WO2004067639A1 - 樹脂用可塑剤及び樹脂組成物 - Google Patents

樹脂用可塑剤及び樹脂組成物 Download PDF

Info

Publication number
WO2004067639A1
WO2004067639A1 PCT/JP2004/000885 JP2004000885W WO2004067639A1 WO 2004067639 A1 WO2004067639 A1 WO 2004067639A1 JP 2004000885 W JP2004000885 W JP 2004000885W WO 2004067639 A1 WO2004067639 A1 WO 2004067639A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid
plasticizer
carbon atoms
chr
Prior art date
Application number
PCT/JP2004/000885
Other languages
English (en)
French (fr)
Inventor
Shoji Takeda
Koji Nishimura
Original Assignee
Arakawa Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries, Ltd. filed Critical Arakawa Chemical Industries, Ltd.
Priority to US10/543,990 priority Critical patent/US20060148947A1/en
Priority to EP04706785A priority patent/EP1589075A4/en
Priority to JP2005504760A priority patent/JP4336991B2/ja
Publication of WO2004067639A1 publication Critical patent/WO2004067639A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a plasticizer for a resin, a resin composition containing the plasticizer, and a molded product thereof. Background technology
  • thermoplastic resins such as polyester, polyolefin, polyamide, polyacetal, biel-based resin, styrene-based resin, acrylic resin, and cellulose-based resin have flexibility, durability, cold resistance, electrical properties, etc.
  • a plasticizer is blended to give
  • plasticizer for example, a phthalic acid plasticizer, a fatty acid plasticizer, a phosphoric acid plasticizer, a polyester plasticizer, and the like are known.
  • Thermoplastic resins are used in a wide variety of applications, such as building materials, packaging materials, and miscellaneous goods, because they are easy to mold and light in weight.
  • resin has (1) concerns about the safety of additives used during molding, (2) high heat of combustion when burned, has a bad effect on incineration facilities, (3) There was a problem that it was difficult to biodegrade in the natural environment and the environmental load was large.
  • the raw material lactic acid can be produced at low cost by fermentation, and cost reduction can be expected by operating large commercial plants.
  • the flexibility of the molded product of polylactic acid has been improved by the addition of the known plasticizer, but there are problems such as insufficient plasticizing effect and bleeding out of the plasticizer.
  • biodegradable plastics such as polylactic acid
  • a plasticizer that has high safety and can reduce the environmental burden has been demanded.
  • W ⁇ 94 Z 0 686 5 6 proposes a composition in which an ester oligomer derivative of lactic acid, a kind of hydroxycarboxylic acid, is added to a polylactic acid resin as a plasticizer satisfying the above demand. I have. However, the resin composition does not have sufficient transparency, bleed-out resistance and flexibility of the molded product. Further, since the above-mentioned ester oligomer derivative of lactic acid contains methyl lactate, which is a low flash point component, there is a concern that the component may evaporate during molding and ignite. Disclosure of the invention
  • An object of the present invention is to form a resin because it has good compatibility with various resins, has excellent plasticizing effect and bleed-out resistance of a resin molded product, and does not contain methyl lactate which is a low flash point component.
  • An object of the present invention is to provide a plasticizer for a resin which is less likely to catch fire at the time and which is excellent in safety.
  • Another object of the present invention is to provide a resin composition which can obtain a molded product excellent in transparency, flexibility and the like by using the plasticizer.
  • the present inventor has made intensive studies to develop a new plasticizer for resin.
  • a specific compound having a portion derived from hydroxycarboxylic acid and a portion derived from alkylenedaricol as a plasticizer to be added to various resins such as polylactic acid-based resin, the above object can be achieved. It has been found that it can be achieved.
  • the present invention has been completed based on such new knowledge.
  • the present invention provides a plasticizer for resin shown below, a resin composition containing the plasticizer, and a molded product thereof.
  • R 1- (0-R 2 -CO) “0-[(CHR 3 ) p (CHR 4 ) .— 0] r [(CHR 5 ) ⁇ ⁇ (CHR 6 ) q '—0] ⁇ ⁇ — R 7
  • R 1 represents a hydrogen atom or an acyl group having 2 to 20 carbon atoms
  • R 2 represents a hydroxycarboxylic acid residue
  • R 3 , R 4 , R 5 and R 6 each independently represent , Hydrogen atom
  • R 7 represents an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms.
  • k represents an integer from 1 to 60; p, p,, Q and q, represent integers from 0 to 6 (provided that l ⁇ p + Q ⁇ 6, .1 ⁇ '+ q' ⁇ 6); r and r, are integers from 0 to 7 (less l ⁇ r + r ' ⁇ 7).
  • the resin composition according to the above item 2 comprising about 1 to 300 parts by weight of the plasticizer for the resin based on 100 parts by weight of the resin.
  • thermoplastic resin selected from the group consisting of polyester, polyolefin, polyamide, polyacetal, vinyl resin, styrene resin, acrylic resin and cellulose resin. Resin composition.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a methyl group;
  • R 7 is an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms
  • 'P, p', Q and q are integers from 0 to 6 (provided that 1 ⁇ + (1 ⁇ 6, l ⁇ p '+ q, ⁇ 6);
  • r and r' are 0
  • a compound represented by an integer of up to 7 (provided that l ⁇ r + r' ⁇ 7),
  • a carboxylic acid having 2 to 20 carbon atoms if necessary.
  • a plasticizer for resin containing a reaction product obtained by reacting
  • Item 9 The resin according to item 8, wherein the component (a) is at least one selected from the group consisting of glycolic acid, glycolic acid oligomer, lactic acid, lactic acid oligomer, and a mixed oligomer of daricholic acid and lactic acid. Plasticizer.
  • the component is triethylene glycol monomethyl ether, Item 9.
  • the resin composition according to the above item 12, comprising about 1 to 300 parts by weight of the plasticizer for the resin based on 100 parts by weight of the resin.
  • thermoplastic resin selected from the group consisting of polyester, polyolefin, polyamide, polyacetal, vinyl resin, styrene resin, acrylic resin and cellulose resin. Resin composition.
  • R 3 , RR 5 and R 6 each independently represent a hydrogen atom or a methyl group; R 7 represents an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms).
  • P, P ', Q and Q are integers from 0 to 6 (where l ⁇ p + q ⁇ 6, l ⁇ p' + q ' ⁇ 6); r and r' are integers from 0 to 7 (However, l ⁇ r + r' ⁇ 7).)
  • the plasticizer for a resin of the present invention has good compatibility with various resins, and is excellent in a plasticizing effect and a bridging resistance of a resin molded product.
  • the resin composition to which the plasticizer is added can be used to prepare a molded article having little change over time and excellent in transparency, flexibility and the like. Further, in the resin composition, since the plasticizer used does not contain methyl lactate, which is a low flash point component, there is little risk of ignition at the time of molding the resin. Therefore, it is excellent in safety.
  • the resin composition in which the plasticizer of the present invention is added to a polylactic acid-based resin has better biodegradability and lower combustion heat than conventional general-purpose plastics, and solves the problem of waste disposal. Useful.
  • the plasticizer of the present invention has a general formula (1):
  • R 1 represents a hydrogen atom or an acyl group having 2 to 20 carbon atoms
  • R 2 represents a hydroxycarboxylic acid residue
  • R 3 , R 4 , R 5 and R 6 each independently represent R 7 represents an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms
  • k represents an integer of 1 to 60
  • r and r' are integers from 0 to 7 (where l ⁇ r + r ' ⁇ 7)
  • the compound represented by the formula (1) examples of the acetyl group having 2 to 20 carbon atoms represented by R 1 or R 7 include acetyl, propionyl, Aliphatic acyl groups such as butyryl, isoptyryl, enanthyl, isononanol, palmitoyl, ste
  • Examples of the hydroxycarboxylic acid residue represented by R 2 include glycolic acid, D-lactic acid, L-lactic acid, DL-lactic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 5-hydroxylactic acid.
  • Examples include hydroxycarboxylic acid residues such as valeric acid and 6-hydroxycabronic acid.
  • alkyl group having a carbon number of 1-8 represented by R 7 for example, methyl, Edjiru, propyl, butyl, isobutyl, pentyl, hexyl, heptyl, Okuchiru, a hexyl group or the like to the cyclo.
  • (Lactic acid-based resin) is preferred because the molded product of the composition added to the lactic acid-based resin has good transparency and flexibility.
  • the method for producing the compound represented by the general formula (1) is not particularly limited.
  • the compound can be prepared by the following methods (A) and (B).
  • Method (A) is based on (a) hydroxycarboxylic acid and (b) —general formula (2): H0-[(CHR 3 ) p (CHR 4 ) ⁇ -0] r [(CHR 5 ) ⁇ ⁇ (CHR 6 ) ⁇ ⁇ -0] r '-R 7
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a methyl group; R 7 is an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms
  • p, p,, q and q are integers from 0 to 6 (less than 1 ⁇ + (1 ⁇ 6, l ⁇ p, + q ' ⁇ 6); r and r' are 0
  • a compound represented by an integer of up to 7 (however, l ⁇ r + r ' ⁇ 7), (c) a carboxylic acid having 2 to 20 carbon atoms as required. Is a reaction method.
  • the reaction product obtained by the method (A) contains the compound of the general formula (1) as a main component, and does not necessarily need to be purified, and may be used as it is or together with various additives such as an antioxidant according to the present invention. Can be used as a plasticizer.
  • R 1 in the general formula (1) A reaction product is obtained which is mainly composed of a compound having 2 to 20 carbon atoms and R 7 being an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or a methyl group
  • R 7 represents an alkyl group having 1 to 8 carbon atoms or an acyl group having 2 to 20 carbon atoms.
  • p, P,, Q and QL represent integers from 0 to 6 ( ⁇ 1 ⁇ + (1 ⁇ 6, l ⁇ p '+ q' ⁇ 6); r and r 'are 0 to 7 This is a method of reacting a compound represented by an integer (where l ⁇ r + r ' ⁇ 7).
  • the reaction product obtained by the method (B) contains the compound of the general formula (1) as a main component, and does not necessarily need to be purified, and may be used as it is or together with various additives such as an antioxidant according to the present invention. Can be used as a plasticizer.
  • any one having at least one hydroxyl group and one carboxyl group in one molecule can be used.
  • oligomers of these hydroxycarboxylic acids can be used.
  • the oligomer may be an oligomer of a single hydroxycarboxylic acid or a mixed oligomer of a plurality of hydroxycarboxylic acids.
  • the use of an oligomer of hydroxycarboxylic acid is preferred because the plasticizing effect and the bleed-out resistance are improved and the flash point is increased.
  • Oligomers are partially contained in commercially available hydroxycarboxylic acids, but can also be prepared aggressively.
  • the oligomer is usually obtained by polycondensing a hydroxycarboxylic acid by a known esterification method. Specifically, under high temperature conditions of about 130 ° C. to 250 ° C., it is obtained by polycondensation while removing generated water out of the system.
  • the reaction is preferably carried out under an inert gas such as nitrogen or helium, because if air is mixed during the polycondensation reaction, the formed oligomer may be colored.
  • the polycondensation reaction does not necessarily require a polycondensation catalyst, but an acid catalyst such as acetic acid or p-toluenesulfonic acid; a hydroxide of an alkaline earth metal such as calcium hydroxide; calcium oxide; Magnesium oxide Alkaline earth metal oxides such as aluminum; organophosphorus compounds such as triphenylphosphite; tin compounds such as tin octylate and dibutyltin dilaurate can also be used.
  • the polymerization degree of the oligomer thus obtained is usually preferably about 2 to 60. If the degree of polymerization exceeds 60, the plasticizing effect tends to decrease, which is not preferable.
  • glycolic acid As the component (a), glycolic acid, glycolic acid oligomer, lactic acid, and lactic acid oligomer are used because the molded product of the resin composition obtained when added to the polylactic acid-based resin has good transparency and flexibility.
  • a mixed oligomer of glycol and lactic acid is preferable.
  • Lactic acid may be any of D-lactic acid, L-lactic acid or DL-lactic acid.
  • the degree of polymerization of these oligomers is preferably about 2 to 40, more preferably about 2 to 20.
  • oligomers of 2- to 20-mers of lactic acid and oligomers of 2- to 20-mers of glycolic acid are most preferred.
  • the component (b) is not particularly limited as long as it is a compound included in the general formula (2), and a known compound can be used.
  • the alkyl group having 1 to 8 carbon atoms and the acyl group having 2 to 20 carbon atoms represented by R 7 are the same as those in the general formula (1).
  • component (b) examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methylene glycol monomethyl ether, methylene glycol monoethyl ether, triethylene glycol monomethyl ether, and triethylene ethylene glycol.
  • Alkylene glycol monoalkyl ethers such as monoethyl ether, polyethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, polypropylene glycol monomethyl ether, tetramethylene glycol monomethyl ether, and polytetramethylene glycol monomethyl ether; Ethylene glycol monoacetate, ethylene glycol monobenzoate, diethylene glycol Over mono acetate, diethylene glycol mono base Nzoeto, Toryechi Examples include alkylene glycol monocarboxylic acid esters such as render glycol monoacetate, triethylene glycol monobenzoate, propylene glycol monoacetate, and propylene glycol monobenzoate.
  • the alkylene glycol monoalkyl ether can be obtained, for example, by subjecting an alcohol to addition polymerization of an alkylene oxide at about 150 ° C. using an alcohol catalyst.
  • the alkylene glycol monocarboxylic acid ester can be obtained by, for example, addition polymerization of a monocarboxylic acid with an alkylene oxide or esterification of a monocarboxylic acid with an alkylene glycol.
  • examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide (THF), and the like, and these may be used alone or in combination of two or more.
  • the alcohol used for producing the alkylene glycol monoalkyl ether is not particularly limited, and includes alcohols having 1 to 8 carbon atoms.
  • Examples of the monocarboxylic acid used in the production of the alkylendalicol monocarboxylic acid ester include monocarboxylic acids having 1 to 8 carbon atoms.
  • triethylene glycol monomethyl ether and triethylene are preferred because of their compatibility with resins (especially polylactic acid resins) and good plasticizing effect on resins (especially polylactic acid resins). It is preferable to use glycol monoethyl ether, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, tripropylene glycol monomethyl ether, etc. In addition, triethylene glycol monomethyl ether is preferred because of its good effect of improving bleed-out resistance.
  • triethylene glycol monomethyl ether is remarkable in that it has a remarkable plasticizing effect and an effect of improving the resistance to preadhesion. Is most preferred.
  • the carboxylic acid having 2 to 20 carbon atoms includes, for example, acetic acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, pendecylic acid, lactic acid, octylic acid Saturated aliphatic carboxylic acids such as isononanoic acid, myristic acid, and stearic acid and their anhydrides; Unsaturated aliphatic carboxylic acids such as pendecylenic acid and oleic acid and their anhydrides; Benzoic acid and parahydroxybenzoic acid And their aromatic anhydrides and anhydrides thereof.
  • an aliphatic carboxylic acid having 2 to 11 carbon atoms because of its good compatibility with the resin (especially polylactic acid resin) and the good plasticizing effect on the resin (especially polylactic acid resin).
  • the use of an aliphatic carboxylic acid having 2 to 7 carbon atoms is preferable because the blow-out resistance is improved.
