WO2004047124A1 - 抵抗体ペースト、抵抗体および電子部品 - Google Patents

抵抗体ペースト、抵抗体および電子部品 Download PDF

Info

Publication number
WO2004047124A1
WO2004047124A1 PCT/JP2003/014886 JP0314886W WO2004047124A1 WO 2004047124 A1 WO2004047124 A1 WO 2004047124A1 JP 0314886 W JP0314886 W JP 0314886W WO 2004047124 A1 WO2004047124 A1 WO 2004047124A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
mol
less
conductive material
resistor paste
Prior art date
Application number
PCT/JP2003/014886
Other languages
English (en)
French (fr)
Inventor
Hirobumi Tanaka
Katsuhiko Igarashi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP03774128A priority Critical patent/EP1564757B1/en
Priority to US10/535,890 priority patent/US7282163B2/en
Priority to JP2004553226A priority patent/JP4174051B2/ja
Publication of WO2004047124A1 publication Critical patent/WO2004047124A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/22Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions containing two or more distinct frits having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/06546Oxides of zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a resistor paste, a resistor, and an electronic component.
  • the present invention relates to a resistor paste, a resistor and an electronic component.
  • the resistor paste mainly includes a glass material, a conductor material, and an organic vehicle (a binder and a solvent).
  • the glass material is included in the resistor paste to adjust the resistance value and to provide bonding to a substrate or the like.
  • the resistor paste is printed on a substrate and then fired to form a thick-film (5 to 25 ⁇ ) resistor.
  • Patent Documents 1 and 2 Japanese Patent Literatures 1 and 2 below. See Patent Literature 2 and Patent Literature 3).
  • thick film resistors are necessary even if they are formed under the same conditions (printing and firing conditions), because the characteristics (resistance value, TCR (temperature characteristics), reliability characteristics, etc.) do not match depending on the substrate used. In order to obtain such characteristics, a resistor developed for the substrate must be used.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. Hei 8—2 5 3 3 4 2
  • Patent Document 3 Japanese Patent Application Laid-Open No. H11-1-2511105
  • Patent Document 4 Japanese Patent Application Laid-Open No. 60-92601 Disclosure of the Invention
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a semiconductor device having a predetermined low resistance value when formed on a dielectric substrate mainly containing parium titanate.
  • Lead-free resistor paste suitable for obtaining a resistor with good temperature characteristics (TCR) and reliability characteristics (flux resistance), a resistor formed from the resistor paste, and the resistor It is to provide electronic parts with a body.
  • a resistor paste according to the present invention comprises:
  • a first glass composition substantially free of lead a second glass composition substantially free of lead in a composition different from that of the first glass composition; and a conductive material substantially free of lead.
  • a resistor paste obtained by mixing with an organic vehicle a resistor paste obtained by mixing with an organic vehicle
  • the first glass composition contains at least one selected from C a 0, S r ⁇ , and B a O when Z ⁇ ⁇ is 10 mol% or more and less than 10 mol% (including 0),
  • the second glass composition contains MnO in an amount of 5 mol% or more and at least one selected from Ca ⁇ , SrO, and BaO in an amount of 10 mol% or more,
  • the volume of the powder obtained by adding the conductive material, the first glass composition, the second glass composition, and the additive is 100.
  • the volume ratio of the conductive material is 8 to 33% by volume.
  • Z n O is 10 mol% to 40 mol%
  • B 2 ⁇ 3 is 1 mol% or more 4 0 mol% or less
  • C aO-, S R_ ⁇ at least one of less than 10 mole 0/0 selected from B a O ( ⁇ including), total 30 moles of any other first oxide % include the following (including zero), wherein the second glass composition, MnO 5 mol% to 20 mol%, C aO-, S R_ ⁇ , at least one selected from B a O is 10 mol 0/0 above 40 mol 0/0 or less, B 2 ⁇ 3 40 mol% 5 mol% or less, S I_ ⁇ 2 15 mol. /. Not less than 55 mol%, and the total of other optional secondary oxides is not more than 20 mol% (including 0).
  • the volume ratio between the first glass composition and the second glass composition contained in the resistor paste is from 8: 2 to 2: 8.
  • CuO is further included as an additive, and the conductive material, the first glass composition, the second glass composition, and the additive are totaled.
  • the volume addition ratio of CuO to the volume of the powder is more than 0% by volume and 5% by volume or less.
  • Mn0 2 and / or T I_ ⁇ further look including the 2, total volume addition rate of MnO 2 and Z or T I_ ⁇ 2, conductive material, the first glass composition, the (2) 0 volume% or more and 5 volume% or less based on the total volume of the powder including the glass composition and the additives.
  • CuO is 1% by volume or more and 3% by volume or less based on the total volume of the powder of the conductive material, the first glass composition, the second glass composition and the additive.
  • MnO 2 is contained at 0 volume% or more and 5 volume% or less.
  • a resistor paste according to the present invention comprises:
  • a first glass composition substantially free of lead a second glass composition substantially free of lead in a composition different from that of the first glass composition; and a conductive material substantially free of lead.
  • a resistor paste obtained by mixing with an organic vehicle a resistor paste obtained by mixing with an organic vehicle
  • the first glass composition contains Z ⁇ of 10 mol% or more and at least one selected from Ca ⁇ , Sr0, and BaO is less than 10 mol% (including 0),
  • the second glass composition contains at least one selected from C a 0, S r 0, and B a O at an amount of at least 5 mol% and at least 10 mol ° / 0 ,
  • the total weight ratio of the first glass composition and the second glass composition is 100 when the weight of the powder obtained by adding the conductive material, the first glass composition, the second glass composition and the additive is 100. 41.55 to 77.37% by weight, and the weight percentage of the conductive material is 18.41 to 55.36% by weight.
  • the first glass composition Z Itashita more than 10 mole% 40 mole percent, B 2 ⁇ 3 1 mol 0 /. Above 40 mol% or less, S I_ ⁇ 2 15 mol% to 60 mol 0/0 or less, C aO-, S and rO, at least one of less than 10 mole 0/0 selected from B a O (0 inclusive), other
  • the total of the arbitrary first oxides is 30 mol% or less (including 0)
  • the second glass composition contains 5 mol of MnO. /. More than 20 moles. /.
  • C aO, S r O, at least one selected from B a O is 10 mol 0/0 over 40 mole 0/0 or less, B 2 ⁇ 3 40 mol% 5 mol% or less, S I_ ⁇ 2 15 mol% or more and 55 mol% or less, and the total of other optional second oxidizing substances is 20 mol% or less (including 0).
  • the weight ratio between the first glass composition and the second glass composition contained in the resistor paste is 7.8: 2.2 to 1.8: 8.2.
