieves a surface that balances them. A state is realized.
  • the hot-dip galvanized steel sheet is usually manufactured by immersing it in a zinc bath containing a small amount of A1, the plating film mainly consists of 77 phases, and the surface layer contains A1 contained in the zinc bath.
  • This is a film on which an A1-based oxide layer is formed.
  • the ⁇ phase is softer and has a lower melting point than the ⁇ and ⁇ phases, which are the alloy phases of the alloyed molten zinc plating film. Adhesion easily occurs, resulting in poor slidability during press molding.
  • the A1 oxide layer is formed on the surface of the hot-dip galvanized steel sheet, the effect of suppressing the adhesion of the mold can be seen slightly. When the distance is short, the sliding characteristics may not be degraded.
  • the A1-based oxide layer formed on this surface is thin, sticking is likely to occur when the sliding distance is long, and press forming is satisfactory under a wide range of sliding conditions.
  • the hot-dip galvanized steel sheet is soft and has low surface pressure on the mold and fiber compared with other platings.
  • the Zn-based oxide mainly composed of Zn having fine irregularities obtained by the production method of the present invention contains almost the most part of the plating surface (as an area ratio of 70 D / o or more) It is covered.
  • a part of the A1-based material layer on the surface of the plated steel sheet is ruptured by a pressure regulating roll, etc., and the reaction becomes active in the exposed part of the newly formed surface, and Zn-based oxides can be easily generated.
  • the oxidation reaction does not proceed because the portion where the A1-based oxide layer force S remains is inactive. Oxidation can be easily controlled in the portion where the Zn-based oxide is formed, so that the oxide film thickness required for improving the sliding characteristics can be provided.
  • the thickness becomes greater in the portion where the Zn-based oxide is present, and not in the portion where the A1-type oxide layer remains, so that the entire surface of the plated steel sheet is It can be seen that an oxide layer having a non-uniform thickness in which thick and thin portions coexist is formed, and the sliding property can be improved for the same reason as the mechanism described above. it can. In addition, even if, for some reason, the portion where the oxide layer is not formed in a part of the thin portion, the slidability can be improved by the same mechanism.
  • the average thickness of the oxide layer on this plating surface layer shall be 10 square meters or more.
  • the average thickness of the oxide layer is 20 nm or more. This is in press-forming the contact area of the die and the workpiece increases, whereas the surface of the oxide layer is to ⁇ But residual ⁇ , because there is not caused a decrease in the sliding resistance t, There is no upper limit on the average thickness of the oxide layer from the viewpoint of slidability, but if a thick oxide layer is formed, the reactivity of the surface will be extremely reduced, making it difficult to form a chemical conversion coating. Therefore, it is preferable to set the thickness to 200 nm or less.
  • the sliding characteristics are easily changed by the surface pressure. Low.
  • an oxide with a thickness of 10 nm or more (more preferably, 20 nm or more) is also applied to the protrusions, Z, or flat portions other than the portions that are recessed by the roll. It must be formed. The oxide is easily formed in the recess because the A1-based oxide is destroyed and relatively active, but the oxide is hardly formed in other portions. Therefore, it is effective to reduce the amount of A1-based oxide by appropriate activation treatment.
  • Examples of the method of the activation treatment include a rolling method using a roll, a mechanical removal method such as shot plasting and brush grinding, and a method such as dissolving with an alkaline solution.
  • the amount of A1 in the oxide was adjusted to an appropriate value in order to achieve not only the effect of improving the sliding characteristics by widening the covered area of the oxide but also the chemical conversion treatment and adhesive bonding. It is also important to do. It is necessary to minimize the reactivity of Zn and phosphoric acid in the plating layer in the chemical conversion treatment solution, and to reduce the A1 oxide components that are difficult to dissolve in the weak acidity chemical conversion solution. It is effective.
  • the Zn / A1 ratio (the ratio based on the atomic concentration in the oxide film) is effective as long as the oxide is mainly composed of Zn, which is 4.0 or more. It is necessary that the main surface oxide be sufficiently coated on the plating surface, and that any surface to be plated must be covered with an area ratio of 70% or more.
  • the Zn / A 1 ratio may be 4.0 or more as an atomic concentration ratio, and includes ⁇ which does not include A 1.
  • the Zn / Al ratio can be determined by Auger electron spectroscopy (AES). Similar to the method for evaluating the thickness of the oxide layer described above, the distribution in the depth direction of the thread! ⁇ On the flat portion of the plating film surface is measured, and the Z is estimated from the distribution to the depth corresponding to the estimated oxide layer thickness.
  • the Zn / Al ratio was determined from the average concentration of n (at ° / o) and the average concentration of A1 (at%).
  • the oxide formed on the actual surface The composition is not always uniform, and when viewed in a nano-scale microscopic region, there may be a high or low A1 concentration region. Therefore, it is important to measure the Zn / Al ratio over a relatively wide area of 2 / zmX2 // m3 ⁇ 4g or more in order to evaluate the average composition.
  • the A1 concentration may be higher than the value measured by obtaining a cross section with a TEM or the like, but here, the value is measured in Auger.
  • the Zn / A1 ratio (the ratio at the atomic concentration in the oxide film) becomes 4.0 or more.
  • the coverage of the oxide mainly composed of Zn can be measured as follows.
  • the Zn-based oxide having the Zn / Al ratio of 4.0 or more sufficiently covers the plating surface. It must be 70% or more at the surface.
  • the coverage of Zn-based oxides with a Zn / A1 ratio of 4.0 or more can be determined by elemental mapping using an X-ray microanalyzer (EPMA) or scanning electron microscope (SEM).
  • EPMA the area ratio is estimated by obtaining in advance the intensities of 0, Al, and Zn obtained from the oxide of interest or their ratios, and processing the data of the element map measured based on them. be able to.
  • the area ratio can be more easily estimated by SEM image observation using an electron beam at an accelerating voltage of about 0: 5 kV. Under these conditions, it is possible to clearly distinguish the portion where the oxide is not formed on the surface from the portion where the oxide is not formed, and the area obtained by binarizing the obtained secondary electron image with an image processing software. Can rate. However, it is necessary to confirm beforehand whether the observed contrast matches the oxide of interest with AES, EDS, or the like.
  • the fine unevenness means that the average roughness (Ra) of the roughness curve is about 100 nm or less, and the average distance (S) between the local concave and convex is 1000 ⁇ or less.
  • the reason that the sliding resistance is reduced by the fine unevenness is thought to be that the finely ⁇ convex portion acts as a group of fine oil pits and that the lubricating oil can be effectively retained there.
  • the finely ⁇ convex portion acts as a group of fine oil pits and that the lubricating oil can be effectively retained there.
  • a further sliding resistance reduction effect is exhibited by a fine oil sump effect capable of effectively retaining lubricating oil in the sliding portion.
  • the lubricating oil holding effect of such unevenness is relatively smooth from a macroscopic point of view.
  • the sliding condition is particularly effective under the sliding condition with a low surface pressure.
  • Examples of the fine tetraconvex structure include a structure in which the surface of a Zn-based oxide layer has fine depressions, or a structure in which the surface of the Zn-based oxide layer is directly or on a layered oxide layer and / or a hydroxide layer.
  • fine irregularities may be formed by distributing a Zn-based oxide having a shape such as a granular shape, a plate shape, and a scale shape.
  • Ra is desirably 100 dishes or less
  • S is desirably 800 ran or less. Even if Ra and S are further increased, no significant improvement in the oil sump effect can be seen, and the oxides need to be thickened, which makes production difficult.
  • Ra has an automatic resistance effect of 3 nm or more and S has a dynamic resistance effect of 50 nm or more. It is more desirable that Ra be four or more dishes. Ra of 3 nm or more, if the fine irregularities are too small, approaches the flat surface, and the effect of the viscous oil as a sump is reduced, so it is considered undesirable.
  • Ra and S One effective way to control Ra and S is to include Fe in the Zn-based oxide as described below.
  • Fe When Fe is included in the Zn-based oxide, the number of the Zn oxide increases due to the removal depending on the content.
  • the size and distribution of Zn oxide can be adjusted, and therefore Ra and S can be adjusted.
  • the shape of the fine unevenness is not limited to this.
  • the surface roughness parameters of Ra and S were numerically extracted from the surface shape of the Zn-based oxide using a scanning electron microscope or a scanning probe microscope (such as an atomic force microscope ⁇ ) with a three-dimensional shape measurement function.
  • the length can be calculated from the roughness curve of zm in accordance with the mathematical formula described in Japanese Industrial Standards, “Surface Roughness-Terminology” B-0660-1998.
  • the shape of the fine irregularities can be observed using a high-performance scanning electron microscope. Since the thickness of the oxide is as thin as several tens of nm, it is effective to observe it using a low accelerating miE, for example, 1 kV or less.
  • Non-Patent Document 1 because the to observe the secondary electron image, except the secondary low energy electrons around several e V as the electron energy was able to reduce the contrast caused by the charging of the oxide, Naota Good observation of the shape of the irregularities can be performed (see Non-Patent Document 1).
  • the method for imparting fine irregularities to the Zn-based oxide there is no particular limitation on the method for imparting fine irregularities to the Zn-based oxide, but one effective method is to use a Zn.-based oxide as an oxide containing Zn and Fe.
  • a Zn.-based oxide By including Fe in the Zn-based oxide, the size of the Zn-based oxide can be reduced. Its fine As a set of fine-sized oxides, it is possible to form unevenness in the field. The reason why the oxide containing Zn and Fe becomes an oxide having fine irregularities is not clear, but it is presumed that the growth of Zn oxide is suppressed by Fe or the oxide of Fe.
  • the suitable ratio (percentage) of Fe to the sum of Zn and Fe is not clear, the inventors have shown that Fe is effective at least in the range of lat% or more and 50 at% or less. A more preferable range is 5 to 25 at%.
  • Such an oxide containing Zn and Fe is formed by adding Fe to the acidic ⁇ in the method of forming a Zn-based oxide which is to be used as an acid having a pH buffering action as described below. be able to.
  • a preferable concentration range is 1 to 200 g / l as a divalent or trivalent Fe ion.
  • An even more preferred range is 1 to 80 g / l.
  • the method of adding Fe ion is not particularly specified. For example, when the Fe ion concentration is 1 to 80 g / 1, ferrous sulfate (heptahydrate) is in the range of 5 to 400 g / l. Can be added.
  • An effective method for forming the oxide layer is to make the hot-dip coated steel sheet acidic ⁇ having a pH buffering action, then 3 ⁇ 4g for 1 to 30 seconds, and then rinse and dry.
  • the mechanism of this oxide layer formation is not clear, but can be considered as follows.
  • a hot-dip coated steel sheet is woven into an acid, zinc is dissolved from the steel sheet side. Since the dissolution of zinc simultaneously generates a hydrogen generating core, as the dissolution of zinc progresses, the concentration of hydrogen ions in the zinc decreases, resulting in an increase in the pH of the sickle and a Zn-based oxide layer on the surface of the galvanized steel sheet.
  • the holding time until water washing is important for oxide formation is important for oxide formation.
  • an oxide (or hydroxide) having a special fine uneven structure grows.
  • a more preferred retention time is 2 to: L 0 seconds.
  • the pH of the acid 14 used in the oxidation treatment is preferably in the range of 1.0 to 5.0. This is because when the pH exceeds 5.0, the dissolution of zinc is slow, whereas when the pH is less than 1.0, the promotion of zinc dissolution is excessive and the formation rate of oxides is slow.
  • acid ⁇ It is essential to add a chemical solution having a pH buffering effect. This not only gives the pH stability of the processing solution during actual production, but also causes a local pH rise in the process of forming Zn-based oxides due to the above-mentioned increase in H accompanying the dissolution of Zn.
  • the aeon species of the acid 14 is not particularly specified, and examples thereof include chlorine, nitrate ion, and sulfate ion. More preferably, it is a sulfate ion.
  • the chemical solution having such a P H buffered if it has a pH-buffering in the acidic region, but not limited to the chemical species, for example, acetates such as sodium acetate (C3 ⁇ 4C00Na), potassium hydrogen phthalate ( (K00C) 2 C 6 H 4 ) phthalate such as, Kuen such as sodium Kuen acid (Na 3 C 6 H 5 0 7) Yaku E phosphate dihydrogen potassium (KH 2 C 6 H 5 0 7) salt, succinate sodium (Na 2 C 4 H 4 0 4) succinate, such as, lactates such as sodium lactate (NaCH 3 CH0HC0 2), sodium tartaric acid (Na 2 C 4 H 4 0 6) One or more of tartrate, borate, and phosphate can be used.
  • acetates such as sodium acetate (C3 ⁇ 4C00Na)
  • K00C) 2 C 6 H 4 potassium hydrogen phthalate
  • Kuen such as sodium Kuen acid (Na
  • the concentration is preferably in the range of 5 to 50 g / l, respectively, because if it is less than 5 g / l, the pH buffer effect is insufficient and a predetermined oxide layer cannot be formed. Even if it exceeds 50 g / l, not only does impeachment saturate, but also it takes a long time to form oxides. Zn is eluted and mixed in from the plating by coating the coated steel sheet with acidic ⁇ , but this does not significantly prevent the formation of Zn-based oxides. Therefore, the Zn concentration in the acidic solution is not specified. More preferred pH buffer (!
  • the concentration thereof are sodium acetate trihydrate in the range of 10 to 50 g / 1, more preferably in the range of 20 to 50 g / l.
  • the oxide of the present invention can be effectively obtained by using:
  • the method of inverting the acid is not particularly limited, a method of immersing the plated steel sheet in an acid
  • the amount of the liquid film is desirably adjusted to 3 g / m 2 or less, adjustment of the liquid film amount, squeeze rolls, can be carried out in Eawaipingu like.
  • Such oxide layer Before performing the forming process, temper rolling is performed on the molten dumbbell-plated steel sheet. Need to be applied. This is because, although the main purpose is usually material realignment, the present invention also has the effect of simultaneously destroying part of the A1-based oxide layer on the surface of the steel sheet.
  • the inventors observed the surface of each of the plated steel sheets before and after the oxide formation treatment with a scanning electron microscope, and found that the Zn-based oxide film was mainly formed by rolling rolls during temper rolling. It was found that the A1-based oxide layer was formed in the ruptured area by pressing on the convex part of the rolling roll by contacting the plating surface. Therefore, the area ratio and distribution of the Zn-based oxide film are controlled by controlling the roughness and elongation of the rolling roll in the temper rolling, thereby controlling the area in which the A1-based oxide layer is destroyed. The area ratio at which the Zri-based oxide is formed can be controlled. In addition, such a temper rolling can simultaneously form a concave portion on the plating surface.
  • temper rolling is a technique that can destroy the A1 oxide layer on the plating surface in a Nada manner, it is effective to form a Zn oxide and to control the area ratio.
  • the method includes, for example, treatment with a metal brush and shot blasting.
  • it is effective to carry out a treatment for activating the surface by bringing it into an alkaline state before performing the oxidation treatment.
  • the purpose of this is to further remove the A1-based oxide and expose a new surface on the surface.
  • temper rolling depending on the type of steel sheet, it may not be possible to sufficiently destroy the A1-based oxide layer due to the elongation rate restricted by the material. Therefore, in order to stably form an oxide layer having excellent slidability irrespective of the type of steel sheet, it is necessary to perform a treatment for removing the A1-based oxide layer to activate the surface. Because it is necessary. .
  • the preferred form of the surface A1-based oxide layer effective for forming the Zn-based oxide by the above-mentioned oxidation treatment is as follows.
  • the surface A1-based oxide It is not necessary to completely remove the surface A1-based oxide, and it may be mixed with the Zn-based oxide on the plating surface layer.However, the average concentration of A1 contained in the oxide on the flat part of the surface is average. It is preferable that the state be less than 20 at%.
  • the A1 concentration shown here was determined by Auger electron spectroscopy (AES) and depth-direction analysis by Ar sputtering. The average oxide thickness in the 2 ⁇ raX2 zm region and the When the distribution was measured, the maximum value of the A1 concentration in the range up to the depth corresponding to the oxide thickness was used.
  • the ⁇ ⁇ of this ⁇ ⁇ water is 11 or more, the bath temperature is 50 ° C or more, and the withdrawal time with the liquid is 1 second or more.
  • the type of pH is no particular limitation on the type of pH as long as it is within the above range, and sodium hydroxide or a sodium hydroxide-based degreasing agent can be used.
  • the activation treatment may be performed either before or after temper rolling, which is performed after the hot-melt ⁇ -plating required to be performed before the oxidation treatment.
  • temper rolling which is performed after the hot-melt ⁇ -plating required to be performed before the oxidation treatment.
  • the A1 oxide force S is mechanically destroyed at the portions that are crushed by the rolling rolls and become concaves, so the convex and / or flat portions other than the concaves And the removal amount of A1 oxide tends to be different. For this reason, the amount of A1 oxide after the activation treatment becomes non-uniform in the plane, and the subsequent oxidation treatment becomes non-uniform, so that sufficient characteristics may not be obtained.
  • an activation treatment is performed, an appropriate amount of A1 oxide is uniformly removed in a plane, a temper rolling is performed, and then a process of performing an oxidation treatment is performed.
  • a hot-dip plating film was formed on a cold-rolled steel sheet of 0.8 thigh, and temper rolling was performed.
  • the concentration of sodium hydroxide-based degreasing agent and Nippon Parkerizing Co., Ltd.'s FC-4370 is appropriately changed as an activation treatment.
  • the pH was changed and the worm was wormed for a predetermined time.
  • the chemical conversion treatment was performed by the following method. Approximately lg / m 2 of oil-proof oil (Parker Koto, Knoxlast 550HN) was applied to the sample, and then the alkali effect (day; —Coloring Co., Ltd. FC-E2001, spray treatment, spray pressure lkgf / cm 2 ), Water washing, surface preparation (PL-Z, manufactured by Nippon Parkerizing Co., Ltd.) and chemical conversion (PB-L3080, manufactured by Nichi-Ichi Kalizing Co., Ltd.). At this time, the chemical conversion treatment time was fixed (2 minutes), but for alkaline thighs, the concentration of rot was set to 1/2, the rot time was set to 30 seconds, and the conditions were more minor than standard conditions.
  • Evaluation was Hffi by; ⁇ after chemical conversion treatment.
  • X Phosphoric acid in a wide range; ⁇ There are regions where crystals are not formed.
  • the depth distribution of the composition of the plating film surface was measured by repeating the measurement of Ar + sputtering and AES spectrum. Conversion from the time to the depth of the sputter-ring was carried out by sputtering rate obtained by measuring the film thickness known Si0 2 film. The composition (at%) was obtained from the Auger peak intensities of each element by correcting the relative sensitivity factor, but C was not taken into account to eliminate the influence of contamination.
  • Oxide depth distribution of 0 concentration due to hydroxide is high near the surface, becomes constant decreases in accordance with internal ⁇ 1 rather. The depth that is 1/2 of the sum of the maximum value and the constant value was defined as the oxide thickness.
  • the area of about 2 ⁇ ⁇ 2 ⁇ in the flat part was used for analysis, and the average value of the results measured at arbitrary two or three points was taken as the average acid [ ⁇ .
  • the Zn / Al ratio of the oxide was determined from the average Zn concentration (at%) and the average Al concentration (at%) up to a depth corresponding to the oxide thickness.
  • the depth direction distribution of the oxide thickness and the A1 concentration in the flat portion of the surface after the activation treatment was measured by the same method as in the above (4).
  • the maximum value of the A1 concentration up to a depth corresponding to the oxide thickness was used as an index of the effect of the activation treatment.
  • a scanning electron microscope ⁇ (LEO 3 ⁇ 4 LE01530) was used. A secondary electron image at a magnification was observed. Under these observation conditions, the portion where the Zn-based oxide is formed can be clearly contrasted with the portion where such an oxide is not formed as a dark contrast.
  • the distribution of brightness observed here is strictly considered to be the thickness distribution of the oxide, but here, the oxides mainly composed of Zn with a Zn / A1 ratio of 4.0 or more It was separately confirmed by AES that the oxide was thicker than that of the oxide, and it was determined that the dark portion was a Zn-based oxide having a Zn / Al ratio of 4.0 or more.
  • the obtained secondary electron image is binarized by image processing software, The area ratio of the dark portion was determined and defined as the area ratio where the Zn-based oxide was formed.
  • the formation of the unevenness of the Zn-based oxide is confirmed by the use of a scanning electron microscope (LEO LE01530). The observation was made by observing a high-magnification secondary electron image using a detector.
  • the measurement of the surface roughness of the Zn-based oxidized product was performed using an electron beam three-dimensional roughness analyzer (ERA-8800FE manufactured by Elionitas). The measurement was performed with an acceleration voltage of 5 kV and a working distance (working distance) of 15 thighs, and the sampling interval in the in-plane direction during the measurement was set to 5 nm or less (the observation rate was 40,000 or more). Note that gold vapor deposition was performed to avoid charging due to electron beam irradiation. More than 450 roughness curves with a length of 3 / zm were cut out from the electron beam direction per region of the Zn-based oxide. There were three or more locations measured per sample.
  • the average roughness (Ra) of the roughness curve and the average spacing (S) of the local irregularities of the roughness curve were calculated from the above roughness curve using the software attached to the equipment.
  • Ra and S are parameters for evaluating the roughness and period of the Gage unevenness, respectively. These general definitions are described in Japanese Industrial Standards, “Surface Roughness-Terminology”, B-0660-1998.
  • the force which is a roughness parameter for a roughness curve of a length of number; im, whose Ra and S are calculated according to the mathematical formulas defined in the above-mentioned documents.
  • Example Nos. 1 to 7 after adjusting the concentration and activating with a degreasing solution having a pH of 11 or more, sodium acetate was used as PH ⁇ in Table 3 An oxide film was formed by weaving with water containing trihydrate and changing the holding time until water washing appropriately. 'In these treatments, the average oxidizing enzyme was 18-31 nm, and the ratio of Zn-based oxides with a Zn / Al atomic concentration ratio of 4.0 or more was 90-96%. As a result, the coefficient of friction is low, Shows excellent slidability. Also, the chemical conversion property and the adhesive bonding property were good. On the other hand, in the comparative example in which the activation treatment was not performed (Sample No.
  • samples Nos. 4, 5, and 6 used those having Fe ions in the treatment liquid used for the oxidation treatment. As a result, 15 to 25 at% of Fe was measured in the Zn-based oxide. Comparing Sample Nos. 3 and 4, the results show that the sliding characteristics of Sample No. 4 containing Fe are slightly better, despite that both are under almost the same conditions except for the presence of Fe ions in the processing solution. It has become.
  • Sample No. 8 is a comparative example, the treatment liquid for is a sulfuric acid solution does not contain a P H buffer, it resulted number grinding thigh high. This is considered to be because the Zn-based oxide area ratio is low and the morphology of the oxide does not have the fine irregularities with the ridges obtained by the present invention.
  • sample No. 9 also did not have sufficient properties because the oxidized solution did not contain pH-low pain.
  • Sample Nos. 10 and 11 are not sufficiently activated, and therefore have a low area ratio of the Zn-based oxide, and are particularly inferior to the present invention in the points of capita treatment and adhesive bonding.
  • Sample No. 12 is an untreated hot-dip galvanized steel sheet, which has insufficient oxides, and is inferior to the examples of the present invention in terms of slidability, ridge treatment, and adhesive bonding. Table 4
  • Zn-based oxide Zn / AI atomic concentration ratio is 4.0 or more. Atomic concentration measurement method and area ratio measurement method are described in the text.
  • the hot-dip galvanized steel sheet is usually manufactured by dipping in a dumbbell bath containing a small amount of A1.
  • the plating film is mainly composed of ⁇ phase, and the surface layer is based on A1 contained in the zinc bath.
  • ⁇ -based oxide layer ⁇ formed film.
  • This 7? Phase is softer and has a lower power melting point than the ⁇ phase and ⁇ phase, which are the alloy phases of the alloyed molten dumbbell plating film. Poor slidability.
  • the A1-based oxide layer is formed on the surface of the married lead-plated steel sheet, it has no effect of suppressing the adhesion of the mold and the force is seen. When the distance is short, the sliding characteristics may not be degraded.
  • the hot-dip galvanized steel sheet is soft and easily adheres to the mold as compared with other platings, and has low surface pressure and low sliding characteristics.
  • the use of an oxide containing Fe will improve the adhesion of the oxide [4], and the sliding resistance reduction effect will easily be maintained even during sliding.
  • the appropriate Fe content is determined by using the Fe atomic ratio calculated from the atomic concentration of Fe and Zn by the formula of Fe / (Fe + Zn) as an index ⁇ , at least:! ⁇ 5 It has been confirmed that the effect is within the range of 0%. More preferably, the content can be stably obtained by setting the content to 5 to 25%.
  • the atomic concentrations of Fe and Zn in the oxide were measured by using a transmission electron microscope (TEM) and an energy-dispersive method for the cross-section sample of the plating surface containing the surface oxides prepared by the FIB- / Z sampling method. It is considered most appropriate to obtain from spectra measured using an X-ray analyzer (EDS). Other techniques (eg, AES and EPMA) cannot reduce the spatial resolution of the analysis area sufficiently, making it difficult to analyze only the oxides on the surface. Furthermore, it is clear that the inclusion of Fe in the Zn-based oxide to be formed is also effective for the formation amount of the oxide, and also for the provision of fine irregularities and control of the shape (size) described later. The effect can be expected in terms of product safety.
  • TEM transmission electron microscope
  • EDS X-ray analyzer
  • the average thickness of the oxide layer is 10 nm or more, but more effective when the average thickness of the oxide layer is 20 nm or more. It is a target. This is because the surface of the oxide layer remains even if the surface oxide layer is worn out in the press forming process in which the removal area of the mold and the workpiece becomes large, and the sliding property does not decrease.
  • the average thickness of the oxide layer can be determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering.
  • AES Auger electron spectroscopy
  • the composition at the depth can be obtained by correcting the relative sensitivity factor from the spectrum intensity of each element in the measurement.
  • the content of 0 due to oxides reaches a maximum at a certain depth (this; ⁇ some of the outermost layer), then decreases and becomes constant.
  • the oxide thickness is defined as the depth at which the content of 0 is at a position deeper than the maximum value and is 1/2 of the sum of the maximum value and the constant value.
  • the coverage of the oxide of primary Zn may be 15% or more on any plating surface. coming.
  • the coverage of oxides mainly composed of Zn can be evaluated by element mapping using an X-ray microanalyzer (EPMA) or scanning electron microscope (SEM).
  • EPMA the intensities of 0, Al, and Zn obtained from the oxide of interest or their ratios are obtained in advance, and the data of the element maps measured based on the intensities are processed. Rate can be estimated.
  • the area ratio can be more easily estimated by observing an SEM image using an electron beam of about 0.5 kV.
  • the fine unevenness means that the average roughness (Ra) of the roughness curve is about 100 nm or less and the average interval (S) of the local unevenness is about 1000 nm or less.
  • Ra average roughness
  • S average interval
  • the reason why the sliding resistance is reduced by the fine unevenness is that the concave portion of the fine unevenness acts as a group of oil pits and that the lubricating oil can be effectively retained here. You. In other words, in addition to the above-described sliding resistance reduction effect as an oxide, it is thought that a further sliding resistance reduction effect is exhibited due to a fine oil sump effect capable of effectively retaining lubricating oil in the sliding portion.
  • the lubricating oil holding effect of such fine / fine irregularities is because the surface has a relatively smooth surface from a macro point of view, it is difficult to hold the lubricating oil macroscopically, and the macro surface It is particularly effective for stable reduction of sliding resistance due to hot-dip galvanization, in which it is difficult to stably provide roughness.
  • the sliding condition is particularly effective under a sliding condition with a low fiber surface pressure.
  • the configuration of the fine irregularities is, for example, a structure in which the surface of the Zn-based oxide layer has fine irregularities, or directly on the plating surface or on the layered oxide layer and / or the hydroxide layer, Fine irregularities may be formed by distributing a Zn-based oxide having a shape such as a granular shape, a plate shape, and a flaky shape.
  • Ra is preferably 100 nm or less
  • S is preferably 1000 nm or less.
  • Ra is 3 nm or more and S is 50 nra or more, which has a sliding resistance reducing effect. Note that Ra is more preferably 4 nm or more. Ra is not less than 3 ran, and if the fine irregularities are too small, they will approach the smooth surface, and the effect of the viscous oil as a sump will be reduced, so it is considered to be undesirable.
  • the surface roughness parameters of Ra and S are the lengths obtained by quantifying the surface shape of the Zn-based oxide using a scanning electron microscope or scanning probe microscope (such as an atomic force microscope) that has a three-dimensional shape measurement function. It can be calculated from the roughness curve of a few // m according to the formula described in “Surface roughness-Terminology JB-0660-1998” etc. of Japanese Industrial Standards. Since the oxide thickness is as thin as several tens of nm, it is effective to observe using a low accelerating voltage, for example, 1 kV or less. Observation of the secondary electron image excluding low-energy secondary electrons centered at several ev as the energy of the oxide can increase the contrast caused by the charging of the oxide. Can make a good observation of (See Non-Patent Document 1).