  • the reaction between the component (a) and the component (b), the reaction between the reactant and the component (c), and the reaction between the component (a) and the component (c) can be performed by a known esterification reaction method. Specifically, it is carried out under a high temperature condition of about 130 ° C to 250 ° C while removing generated water outside the system. In addition, if air is mixed during the esterification reaction, the generated esterified compound may be colored, and therefore the reaction is preferably performed under an inert gas such as nitrogen or helium.
  • the reaction does not necessarily require an esterification catalyst, but an acid catalyst such as acetic acid or p-toluenesulfonic acid; a hydroxide of an alkaline earth metal such as calcium hydroxide; calcium oxide; Alkaline earth metal oxides such as magnesium; organophosphorus compounds such as triphenyl phosphate; tin compounds such as tin octylate and dibutyltin dilaurate may also be used.
  • an acid catalyst such as acetic acid or p-toluenesulfonic acid
  • a hydroxide of an alkaline earth metal such as calcium hydroxide
  • calcium oxide such as magnesium
  • organophosphorus compounds such as triphenyl phosphate
  • tin compounds such as tin octylate and dibutyltin dilaurate
  • the reaction ratio of the component (a) and the component (b) is preferably about 1.3 to 5.0 moles of the component (a) per mole of the component (b).
  • the molar ratio of the hydroxycarboxylic acid unit contained in the component (a) is preferably about 1.3 to 5.0 mol per 1 mol of the component (b). .
  • the proportion of the component is less than 1.3 mol, it takes time to complete the reaction, and the flash point of the product may decrease or the bleed-out resistance may decrease.
  • the plasticizing effect tends to be good when a large amount of the component is used. However, when it is more than 5.0, the production efficiency is deteriorated and the plasticizing effect tends to be reduced.
  • the reaction ratio of the component (c) may be appropriately determined so that the terminal hydroxyl group derived from the component (a) is acylated.
  • an acid chloride may be used as the component (a) or the components Z and (c) to promote the reaction.
  • the compound represented by the general formula (1) thus obtained usually has a weight-average molecular weight of about 300 to 1,500, and is a pale yellow liquid.
  • the compound represented by the general formula (1) and the reaction product obtained by the method (A) or the method (B) and containing the compound represented by the general formula (1) as a main component are all used for various resins. It can be used as a plasticizer and exhibits an excellent plasticizing effect.
  • thermoplastic resins such as polyolefin, polyamide, polyacetal, styrene resin, acrylic resin, cellulose resin, pinyl resin, and polyester.
  • polystyrene resin examples include homoolefins such as polyethylene, polypropylene, polybutene, polymethylpentene, and polymethylbutene, and copolymers such as propylene and ethylene random copolymer.
  • Polyolefins may be used alone or in combination of two or more.
  • Polyamides include aliphatic polyamides such as nylon-6, nylon-6,6, nylon-10, nylon-12, nylon-46, and aromatic polyamides made from aromatic dicarboxylic acids and aliphatic diamines. Can be mentioned. Polyamides may be used alone or in combination of two or more.
  • polyacetal examples include polyformaldehyde (polyoxymethylene), polyacetaldehyde, polypropionaldehyde, and polybutyraldehyde.
  • the polyacetals may be used alone or in combination of two or more.
  • styrene-based resin examples include polystyrene, an AS resin, and an ABS resin. Such styrene resins may be used alone or in combination of two or more.
  • acrylic resin examples include polymethyl methacrylate such as polymethyl methacrylate.
  • the acrylic resin may be used alone, or two or more acrylic resins may be used in combination.
  • Cellulose resins include cellophane, celluloid, cellulose acetate, cellulose diacetate, cellulose triacetate, and cellulose propionate. , Cellulose acetate propionate, cellulose acetate butyrate, methyl acetate, ethyl cellulose, carboxymethylcellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, ethylhydroxyethyl cellulose, carboxymethylethyl cellulose And the like.
  • the cellulose resins may be used alone or in combination of two or more.
  • vinyl-based resin examples include vinyl chloride resin, vinylidene chloride resin, saran, vinyl acetate resin, ethylene-acetate-piel copolymer, polyvinyl alcohol, polyvinyl acetal, polyvinyl methyl ether, and the like.
  • the vinyl resins may be used alone or in combination of two or more.
  • polyesters examples include aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycaprolactone, polyhydroxybutylate, polybutylene succinate, polybutylene succinate-adipate copolymer, and poly (polystyrene).
  • aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate, polycaprolactone, polyhydroxybutylate, polybutylene succinate, polybutylene succinate-adipate copolymer, and poly (polystyrene).
  • Butylene adipate 'terephthalate copolymer, polylactic acid-based resin and the like can be mentioned, and these can be used alone or in combination of two or more.
  • any polyester resin obtained by polymerizing lactic acid can be used without particular limitation.
  • the lactic acid used for the polymerization may be an L-integral form, a D-form, or a mixture of an L-form and a D-form.
  • the polylactic acid-based resin is not limited to a homopolymer of polylactic acid, but may be a copolymer, a blended polymer, or the like.
  • the components forming the polylactic acid copolymer include, for example, hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 5-hydroxyvaleric acid, and 6-hydroxycaproic acid; succinic acid, adipic acid, sebacic acid, Dicarboxylic acids represented by daltaric acid, decanedicarboxylic acid, terephthalic acid, isophthalic acid; polyhydric alcohols represented by ethylene glycol, propanediol, octanediol, dodecanediol, glycerin, sorbitan, polyethylene glycol; glycolide; Lactones represented by ⁇ -force prolactone and ⁇ -butyrolactone.
  • hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 5-hydroxyvaleric acid, and 6-hydroxycaproic acid
  • succinic acid, adipic acid, sebacic acid Dicarboxylic acids represented by daltaric acid,
  • Polymers blended with polylactic acid include cellulose, cellulose nitrate, methylcellulose, regenerated cellulose, glycogen, Tin, chitosan, polybutylene succinate, polybutylene succinate adipate, polybutylene succinate terephthalate and the like.
  • polyester is preferable.
  • a polylactic acid resin is particularly excellent in compatibility with the plasticizer of the present invention, and has a good plasticizing effect when the plasticizer is added. From a certain point, it is more preferable. For example, by adding about 30 parts by weight of the plasticizer to 100 parts by weight of the polylactic acid-based resin, the glass transition point can usually be lowered by 20 ° C. or more.
  • the amount of the plasticizer of the present invention is about 1 to 300 parts by weight, preferably about 5 to 150 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the resin. Degree. Use in such a range is preferable because the resulting composition has little decrease in physical properties over time, improves the flexibility of the molded product, and does not impair transparency. If necessary, the plasticizer of the present invention may be used in combination with a conventionally known plasticizer.
  • the method of blending the plasticizer with the resin is not particularly limited, and examples thereof include a method of mixing with a usual blender and a mixer, and a method of melt-kneading with an extruder, a Banbury mixer and the like. Also, it is advisable to mix a plasticizer in advance during resin production.
  • the resin composition containing the plasticizer of the present invention may contain various additives other than the plasticizer as long as the effects of the present invention are not impaired.
  • additives include a crystal nucleating agent, an antistatic agent, a foaming agent, a heat stabilizer, a light stabilizer, a weather stabilizer, a lubricant, a release agent, an inorganic filler, a pigment dispersant, a pigment, and a dye. And the like.
  • the resin composition containing the plasticizer of the present invention can use molding methods such as extrusion molding, injection molding, stretched film molding, and blow molding in the same manner as general thermoplastics. Can be prepared.
  • the obtained molded product can be suitably used as a material for a wide range of uses from household goods to industrial goods.
  • application fields include, for example, food containers, electrical components, electronic components, automotive components, mechanical components, films, sheets, and fibers.
  • the weight average molecular weight of the polymer in each example is a value in terms of polystyrene by GPC analysis.
  • L-lactic acid (trade name “Hi Pure 90”, manufactured by PUR AC, containing about 90% by weight of L-lactic acid) 398.9 g (lactic acid 4 20 mol) and 285.5 g (1.7 mol) of triethylene glycol monomethyl ether were added, and the temperature was raised to 170 ° C.
  • 2.4 g of triphenyl phosphite (0.6 parts by weight per 100 parts by weight of L-lactic acid) was added.
  • the temperature was raised to 220 ° C and the mixture was stirred for 10 hours.
  • the unreacted material was distilled off under reduced pressure to obtain 517.8 g of triethylene glycol monomethyl ether lactic acid oligomer ester (weight average molecular weight: about 500).
  • Example 3 In a 1 liter reaction vessel equipped with a cooling tube and a stirring device, 315.0 g of L-lactic acid (trade name "Hi Pure 90", manufactured by PURAC, containing about 90% by weight of L-lactic acid) (Equivalent to 1 mol), and the temperature was raised to 170 ° C. Five hours later, 208.2 g (1.3 mol) of triethylene glycol monomethyl ether was dropped over 15 minutes. The temperature was raised to 200 ° C, and after 25 hours, cooled to 140 ° C. 265.5 g (2.6 mol) of acetic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 20 minutes. After keeping the temperature for 4 hours, unreacted substances were distilled off under reduced pressure to obtain 432.0 g (weight average molecular weight: about 520) of triethylene glycol monomethyl ether lactate oligomer acetate.
  • L-lactic acid trade name "Hi Pure 90", manufactured by PURAC, containing about 90% by weight of
  • dalicholic acid containing about 70% by weight of dalicolic acid
  • GLYCOL IC AC ID manufactured by DuPont
  • 434.4 g (glycolic acid) 4.1 mol) and 286.3 g (1.7 mol) of triethylene glycol monomethyl ether were added, and the temperature was raised to 170 ° C.
  • Example 6 In a 1-liter reaction vessel equipped with a cooling pipe and a stirrer, L-lactic acid (trade name "Hi Pure 90", manufactured by PURAC, containing about 90% by weight of L-lactic acid) 398.9 g (lactic acid 4 0.04 mol) and 503.4 g (3.1 mol) of triethylene glycol monomethyl ether were added, and the temperature was raised to 170 ° C. One hour after keeping the temperature at 170 ° C, 2.4 g of triphenyl phosphite (0.6 parts by weight per 100 parts by weight of L-lactic acid) was added. After the addition and keeping the temperature for 4 hours, the temperature was raised to 220 ° C. and stirred for 10 hours. The unreacted material was distilled off under reduced pressure to obtain 731.7 g of triethylene glycol monomethyl ether lactic acid oligomer ester (weight average molecular weight: about 400).
  • L-lactic acid trade name "Hi Pure 90", manufactured by PURAC, containing about 90% by weight of L-lactic
  • L-lactic acid (trade name “Hi Pure 90”, manufactured by PUR AC, containing about 90% by weight of L-lactic acid) 398.9 g (lactic acid 4 0.06 mol) and 130.6 g (0.8 mol) of triethylene glycol monomethyl ether were added, and the temperature was raised to 170 ° C.
  • 2.4 g of triphenyl phosphite (0.6 part by weight per 100 parts by weight of L-monolactic acid) was added.
  • the temperature was raised to 220 ° C and the mixture was stirred for 8 hours.
  • the unreacted material was distilled off under reduced pressure to obtain 382.4 g of triethylene glycol monomethyl ether lactic acid oligomer ester (weight average molecular weight: about 1,000).
  • L-lactic acid (trade name “Hi Pure 90”, manufactured by PUR AC, containing about 90% by weight of L-lactic acid) 398.9 g (lactic acid 4 .0 mol) and 360.9 g (1.7 mol) of triprolendalcol monomethyl ether were added, and the temperature was raised to 170 ° C.
  • triphenyl phosphite (0.6 part by weight per 100 parts by weight of L-monolactic acid) was added.
  • the temperature was raised to 22 O and the mixture was stirred for 5 hours.
  • the unreacted material was distilled off under reduced pressure to obtain 560.7 g (weight average molecular weight: about 600) of triprolendalcol monomethyl ether lactic acid oligomer monoester.
  • L-lactic acid (trade name "Hi Pure 90", manufactured by PURAC, containing about 90% by weight of L-lactic acid) 398.9 g (Equivalent to 4.0 mol of lactic acid) and 358.7 g (1.7 mol) of triethylene glycol monobutyl ether were added, and the temperature was raised to 170 ° C.
  • 2.4 g of triphenyl phosphite (0.6 part by weight per 100 parts by weight of L-monolactic acid) was added.
  • the temperature was raised to 220 ° C and the mixture was stirred for 10 hours.
  • the unreacted material was distilled off under reduced pressure to obtain 570.4 g of triethylene glycol monobutyl ether lactic acid oligomer (weight average molecular weight: about 500).
  • L-lactic acid (trade name “Hi Pure 90", manufactured by PUR AC, containing about 90% by weight of L-lactic acid) 398.9 g (lactic acid 4 0.1 mol)
  • polyethylene glycol monomethyl ether (trade name “Toho-methoxy polyethylene glycol 400”, manufactured by Toho Chemical Co., Ltd., average molecular weight 374-432) 695.1 g (approximately 1.7 mol)
  • Temperature Incubate at 170 ° C and after 1 hour triphenylphosphite 2.4 g (L 0.6 parts by weight per 100 parts by weight of monolactic acid).
  • Polylactic acid (trade name “LACTY 9031”, manufactured by Shimadzu Corporation, weight average molecular weight 140,000, melting point 133 ° C), polybutylene adipate / terephthalate copolymer (trade name “Ecoflex”) , BASF) or polybutylene succinate (trade name “Pionore # 1001G”, manufactured by Showa Polymer Co., Ltd.) per 100 parts by weight of the compounds of Examples 1 to 10 and Comparative Examples 1 to 3. And a known plasticizer, daliseryl triacetate, were added as plasticizers as shown in Table 1. At a setting temperature of 190, a torque rheometer manufactured by Brabender Co. (trade name “Plasticoder-PL-
  • Each of the obtained resin compositions and the like was compression-molded at a melting temperature of 170 ° C and a cooling temperature of 20 ° C to prepare a test piece (a rectangular parallelepiped of 1011111 1101111112111111). This test piece was evaluated for transparency, flexibility and bleed-out resistance.
  • Transparency The test pieces were visually inspected, and those without turbidity were evaluated as A, and those with turbidity were evaluated as B.
  • Flexibility The glass transition point (° C) of the test piece was measured as an index of flexibility. If the glass transition point is lower than the ambient temperature, the test piece can be said to be in a rubbery state, that is, in a flexible state. The glass transition point was measured with a differential scanning calorimeter (trade name: “DSC 220 C”, manufactured by Seiko Instruments Inc.).
  • Bleed-out resistance The test specimens were stored indoors and in a 70 ° C constant temperature bath, and after one week, the ratio (%) of the surface area where the plasticizer bleed out was determined by the following formula.
  • the degree of bleed-out resistance was evaluated in the following four stages. 4; Bleed-out area 0%, 3; Bleed-out area more than 0% and less than 10%, 2: Bleed-out area 10% or more and less than 50%, 1; Bleed-out area 50% or more.
  • Table 1 shows the test results.
  • Plasticizer Resin Plasticizer Amount Transparency "Las transition resistance
  • Test Example 19 None PBS B -23 In Table 1, GT A as the plasticizer indicates glyceryl triacetate (trade name “Triacetin”, manufactured by Daihachi Chemical Industry Co., Ltd.).
  • PLA of the resin is polylactic acid
  • PBAT is polybutylene adipate / terephthalate copolymer
  • PBS is polybutylene succinate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、一般式(1): R1-(O-R2-CO)k-O-[(CHR3)p(CHR4)q-O]r[(CHR5)p’(CHR6)q’-O]r’-R7(式中、R1は水素原子又は炭素数2~20のアシル基を示す;R2はヒドロキシカルボン酸残基を示す;R3、R4、R5及びR6は、それぞれ独立して、水素原子又はメチル基を示す;R7は炭素数1~8のアルキル基又は炭素数2~20のアシル基を示す。kは1~60の整数を示す;p、p’、q及びq’は、0~6の整数(但し1≦p+q≦6、1≦p’+q’≦6)を示す;r及びr’は、0~7の整数(但し1≦r+r’≦7)を示す。)で表される化合物を、含有する樹脂用可塑剤、当該可塑剤を含有する樹脂組成物及びその成形物を、提供するものである。