  • Cu is further included as an additive, and the conductive material, the first glass composition, the second glass composition, and the additive are combined.
  • the weight ratio of CuO to the weight of the powder obtained is 0 to 4.23% by weight (excluding 0% by weight).
  • Myuiotaiota0 further look including the 2 and / or T I_ ⁇ 2, Myuiotaiota0 total weight addition ratio of 2 and Z or T I_ ⁇ 2, conductive material, the first glass composition, the 2 It is 0 to 7.25% by weight based on the total weight of the powder including the glass composition and additives.
  • CuO is 1.71 to 3.59 based on the total weight of the powder including the conductive material, the first glass composition, the second glass composition, and the additive.
  • Wt%, Mn0 2 is 0-7. Containing 25% by weight.
  • the first oxide of any other in the first glass composition is at least one selected from V 2 O s, the sum of the first oxide, 29 mole with respect to the total mole 0/0 of the first glass composition. /. It is as follows (including 0).
  • the second oxide of any other in the second glass composition A 12 O a, Z r O 2, ZnO, M g O, B i 2 O 3, T i 0 2, CuO, Co At least one selected from OV 2 O s, wherein the total of the second oxides is the total moles of the second glass composition. 20 mol% or less (including 0) with respect to / 0 .
  • the conductive material is a composite oxide of Ru0 2 or Ru.
  • the weight ratio of the total weight of the conductive material, the first glass thread and the second glass; the total weight of the additive and the organic vehicle to the organic vehicle is 1: 0.25.
  • the resistor of the present invention is formed using the above-mentioned resistor paste, and the electronic component of the present invention has the resistor.
  • the electronic component is not particularly limited, it can be suitably used particularly for an isolator.
  • the term “substantially free of lead” means that no lead is contained in an amount that cannot be said to be an impurity level. Is 0.05% by weight or less). Lead may be contained in trace amounts as inevitable impurities.
  • FIG. 1 is an exploded perspective view of an isolator device as an electronic component having a resistor according to an embodiment of the present invention.
  • the reference numerals in FIG. 1 are as follows. 2 ... resin case, 4 ... capacity board, 6 ... ferrite assembly, 8 ... holding resin plate, 10 ... magnet.
  • the isolator device includes a resin case 2, a capacity board 4 housed therein, a ferrite assembly 6 installed thereon, and a holding resin plate 8 for holding the ferrite assembly 6 from above. It has a magnet 10 installed thereon and a lid member (not shown) for covering them from above.
  • the capacitance substrate 4 in this isolator device is made of a dielectric ceramic such as barium titanate, for example, and a resistor is formed on the surface thereof by a thick film printing method.
  • the resistor paste for forming the resistor is constituted by the resistor paste of the present invention.
  • the resistor paste of the present invention comprises: a first glass composition substantially free of lead; a second glass composition substantially different from the first glass composition and substantially free of lead; This is a resistor paste made by mixing a conductive material contained in the above with an organic vehicle.
  • Conductive material is, for example, complex oxide of R u 0 2 or R u.
  • the first glass composition Z n O 1 0 mol% or more preferably 1 0 mol% 4 0 mol% or less, B 2 O s is 1 mol% or more 4 0 mol% or less, S I_ ⁇ 2 There 1 5 mol% 6 0 mole 0/0 or less, the C a O, S r O, at least one of less than 1 0 mol% selected from B a O (including 0), any other first oxide Total is 30 mol% or less (including 0).
  • the ZnO content of the first glass composition is less than 10 mol%, the reaction with the substrate is promoted, and the resistance value and the flux resistance of the obtained resistor tend to deteriorate.
  • the composition ratio of Z ⁇ ⁇ is too large, the chemical durability as glass decreases, and the flux resistance as a resistor tends to deteriorate.
  • B 2 ⁇ 3 is preferably contained in the first glass composition from the viewpoint of improving the glass-forming ability. However, if it is too large, the chemical durability of the glass decreases, so that B 2 ⁇ 3 is used as a resistor. The flux property tends to be poor.
  • Si 2 is preferably contained in the first glass composition from the viewpoint of improving the glass-forming ability, but if it is too large, the softening point of the glass becomes high, and under normal firing conditions for resistors, It cannot be sintered sufficiently, and the resistance value and resistance The flux resistance tends to deteriorate.
  • C a ⁇ , S r 0, and B a O may be included to improve the chemical durability of the glass and to improve the flux resistance of the resistor, but if too much, reaction with the substrate will occur.
  • the resistance value and the flux resistance of the resistor deteriorate. If the total amount of the other optional primary oxides is too large, the chemical durability as glass deteriorates, and the reliability of the resistor, such as flux resistance, deteriorates.
  • MnO is 5 mol 0/0 .
  • Preferably 5 mol% or more 2 0 mole 0/0 or less than, C A_ ⁇ , S r O, B a least one O is from selected one 0 mole 0/0 or more preferably 1 0 mol% 4 0 Mol 0 /.
  • B 2 O 3 is 5 mol% or more 4 0 mol% or less
  • the total of any other second oxides is 2 0 mol% or less ( 0 included) included.
  • the content of MnO is less than 5 mol% in the second glass and the base material, the temperature characteristics of the obtained resistor tend to deteriorate.
  • the composition ratio of MnO is too large, the reaction with the substrate is promoted, so that the resistance value and the flux resistance deteriorate.
  • B 2 O a is preferably contained in the second glass composition from the viewpoint of improving the glass-forming ability. However, if it is too large, the chemical durability of the glass is reduced, so that B 2 O a is used as a resistor. The flux property tends to be poor.
  • Si 2 is preferably contained in the second glass composition, but if it is too large, the softening point of the glass becomes high, and under normal firing conditions for resistors. It cannot be sufficiently sintered, and the resistance value of the resistor tends to deteriorate.
  • the volume of the powder obtained by adding the conductive material, the first glass composition, the second glass composition, and the additive is 100.
  • the volume ratio is 65 to 89% by volume
  • the volume ratio of the conductive material is 8 to 33% by volume.
  • the volume ratio between the first glass composition and the second glass composition contained in the resistor paste is preferably from 8: 2 to 2: 8.
  • the weight ratio between the first glass composition and the second glass composition contained in the resistor paste is preferably determined to be 7.8: 2.2 to 1.8: 8.2.
  • the reliability as a resistor is remarkably reduced, and the flux resistance tends to be deteriorated.
  • the resistance value tends to be too large.
  • the volume ratio or the weight ratio of the conductive material is too small, the resistance tends to increase.On the other hand, if the ratio is too large, the reliability as a resistor significantly decreases, and the flux resistance tends to deteriorate. .
  • the resistor paste further contains CuO as an additive in addition to the first glass composition and the second glass composition.