  • the oxide can be formed into a shape having fine irregularities, and the size of the fine irregularities, that is, Ra and S can be controlled.
  • the size of the Zn-based oxide can be reduced. As a set of such fine-sized oxides, it forms fine irregularities Can be achieved. The reason why the oxide containing Zn and Fe becomes an oxide having fine irregularities is not clear, but it is presumed that the growth of Zn oxide is suppressed by Fe or the oxide of Fe.
  • the Zn-based oxide containing Fe of the present invention can be formed by adding Fe to the acid having the pH buffering action.
  • the concentration is not particularly limited, but it can be produced when the amount of ferrous sulfate (heptahydrate) is in the range of 5 to 400 g / l. However, as described above, the amount of ferrous sulfate (heptahydrate) should be in the range of 5 to 200 g / l in order to maintain the Fe ratio in the oxide at 5 to 25%. Is more preferred.
  • the mechanism of this oxide layer formation is not clear, but can be considered as follows.
  • zinc is dissolved from the steel sheet side. Since the dissolution of hydrogen simultaneously generates hydrogen generation, as the dissolution of zinc progresses, the concentration of hydrogen ions in the solution decreases; as a result, the pH of the sickle rises, and Zn-based oxidation occurs on the surface of the galvanized steel sheet. It is considered that a material layer is formed.
  • the pH of the steel plate during the night of night be raised together with the dissolution of zinc. Adjusting the holding time until is effective. At this time, if the holding time is less than 1 second, the solution cannot be formed because the liquid is washed away before the pH of the steel plate at the night of the night rises, and oxides cannot be formed. This is because no change in oxide formation is observed.
  • the retention time up to 7 washes is important for oxide formation.
  • an oxide (or hydroxide) having a special fine uneven structure grows.
  • a more preferred retention time is 2 to 10 seconds.
  • the acidic pH used for the oxidation treatment is preferably in the range of 1.0 to 5.0. This is because if the pH exceeds 5.0, the dissolution of the solid is slow, whereas if it is less than 1.0, the dissolution of the enemy is excessively promoted, and the deviation of the oxide formation rate becomes slow.
  • a chemical having such a pH buffering property there is no limitation on the type of the chemical as long as it has an acid [pH buffering property in four regions], for example, acetate such as sodium acetate (CH 3 C00Na), phthalate, etc.
  • potassium hydrogen ((K00C) 2 C 6 H 4) phthalate such as, sodium Kuen acid (Na 3 C 6 H 5 0 7) Yaku E phosphate potassium dihydrogen (KH 2 C 6 H 5 0 7) Kuen salts such as, succinic acid sodium (Na 2 C 4 H 4 0 4) succinate, lactate salts such as sodium lactate (NaCH 3 CH0HC0 2), sodium tartrate acid such as (Na 2 C 4 H 4 0 6) tartrate salt, such as, borate, can have use one or more of the phosphate.
  • the concentration is preferably in the range of respectively 5 to 50 g / l, which is less than 5 g / l, since the P H cushioning effect is insufficient, it can not form a predetermined oxide layer However, if it exceeds 50 g / l, the effect is not only saturated, but also it takes a long time to form an oxide.
  • the acidic ⁇ has the ability to dissolve Zn from the plating by fiberizing the coated steel sheet. This does not significantly prevent the formation of Zn-based oxides. Therefore, the Zn concentration in the acidic solution is not specified.
  • a more preferred pH buffer and its concentration are solutions in which sodium acetate 37 hydrate is in the range of 10 to 50 g / l, more preferably 20 to 50 g / l.
  • the oxide of the present invention can be effectively obtained.
  • the method of inverting the acid there is no particular limitation on the method of immersing the coated steel sheet in acid, the method of spraying acid! ⁇ ⁇ on the coated steel sheet, the method of applying acid to the steel sheet through a coating roll, etc.
  • Some force It is desirable that a thin liquid film finally exists on the plate surface. This is because, if the amount of acid I 1 raw solution on the steel sheet surface is large, even if zinc dissolves, the pH at night does not increase, and only zinc dissolves one after another, forming an oxide layer. In addition to having a long time to complete, the plating layer is also severely damaged and may lose its original role as a steel sheet.
  • the amount of the liquid film is desirably adjusted to 3 g / m 2 or less, and the amount of the liquid film can be adjusted with a squeezing roll, air wiping, or the like.
  • a squeezing roll Prior to performing such a treatment for forming an oxide layer, it is necessary to subject the hot-dip coated steel sheet to temper rolling. This is because the present invention has the effect of destroying a part of the A1-based oxide layer on the surface of the steel sheet at the same time.
  • the inventors observed the surface of each of the plated steel sheets before and after the oxide formation treatment with a scanning electron microscope, and found that the Zn-based oxide film was mainly formed during temper rolling. Rolling roll rolls on the plating surface and is pressed by the convex part of the roll roll, and A1 oxide layer; It was found that it was generated in the part where it was. Therefore, the area ratio and distribution of the Zn-based oxide film are controlled by controlling the roughness and elongation of the roll of the temper rolling, thereby controlling the area where the A1-based oxide layer is damaged by calculus. Thus, the area ratio at which the Zn-based oxide is formed can be controlled. In addition, such a temper rolling can simultaneously form a concave portion on the plating surface.
  • temper rolling any technique that can mechanically exfoliate the A1 oxide layer on the plating surface is effective for forming Zn oxide and controlling the area ratio.
  • the method includes, for example, treatment with a metal brush and shot plast. It is also effective to use an alkaline scythe to invert the surface of the sickle before oxidizing to activate the surface. The purpose is to further remove the A1-based oxide and expose a new surface on the surface.
  • temper rolling depending on the type of steel sheet, it may not be possible to sufficiently destroy the A1-based oxide layer due to the elongation rate restricted by the material. Therefore, in order to stably form an oxide layer with excellent slidability irrespective of the type of steel sheet, it is necessary to further remove the A1-based oxide layer and activate the surface. That's why.
  • the pH is 11 or more
  • the bath temperature is 50 ° C. or more
  • the contact time with the solution is 1 second or more;
  • a sodium hydroxide-sodium hydroxide-based degreasing agent or the like can be used.
  • the activation treatment must be performed before the oxidation treatment, but may be performed before or after the temper rolling performed after the hot-dip galvanizing.
  • the A1-based oxide is primarily destroyed in the portion that has been crushed by the rolling rolls and has become a recess, so that the protrusions and / or flat portions other than the recesses are provided.
  • the removal amount of A1 oxide tends to be different. For this reason, the amount of A1 oxide after the activation treatment becomes non-uniform in the plane, and the subsequent oxidation treatment becomes non-uniform, so that there may be a case where a satisfactory characteristic cannot be obtained.
  • an activation treatment is first performed, an appropriate amount of A1 oxide is uniformly removed in a plane, a temper rolling is performed, and then a process of performing an oxidation treatment is performed.
  • the additional element components other than the force A1 required to add A1 to the plating bath there is no particular limitation on the additional element components other than the force A1 required to add A1 to the plating bath. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, etc. are contained or added in addition to A1, the effect of the present invention is not impaired. Also contains impurities during the oxidation process Accordingly, even if a small amount of P, S, N, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, etc. is incorporated into the oxide layer, the effect of the present invention is not impaired. .
  • the present invention will be described in more detail with reference to examples.
  • Nana A hot-dip enemy plating film was formed on a 0.8 mm cold-rolled steel sheet, and temper rolling was performed.
  • a sodium hydroxide-based degreasing agent was contacted with FC-4370 manufactured by Rising Co., Ltd. for a predetermined time.
  • the samples that had been subjected to activation treatment as oxide formation treatment were appropriately changed in the amount of added sodium acetate trihydrate and ferrous sulfate heptahydrate, and ⁇ . Immersed in acid 14 solution for 2-5 seconds. Thereafter, the roll was squeezed to adjust the liquid amount to 3 g / m 2 or less, and then left at room temperature and room temperature for 5 seconds.
  • a test material which was not subjected to the activation treatment and the oxide formation treatment was subjected to hot-dip galvanizing as received, and was subjected to the oxide formation treatment without the activation treatment was also prepared.
  • the sliding properties were evaluated as a press formability test, and the thickness of the oxide layer, the oxide coverage, and the fine irregularities were measured as the surface morphology.
  • the property evaluation method and the coating method are described.
  • the Fe ratio in the oxide was measured using a transmission electron microscope (TEM; Philips CM20FEG) and an energy dispersive X-ray analysis of a cross-sectional sample of the surface including the surface oxide prepared by the FIB- / sampling method.
  • the test was performed using a vessel (EDS; EDA ring).
  • EDS EDA ring
  • the oxide sturtle was measured by EDS, the atomic concentration ratio of Fe and Zn was estimated from the peak intensity, and Fe / (Fe + Zn) was calculated as the Fe ratio in the oxide. .
  • the depth distribution of the composition of the plating film surface was measured by repeating the measurement of Ar + sputtering and AES spectrum. Conversion from time to depth of the sputtering was carried out by sputtering rate, which was determined by measuring the J3U ⁇ known Si0 2 film. The composition (at%) is calculated by correcting the relative sensitivity factor from the Auger peak intensity of each element. However, C was not taken into account to exclude the effects of contamination.
  • the depth distribution of 0 concentration caused by oxides and hydroxides is high near the surface, and decreases and becomes constant toward the inside. The depth that is 1/2 of the sum of the maximum value and the constant value was defined as the oxide thickness.
  • the area of about 2 ⁇ 2 m in the flat part was used as the analysis fiber, and the average value of the results measured at arbitrary two or three points was taken as the average oxidation Hi ?.
  • the fine unevenness of the Zn-based oxide is formed in the ::: using a scanning electron microscope (LEO LE01530) and an Everhart-Thornly type secondary electron detection installed in the sample chamber at an acceleration mff of 0.5 kV. It was confirmed by observing a high-magnification secondary electron image using an instrument.
  • the surface roughness of the Zn-based oxide was measured using an electron beam three-dimensional roughness analyzer (ERA-8800FE manufactured by Elionitas). The measurement was performed at an acceleration voltage of 5 kV and a working distance (working distance) of 15 ram. The sampling interval in the in-plane direction during the measurement was set to 5 nm or less (observation magnification was 40,000 or more). Note that gold vapor deposition was performed to avoid charging due to electron beam irradiation. A 450 ⁇ m or more roughness curve with a length of 3 ⁇ ⁇ ⁇ was cut out from the electron beam direction per region of the Zn-based oxide. There were three or more locations measured per sample.
  • ERA-8800FE manufactured by Elionitas
  • Ra and S are parameters for evaluating the roughness and period of fine irregularities, respectively.
  • These general definitions are described in “Surface Roughness-Terminology” B-0660-1998 of Japanese Industrial Standards.
  • the example of the invention is the force, which is a roughness parameter for a roughness curve of a few m / m length, where S is calculated according to the formula defined in the above-mentioned literature.
  • the hot-dip galvanized steel sheet is usually manufactured by immersing it in a zinc bath containing a small amount of A1, so that the plating film mainly consists of the 7] phase, and the surface layer contains A1 contained in the zinc bath.
  • This is a film on which an A1-based oxide layer is formed.
  • the 77 phase is softer and has a lower melting point than the alloy phase of the alloyed molten dumbbell coating, ⁇ phase and ⁇ phase. Is inferior in slidability.
  • the A1-based oxide layer is formed on the surface of the hot-dip and plated steel sheet, the effect of suppressing the adhesion of the mold is not seen, so the distance between the mold and the mold is particularly large. In this case, the sliding characteristics may not be inferior.
  • the hot-dip galvanized steel sheet is soft, easily adheres to the mold and has lower surface pressure than other platings, and has a lower sliding characteristic! 4.
  • the network structure refers to a fine uneven structure formed by a convex portion and a discontinuous concave portion surrounded by the convex portion.
  • the convex portions around the concave portion do not need to be at the same height, and may have a certain amount of height fluctuation.
  • the structure of the fine irregularities is, for example, a structure in which the surface of the Zn-based oxide has fine irregularities, or a granular structure directly on the plating surface or on a layered oxide layer or a hydroxide layer.
  • the fine spinning convex may be formed by distributing a Zn-based oxide force S having a shape such as a plate shape, a scale shape and the like.
  • the reason why the sliding resistance is reduced by the fine four protrusions is that the recesses of the fine protrusions and depressions function as a fine oil pit group, and that the lubricating oil can be effectively retained therein.
  • a further sliding resistance reduction effect S is exerted due to a sluggish oil summing effect that can effectively retain lubricating oil in the sliding part.
  • the lubricating oil retaining effect of such micro-grooves has a relatively smooth surface from a macroscopic point of view, making it difficult to retain the lubricating oil macroscopically. It is particularly effective for stable reduction of sliding resistance due to hot-dip galvanization, which makes it difficult to stably impart roughness. Ma
  • Ma The sliding condition is particularly effective under a low surface pressure.
  • the size of the fine irregularities can be represented by the average roughness Ra of the roughness curve and the average interval iS of the local irregularities.
  • Ra has a sliding resistance effect of 4 nm or more and 100 ran or less and S of 10 nm or more and 1000 nm or less. Even if Ka and S are further increased, no significant improvement in the oil sump effect can be seen, and it is necessary to make the oxide thicker, which makes production difficult.
  • the fine irregularities are too small, they approach a smooth surface, and the effect of a viscous oil as a sump is seen, which is not preferable.
  • the turned part in contact with the pressure-regulating roll is more active than the flat convex part, so that the oxide tends to be easily generated.
  • the oxide formed in the concave portion may be coarser than that of the flat portion.
  • at least Ra of the fine irregularities of the oxide formed on the flat portion is set to 500 nm, thereby more stably reducing the sliding resistance. Being able to do it. This is because the oxide in the flat part is directly disliked by the tool when sliding, so that »: Nano oxide has a greater adverse effect of increasing the fracture resistance of the oxide than the oil reservoir effect. I have.
  • One effective method of controlling Ra and S is to include Fe in the Zn-based oxide as described later.
  • Fe When Fe is contained in the Zn-based oxide, the number of the Zn oxides increases and the number of the Zn oxides increases according to the content.
  • the size and distribution of Zn oxide can be adjusted, and therefore Ra and S can be adjusted.
  • the shape of the fine unevenness is not limited to this.
  • the surface roughness parameters of Ra and S are the lengths obtained by quantifying the surface shape of the Zn-based oxide using a scanning electron microscope or scanning probe microscope (such as interatomic fiber) that has a three-dimensional shape measurement function. From the roughness curve of the number ⁇ , it can be calculated according to the mathematical formula described in “Surface Roughness-Terminology” ⁇ -0660-1998 of Japanese Industrial Standard. The shape of the fine irregularities can be observed using a high-performance scanning electron microscope. Since the thickness of the oxide is as thin as several tens of ran, it is effective to observe using a low accelerating voltage, for example, 1 kV or less.
  • the contrast caused by the charging of the oxide can be «.
  • fine Good observation of the shape of the irregularities can be performed (see Non-Patent Document 1).
  • the Zn-based oxide is an oxide containing Zn and Fe.
  • Fe By including Fe in the Zn-based oxide, the size of the Zn-based oxide can be reduced. Fine asperities can be formed as a set of oxides having such a small size.
  • the reason why the oxide containing Zn and Fe becomes an oxide having fine irregularities is not clear, but it is presumed that the growth of Zn oxide is suppressed by Fe or the oxide of Fe.
  • the suitable ratio (percentage) of Fe to the sum of Zn and Fe is not clear, the inventors have shown that Fe is effective at least in the range of lat% or more and 50 at% or less.
  • Such an oxide containing Zn and Fe can be formed by adding Fe to the acidic solution in a method for forming a Zn-based oxide that is infested with an acid having a pH buffering action as described below.
  • the concentration is not particularly limited, but as an example, it can be produced by applying ferrous sulfate (heptahydrate) in the range of 5 to 400 g / l under the same conditions as described above.
  • ferrous sulfate heptahydrate
  • the Zn-based oxide having fine irregularities covers almost the entire plating surface (70% or more in terms of area ratio) to reduce the effect of the oxide. Can be obtained effectively.
  • a part of the A1-based oxide layer present on the surface of the plated steel sheet is broken by a pressure regulating roll, etc., and the reaction is activated in the exposed part of the new surface, and Zn-based oxides can be easily generated.
  • the oxidation reaction does not proceed because the portion where the A1-based oxide layer remains is inactive.
  • the mold is invading the oxide layer of the Zn-based oxide and the A1-based oxide.
  • the A1-based oxide layer is scraped off under sliding conditions, and ⁇ is likely to occur. Even if cracks occur, the Zn-based oxide layer can exert the effect of suppressing S adhesion, so that press formability can be improved.
  • the portion where the Zn-based oxide is present becomes thicker, and conversely, the portion where the A1-based oxide layer remains does not become thicker. It can be seen from the figure that an oxide layer having a non-uniform thickness in which thick and thin portions coexist is formed, but the slidability can be improved for the same reason as described above. . Even if the part where the oxide layer is not formed in a part of the thin part for some reason, the slidability can be improved by the same mechanism.
  • the oxide layer in this plating surface layer good slidability can be obtained by setting the average thickness to lOnm or more, but more effective when the average thickness of the oxide layer is 20 nm or more. It is a target. This is in press-forming area of the mold and 3 ⁇ 43 ⁇ 4 E product increases, remains even when the surface of the oxide layer is worn, whereas c is because never deteriorating the slidability, the slide Although there is no upper limit on the average thickness of the oxide layer from the viewpoint of the property, if a thick oxide layer is formed, the reactivity of the surface is extremely reduced, and it becomes difficult to form a chemical conversion treatment film.
  • the thickness be 200 nm or less.
  • the average thickness of the oxide layer can be determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering.
  • AES Auger electron spectroscopy
  • the system extinction at that depth can be obtained by correcting the relative sensitivity factor from the spectral intensities of the elements measured.
  • the content of 0 due to oxides reaches a maximum at a certain depth (this is also the surface layer), then decreases and becomes constant.
  • the oxide thickness is defined as the depth at which the content of 0 is half the depth of the maximum value and the sum of the maximum value and the constant value at a depth W higher than the maximum value.
  • Hot-dip galvanized steel sheet has a softer and lower melting point than the other coatings in the ⁇ -plated layer, so its sliding characteristics are easily changed by the surface pressure, and it slides under the conditions of low surface pressure. Poor.
  • an oxide with a thickness of 10 ⁇ m or more (more preferably, 20 nm or more) is also applied to the projections and the Z or flat portions other than the portions that are recessed by the roll. Oxide must be formed. In other words, in order for the effect to be fully exhibited, it is important that the oxide mainly composed of Zn is sufficiently coated on the plating surface. Need to be.
  • the coverage of Zn-based oxides can be determined by elemental mapping using an X-ray microscope analyzer (EPMA) or scanning electron microscope (SEM).
  • E PMA the intensities of 0, Al, and Zn obtained from the oxide of interest or their ratios are obtained in advance, and the data of the element map measured based on these are processed to obtain the area. Rate can be estimated.
  • the area ratio can be more easily estimated by observing an SEM image using an electron beam with an acceleration Sffi of around 0.5 kV. Under these conditions, it is possible to clearly distinguish between the part where the oxide is formed and the part where the oxide is not formed on the surface, and the obtained secondary electron image is binarized by image processing software to evaluate the rate. it can. However, it is necessary to determine whether or not the observed contrast matches the oxide of interest by using AES or EDS beforehand.
  • the oxide layer As a method of forming the oxide layer, it is effective to make the hot-dip coated steel sheet acidic so as to have a pH buffering action, and then, for 1 to 30 seconds, and then wash and dry.
  • the mechanism of this oxide layer formation is not clear, but can be considered as follows.
  • zinc dissolves from the steel sheet side.
  • This dissolution of hydrogen also generates hydrogen ⁇ at the same time, so as zinc dissolution proceeds, the concentration of hydrogen ions decreases, and as a result, the pH of the sea increases, and Zn-based oxides appear on the surface of the hot-dip coated steel sheet. It is thought to form a layer.
  • the holding time until water washing is important for oxide formation.
  • an oxide (or hydroxide) with a special fine irregular structure grows.
  • a more preferred retention time is 2 to 10 seconds.
  • the pH of the property used for the oxidation treatment is in the range of 1.0 to 5.0. This is because, when the pH exceeds 5.0, the dissolution of »5t3 ⁇ 4 is slow, whereas when the pH is less than 1.0, the dissolution of zinc is accelerated to «!
  • the chemical solution having such pH-buffering if it has a P H cushioning an acidic region, but not limited to the chemical species, for example, acetates such as sodium acetate (C3 ⁇ 4C00Na), potassium hydrogen phthalate ( (K00C) 2 C 6 H 4 ) phthalate such as, Kuen salts such as sodium Kuen acid (Na 3 C 6 H 5 0 7) Yaku E phosphate potassium dihydrogen (KH 2 C 6 0 7) , Sodium succinate
  • Succinates such as (Na 2 C 4 H 4 0 4 ) Lactates such as sodium and acid (NaCH 3 CH0HC0 2), tartrates such as sodium tartrate acid (Na 2 C 4 H 4 0 6), borates, that are use one or more of the phosphate it can.
  • the concentration is preferably in the range of 5 to 50 g / l, respectively, because if it is less than 5 g / l, the pH buffer effect is insufficient and a predetermined oxide layer cannot be formed. Ah If it exceeds 50 g / l, the effect is not only saturated, but also it takes a long time to form oxides. Zn is eluted and mixed into the acidic ⁇ by plating the coated steel sheet, but this does not significantly prevent the formation of Zn-based oxides. Therefore, the Zn concentration in the acid
  • the oxide of the present invention can be effectively obtained by using:
  • the method of acidification such as a method of immersing the coated steel sheet in an acid ⁇ , a method of spraying an acid solution on the coated steel sheet, and applying the acid! ⁇ ⁇ to the coated steel sheet through a coating roll.
  • a method, etc. it is desirable that it should be present on the plate surface in the form of a thin layer. This is because if the amount of acidic ⁇ on the surface of the steel sheet is large, the ⁇ ⁇ of ⁇ ⁇ does not increase even if zinc dissolves, and only zinc dissolves one after another until the oxide layer is formed.
  • the plated layer is also severely damaged and may lose its original role as a steel sheet.
  • the amount of the liquid film is desirably adjusted to 3 g / m 2 or less, and the amount of the liquid film can be adjusted with a squeezing roll, air wiping, or the like.
  • the inventors observed each surface of the plated steel sheet before and after the oxide forming treatment with a scanning electron microscope, and found that the Zn-based oxide film was mainly formed by a rolling roll during temper rolling. It was found that the A1 oxide layer was formed in the ruptured area due to the infestation of the plating surface by the convex part of the rolling roll due to the infestation of the plating surface. Therefore, the area ratio and distribution of the Zn-based oxide film are controlled by controlling the roughness and elongation of the rolling roll in the temper rolling, thereby controlling the area in which the A1-based oxide layer is destroyed. The area ratio at which the Zn-based oxide is formed can be controlled. In addition, such a temper rolling can simultaneously form a concave portion on the plating surface.
  • any method that can mechanically rupture the A1-based oxide layer on the plating surface is effective for forming Zn-based oxides and controlling the area ratio. It is.
  • the method includes, for example, treatment with a metal brush and shot blasting. It is also effective to use an alkaline sickle to invert the surface before performing the oxidation treatment.
  • the purpose is to further remove the A1-based oxide and expose a new surface on the surface That's why.
  • the A1-based oxide layer cannot be sufficiently destroyed due to the elongation rate restricted by the material. Therefore, in order to stably form an oxide layer with excellent slidability irrespective of the type of steel sheet, it is necessary to further remove the A1-based oxide layer and activate the surface. That's why.
  • the surface A1-based oxide It is not necessary to completely remove the surface A1-based oxide, and it may be mixed with the Zn-based oxide on the plating surface layer.However, the average concentration of A1 contained in the oxide on the flat part of the surface is average. It is preferable that the force S be less than 20 at%.
  • the A 1 concentration shown here is based on Auger electron spectroscopy.
  • the A1 concentration is 2.0 at% or more, it is difficult to form oxides mainly composed of Zn having a locally fine structure, and the Zn having a fine structure has an area ratio of 70% or more of the plating surface. It becomes difficult to coat the main oxide. As a result, the sliding characteristics, particularly the sliding characteristics under low surface pressure conditions, the squeezing property, and the adhesive bonding property are reduced.
  • the alkali '[fe] in ⁇ , 7 ⁇ , the pH is 11 or more and the bath temperature is 50 ° It is preferable to set the temperature to C or more, and to set the time for inversion of the liquid to 1 second or more.
  • the activation treatment must be performed before the oxidation treatment, but may be performed before or after the temper rolling performed after the hot-dip galvanizing.
  • A1 is added to the plating bath, but the additional element components other than A1 are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, etc. are contained or added in addition to A1, the effect of the present invention is not impaired.
  • a sodium hydroxide-based degreasing agent was used for a predetermined period of time to FC-4370 ⁇ manufactured by Rising Co., Ltd.
  • the samples that had been subjected to activation treatment as oxide formation treatment were appropriately changed in the amount of added sodium acetate trihydrate and ferrous sulfate heptahydrate, and ⁇ . Acid [Soaked in 4 nada for 2-5 seconds. Thereafter, the roll was squeezed to adjust the liquid amount to 3 g / m 2 or less, and then left at room temperature and room temperature for 5 seconds.
  • hot-dip galvanizing as received, without the above-mentioned activation treatment and oxide formation treatment, and test materials subjected to oxide formation treatment without activation treatment were also prepared.
  • the sliding property was evaluated as a press formability test, and the thickness of the oxide layer, the oxide coverage, and the fine irregularities were measured as the surface morphology.
  • the property evaluation method and the film ⁇ f method will be described.
  • the depth distribution of the composition of the plating film surface was measured by repeating the measurement of Ar + sputtering and AES spectrum. Conversion from time to depth of the sputtering was carried out by sputtering rate, which was determined by measuring the Si0 2 film of ⁇ knowledge. The composition (at%) is calculated by correcting the relative sensitivity factor from the Auger peak intensity of each element. However, C was not taken into account to eliminate the effects of contamination.
  • the depth distribution of 0 concentration caused by oxides and hydroxides is high near the surface, and decreases and becomes constant as it goes inside. The depth that is 1/2 of the sum of the maximum value and the constant value was defined as the oxide thickness.
  • the area of about 2 mX2 / zm in the flat part was defined as 3 ⁇ 4 ⁇ of the analysis, and the average value of the results measured at arbitrary 2-3 points was defined as the average oxidation J ⁇ .
  • Scanning electron microscope (LEO% h LE01530) is used to measure the area ratio of oxides mainly composed of Zn, with low magnification using an in-lens type secondary electron detector at an acceleration of IKE 0.5 kV. The secondary electron image was observed. Under these observation conditions, the portion where the Zn-based oxide is formed can be clearly distinguished from the portion where such an oxide is not formed as a dark contrast. The obtained secondary electron image was binarized by image processing software, and the area ratio of the dark portion was determined as the area ratio of the formed Zn-based oxide.
  • the surface roughness of the Zn-based oxide was measured using an electron beam three-dimensional roughness analyzer (ERA-8800FE manufactured by Elionitas). The measurement was performed at an acceleration voltage of 5 kV and a working distance (working distance) of 15 mra, and the sampling interval in the in-plane direction during the measurement was set to 5 nm or less (observation magnification was 40,000 or more). Note that gold vapor deposition was performed to avoid charging due to electron beam irradiation. More than 450 roughness curves with a length of 3 ⁇ were cut out from the scanning direction of the electron beam per region of the Zn-based oxide. There were three or more locations measured per sample.
  • ERA-8800FE manufactured by Elionitas
  • the average roughness (Ra) of the roughness curve and the average interval (S) of the local unevenness of the roughness curve were calculated from the above roughness curve using the software attached to the equipment.
  • Ra and S are parameters for evaluating the roughness and period of the unevenness, respectively. These general definitions are described in Japanese Industrial Standards, “Surface Roughness-Terminology” B-0660-1998.
  • the present invention is based on the equation: The force, Ra, S, which is a roughness parameter for a length roughness curve of number;
  • the thickness, area ratio, and fine unevenness of the oxide mainly composed of Zn formed in the flat portion are within the range of the present invention, and therefore, the friction number is low.
  • No.8 was because the oxide was not sufficiently formed because the activation treatment was not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Metal Rolling (AREA)