Description

明 細 書
樹脂用可塑剤及び樹脂組成物 技 術 分 野
本発明は、 樹脂用可塑剤、 当該可塑剤を含有する樹脂組成物及びその成形物に 関する。 背 景 技 術
通常、 ポリエステル、 ポリオレフィン、 ポリアミド、 ポリアセタール、 ビエル 系樹脂、 スチロール系樹脂、 アクリル系樹脂、 セルロース系樹脂等の各種熱可塑 性樹脂の成形物には、 柔軟性、 耐久性、 耐寒性、 電気特性等を付与するため、 可 塑剤が配合されている。
上記可塑剤としては、 例えば、 フタル酸系可塑剤、 脂肪酸系可塑剤、 リン酸系 可塑剤、 ポリエステル系可塑剤等が公知である。
熱可塑性樹脂は、 成形が容易であること、 成形物が軽量であることから、 建築 材、 包装材、 雑貨などの多彩な用途に用いられている。 しかし、 樹脂には、 (1) 成形の際に使用される添加剤の安全性が懸念される、 (2)燃焼させた際の燃焼熱 が高いため焼却処理施設へ悪影響を及ぼす、 (3)自然環境で生分解され難く、 環 境負荷が大きいといつた問題点があつた。
上記問題点を解決し得る樹脂として、 各種生分解性プラスチックが提案され、 商業生産されるに至っている。 なかでも透明性が比較的良好であることから、 ポ リエステルの一種であるポリ乳酸が注目されている。 しかし、 ポリ乳酸は、 生産 コストが高いこと、 成形物の柔軟性に欠けること等の点から、 医療用途などの限 られた分野で使用されるに止まっていた。
ポリ乳酸のコス卜面については、 近年原料の乳酸が発酵法により安価に製造で きるようになり、 又大型商業プラントの稼働によるコスト低減が期待できる。 一方、 ポリ乳酸の成形物の柔軟性については、 前記公知の可塑剤の添加による 改善が図られているものの、 可塑化効果が不十分であったり、 可塑剤がブリード アウトするなどの問題があった。 また、 ポリ乳酸などの生分解性プラスチックに 使用する可塑剤として、 安全性が高く、 環境負荷を低減できる可塑剤が要望され ている。
W〇9 4 Z 0 6 8 5 6公報は、 上記要望を充足する可塑剤として、 ヒドロキシ カルボン酸の一種である乳酸のエステルオリゴマ一誘導体を、 ポリ乳酸系樹脂に 添加した組成物を提案している。 しかし、 当該樹脂組成物は、 その成形物の透明 性、 耐ブリードアウト性及び柔軟性が十分とはいえない。 また、 上記乳酸のエス テルオリゴマー誘導体には低引火点成分である乳酸メチルが含まれるため、 成形 時に当該成分が蒸散し、 引火する等の危険性も懸念される。 発 明 の 開 示
本発明の目的は、 各種樹脂との相溶性が良好であり、 樹脂成形物の可塑化効果 及び耐ブリードアウト性に優れ、 又低引火点成分である乳酸メチルを含まないた め、 樹脂の成形時において引火するおそれが小さく、 安全性にも優れる樹脂用可 塑剤を提供することにある。
本発明の他の目的は、 当該可塑剤を用いることにより、 透明性、 柔軟性等に優 れた成形物を収得できる樹脂組成物を提供することにある。
本発明の更に他の目的及び特徵は、 以下の記載により明らかにされるであろう。 本発明者は、 新規な樹脂用可塑剤を開発すべく、 鋭意研究した。 その結果、 ポ リ乳酸系樹脂等の各種樹脂に添加する可塑剤として、 ヒドロキシカルボン酸に由 来する部分とアルキレンダリコールに由来する部分とを有する特定の化合物を用 いることにより、 上記目的を達成し得ることを見出した。 本発明は、 かかる新知 見に基づいて完成されたものである。
本発明は、 以下に示す樹脂用可塑剤、 当該可塑剤を含有する樹脂組成物及びそ の成形物を、 提供するものである。
1 . 一般式 (1 ) :
R1- (0 - R2- CO)「0 - [ (CHR3) p (CHR4)。—0] r [ (CHR5) Ρ· (CHR6) q '—0] Γ ·— R7 (式中、 R 1は水素原子又は炭素数 2〜 2 0のァシル基を示す; R 2はヒドロキシ カルボン酸残基を示す; R 3、 R 4、 R 5及び R 6は、 それぞれ独立して、 水素原子 又はメチル基を示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァ シル基を示す。 kは 1〜60の整数を示す; p、 p, 、 Q及び q, は、 0〜6の 整数 (但し l≤p + Q≤6、. 1≤ρ' +q' ≤6) を示す; r及び r, は、 0〜 7の整数 (伹し l≤r + r' ≤7) を示す。 ) で表される化合物を、 含有する樹 脂用可塑剤。
2. 樹脂及び上記項 1に記載の樹脂用可塑剤を含有する樹脂組成物。
3. 樹脂 100重量部に対して、 該樹脂用可塑剤を 1〜 300重量部程度含有 する上記項 2に記載の樹脂組成物。
4. 樹脂が、 ポリエステル、 ポリオレフイン、 ポリアミド、 ポリアセタール、 ビニル系樹脂、 スチロール系樹脂、 アクリル系樹脂及びセルロース系樹脂からな る群より選ばれる少なくとも 1種の熱可塑性樹脂である上記項 2に記載の樹脂組 成物。
5. 樹脂が、 ポリエステルである上記項 4に記載の樹脂組成物。
6. ポリエステルが、 ポリ乳酸系樹脂である上記項 5に記載の樹脂組成物。 7. 上記項 2に記載の樹脂組成物を成形してなる成形物。
8. (a) ヒドロキシカルボン酸と、 (b) —般式 (2) :
H0-[(CHR3) p (CHR4) q-0] r[(CHR5) Ρ' (CHR6) Q' -0] r' - R7
(式中、 R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァシル基を示す。 ' p、 p' 、 Q及び q, は、 0〜6の整数 (但し1≤ + (1≤6、 l≤p ' +q, ≤6) を示す; r及び r ' は、 0〜7の整数 (但し l≤r + r ' ≤7) を示 す。 ) で表される化合物とを、 反応させた後、 必要に応じて、 更に (c) 炭素数 2〜20のカルボン酸を反応させて得られる反応生成物を、 含有する樹脂用可塑 剤。
9. (a) 成分が、 グリコール酸、 グリコール酸オリゴマー、 乳酸、 乳酸オリ ゴマー及びダリコール酸と乳酸との混合オリゴマ一からなる群より選ばれる少な くとも一種である上記項 8に記載の樹脂用可塑剤。
10. (b) 成分が、 トリエチレングリコールモノメチルエーテル、 トリェチ レングリコールモノェチルエーテル、 トリエチレングリコールモノプロピルエー テル、 トリエチレングリコ一ルモノブチルエーテル及びトリプロピレングリコー ルモノメチルエーテルからなる群より選ばれる少なくとも一種である上記項 8に 記載の樹脂用可塑剤。
11. (c) 成分が、 炭素数 2〜11の脂肪族カルボン酸の少なくとも一種で ある上記項 8に記載の樹脂用可塑剤。
12. 樹脂及び上記項 8に記載の樹脂用可塑剤を含有する樹脂組成物。
13. 樹脂 100重量部に対して、 該樹脂用可塑剤を 1〜300重量部程度含 有する上記項 12に記載の樹脂組成物。
14. 樹脂が、 ポリエステル、 ポリオレフイン、 ポリアミド、 ポリアセタール、 ビニル系樹脂、 スチロール系樹脂、 アクリル系樹脂及びセルロース系樹脂からな る群より選ばれる少なくとも 1種の熱可塑性樹脂である上記項 12に記載の樹脂 組成物。
15. 樹脂が、 ポリエステルである上記項 14に記載の樹脂組成物。
16. ポリエステルが、 ポリ乳酸系樹脂である上記項 15に記載の樹脂組成物。
17. 上記項 12に記載の樹脂組成物を成形してなる成形物。
18. (a) ヒドロキシカルボン酸と、 (c) 炭素数 2〜20のカルボン酸と を反応させた後、 更に (b) —般式 (2) :
H0-[(CHR3) p (CHR4) q - 0] r [(CHR5) Ρ· (CHR6)。' -0] r'一 R7
(式中、 R3、 R R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァシル基を示す。 P、 P' 、 Q及び Q, は、 0〜6の整数 (但し l≤p + q≤6、 l≤p ' +q' ≤6) を示す; r及び r' は、 0〜7の整数 (但し l≤r + r' ≤7) を示 す。 ) で表される化合物を、 反応させて得られる反応生成物を、 含有する樹脂用 可塑剤。
本発明によれば、 下記のような顕著な効果が得られる。
(1)本発明の樹脂用可塑剤は、 各種樹脂との相溶性が良好であり、 樹脂成形物 の可塑化効果及び耐ブリ一ドアゥト性に優れる。 (2)当該可塑剤を添加した樹脂組成物は、 経時的変化が少なく、 又透明性、 柔 軟性等に優れた成形物を調製できる。 また、 該樹脂組成物は、 使用した可塑剤が 低引火点成分である乳酸メチルを含まないため、 樹脂の成形時において引火する おそれが小さい。 従って、 安全性に優れる。
(3)本発明可塑剤を、 ポリ乳酸系樹脂に添加した樹脂組成物は、 従来の汎用プ ラスチックと比較して生分解性が良好であり、 燃焼熱も低く、 ゴミ処理問題の解 決に役立つ。
本発明の可塑剤は、 一般式 (1) :
(式中、 R1は水素原子又は炭素数 2〜 20のァシル基を示す; R2はヒドロキシ カルボン酸残基を示す; R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子 又はメチル基を示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァ シル基を示す。 kは 1〜60の整数を示す; p、 p' 、 q及び Q' は、 0〜6の 整数 (但し1≤ + (1≤6、 l≤p' +q' ≤6) を示す; r及び r' は、 0〜 7の整数 (但し l≤r + r' ≤7) を示す。 ) で表される化合物を、 含有する。 一般式 (1) において、 R1又は R7で示される炭素数 2〜20のァシル基とし ては、 例えば、 ァセチル、 プロピオニル、 プチリル、 イソプチリル、 ェナントイ ル、 イソノナノィル、 パルミトイル、 ステアロイル基等の脂肪族ァシル基;ベン ゾィル、 ヒドロキシベンゾィル、 ナフトイル基等の芳香族ァシル基等を挙げるこ とができる。
R 2で示されるヒドロキシカルボン酸の残基としては、 グリコール酸、 D—乳 酸、 L一乳酸、 DL—乳酸、 3—ヒドロキシ酪酸、 4ーヒドロキシ酪酸、 4—ヒ ドロキシ吉草酸、 5—ヒドロキシ吉草酸、 6—ヒドロキシカブロン酸等のヒドロ キシカルボン酸残基を挙げることができる。
R 7で示される炭素数 1〜 8のアルキル基としては、 例えば、 メチル、 エヂル、 プロピル、 ブチル、 イソブチル、 ペンチル、 へキシル、 ヘプチル、 ォクチル、 シ クロへキシル基等を挙げることができる。
上記一般式 (1) の化合物の内、 p、 p' 、 Q及び ςι' が 1で、 r + r' が 3 で、 R1が水素原子で、 R2が乳酸残基で、 R3、 R4、 R5及び Rsが水素原子で、 R 7がメチル基であるもの; p、 p' 、 q及び Q' が 1で、 r + r, が 3で、 R 1が炭素数 2〜1 1の脂肪族ァシル基で、 R2が乳酸残基で、 R3、 R R5及び R6が水素原子で、 R7がメチル基であるものが、 樹脂 (特にポリ乳酸系樹脂) に 添加した組成物の成形物の透明性及び柔軟性が良好となる点から、 好ましい。 上記一般式 (1) の化合物の製造方法は、 特に制限されない。 例えば、 下記方 法 (A) 、 (B) により、 該化合物を、 調製することができる。