  • the volume addition ratio of CuO to the total volume of the powder of the conductive material, the first glass composition, the second glass composition and the additives is preferably more than 0% by volume and 5% by volume or less, more preferably 1% by volume. % To 3% by volume.
  • the resistor paste as an additive, Mn0 2 and / or T I_ ⁇ 2 is further included.
  • Mn0 2 and ⁇ or total volume addition rate of T i 0 2 the conductive material, the first glass composition, the volume of the powder which is the sum of the second glass composition ⁇ Pi additives, good Mashiku is 0 volume. /. At least 5% by volume, preferably MnO 2 is at least 0% by volume and at most 5% by volume.
  • Mn0 2 and Z or T i 0 2 Total weight addition ratio of the conductive material, the first glass composition, based on the weight of the powder which is the sum of the second glass compositions and additives, the good Mashiku 0 to 7. a 25% by weight, preferably Mn0 2 is 0 to 7.25 wt%.
  • the resistance and temperature characteristics can be adjusted, but if it is too much, the flux resistance tends to deteriorate. It is in.
  • the additives other than the glass components CuO, Mn0 2, T i O 2 in addition to the, Mn 3 0 4, ZnO, MgO, V 2 O s, V 2 O s, N b 2 O s, C r 2 O 3, F e 2 0 3, C oO, A 12 O 3, Z r O 2, S nO z, H f O 2, WO s, B it 2 O a is illustrated.
  • the first oxide other optional in the first glass composition A l 2 O s, N a 2 0, K 2 0, Z R_ ⁇ 2, MgO, B i 2 ⁇ 3, P 2 O 5, T I_ ⁇ 2, CuO, C oO, at least one selected from V 2 0 5, the sum of the first oxide comprises 29 mol% or less (0 for total mole% of the first glass composition ).
  • the properties (softening point, chemical durability) of the glass can be adjusted, and a resistor having arbitrary properties can be obtained, but if the content is too large, The characteristics and reliability of the resistor are reduced.
  • the second acid I arsenide of any other of the second glass composition A l 2 ⁇ 3, Z r 0 2, ZnO , MgO, B i 2 O a, T i O 2, CuO, C oO is at least one selected from V 2 OB, the sum of the second oxide is 20 mol 0/0 or less (including zero) with respect to mole% of the total of the second glass composition.
  • the properties (softening point, chemical durability) of the glass can be adjusted, and a resistor having arbitrary properties can be obtained, but if the content is too large, The characteristics and reliability of the resistor are reduced.
  • the weight ratio of the total weight of the powder including the conductive material, the first glass composition, the second glass composition and the additives to the organic vehicle is within a range of 1: 0.25 to 1: 4. is there. This is to adjust the viscosity of the resistor paste.
  • the above-mentioned resistor paste is produced, for example, as follows.
  • a first glass composition and a second glass composition are prepared.
  • Z nO, B 2 ⁇ 3, S I_ ⁇ 2, C a C0 3, MnO , A 1 0 3, Z r 0 2 Oyopi various oxides (The above-mentioned first oxide or second oxide) is weighed in a predetermined amount, mixed with a ball mill and dried.
  • the obtained powder is heated up to 1000-1500 ° C at a heating rate of, for example, 5-30 ° C / min, and the temperature is maintained for 0.5-5 hours (optional). It can be quenched and vitrified by dropping it in water.
  • the obtained vitrified product is pulverized with a ball mill to obtain a first glass composition and a second glass composition composed of glass powder. These glass compositions are amorphous.
  • an organic vehicle is prepared.
  • the organic vehicle is not particularly limited.
  • the binder resin ethyl cellulose, polyvinyl butyral, methacrylic resin, butyl methacrylate, and the like can be used.
  • the solvent terpineol monobutyl, butycarbidonone, butyric acid-butanolate, toluene, alcohols, xylene and the like can be used.
  • the organic vehicle can be produced by dissolving the pinda resin while heating and stirring the solvent.
  • the additives contained in other than the first glass composition Contact Yopi second glass composition, C uO, Mn_ ⁇ 2 and / 7 or T I_ ⁇ 2 are exemplified. These additives are weighed together with the conductive material powder, the first glass composition powder, the second glass composition powder, and the organic vehicle so as to have respective compositions, and kneaded with a three-roll mill or the like. Thus, a resistor paste is obtained.
  • the weight ratio of the total weight of the conductive powder, the glass composition and the powder of the additive, etc. to the organic vehicle is 1: 0 by weight so that the obtained paste has a viscosity suitable for screen printing. It is preferable to make a paste within the range of 25 to 1: 4 to make a paste.
  • the resistor in order to form a B aT i 0 3 in a predetermined pattern on a dielectric substrate whose main component is, for example, it may be used thick film printing method such as screen printing.
  • the baking temperature of the resistor paste is preferably 800 to 900C and the holding time thereof is preferably 5 to 15 minutes.
  • the electronic component using the resistor paste and the resistor according to the present invention is not limited to the illustrated isolator device, and may be an electronic component such as a multilayer chip capacitor, a C-R composite device, and other module devices. Can be used.
  • Example 1 the electronic component using the resistor paste and the resistor according to the present invention is not limited to the illustrated isolator device, and may be an electronic component such as a multilayer chip capacitor, a C-R composite device, and other module devices. Can be used.
  • a resistor paste was prepared from a conductive material and a glass composition composed of lead free and baked on a dielectric substrate to form a thick film resistor, and the resistance value was measured.
  • the borosilicate glass as a glass composition as the conductive material with Ru0 2.
  • the first glass composition ZnO, B 2 0 3, S I_ ⁇ 2, C a COa, S r COa, B a COa Oyopi various oxides (first oxide optional) a predetermined amount ⁇ The mixture was mixed with a ball mill and dried. The obtained powder is put into a platinum crucible, heated to 1300 ° C in air at a rate of 5 ° C_min, kept at that temperature for 1 hour, then quenched by dropping it in water, and quenched. It has become. The obtained vitrified product was pulverized with a ball mill to obtain a first glass composition powder.
  • the second glass composition is prepared by weighing a predetermined amount of MnO, B Os, Si 2 , Ca COs, S r COs, Ba COs and various oxides (arbitrary second oxides). And dried in the same manner as in the first glass composition to obtain a second glass composition powder. Observation by XRD of these glass composition powders confirmed that they were amorphous.
  • Table 1 below shows the obtained first glass composition and second glass composition.
  • the first glass composition glass compositions of sample numbers A1 to A5 were prepared.
  • the second glass composition glass compositions of sample numbers B1 to B9 were prepared. Table 1 shows the composition ratio (mol%).
  • the first glass compositions of Sample Nos. A5 and A7 to A9 each had ⁇ of 10 mol. /. Therefore, it is out of the scope of the present invention.