Abstract

溶融亜鉛めっき鋼板は実質的にη相からなるめっき層と前記めっき層表面に存在する酸化物層とを有する。前記酸化物層は、その平均厚さが10nm以上である。前記酸化物層は、Zn系酸化物層とAl系酸化物層からなる。その製造方法は、溶融亜鉛めっき工程、調質圧延工程と酸化処理工程を有する。

Description

明細書 プレス成形性に優れた溶 めっき とその製 技術分野
この発明は、 プレス成形性に優れた溶融 口、めつき鋼板とその製^去に関するもの である。 背景鎌
近年、 防鲭性の向上の観点から、 自動車用パネル部品には亜鉛系めつき鋼板、 特に溶 融亜鉛系めつき鋼板の使用比率が増加している。 溶融亜鉛系めつき鋼板には亜鉛めつき 後に合金化処理を施したものと施さないものとがあり、 一般に前者は合金化溶融亜鉛 めっき鋼板、 後者は溶融亜鉛めつき鋼板と称される。 通常、 自動車用パネルに使用され る溶 系めつき鋼板は、溶接性および ¾性に優れている特性を生かして、 溶融亜 鉛めつき後に 500°C献に加熱して合金化処理を施した合金化溶融亜鉛めつき鋼板が使 用されている。
また、 さらなる防鲭性の向上を目指し、 自動車メーカーでは厚目付けの亜鉛系めつ き鋼板に対する要望が強くなりつつあるが、 前述した合金ィ [^融亜鉛めつき鋼板で厚目 付け化を すると、 合金化に長時間を要し、 合金化不良いわゆる焼けムラが発生しや すく、 逆にめつき層全体で合金化を完了させようとすると、 過合金化となり、 めっき一 鋼板界面で脆い Γ相が生成し、 加工時にめっき剥離が発生しやすくなるため、 厚目付け の合金化溶融亜鉛めつき鋼板を製造することは非常に困難である。
このため、 厚目付けィ匕には溶融 めっき鋼板が有効である。 しかしながら、 溶融亜 鉛めつき鋼板を自動車用ノネルにプレス成形する際には、 ΙίίΙΒ合金化溶融 »ロ、めっき鋼 板と比較すると、 金型との摺動抵抗が大きく、 また表面の融点が低いことにより凝着を 生じやすく、 プレス割れが起こりやすいという Ρ題がある。
このような問題を解決する手法として、 特許文献 1:特開 2002-4019 ·号公報おょぴ 特許文献 2:特開 20024020号公報には、 溶融 めっき鋼板の表面 を制御して、 プレス成形時の型かじりを抑制する手法や、深絞り性を改善する手法が提案さ ている。 しかしながら、 このような溶融亜鉛めつき鋼板について詳細な検討を行ったところ、 金 型との摺動距離が短い^^には、 金型との髓を抑制する効果があるものの、 摺動距離 が長くなるほどこの効果は小さくなり、 摺動条件によっては改善効果が得られない。 ま た、 上記提案では、 このような粗さを付与する手法として、 スキンパス圧延のロール条 件 ·圧延条件を制御する方法があげられているが、 実際には、 ロールに が目詰まり を起こすため、 溶融 »めっき鋼板表面に所定の粗さを安定的に付与することは困難で ある。
また、 特許文献 3:.特開平 2-190483号公報には、 めっき表面に ZnOを主体とする 酸化膜を形成した亜鈴めつき鋼板が提案されている。 しかしながら、 この技術を溶融亜 鉛めつき鋼板に適用することは困難である。 通常、 溶融 めっき鋼板の製造の際には、 ロ、浴に浸漬した際に、 過剰な Fe-Zn合金化^:を抑制し、 めっき密着性を確保する ために、 浴中には微量な A1が添 されている。 この微量に含まれる A1のために、 溶融 めっき鋼板表面には A1系酸化物が緻密に生成しているため、 表面が不活性で あり ZnOを主体とする酸化膜を形成することができない。 仮に、 このような酸化膜を 敏密に生成した A1系酸化物層の上層に付与したとしても、 付与した酸化膜と下地との 密着性が悪く十分な効果が得られないだけでなく、 加工時にプレス金型に付着し、 押し キズを作るなどプレス品への悪影響をもたらす問題がある。
この他にも、 特許文献 4 :特開平.3-191091号公報には Mo酸化物皮膜を、 特許文献 5:特開平 3-191092号公報には Co系酸化物皮膜を、 特許文献 6:特開平 3-191093号 公報には Ni酸化物皮膜を、 特許文献 7:特開平 3-191094号公報には Ca系酸化物皮膜 を、 表面に形成した »ロ、めっき鋼板が提案されている力 前述した ZnO主体の酸化膜 と同じ理由で、 十分な効果を得ることができない。
特許文献 8 :特開 2000-160358号公報に F e系酸化物と Z n系酸化物、 A 1系酸化 物からなる酸化皮膜を備えた亜鉛系めつき鋼板に関する技術が記載されている。 ΙίίΙΒと 同様、 溶融亜鉛めつき鋼板の 、 表面が不活性なため、 初期に形成される F e酸化物 が不均一となり、 効果を得るための酸化物量が多く、 酸化物の剥離などの課題が生じる。 発明の開示
本発明は、 プレス成形時の摺動抵抗が小さく、安定して優れたプレス成形性を示す溶 融亜鈴めつき鋼板とその製 法を することを目的とする。 上記目的を達成するために、 本発明は、 実質的に 7J相からなるめっき層と前記めつき 層表面に する酸化物層とを有し、 tirlB酸化物層の平均厚さが 1 Onm以上である溶 融亜ロ、めっき鋼板を する。 前記酸ィ匕物層は、 10— 200 nmの平均厚さを有する のが望ましい。 嫌 S酸化物層は、 原子濃度比で 1を超える Znノ A 1比を有する Zn系 酸化物層および原子濃度比で 1未満の Z n/A 1比を有する A 1系酸化物層からなる。
IGfSめっき層はその表面に凹部と凸部を有し、 前記 Zn系酸化物層力 S少なくともその 凹部に存在するのが好まレぃ。 .
前記 Z n系酸化物層は微細凹凸を有し、 その微細凹凸は粗さ曲線の平均間隔 (S) が l O O Onm以下、 平均粗さ (Ra) が 100 nm以下であるのが好まし い。
前記 Zn系酸ィ匕物層が微細凹凸を有し、 前記 Zn系酸化物層が凸部と、 凸部から 囲まれる不連続な凹部で形成される網目状構造を有するのが好ましい。
前記 Z n系酸化物層は Z n及び F eを含む酸化物を含み、 1— 50 at%の F e Z (Zn + Fe) で定義される F e原子濃度比を有するのが望ましい。
前記 Zn系酸化物層は、 15%以上のめっき表面に占める面積率を有するのが望 ましい。
上記の本発明の溶融亜 めっき鋼板において、 前記 Zn系酸化物層が、 前記原子 濃度比で 4以上の Z nZA 1比を有するのが好ましい。 この 4以上の Z n/A 1比 の場合には、 以下であることがより好ましい。
(A) 前記 Zn系酸化物層が、 70%以上のめっき表面に占める面積率を有する。
(B) 前記 Zn系酸化物層が、 調質圧延により形成されるめつき表面の凹部と、 凹部以外の凸部または平坦部に形成されている。
(C) 前記 Zn系酸化物層が、 Zn及ぴ F eを含む酸化物を含み、 1一 50 at% の FeZ (Zn + Fe) で定義される F e原子濃度比を有する。
(D) 前記 Zn系酸化物層が微細凹凸を有し、 前記 Zn系酸化物層が凸部と、 凸 部から囲まれる不連続な凹部で形成される網目状構造を有する。
また、 本発明は、 実質的に 7?相からなるめっき層と tfif己めつき層表面に する Fe を含む Zn系酸化物層とを有し、 ΙίίΙΕΖη系酸化物層が:!〜 50%の Fe/ (Fe+Z n) で定義される F e原子比率を有する溶融亜鉛めつき鋼板を提供する。
上記の Zn系酸化物層は、 凸部と、 凸部より囲まれる不連続な凹部で形成される網目 状構造からなる猶田凹凸を有するのが好ましい。
上記 Zn系酸化物層は、 15%以上のめっき表面に占める面積率を有するのが好まし い。
また、 本発明は、 実質的に 7]相からなるめっき層と前記めつき層表面に する Fe を含む Zn系酸化物層とを有し、 藤己 Zn系酸化物層が、 凸部と、 凸部より囲まれる不 連続な凹部で形成される網目状構造からなる微細凹凸を有する溶融亜鉛めつき鋼板を提 供する。
前記 Zn系酸化物層は、 10〜1000 nmの粗さ曲線の平均間隔 (S) と 4〜10 Onmの平均粗さ (Ra) を有するのが好ましい。
前記 Z n系酸化物層は、 70%以上のめっき表面に占める面積率を有するのが好まし い。
前記 Z n系酸化物層は、 調質圧延により形成されるめつき表面の凹部以外の平坦部に 形成されているのが好ましい。 前記平坦部に形成されている Zn系酸化物層は、 10〜 50 Onmの粗さ曲線の平均間隔 (S) と 4〜: L 00 nmの平均粗さ (Ra) を有する のが好ましい。
なお、 本発明において、 めっき表面に存在する 「Zn系酸化物」 とは、 Zn +系の酸化物 だけでなく、 Zn系の水酸化物を含んでいても良いし、 すべてが Zn系の水酸化物であつ てもよい。 次に、 本発明は、 溶融亜鉛めつき工程、 調質 延工程と酸化処理工程を有する溶 融亜鉛めつき鋼板の製造方法を提供する。 前記溶融亜鉛めつき工程は、 鋼板に溶融 亜鉛めつきを施し、 溶融亜鉛めつき皮膜を形成する。 前記調質圧延工程は、 溶融亜 鉛めつき皮膜が形成された鋼板を調質圧延する。 前記酸ィ匕処理工程は、 調質圧延さ れた鋼板に、 pH緩衝作用を有する酸性溶液に接触させ、 水洗までの保持時間が 1 〜 30秒である酸化処理を行う。 前記酸性溶液は F eイオンを 1一 200 g/1含 有するのが望ましい。
上記の溶融亜鉛めつき鋼板の製 法は、 前記調質圧延工程の前または後に、 さらに、 表面を活性化する活性化処理工程を有するのが好ましい。 191己活性化処理工程は調質圧 延する工程の前に行われるのがより好ましい。 IfrlB活性化処理工程は、 pHl l以上、 50°C以上のアルカリ性 に 1秒以上接触させることからなる。 前 IB¾性化処理工程 により、 t&tS酸化処理工程の前の表面酸化物層に含まれる A 1系酸化物が A 1濃度とし て 2 0 at%未満に制御される。
また、 本発明は以下からなる溶融 めっき鋼板の製造方法を^する:
鋼板に溶融亜鉛めつきを施し、 溶融亜鉛めつき皮膜を形成する溶融亜 めつ き工程;
溶融亜鉛めつき皮膜が形成された鋼板を調質圧延する調質圧延工程; 調質圧延された鋼板に、 p H緩衝作用を有し、 5〜2 0 0 g / 1の F eィォ ンを含む p H 1〜 3の酸性溶液に接触させ、 水洗までの保持時間が 1〜 3 0秒であ る酸化処理を行う酸化処理工程、
5
前記調質圧延工程の前または後に、 表面を活性化する活性化処理工程。
更に、 本発明は以下からなる溶融敵ロ、めっき鋼板の製造方法を撤する:
鋼板に溶融亜鉛めつきを施し、 溶融亜鉛めつき皮膜を形成する溶融亜鉛めつ き工程;
溶融亜鉛めつき皮膜が形成された鋼板を調質圧延する調質圧延工程; 調質圧延された鋼板に、 p H緩衝作用を有し、 ρ Η 1〜5の酸性溶液に接触 させ、 水洗までの保持時間が 1—3 0秒である酸化処理を行う酸化処理工程、
前記調質圧延工程の前または後に、 表面を活性化する活性ィ匕処理工程。 図面の簡単な説明
図 1は、 摩 ^^数測 置を示 «略正面図である。'
図 2は、 図 1中のビード形状 ·寸法を示す概略斜視図である。
図 3は、 実施の形態 2の表 4における試料 No. 1の活性化処理後、 酸化処理前の表面 ォージェプロファイルを示す図である。
図 4は、 実施の形態 2の表 4における試料 No. 1 1の活性化処理後、 酸化処理前の表 面ォージェプロファイルを示す図である。
図 5は、 実施の形態 2の表 4における試料 No. l 2の活性化処理後、 酸化処理前の表 面ォージェプロファイルを示す図である。 発明を^ するための形態
織の形態 1
本発明者らは、 溶融亜鉛めつき鋼板表面に特有の A1系酸化物とともに Zn系酸化物を 形成することにより、 広範な摺動条件で良好なプレス性が得られることを知見した。 こ れは次のような理由による。
前述したように、 溶融亜鉛めつき鋼板表面には A1系酸化物層が形成されていること から、 プレス成形時の金型との をある 抑制することができる。 このため、 さら にプレス時の摺動特 '14を改善するためには、 より厚い A1 系酸化物層を形成することは 有効であると考えられるが、 A1 系酸化物層を厚く成長させるためには、 高温で長時間 酸化させる必要があり、 実用上困難であることに加え、 この際に、 徐々に Fe - Zn合金化 反応が進行し、 めっき密着性を劣化させるという欠点がある。 逆に、 Zn系酸化物層を 形成させるためには、 表面の A1系酸化物層を完全に除去する必要があるため、 この処. 理に長時間を要するという欠点がある。
一方、 A1系酸化物層を一部破壊し、 新生面を露出させた後に、 表面を酸化させる処 理を行うと、 この新生面上では Zn系酸化物が形成され、 またこの新生面上への Zn系酸 ィ匕物層は容易に付与できる。 このようにして形成されためつき表面の酸化物層は Zn系 酸化物と A1系酸化物とが共存し、 これによりプレス金型との凝着抑制が強化されるた め、 広範な摺動条件で良好なプレス成形性を得ることができる。 また、 このような Zn 系酸化物層はめつき表面に形成した四凸の少なくとも凹部に形成させることで搢動抵抗 の低^果があることがわかった。
また、 このような酸化処理としては、 溶融亜鉛めつき鋼板を酸 液に浸漬し、 酸 [4 膜を鋼板表面に形成した後に、 所定時間放置することで、 Zn系酸化物を効果的に 形成できる。 また、 調質圧延後、 ァノレカリ '性^^に翻虫させ、 一部の A1 系酸化物層を 破壊.溶解することで、 さらに効果的に上記酸化物層を形成できる。
また、 発明者らは、 めっき表面に形成させる Zn系酸化物に微細な凹凸を付与するこ とにより、 摺動性をさらに向上できることを見出した。 ここで猶田凹凸とは、 粗さ曲線 の平均粗さ Ra (以下、 単に 「Ra」 とも記載する。 ) で 100 nm以下、 局部回 ΰの平均間 隔 S (以下、 単に 「S」 とも記載する。 ) で、 1000. nm以下の表面粗さのことで、 fiffS特 許文献 1ぉょぴ廳己特許文献2に記载されてぃる表面維 (Ra : 1 m前後) とは一 桁以上小さいサイズである。 従って、 本発明における Raなどの粗さパラメータは、 長 さがミリメートルオーダー以上の粗さ曲線について測定されるミクロン ( m) ォー ダ一力それ以上の凹凸を定義する一般的な粗さパラメータと異なり、 数ミクロン長さの 粗さ曲線から算出されるものである。 また、 前記先行文献は、 溶融 »めっき鋼板表面 の粗さを規定したものであり、 本発明は、 溶融亜鈴めつき鋼板表面に付与した酸化物層 の粗さを規定するものである。
発明者らは、 さらに Zn系酸化物に微細な凹凸を付与するためには、 Zn系酸化物に Fe を含有させることが有効であることを知見した。 前記の酸性^ ¾を鋼板表面に开成し た後に所定時間 ¾mすることにより Zn系酸化物を付与する方法において、 酸性^ ¾中 に Feを添ロしておくことにより、 Zn系酸化物を Znと Feを含む酸化物とすることで、 該酸化物に効果的に 細回凸を付与することができる。
溶融亜鉛めつき鋼板は、 通常、 微量の A1 を含んだ亜鉛浴に浸漬することにより製造 されるため、 めっき皮膜は主として 相からなり、 また表層には、 亜鉛浴に含まれてい る A1による A1系酸化物層が形成された皮膜である。 この 7J相は、 合金化溶融亜鉛めつ き皮膜の合金相である ζ相、 δ相と比較すると軟らかく、 力 融点が低いことから、 凝 着が発生しやすく、 プレス成形時の摺動性に劣る。 ただし、 溶融亜鉛めつき鋼板の^、 表面に A1 系酸化物層が形成されていることにより、 金型の凝着を抑制する効果がわず かに見られるため、 特に金型との摺動距離が短い には、 摺動特性の劣化が見られな いことがある。 しかしながら、 この表面に形成されている A1系酸化物層は薄いため、 摺動距離が長くなると凝着力発生しやすくなり、 広範な搢動条件で満足するプレス成形 性を得ることができない。
このような溶融亜鈴めつき鋼板と金型との凝着を抑制するためには、 表面に厚い酸化 物層を形成することが有効である。 このため、 めっき鋼板表面に存在する A1系酸化物 層の一部を破壊し、 酸化処理を行うことにより Zn系酸化物層を形成し、 最終的に Zn系 酸化物と A1 系酸化物が共存した酸化物層を形成することは溶融亜鉛めつき鋼板の摺動 特性の向上に有効である。
この理由については明確ではないが、 次のようなメカュズムにより摺動特性が向上し ていると推定できる。 めっき鋼板表面に械する A1系酸化物層の一部を破壊し、 新生 面が露出した部分では反応が活性になり、 Zn系酸化物を容易に生成することができる のに対して、 A1 系酸化物層が残存している部分では不活性であるため、 酸化反応が進 行しない。 このうち Zn系酸化物が形成される部分では、 酸化] H)¥を容易に制御できる ため、 摺動特性の向上に必要な酸化膜厚を付与することが可能である。 実際のプレ 成 形時には、 金型はこの Zn系酸化物と A1系酸化物とが した酸化物層に撤虫するが、 摺動条件により A1系酸化物層が削り取られ、 凝着が生じやすい状況力 S発生しても、 共 存する Zn系酸化物層が の抑制効果を発揮することができるため、 プレス成形性を 向上することができる。
また、 酸化膜厚を制御するにあたり、 厚く生成させようとすると、 Zn系酸化物が存 在する部分では厚くなり、 逆に A1系酸化物層が残存した部分では厚くならないため、 めっき鋼板表面全体を見ると、 酸化 の厚い部分と薄い部分とが共存する厚さの不均 一な酸化物層が形成されるが、 前述したメ力ニズムと同じ理由で摺動性の向上を得るこ とができる。 加えて、 何らかの理由で薄い部分の一部で酸化物層の形成されていない部 分が していたとしても、 同様のメカニズムで摺動性の向上を得ることができる。 このめつき表層における酸化物層については、 その平均厚さを 10nm以上とすること により良好な摺動性が得られるが、 酸化物層の平均厚さを 20nm以上とするとより効果 的である。 これは、 金型と ¾¾1ェ物の 面積が大きくなるプレス成形加工において、 表層の酸化物層が雜した でも残存し、 摺動性の低下を招くことがないためである。 —方、 摺動性の観点から酸化物層の平均厚さに上限はないが、 厚い酸化物層が形成され ると、 表面の反応性が極端に低下し、 ィ匕成処理皮膜を形成するのが困難になるため、 200nra以下とするのが望まし 、。
なお、 酸化物層の平均厚さは、 Arイオンスパッタリングと組み合わせたォージェ電 子分光 (AES) により求めることができる。 この方法においては、 所定厚さまでスパッ タした後、 測定 ¾ ^の各元素のスぺクトル強度から相対感度因子補正により、 その深さ での ¾¾¾を求める,ことができる。 このうち、 酸化物に起因する 0の含有率は、 ある深さ で最大値となった後 (これが最表層の もある) 、 減少し、 一定となる。 0の含有率 が最大値より深 t/ 立置で、 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さと する。
また、 ォージェ電子分光 (AES) での測定結果により、 厚さの不均一な酸化物層の有 無を判断することができる。 これは、 厚い部分が主として Zn系酸化物からなり、 薄い 部分が A1系酸化物からなることに起因するものであるが、 これを表層での Zn/Al比 (at 比)により評価することができる。 すなわち、 Zn/Al比が 1.0 を超える部分力厚い部分 であり、 Zn/Al比が 1, 0以下の部分が薄い部分とするものである。 また、 この判断は、 任意の点について分析を実施し、 1箇所でも Zn/Al比が 1. 0以下の部分が械すれば、 厚さの不均一な酸化物層が形成していると判断できる。 また、 この厚い部分と薄い部分 の存在割合については、 特に規定しないが、 薄い部分が多いと、 酸ィヒ物の平均厚きが 10nm未満となり、 摺動性の改善効果が得られないため、 平均厚さが本発明範囲内にあ れば を満足することができる。
ここまで、 Zn系酸化物が存在する領域の形状について特に限定していないが、 めつ き表面に凹凸を形成させ、 少なくともその凹部に Zn系酸化物を存在させることで良好 な摺動抵抗の低減効果があることが分かった。 ここでめつき表面の凹部とは、 Zn酸化 物の »钿凹凸とは異なり、 サイズとして例えば凹部を同面積の円に置き換えた:^の直 径で数 111〜100^ 111 ¾^のマクロな凹凸のことでぁる。
摺動抵抗が低減される理由は下記のように考えている。 前述のごとく溶 鉛めつき 表面には A1系の酸化物層が存在するために摺動距離が短い場合には摺動抵抗は比較的 低いが、 長い摺動で摺動抵抗が増大する。 長摺動条件では、 冷延鋼板や合金化溶融亜鉛 めっき鋼板と比較してやわらかく変形しやすい Znの 7;層が主である溶融亜 |&めっきの ^, 表面の凸部のみならず凹部の大部分もつぶされ摺動面積が大幅に増加するために 摺動抵抗の増大が生じる。 めっき表面の凹部に摺動抵抗低減効果の高い Zn系酸化物を 形成させることで、 摺動面積の広がりを抑制することができ、長摺動における摺動抵抗 の増大を «することができる。
走査電子顕微鏡を用いて、 加速 ®i£ 1 kV以下の電子線を用いることで酸化物層の厚 さ分布を直接的に観察することができる (非特許文献 1参照) 。 非特許文献 1:名越正 泰, 他 2名, 「極低加速走査電子顕微鏡でみた実材料表面」 , 表面技術, 2003年、 54 卷、 第 1号, .31-34
この方法により、 酸化物の厚い部分と薄レヽ部分を容易に区別できる二次電子像を得るこ とができ、 画像処理などにより両者の 割合を計算できる。 本方法を用いて溶陋鉛 めつき鋼板に付与した酸化物の厚い部分の 割合を l¾した結果、 酸化物の厚い部分 が、 面積率でめっき表面の少なくとも 15%以上存在すれば摺動抵抗を下げる効果があ ることがわかった。 摺動抵抗低減効果に酸化物の厚い部分の存在割合に上限はない。 このような酸化物層を形成する手法としては、 溶融 ロ、めっき鋼板を pH緩衝作用を 有する酸性溶液に接触させ、 そ 後、 1〜30秒、放置した後、 水洗'乾燥することが有効 である。 この酸化物層形成メカニズムについては明確でないが、 次のように考えることができ る。 溶融亜鉛めつき鋼板を酸性 に翻虫させると、 鋼板側からは亜鉛の溶解が生じる < この ¾ ^の溶解は、 同時に水素発生^を生じるため、 亜鉛の溶解が進行すると、 中の水素イオン濃度力 S減少し、 その結果赚の pHが上昇し、 溶融 fn、めっき鋼板表面 に Zn系酸化物層を形成すると考えられる。 このように、 Zn系酸化物の形成のためには、 亜鈴の溶解とともに、 鋼板に翻虫してレヽる の pHが上昇することが必要であるため、 鋼板を酸 14 に翻 させた後に水洗までの保持時間を調整することは有効である。 こ の際、 髓時間が 1秒未満であると、 鋼板に鎌している謙の pHが上昇する前に液 が洗い流されるために酸化物を形成できず、 一方、 30秒以上 しても酸化物生成に 変化が見られないためである。
このような酸化処理に使用する酸 ^¾の pHは 1. 0〜5.0の範囲にあることが望まし い。 これは pHが 5.0を超えると、 の溶解 が遅く、 一方 1. 0未満では、 亜鉛の 溶解の促進が過剰となり、 酸化物の形成速度力いずれも遅くなるためである。 また、 酸 性^^には、 pH緩衝効果をもった薬液を使用するとよい。 これは、 実際の製造時に処 理液の pH安定性をもたせるのみでなく、 酸化物の に必要な pH上昇を活性化させ、 厚い酸化膜を効率よく生成させることができるためである。
このような pH緩衝性を有する薬液としては、 酸 領域で pH緩衝性を有すれば、 その 薬液種に制限はないが、 例えば、 酢酸ナトリウム (CH3C00Na) などの酢酸塩、 フタル酸 水素カリウム ((K00C)2C6H4) などのフタノレ酸塩、 クェン酸ナトリウム (Na3C6¾07) ゃク ェン酸二水素カリウム (KH2C6H507) などのクェン酸塩、 コハク酸ナトリ ウム
(Na2C4H404) などのコハク酸塩、 乳酸ナトリウム (NaCH3CH0HC02) などの乳酸塩、 酒石 酸ナトリウム (N¾C4H406) などの酒石酸塩、 ホウ酸塩、 リン酸塩のうちの一種以上を用 いることができる。
また、 その濃度としては、 それぞれ 5〜50g/lの範囲であることが望ましい、 これは、 5g/l未満であると、 pH緩衝効果が不十分で、 所定の酸化物層を形成できないためであ り、 50g/l を超えても、 効果が飽和するだけでなく、 酸化物の形成に長時間を要するた めである。 酸性灘には、 めっき鋼板を誦させることにより、 めっきより Znが溶出 混入するが、 これは Zn系酸化物の形成を著しく妨げるものではない。 従って、 酸 |4溶 液中の Zn濃度は特に規定しない。
酸性^^に翻虫させる方法には特に制限はなく、 めっき鋼板を酸性 «に浸漬する方 法、 めっき鋼板に酸' をスプレーする方法、 塗布ロールを介して酸性 をめつき 鋼板に塗布する方法等があるが、 最終的に薄い液獻で鋼板表画こ存在することが望ま しい。 これは、 鋼板表面に する酸性 の量が多いと、 亜鉛の溶解が生じても の pHが上昇せず、 次々と亜鉛の溶解が生じるのみであり、 酸化物層を形成するまでに 長時間を有するだけでなく、 めつき層の損傷も激しく、 本来の防鳍鋼板としての役割も 失うことが考えられるためである。 この観点から、 液膜の量は、 3g/m2以下に調整する ことが望ましく、 液膜量の調整は、 絞りロール、 エアワイビング等で行うことができる。 このような酸化物層を形成する処理を行う前には、 溶融 ¾ ^めっき鋼板に調質圧延を 施す必要がある。 これは、 通常は材翻整が主目的であるが、 本発明では同時に鋼板表 面に する A1系酸化物層の一部を破壌する効果もあるためである。
発明者らが、 酸化物形成処理前、 該処理後のめっき鋼板の各々の表面を走査型電子顕 微鏡で観察したところ、 Zn系酸化物皮膜は、 主に調質圧延の際に圧延ロールがめっき 表面に翻虫することで圧延ロールのダル目の凸部で押圧されて A1系酸化物層が破壊さ れた部分に生成していることがわかった。 従って、 Zn系酸化物皮膜の面積率および分 布は、 調質圧延の圧延ロールの粗さや伸長率を制御することで、 A1系酸化物層が破壊 される面積を制御し、 それによつて、 Zn系酸化物が形成される面積率を制御すること ができる。 また、 このような調質圧延は、 同時にめつき表面に凹部を形成させることが できる。