方法 (A) は、 (a) ヒドロキシカルボン酸と、 (b) —般式 (2) : H0-[(CHR3) p (CHR4) α-0] r[(CHR5) Ρ· (CHR6) α· -0] r' -R7
(式中、 R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァシル基を示す。 p、 p, 、 q及び q, は、 0〜 6の整数 (伹し1≤ + (1≤6、 l≤p, + q ' ≤6) を示す; r及び r' は、 0〜7の整数 (但し l≤r + r' ≤7) を示 す。 ) で表される化合物とを、 反応させた後、 必要に応じて、 更に (c) 炭素数 2〜20のカルボン酸を反応させる方法である。
方法 (A) によって得られる反応生成物は、 一般式 (1) の化合物を主成分と して含んでおり、 必ずしも精製する必要はなく、 そのまま又は酸化防止剤等の各 種添加剤と共に本発明可塑剤として使用することができる。
方法 (A) において、 (a) ヒドロキシカルボン酸と、 (b) —般式 (2) の 化合物を反応させることによって、 一般式 (1) において、 R1が水素原子で、 R7が炭素数 1〜 8のアルキル基である化合物を主成分とする反応生成物が得ら れる。
また、 (a) 成分と (b) 成分を反応して得られた化合物に、 更に、 (c) 炭 素数 2〜20のカルボン酸を反応させることによって、 一般式 (1) において、 R1が炭素数 2〜 20のァシル基で、 R 7が炭素数 1〜8のアルキル基又は炭素数 2〜 20のァシル基である化合物を主成分とする反応生成物が得られる。
方法 (B) は、 (a) ヒドロキシカルボン酸と、 (c) 炭素数 2〜20のカル ボン酸とを反応させた後、 更 (b) 一般式 (2) :
H0 - [(CHR3) p (CHR4) q-0] r [(CHR5) Ρ· (CHR6)。' - 0] r,— R7
(式中、 R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R 7は炭素数 1〜8のアルキル基又は炭素数 2〜2 0のァシル基を示す。 p、 P, 、 Q及び QL, は、 0〜6の整数 (伹し1≤ + (1≤6、 l≤p ' + q ' ≤6 ) を示す; r及び r ' は、 0〜7の整数 (伹し l≤r + r ' ≤7 ) を示 す。 ) で表される化合物を、 反応させる方法である。
方法 (B) によって得られる反応生成物は、 一般式 (1 ) の化合物を主成分と して含んでおり、 必ずしも精製する必要はなく、 そのまま又は酸化防止剤等の各 種添加剤と共に本発明可塑剤として使用することができる。
方法 (B ) においては、 一般式 (1 ) において、 R 1が炭素数 2〜2 0のァシ ル基で、 R 7が炭素数 1〜 8のアルキル基である化合物を主成分とする反応生成 物が得られる。
原料の (a ) ヒドロキシカルボン酸としては、 一分子内に、 水酸基とカルポキ シル基とを少なくとも一つずつ有するものであれば用いることができる。 具体的 には、 例えば、 グリコール酸、 D—乳酸、 L一乳酸、 D L—乳酸、 3—ヒドロキ シ酪酸、 4ーヒドロキシ酪酸、 4—ヒドロキシ吉草酸、 5—ヒドロキシ吉草酸、 6—ヒドロキシカブロン酸等のヒドロキシカルボン酸、 及びこれらのヒドロキシ カルボン酸のオリゴマーを使用することができる。
オリゴマーの場合、 ヒドロキシカルボン酸一種単独のオリゴマーであっても、 ヒドロキシカルボン酸の複数種の混合オリゴマーであっても良い。 ヒドロキシカ ルボン酸のオリゴマーを用いることにより、 可塑化効果及び耐ブリードアウト性 が向上し、 又引火点が上昇するので、 好ましい。
オリゴマーは、 市販のヒドロキシカルボン酸に、 一部含まれているが、 積極的 に調製することもできる。 オリゴマーは、 通常、 ヒドロキシカルボン酸を、 公知 のエステル化方法により、 重縮合することによって得られる。 具体的には、 1 3 0 °C〜2 5 0 °C程度の高温条件において、 生成する水を系外に除去しながら重縮 合することによって、 得られる。 重縮合反応中に空気が混入すると生成するオリ ゴマーが着色する恐れがある為、 反応は窒素やヘリゥム等の不活性ガスの下で行 うことが好ましい。 重縮合反応に際して必ずしも重縮合触媒を必要としないが、 反応時間の短縮のために酢酸、 パラトルエンスルホン酸などの酸触媒;水酸化力 ルシゥムなどのアルカリ土類金属の水酸化物;酸化カルシウム、 酸化マグネシゥ ム等のアルカリ土類金属酸化物; トリフエニルフォスフアイト等の有機リン系化 合物;ォクチル酸スズ、 ジブチルスズジラウレート等のスズ化合物等を使用する こともできる。 このようにして得られるオリゴマーの重合度は、 通常、 2〜6 0 程度であることが好ましい。 重合度が 6 0を超える場合には、 可塑化効果が低下 する傾向にあるため好ましくない。
( a ) 成分としては、 ポリ乳酸系樹脂に添加した場合に得られる樹脂組成物の 成形物の透明性及び柔軟性が良好となる点から、 グリコール酸、 グリコール酸ォ リゴマ一、 乳酸、 乳酸オリゴマー又はグリコールと乳酸との混合オリゴマーであ ることが好ましい。 乳酸としては、 D—乳酸、 L一乳酸又は D L—乳酸のいずれ でもよい。 また、 これらのオリゴマーの重合度は、 2〜4 0程度であるのが好ま しく、 2〜2 0程度であるのがより好ましい。 特に、 乳酸の 2〜2 0量体のオリ ゴマー、 グリコール酸の 2〜2 0量体のオリゴマーが最も好ましい。
( b ) 成分としては、 一般式 (2 ) に包含される化合物であれば、 特に制限さ れず公知の物を使用することができる。
一般式 (2 ) において R 7で示される炭素数 1〜 8のアルキル基及び炭素数 2 〜2 0のァシル基は、 前記一般式 ( 1 ) におけるものと同じである。
一般式 (2 ) において、 p + q、 p, + q ' が 6を超える場合、 r + r, が 7 を超える場合には、 樹脂との相溶性が悪くなり、 得られる組成物の成形物の透明 性が低下するため好ましくない。
( b ) 成分の具体例としては、 エチレングリコールモノメチルエーテル、 ェチ レングリコールモノェチルェ一テル、 ジェチレングリコールモノメチルエーテル、 ジェチレングリコールモノェチルエーテル、 トリエチレングリコールモノメチル エーテル、 卜リエチレンダリコールモノェチルエーテル、 ポリエチレングリコー ルモノメチルエーテル、 プロピレングリコールモノメチルエーテル、 プロピレン グリコールモノェチルエーテル、 ポリプロピレングリコールモノメチルエーテル、 テトラメチレングリコールモノメチルエーテル、 ポリテトラメチレングリコール モノメチルエーテル等のアルキレングリコールモノアルキルェ一テル;エチレン グリコールモノアセテート、 エチレングリコールモノベンゾェ一ト、 ジエチレン グリコールモノアセテート、 ジエチレングリコールモノべンゾエート、 トリェチ レンダリコールモノアセテート、 卜リエチレングリコールモノベンゾェ一ト、 プ ロピレングリコールモノアセテート、 プロピレングリコールモノベンゾェ一ト等 のアルキレングリコールモノ力ルポン酸エステル等が挙げられる。
アルキレングリコールモノアルキルエーテルは、 例えば、 アルコールに 1 5 0 °C前後でアル力リ触媒を使用してアルキレンォキシドを付加重合させることによ り得られる。 また、 アルキレングリコールモノカルボン酸エステルは、 例えば、 モノカルボン酸にアルキレンォキシドを付加重合したり、 モノカルボン酸とアル キレングリコールをエステル化することにより得られる。 ここで、 アルキレンォ キシドとしては、 例えば、 エチレンォキシド、 プロピレンォキシド、 ブチレンォ キシド (TH F ) 等が挙げられ、 これらは単独で又は 2種以上を混合して用いて も良い。 アルキレングリコールモノアルキルエーテルの製造に用いられるアルコ ールは特に制限されず、 炭素数 1〜8のアルコールが挙げられる。 また、 アルキ レンダリコールモノカルボン酸エステルの製造に用いられるモノカルボン酸とし ては、 炭素数 1〜8のモノカルボン酸が挙げられる。
( b ) 成分の中では、 樹脂 (特にポリ乳酸系樹脂) との相溶性、 樹脂 (特に (ポリ乳酸系樹脂) に対する可塑化効果が良好な点から、 トリエチレングリコ一 ルモノメチルエーテル、 トリエチレングリコールモノェチルエーテル、 トリェチ レングリコールモノプロピルエーテル、 トリェチレングリコールモノブチルエー テル又はトリプロピレングリコールモノメチルエーテル等を用いることが好まし い。 また、 耐ブリードアウト性向上効果が良好な点から、 トリエチレングリコー ルモノメチルエーテル、 トリエチレングリコ一ルモノエチルェ一テル、 トリェチ レンダリコールモノプロピルエーテルがより好ましい。 更に、 可塑化効果及び耐 プリ一ドアゥ卜性向上効果が著しい点から、 トリエチレングリコールモノメチル エーテルが、 最も好ましい。
( c ) 炭素数 2〜2 0のカルボン酸としては、 例えば、 酢酸、 吉草酸、 力プロ ン酸、 ェナント酸、 力プリル酸、 ペラルゴン酸、 力プリン酸、 ゥンデシル酸、 ラ ゥリン酸、 ォクチル酸、 イソノナン酸、 ミリスチン酸、 ステアリン酸などの飽和 脂肪族カルボン酸及びこれらの無水物;ゥンデシレン酸、 ォレイン酸などの不飽 和脂肪族カルボン酸及びこれらの無水物;安息香酸及びパラヒドロキシ安息香酸 などの芳香族力ルポン酸及びこれらの無水物などが挙げられる。 これらの中では 樹脂 (特にポリ乳酸系樹脂) との相溶性、 樹脂 (特にポリ乳酸系樹脂) に対する 可塑化効果が良好なことから炭素数 2から 11の脂肪族カルボン酸を用いること が好ましく、 特に炭素数 2〜 7の脂肪族カルボン酸を用いた場合には耐ブリ一ド アウト性が良好となるため好ましい。
(a) 成分と (b) 成分との反応、 この反応物と (c) 成分との反応、 (a) 成分と (c) 成分との反応は、 公知のエステル化反応法により行うことができる。 具体的には、 130°C〜250°C程度の高温条件において、 生成する水を系外に 除去しながら行われる。 また、 エステル化反応中に空気が混入すると生成するェ ステル化物が着色する恐れがある為、 反応は窒素やヘリウム等の不活性ガスの下 で行うことが好ましい。 なお、 反応に際して必ずしもエステル化触媒を必要とし ないが、 反応時間の短縮のために酢酸、 パラトルエンスルホン酸などの酸触媒; 水酸化カルシウムなどのアルカリ土類金属の水酸化物;酸化カルシウム、 酸化マ グネシゥム等のアルカリ土類金属酸化物; トリフエニルフォスフアイト等の有機 リン系化合物;ォクチル酸スズ、 ジブチルスズジラウレ一ト等のスズ化合物等を 使用することもできる。
(a) 成分と (b) 成分の反応割合は、 (b) 成分 1モルに対して、 (a) 成 分が 1. 3〜5. 0モル程度とすることが好ましい。 但し、 (a) 成分がオリゴ マーである場合は、 (b) 成分 1モルに対して、 (a) 成分に含まれるヒドロキ シカルボン酸単位として 1. 3〜5. 0モル程度とすることが好ましい。 (a) 成分の割合が 1. 3モルより少ない塲合は反応の完結に時間がかかり、 生成物の 引火点が下がったり、 耐ブリードアウト性が低下する場合がある。 (a) 成分を 多く用いると可塑化効果は良好となる傾向があるが、 5. 0より多い場合には生 産効率が悪くなるうえ、 可塑化効果が低下する傾向がある。