  • the content of ⁇ is 5 mol. /. Therefore, it is out of the scope of the present invention.
  • Table 1 samples outside the scope of the present invention are marked with *.
  • Ethyl cellulose was prepared as a binder resin, and terbineol was used as a solvent.
  • the binder resin was dissolved while heating and stirring the solvent to prepare an organic vehicle.
  • the organic vehicle contained 8 parts by weight of a binder resin, 90 parts by weight of a solvent, and 2 parts by weight of a dispersant as another component.
  • the powder of the conductive material, the glass powder, the additive, and the organic vehicle prepared as described above were weighed so as to have respective compositions, and kneaded with a three-roll mill to obtain a resistor paste.
  • the weight ratio of the total weight of the conductive powder, the glass composition and the powder of the additive, etc., to the weight of the organic vehicle is from 1: 0.25 to 1:25 so that the obtained paste has a viscosity suitable for screen printing.
  • Compounding was performed within the range of 1: 4, and as shown in Table 2, various combinations of resistor paste samples 1 to 31 were prepared.
  • Table 2 shows the type of conductive material, its volume ° / 0 , the combination of the first glass composition and the second glass composition, its volume ratio and total volume%, the type of additive, and its volume%. It has been described.
  • Table 3 shows the conversion of the volume% conversion values shown in Table 2 to weight% conversion. In Tables 2 and 3, samples outside the scope of the present invention are marked with *.
  • Sample number Conductive material Glass composition Carohydrate type Volume 0 / o 1st 2nd volume ratio a BT volume 0 / o type
  • An Ag-Pt conductor paste was screen-printed in a predetermined shape on a dielectric substrate mainly composed of BaTiOa and dried. Ag in the Ag—Pt conductor paste was 95% by mass, and Pt was 5% by mass. This dielectric substrate was placed in a belt furnace and baked in a one-hour pattern from loading to discharging. The baking temperature was 850 ° C and the holding time was 10 minutes. The conductor paste was formed in this manner, and the resistor paste prepared as described above was screen-printed in a predetermined shape on the dielectric substrate and dried. Then, the resistor paste was baked under the same conditions as the conductor baking to obtain a thick film resistor.
  • the sheet resistance ( ⁇ / D) was measured.
  • the sheet resistance was measured by using product number 34401A manufactured by Agilent Tecnolgoies.
  • TCR Temporal Characteristics
  • a predetermined but not limited to, for example, about 10 to 300 Omega / mouth
  • a predetermined but not limited to, for example, about 10 to 300 Omega / mouth
  • TCR temperature characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

抵抗体ペースト、 抵抗体および電子部品 発明の属する技術分野
本発明は、 抵抗体ペースト、 抵抗体おょぴ電子部品に関する。 背景技術
抵抗体ペーストは、 一般に、 ガラス材料と、 導電体材料と、 有機ビヒクル (バ インダ一と溶剤) とを主として構成されている。 ガラス材料は、 抵抗値の調節を 図ると共に、 基板などへの結合性を与えるために抵抗体ペースト中に含まれる。 抵抗体ペーストは、 基板上に印刷された後、 焼成することによって厚膜 (5〜2 5 μ χα) の抵抗体が形成される。
従来の多くの抵抗体ペーストは、 ガラス材料として酸化鉛系のガラスを含み、 導電性材料として酸化ルテニウムまたは、 この酸化ルテニウムおよび鉛の化合物 を含んでおり、 鉛を含有しているペーストとなっている。
しかしながら、 鉛を含有する抵抗体ペーストを用いることは、 環境汚染の観点 から望ましくないため、 鉛フリーの厚膜抵抗体ペーストについて種々の提案がな されている (たとえば、 下記に示す特許文献 1、 特許文献 2、 特許文献 3を参 照) 。