ここでは調質圧延による例を示したが、 めっき表面の A1系酸化物層を機械的に破壊 できる手法であれば、 Zn系酸化物を形成させること、 およぴ面積率の制御に有効であ る。 その手法には、 例えば、 金属ブラシによる処理やショットブラストなどがある。 また、 調質圧延後、 酸化処理を行う前に、 アルカリ'醒夜に繊虫させ、 表面を活性化 する処理を行うと有効である。 この目的は、 さらに A1系酸化物を除去し、 表面に新生 面を露出するためである。 前述した調質圧延時には、 材質上制限される伸長率のために、 鋼板の種類によっては、 十分に A1系酸化物層を石皮壌できない^^がある。 そこで、 鋼 板の種類によらず、 安定的に搢動性に優れた酸化物層を形成するには、 さらに A1系酸 ィ匕物層を除去する処理を行い、 表面を活性化することが必要なためである。
アルカリ性 に接触させる方法には特に制限はなく、 浸漬あるいはスプレーなどで 処理することで効果が得られる。 アルカリ性 であれば、 表面の活性化は可能である が、 pHが低いと HJ^が遅く処理に長時間を有するため、 pHIO以上であることが望まし い。 上記範囲内の PHであれは の種類に制限はなく、 水酸化ナトリウムなどを用い ることができる。
これまで、 めっき表面に形成させる Zn系酸化物の形状については述べなかったが、 Zn系酸化物に微細な凹凸付与することにより、 さらなる摺動抵抗の低下を実現できる。 ここで微細回凸とは、 粗さ曲線の平均粗さ (Ra) 100 nm程度以下、 局部凹凸の平 均間隔 (S) が 1000 nm程度以下の表面粗さを有することを意味する。
微細な凹凸により摺動抵抗が低下する理由は、微細凹凸の凹部が微細なオイルピット 群として働き、 ここに潤滑油を効果的に保持できることによると考えている。 すなわち- 前述の酸化物としての摺動抵抗低減効果に加えて、 潤滑油を摺動部に効果的に保持でき る微細な油だめ効果により更なる摺動抵抗低減効果力発現されると考えている。 このよ うな微細回凸の潤滑油保持効果は、 マクロ的な視点で比較的平滑な表面を有しておりマ クロ的に潤滑油を保持しにくく、 圧延などにより潤滑性を狙ってマクロな表面粗さを安 定して付与することが困難な、 溶 めっきの安定した摺動抵抗低減に特に有効であ る。 また、 摺動条件としては 面圧の低い摺動条件下で特に有効である。
微細凹凸の構成は、 例として、 Zn系酸化物層の表面が微細凹凸を有しているもの、 あるいは、 めっき表面に直接あるいは層状の酸化物層および Zまたは水酸化物層の上に、 粒状、 板状、 リン片状などの形状を有する Zn系酸化物が分布することで微細凹凸が形 成されていても良い。 微細凹 ώは、 Raは 100 nm以下、 Sは 800 ran以下が望ましい。 Ra や Sをこれ以上大きくしても、 油だめ効果の大幅な改善は見られなく、 また酸化物を厚 く付ける必要があり製造すること力難しくなる。 これらのパラメ一タの下限は特に規定 しないが、 Raは 3 nm以上、 Sは 50 nm以上で摺動抵抗 «効果があることを^:した。 なお、 Raは 4 nm以上であること力 Sより望ましい。 Raは 3 nm以上、 微細凹凸が小さす ぎると平滑表面に近づき、 粘' [4のある油の油だめとしての効果が低減するため、 好まし くないと考えられる。
Raおよび Sを制御する有効な一つの方法は、 後述するように Zn系酸化物に Feを含 ませることである。 Zn系酸化物に Feを含ませると、 Zn酸化物はその含有量に応じて除 除に猶田となり数が増加する。 この Fe含有量と成長時間を制御することで、 Zn酸化物 の大きさや分布を調整でき、 従って Ra と Sの調整が可能である。 需田凹凸の形状は、 これを限定するものではなレ、。
Ra、 Sの表面粗さパラメータは、 Zn系酸化物の表面の形状を、 三次元形状計測機能を 有する走査電子顕微鏡や走査プローブ顕微鏡 (原子間カ顕漏など) を用いて数値化し 抽出した長さ数/ i inの粗さ曲線より、 日本工業規格の 「表面粗さ-用語」 B- 0660-1998 等に記載されている数式に従って計算することができる。 また、 微細凹凸の形状は高 ^^能の 電子顕微鏡を用いて観察することができる。 酸化物の厚さは数十 nm程度 と薄いため、 低い加速 例えば 1 kV以下、 を用いて観察することが有効である。 特に、 電子のエネルギーとして数 eV を中心とする低エネルギーの二次電子を除いて二 次電子像の観察を行うと、 酸化物の帯電により生じるコントラストを低減することがで きるため、 微細凹凸の形状の良好な観察を行うことができる (非特許文献 1参照) 。
Zn系酸化物に微細な凹凸を付与する方法は特に限定されないが、 効果的な方法の一 つは、 Zn系酸化物を、 Znと Feを含む酸化物とすることである。 Zn系酸化物に Feを含 有させることにより、 Zn系酸化物のサイズを微細なものとすることができる。 その微 細なサイズの酸化物の集合として、 猶田凹凸を形成できる。 Znと Feを含む酸化物が微 細な凹凸を有する酸化物となる理由は明らかになっていないが、 Zn酸化物の成長が Fe あるいは Feの酸化物によって抑制されるためと推定している。 Znと Feの和に対する Fe の好適割合 (百分率) は明確になっていないが、 発明者らは、 少なくとも Fe が lat%以上、 50at%以下の範囲で有効であることを ¾ して 、る。
' このような、 Znと Feを含む酸化物は、 前述の pH緩衝作用を有する酸 14謙に翻虫 させる Zn系酸化物の形成方法において、 その酸性^^に Feを添加することで形成する ことができる。 その濃度は特に限定されないが、 一例として、 その他の条件は前述のと おりとして、 硫酸第一鉄 (7 7和物) を 5〜400g/lの範囲で添 Λΐすることで製造可能で ある。
本発明に係る溶融 めっき鋼板を製造するに関しては、 めっき浴中に A1 が添加さ れていることが必要である I A1以外の添卩元素成分は特に限定されない。 すなわち、 A1 の他に、 Pb、 Sb、 Si、 Sn、 Mg、 Mn、 Ni、 Ti、 Li、 Cuなどが贪有または添加されてい ても、本発明の効果が損なわれるものではない。
また、 酸化処理中に不純物が含まれることにより、 P、 S、 N、 B、 Cl、 Na、 Mn、 Ca、 Mg、 Ba、 Sr、 Si などが酸化物層中に微量取り込まれても、 本発明の効果が損なわれるもの ではない。 (実施例 1)
鹏 0. 8腿の冷延鋼板上に、 溶融 めっき皮膜を形成し、 更に調質圧延を行った。 引き続き、 50。C、 pH2. 0 の酢酸ナトリウム水^^ (20g/l) に浸漬し、 しばらく放置し た後、 水洗、 乾燥することにより、 めっき表面に酸化物層を形成させる処理を行った。 この際、 服時間を種々変ィ匕させて、 平均酸化腿を調整した。 また上記処理前に、 一 部では、 ρΗ12の水酸化ナトリウム水 に浸漬する処理を行つた。
次いで、 上記方法で作製した供 について、 プレス成形性試験、 ならびに酸化物層 の厚さ、 の測定を行った。 プレス成形性試験、 酸化物層の厚さの測定は次のようにして 行った。
ひ)プレス成形性 «試験 m mmi ^ )
プレス成形性を評価するために、 名供 の摩^^数を以下のようにして測定した。 図 1は、 摩聽数測錢置を示す概略正面図である。 同図に示すように、 供! ^から採 取した摩 ^^数測定用試料 1力 s試料台 2に固定され、 試料台 2は、 水平移動可能なスラ イドテーブル 3の上面に固定されている。 スライドテーブル 3の下面には、 これに接し たローラ 4を有する上下動可能なスライドテープノレ支持台 5が設けられ、 これを押上げ ることにより、 ビード 6による摩 数測定用試料 1への押付荷重 Nを測定するための 第 1ロードセル 7力 スライドテーブル支持台 5に取付けられている。 上記押付力を作 用させた状態でスライドテープノレ 3を水平方向へ移動させるための摺動抵抗力 Fを測定 するための第 2ロードセル 8が、 スライドテーブル 3の一方の端部に取付けられている c なお、 潤滑油として、 スギムラ化学社製のプレス用洗净油ブレトン R352Lを試料 1の表 面に塗布して試験を行つた。
図 2は使用したビードの形状 ·寸法を示す概略斜視図である。 ビード 6の下面が試料 1の表面に押し付けられた状態で摺動する。 図 2に示すビード 6の形状は幅 10麵、 試料 の摺動方向長さ 69腿、 摺動方向両端の下部は曲率 4.5ramRの曲面で構成され、 試料が押 し付けられるビード下面は幅 10腿、 摺動方向長さ 60膽の平面を有する。 このビードを. 用いると、 摺動距離が長い条件での摩難数を «できる。 摩聽数測^;験は、 押し 付け荷重 N: 400kgf、 試料の引き抜き速度 (スライドテーブル 3 の水平移動速度) : 20cm/minとした。
供^とビードとの間の摩^ ^数 は、 式: =F/Nで算出した。 (2)酸化物層厚さの測定
ォージェ電子分光 (AES) により平坦部の各元素の含有率 (at%) を測定し、 引き続 いて所定の深さまで Ar スハ。ッタリングした後、 AES によりめつき皮膜.中の各元素の含 有率の測定を行い、 これを繰り返すことにより、 深さ方向の各元素の I ^分布を測定し た。 酸化物、 水酸化物に起因する 0の含有率はある深さで最大となった後、 減少し一定 となる。 0の含有率が、 最大値より深い位置で、 最大値と一定値との和の 1/2となる深 さを、 酸化物の厚さとし、任意の 5点で測定した結果の平均値により平均酸化 とし た。 なお、 予備処理として 30秒の Arスパッタリングを行って、 供試材表面のコンタミ ネーシヨンレイヤーを除去した。
なお、 このようにして、 任意の^で各元素の深さ方向分布を測定したところ、 いずれ も表層の Zn/Al比が 1を越えるものと Zn/Al比が 1以下のものが存在してレ、た。 さらに これらについて酸化^?:との関係を調査したところ、 Zn/Al比が 1を超える部分 (Zn系 酸化物が主体である部分) の方が、 1以下の部分 (A1系酸化物が主体である部分) より も酸化^?が厚くなつていた。 このため、 平均酸化^?は、 これらの平均値を使用した。 試!!^果を表 1に示す。
表 1
供試材アルカリ 酸性溶液 水洗までの 平均酸化膜厚 摩擦係数 備考
No. 処理 浸漬 保持時間 (秒) nm
1 一 一 一 6.5 0.280 比較例 1
2 一 〇 0.0 8.8 0.268 比較例 2
3 一 o 1.0 11.8 0.230 本発明例 1
4 一 〇 5.0 14.5 0.225 本発明例 2
5 一 o 10.0 18.6 0.218 本発明例 3
6 一 o 20.0 20.3 0.211 本発明例 4
7 一 o 30.0 22.4 0.203 本発明例 5
8 O 〇 1.0 21.5 0.209 本発明例 6
9 o o 5.0 25.6 0.198 本発明例 7
10 o o 10.0 30.1 0.193 本発明例 8
11 〇 o 20.0 . 32.7 0.189 本発明例 9
12 〇 o 30.0 35.5 0.185 本発明例 10 表 1に示す試^果から下記事項が明らかである。
(1) No. 1は調質圧延後に酸化処理を行っていないため、 摩 ^^数が高い。
(2) No.2 は調質圧延後に酸化処理を行つているものの、 水洗までの保持時間が本発明範 囲に入っていないため、 めっき表面の平均酸化膜厚が本発明範囲内に入っておらず、 No. 1より摩 数は低下するものの不十分である。
(3) No. 3〜7 は、 調質圧延後に酸化処理を行い、 しかも水洗までの保持時間が本発明範 囲に入っているため、 めっき表面の平均酸化酵も本発明範囲内に入っており、 摩聽 数が低い。
(4) No.8〜: 12 は、 さらに酸化処理の前にアル力リ性^^に浸漬した例であり、 No. 3〜7 の同じ水洗までの保持時間で比較すると、 摩 ^^数が低くなっている。
(実施例 2)
纏 0. 8腿の冷延鋼板上に、 Zn付着量 60g/m2の溶融亜鉛めつき皮膜を形成し、 更に 調質圧延を行った。 調質圧延には 2種類の調質圧延を行った。 調質圧延タイプ Xでは、 粗さ Raが 3. の羅ダルロールを用いて伸長率が 0.8%となるように圧延した。 調 質圧延タィプ Yでは、 ショットダルによる粗さ Raカ 1.4/ mの調圧口ールにより伸長率 が 0. 7%となる様に圧延した。 なお、 調質圧延タイプ Yでは、 調圧ロールの纖面積率 を、 酸化物形成処理を行わなかった鋼板について、 加速 0. 5 kV〜 2 kV の走査電 子顕^ 観察により評価したところ、 20% であった。 口一ノレの 面積率は、 走査 電子顕微鏡の二次電子像より口ールが接触した領域の面積を測定することで求めた。 口一ルが纖していな 、めっき表面は非常に平滑であるのに対して、 口ールが接触した 領域は、 表面が て平滑でないことで、 両者を容易に識別できる。
引き続き、 使用温度での pHが 1. 7の酢酸ナトリウム水謙 (40g/l) に 3秒間浸漬し、 5秒間 ¾gした後、 洗、 乾燥することにより、 めっき表面に酸化物層を形成させる処 理を行った (処理液 Α) 。 この際、 一部の試料では、 前記処理液に代えて、 硫酸第一鉄 (7水和物) を^ した ρΗ2. 0の酢酸ナトリウム水^^ (40g/l) を用いて、 前記と同 様の処理を行った。 硫酸第一鉄 (7水和物) の励 B量が 5g/lの処理液 B、 40g/lの処理 液 C、 および 450g/l の処理液 D を用いた。 なお、 処理液の温度は、 処理液 A〜Cが 30で、 処理液!)が 20°Cである。 また上記処理前に、 一部では、 pH12の水酸化ナトリウ ム水^^に浸漬する処理を行った。 次いで、 上 IB ^法で ^した供 について、 プレス成形性試験、 ならびに酸化物層 の平均厚さの測定、 Zn系酸化物の皮 成元素の Hffi、 Zn系酸化物の形成された面積 率の測定、 Zn系酸化物の微細四凸の観察、 および Zn系酸化物の表面粗さの計測を行つ た。
プレス成形性試験および酸化物層の厚さの測定は実施例 1と同様の方法で行った。 ォ一ジェ電子分光で酸化物層の厚さを評価する際に、 定性分析により Zn系酸化物の皮 騰成元素を評価した。 なお、 実施例 1のプレス成形性評価試験は、 纖面圧の低い摺 動条件下での摩^^数の評価方法でもある。
Zn 系酸化物の形成された面積率を測定するために、 走査電子顕微鏡 (LE0社 LE01530) を用い、 加速電圧 0. 5 kVでインレンズタイプの二次電子検出器を用いて低倍 率の二次電子像を観察した。 この観察条件で、 Zn系酸化物が形成された部分は暗いコ ントラストとして、 このような酸化物が形成されていない部分と明瞭に区別することが できる。 得られた二次電子像を画像処理ソフトウェアにより二値化し、 喑ぃ部分の面積 率を求めて Zn系酸化物の形成された面積率とした。
Zn系酸化物の猶田凹凸が形成されていることは、 走査電子顕微鏡 (LEO社 LE01530) を用い、加速 0. 5 kVで試料室内に設置された Everhart - Thornly型の二次電子検出 器を用いて高倍率の二次電子像を観察しすることにより藤、した。
Zn系酸化物の表面粗さの計測は、 電子線三次元粗さ解析装置 (エリオ-タス社製 ERA- 8800FE) を用いた。 測定は加速電圧 5kV、 ワーキングディスタンス (作動距離) 15mmにて行い、 測定時の面内方向のサンプリング間隔は 5 nra以下とした (観察倍 率は 40000倍以上) 。 なお、 電子線照射による帯電を避けるため金蒸着を施した。 Zn系酸化物が する領域一箇所当たり電子線の走査方向から長さ 程度の 450 本以上の粗さ曲線を切出した。 測定した場所は一試料当たり 3箇所以上である。 上記の粗さ曲線から装置に付属の^ fソフトウェアを用いて、 粗さ曲線の平均粗さ (Ra) と粗さ曲線の局部 凸の平均間隔 (S) を計算した。 ここで、 Ra、 S は、 それぞ れ、 微細凹凸の粗さ、 周期を評価するパラメータである。 これらの一般的な定義に関し ては、 日本工業規格の 「表面粗さ -用語」 B - 0660 - 1998等に記載されている。 本発明例 は、 数 u raの長さの粗さ曲線についての粗さパラメータである力 その Ra、 Sは、 上記 文献で定義される数式に従って計算されている。
電子線を試料表面に照射するとカーボン主体のコンタミネ一ションが成長し、 そ れが測定データに現れる場合がある。 この影響は今回のように測定領域が小さい場 合顕著になりやすい。 そこでデータ解析に当たっては、 測定方向の長さ (約 3 ^ m) の半分をカツトオフ波長とする Splineハイパ一フィルターをかけて、 この影響を除 去した。 本装置の較正には、 米国の国立研究機関 NISTにトレーサブルな VLSI スタ ンダード社の SHS薄膜段差スタンダード (段差 18nm、 88nm、 450nm) を用いた。 結果を表2に示す <
表 2
Figure imgf000021_0001
* ー 工 により 。
(1)本発明例:!〜 7は、 ォージェ電子分光での測 ^^果から、 めっき表面に Zn系酸化物 および A1系酸化物力 S存在することが ¾mされた。 また、本発明例 1〜7は、 酸化物形成 処理を行っていない比較例 1および 2よりも摩聽数カ低く、 摺動抵抗が低減されてお り、 高いプ^ス成形性を有することがわかる。
(2)走査電子顕微鏡により、 本発明例.;!〜 6の Zn系酸化物の存在する領域には明確な微 細囬凸が観察された。 一方、本発明例 7は の突起物などは するが、 前記発明例 1〜6と比較してより平滑な表面を有していた。 本発明例 1〜6は Ra力 S 4 m以上であり、 本発明例 7 は Raが 3. 1nmであった。 Zn系酸化物の存在する領域に微細凹凸が存在 し、 Raが 以上であると、 摩聽数がより低く、 摺動抵抗がより観されており、 高いプレス成形性を有することがわかる。
(3)微細凹凸を有する本発明例 3〜6は、 Fe を添加した酸性溶液を用いて作製され、 酸 化皮膜は Znと Feを含む酸化物で構成されていた。 これらの例のように、 適度に Feを 添加した酸性溶液を用いることにより、 微細凹凸のサイズを制御でき、 摺動抵抗 «効 果の高い猶田凹凸を有する Znと Feを含む酸化物を形成させることができる。
(4)全ての本発明例は、 Zn系酸化物が雜する面積率が 15%以上であるので、 摺動抵抗 低減効果が優れる。
(5)本発明例 5〜7の Zn系酸化物の大部分は、 調質圧延により形成されためつき表面の 凹部に存在していた。 これらの発明例は、 同じ釋質圧延を施した、 すなわち同じめつき 表面の凹部を有する比較例 2と比較して低い摩 数を示しており、 めっき表面の凹部 に形成させた Zn系酸化物が摺'動抵抗低減効果 有することを示している。
雞の形態 2
溶融亜鉛めつき鋼板の摺動性は、 合金化溶融 めっき鋼板と異なり、 めっきが軟質 であるため搢動時の面圧依存性が大きい。 面圧が高い^^、 摺動性は良好であるが、 面 圧を低くすると、 摺動性が劣る傾向が認められることが明らかになった。 面圧が低い条 件では、 めっき表面の変形が少ない為、 凸部を主体に金型と擬虫する。 溶融亜鉛めつき 鋼板の低面圧条件での摺動特性をさらに向上させるためには、 凸部にも酸化物層を形成 させる必要があることを知見した。
溶融亜鉛めつき鋼板は、 調圧ロールにより圧延を施されない段階では表面は平坦であ る。 圧延によりロールの凹凸が転写され、 めっき表面に凹凸が形成されるが、 凹部では 表層の A1系酸ィヒ物が機械的に破壊されており、 凸部に比較し活性である。 一方、 凸部 はロールによる変形をほとんど受けない部分であり、 一般にめつきままの平坦な状態が 維持されており、 表面 A1系酸ィヒ物の破壊 が少なレ、。 従って、 調質圧延後の溶融亜 鉛めつき鋼板の表面は不均一に活性、 不活性な部分が存在する。
この様な表面に対し酸ィヒ処理を施すと、 凹部に Zn系酸化物を形成することは可能で あるが、 凹部のみに酸ィヒ物が形成され、 囬部以外の凸となっている平坦部分へ酸化物を 付与することが困難である。
—方、 発明者らは、 めっき表面に形成させる Zn系酸化物に微細な凹凸を付与するこ とにより、 摺動性をさらに向上できることを見出した。 ここで微細凹凸とは、 粗さ曲線 の平均粗さ Raで 100 nm以下、 局部凹凸の平均間隔 Sで、 1000 nm以下の表面粗さ のことで、 前記特許文献 1および前記特許文献 2に記載されている表面 (Ra: 1 ra前後) とは一桁以上小さいサイズである。 従って、 本発明における Raなどの粗さ パラメータは、 長さがミリメートルオーダー以上の粗さ曲線について測定されるミクロ ン (;/ m) オーダーかそれ以上の凹凸を定義する一般的な粗さパラメータと異なり、 数 ミクロン長さの粗さ曲線から算出されるものである。 また、 前記先行文献は、 溶融亜鉛 めっき鋼板表面の粗さを規定したものであり、 本発明は、 溶融亜鉛めつき鋼板表面に付 与した酸ィヒ物層の粗さを規定するものである。
このような、 微細な凹凸を付与するためには、 単に酸 水^ とめつきを撫虫させ、 乾燥させるだけでは不可能である。 後述するメカニズムにより、 本発明で規定される p H緩衝作用を有する酸性液と擬虫させ、 水洗までの保持時間を 1 ~ 3 0秒確保する事に より可能となる。 水洗までの保持時間は重要であり、 より好ましい保持時間は 3〜1 0 秒である。
調質圧延の後、 この酸化処理を行うと、 口ールにより形成される凹部に優先的に微小 凹凸を有する酸化物が形成されるが、 ロールによる影響を受けない凸部又は平坦部には、 微細凹凸を有する酸化物の形成は困難であった。 そこで、 発明者らは酸化処理の前に、 活性化処理を行い、 表面の A 1系酸化物量を適正量まで低減することが有効であること を知見した。 これにより、 めっき表面の大部分を摺動性に有効な微細凹凸を有する酸化 物を形成させることが可能となり、 低面圧での摺動特性を大幅に向上させることを実現 した。
ところで、 溶融 めっき鋼板の表層 A 1系酸化物は、 化成処理性、 接着接合性に影 響を及ぼす。 自動車製造における化成処理工程では、 ィ匕成処理液の状態によっては、 ェ ツチング性が低下し、 リン酸塩結晶が形成されない がある。 溶融亜鉛めつき鋼板の 特に不活性な表層 A 1系酸化物の存在により、 ィヒ成処理液のエッチング性が不十 分な^、 ムラとなりやすい。 化成処理前のアルカリ扁旨で、 A 1系酸化物が除去され 化成処理性が問題とならないケースもあるが、 このような場合でもアルカリ脱脂がマイ ルドな条件に触れると、 その効果が得られず、 不均一な A 1系酸化物分布となる。 ィ匕成 処理後のムラは、 引き続き行われる電着塗装後のムラや欠陥の原因になる。
また、 自動車製造では、 防食、 振動防止、 接合強度向上などの目的から、 接着剤が使 用される。 冷延鋼板、 Z n— F e合金系めつきに適用されている一部接着剤では、 A 1 系酸化物との相性が悪く、 十分な接着強度が得られないケースがある。
この様な背景より、 溶融 ロ、めっき鋼板の表層 A 1酸化物層をアルカリ処理などで除 去することにより、 ィ匕成処理性、 接着接合性を向上させることが可能であるが、 表面の 酸ィ匕物層が除去されるため、 プレス時の金型との凝着抑制に対しては不利となり、 プレ ス成形性が低下する。
本発明は、 以上の知見に基づき、 低面圧での搢動'性を向上させ、 良好なプレス成形' を実現しつつ、 さらには化成処理性、 接着接合 をも向上させこれらを両立させる 表面状態を実現するものである。
溶麵鉛めつき鋼板は、 通常、 微量の A1 を含んだ亜鉛浴に浸漬することにより製造 されるため、 めっき皮膜は主として 77相からなり、 また表層には、 亜鉛浴に含まれてい る A1による A1系酸化物層が形成された皮膜である。 この η相は、 合金化溶融亜鉛めつ き皮膜の合金相である ζ相、 δ相と比較すると軟ら力 く、 力つ融点が低いことから、 凝 着が発生しやすく、 プレス成形時の摺動性に劣る。 ただし、溶融亜鉛めつき鋼板の^、 表面に A1系酸化物層が形成されていることにより、 金型の凝着を抑制する効果がわず かに見られるため、 特に金型との摺動距離が短い^ こは、 摺動特性の劣化が見られな いことがある。 しかしながら、 この表面に形成されている A1 系酸化物層は薄いため、 摺動 «が長くなると凝着が発生しやすくなり、 広範な摺動条件で満足するプレス成形
'14を得ることができない。 さらに、 溶融亜鉛めつき鋼板は軟質であり、 他のめっきと比 較して金型と纖しゃすく面圧が低い:^に、 摺動特性が低くなる。
このような溶 鉛めつき鋼板と金型との凝着を抑制するためには、 表面に厚い酸化 物層を均一に被覆形成する.ことが有効である。 このため、 めっき鋼板表面に存在する
A1系酸化物層の一部を破壊し、 酸化処理を行うことにより Zri系酸化物層を形成し、 Zn 系酸化物と A1系酸化物が共存した酸化物層を形 することは溶融亜鉛めつき鋼板の搢 動特性の向上に有効である。 そして後述する様に、 より好ましい形態は、 本発明におけ る製造方法で得られる、 微細凹凸を有する Z n主体の Z n系酸化物がめっき表面のほぼ 大部分 (面積率として 7 0 D/o以上) 被覆している状態である。
調圧ロールなどにより、 めっき鋼板表面に する A1 系謝匕物層の一部を破壌し、 新生面が露出された部分では反応が活性になり、 Zn系酸化物を容易に生成することが できるのに対して、 A1 系酸化物層力 S残存している部分では不活性であるため、 酸化反 応が進行しない。 このうち Zn系酸化物が形成される部分では、 酸化 を容易に制御 できるため、 摺動特性の向上に必要な酸化膜厚を付与することが可能である。 実際のプ レス成形時には、 金型はこの Zn系酸化物と A1系酸化物とが;? ¾した酸化物層に織虫す るが、 摺動条件により A1系酸化物層が削り取られ、 凝着が生じやすい状況力 S発生して も、 する Zn系酸化物層力歸の抑制効果を発揮することができるため、 プレス成 形'性を向上することができる。