また、 (c) 成分の反応割合は、 (a) 成分に由来する末端水酸基がァシル化 されるように適宜決定すればよい。
前記一般式 (1) の化合物の製造方法 (A) 及び (B) において、 反応を促進 するために、 (a) 成分又は Z及び (c) 成分として、 酸塩化物を使用すること もできる。 かくして得られる一般式 (1 ) で表される化合物は、 通常、 重量平均分子量 3 0 0〜1, 5 0 0程度であり、 淡黄色の液体である。
一般式 (1 ) の化合物、 及び前記方法 (A) 又は方法 (B ) により得られる、 一般式 (1 ) で表される化合物を主成分とする反応生成物は、 いずれも、 各種樹 脂用の可塑剤として使用でき、 優れた可塑化効果を発揮する。
当該可塑剤を使用できる樹脂としては、 例えば、 ポリオレフイン、 ポリアミド、 ポリアセタール、 スチロール系樹脂、 アクリル系樹脂、 セルロース系樹脂、 ピニ ル系樹脂、 ポリエステルなどの熱可塑性樹脂が挙げられる。
ポリオレフインとしては、 ポリエチレン、 ポリプロピレン、 ポリ一 1ーブテン、 ポリメチルペンテン、 ポリメチルブテンなどのォレフィン単独重合体、 プロピレ ン ·エチレンランダム共重合体などのォレフィン共重合体などを挙げることがで きる。 ポリオレフインは、 単独で用いてもよく、 2種以上を組み合わせて用いて もよい。
ポリアミドとしては、 ナイロン— 6、 ナイロン— 6 6、 ナイロン— 1 0、 ナイ ロン—1 2、 ナイロン— 4 6等の脂肪族ポリアミド、 芳香族ジカルボン酸と脂肪 族ジァミンより製造される芳香族ポリアミドなどを挙げることができる。 ポリア ミドは、 単独で用いてもよく、 2種以上を組み合わせて用いてもよい。
ポリアセタールとしては、 ポリホルムアルデヒド (ポリオキシメチレン) 、 ポ リアセトアルデヒド、 ポリプロピオンアルデヒド、 ポリブチルアルデヒドなどを 挙げることができる。 ポリアセタ一ルは、 単独で用いてもよく、 2種以上を組み 合わせて用いてもよい。
スチロール系樹脂としては、 ポリスチレン、 A S樹脂、 A B S樹脂などを挙げ ることができる。 このようなスチロール系樹脂は、 単独で用いてもよく、 2種以 上を組み合わせて用いてもよい。
アクリル系樹脂としては、 ポリメタクリル酸メチル等のポリメタクリル酸エス テルを挙げることができる。 アクリル系樹脂は、 単独で用いてもよく、 2種以上 を組み合わせて用いてもよい。
セルロース系樹脂としては、 セロハン、 セルロイド、 セルロースアセテート、 セルロースジアセテート、 セルローストリアセテート、 セルロースプロピオネー ト、 セルロースアセテートプロピオネート、 セルロースアセテートブチレート、 メチルアセテート、 ェチルセルロース、 カルポキシメチルセル口一ス、 ヒドロキ シェチルセルロース、 ヒドロキシプロピルセルロース、 ェチルヒドロキシェチル セルロース、 カルポキシメチルェチルセルロースなどを挙げることができる。 セ ルロース系樹脂は、 単独で用いてもよく、 2種以上を組み合わせて用いてもよい。 ビニル系樹脂としては、 塩化ビニル樹脂、 塩化ビニリデン樹脂、 サラン、 酢酸 ビニル樹脂、 エチレン酢酸ピエル共重合体、 ポリビニルアルコール、 ポリビニル ァセタール、 ポリビエルメチルエーテルなどを挙げることができる。 ビニル系樹 脂は、 単独で用いてもよく、 2種以上を組み合わせて用いてもよい。
ポリエステルとしては、 ポリエチレンテレフ夕レート、 ポリエチレンナフタレ ート、 ポリブチレンテレフタレートなどの芳香族系ポリエステル、 ポリ力プロラ クトン、 ポリヒドロキシプチレート、 ポリプチレンサクシネート、 ポリプチレン サクシネート ·アジペート共重合体、 ポリブチレンアジペート 'テレフ夕レート 共重合体、 ポリ乳酸系樹脂などを挙げることができ、 これらを単独又は 2種以上 を組み合わせて用いることができる。
ポリ乳酸系樹脂としては、 乳酸を重合して得られるポリエステル樹脂であれば 特に制限されず使用できる。 重合に用いられる乳酸は、 L一体であっても、 D— 体であってもよく、 L—体と D—体の混合物であってもよい。 また、 ポリ乳酸系 樹脂は、 ポリ乳酸のホモポリマ一に限らず、 コポリマー、 ブレンドポリマーなど であっても良い。
ポリ乳酸のコポリマーを形成する成分としては、 例えばグリコール酸、 3—ヒ ドロキシ酪酸、 5—ヒドロキシ吉草酸、 6—ヒドロキシカブロン酸などに代表さ れるヒドロキシカルボン酸;コハク酸、 アジピン酸、 セバシン酸、 ダルタル酸、 デカンジカルボン酸、 テレフタル酸、 イソフタル酸などに代表されるジカルボン 酸;エチレングリコール、 プロパンジオール、 オクタンジオール、 ドデカンジォ —ル、 グリセリン、 ソルビタン、 ポリエチレングリコールなどに代表される多価 アルコール;グリコリド、 ε—力プロラクトン、 δ —プチロラクトンに代表され るラクトン類が挙げられる。 ポリ乳酸とブレンドするポリマーとしては、 セル口 ース、 硝酸セルロース、 メチルセルロース、 再生セルロース、 グリコーゲン、 キ チン、 キトサン、 ポリブチレンサクシネート、 ポリプチレンサクシネートアジべ —ト、 ポリブチレンサクシネ一トテレフタレ一トなどが挙げられる。
本発明可塑剤を用いる樹脂としては、 ポリエステルが好ましく、 ポリエステル の中でも特にポリ乳酸系樹脂が、 本発明可塑剤との相溶性に優れ、 かつ当該可塑 剤を添加した際の可塑化効果が良好である点から、 より好ましい。 例えば、 ポリ 乳酸系樹脂 1 0 0重量部に対して、 当該可塑剤を 3 0重量部程度配合することに より、 通常、 ガラス転移点を 2 0 °C以上低下させることができる。
本発明の可塑剤の使用量は、 樹脂 1 0 0重量部に対し、 1〜3 0 0重量部程度、 好ましくは 5〜1 5 0重量部程度、 より好ましくは 1 0〜1 0 0重量部程度であ る。 かかる範囲で使用することにより、 得られる組成物の経時的な物性低下が少 なく、 その成形物の柔軟性を向上させるとともに、 透明性を損なわない点から、 好ましい。 本発明の可塑剤は、 必要に応じて、 従来公知の可塑剤と併用してもよ い。
樹脂に、 可塑剤を配合する方法としては、 特に制限はないが、 通常のプレンダ 一、 ミキサー等で混合する方法、 押出機、 バンバリ一ミキサー等を用いて溶融混 練する方法等が挙げられる。 また、 樹脂製造時に、 予め可塑剤を混合しておいて fcよい。
本発明可塑剤を含有する樹脂組成物は、 本発明の効果を損なわない範囲で、 可 塑剤以外の各種添加剤を含有していてもよい。 このような添加剤としては、 例え ば結晶核剤、 帯電防止剤、 発泡剤、 耐熱安定剤、 耐光安定剤、 耐候安定剤、 滑剤、 離型剤、 無機充填剤、 顔料分散剤、 顔料、 染料などを挙げることができる。
本発明可塑剤を含有する樹脂組成物は、 一般的な熱可塑性プラスチックと同様 に、 押出し成形、 射出成形、 延伸フィルム成形、 ブロー成形などの成形方法を用 いることが可能であり、 これにより種々の成形物を調製することができる。
得られた成形物は、 家庭用品から工業用品に至る広い用途の素材として好適に 使用できる。 この様な応用分野としては、 例えば、 食品容器、 電気部品、 電子部 品、 自動車部品、 機械機構部品、 フィルム、 シート、 繊維などを挙げることがで さる。 発明を実施するための最良の形態
以下、 実施例、 比較例及び試験例を挙げて、 本発明をさらに具体的に説明する、 但し、 本発明は、 これら実施例等により限定されるものではない。
各例における重合体の重量平均分子量は、 G P C分析によるポリスチレン換算 値である。 分析機器としては、 東ソー製の次の機器を用いた。
GPC: HLC—8220、
データ処理システム: GPC— 802 Omodel II、
カラム: TSK guardcolumnHXL-L, TSK-GEL G2000HX L及び TSK— GEL G 1000 HXLの 3種類のカラムを連結して用いた。 実施例 1
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリエチレングリコ一ルモノメチルェ一テル 285. 5 g (1. 7モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスフアイ卜 2. 4 g (L—乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 220°Cに昇温し 10時間攪 拌した。 未反応物を減圧留去し、 トリエチレングリコールモノメチルエーテル乳 酸オリゴマーエステル 517. 8 g (重量平均分子量約 500 ) を得た。
実施例 2
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 315. 0 g (乳酸 3. 1モル相当) を加え、 170°Cまで昇温した。 5時間後にトリエチレ ングリコールモノメチルエーテル 208. 2 g (1. 3モル) を 15分かけて滴 下した。 200°Cに昇温し 25時間後ェナント酸 (商品名 「ヘプチル酸」 、 伊藤 製油 (株) 製) 126. 8 g (1. 0モル) を 10分かけて滴下した。 50時間 保温した後、 未反応物を減圧留去し、 トリエチレングリコールモノメチルェ一テ ル乳酸オリゴマーェナント酸エステル 316. 6 g (重量平均分子量約 700) を得た。
実施例 3 冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H i Pu r e 90」 、 PURAC社製、 L一乳酸約 90重量%含有) 315. 0 g (乳酸 3. 1モル相当) を加え、 170°Cまで昇温した。 5時間後にトリェチレ ングリコールモノメチルエーテル 208. 2 g (1. 3モル) を 15分かけて滴 下した。 200°Cに昇温し 25時間後、 140°Cに冷却した。 無水酢酸 (和光純 薬 (株) 製) 265. 5 g (2. 6モル) を 20分かけて滴下した。 4時間保温 した後、 未反応物を減圧留去し、 トリエチレングリコ一ルモノメチルェ一テル乳 酸オリゴマー酢酸エステル 432. 0 g (重量平均分子量約 520) を得た。 実施例 4
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H
1 Pu r e 90」 、 PURAC社製、 L—乳酸約 90重量%含有) 315. 0 g (乳酸 3. 1モル相当) を加え、 170°Cまで昇温した。 5時間後にトリェチレ ングリコールモノメチルエーテル 208. 2 g (1. 3モル) を 15分かけて滴 下した。 200°Cに昇温し 25時間後、 ラウリン酸 (商品名 「LUNAC L— 98」 、 花王 (株) 製) 238. 2 g (1. 2モル) を徐々に投入した。 40時 間保温した後、 未反応物を減圧留去し、 トリエチレングリコールモノメチルェ一 テル乳酸ォリゴマーラウリン酸エステル 570. 2 g (重量平均分子量約 Ί 0 0) を得た。
実施例 5