通常、 厚膜抵抗体においては、 同一条件 (印刷、 焼成条件) で形成しても、 用 いる基板によって特性 (抵抗値、 T C R (温度特性) 、 信頼性特性など) がー致 せず、 必要とする特性を得るためには、 基板にあわせて開発された抵抗体を用い なければならない。
用いる基板によって特性が一定しない理由としては、 基板の線熱膨張係数の違 いが議論されることが一般的である。 しかしながら、 チップコンデンサ素子ゃァ イソレ一タ素子などのように、 B a T i O s を主成分とする誘電体基板を用いる 場合においては、 焼成過程で誘電体基板と抵抗体とが反応することがあげられる, その結果、 抵抗値が上昇し T C Rおよび信頼性特性が悪化することが問題であつ た (たとえば、 特許文献 4参照) 。 特に、 1 0〜3 0 0 ΩΖ口程度に低い抵抗値 を有する抵抗体において、 所望の特性を得ることは、 非常に困難であった。
特許文献 1 特開平 8— 2 5 3 3 4 2号公報
特許文献 2 特開平 1 0—2 2 4 0 0 4号公報
特許文献 3 特開平 1 1— 2 5 1 1 0 5号公報
特許文献 4 特開昭 6 0—9 2 6 0 1号公報 発明の開示
本発明は、 このような実状に鑑みてなされ、 本発明の目的は、 たとえばチタン 酸パリゥムを主成分とする誘電体基板上に形成した時に、 所定の低い抵抗値を有 しながらも、 抵抗値の温度特性 (T C R ) および信頼性特性 (耐フラックス性) が良好な抵抗体を得ることに適した鉛フリ一の抵抗体ペースト、 その抵抗体ぺー ストから形成される抵抗体、 および、 その抵抗体を持つ電子部品を提供すること である。
体積%換算
上記目的を達成するために、 本発明に係る抵抗体ペーストは、
実質的に鉛を含まない第 1ガラス組成物と、 前記第 1ガラス組成物と異なる組 成で実質的に鉛を含まない第 2ガラス組成物と、 鉛を実質的に含まない導電性材 料とを、 有機ビヒクルと混合してなる抵抗体ペーストであって、
前記第 1ガラス組成物および第 2ガラス組成物以外に、 添加物として C u Oを さらに含み、
前記第 1ガラス組成物には、 Z η θが 1 0モル%以上で C a 0、 S r〇、 B a Oより選ばれる少なくとも一つが 1 0モル%未満 (0含む) 含まれ、
前記第 2ガラス組成物には、 M n Oが 5モル%以上で C a〇、 S r O、 B a O より選ばれる少なくとも一つが 1 0モル%以上含まれ、
前記第 1ガラス組成物と第 2ガラス組成物との合計体積割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の体積を 1 0 0 とした場合に、 6 5〜 8 9体積。/。であり、 前記導電性材料の体積割合が 8〜 3 3 体積%であることを特徴とする。 好ましくは、 前記第 1ガラス組成物には、 Z n Oが 10モル%以上 40モル% 以下、 B23 が 1モル%以上 4 0モル%以下、 S i〇2 が 1 5モル。/ Q以上 60 モル0 /0以下、 C aO、 S r〇、 B a Oより選ばれる少なくとも一つが 10モル0 /0 未満 (◦含む) 、 その他の任意の第 1酸化物の合計が 30モル%以下 (0含む) 含まれ、 前記第 2ガラス組成物には、 MnOが 5モル%以上 20モル%以下、 C aO、 S r〇、 B a Oより選ばれる少なくとも一つが 10モル0 /0以上 40モル0 /0 以下、 B23 が 5モル%以上 40モル%以下、 S i〇2 が 15モル。/。以上 55 モル%以下、 その他の任意の第 2酸化物の合計が 20モル%以下 (0含む) 含ま れる。
好ましくは、 前記抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス組 成物との体積比が、 8 : 2〜2 : 8である。
好ましくは、 前記第 1ガラス組成物および第 2ガラス組成物以外に、 添加物と して CuOをさらに含み、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及 び添加物を合計した粉末の体積に対する C u Oの体積添加割合が、 0体積%超 5 体積%以下である。
好ましくは、 前記添加物として、 Mn02 および/または T i〇2 をさらに含 み、 MnO 2 および Zまたは T i〇2 の合計の体積添加割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及び添加物を合計した粉末の体積に対して、 0体積%以上 5体積%以下である。
好ましくは、 前記添加物として、 導電性材料、 第 1ガラス組成物、 第 2ガラス 組成物及ぴ添加物を合計した粉末の体積に対して、 C u Oが 1体積%以上 3体積 %以下、 MnO 2 が 0体積%以上 5体積%以下含有する。
重量%換算
上記目的を達成するために、 本発明に係る抵抗体ペーストは、
実質的に鉛を含まない第 1ガラス組成物と、 前記第 1ガラス組成物と異なる組 成で実質的に鉛を含まない第 2ガラス組成物と、 鉛を実質的に含まない導電性材 料とを、 有機ビヒクルと混合してなる抵抗体ペーストであって、
前記第 1ガラス組成物および第 2ガラス組成物以外に、 添加物として CuOを さらに含み、 前記第 1ガラス組成物には、 Z ηθが 10モル%以上で C a〇、 S r 0、 B a Oより選ばれる少なくとも一つが 10モル%未満 (0含む) 含まれ、
前記第 2ガラス組成物には、 ΜηΟが 5モル%以上で C a 0、 S r 0、 B a O より選ばれる少なくとも一つが 10モル °/0以上含まれ、
前記第 1ガラス組成物と第 2ガラス組成物との合計重量割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の重量を 100 とした場合に、 41. 55〜77. 37重量%であり、 前記導電性材料の重量割 合が 18. 41〜55. 36重量%であることを特徴とする。
好ましくは、 前記第 1ガラス組成物には、 Z ηθが 10モル%以上 40モル% 以下、 B23 が 1モル0 /。以上 40モル%以下、 S i〇2 が 15モル%以上 60 モル0 /0以下、 C aO、 S rO、 B a Oより選ばれる少なくとも一つが 10モル0 /0 未満 (0含む) 、 その他の任意の第 1酸化物の合計が 30モル%以下 (0含む) 含まれ、 前記第 2ガラス組成物には、 MnOが 5モル。 /。以上 20モル。/。以下、 C aO、 S r O、 B a Oより選ばれる少なくとも一つが 10モル0 /0以上 40モル0 /0 以下、 B23 が 5モル%以上 40モル%以下、 S i〇2 が 15モル%以上 55 モル%以下、 その他の任意の第 2酸ィ匕物の合計が 20モル%以下 (0含む) 含ま れる。
好ましくは、 前記抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス組 成物との重量比が、 7. 8 : 2. 2〜1. 8 : 8. 2である。
好ましくは、 前記第 1ガラス組成物および第 2ガラス組成物以外に、 添加物と して Cu〇をさらに含み、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及 ぴ添加物を合計した粉末の重量に対する CuOの重量添加割合が、 0〜4. 23 重量% (0重量%を除く) である。