また、 酸化膜厚を制御するにあたり、 厚く生成させようとすると、 Zn系酸化物が存 在する部分では厚くなり、 逆に A1系酸化物層が残存した部分では厚くならないため、 めっき鋼板表面全体を見ると、 酸化醇の厚い部分と薄い部分とが共存する厚さの不均 一な酸化物層が形成される 、 前述したメ力ニズムと同じ理由で摺動性の向上を得るこ とができる。 加えて、 何らかの理由で薄い部分の一部で酸化物層の形成されていない部 分が していたとしても、 同様のメカニズムで摺動性の向上を得ることができる。 このめつき表層における酸化物層については、 その平均厚さを 10厦以上とすること により良好な摺動性が得られるが、 酸化物層の平均厚さを 20nm以上とするとより効果 的である。 これは、 金型と被加工物の接触面積が大きくなるプレス成形加工において、 表層の酸化物層が雜した^^でも残存し、 摺動性の低下を招くことがないためである t 一方、 摺動性の観点から酸化物層の平均厚さに上限はないが、 厚い酸化物層が形成され ると、 表面の反応性が極端に低下し、 化成処理皮膜を形成するのが困難になるため、 200nm以下とするのが望ましい。
溶融亜鉛めつき鋼板は Ζ ηめっき層が、 他のめっきと比較して軟質、低融点であるた め、 面圧により摺動特性が変化しやすく、 低面圧での条件において摺動性が低い。 これ を解決するためには、 1 0 nm以上の厚みの酸化物 (より好ましくは 2 0 nm以上) を ロールにより凹部となっている部分以外の、 凸部及び Zまたは平坦部にも酸化物を形成 させる必要がある。 凹部は A 1系酸化物が破壊され、 相対的に活性であるため酸化物が 形成されやすいが、 その他の部分では、 酸化物形成がされにくい。 そこで、 適正な活性 化処理により、 A 1系酸化物量を低減することが有効である。 活性ィ匕処理の方法は、 ロールでの圧延、 ショットプラスト、 ブラシ研削のような機械的な除去方法、 アル力リ 液による溶解などの方法が可能である。 本活性化処理は、 酸化物の被籠域を広くする ことによる摺動特性向上効果のみでなく化成処理'性、 接着接合 をも両立するために、 酸化物中の A 1量を適正値とするためにも重要である。 化成処理性は化成処理液におい てめつき層の Z nとリン酸の反応性できるだけ阻害しないようにする必要があり、 弱酸 性の化成処理液で溶解し難い A 1系酸化物成分を低減することが有効である。 また、 接 着剤との接合強度を高めるためにも、 同様に A 1系酸化物量の低減が有効である。 Z n /A 1比 (酸化皮膜中の原子濃度での比率) としては、 4.0以上となる Z n主体の酸化物 であれば有効であるが、 効果を発現するためには、 さらに、 Z n主体の酸化物をめつき 表面に十分被覆させる必要があり、 任意のめつき表面において 7 0 %以上の面積率で被 覆している必要がある。
なお、 Z n/A 1比は原子濃度比として、 4.0以上であれば良く、 A 1を含まない^ も含まれる。
Z n/A l比は、 ォージェ電子分光 (AES) で l¾できる。 前述した酸化物層の厚さの 評価方法と同様、 めっき皮膜表面の平坦部分の糸!^の深さ方向分布を測定し、 そこから 見積もられる酸化物層の厚さに相当する深さまでの Z nの平均濃度 (at°/o) と A 1の平 均濃度 (at%) より、 Z n/A l比を求めた。 ただし、 実際の表面に形成される酸化物の 組成は必ずしも均一であるとは限らず、 nm レベルの微小領域で見れば、 A 1濃度の高 い部分もしくは低い部分が存在することがある。 従って Z n/A l比の測定は、 平均組 成を評価することとして、 2/z mX2// m ¾g以上の比較的広い領域に対して行うのが重 要である。
スパッタリングしながらォージェ測定する方法は、 TEMなどで断面を得て測定する 値よりも A 1濃度が高くなる可能性があるが、 ここではォージェでの測定値として規定 する。
また、 Z n/A 1比 (酸化皮膜中の原子濃度での比率) としては、 4.0以上となる Z n 主体の酸化物の被覆率は以下のようにして測定する事ができる。
さらに、 効果を十分に発現させるためには、 前記 Z n/A l比が 4.0以上の Z n主体 の酸化物がめっき表面を十分被覆していることが重要であり、 被覆率として任意のめつ き表面において 7 0 %以上である必要がある。 Z n/A 1比が 4. 0以上となる Z n主体 の酸化物の被覆率は、 X線マイクロアナライザー (E PMA) による元素マッピング、 もしくは走査電子顕 (S EM) により Rffiできる。 E PMAでは、 着目する酸化物 から得られる 0、 A l、 Z nの強度あるいはそれらの比をあらかじめ得ておき、 それを 基に測定した元素マップのデータ処理を行うことで、 面積率を見積もることができる。 一方、加速電圧 0: 5kV前後の電子線を用いた S EM像観察により、 より簡便に面積率を 見積もることができる。 本条件では、 表面で酸化物の形成されている部分とされていな い部分を明瞭に区別することができるため、 得られた二次電子像を画像処理ソフトゥェ ァにより二値化することで面積率を できる。 ただし、 観察されるコントラストが、 着目する酸化物に合致しているかどうかを、 あらかじめ A E Sや E D S等で確認してお くことが必要である。
Zn主体の酸化物に微細な凹 付与することにより、 さらなる摺動抵抗の低下を実現 できる。 ここで微細凹凸とは、 粗さ曲線の平均粗さ (Ra) が 100 nm程度以下、 局部凹 凸の平均間隔 (S) が 1000 ηηι 以下の表面粗さを有することを意味する。
微細な凹凸により摺動抵抗が低下する理由は、 微細囬凸の凹部が微細なオイルピット 群として働き、 ここに潤滑油を効果的に保持できることによると考えている。 すなわち、 前述の酸化物としての摺動抵抗低減効果に加えて、 潤滑油を摺動部に効果的に保持でき る微細な油だめ効果により更なる摺動抵抗低減効果が発現されると考えている。 このよ うな猶田凹凸の潤滑油保持効果は、 マクロ的な視点で比較的平滑な表面を有しておりマ クロ的に潤滑油を保持しにくく、 圧延などにより潤滑性を狙ってマクロな表面粗さを安 定して付与することが困難な、 溶融亜鉛めつきの安定した摺動抵抗低減に特に有効であ る。 また、 摺動条件としては翻虫面圧の低い摺動条件下で特に有効である。
微細四凸の構成は、 例として、 Zn系酸化物層の表面が微細凹 ώを有しているもの、 あるいは、 めつき表面に直接あるいは層状の酸化物層および/または水酸化物層の上に、 粒状、 板状、 リン片状などの形状を有する Zn系酸化物が分布することで微細凹凸が形 成されていても良い。 微細凹凸は、 Raは 100皿以下、 Sは 800 ran以下が望ましい。 Ra や Sをこれ以上大きくしても、 油だめ効果の大幅な改善は見られなく、 また酸化物を厚 く付ける必要があり製造すること力難しくなる。 これらのパラメータの下限は特に規定 しないが、 Raは 3 nm以上、 Sは 50 nm以上で搢動抵抗 効果があることを ¾^した。 なお、 Raは 4皿以上であることがより望ましい。 Raは 3 nm以上、 微細凹凸が小さす ぎると平? 面に近づき、 粘性のある油の油だめとしての効果が低減するため、 好まし くないと考えられる。
Raおよび Sを制御する有効な一つの方法は、 後述するように Zn系酸化物に Feを含 ませることである。 Zn系酸化物に Feを含ませると、 Zn酸化物はその含有量に応じて除 除に猶田となり数が増加する。 この Fe含有量と成長時間を制御することで、 Zn酸化物 の大きさや分布を調整でき、 従って Ra と Sの調整が可能である。 微細凹凸の形状は、 これを限定するものではない。
Ra、 Sの表面粗さパラメータは、 Zn系酸化物の表面の形状を、 三次元形状計測機能を 有する走査電子顕微鏡や走査プローブ顕微鏡 (原子間カ顕! ^など) を用いて数値化し 抽出した長さ数; z mの粗さ曲線より、 日本工業規格の 「表面粗さ -用語」 B- 0660- 1998等 に記載されている数式に従って計算することができる。 また、 微細凹凸の形状は高:^? 能の走査電子顕微鏡を用いて観察することができる。 酸化物の厚さは数十 nm程度と薄 いため、 低い加速 miE、 例えば 1 kV以下、 を用いて観察することが有効である。 特に、 電子のエネルギーとして数 eVを中心とする低エネルギーの二次電子を除いて二次電子 像の観察を行うと、 酸化物の帯電により生じるコントラストを低減することができるた め、 猶田凹凸の形状の良好な観察を行うことができる (非特許文献 1参照) 。
Zn系酸化物に微細な凹凸を付与する方法は特に限定されないが、 効果的な方法の一 つは、 Zn.系酸化物を、 Znと Feを含む酸化物とすることである。 Zn系酸化物に Feを含 有させることにより、 Zn系酸化物のサイズを微細なものとすることができる。 その微 細なサイズの酸化物の集合として、 ネ田凹凸を形成できる。 Znと Feを含む酸化物が微 細な凹凸を有する酸化物となる理由は明らかになっていないが、 Zn酸化物の成長が Fe あるいは Feの酸化物によって抑制されるためと推定している。 Znと Feの和に対する Fe の好適割合 (百分率) は明確になっていないが、 発明者らは、 少なくとも Fe が lat%以上、 50at%以下の範囲で有効であることを している。 またより好ましい範 囲としては、 5〜25 at%である。
このような、 Znと Feを含む酸化物は、 後述の pH緩衝作用を有する酸! 4鎌に翻虫 させる Zn系酸化物の形成方法において、 その酸性^^に Feを添加することで形成する ことができる。 好適な濃度範囲としては、 2価もしくは 3価の F eイオンとして、 1〜 2 0 0 g/ lである。 さらにより好ましい範囲としては、 l〜8 0 g / lである。 F eィ オンの添加方法については特に規定されないが、 例えば 1〜8 0 g / 1の F eイオン濃 度であれば、 硫酸第一鉄 (7水和物) を 5〜400g/lの範囲で添加することが可能である。 酸化物層を形成する手法としては、溶融 めっき鋼板を pH緩衝作用を有する酸性 ^^に させ、 その後、 1〜30秒 ¾gした後、 水洗 ·乾燥することが有効である。 この酸化物層形成メカニズムについては明確でないが、 次のように考えることができ る。 溶融 めっき鋼板を酸 に織 ¾させると、 鋼板側からは亜鉛の溶解が生じる。 この亜鉛の溶解は、 同時に水素発生 ®芯を生じるため、 亜鉛の溶解が進行すると、 中の水素イオン濃度が減少し、 その結果鎌の pHが上昇し、 溶融 めっき鋼板表面 に Zn系酸化物層を形成すると考えられる。 このように、 Zn系酸化物の形成のためには、 亜鈴の溶解とともに、 鋼板に して '、る職の pHが上昇することが必要であるため、 鋼板を酸性^^に翻虫させた後に水洗までの保持時間を調整することは有効である。 こ の際、保持時間が 1秒未満であると、 鋼板に している溜夜の pHが上昇する前に液 が洗い流されるために酸化物を形成できず、 一方、 30秒以上放置しても酸化物生成に 変ィ匕が見られないためである。
本発明において、 水洗までの保持時間は酸化物形成に重要である。 この保持過程で、 特殊な微細凹凸構造を有する酸化物 (もしくは水酸化物) 力 S成長する。 より好ましい保 持時間は、 2〜: L 0秒である。
酸化処理に使用する酸 14 の pHは 1.0〜5. 0の範囲にあることが望ましい。 これは pHが 5. 0を超えると、 亜鉛の溶解驢が遅く、 一方 1. 0未満では、 亜鉛の溶解の促進 が過剰となり、 酸化物の形成速度がいずれも遅くなるためである。 また、 酸性赚には、 pH緩衝効果をもった薬液を添加することが不可欠である。 これは、 実際の製造時に処 理液の pH安定性をもたせるのみでなく、 前述の Z n溶解に伴う H上昇による Z n系 酸化物形成過程において、 局部的な p H上昇を! 51itし、 適度な 時間を付与すること により、 酸化物成長時間を確保することができ、 本発明の糊敷である微細凹凸形状を有 する酸化物形成に作用する。 また、 酸 14赚のァェオン種は特に規定されず、 塩素ィォ ン、 硝酸イオン、 硫酸イオンなどが挙げられる.。 より好ましくは、 硫酸イオンである。 このような PH緩衝性を有する薬液としては、 酸性領域で pH緩衝性を有すれば、 その 薬液種に制限はないが、 例えば、 酢酸ナトリウム (C¾C00Na) などの酢酸塩、 フタル酸 水素カリウム ((K00C)2C6H4) などのフタル酸塩、 クェン酸ナトリウム (Na3C6H507) ゃク ェン酸二水素カリ ウム (KH2C6H507) などのクェン酸塩、 コハク酸ナトリ ウム (Na2C4H404) などのコハク酸塩、 乳酸ナトリウム (NaCH3CH0HC02) などの乳酸塩、 酒石 酸ナトリウム (Na2C4H406) などの酒石酸塩、 ホウ酸塩、 リン酸塩のうちの一種以上を用 いることができる。
また、 その濃度としては、 それぞれ 5〜50g/lの範囲であることが望ましい、 これは、 5g/l未満であると、 pH緩衝効果が不十分で、 所定の酸化物層を形成できないためであ り、 50g/l を超えても、 劾果が飽和するだけでなく、 酸化物の形成に長時間を要するた めである。 酸性^^には、 めっき鋼板を させることにより、 めっきより Znが溶出 混入するが、 これは Zn系酸化物の形成を著しく妨げるものではない。 従って、 酸性溶 液中の Zn濃度は特に規定しない。 より好ましい p H緩 «(!及びその濃度としては、 酢 酸ナトリウム 3水和物を 1 0〜5 0 g/ 1の範囲、 さらに好ましくは、 2 0〜5 0 g/ l の範囲とした液であり、 を用いれば有効に本発明の酸化物を得ることができる。 酸性 に翻虫させる方法には特に制限はなく、 めっき鋼板を酸 |4 に浸漬する方 法、 めっき鋼板に酸性^ ¾をスプレーする ^去、 塗布ロールを介して酸性 をめつき 鋼板に塗布する方法等があるが、 最終的に薄い液膜状で,板表面に存在することが望ま しい。 これは、 鋼板表面に する酸 の量が多いと、 亜鉛の溶解が生じても^^ の pHが上昇せず、 次々と亜鉛の溶解が生じるのみであり、 酸化物層を形成するまでに 長時間を有するだけでなく、 めっき層の損傷も激しく、 本来の防鲭鋼板としての役割も 失うことが考えられるためである。 この観点から、 液膜の量は、 3g/m2以下に調整する ことが望ましく、 液膜量の調整は、 絞りロール、 エアワイピング等で行うことができる。 このような酸化物層を形成する処理を行う前には、 溶融亜鈴めつき鋼板に調質圧延を 施す必要がある。 これは、 通常は材翻整が主目的であるが、 本発明では同時に鋼板表 面に する A1系酸化物層の一部を破壊する効果もあるためである。
発明者らが、 酸化物形成処理前、 該処理後のめっき鋼板の各々の表面を 型電子顕 微鏡で観察したところ、 Zn系酸化物皮膜は、 主に調質圧延の際に圧延ロールがめっき 表面に■することで圧延ロールのダル目の凸部で押圧されて A1 系酸化物層が破壌さ れた部分に生成していることがわかった。 従って、 Zn系酸化物皮膜の面積率および分 布は、 調質圧延の圧延ロールの粗さや伸長率を制御することで、 A1系酸化物層が破壊 される面積を制御し、 それによつて、 Zri系酸化物が形成される面積率を制御すること ができる。 また、 このような調質圧延は、 同時にめつき表面に凹部を形成させることが できる。
ここでは調質圧延による例を示したが、 めっき表面の A1系酸化物層を灘的に破壊 できる手法であれば、 Zn系酸化物を形成させること、 およぴ面積率の制御に有効であ る。 その手法には、 例えば、 金属ブラシによる処理やショットブラストなどがある。 また、 酸化処理を行う前に、 アルカリ性 に接触させ、 表面を活性化する処理を行 うと有効である。 この目的は、 さらに A1系酸化物を除去し、 表面に新生面を露出する ためである。 前述した調質圧延時には、 材質上制限される伸長率のために、 鋼板の種類 によっては、 十分に A1 系酸化物層を破壊できない場合がある。 そこで、 鋼板の種類に よらず、 安定的に摺動性に優れた酸化物層を形成するには、 さらに A1系酸ィ匕物層を除 去する処理を行い、 表面を活性化することが必要なためである。 .
アルカリ性赚に撤虫させるなどにより A1系酸化物層を除去する処理を施した に得られる、 酸化処理前の表面 A 1系酸化物について種々検討したところ、 本発明で規 定される微細構造を有する Z n主体の酸化物を、 前述の酸化処理により形成するのに有 効な表面 A 1系酸化物層の好ましい形態は以下のとおりである。
表層 A 1系酸化物を完全に除去する必要は無く、 めっき表層の Z n系酸化物と混在し ている状態で良いが、 表面の平坦部の酸化物に平均的に含まれる A 1濃度が 2 0 a t % 未満となる状態にすることが好ましい。 ここで示した A 1濃度は、 ォージェ電子分光 (AES) と A rスパッタリングによる深さ方向分析により、 2^ raX2 zm體の領域にお ける平均的な酸化物厚さと A 1濃度の深さ方向分布を測定したときの、 酸化物の厚さに 相当する深さまでの範囲における A 1濃度の最大値とした。
A 1濃度が 2 0 a t %以上となると、 局部的に微細構造を有する Z n主体の酸化 物が形成され難くなり、 めっき表面の 7 0 %以上の面積率で、 微細構造を有する Z n主体の酸ィ匕物を被覆することが困難となる。 この結果、 摺動特性、 特に低面圧条 件での摺動特性、 化成処理性、 接着接合性が低下する。
上述の A 1系酸化物状態を実現する為には、 ロールによる翻虫、 ショットプラスト、 ブラシ研削など «的な除去方法も可能であるが、 アルカリ'! feK に翻虫させること がより有効である。 この^ \ 水赚は ρ Ηが 1 1以上、 浴温を 5 0°C以上とし、 液と の撤¾時間を 1秒以上とすることが好ましい。 上記範囲内の pHであれば の種類に 制限はなく、 水酸化ナトリウムや水酸化ナトリウム系の脱脂剤などを用いることができ る。
活性化処理は酸化処理の前に実施する必要がある力 溶 ίβ鉛めつき後に行われる調 質圧延の前、 後いずれで実施しても良い。 ただし、 調質圧延の後、 活性化処理を施すと、 圧延ロールにより押しつぶされ凹部となった部分で A 1系酸化物力 S機械的に破壊される ため、 凹部以外の凸部及び/または平坦部と A 1酸化物の除去量が異なる傾向がある。 このため、 活性化処理後の A 1酸化物量が、 面内で不均一となり、 引き続き行われる酸 化処理が不均一となり十分な特性を得られない がある。
このため、 めっき後、 まず、.活性化処理を施し、 面内で均一に A 1酸化物を適正量除 去した後、 調質圧延を実施、 引き続き酸化処理とするプロセスが好ましい。
(実施例 1)
ネ扉 0. 8腿の冷延鋼板上に、 溶融 めっき皮膜を形成し、 更に調質圧延を行った。 —部試料では、 調質圧延前、 もしくは調質圧延後に、 活性化処理として、 水酸化ナ.トリ ゥム系脱脂剤、 日本パーカライジング (株) 製 F C- 4 3 7 0の濃度を適宜変えること により、 p Hを変ィ匕させた赚に所定時間繊虫させた。
活性化処《¾ひ,質圧延を施した試料を、 引き続き表 3に記載の処理液に 2〜 5秒浸 漬し、 引き続きロール絞りを行い、 液量が 3 g /m2以下となる様に調整した後、 所定 時間大気中、 室温にて; ^した。 試料により、 ¾ 時間を変化させた。 表 3
Figure imgf000033_0001
注 1 )PHは硫酸にょリ調整した 上記方法で作製した供 について、 プレス成形性試験として摺動特 [4の評価、 ィ匕成 処理性、 接着接合性の Rffiを行った。 また、 試料について、 酸化物層の厚さ、 分布、 組 成の測定を行った。 一部試料については、 活性化処理による効果を する為、 酸化処 理を施す前に、 表面酸化物の を行った。 以下、 特性評価方法、 及び皮膜^方法について記述する。
(1) プレス成形性 (摺動特性) 籠 (摩聽聽 ij定)
実施の形態 1と同じ方法で、 の摩 ^^数を測定した。
(2) 化成処理性
化成処理性については、 以下の方法により籠した。 試料に防鲭油 (パーカー興藤、 ノックスラスト 550HN) を約 l g/m2塗布し、 引き続きアルカリ删旨 (日; —カラ イジング (株) 製 FC-E2001, スプレー処理、 スプレー圧 lkgf/cm2) 、 水洗、 表調処理 (日本パーカライジング (株) 製 PL-Z) 、 化成処理 (日^^一カライジ ング (株) 製 PB - L3080) の手順で、 化成処理皮膜を形成した。 このとき、 化成処 理時間は一定 (2分) としたが、 アルカリ腿旨では、 腐旨液濃度を 1/2、 腐旨時間を 3 0秒、とし、 標準条件よりマイノレドな条件とした。
評価は、 化成処理後の;^により Hffiした。
〇:スケがなく ,徽密に全面をリン酸!^晶カ S被覆する。
△ : のスケが認められる
X:広い範囲でリン酸;^晶が形成されない領域がある。
(3) 接着接合性
25X 100mmサイズの試験片、 2本に油 (スギムラ化学ブレトン R352L) を塗 布し、 塩ビ系樹脂マスチックシーラーを 25 X 10mmの領域に塗布、 接着剤を塗布 した部分を重ね合わせ、 1 7 0 °C X 2 0分の乾燥炉で乾燥させ接着し、 I型の 1組の 試験片とした。 験片を引っ張り試験機で、 5mm/分の職で接着位置で破断するま で引っ張り、引き抜き時の最大荷重を測定、 荷重を接着面積で割り、 接着強度とした。 接着強度が、 0. 2MP a以上であれば 〇
接着強度が、 0. 2MP a未満であれば X
として fl¾した。
(4) 酸化物層厚さ、 及ぴ酸化物の Z n/A l比の測定
ォージェ電子分光法 (AES) を用い、 Ar+スパッタリングと AESスぺクトルの測定を 繰り返すことで、 めっき皮膜表面部分の組成の深さ方向分布を測定した。 スパッタリン グの時間から深さへの換算は、 膜厚既知の Si02膜を測定して求めたスパッタリング レートにより行った。 組成 (at%) は、 各元素のォージェピーク強度から相対感度因子 補正により求めたが、 コンタミネーションの影響を除くために Cは考慮に入れなかった。 酸化物、 水酸化物に起因する 0濃度の深さ分布は表面近傍で高く、 内部^1くに従って 低下して一定となる。 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さとした。 平坦な部分の 2 μ ^ 2 χα程度の領域を分析の とし、 任意の 2〜3点で測定した結 果の平均値を平均酸ィ [^とした。 酸化物の Zn/Al比は、 上記酸化物の厚さに相当する 深さまでの Znの平均濃度 (at%) と A1の平均濃度 (at%) より求めた。
( 5 ) 活性化処理後の表面状態測定
活性化処理の効果を確認するため、 前記 (4) と同様の方法で、 活性化処理後の表面 の平坦部における酸化物厚さと A1濃度の深さ方向分布を測定した。 酸化物の厚さに相 当する深さまでの範囲における A1濃度の最大値を、 活性化処理の効果の指標とした。
(6 ) Z n主体の酸化物の面積率測定
Z n主体の酸化物の面積率を測定するために、 走査電子顕^ (LEO ¾ LE01530) を用 い、 カロ速 «ΒΕ 0. 5 kVでインレンズタイプの二次電子検出器を用いて低倍率の二次電子 像を観察した。 この観察条件で、 Z n主体の酸化物が形成された部分は暗いコントラス トとして、 このような酸化物が形成されていない部分と明瞭に IJすることができる。 ここで観察される明るさの分布は、 厳密に言えは 化物の厚さ分布と考えられるが、 こ こでは、 Z n/A 1比が 4. 0以上の Z n主体の酸化物がそれ以外の酸化物よりも厚いこ とを別途 AE Sにより確認しており、 暗い部分が Z n/A l比が 4. 0以上の Z n主体の 酸化物であると判断した。 得られた二次電子像を画像処理ソフトウェアにより二値化し、 暗い部分の面積率を求めて Zn系酸化物の形成された面積率とした。
( 7) 酸化物の «田凹凸の形状及び粗さパラメータの測定
Zn系酸化物の揚田凹凸が形成されていることは、 走査電子顕微鏡 (LEO社 LE01530) を用い、力!]速 mBE 0. 5 kVで試料室内に設置された Everhart-Thornly型の二次電子検出 器を用いて高倍率の二次電子像を観察しすることにより麵した。
Zn系酸ィ匕物の表面粗さの計測は、 電子線三次元粗さ解析装置 (エリオ二タス社製 ERA-8800FE) を用いた。 測定は加速電圧 5kV、 ワーキングディスタンス (作動距離) 15腿にて行い、 測定時の面内方向のサンプリング間隔は 5 nm以下とした (観 咅率は 40000倍以上) 。 なお、 電子線照射による帯電を避けるため金蒸着を施した。 Zn系酸化 物が する領域一箇所当たり電子線の走 向から長さ 3/z m の 450本以上の粗 さ曲線を切出した。 測定した場所は一試料当たり 3箇所以上である。
上記の粗さ曲線から装置に付属の^ソフトウェアを用いて、 粗さ曲線の平均粗さ (Ra) と粗さ曲線の局部凹凸の平均間隔 (S) を計算した。 ここで、 Ra、 S は、 それぞ れ、 猶田凹凸の粗さ、 周期を評価するパラメータである。 これらの一般的な定義に関し ては、 日本工業規格の 「表面粗さ -用語」 B - 0660 - 1998等に記載されている。 本発明例 は、 数; imの長さの粗さ曲線についての粗さパラメータである力 その Ra、 Sは、 上記 文献で定義される数式に従って計算されている。
電子線を試 «面に照射するとカーボン主体のコンタミネ一ションが成長し、 それが 測定データに現れる場合がある。 この影響は今回のように測定領域が小さい場合顕著に なりやすい。 そこでデータ解析に当たっては、 測定方向の長さ (約 3μ ηι) の半分を力 ットオフ波長とする Splineハイパ一フィルターをかけて、 この影響を除去した。 本装 置の較正には、 米国の国立研究機関 NISTにトレーサブノレな VLSIスタンダード社の SHS 薄膜段差スタンダード (段差 18nm、 88nm、 450nm) を用いた。 結果を表 4、 5に示す。
( 1 ) 本発明例 (試料番号 1〜7) では、 濃度を調整し、 pHを 1 1以上とした脱脂液 により活性化処理を施した後、 表 3に記載の、 P H \として酢酸ナトリウム 3水和 物を含む水^^と織もさせ、 水洗までの保持時間を適宜変ィ匕させることにより酸化皮膜 を形成した。 'これらの処理では、 平均酸化酵は 18〜31 nmであり、 Zn/Al原子濃度比 が 4. 0以上の Zn主体酸化物の比率が 90〜96%であった。 この結果、 摩擦係数が低く、 優れた摺動性を示す。 また、 化成処理性、 接着接合性も良好であった。 これに対し、 活 性化処理を実施しない比較例 (試料番号 1 0) 、 活性化処理の pHが 1 1未満の比較例 (試料番号 1 1 ) では、 何れも Zn主体の酸化物面積率が 25ないし 40%と低く、 摩擦 係数が高く摺動性に劣る。 さらに、 化成処理性、 接着接合性も本発明例に比較して劣る c