冷却管及び攙拌装置をつけた 1リットルの反応容器に、 ダリコール酸 (ダリコ 一ル酸約 70重量%含有) (商品名 「GLYCOL I C AC I D」 、 デュポン 社製) 434. 4 g (グリコール酸 4. 1モル相当) 、 トリエチレングリコ一ル モノメチルエーテル 286. 3 g (1. 7モル) を加え、 170°Cまで昇温した。
1 70°Cで保温し 1時間後にトリフエニルフォスファイト 2. 6 g (グリコール 酸 100重量部に対して 0. 6重量部) を添加した。 添加して 4時間保温した後、
220°Cに昇温し 5時間攪拌した。 未反応物を減圧留去し、 トリエチレングリコ —ルモノメチルェ一テルグリコ一ル酸オリゴマーエステル 465. 6 g (重量平 均分子量約 500) を得た。
実施例 6 冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L一乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリエチレングリコールモノメチルエーテル 503. 4g (3. 1モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスファイト 2. 4g (L—乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 220°Cに昇温し 10時間攙 拌した。 未反応物を減圧留去し、 トリエチレングリコールモノメチルエーテル乳 酸オリゴマーエステル 731. 7 g (重量平均分子量約 400) を得た。
実施例 7
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリエチレングリコ一ルモノメチルエーテル 130. 6 g (0. 8モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスファイト 2. 4 g (L一乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 220°Cに昇温し 8時間攪拌 した。 未反応物を減圧留去し、 トリエチレングリコールモノメチルエーテル乳酸 オリゴマーエステル 382. 4 g (重量平均分子量約 1, 000) を得た。 実施例 8
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L—乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリプロレンダリコールモノメチルエーテル 360. 9 g (1. 7モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスファイト 2. 4 g (L一乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 22 O に昇温し 5時間攪拌 した。 未反応物を減圧留去し、 トリプロレンダリコールモノメチルエーテル乳酸 オリゴマ一エステル 560. 7 g (重量平均分子量約 600) を得た。
実施例 9
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L一乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリエチレングリコールモノブチルエーテル 358. 7 g (1. 7モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスファイト 2. 4 g (L一乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 220°Cに昇温し 10時間攪 拌した。 未反応物を減圧留去し、 トリエチレングリコールモノブチルエーテル乳 酸オリゴマーエステル 570. 4 g (重量平均分子量約 500) を得た。
実施例 10
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 L一乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 トリエチレングリコールモノェチルェ一テル 309. 9 g (1. 7モル) を加え、 170°Cまで昇温した。 170°Cで保温し 1時間後 にトリフエニルフォスファイト 2. 4 g (L一乳酸 100重量部に対して 0. 6 重量部) を添加した。 添加して 4時間保温した後、 220°Cに昇温し、 10時間 攪拌した。 未反応物を減圧留去し、 トリエチレングリコールモノェチルエーテル 乳酸オリゴマ一エステル 567. 4 g (重量平均分子量約 500) を得た。 比較例 1
冷却管及び攪拌装置をつけた 1リットルの反応容器に、 乳酸メチル (商品名 「PURASOLV ML」 、 PURAC社製) 624. 6 g (6. 0モル相 当) を加え、 135°Cまで昇温した。 135°Cで保温し 7時間後にジブチルスズ ジラウレート 0. 6 g (乳酸メチル 100重量部に対して 0. 1重量部) を添加 し、 70時間攪拌した。 未反応物を減圧留去し、 乳酸オリゴマーメチルエステル 400. 8 g (重量平均分子量約 400) を得た。
比較例 2
冷却管及び攪拌装置をつけた 2リットルの反応容器に、 L一乳酸 (商品名 「H i Pu r e 90」 、 PUR AC社製、 L—乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 ポリエチレングリコールモノメチルエーテル (商品名 「トーホ一メトキシポリエチレングリコール 400」 、 東邦化学 (株) 製、 平均 分子量 374〜432) 695. 1 g (約 1. 7モル) を加え、 170Tまで昇 温した。 170°Cで保温し 1時間後にトリフエニルフォスファイト 2. 4g (L 一乳酸 100重量部に対して 0. 6重量部) を添加した。 添加して 5時間保温し た後、 220°Cに昇温し 10時間攪拌した。 未反応物を減圧留去し、 ポリエチレ ングリコールモノメチルエーテル乳酸オリゴマーエステル 874. 6 g (重量平 均分子量約 800) を得た。
比較例 3
冷却管及び攪拌装置をつけた 2リットルの反応容器に、 L一乳酸 (商品名 「H
1 Pu r e 90」 、 PUR AC社製、 L一乳酸約 90重量%含有) 398. 9 g (乳酸 4. 0モル相当) 、 ポリエチレングリコールモノメチルエーテル (商品名 「1 ^一ホ一メトキシポリエチレングリコール 400」 、 東邦化学 (株) 製、 平均 分子量 374〜432) 484. 0 g (約 1. 2モル) を加え、 170 まで昇 温した。 170°Cで保温し 1時間後にトリフエニルフォスファイト 2. 4 g (L 一乳酸 100重量部に対して 0. 6重量部) を添加した。 添加して 5時間保温し た後、 220°Cに昇温し 10時間攪拌した。 未反応物を減圧留去し、 ポリエチレ ングリコールモノメチルェ一テル乳酸オリゴマーエステル 874. 6 g (重量平 均分子量約 1, 000) を得た。
試験例 1〜 19
ポリ乳酸 (商品名 「LACTY 9031」 、 島津製作所 (株) 製、 重量平均 分子量 14万、 融点 133°C) 、 ポリブチレンアジべ一ト ·テレフタレ一ト共重 合体 (商品名 「ェコフレックス」 、 BASF社製) 又はポリブチレンサクシネ一 ト (商品名 「ピオノーレ # 1001 G」 、 昭和高分子 (株) 製) 100重量部に 対して、 実施例 1〜 10の化合物、 比較例 1〜3の化合物及び公知可塑剤のダリ セリルトリアセテートを、 表 1に示される量可塑剤として添加し、 設定温度 19 0 でブラベンダー社製トルクレオメーター (商品名 「プラスチコーダ一 PL—
2000」 ) により、 溶融混練し、 樹脂組成物を得た。 また、 可塑剤を用いない 場合として、 各樹脂を同様に溶融混練した。
得られた各樹脂組成物等を用いて、 溶融温度 170°C、 冷却温度 20 Cで圧縮 成形し試験片 (1 011111ズ 1 0111111ズ2111111の直方体) を作成した。 この試験片 について透明性、 柔軟性及び耐ブリードアゥト性の評価を行った。
透明性:試験片を目視で調べ、 濁りが無いものを A、 有るものを Bと評価した。 柔軟性:柔軟性の指標として、 試験片のガラス転移点 (°C) を測定した。 ガラ ス転移点が雰囲気温度以下であれば、 試験片はゴム状態、 つまり柔軟性のある状 態といえる。 ガラス転移点の測定は、 示差走査熱量計 (商品名 「D S C 2 2 0 C」 、 セイコー電子社製) により測定を行った。
耐ブリードアウト性:試験片を、 室内及び 7 0 °C恒温槽中に保管し、 1週間後、 可塑剤がブリードアウトした表面積の割合 (%) を、 下記式により、 求めた。
〔(可塑剤がブリードアウトした表面積) / (試験片の上部面積 1 O mmx 1 0 mm) ) X 1 0 0
上記表面積の割合により、 耐ブリードアウト性の程度を、 次の 4段階で評価し た。 4 ;ブリードアウト面積 0 %、 3 ;ブリ一ドアウト面積 0 %を超えて 1 0 % 未満、 2 ;ブリードアウト面積 1 0 %以上 5 0 %未満、 1 ;ブリードアウト面積 5 0 %以上。
試験結果を、 表 1に示す。
表 1
可塑剤 樹脂可塑剤量透明性力" ラス転移耐ァリ-ドアウト性
(重量部) 移点 (°c) 、〉曰 7 0 °C
試験例 1 実施例 1 PLA 30 A 15 4 4
試験例 2 実施例 2 PLA 30 A 22 4 4
試験例 3 実施例 3 PLA 30 A 18 4 4
試験例 4 実施例 4 PLA 30 A 15 4 3
試験例 5 実施例 5 PLA 30 A 18 4 3
試験例 6 実施例 6 PLA 30 A 1 1 4 3
試験例 7 実施例 7 PLA 30 A 34 4 4
試験例 8 実施例 8 PLA 30 A 22 4 3
試験例 9 実施例 9 PLA 30 A 27 4 3
試験例 10実施例 10 PLA 30 A 17 4 3
試験例 1 1 実施例 1 PBAT 30 B -49 4 4
試験例 12実施例 1 PBS 30 B -48 4 4
試験例 13 比較例 1 PLA 30 A 24 4 2*
試験例 14 比較例 2 PLA 30 A 15 4 1
試験例 15 比較例 3 PLA 30 A 17 4 1
試験例 16 GTA PLA 30 A 28 1 4
試験例 17 なし PLA A 60
試験例 18 なし PBAT B -22
試験例 19 なし PBS B -23 表 1中、 可塑剤の GT Aはグリセリルトリアセテート (商品名 「トリァセチ ン」 、 大八化学工業 (株) 製) を示す。 樹脂の PL Aはポリ乳酸、 P BATはポ リブチレンアジペート ·テレフ夕レート共重合体、 PB Sはポリブチレンサクシ ネートを示す。
表 1試験例 13の耐ブリードアウト性の 70°Cにおける試験において、 2 *は 次のことを示す。 即ち、 用いた可塑剤が低沸点であり 70°Cでは蒸散するため目 視ではブリードアウトを観察できなかったが、 試験後の試験片のガラス転移点を 再測定したところ、 39°Cという大幅なガラス転移点の上昇があることから、 ブ リードアウトしたことが明らかであることを示す。