好ましくは、 前記添加物として、 Μιι02 および/または T i〇2 をさらに含 み、 Μιι02 および Zまたは T i〇2 の合計の重量添加割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の重量に対して、 0〜7. 25重量%である。
好ましくは、 前記添加物として、 導電性材料、 第 1ガラス組成物、 第 2ガラス 組成物及ぴ添加物を合計した粉末の重量に対して、 CuOが 1. 71〜 3. 59 重量%、 Mn02 が 0〜7. 25重量%含有する。
共通事項
好ましくは、 前記第 1ガラス組成物におけるその他の任意の第 1酸化物が、 A 12 03 、 N a z 0、 K2 0、 Z r O z 、 MgO、 B O s 、 P 2 O s 、 T i 02 、 CuO、 CoO、 V 2 O s から選ばれる少なくとも 1つであり、 前記第 1 酸化物の合計が、 第 1ガラス組成物の全体のモル0 /0に対して 29モル。 /。以下 (0 含む) である。
好ましくは、 前記第 2ガラス組成物におけるその他の任意の第 2酸化物が、 A 12 O a 、 Z r O 2 、 ZnO、 M g O、 B i 2 O 3 、 T i 02 、 CuO、 Co O V 2 O s から選ばれる少なくとも 1つであり、 前記第 2酸化物の合計が、 第 2ガ ラス組成物の全体のモル。/0に対して 20モル%以下 (0含む) である。
好ましくは、 前記導電性材料が、 Ru02 または Ruの複合酸化物である。 好ましくは、 前記導電性材料、 第 1ガラス糸且成物、 第 2ガラス;祖成物おょぴ添 加物を合計した粉末の重量と、 有機ビヒクルとの重量比が、 1 : 0. 25〜1 : 4の範囲内である。
本発明の抵抗体は、 上記の抵抗体ペーストを用いて形成され、 本発明の電子部 品は、 その抵抗体を有する。 電子部品としては、 特に限定されないが、 特に、 ァ イソレータ用として好適に用いることができる。
本発明において、 " 実質的に鉛を含まない" とは、 不純物レベルとは言えない 量を超える鉛を含まないことを意味し、 不純物レベルの量 (たとえばガラス材料 または導電性材料中の含有量が 0. 05重量%以下) であれば含有されていても よい趣旨である。 鉛は、 不可避的不純物として極微量程度に含有されることがあ る。 図面の簡単な説明
図 1は本発明の一実施形態に係る抵抗体を有する電子部品としてのアイソレー タ装置の分解斜視図である。 図 1の符号は次の通りである。 2…樹脂ケース、 4 …容量基板、 6…フェライ ト組立体、 8…押さえ樹脂板、 10…マグネット。 発明を実施するための最良の形態
以下、 本発明を、 図面に示す実施形態に基づき説明する。
図 1に示すように、 アイソレータ装置は、 樹脂ケース 2と、 その内部に収容さ れる容量基板 4と、 その上に設置されるフェライト組立体 6と、 それを上から押 さえる押さえ樹脂板 8と、 その上に設置されるマグネット 1 0と、 それらを上か ら蓋する蓋部材 (図示せず) とを有する。
本実施形態では、 このアイソレータ装置における容量基板 4が、 たとえばチタ ン酸バリウムなどの誘電体セラミックで構成してあり、 その表面に、 抵抗体が厚 膜印刷法により形成してある。 その抵抗体を形成するための抵抗体ペーストが、 本発明の抵抗体ペーストで構成してある。
本発明の抵抗体ペーストは、 実質的に鉛を含まない第 1ガラス組成物と、 前記 第 1ガラス組成物と異なる組成で実質的に鉛を含まない第 2ガラス組成物と、 鉛 を実質的に含まなレ、導電性材料とを、 有機ビヒクルと混合してなる抵抗体ペース トである。 導電性材料は、 たとえば R u 0 2 または R uの複合酸化物である。 第 1ガラス組成物には、 Z n Oが 1 0モル%以上で好ましくは 1 0モル%以上 4 0モル%以下、 B 2 O s が 1モル%以上 4 0モル%以下、 S i〇2 が 1 5モル %以上 6 0モル0 /0以下、 C a O、 S r O、 B a Oより選ばれる少なくとも一つが 1 0モル%未満 (0含む) 、 その他の任意の第 1酸化物の合計が 3 0モル%以下 ( 0含む) 含まれる。
第 1ガラス組成物には、 Z n Oが 1 0モル%より少ないと、 基板との反応が促 進されてしまうため、 得られる抵抗体の抵抗値および耐フラックス性が悪化する 傾向にある。 また、 Z η θの組成比が多すぎると、 ガラスとしての化学的耐久性 が低下するため、 抵抗体として耐フラックス性が悪化する傾向にある。
B 23 は、 ガラス形成能を向上させる観点から、 第 1ガラス組成物に含有さ せることが好ましいが、 多すぎると、 ガラスとしての化学的耐久性が低下するた め、 抵抗体として耐フラックス性が悪ィ匕する傾向にある。
S i〇2 は、 ガラス形成能を向上させる観点から、 第 1ガラス組成物に含有さ せることが好ましいが、 多すぎると、 ガラスとしての軟化点が高くなり、 通常の 抵抗体の焼成条件で充分に焼結させることができず、 抵抗体として抵抗値および 耐フラックス性が悪化する傾向にある。
C a〇、 S r 0、 B a Oは、 ガラスとしての化学的耐久性を向上し、 抵抗体の 耐フラックス性を向上させることから含有させてもよいが、 多すぎると、 基板と の反応を促進されてしまうため、 抵抗体の抵抗値、 耐フラックス性が悪化する。 また、 その他任意の第 1酸化物の合計が多すぎると、 ガラスとしての化学的耐 久性が悪化し、 抵抗体の耐フラックス性等の信頼性が悪化する。
第 2ガラス組成物には、 M n Oが 5モル0/。以上で好ましくは 5モル%以上 2 0 モル0 /0以下、 C a〇、 S r O、 B a Oより選ばれる少なくとも一つが 1 0モル0 /0 以上で好ましくは 1 0モル%以上 4 0モル0 /。以下、 B 2 O 3 が 5モル%以上 4 0 モル%以下、 S i 0 2 が 1 5モル%以上 5 5モル%以下、 その他の任意の第 2酸 化物の合計が 2 0モル%以下 (0含む) 含まれる。
第 2ガラス,祖成物において、 M n Oが 5モル%より少ないと、 得られる抵抗体 の温度特性が悪化する傾向にある。 また、 M n Oの組成比が多すぎると、 基板と の反応が促進されてしまうため、 抵抗値、 耐フラックス性が悪化する。
C a O、 S r O、 B a Oより選ばれる少なくとも一つが 1 0モル0 /0より少ない と、 ガラスとしての化学的耐久性が低下し、 信頼性が悪化する傾向にあり、 多す ぎると、 基板との反応が促進されてしまうため、 抵抗値 ·耐フラックス性が悪化 する。
B 2 O a は、 ガラス形成能を向上させる観点から、 第 2ガラス組成物に含有さ せることが好ましいが、 多すぎると、 ガラスとしての化学的耐久性が低下するた め、 抵抗体として耐フラックス性が悪ィ匕する傾向にある。
S i〇2 は、 ガラス形成能を向上させる観点から、 第 2ガラス組成物に含有さ せることが好ましいが、 多すぎると、 ガラスとしての軟化点が高くなり、 通常の 抵抗体の焼成条件で充分に焼結させることができず、 抵抗体として抵抗値おょぴ 耐フラックス性が悪化する傾向にある。
また、 その他任意の第 2酸ィヒ物の合計が多すぎると、 ガラスとしての化学的耐 久性が悪ィヒし、 抵抗体の耐フラックス性等の信頼性が悪化する。