( 2 ) 試料番号 1、 1 1、 1 2において、 いずれも活性化処理の段階でサンプルを採取 し、 ォージェ電子分光法 (AES) を用い、 Ar+スパッタリングと AESスぺクトルの測定を 繰り返すことで、 めっき皮膜表面部分の組成の深さ方向分布を測定した。 測 果を図 3、 図 4、 図 5に示す。 図 3に示した、 試料番号 1の活性化処理後ォージェ深さ方向プ ロフアイルからも分かるように、 酸化物の A1濃度は 、ずれの深さにおいても 20 a t % 未満である。 これに対し、 図 4、 図 5に示した試料番号 1 1 (比較例) 、 及ぴ 1 2 (比 較例) では、 A1濃度は 20 a t %以上である。 試料番号 1 1と^ S番号 1 (本発明例) では、 引き続き行う酸化処理が同じ条件であることから、 酸化処理後の Zn主体酸化物 の面積率が異なった原因は、 活性化処理により得られる表面 A1濃度の違いであること が分かる。
( 3 ) 本発明例のうち、 試料番号 4, 5, 6では酸化処理に使用する処理液に Feィォ ンを有するものを使用した。 この結果、 Zn主体酸化物中に 15〜25 a t %の Feが測定さ れた。 試料番号 3、 4を比較すると、 両者は処理液中 Feイオンの有無という点以外は ほぼ同様の条件であるにもかかわらず、 Fe を含む試料番号 4の摺動特性がやや良好で あるという結果となっている。
(4) 比較例である試料番号 8では、 処理液は硫酸酸性溶液であるが PH緩衝剤を含ま ないため、摩腿数が高い結果となった。 これは、 Zn主体酸化物面積率が低いことや、 酸化物の形態が、 本発明で得られるような樹敷ある微細凹凸を有していないことが原因 であると考えられる。 さらに、 試料番号 9も同様に酸化処理液に pH緩種痛を含まない ため十分な特性が得られていない。 試料番号 1 0, 1 1は十分な活性化処理がなされて いないため、 Zn主体酸化物の面積率が低く、 特に、 ィヒ成処理性、 接着接合性の点で本 発明例に比較し劣る。 試料番号 1 2は、 未処理の溶融亜鉛めつき鋼板であり、 酸化物が 不十分であり、 本発明例に比較し、 摺動性、 ィ匕成処理性、 接着接合性の点で劣る。 表 4
供試材 活性化処理 酸化処理前の表面 酸化処理 備考
No. 処理液 pH処理温度調圧前/後 (注 1 ) j―ジェプロファイル (注 2処理液 (表 3)水洗までの保持時間
(°C) (秒)
1 12.5 50 後 (図 3) 1 5 本発明例
2 11 80 後 一 1 20 本発明例
3 12.5 50 前 - 1 4 本発明例
4 12.5 60 前 2 5 本発明例
5 12 70 前 - 3 5 本発明例
6 12 70 後 - 3 5 本発明例
7 12.5 50 後 - 4 5 本発明例
8 12.5 50 後 - 5 5 比較例
9 12.5 50 後 - 6 5 比較例
10 なし - 1 5 比較例
11 10.5 50 後 (図 4) 1 5 比較例
12 なし (図 5) なし 比較例 注 1 )活性化処理のチャンス。調圧前→「前』、調圧後 「後 jと記載
注 2)活性化処理後、酸化処理前の平坦部で測定された、ォージェ深さ方向プロファイル。
Figure imgf000038_0001
注 3)Zn主体酸化物: Zn/AI原子濃度比が 4.0以上。原子濃度測定法、及び面積率測定法は本文中に記 載。
注 4)Ζη主体酸化物中の Fe比率 : Fe/(Zn + Fe)で定義される原子濃度 (at%)、測定法は本文中記載。
難の形態 3
溶融亜鉛めつき鋼板は、 通常、 微量の A1 を含んだ亜鈴浴に浸漬することにより製造 されるため、 めっき皮膜は主として η相からなり、 また表層には、 亜鉛浴に含まれてい る A1による ΑΓ系酸化物層;^形成された皮膜である。 この 7?相は、 合金化溶融亜鈴めつ き皮膜の合金相である ζ相、 δ相と比較すると軟ら力く、 力 融点が低いことから、 凝 着が発生しやすく、 プレス成形時の摺動性に劣る。 ただし、 溶匪鉛めつき鋼板の 、 表面に A1系酸化物層が形成されていることにより、 金型の凝着を抑制する効果がわず 力に見られるため、 特に金型との摺動距離が短い^^には、 摺動特性の劣化が見られな いことがある。 しかしながら、 この表面に形成されている A1 系酸化物層は薄いため、 摺動距離が長くなると凝着力発生しやすくなり、 広範な摺動条件で満足するプレス成形 性を得ることができない。 さらに、 溶融亜鉛めつき鋼板は軟質であり、 他のめっきと比 較して金型と凝着しやすく面圧が低い に、 摺動特性が低くなる。
このような溶融亜鉛めつき鋼板と金型との聽を抑制するためには、 表面に厚い酸化 物層を均一に被覆形成することが有効である。 このため、 めっき鋼板表面に存在する A1系酸化物層の一部を破壊し、 酸化処理を行うことにより Ζη系酸化物層を形成するこ とは溶融 めつき鋼板の搢動特性の向上に有効である。
さらに、 m Zn系酸化物に、 F eを含有させることで、 より大きな摺動抵抗低減効 果が得られる。 その理由は明らかではないが、 F eを含む酸化物とすることで、 酸化物 の密着 [4が向上し、 摺動時でも摺動抵抗低減効果が持続し易いと予想している。 適正な F eの含有量としては、 F eと Z nの原子濃度から F e/ (F e + Z n) の式で算出さ れる F e原子比率を指標とした^、 少なくとも:!〜 5 0 %の範囲で効果があることが 確認できている。 より好ましくは、 5〜 2 5 %とすることで、 安定的に効果を得ること ができる。 酸化物中の F e、 Z nの原子濃度は、 FIB- /Zサンプリング法により作製した 表面酸ィ匕物を含むめっき表面の断面試料に対し、 透過電子顕微鏡 (T EM) とェネル ギー分散型 X線分析器 (ED S ) を用いて測定したスペクトルから求めることが最も適 当であると考えられる。 他の手法 (例えば AE Sや E PMA) では、 分析領域の空間分 解能を十分に小さくすることができず、 表面の酸化物のみの分析を行うことが困難であ る。 さらに、 形成する Zn系酸化物に F eを含有せしめることは、 酸化物の形成量、 さ らには後述する »細凹凸の付与及び形状 (大きさ) の制御にも有効であることが明らか となっており、 製品の安 ¾ 造という点でも効果が期待できる。 前記 F eを含む Z n系酸化物については、 その平均厚さを 10nm以上とすることによ り良好な摺動性が得られるが、 酸化物層の平均厚さを 20nm以上とするとより効果的で ある。 これは、 金型と ¾¾Π工物の撤¾面積が大きくなるプレス成形加工において、 表層 の酸化物層が摩耗した でも残存し、 摺動性の低下を招くことがないためである。 一 方、 摺動性の観点から酸化物層の平均厚さに上限はないが、 厚レヽ酸化物層が形成される と、 表面の反応性が極端に低下し、 化成処理皮膜を形成するのが困難になるため、 200nm以下とするのが望ましい。
なお、 酸化物層の平均厚さは、 Arイオンスパッタリングと組み合わせたォージェ電 子分光 (AES) により求めることができる。 この方法においては、 所定厚さまでスパッ タした後、 測定 ¾· ^の各元素のスぺクトル強度から相対感度因子補正により、 その深さ での組成を求めることができる。 このうち、 酸化物に起因する 0の含有率は、 ある深さ で最大値となった後 (これ;^最表層の もある) 、 減少し、 一定となる。 0の含有率 が最大値より深レヽ位置で、 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さと する。 ここで、 鍵己 Z n主体の酸化物の効果を十分に発現させるためには、 前記 Z n主 体の酸化物の被覆率力任意のめっき表面において 1 5 %以上であればよいことが で きている。 Z n主体の酸化物の被覆率ば、 X線マイクロアナライザー (E PMA) によ る元素マッピング、 もしくは走查電子顕微鏡 (S EM) により評価できる。 E PMAで は、 着目する酸化物から得られる 0、 A l、 Z nの強度あるいはそれらの比をあらかじ め得ておき、 それを基に測定した元素マップのデータ処理を行うことで、 面積率を見積 もることができる。 一方、 加速 ®£ 0.5kV前後の電子線を用いた S EM像観察により、 より簡便に面積率を見積もることができる。 本条件では、 表面で酸化物の形成されてい る部分とされていない部分を明瞭に区別することができるため、 得られた二次電子像を 画像処理ソフトウェアにより二値化することで面積率を評価できる。 ただし、 観察され るコントラストが、 着目する酸化物に合致しているかどうかを、 あらかじめ AE Sや E
D S等で mmしておくことが必要である。
さらに、 前記 F eを含む Z n主体の酸化物に微細な凹凸付与することにより、 さらな る摺動抵抗の低下を実現できる。 ここで微細凹凸とは、 粗さ曲線の平均粗さ (Ra) が 100 nm程度以下、 局部凹凸の平均間隔 (S) が 1000 nm程度以下の表面粗さを有するこ とを意味する。 微細な凹凸により摺動抵抗が低下する理由は、 微細凹凸の凹部が猶田な オイルピット群として働き、 ここに潤滑油を効果的に保持できることによると考えてい る。 すなわち、 前述の酸化物としての搢動抵抗低減効果に加えて、 潤滑油を搢動部に効 果的に保持できる微細な油だめ効果により更なる摺動抵抗低減効果が発現されると考え ている。 このような微/細凹凸の潤滑油保持効果は、 マクロ的な視点で比較的平滑な表面 を有しておりマクロ的に潤滑油を保持しにくく、 圧延などにより潤滑性を狙ってマクロ な表面粗さを安定して付与することが困難な、 溶融亜鉛めつきの安定した摺動抵抗低減 に特に有効である。 また、 摺動条件としては纖虫面圧の低い摺動条件下で特に有効であ る。
微細凹凸の構成は、 例として、 Zn系酸化物層の表面が微細凹凸を有しているもの、 あるいは、 めっき表面に直接あるいは層状の酸化物層および/ ^または水酸化物層の上に、 粒状、 板状、 リン片状などの形状を有する Zn系酸化物が分布することで微細凹凸が形 成されていても良い。 微細凹凸は、 Ra は 100 nm以下、 S は 1000 nm以下が望まし レ、。 Raや S をこれ以上大きくしても、 油だめ効果の大幅な改善は見られなく、 また酸 化物を厚く付ける必要があり製造すること; ^難しくなる。 これらのパラメータめ下限は 特に規定しないが、 Raは 3 nm以上、 Sは 50 nra以上で摺動抵抗低減効果があることを 確認した。 なお、 Raは 4 nm以上であることがより望ましい。 Raは 3 ran以上、 微細凹 凸が小さすぎると平滑表面に近づき、 粘性のある油の油だめとしての効果が低減するた め、 好ましくないと考えられる。
Ra、 Sの表面粗さパラメータは、 Zn系酸化物の表面の形状を、 三次元形状計測機能を 有する走査電子顕微鏡や走査プローブ顕微鏡 (原子間力顕微鏡など) を用いて数値化し 抽出した長さ数// mの粗さ曲線より、 日本工業規格の 「表面粗さ -用語 J B-0660- 1998等 に記載されている数式に従って計算することができる。 また、 猶田凹凸の形状は高 能の走査電子顕微鏡を用いて観察することができる。 酸化物の厚さは数十 nm程度と薄 いため、 低い加速電圧、 例えば 1 kV以下、 を用いて観察することが有効である。 特に、 電子のエネルギーとして数 evを中心とする低エネルギーの二次電子を除いて二次電子 像の観察を行うと、 酸化物の帯電により生じるコントラストを «することができるた め、 猶田凹凸の形状の良好な観察を行うことができる (非特許文献 1参照) 。
前述したように、 151己 Z n系酸化物に F eを含有させることで、 酸化物を微細凹凸を 有する形状とすることができ、 さらには微細凹凸の大きさ、 即ち Raおよび Sを制御す ることができる。 Zn系酸化物に Feを含有させることにより、 Zn系酸化物のサイズを微 細なものとすることができる。 その微細なサイズの酸化物の集合として、 微細凹凸を形 成できる。 Zn と Fe を含む酸化物が微細な凹凸を有する酸化物となる理由は明らかに なっていないが、 Zn酸化物の成長が Feあるいは Feの酸化物によって抑制されるため と推定している。
このような酸化物層を形成する手法としては、 溶融亜鉛めつき鋼板を PH緩衝作用を 有する酸性 に接触させ、 その後、 1〜30秒 ¾gした後、 水洗 ·乾燥することが有効 である。 本発明である、 F eを含む Z n系酸化物は、 前記 pH緩衝作用を有する酸性 に Feを添 することで形成することができる。 その濃度は特に限定されないが、 硫酸第一鉄 (7水和物) の添加量が 5〜400g/lの範囲で製造が可能である。 ただし、 前 述したように酸化物中の F e比率を 5〜2 5 %とするためには、 硫酸第一鉄 (7水和 物) の添加量を 5〜200g/lの範囲とすることがより好ましい。
この酸化物層形成メカニズムについては明確でないが、 次のように考えることができ る。 溶融 口、めっき鋼板を酸性溶液に翻虫させると、 鋼板側からは亜鉛の溶解が生じる。 この の溶解は、 同時に水素発^ &を生じるため、 亜鉛の溶解が進行すると、 溶液 中の水素イオン濃度;^減少し、 その結果鎌の pHが上昇し、 溶融 »めっき鋼板表面 に Zn系酸化物層を形成すると考えられる。 このように、 Zn系酸化物の形成のためには、 亜鉛の溶解とともに、 鋼板に している激夜の pHが上昇することが必要であるため、 鋼板を酸性赚に纖虫させた後に水洗までの保持時間を調整することは有効である。 こ の際、 保持時間が 1秒未満であると、鋼板に ¾ している激夜の pHが上昇する前に液 が洗い流されるために酸化物を形成できず、 一方、 30秒以上 しても酸化物生成に 変ィ匕が見られないためである。
本発明において、 7洗までの保持時間は酸化物形成に重要である。 この保持過程で、 特殊な微細凹凸構造を有する酸化物 (もしくは水酸化物) 力 S成長する。 より好ましい保 持時間は、 2〜 1 0秒である。
酸化処理に使用する酸性 の pHは 1.0〜5. 0の範囲にあることが望ましい。 これは pHが 5.0を超えると、 ¾ロ、の溶解避が遅く、 一方 1.0未満では、 敵ロ、の溶解の促進 が過剰となり、 酸化物の形成速度力 ^ヽずれも遅くなるためである。 また、 酸 溶液には、 pH緩衝効果をもった薬液を添加することが不可欠である。 これは、 実際の製造時に処 理液の pH安定性をもたせるのみでなく、 前述の Z n溶解に伴う p H上昇による Z n系 酸化物形成過程において、 局部的な p H上昇を1 し、 適度な^:時間を付与すること により、 酸化物成長時間を確保することができ、 本発明の頻数である微細凹凸形状を有 する酸化物形成に作用する。
このような pH緩衝性を有する薬液としては、 酸 [4領域で pH緩衝性を有すれば、 その 薬液種に制限はないが、 例えば、 酢酸ナトリウム (CH3C00Na) .などの酢酸塩、 フタル酸 水素カリウム ((K00C)2C6H4) などのフタル酸塩、 クェン酸ナトリウム (Na3C6H507) ゃク ェン酸二水素カリウム (KH2C6H507) などのクェン酸塩、 コハク酸ナトリ ウム (Na2C4H404) などのコハク酸塩、 乳酸ナトリウム (NaCH3CH0HC02) などの乳酸塩、 酒石 酸ナトリウム (Na2C4H406) などの酒石酸塩、 ホウ酸塩、 リン酸塩のうちの一種以上を用 いることができる。
また、 その濃度としては、 それぞれ 5〜50g/lの範囲であることが望ましい、 これは、 5g/l未満であると、 PH緩衝効果が不十分で、 所定の酸化物層を形成できないためであ り、 50g/l を超えても、 効果が飽和するだけでなく、 酸化物の形成に長時間を要するた めである。 酸性^^には、 めっき鋼板を纖虫させることにより、 めっきより Znが溶出 混入する力 これは Zn系酸化物の形成を著しく妨げるものではない。 従って、 酸性溶 液中の Zn濃度は特に規定しない。 より好ましい p H緩衝剤及ぴその濃度としては、 酢 酸ナトリウム 37和物を 1 0〜5 0 g/ lの範囲、 さらに好ましくは、 2 0〜5 0 g/ l の範囲とした液であり、 本 ^^を用いれば有効に本発明の酸化物を得ることができる。 酸 に翻虫させる方法には特に制限はなく、 めっき鋼板を酸性 に浸漬する方 法、 めっき鋼板に酸!^ ¾をスプレーする方法、 塗布ロールを介して酸性 をめつき 鋼板に塗布する方法等がある力 最終的に薄い液膜状で 板表面に存在することが望ま しい。 これは、 鋼板表面に する酸 I1生溶液の量が多いと、 亜鉛の溶解が生じても激夜 の pHが上昇せず、 次々と亜鉛の溶解が生じるのみであり、 酸化物層を形成するまでに 長時間を有するだけでなく、 めっき層の損傷も激しく、 本来の防鲭鋼板としての役割も 失うことが考えられるためである。 この観点から、 液膜の量は、 3g/m2以下に調整する ことが望ましく、 液膜量の調整は、 絞りロール、 エアワイビング等で行うことができる。 このような酸ィ匕物層を形成する処理を行う前には、 溶融 めっき鋼板に調質圧延を 施す必要がある。 これは、 通常は材質調整が主目的である力 本発明では同時に鋼板表 面に する A1系酸化物層の一部を破壊する効果もあるためである。
発明者らが、 酸化物形成処理前、 該処理後のめっき鋼板の各々の表面を走査型電子顕 微鏡で観察したところ、 Zn系酸ィ匕物皮膜は、 主に調質圧延の際に圧延ロールがめっき 表面に翻虫することで圧延ロールのダル目の凸部で押圧されて A1系酸化物層;^破壊さ れた部分に生成していることがわかった。 従って、 Zn系酸化物皮膜の面積率および分 布は、 調質圧延の圧延ロールの粗さや伸長率を制御することで、 A1系酸化物層が石皮壊 される面積を制御し、 それによつて、 Zn系酸化物が形成される面積率を制御すること ができる。 また、 このような調質圧延は、 同時にめつき表面に凹部を形成させることが できる。
ここでは調質圧延による例を示したが、 めっき表面の A1系酸化物層を機械的に石皮壌 できる手法であれば、 Zn系酸化物を形成させること、 および面積率の制御に有効であ る。 その手法には、 例えば、 金属ブラシによる処理やショットプラストなどがある。 また、 酸化処理を行う前に、 アルカリ性鎌に翻虫させ、 表面を活性化する処理を行 うと有効である。 この目的は、 さらに A1 系酸化物を除去し、 表面に新生面を露出する ためである。 前述した調質圧延時には、 材質上制限される伸長率のために、 鋼板の種類 によっては、 十分に A1系酸化物層を破壊できない場合がある。 そこで、 鋼板の種類に よらず、 安定的に摺動性に優れた酸化物層を形成するには、 さらに A1系酸化物層を除 去する処理を行い、 表面を活性化することが必要なためである。
アルカリ' ffeK溶液に翻虫させる^ 8\ 水,は; p Hが 1 1以上、 浴温を 5 0°C以上と し、 液との接触時間を 1秒以上とすること;^好ましい。 上記範囲内の pHであれば の種類に制限はなく、 水酸化ナトリゥムゃ水酸化ナトリゥム系の脱脂剤などを用いるこ とができる。
活性化処理は酸化処理の前に実施する必要があるが、 溶融亜鉛めつき後に行われる調 質圧延の前、 後いずれで実施しても良い。 ただし、 調質圧延の後、 活性化処理を施すと、 圧延ロールにより押しつぶされ凹部となった部分で A 1系酸化物が «的に破壊される ため、 凹部以外の凸部及び/または平坦部と A 1酸化物の除去量が異なる傾向がある。 このため、 活性化処理後の A 1酸化物量が、 面内で不均一となり、 引き続き行われる酸 化処理が不均一となり +分な特性を得られない がある。
このため、 めっき後、 まず、 活性化処理を施し、 面内で均一に A 1酸化物を適正量除 去した後、 調質圧延を実施、 引き続き酸化処理とするプロセスが好ましい。
本発明に係る溶融亜鉛めつき鋼板を製造するに関しては、 めっき浴中に A1 が添加さ れていることが必要である力 A1以外の添加元素成分は特に限定されない。 すなわち、 A1の他に、 Pb、 Sb、 Si、 Sn、 Mg、 Mn、 Ni、 Ti、 Li、 Cuなどが含有または添加されてい ても、 本発明の効果が損なわれるものではない。 また、 酸化処理中に不純物が含まれる ことにより、 P、 S、 N、 B、 Cl、 Na、 Mn、 Ca、 Mg、 Ba、 Sr、 Si などが酸化物層中に微量 取り込まれても、 本発明の効果が損なわれるものではな 、。 次に、 本発明を実施例により更に詳細に説明する。
(実施例)
娜 0. 8mmの冷延鋼板上に、 溶融敵めっき皮膜を形成し、 更に調質圧延を行った。 調質圧延前もしくは後に、 活性化処理として、 水酸化ナトリウム系脱脂剤、 日; —力 ライジング (株) 製 F C- 4 3 7 0 に所定時間接触させた。 調質圧延及び活性化処 理に引き続き、 酸化物形成処理として、 活性化処理を施した試料を、 酢酸ナトリウム 3 水和物、 硫酸第一鉄 7水和物の添加量、 ρ Ηを適宜変えた酸 14溶液に 2〜 5秒、浸漬した。 その後ロール絞りを行い、 液量が 3 g/m 2以下となる様に調整した後、 5秒間間大気 中、 室温にて放置した。 また比較のため、 上記活性化処理及ぴ酸化物形成処理を行って いない、 受け取りままの溶融亜鉛めつきと、 活性化処理を行わずに酸化物形成処理を施 した試験材も用意した。
以上の供 について、 プレス成形性試験として摺動特性の評価、 また表面形態評価 として、 酸化物層の厚さ、 酸化物の被覆率、 微細凹凸形状の測定を行った。 以下、 特性 評価方法、 及び皮膜^?方法について記述する。
C D プレス成形性 (摺動特性) fm (摩 数測定)
実施の形態 1と同じ方法で、 各供酣の摩腿数を測定した。
( 2 ) 酸化物中 F e比率の測定
酸化物中の Fe比率は、 FIB- /サンプリング法により作製した表面酸化物を含むめつ き表面の断面試料に対し、 透過電子顕微鏡 (TEM; フィリップス社製 CM20FEG) とエネ ルギー分散型 X線分析器 (EDS; EDA ネ環) を用いて行った。 EDS により酸化物のスぺ タトルを測定し、 そのピーク強度から F e及び Z nの原子濃度比を見積もり、 酸化物中 の F e比率として、 F e / (F e + Z n) を算出した。
( 3) 酸化物層厚さの測定
ォージェ電子分光法 (AES) を用い、 Ar+スパッタリングと AESスぺクトルの測定を繰 り返すことで、 めっき皮膜表面部分の組成の深さ方向分布を測定した。 スパッタリング の時間から深さへの換算は、 J3U¥既知の Si02膜を測定して求めたスパッタリングレー トにより行った。 組成 (at%) は、 各元素のォージェピーク強度から相対感度因子補正 により求めたが、 コンタミネーシヨンの影響を除くために Cは考慮に入れなかった。 酸 化物、 水酸化物に起因する 0濃度の深さ分布は表面近傍で高く、 内部 くに従って低 下して一定となる。 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さとした。 平坦な部分の 2 μ ηιΧ 2 m程度の領域を分析の纖とし、 任意の 2〜3点で測定した結 果の平均値を平均酸化 Hi?とした。
(4 ) Z n主体の酸化物の面積率測定
Z n主体の酸化物の面積率を測定するために、 走査電子顕微鏡 (LEO社 LE01530) を用 い、 カロ速 ®E 0. 5 kVでインレンズタイプの二次電子検出器を用いて低倍率の二次電子 像を観察した。 この観察条件で、 Z n主体の酸化物が形成された部分は暗いコントラス トとして、 このような酸化物が形成されていない部分と明瞭に区別することができる。 得られた二次電子像を画像処理ソフトウェアにより二値化し、 B音い部分の面積率を求め て Zn系酸化物の形成された面積率とした。
( 5 ) 酸化物の微細凹凸の形状及 I 粗さパラメータの測定
Zn系酸化物の微細凹凸が形成されている::とは、 走査電子顕微鏡 (LEO社 LE01530) を用い、加速 mff 0. 5 kVで試料室内に設置された Everhart - Thornly型の二次電子検出 器を用いて高倍率の二次電子像を観察しすることにより確認した。
Zn系酸化物の表面粗さの計測は、 電子線三次元粗さ解析装置 (エリオ二タス社製 ERA-8800FE) を用いた。 測定は加速電圧 5kV、 ワーキングディスタンス (作動距離) 15ramにて行い、 測定時の面内方向のサンプリング間隔は 5 nm以下とした (観察倍率は 40000倍以上) 。 なお、 電子線照射による帯電を避けるため金蒸着を施した。 Zn系酸化 物が する領域一箇所当たり電子線の走 向から長さ 3 μ ηι ¾¾の 450本以上の粗 さ曲線を切出した。 測定した場所は一試料当たり 3箇所以上である。
上記の粗さ曲線から装置に付属の解析ソフトウェアを用いて、 粗さ曲線の平均粗さ
(Ra) と粗さ曲線の局部凹凸の平均間隔 (S) を計算した。 ここで、 Ra、 S は、 それぞ れ、 »細凹凸の粗さ、 周期を評価するパラメータである。 これらの一般的な定義に関し ては、 日本工業規格の 「表面粗さ-用語」 B- 0660-1998等に記載されている。 本発明例 は、 数/ mの長さの粗さ曲線についての粗さパラメータである力 その 、 Sは、 上記 文献で定義される数式に従って計算されている。
電子線を試料表面に照射するとカーボン主体のコンタミネ一ションが成長し、 それが 測定データに現れる場合がある。 この影響は今回のように測定領域が小さい場合顕著に なりやす 一 こでデータ解析に当たっては、 測定方向の長さ (約 3/ ra) の半分を力 ットオフ波長とする Splineハイパーフィルターをかけて、 この影響を除去した。 本装 置の較正には、 米国の国立研究機関 NISTにトレーサブルな VLSIスタンダード社の SHS 薄膜段差スタンダード (段差 18nm、 88nms 450nm) を用いた。
試^^果を表 6に示す。 No.丄〜 5 は、 いずれも Z n主体の酸化物に適正量 F eが含ま れており、 比較例である No. 6の F eを含まないものよりも、 摩擁数が低いことがわ かる。
表 6
Figure imgf000048_0001
* Feの強度は、検出器の検出下限以下であった
難の形態 4