Claims

請 求 の 範 囲
1. 一般式 (1) :
R1- (0- R2 - CO) k-0-[(CHR3) p (CHR4) q-0] r [請5) Ρ' (CHR6) ,· -0] Γ· -R7 (式中、 R1は水素原子又は炭素数 2〜20のァシル基を示す; R2はヒドロキシ カルボン酸残基を示す; R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子 又はメチル基を示す; R 7は炭素数 1〜8のアルキル基又は炭素数 2〜 20のァ シル基を示す。 kは 1〜60の整数を示す; p、 p' 、 q及び q' は、 0〜6の 整数 (但し1≤ + (1≤6、 l≤p, +q' ≤6) を示す; r及び r, は、 0〜 7の整数 (伹し l≤r + r' ≤7) を示す。 ) で表される化合物を、 含有する樹 脂用可塑剤。
2. 樹脂及び請求項 1に記載の樹脂用可塑剤を含有する樹脂組成物。
3. 樹脂 100重量部に対して、 該樹脂用可塑剤を 1〜 300重量部程度含有 する請求項 2に記載の樹脂組成物。
4. 樹脂が、 ポリエステル、 ポリオレフイン、 ポリアミド、 ポリアセ夕一ル、 ビニル系樹脂、 スチロール系樹脂、 アクリル系樹脂及びセルロース系樹脂からな る群より選ばれる少なくとも 1種の熱可塑性樹脂である請求項 2に記載の樹脂組 成物。
5. 樹脂が、 ポリエステルである請求項 4に記載の樹脂組成物。
6. ポリエステルが、 ポリ乳酸系樹脂である請求項 5に記載の樹脂組成物。
7. 請求項 2に記載の樹脂組成物を成形してなる成形物。
8. (a) ヒドロキシカルボン酸と、 (b) —般式 (2) : H0-[(CHR3) p (CHR4) q- 0] r [(CHR5) Ρ· (CHR6) q'—0] r'一 R7
(式中、 R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜 20のァシル基を示す。 p、 p, 、 Q及び q, は、 0〜6の整数 (伹し1≤ + (1≤6、 l≤p' +q' ≤6) を示す; r及び r' は、 0〜7の整数 (但し l≤r + r, ≤7) を示 す。 ) で表される化合物とを、 反応させた後、 必要に応じて、 更に (c) 炭素数 2〜20のカルボン酸を反応させて得られる反応生成物を、 含有する樹脂用可塑 剤。
9. (a) 成分が、 グリコール酸、 グリコール酸オリゴマー、 乳酸、 乳酸オリ ゴマー及びグリコール酸と乳酸との混合ォリゴマーからなる群より選ばれる少な くとも一種である請求項 8に記載の樹脂用可塑剤。
10. (b) 成分が、 トリエチレングリコールモノメチルエーテル、 トリェチ レングリコールモノェチルエーテル、 トリエチレングリコールモノプロピルェ一 テル、 トリエチレンダリコールモノブチルエーテル及びトリプロピレングリコ一 ルモノメチルェ一テルからなる群より選ばれる少なくとも一種である請求項 8に 記載の樹脂用可塑剤。
11. (c) 成分が、 炭素数 2〜11の脂肪族カルボン酸の少なくとも一種で ある請求項 8に記載の樹脂用可塑剤。
12. 樹脂及び請求項 8に記載の樹脂用可塑剤を含有する樹脂組成物。
13. 樹脂 100重量部に対して、 該樹脂用可塑剤を 1〜 300重量部程度含 有する請求項 12に記載の樹脂組成物。
14. 樹脂が、 ポリエステル、 ポリオレフイン、 ポリアミド、 ポリアセタール、 ビニル系樹脂、 スチロール系樹脂、 アクリル系樹脂及びセルロース系樹脂からな る群より選ばれる少なくとも 1種の熱可塑性樹脂である請求項 12に記載の樹脂 組成物。
15. 樹脂が、 ポリエステルである請求項 14に記載の樹脂組成物。
16. ポリエステルが、 ポリ乳酸系樹脂である請求項 15に記載の樹脂組成物。
17. 請求項 12に記載の樹脂組成物を成形してなる成形物。
18. (a) ヒドロキシカルボン酸と、 (c) 炭素数 2〜20のカルボン酸と を反応させた後、 更に (b) —般式 (2) :
H0-[(CHR3) p (CHR4) q-0] r[(CHR5)。' (CHR6) q' -0] r' - R7
(式中、 R3、 R4、 R5及び R6は、 それぞれ独立して、 水素原子又はメチル基を 示す; R7は炭素数 1〜8のアルキル基又は炭素数 2〜20のァシル基を示す。 P、 P' 、 q及び d' は、 0〜6の整数 (但し l≤p + Q≤6、 l≤p ' +q' ≤6) を示す; r及び r' は、 0〜7の整数 (但し l≤r + r' ≤7) を示 す。 ) で表される化合物を、 反応させて得られる反応生成物を、 含有する樹脂用 可塑剤。
PCT/JP2004/000885 2003-01-30 2004-01-30 樹脂用可塑剤及び樹脂組成物 WO2004067639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/543,990 US20060148947A1 (en) 2003-01-30 2004-01-30 Plasticizer for resin, and resin composition
EP04706785A EP1589075A4 (en) 2003-01-30 2004-01-30 PLASTICIZER FOR RESIN AND RESIN COMPOSITION
JP2005504760A JP4336991B2 (ja) 2003-01-30 2004-01-30 樹脂用可塑剤及び樹脂組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003022570 2003-01-30
JP2003-022570 2003-01-30
JP2003-333089 2003-09-25
JP2003333089 2003-09-25