第 1ガラス組成物と第 2ガラス組成物との合計体積割合が、 導電性材料、 第 1 ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の体積を 1 0 0とし た場合に、 65〜 89体積%であり、 導電性材料の体積割合が 8〜 33体積%で ある。 抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス組成物との体積 比は、 好ましくは 8 : 2〜2 : 8である。
第 1ガラス組成物と第 2ガラス組成物との合計重量割合が、 導電性材料、 第 1 ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の重量を 100とし た場合に、 41. 55〜77. 37重量%であり、 導電性材料の重量割合が 18 · 41〜55. 36重量0/。である。 抵抗体ペース トに含まれる第 1ガラス組成物と 第 2ガラス組成物との重量比は、 好ましくは 7. 8 : 2. 2〜1. 8 : 8. 2で める。
第 1ガラス組成物と第 2ガラス組成物との合計体積割合または合計重量割合が 少なすぎると、 抵抗体としての信頼性が著しく低下し、 耐フラックス性が悪化す る傾向にあり、 多すぎると、 抵抗値が大きくなりすぎる傾向にある。 また、 導電 性材料の体積割合または重量割合が少なすぎると、 抵抗が大きくなる傾向にあり、 逆に多すぎると、 抵抗体としての信頼性が著しく低下し、 耐フラックス性が悪化 する傾向にある。
抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス組成物との体積比ま たは重量比が上記の範囲を外れると、 温度特性が悪くなると共に、 耐フラックス 性が悪くなる傾向にある。
また、 抵抗体ペーストには、 第 1ガラス組成物おょぴ第 2ガラス組成物以外に、 添加物として CuOをさらに含む。
導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及び添加物を合計した粉末 の体積に対する C u Oの体積添加割合は、 好ましくは 0体積%超 5体積%以下、 より好ましくは 1体積%以上 3体積%以下である。
導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及び添加物を合計した粉末 の重量に対する CuOの重量添加割合は、 好ましくは 0〜4. 23重量% (0重 量0 /0を除く) 、 より好ましくは 1. 71〜3. 59重量%である。
C u Oの体積添加割合または重量添加割合が低すぎると、 耐フラックス性が悪 化する傾向にあり、 多すぎると、 抵抗体の温度特性を悪化させる傾向にある。 さらに、 抵抗体ペーストには、 添加物として、 Mn02 および/または T i〇 2 をさらに含む。
Mn02 および Ζまたは T i 02 の合計の体積添加割合は、 導電性材料、 第 1 ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の体積に対して、 好 ましくは 0体積。 /。以上 5体積%以下であり、 好ましくは M n O 2 が 0体積%以上 5体積%以下である。
Mn02 および Zまたは T i 02 の合計の重量添加割合は、 導電性材料、 第 1 ガラス組成物、 第 2ガラス組成物及び添加物を合計した粉末の重量に対して、 好 ましくは 0〜7. 25重量%であり、 好ましくは Mn02 が 0〜7. 25重量% である。
抵抗体ペースト中に、 ガラス成分以外の添加物として、 これらの酸化物を添加 することで、 抵抗値及ぴ温度特性を調整することができるが、 あまり多すぎると、 耐フラックス性を悪化させる傾向にある。 なお、 ガラス成分以外の添加物として は、 CuO、 Mn02 、 T i O 2 以外には、 Mn3 04 、 ZnO、 MgO、 V2 O s 、 V 2 O s 、 N b 2 O s 、 C r 2 O 3 、 F e 2 03 、 C oO、 A 12 O 3 、 Z r O 2 、 S nOz 、 H f O 2 、 WO s 、 B i 2 O a が例示される。
第 1ガラス組成物におけるその他の任意の第 1酸化物が、 A l 2 O s 、 N a 2 0、 K2 0、 Z r〇2 、 MgO、 B i 2 〇3 、 P 2 O 5 、 T i〇2 、 CuO、 C oO、 V2 05 から選ばれる少なくとも 1つであり、 第 1酸化物の合計が、 第 1 ガラス組成物の全体のモル%に対して 29モル%以下 (0含む) である。
これらの酸化物を含ませることで、 ガラスの特性 (軟化点、 化学的耐久性) を 調整することができ、 任意の特性を持つ抵抗体を得ることができるが、 その含有 量が多すぎると、 抵抗体の特性及び信頼性が低下する。
また、 第 2ガラス組成物におけるその他の任意の第 2酸ィヒ物が、 A l 23 、 Z r 02 、 ZnO、 MgO、 B i 2 O a 、 T i O 2 、 CuO、 C oO、 V 2 OB から選ばれる少なくとも 1つであり、 第 2酸化物の合計が、 第 2ガラス組成物の 全体のモル%に対して 20モル0 /0以下 (0含む) である。
これらの酸化物を含ませることで、 ガラスの特性 (軟化点、 化学的耐久性) を 調整することができ、 任意の特性を持つ抵抗体を得ることができるが、 その含有 量が多すぎると、 抵抗体の特性及び信頼性が低下する。 さらに、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物および添加物を合 計した粉末の重量と、 有機ビヒクルとの重量比が、 1 : 0. 25〜1 : 4の範囲 内である。 抵抗体ペース トの粘性を調節するためである。
上記の抵抗体ペーストを作製するには、 たとえば次のようにして行う。
まず、 第 1ガラス組成物と第 2ガラス組成物とを準備する。 これらのガラス組 成物を準備するために、 それぞれ、 Z nO、 B23、 S i〇2、 C a C03 、 MnO、 A 1 03 , Z r 02 およぴ種々の酸化物 (上記の第 1酸化物または第 2酸化物) を所定量抨量し、 ボールミルにて混合して乾燥する。 得られた粉末を、 たとえば 5〜 30 °C /分の昇温速度で 1000〜 1 500 °Cまで昇温し、 その温 度を 0. 5〜5時間 (任意) 保持し、 その後、 それぞれを水中投下することによ つて急冷し、 ガラス化することができる。 得られたガラス化物をボールミルで粉 砕し、 ガラス粉末から成る第 1ガラス組成物と第 2ガラス組成物とを得ることカ できる。 これらのガラス組成物は、 非晶質である。
次に、 有機ビヒクルを作製する。 有機ビヒクルとしては、 特に限定されないが、 たとえばパインダ榭脂としては、 ェチルセルロース、 ポリビュルブチラ一ル、 メ タクリル樹脂、 ブチルメタアタリレートなどを用いることができる。 また、 溶剤 としては、 ターピネオ一ノレ、 ブチ カルビドーノレ、 ブチ 力 ^ビト一ノレァセテ一 ト、 トルエン、 アルコール類、 キシレンなどを用いることができる。 有機ビヒク ルは、溶剤を加熱攪拌しながらパインダ樹脂を溶解させることにより作製するこ とができる。