溶融亜鉛めつき鋼板は、 通常、 微量の A1 を含んだ亜鉛浴に浸漬することにより製造 されるため、 めっき皮膜は主として 7]相からなり、 また表層には、 亜鉛浴に含まれてい る A1による A1系酸化物層が形成された皮膜である。 この 77相は、 合金化溶融亜鈴めつ き皮膜の合金相である ζ相、 δ相と比較すると軟らカく、 カゝっ融点が低いことから、 凝 着が発生しやすく、 プレス成形時の摺動性に劣る。 ただし、 溶融 »めっき鋼板の^、 表面に A1系酸化物層が形成されていることにより、 金型の凝着を抑制する効果がわず カ こ見られるため、 特に金型との搢動距離が短い^ 8 こは、 摺動特性の劣ィ匕が見られな いことがある。 しかしながら、 この表面に形成されている A1系酸化物層は薄いため、 摺動赚カ長くなると歸が発生しやすくなり、 広範な搢動条件で満足するプレス成形 '14を得ることができない。 さらに、 溶融亜鉛めつき鋼板は軟質であり、 他のめっきと比 較して金型と凝着しやすく面圧が低い龄に、 摺動特 !4が低くなる。
このような溶融 めつき鋼板と金型との凝着を抑制するためには、 表面に厚い酸化 物層を形成することが有効である。 このため、 めっき鋼板表面に存在する A1系酸化物 層の一部を破壊し、 酸化処理を行うことにより Zn系酸化物層を形成することが重要で ある。 さらに、 tirlS Zn系酸化物を網目状構造とすることにより、 さらなる摺動抵抗の 低下を実現できる。 ここで網目状構造とは、 凸部と、 凸部より囲まれる不連続な凹部で 形成される微細凹凸構造を示している。 凹部の周囲の凸部は同じ高さである必要はなく、 ある程度の高さ変動があってもかまわない。 重要なことは、 微,細な凹部が分散している ことである。 微細凹凸の構成は、 例として、 Zn系酸化物の表面が微細凹凸を有してい るもの、 あるいは、 めっき表面に直接あるいは層状の酸化物層おょぴ または水酸化物 層の上に、粒状、 板状、 リン片状などの形状を有する Zn系酸化物力 S分布することで微 糸田回凸が形成されていても良い。
前記微細な四凸により摺動抵抗が低下する理由は、 微細凹凸の凹部が微細なオイルピ ット群として働き、 ここに潤滑油を効果的に保持できることによると考えられる。 すな わち、 前述の酸化物としての摺動抵抗低減効果に加えて、 潤滑油を摺動部に効果的に保 持できる猶田な油だめ効果により更なる摺動抵抗低減効果力 S発現される。 このような微 細凹 ώの潤滑油保持効果は、 マクロ的な視点で比較的平滑な表面を有しておりマクロ的 に潤滑油を保持しにくく、 圧延などにより潤滑性を狙ってマクロな表面粗さを安定して 付与することが困難な、 溶融亜鉛めつきの安定した摺動抵抗低減に特に有効である。 ま た、 摺動条件としては 面圧の低い摺動条件下で特に有効である。
微細凹凸の大きさは、 粗さ曲線の平均粗さ Ra及び局部凹凸の平均間隔 iSで表すこと ができる。 本発明では、 Raは 4nm以上 100 ran以下、 Sは 10nm以上 1000 nm以下で摺動 抵抗 «効果があることを «した。 Kaや S をこれ以上大きくしても、 油だめ効果の 大幅な改善は見られなく、 また酸化物を厚く付ける必要があり製造することが難しくな る。 また微細凹凸が小さすぎると平滑表面に近づき、 粘性のある油の油だめとしての効 杲が観するため、 好ましくない。
また溶融亜鉛めつきでは、 後述するように、調圧ロールの接触した回部の方が、 平坦 な凸部よりも活性であるため酸化物が生成し易い傾向にある。 そのため、 凹部に形成さ れる酸化物の方力 平坦部のものより粗大になる がある。 そのような不均一性は本 発明の効果を損ねるものではないが、 少なくとも平坦部に形成される酸化物の微細凹凸 の Raを 500nmとすることで、 より安定的に摺動抵抗低減効果が得られることを β している。 これは、 平坦部の酸化物は摺動時に工具と直接嫌するため、 »:な酸化物 では、 油溜めの効果よりも、 酸化物の破壊抵抗を増大させるという悪影響が大きく出る ためと考えている。
Raおよぴ Sを制御する有効な一つの方法は、 後述するように Zn系酸化物に Feを含 ませることである。 Zn系酸化物に Feを含ませると、 Zn酸化物はその含有量に応じて除 除に 細となり数が増加する。 この Fe含有量と成長時間を制御することで、 Zn酸化物 の大きさや分布を調整でき、 従って Ra と Sの調整が可能である。 微細凹凸の形状は、 これを限定するものではない。
Ra、 Sの表面粗さパラメータは、 Zn系酸化物の表面の形状を、 三次元形状計測機能を 有する走査電子顕微鏡や走査プローブ顕微鏡 (原子間カ顕纖など) を用いて数値化し 抽出した長さ数 μηιの粗さ曲線より、 日本工業規格の 「表面粗さ -用語」 Β - 0660 - 1998等 に記載されている数式に従って計算することができる。 また、 細凹凸の形状は高^? 能の走査電子顕微鏡を用いて観察することができる。 酸化物の厚さは数十 ran程度と薄 いため、 低い加速電圧、 例えば 1 kV以下、 を用いて観察することが有効である。 特に、 電子のエネルギーとして数 eVを中心とする低エネルギーの二次電子を除いて二次電子 像の観察を行うと、 酸化物の帯電により生じるコントラストを «することができるた. め、 細凹凸の形状の良好な観察を行うことができる (非特許文献 1参照) 。
Zn系酸化物に微細な凹凸を付与する方法は特に限定されないが、 効果的な方法の一 つは、 Zn系酸化物を、 Znと Feを含む酸化物とすることである。 Zn系酸化物に Feを含 有させることにより、 Zn系酸化物のサイズを微細なものとすることができる。 その微 細なサイズの酸化物の集合として、 細凹凸を形成できる。 Znと Feを含む酸化物が微 細な凹凸を有する酸化物となる理由は明らかになっていないが、 Zn酸化物の成長が Fe あるいは Feの酸化物によって抑制されるためと推定している。 Znと Feの和に対する Feの好適割合 (百分率) は明確になっていないが、 発明者らは、 少なくとも Fe が lat%以上、 50at%以下の範囲で有効であることを^:している。 このような、 Znと Fe を含む酸化物は、後述の pH緩衝作用を有する酸性赚に翻虫させる Zn系酸化物の形成 方法において、 その酸性溶液に Fe を添加することで形成することができる。 その濃度 は特に限定されないが、 一例として、 その他の条件は前述のとおりとして、 硫酸第一鉄 (7水和物) を 5〜400g/lの範囲で勸 Uすることで製造可能である。 以上に加え、 肅己 微細凹凸を有する Z n系酸化物が、 めっき表面のほぼ大部分 (面積率として 7 0 %以 上) を被覆している状態とすることで、 前記酸化物の効果を有効に得ることができる。 調圧ロールなどによりめつき鋼板表面に存在する A1系酸化物層の一部を破壊し、 新 生面が露出された部分では、 反応が活性になり Zn系酸化物を容易に生成することがで きるのに対して、 A1系酸化物層が残存している部分では不活性であるため、 酸化反応 が進行しない。 このうち Zn系酸化物が形成される部分では、 酸化^ 1¥を容易に制御で きる fこめ、 摺動特性の向上に必要な酸化 を付与することが可能である。 実際のプレ ス成形時には、 金型はこの Zn系酸化物と A1系酸化物とが した酸化物層に翻虫する 力 摺動条件により A1系酸化物層が削り取られ、 ^^が生じやすい状況が発生しても、 する Zn系酸化物層力 S凝着の抑制効果を発揮することができるため、 プレス成形性 を向上することができる。
また、 酸化膜厚を制御するにあたり、 厚く生成させようとすると、 Zn系酸化物が存 在する部分では厚くなり、 逆に A1 系酸化物層が残存した部分では厚くならないため、 めっき鋼板表面全体を見ると、 酸化醇の厚い部分と薄い部分とが共存する厚さの不均 一な酸化物層が形成されるが、 前述したメカニズムと同じ理由で摺動性の向上を得るこ とができる。 力 [Iえて、 何らかの理由で薄い部分の一部で酸化物層の形成されていない部 分が 'していたとしても、 同様のメカニズムで摺動性の向上を得ることができる。 このめつき表層における酸化物層については、 その.平均厚さを lOnm以上とすること により良好な摺動性が得られるが、 酸化物層の平均厚さを 20nm以上とするとより効果 的である。 これは、 金型と ¾¾ェ物の 面積が大きくなるプレス成形加工において、 表層の酸化物層が摩耗した場合でも残存し、 摺動性の低下を招くことがないためである c 一方、 摺動性の観点から酸化物層の平均厚さに上限はないが、 厚い酸化物層が形成され ると、 表面の反応性が極端に低下し、 化成処理皮膜を形成するのが困難になるため、
200nm以下とするのが望ましい。
なお、 酸化物層の平均厚さは、 Arイオンスパッタリングと組み合わせたォージェ電 子分光 (AES) により求めることができる。 この方法においては、 所定厚さまでスパッ タした後、 測定^の各元素のスペクトル強度から相対感度因子補正により、 その深さ での系滅を求めることができる。 このうち、 酸化物に起因する 0の含有率は、 ある深さ で最大値となった後 (これが最表層の もある) 、 減少し、 一定となる。 0の含有率 が最大値より深 W立置で、 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さと する。
溶融亜 10めっき鋼板は Ζ ηめっき層が、 他のめっきと比較して軟質、 低融点であるた め、 面圧により摺動特性が変ィ匕しやすく、 低面圧での条件において摺動性が低い。 これ を解^:するためには、 1 0 η m以上の厚みの酸化物 (より好ましくは 2 0 n m以上) を ロールにより凹部となっている部分以外の、 凸部及び Zまたは平坦部にも酸化物を形成 させる必要がある。 即ち、 効果を十分に発現させるためには、 纏己 Z n主体の酸化物が めっき表面を十分被覆していることカ重要であり、 被覆率として任意のめっき表面にお いて 7 0 %以上である必要がある。 Z n主体の酸化物の被覆率は、 X線マイク口アナラ ィザー (E PMA) による元素マッピング、 もしくは走査電子顕微鏡 (S EM) により Hffiできる。 E PMAでは、 着目する酸化物から得られる 0、 A l、 Z nの強度あるい はそれらの比をあらかじめ得ておき、 それを基に測定した元素マップのデータ処理を行 うことで、 面積率を見積もることができる。 一方、 加速 Sffi 0. 5kV前後の電子線を用い た S EM像観察により、 より簡便に面積率を見積もることができる。 本条件では、 表面 で酸化物の形成されている部分とされていない部分を明瞭に区別することができるため、 得られた二次電子像を画像処理ソフトウェアにより二値化することで 率を評価でき る。 ただし、 観察されるコントラストが、 着目する酸化物に合致しているかどうかを、 あらかじめ A E Sや ED S等で ¾mして *5くことが必要である。
酸化物層を形成する手法としては、 溶融 めっき鋼板を' pH緩衝作用を有する酸性 に させ、 その後、 1〜30秒、 ¾ した後、 7洗.乾燥することが有効である。 この酸化物層形成メカニズムについては明確でないが、 次のように考えることができ る。 溶融 めっき鋼板を酸 に撤虫させると、 鋼板側からは亜鉛の溶解が生じる。 この »の溶解は、 同時に水素発^^を生じるため、 亜鉛の溶解が進行すると、 謹 中の水素イオン濃度が減少し、 その結果灘の pHが上昇し、 溶融 めっき鋼板表面 に Zn系酸化物層を形成すると考えられる。 このように、 Zn系酸化物の形成のためには、 亜鈴の溶解とともに、 鋼板に して 、る職の pHが上昇することが必要であるため、 鋼板を酸 14«に接触させた後に水洗までの保持時間を調整することは有効である。 こ の際、 保持時間が 1秒未満であると、 鋼板に翻虫している赚の pHが上昇する前に液 が洗い流されるために酸ィヒ物を形成できず、 一方、 30秒以上 ¾gしても酸化物生成に 変ィ匕が見られないためである。
本発明において、 水洗までの保持時間は酸化物形成に重要である。 この 過程で、 特殊な微細凹凸構造を有する酸化物 (もしくは水酸化物) 力 S成長する。 より好ましい保 持時間は、 2〜 1 0秒である。
酸化処理に使用する 性^^の pHは 1.0〜5. 0の範囲にあることが望ましい。 これは pHが 5.0を超えると、 »の溶解 5t¾が遅く、 一方 1. 0未満では、 亜鉛の溶解の促進 が «!|となり、 酸化物の形成速度力いずれも遅くなるためである。 また、 酸 (4謙には、 pH緩衝効果をもつた薬液を添加することが不可欠である。 これは、 実際の製造時に処 理液の pH安定性をもたせるのみでなく、 前述の Z n溶解に伴う p H上昇による Z n系 酸化物形成過程において、 局部的な p H上昇を し、 適度な 時間を付与すること により、 酸化物成長時間を確保することができ、 本発明の顿敫である微細凹凸形状を有 する酸化物形成に作用する。
このような pH緩衝性を有する薬液としては、 酸性領域で PH緩衝性を有すれば、 その 薬液種に制限はないが、 例えば、 酢酸ナトリウム (C¾C00Na) などの酢酸塩、 フタル酸 水素カリウム ((K00C)2C6H4) などのフタル酸塩、 クェン酸ナトリウム (Na3C6H507) ゃク ェン酸二水素カリウム (KH2C6 07) などのクェン酸塩、 コハク酸ナトリ ウム
(Na2C4H404) などのコハク酸塩、 ?し酸ナトリウム (NaCH3CH0HC02) などの乳酸塩、 酒石 酸ナトリウム (Na2C4H406) などの酒石酸塩、 ホウ酸塩、 リン酸塩のうちの一種以上を用 いることができる。
また、 その濃度としては、 それぞれ 5〜50g/lの範囲であることが望ましい、 これは、 5g/l未満であると、 pH緩衝効果が不十分で、 所定の酸化物層を形成できないためであ り、 50g/l を超えても、 効果が飽和するだけでなく、 酸化物の形成に長時間を要するた めである。 酸性^^には、 めっき鋼板を御虫させることにより、 めっきより Znが溶出 混入するが、 これは Zn系酸化物の形成を著しく妨げるものではない。 従って、 酸 |4溶 液中の Zn濃度は特に規定しない。 より好ましい p H緩 及びその濃度としては.、 酢 酸ナトリウム 3水和物を 1 0〜5 0 g/ 1の範囲、 さらに好ましくは、 2 0〜5 0 g/ l の範囲とした液であり、 : を用レヽれば有効に本発明の酸化物を得ることができる。 酸 に させる方法には特に制限はなく、 めっき鋼板を酸性^^に浸漬する方 法、 めっき鋼板に酸!^液をスプレーする方法、 塗布ロールを介して酸!^ ¾をめっき 鋼板に塗布する方法等があるが、 最終的に薄い讓状て,板表面に存在することが望ま しい。 これは、 鋼板表面に する酸性^^の量が多いと、 亜鉛の溶解が生じても^ ¾ の ρΗが上昇せず、 次々と亜鉛の溶解が生じるのみであり、 酸化物層を形成するまでに 長時間を有するだけでなく、 めっき層の損傷も激しく、 本来の防鲭鋼板としての役割も 失うことが考えられるためである。 この観点から、 液膜の量は、 3g/m2以下に調整する ことが望ましく、 液膜量の調整は > 絞りロール、 エアワイビング等で行うことができる。 このような酸化物層を形成する処理を行う前には、 溶融 めっき鋼板に調質圧延を 施す必要がある。 これは、.通常は材質調整が主目的であるが、 本発明では同時に鋼板表 面に^ Ϊする A1系酸化物層の一部を破壊する効果もあるためである。
発明者らが、 酸化物形成処理前、 該処理後のめっき鋼板の各々の表面を走査型電子顕 微鏡で観察したところ、 Zn系酸化物皮膜は、 主に調質圧延の際に圧延ロールがめっき 表面に翻虫することで圧延ロールのダル目の凸部で押圧されて A1 系酸化物層が破壌さ れた部分に生成していることがわかった。 従って、 Zn系酸化物皮膜の面積率および分 布は、 調質圧延の圧延ロールの粗さや伸長率を制御することで、 A1系酸化物層が破壊 される面積を制御し、 それによつて、 Zn系酸化物が形成される面積率を制御すること ができる。 また、 このような調質圧延は、 同時にめつき表面に凹部を形成させることが できる。
ここでは調質圧延による例を示したが、 めっき表面の A1系酸化物層を機械的に破壌 できる手法であれば、 Zn系酸化物を形成させること、 およぴ面積率の制御に有効であ る。 その手法には、 例えば、 金属ブラシによる処理やショットブラストなどがある。 また、 酸化処理を行う前に、 アルカリ性鎌に翻虫させ、 '表面を活性化する処理を行 うと有効である。 この目的は、 さらに A1系酸化物を除去し、 表面に新生面を露出する ためである。 前述した調質圧延時には、 材質上制限される伸長率のために、 鋼板の種類 によっては、 十分に A1系酸化物層を破壊できない^^がある。 そこで、 鋼板の種類に よらず、 安定的に摺動性に優れた酸化物層を形成するには、 さらに A1系酸化物層を除 去する処理を行い、 表面を活性化することが必要なためである。
アルカリ性 に翻虫させるなどにより A1系酸化物層を除去する処理を施した に得られる表面 A 1系酸化物について種々検討したところ、 本発明で規定される^;細構 造を有する Z n主体の酸化物を、 前述の酸化処理により形成するのに有効な表面 A 1系 酸化物層の好ましい形態は以下のとおりである。
表層 A 1系酸化物を完全に除去する必要は無く、 めっき表層の Z n系酸化物と混在し ている状態で良いが、 表面の平坦部の酸化物に平均的に含まれる A 1濃度が 2 0 a t % 未満となる状態にすること力 S好ましい。 ここで示した A 1濃度は、 ォージェ電子分光
(AES) と A rスパッタリングによる深さ方向分析により、 2/ mX2;ini離の領域にお ける平均的な酸化物厚さと A 1濃度の深さ方向分布を測定したときの、 酸化物の厚さに 相当する深さまでの範囲における A 1濃度の最大値とした。
A 1濃度が 2. 0 a t %以上となると、 局部的に微細構造を有する Z n主体の酸化 物が形成され難くなり、 めっき表面の 7 0 %以上の面積率で、 微細構造を有する Z n主体の酸化物を被覆することが困難となる。 この結果、 摺動特性、 特に低面圧条 件での搢動特性、 ィ匕成処理性、 接着接合性が低下する。
上述の A 1系酸化物状態を実現する為には、 アルカリ' [fe に■させる方法が有 効であるが、 この^^、 7赚は p Hが 1 1以上、 浴温を 5 0 °C以上とし、 液との翻虫 時間を 1秒以上とすることが好ましい。 上記範囲内の pHであれば の種類に制限は なく、 水酸化ナトリウムや水酸化ナトリウム系の脱脂剤などを用いることができる。 活性化処理は酸化処理の前に実施する必要があるが、 溶融亜鉛めつき後に行われる調 質圧延の前、 後いずれで実施しても良い。 ただし、 調質圧延の後、 活性化処理を施すと、 圧延ロールにより押しつぶされ凹部となった部分で A 1系酸化物力 的に破壊される ため、 凹部以外の凸部及び/または平坦部と A. 1酸化物の除去量が異なる傾向がある。 このため、 活性化処理後の A 1酸化物量が、 面内で不均一となり、 引き続き行われる酸 化処理が不均一となり十分な特性を得られない がある。
このため、 めっき後、 まず、 活性化処理を施し、 面内で均一に A 1酸化物を適正量除 去した後、 調質圧延を実施、 引き続き酸化処理とするプロセス力 S好ましい。 本発明に係る溶融亜鉛めつき鋼板を製造するに関しては、 めっき浴中に A1 が添加さ れていることが必要であるが、 A1以外の添加元素成分は特に限定されない。 すなわち、 A1 の他に、 Pb、 Sb、 Si、 Sn、 Mg、 Mn、 Ni、 Ti、 Li、 Cuなどが含有または添加されてい ても、 本発明の効果が損なわれるものではない。 また、 酸化処理中に不純物が含まれる ことにより、 P、 S、 N、 B、 Cl、 Na、 Mn、 Ca、 Mg、 Ba、 Sr、 Si などが酸化物層中に微量 取り込まれても、 本発明の効果が損なわれるものではない。 次に、 本発明を実施例により更に詳細に説明する。
(実施例)
娜 0. 8謹の冷延鋼板上に、 溶融 »n、めっき皮膜を形成し、 更に調質圧延を行った。 調質圧延俞もしくは後に、 活性化処理として、 水酸化ナトリウム系脱脂剤、 日; —力 ライジング (株) 製 F C - 4 3 7 0赚に所定時間翻虫させた。 調質圧延及び活性化処 理に引き続き、 酸化物形成処理として、 活性化処理を施した試料を、 酢酸ナトリウム 3 水和物、 硫酸第一鉄 7水和物の添加量、 ρ Ηを適宜変えた酸 [4灘に 2〜 5秒浸漬した。 その後ロール絞りを行い、 液量が 3 g/m 2以下となる様に調整した後、 5秒間間大気 中、 室温にて放置した。 また比較のため、 上記活性化処理及び酸化物形成処理を行って いない、 受け取りままの溶融亜 めっきと、 活性化処理を行わずに酸化物形成処理を施 した試験材も用意した。
以上の供^ Wについて、 プレス成形性試験として摺 特性の評価、 また表面形態評価 として、 酸化物層の厚さ、 酸化物の被覆率、 微細凹凸形状の測定を行った。 以下、 特性 評価 法、及び皮膜^ f方法につい.て記述する。
(1)プレス成形性 (摺動特性) 評価 (摩難数測定)
実施の形態 1と同じ方法で、 各供謝の摩聽数を測定した。
( 2) 酸化物層厚さの測定
ォージェ電子分光法 (AES) を用い、 Ar+スパッタリングと AESスぺクトルの測定を繰 り返すことで、 めっき皮膜表面部分の組成の深さ方向分布を測定した。 スパッタリング の時間から深さへの換算は、 酵既知の Si02膜を測定して求めたスパッタリングレー トにより行った。 組成 (at%) は、 各元素のォージェピーク強度から相対感度因子補正 により求めたが、 コンタミネーションの影響を除くために Cは考慮に入れなかった。 酸 化物、 水酸化物に起因する 0濃度の深さ分布は表面近傍で高く、 内部^くに従って低 下して一定となる。 最大値と一定値との和の 1/2となる深さを、 酸化物の厚さとした。 平坦な部分の 2 mX2/z m程度の領域を分析の ¾ ^とし、任意の 2〜3点で測定した結 果の平均値を平均酸化 J ^とした。
( 3 ) Z n主体の酸化物の面積率測定
Z n主体の酸化物の面積率を測定するために、 走査電子顕^ (LEO %h LE01530) を用 い、 加速 IKE 0. 5 kVでインレンズタイプの二次電子検出器を用いて低倍率の二次電子 像を観察した。 この観察条件で、 Z n主体の酸化物が形成された部分は暗いコントラス トとして、 このような酸化物が形成されていない部分と明瞭に区別することができる。 得られた二次電子像を画像処理ソフトウェアにより二値化し、 暗い部分の面積率を求め て Zn系酸化物の形成された面積率とした。
(4) 酸化物の微細凹凸の形状及び粗さパラメータの測定
Zn系酸化物の微細凹凸;^形成されていることは、 走査電子顕微鏡 (LEO社 LE01530) を用い、 加速 «ΞΕ 0. 5 kVで試料室内に設置された Everhart - Thornly型の二次電子検出 器を用いて高倍率の二次電子像を観察しすることにより藤、した。
Zn系酸化物の表面粗さの計測は、 電子線三次元粗さ解析装置 (エリオ二タス社製 ERA-8800FE) を用いた。 測定は加速電圧 5kV、 ワーキングディスタンス (作動距離) 15mraにて行い、 測定時の面内方向のサンプリング間隔は 5 nm以下とした (観察倍率は 40000倍以上) 。 なお、 電子線照射による帯電を避けるため金蒸着を施した。 Zn系酸化 物が する領域一箇所当たり電子線の走 ¾ ^向から長さ 3〃πι の 450本以上の粗 さ曲線を切出した。 測定した場所は一試料当たり 3箇所以上である。
上記の粗さ曲線から装置に付属の ソフトウェアを用いて、 粗さ曲線の平均粗さ (Ra) と粗さ曲線の局部凹凸の平均間隔 (S) を計算した。 ここで、 Ra、 S は、 それぞ れ、 田凹凸の粗さ、 周期を評価するパラメータである。 これらの一般的な定義に関し ては、 日本工業規格の 「表面粗さ-用語」 B- 0660- 1998等に記載されている。 本発明例 は、 数; の長さの粗さ曲線についての粗さパラメータである力 その Ra、 Sは、 上記 文献で定義される数式に従って計算されている。
電子線を試料表面に照射するとカーボン主体のコンタミネ一ションが成長し、 それが 測定データに現れる がある。 この影響は今回のように測定領域が小さい ^顕著に なりやすい。 そこでデータ解肝に当たっては、 測定方向の長さ (約 3 m) の半分を力 ットオフ波長とする Splineハイパーフィルターをかけて、 この影響を除去した。 本装 置の較正には、 米国の国立研究機関 NISTにトレーサブノレな VLSIスタンダード社の SHS 薄膜段差スタンダード (段差 18nm、 88nra、 450nm) を用いた。 試験結果を表 6に示す。 表 6に示す結果より、 下記事項が明らかである。
No. :!〜 6は、 いずれも平坦部に形成された Z n主体の酸化物の厚さ、 面積率、 及ぴ微 細凹凸形状が、 本発明の範囲内に入っているため、 摩 数が低い。
No.7 は、 Z n主体酸化物の厚さ及ぴ面積率は十分である力、微細凹凸が適正に形成 されていないため、 摩匪数の低下度合いは小さい。
No.8 は、 活性化処理を行っていないため、 酸化物が十分に形成されなかったもので
供試材 酸化処理 平坦部の Zn主体酸化物 ΖηΞ £体酸化物の微細凹凸形状
No. 活性化処理 酢酸ナトリウム 硫酸第一鉄 pH 平均酸化膜厚 面積率(%) 摩擦係数 平 ¾部 調圧凹部 備考
3水和物(s/l) 7水和物(sr/l) Cnm) Ra(nm) S(nm) a(nm) S(nm)
1 あ y 40 0 1.5 28 91 0.176 71 540 82 780 本発明例
2 あり 40 0 2 24 93 0.167 45 421 47 433 本発明例
3 あ y 40 0 2 18 91 0.160 11 168 52 612 本発明例
4 あ y 40 40 2 21 96 0.156 13 124 13 131 本発明例
5 あり 40 80 2 23 95 0.162 5.2 42 4.6 46 本発明例
6 あ y 40 0 3 17 98 0.169 4.2 113 49 523 本発明例
7 あり 20 0 4 13 92 0.182 2.3 53 23 421 比較例
8 なし 40 0 2 8 12 0.250 - - 18 620 比較例 g なし なし 5 - 0.281 1.3* 64* 1.6* 70* 比較例
* Zn主体酸化物ではなく、めっき表面にもとより存在する凹凸