Publications (1)

Publication Number Publication Date
WO2004067639A1 true WO2004067639A1 (ja) 2004-08-12

Family

ID=32828915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000885 WO2004067639A1 (ja) 2003-01-30 2004-01-30 樹脂用可塑剤及び樹脂組成物

Country Status (4)

Country Link
US (1) US20060148947A1 (ja)
EP (1) EP1589075A4 (ja)
JP (1) JP4336991B2 (ja)
WO (1) WO2004067639A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290255A (ja) * 2004-04-01 2005-10-20 Sanyo Chem Ind Ltd ポリエステル樹脂配合用エステル化合物
JP2006219649A (ja) * 2005-01-17 2006-08-24 Taoka Chem Co Ltd 樹脂用可塑剤および樹脂組成物
JP2006241378A (ja) * 2005-03-04 2006-09-14 Taoka Chem Co Ltd 樹脂用可塑剤および樹脂組成物
WO2007000910A1 (ja) * 2005-06-29 2007-01-04 Konica Minolta Opto, Inc. セルロースエステルフィルム、それを用いた横電界駆動式表示装置用偏光板及び横電界駆動式表示装置
JP2009173742A (ja) * 2008-01-23 2009-08-06 Adeka Corp セルロース系樹脂組成物およびセルロース系樹脂フィルム
CN108610618A (zh) * 2018-04-17 2018-10-02 杨建军 一种可降解塑料薄膜及其制备方法
JP2019011392A (ja) * 2017-06-29 2019-01-24 Dic株式会社 セルロースエステル組成物、成形体及びフィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2712709A1 (en) 2008-01-25 2009-07-30 Ara, Marco Paolo Process for the plasticization of lactic acid polymers
WO2010105076A1 (en) * 2009-03-11 2010-09-16 Nuvision Bioplastics, Llc Biodegradable resin composition utilized in the manufacture of biodegradable containers, biodegradable containers, and method of manufacture
BR112013014723A2 (pt) * 2010-12-15 2016-10-04 3M Innovative Properties Co materiais degradáveis

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040162A (ja) * 1983-08-15 1985-03-02 Daicel Chem Ind Ltd ポリエステル系可塑剤
JPH06306264A (ja) * 1993-04-21 1994-11-01 Mitsui Toatsu Chem Inc 熱可塑性ポリマー組成物
JPH07118513A (ja) * 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JPH08189957A (ja) * 1995-01-10 1996-07-23 Tokimec Inc 偏波面計測用アンテナおよび偏波面計測装置
JPH0931172A (ja) * 1995-07-19 1997-02-04 Kyowa Yuka Kk 可塑剤用ポリエステル組成物
JPH10316846A (ja) * 1997-05-16 1998-12-02 Sanyo Chem Ind Ltd 透明性生分解性樹脂組成物
JPH11181262A (ja) * 1997-12-25 1999-07-06 Shimadzu Corp 乳酸系ポリマー組成物及びその成型品
JPH11322907A (ja) * 1998-05-08 1999-11-26 Kuraray Co Ltd ポリエステル系可塑剤
JP2002293899A (ja) * 2001-03-30 2002-10-09 Daicel Chem Ind Ltd 脂肪族ポリエステル共重合体系流動性改良剤、その製法、及び樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689531A (en) * 1969-04-01 1972-09-05 Union Carbide Corp Copolymers of lactones and alkylene oxides
US5180765A (en) * 1988-08-08 1993-01-19 Biopak Technology, Ltd. Biodegradable packaging thermoplastics from lactides
CA2148691C (en) * 1993-09-09 2003-08-19 Yoshikazu Kondo Biodegradable copolyester, molded article produced therefrom and process for producing the molded article
GB9411791D0 (en) * 1994-06-13 1994-08-03 Zeneca Ltd Compound, preparation and use
JP3408349B2 (ja) * 1995-01-26 2003-05-19 高砂香料工業株式会社 生分解性高分子用可塑剤
BE1009403A3 (fr) * 1995-06-02 1997-03-04 Solvay Composition souple a base de polymere de chlorure de vinyle, utilisation de cette composition pour la fabrication d'un article et article comprenant cette composition.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040162A (ja) * 1983-08-15 1985-03-02 Daicel Chem Ind Ltd ポリエステル系可塑剤
JPH06306264A (ja) * 1993-04-21 1994-11-01 Mitsui Toatsu Chem Inc 熱可塑性ポリマー組成物
JPH07118513A (ja) * 1993-10-22 1995-05-09 Dainippon Ink & Chem Inc 乳酸系ポリマー組成物
JPH08189957A (ja) * 1995-01-10 1996-07-23 Tokimec Inc 偏波面計測用アンテナおよび偏波面計測装置
JPH0931172A (ja) * 1995-07-19 1997-02-04 Kyowa Yuka Kk 可塑剤用ポリエステル組成物
JPH10316846A (ja) * 1997-05-16 1998-12-02 Sanyo Chem Ind Ltd 透明性生分解性樹脂組成物
JPH11181262A (ja) * 1997-12-25 1999-07-06 Shimadzu Corp 乳酸系ポリマー組成物及びその成型品
JPH11322907A (ja) * 1998-05-08 1999-11-26 Kuraray Co Ltd ポリエステル系可塑剤
JP2002293899A (ja) * 2001-03-30 2002-10-09 Daicel Chem Ind Ltd 脂肪族ポリエステル共重合体系流動性改良剤、その製法、及び樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1589075A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655496B2 (ja) * 2004-04-01 2011-03-23 東レ株式会社 ポリエステル樹脂配合用エステル化合物
JP2005290255A (ja) * 2004-04-01 2005-10-20 Sanyo Chem Ind Ltd ポリエステル樹脂配合用エステル化合物
JP2006219649A (ja) * 2005-01-17 2006-08-24 Taoka Chem Co Ltd 樹脂用可塑剤および樹脂組成物
JP4697859B2 (ja) * 2005-01-17 2011-06-08 田岡化学工業株式会社 樹脂用可塑剤および樹脂組成物
JP2006241378A (ja) * 2005-03-04 2006-09-14 Taoka Chem Co Ltd 樹脂用可塑剤および樹脂組成物
JP4674895B2 (ja) * 2005-03-04 2011-04-20 田岡化学工業株式会社 樹脂用可塑剤および樹脂組成物
WO2007000910A1 (ja) * 2005-06-29 2007-01-04 Konica Minolta Opto, Inc. セルロースエステルフィルム、それを用いた横電界駆動式表示装置用偏光板及び横電界駆動式表示装置
JPWO2007000910A1 (ja) * 2005-06-29 2009-01-22 コニカミノルタオプト株式会社 セルロースエステルフィルム、それを用いた横電界駆動式表示装置用偏光板及び横電界駆動式表示装置
CN101208383B (zh) * 2005-06-29 2012-11-21 柯尼卡美能达精密光学株式会社 纤维素酯膜、使用其的横向电场驱动式显示装置用偏振板及横向电场驱动式显示装置
JP5119920B2 (ja) * 2005-06-29 2013-01-16 コニカミノルタアドバンストレイヤー株式会社 セルロースエステルフィルム、それを用いた横電界駆動式表示装置用偏光板及び横電界駆動式表示装置
KR101240049B1 (ko) * 2005-06-29 2013-03-06 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 셀룰로오스 에스테르 필름, 그것을 이용한 횡전계 구동식표시 장치용 편광판 및 횡전계 구동식 표시 장치
JP2009173742A (ja) * 2008-01-23 2009-08-06 Adeka Corp セルロース系樹脂組成物およびセルロース系樹脂フィルム
JP2019011392A (ja) * 2017-06-29 2019-01-24 Dic株式会社 セルロースエステル組成物、成形体及びフィルム
CN108610618A (zh) * 2018-04-17 2018-10-02 杨建军 一种可降解塑料薄膜及其制备方法

Also Published As

Publication number Publication date
US20060148947A1 (en) 2006-07-06
EP1589075A1 (en) 2005-10-26
JPWO2004067639A1 (ja) 2006-05-18
EP1589075A4 (en) 2007-06-20
JP4336991B2 (ja) 2009-09-30

Similar Documents

Publication Publication Date Title
JP5794731B2 (ja) 樹脂組成物
JP5329826B2 (ja) 生分解性ポリエステル樹脂組成物及びそれからなる成形体
JP4348514B2 (ja) 生分解性樹脂組成物
JP4697859B2 (ja) 樹脂用可塑剤および樹脂組成物
JP4336991B2 (ja) 樹脂用可塑剤及び樹脂組成物
JP4674895B2 (ja) 樹脂用可塑剤および樹脂組成物
JP4205404B2 (ja) ポリ乳酸系樹脂組成物、成形品及びポリエステル樹脂用可塑剤
EP3083801A1 (en) Succinate ester for use as plasticizer and biodegradable resins comprising this succinate ester
JP2006232871A (ja) 樹脂用可塑剤および樹脂組成物
JP4281860B2 (ja) ポリ乳酸系樹脂組成物、成形品及び樹脂用可塑剤
JP4066450B2 (ja) 乳酸系樹脂用可塑剤および乳酸系樹脂組成物
JP4205403B2 (ja) ポリ乳酸系樹脂組成物、成形品及びポリエステル樹脂用可塑剤
JP2003082158A (ja) 樹脂用可塑剤および樹脂組成物
JP2006152102A (ja) 乳酸系樹脂組成物、当該組成物を用いて得られる成形品及びフィルム
US11952458B2 (en) Polyester impact modifiers
JP2024517969A (ja) ポリエステル耐衝撃性改良剤
JP5188680B2 (ja) 生分解性樹脂用可塑剤
JP2006193739A (ja) 生分解性樹脂用改質剤
JP6041128B2 (ja) 重合ロジン系ポリエステル、乳酸系樹脂用可塑剤、乳酸系樹脂組成物および成形物
JP2004292650A (ja) 樹脂用可塑剤および樹脂組成物
JP2012126871A (ja) ポリ乳酸樹脂組成物とそれを用いた成形品
JP2006206901A (ja) 生分解性樹脂用改質剤
JP2010106195A (ja) ポリエステル系樹脂を含む樹脂組成物及び成形体
JP2003192879A (ja) グリコール酸系樹脂組成物
JP2005154594A (ja) 生分解性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504760

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004706785

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006148947

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10543990

Country of ref document: US

Ref document number: 20048031409

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004706785

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10543990

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004706785

Country of ref document: EP