Claims

請求の範囲
1. 実質的に η相からなるめっき層と t&IBめつき層表面に する酸化物層とを有し、 前記酸化物層は、 その平均厚さが 10 nm以上であり、
前記酸化物層は、 原子濃度比で 1を超える Z nZA 1比を有する Z n系酸化物 層おょぴ原子濃度比で 1未満の Z n_ A 1比を有する A 1系酸化物層からなる溶融 亜鉛めつき鋼板。
2. 前記めつき層はその表面に凹部と凸部を有し、 前記 Zn系酸化物層が少なくと もその凹部に存在する請求の範囲 1に記載の溶融亜鉛めつき鋼板。
3. 前記 Zn系酸化物層は微細凹凸を有し、 その微細凹凸は粗さ曲線の平均間隔 (S) が l O O Onm以下、 平均粗さ (Ra) が 100 n m以下である請求の範囲
1に記載の溶融亜鉛めつき鋼板。
4. 前記 Zn系酸化物層は Zn及び Feを含む酸化物を含み、 1— 50 at%の F e / (Zn + F e) で定義される F e原子濃度比を有する請求の範囲 1に記載の溶融 亜鉛めつき鋼板。
5. 前記 Zn系酸化物層は、 15%以上のめっき表面に占める面積率を有する請求 の範囲 1に記載の溶融亜鉛めつき鋼板。
6. 前記酸化物層が、 10— 200 nmの平均厚さを有する請求の範囲 1に記載の 溶融亜鉛めつき鋼板。
7. 前記 Zn系酸化物層が微細凹凸を有し、 前記 Zn系酸化物層が凸部と、 凸部か ら囲まれる不連続な凹部で形成される網目状構造を有する請求の範囲 1に記載の溶 融亜鉛めつき鋼板。
8. 前記 Zn系酸化物層が、 前記原子濃度比で 4以上の Ζη,ΑΙ比を有する請求 の範囲 1に記載の溶融亜鉛めつき鋼板。
9. 前記 Zn系酸化物層が、 70%以上のめっき表面に占める面積率を有する請求 の範囲 8に記載の溶融亜鉛めつき鋼板。
10. 前記 Zn系酸化物層が、 調質圧延により形成されるめつき表面の凹部と、 凹部以 外の凸部または平坦部に形成されている請求の範囲 8に記載の溶融亜鉛めつき鋼板。
11. 前記 Z n系酸化物層が、 Z n及ぴ F eを含む酸化物を含み、 1—50 at%の Fe/ (Zn + Fe) で定義される F e原子濃度比を有する請求の範囲 8に記載の溶融 亜鉛めつき鋼板。
12. 前記 Zn系酸化物層が微細凹凸を有し、 前記 Zn系酸化物層が凸部と、 凸部 から囲まれる不連続な凹部で形成される網目状構造を有する請求の範囲 8に記載の 溶融亜鉛めつき鋼板。
13. 実質的に 相からなるめっき層と前記めつき層表面に する Feを含む Zn系 酸化物層とを有し、
前記 Zn系酸化物層が、 :L〜50%のF e/ (F e+Zn) で定義される F e 原子比率を有する溶融亜鉛めつき鋼板。
14. 前記 Zn系酸化物が、 凸部と、 凸部より囲まれる不連続な凹部で形成される網目 状構造からなる 細凹凸を有する請求の範囲 13に記載の溶融 ロ、めっき鋼板。
15. 前記 Zn系酸化物層が、 15%以上のめっき表面に占める面積率を有する請求の 範囲 13に記載の溶融亜鉛めつき鋼板。
16. 実質的に η相からなるめっき層と ΙίΠΒめっき層表面に存在する Feを含む Zn系 酸化物層とを有し、
前記 Zn系酸化物層が、 凸部と、 凸部より囲まれる不連続な凹部で形成される 網目状構造からなる猶田凹凸を有する溶融 »ロ、めつき鋼板。
17. 前記 Z n系酸化物層が、 10〜: L 000 nmの粗さ曲線の平均間隔 (S) と 4〜 10 On mの平均粗さ (R a ) を有する請求の範囲 16に記載の溶融亜鉛めつき鋼板。
18. 前記 Zn系酸化物層が、 70%以上のめっき表面に占める面積率を有する請求の 範囲 16に記載の溶融亜鉛めつき鋼
19. 前記 Zn系酸化物層が、 調質圧延により形成されるめつき表面の凹部以外の平坦 部に形成されている請求の範囲 16に記載の溶融亜鉛めつき鋼
20. 廳己平坦部に形成されている Z n系酸化物層が、 10〜 500 nmの粗さ曲線の 平均間隔 (S) と 4〜10 Onmの平均粗さ (Ra) を有する請求の範囲 19に記載の 溶融 »めつき鋼板。
21. 鋼板に溶融亜鈴めつきを施し、 溶融亜鉛めつき皮膜を形成する溶融亜鉛めつ 含工程;
溶融亜鉛めつき皮膜が形成された鋼板を調質圧延する調質圧延工程; 調質圧延された鋼板に、 pH緩衝作用を有する酸性溶液に接触させ、 水洗ま での保持時間が 1〜 30秒である酸化処理を行う酸化処理工程、
を有する溶融亜鈴めつき鋼板の製造方法。
22. 前記調質圧延工程の前または後に、 さらに、 表面を活性化する活性化処理工 程を有する請求の範囲 21に記載の溶融亜鉛めつき鋼板の製造方法。
23. さらに、 前記活性化処理工程により、 前記酸化処理工程の前の表面酸化物層 に含まれる A 1系酸化物を A 1濃度として 20 at%未満に制御する工程を有する請 求の範囲 22に記載の溶融亜鉛めつき鋼板の製造方法。
24. 前記活性化処理工程が、 pHl l以上、 50°C以上のアルカリ性溶液に 1秒 以上接触させることからなる請求の範囲 2 2に記載の溶融亜鉛めつき鋼板の製造方 法。
2 5 . 前記活性ィヒ処理工程が調質圧延する工程の前に行われる請求の範囲 2 2に記 載の溶融亜鉛めつき鋼板の製造方法。
2 6 . 前記酸性溶液が F eイオンを 1—2 0 0 g Z 1含有する請求の範囲 2 1に記 載の溶融亜鉛めつき鋼板の製造方法。
2 7 . 鋼板に溶融亜鉛めつきを施し、 溶融亜鉛めつき皮膜を形成する溶融亜鉛めつ き工程;
溶融亜鉛めつき皮膜が形成された鋼板を調質圧延する調質圧延工程; . 調質圧延された鋼板に、 p H緩衝作用を有し、 5〜2 0 0 g / 1の F eイォ ンを含む p H 1〜 3の酸性溶液に接触させ、 水洗までの保持時間が 1〜 3 0秒であ る酸化処理を行う酸化処理工程、
前記調質圧延工程の前または後に、 表面を活性化する活性化処理工程、 を有する溶融亜鈴めつき鋼板の製造方法。
2 8 . 鋼板に溶融亜鉛めつきを施し、 溶融亜鉛めつき皮膜を形成する溶融亜鉛めつ さ工程;
溶融亜鉛めつき皮膜が形成された鋼板を調質圧延する調質圧延工程; 調質圧延された鋼板に、 p H緩衝作用を有し、 ρ Η 1〜5の酸性溶液に接触 させ、 水洗までの保持時間が 1—3 0秒である酸化処理を行う酸化処理工程、
前記調質圧延工程の前または後に、 表面を活性化する活性化処理工程、
を有する溶融亜 めつき鋼板の製造方法。
PCT/JP2003/013281 2003-04-18 2003-10-17 プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法 WO2004094683A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP03758730A EP1616973B1 (en) 2003-04-18 2003-10-17 Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
MXPA05002680A MXPA05002680A (es) 2003-04-18 2003-10-17 Placa de acero galvanizada revestida con zinc por bano caliente, excelente en formabilidad de prensado y metodo para su elaboracion.
EP09156448.4A EP2071048B1 (en) 2003-04-18 2003-10-17 A method for producing a hot-dip galvanized steel sheet having excellent press formability.
CA002493040A CA2493040C (en) 2003-04-18 2003-10-17 Hot-dip galvanized steel sheet having excellent press formability and method for producing the same
MX2008010424A MX342803B (es) 2003-04-18 2003-10-17 Placa de acero galvanizada revestida con zinc por baño caliente, excelente en formabilidad de prensado y metodo par su elaboracion.
BRPI0313873-9A BR0313873B1 (pt) 2003-04-18 2003-10-17 chapas de aÇo galvanizadas por imersço a quente tendo excelente conformabilidade para prensagem e o mÉtodo para produÇço das mesmas.
US10/521,474 US7338718B2 (en) 2003-04-18 2003-10-17 Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
US12/008,019 US20080149228A1 (en) 2003-04-18 2008-01-08 Methods for producing a hot-dip galvanized steel sheet having excellent press formability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003113938A JP4329387B2 (ja) 2002-04-18 2003-04-18 プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法
JP2003-113938 2003-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/008,019 Division US20080149228A1 (en) 2003-04-18 2008-01-08 Methods for producing a hot-dip galvanized steel sheet having excellent press formability

Publications (1)

Publication Number Publication Date
WO2004094683A1 true WO2004094683A1 (ja) 2004-11-04

Family

ID=33307930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013281 WO2004094683A1 (ja) 2003-04-18 2003-10-17 プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法

Country Status (8)

Country Link
US (2) US7338718B2 (ja)
EP (2) EP2071048B1 (ja)
KR (1) KR100707255B1 (ja)
CN (1) CN100441728C (ja)
BR (1) BR0313873B1 (ja)
CA (1) CA2493040C (ja)
MX (2) MX342803B (ja)
WO (1) WO2004094683A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031531A1 (en) * 2003-08-29 2012-02-09 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666624B1 (en) * 2003-08-29 2017-06-07 JFE Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
KR101052697B1 (ko) * 2006-02-02 2011-07-29 씨케이긴죠꾸가부시끼가이샤 용융아연도금욕 및 아연도금처리 철물제품
MX2008013860A (es) 2006-05-02 2008-11-14 Jfe Steel Corp Procedimiento para producir lamina de acero revestida con zinc por inmersion en caliente aleada y lamina de acero revestida con zinc por inmersion en caliente aleada.
US20070278180A1 (en) * 2006-06-01 2007-12-06 Williamson Mark J Electron induced chemical etching for materials characterization
US7807062B2 (en) * 2006-07-10 2010-10-05 Micron Technology, Inc. Electron induced chemical etching and deposition for local circuit repair
US7892978B2 (en) * 2006-07-10 2011-02-22 Micron Technology, Inc. Electron induced chemical etching for device level diagnosis
US7791071B2 (en) 2006-08-14 2010-09-07 Micron Technology, Inc. Profiling solid state samples
US7569484B2 (en) * 2006-08-14 2009-08-04 Micron Technology, Inc. Plasma and electron beam etching device and method
US7584646B2 (en) * 2006-09-08 2009-09-08 Ford Global Technologies, Llc Device for measuring coefficient of friction
DE102007042616A1 (de) * 2007-09-07 2009-03-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Metallische Folie zur Herstellung von Wabenkörpern und daraus hergestellter Wabenkörper
KR20150055111A (ko) * 2008-01-28 2015-05-20 신닛테츠스미킨 카부시키카이샤 합금화용융아연도금 열처리 강재 및 그 제조방법
WO2010070942A1 (ja) * 2008-12-16 2010-06-24 Jfeスチール株式会社 亜鉛系めっき鋼板およびその製造方法
JP5354165B2 (ja) * 2008-01-30 2013-11-27 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
JP5588112B2 (ja) * 2008-03-27 2014-09-10 株式会社神戸製鋼所 耐食性に優れたクロメートフリー被覆溶融亜鉛めっき鋼板
CN104149411B (zh) * 2008-04-22 2017-08-08 新日铁住金株式会社 镀敷钢板及镀敷钢板的热压方法
ES2696550T3 (es) * 2009-10-26 2019-01-16 Nippon Steel & Sumitomo Metal Corp Chapa de acero aleado galvanizado por inmersión en caliente y método para su fabricación
JP5648309B2 (ja) * 2010-03-31 2015-01-07 Jfeスチール株式会社 溶融亜鉛系めっき鋼板の製造方法
KR101696115B1 (ko) 2015-12-22 2017-01-13 주식회사 포스코 후처리 피막이 형성된 아연계 도금강판 및 그 후처리 방법
KR101940882B1 (ko) 2016-12-23 2019-01-21 주식회사 포스코 실러 접착성이 우수한 아연계 도금 강재 및 후처리 피막 형성용 조성물
WO2019194229A1 (ja) * 2018-04-03 2019-10-10 日本製鉄株式会社 亜鉛系電気めっき鋼板
JP6973683B2 (ja) * 2019-04-17 2021-12-01 日本製鉄株式会社 亜鉛系めっき鋼板
CN113614285B (zh) * 2019-05-31 2024-03-08 日本制铁株式会社 热冲压成型体
KR102608759B1 (ko) * 2019-05-31 2023-12-04 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
CN110835757B (zh) * 2019-10-22 2021-12-21 首钢集团有限公司 一种胶接性能优异的热镀锌钢板及其制备方法
CN111455297A (zh) * 2020-04-16 2020-07-28 高邮成鑫金属制造有限公司 一种带自动循环功能的热镀锌水洗池
CN114113179A (zh) * 2021-10-14 2022-03-01 国网甘肃省电力公司电力科学研究院 一种快速判断镀锌钢构件原始缺陷的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009152A1 (en) * 1989-12-12 1991-06-27 Nippon Steel Corporation Galvanized steel plate having excellent capability of press working, chemical conversion and the like, and production of said plate
JPH03287784A (ja) 1990-04-03 1991-12-18 Nippon Steel Corp プレス成形性、化成処理性、溶接性に優れた亜鉛系めっき鋼板
JPH04202786A (ja) 1990-11-30 1992-07-23 Nkk Corp 電着塗装性および加工性に優れた、複数の鉄系合金めっき層を有する鉄系合金めっき鋼板の製造方法
JPH04202787A (ja) 1990-11-30 1992-07-23 Nkk Corp 電着塗装性および加工性に優れた、複数の鉄系合金めっき層を有する鉄系合金めっき鋼板の製造方法
JPH0565623A (ja) * 1991-09-04 1993-03-19 Nkk Corp プレス成形性およびスポツト溶接性に優れた溶融亜鉛系めつき鋼板
JPH08158066A (ja) 1994-09-27 1996-06-18 Nkk Corp 亜鉛系メッキ鋼板
JPH08325689A (ja) * 1995-05-30 1996-12-10 Nippon Steel Corp 潤滑性、化成処理性に優れた溶融亜鉛系めっき熱延鋼板の製造設備
JP2000160358A (ja) * 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼板
JP2000328220A (ja) * 1999-05-18 2000-11-28 Sumitomo Metal Ind Ltd 亜鉛系めっき鋼板およびその製造方法
JP2001323358A (ja) * 2000-03-07 2001-11-22 Nkk Corp 合金化溶融亜鉛めっき鋼板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (ja) 1989-01-19 1990-07-26 Nippon Steel Corp プレス成形性に優れた亜鉛めっき鋼板
JPH02258963A (ja) * 1989-03-30 1990-10-19 Nippon Steel Corp 溶接性・成形性に優れた溶融亜鉛めっき鋼板およびその製造方法
EP0423624B1 (en) 1989-04-27 1996-01-24 NIPPON MINING &amp; METALS COMPANY, LIMITED Color-coated article and method for producing the same
JPH03191093A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
JPH03191091A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
JPH03191094A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
US5525431A (en) 1989-12-12 1996-06-11 Nippon Steel Corporation Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same
JPH03191092A (ja) 1989-12-19 1991-08-21 Nippon Steel Corp プレス性、化成処理性に優れた亜鉛系めっき鋼板
US5849423A (en) * 1995-11-21 1998-12-15 Nkk Corporation Zinciferous plated steel sheet and method for manufacturing same
JP3254160B2 (ja) 1997-01-21 2002-02-04 日本鋼管株式会社 接着性に優れた合金化溶融亜鉛めっき鋼板
JP3307326B2 (ja) * 1998-04-21 2002-07-24 住友金属工業株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
JP3675313B2 (ja) * 1999-07-15 2005-07-27 Jfeスチール株式会社 摺動性に優れた合金化溶融亜鉛めっき鋼板の製造方法
JP2001131772A (ja) * 1999-11-10 2001-05-15 Nkk Corp プレス成形性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
WO2001081646A1 (fr) * 2000-04-24 2001-11-01 Nkk Corporation Tole d'acier recuit apres galvanisation et procede de production correspondant
JP2002004020A (ja) 2000-06-23 2002-01-09 Nkk Corp 亜鉛めっき鋼板
JP2002004019A (ja) 2000-06-23 2002-01-09 Nkk Corp 亜鉛めっき鋼板
JP3608519B2 (ja) * 2001-03-05 2005-01-12 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009152A1 (en) * 1989-12-12 1991-06-27 Nippon Steel Corporation Galvanized steel plate having excellent capability of press working, chemical conversion and the like, and production of said plate
JPH03287784A (ja) 1990-04-03 1991-12-18 Nippon Steel Corp プレス成形性、化成処理性、溶接性に優れた亜鉛系めっき鋼板
JPH04202786A (ja) 1990-11-30 1992-07-23 Nkk Corp 電着塗装性および加工性に優れた、複数の鉄系合金めっき層を有する鉄系合金めっき鋼板の製造方法
JPH04202787A (ja) 1990-11-30 1992-07-23 Nkk Corp 電着塗装性および加工性に優れた、複数の鉄系合金めっき層を有する鉄系合金めっき鋼板の製造方法
JPH0565623A (ja) * 1991-09-04 1993-03-19 Nkk Corp プレス成形性およびスポツト溶接性に優れた溶融亜鉛系めつき鋼板
JPH08158066A (ja) 1994-09-27 1996-06-18 Nkk Corp 亜鉛系メッキ鋼板
JPH08325689A (ja) * 1995-05-30 1996-12-10 Nippon Steel Corp 潤滑性、化成処理性に優れた溶融亜鉛系めっき熱延鋼板の製造設備
JP2000160358A (ja) * 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼板
JP2000328220A (ja) * 1999-05-18 2000-11-28 Sumitomo Metal Ind Ltd 亜鉛系めっき鋼板およびその製造方法
JP2001323358A (ja) * 2000-03-07 2001-11-22 Nkk Corp 合金化溶融亜鉛めっき鋼板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031531A1 (en) * 2003-08-29 2012-02-09 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same
US8815349B2 (en) * 2003-08-29 2014-08-26 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
KR100707255B1 (ko) 2007-04-13
CN100441728C (zh) 2008-12-10
US20050139291A1 (en) 2005-06-30
MX342803B (es) 2016-10-13
US20080149228A1 (en) 2008-06-26
MXPA05002680A (es) 2005-05-05
CN1692175A (zh) 2005-11-02
BR0313873B1 (pt) 2013-05-28
EP1616973B1 (en) 2012-01-04
EP2071048B1 (en) 2020-01-22
EP1616973A1 (en) 2006-01-18
CA2493040C (en) 2009-09-15
BR0313873A (pt) 2005-07-19
CA2493040A1 (en) 2004-11-04
US7338718B2 (en) 2008-03-04
EP1616973A4 (en) 2007-09-12
EP2071048A1 (en) 2009-06-17
KR20050047106A (ko) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2004094683A1 (ja) プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法
KR101138042B1 (ko) 합금화 용융아연도금강판의 제조방법 및 합금화 용융아연도금강판
JP4329387B2 (ja) プレス成形性に優れた溶融亜鉛めっき鋼板とその製造方法
JP2007297686A (ja) 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
KR20020087461A (ko) 합금화 용융아연도금강판 및 그 제조방법
JP2002012958A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2001323358A (ja) 合金化溶融亜鉛めっき鋼板
JP3797478B2 (ja) 合金化溶融亜鉛めっき鋼板
JP4849501B2 (ja) プレス成形性に優れた溶融亜鉛めっき鋼板及びその製造方法
JP2003138361A (ja) 合金化溶融亜鉛めっき鋼板
CA2535894C (en) Hot dip galvanized steel sheet and method for manufacturing same
JP4826486B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP2005248262A (ja) 電気亜鉛めっき鋼板、その製造方法及び製造装置
JP2007138231A (ja) 合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板
JP2002302753A (ja) 合金化溶融亜鉛めっき鋼板
JP2008285706A (ja) 合金化溶融亜鉛めっき鋼板
JP4329481B2 (ja) プレス成形性に優れた溶融亜鉛めっき鋼板
JP4826078B2 (ja) 合金化溶融亜鉛めっき鋼板
JP2005002477A (ja) 合金化溶融亜鉛めっき鋼板
JP2002256406A (ja) 合金化溶融亜鉛めっき鋼板
JP2005120445A (ja) プレス成形性に優れた溶融亜鉛めっき鋼板
JP2005113263A (ja) 合金化溶融亜鉛めっき鋼板
JP2001131772A (ja) プレス成形性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP2002266061A (ja) 合金化溶融亜鉛めっき鋼板
JP2003171751A (ja) 合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2493040

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10521474

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003758730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057004035

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/002680

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20038A07031

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004035

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003758730

Country of ref document: EP