第 1ガラス組成物おょぴ第 2ガラス組成物以外に含まれる添加物としては、 C uO、 Mn〇2 および/ 7または T i〇2 が例示される。 これら添加物は、 導電性 材料の粉末と、 第 1ガラス組成物粉末、 第 2ガラス組成物粉末および有機ビヒク ルと共に、 各組成になるように秤量し、 3本ロールミルなどで混練することによ り抵抗体ペーストが得られる。
導電性粉末、 ガラス組成物およぴ添加物等の粉末の合計重量と、 有機ビヒクル との重量比は、 得られたペーストがスクリーン印刷に適した粘度となるように、 重量比で 1 : 0. 25〜1 : 4の範囲内で調合し、 ペーストを作製することが好 ましい。 この抵抗体ペーストを用いて、 抵抗体を、 B aT i 03 を主成分とする誘電体 基板上に所定パターンで形成するには、 たとえばスクリーン印刷などの厚膜印刷 法を用いればよい。 抵抗体ペーストの焼き付け温度は、 好ましくは 800〜90 0°Cであり、 その保持時間は、 好ましくは 5〜15分である。
なお、 本発明は、 上述した実施形態に限定されるものではなく、 本発明の範囲 内で種々に改変することができる。
たとえば、 本発明に係る抵抗体ペーストおよぴ抵抗体が用いられる電子部品と しては、 図示するアイソレータ装置に限定されず、 積層チップコンデンサ、 C一 R複合素子、 その他モジュール素子などの電子部品に用いることができる。 実施例
以下、 本発明を、 さらに詳細な実施例に基づき説明するが、 本発明は、 これら 実施例に限定されない。
実施例 1
鉛フリ一で構成した導電性材料およびガラス組成物で抵抗体ペーストを作成し、 これらを誘電体基板上に焼きつけて厚膜抵抗体を作成し抵抗値を測定した。
ガラス組成物としては硼珪酸系ガラスを、 導電性材料としては Ru02 を用い た。
(ガラス組成物の作成)
第 1ガラス組成物は、 ZnO、 B2 03 、 S i〇2 、 C a COa 、 S r COa 、 B a COa およぴ種々の酸化物 (任意の第 1酸化物) を所定量枰量し、 ボールミ ルにて混合して乾燥した。 得られた粉末を、 白金るつぼに投入し、 空気中で、 5 °C_ 分の速度で、 1300°Cまで昇温し、 その温度を 1時間保持した後に、 水中 投下することによって急冷し、 ガラス化した。 得られたガラス化物をボールミル で粉砕し、 第 1ガラス組成物粉末を得た。
第 2ガラス組成物は、 MnO、 B Os 、 S i〇2 、 C a COs 、 S r COs 、 B a COs およぴ種々の酸化物 (任意の第 2酸化物) を所定量秤量し、 ボールミ ルにて混合して乾燥し、 さらに第 1ガラス組成物と同様の方法で、 第 2ガラス組 成物粉末を得た。 これらのガラス組成物粉末は、 X R Dにより観察した結果、 非晶質であること が確認された。
得られた第 1ガラス組成物および第 2ガラス組成物を以下の表 1に示す。 表 1 に示すように、 第 1ガラス組成物としては、 試料番号 A 1〜A 5のガラス組成物 を準備した。 第 2ガラス組成物としては、 試料番号 B 1〜B 9のガラス組成物を 準備した。 それぞれの組成比 (モル%) を表 1に示す。
なお、 試料番号 A 5、 A 7〜A 9の第 1ガラス組成物は、 いずれも Ζ η Οが 1 0モル。 /。未満なので、 本発明の範囲外である。 また、 試料番号 Β 9の第 2ガラス 組成物は、 Μ η Οが 5モル。 /。未満なので、 本発明の範囲外である。 表 1において、 本発明の範囲外の試料には、 *印を付けた。
一 ετ —
Figure imgf000015_0001
τ
988M0/£00idf/X3d ^0/1"00 OAV (有機ビヒクルの作成)
バインダ樹脂としてェチルセルロースを準備し、 溶剤としてタービネオールを 用い、 溶剤を加熱攪拌しながらパインダ樹脂を溶かし、 有機ビヒクルを作製した。 有機ビヒクルには、 バインダ樹脂が 8重量部、 溶剤が 9 0重量部、 その他の成分 として、 分散剤が 2重量部含まれていた。
(添加物の選択)
添加物として、 後述する表 2に示すように、 C u Oおよぴ種々の酸化物を組み 合わせて用いた。
(抵抗体ペーストの作成)
上述のごとく作成した導電性材料の粉末と、 ガラス粉末と、 添加物と、 有機ビ ヒクルとを各組成になるように枰量し、 3本ロールミルで混練し、 抵抗体ペース トを得た。
導電性粉末、 ガラス組成物および添加物等の粉末の合計重量と有機ビヒクルの 重量比は、 得られたペーストがスクリーン印刷に適した粘度となるように、 重量 比で 1 : 0 . 2 5 ~ 1 : 4の範囲内で調合し、 表 2に示すように、 種々の組合せ の抵抗体ペースト試料 1〜3 1を作製した。 表 2には、 導電性材料の種類、 その 体積 °/0、 第 1ガラス組成物と第 2ガラス組成物との組合せ、 その体積比と合計体 積%、 添加物の種類、 その体積%が記載してある。 なお、 表 2に記載の体積%換 算の値を、 重量%換算に変換した場合の表を、 表 3に併せて示す。 表 2〜3にお いて、 本発明の範囲外の試料には、 *印を付けた。
試料番号 導電性材料 ガラス組成物 添カロ物 種類 体積0 /o 第 1 第 2 体積比 a BT 体積0 /o 種類 種類 第 1:第 2 体積0 /o 種類
* 1 Ru02 27 *なし Bl 0 : 10 71 CuO 2
* 2 Ru02 23 A1 なし 10 : 0 75 CuO 2
CuO 2
^ 3 R 02 23 A1 氺なし 10: 0 70 Mn02 5
*4 Ru02 23 A1 Bl 5 : 5 77 CuO * 0
* 5 Ru02 23 A1 *B9 5 : 5 75 CuO 2 氺 6 Ru02 23 A5 Bl 5 : 5 75 CuO 2
7 R 02 23 A1 Bl 5 : 5 75 CuO 2
8 Ru02 23 A2 Bl 5 : 5 75 CuO 2
9 Ru02 23 A3 Bl 5 : 5 75 CuO 2
10 Ru02 23 A4 Bl 5 : 5 75 CuO 2
11 Ru02 23 A1 B2 5 : 5 75 CuO 2
12 Ru02 23 A1 B3 5 : 5 75 CuO 2
13 Ru02 23 A1 B4 5 : 5 75 CuO 2
14 Ru02 23 A1 B5 5 : 5 75 CuO 2
15 Ru02 23 A1 B6 5 : 5 75 CuO 2
16 Ru02 23 A1 B7 5 : 5 75 CuO 2
17 Ru02 23 A1 B8 5 : 5 75 CuO 2
18 Ru02 23 A1 Bl 8 : 2 72 CuO 5
19 Ru02 25 A1 Bl 2 : 8 73 CuO 2
20 Ru02 25 A1 Bl 6 : 4 74 CuO 1
CuO 2
21 Ru02 23 A1 Bl 7:3 71 Mn02 4
CuO 2
22 . Ru02 23 A1 Bl 7 3 70 Ti02 5
23 Ru02 8 A1 Bl 6 4 90 CuO 2
24 Ru02 33 A1 Bl 4 6 65 CuO 2
25 Ru02 23 A6 Bl 5 5 75 CuO 2
*26 Ru02 23 *'A7 Bl 5 5 75 CuO 2 氺 27 Ru02 23 *A8 Bl 5 5 75 CuO 2 氺28 Ru02 23 *A9 Bl 5 5 75 CuO 2
29 Ru02 23 Al BIO 5 5 75 CuO 2
30 Ru02 23 Al Bll 5 5 75 CuO 2
31 Ru02 23 Al B12 5 5 75 CuO 2 表 3
Figure imgf000018_0001
(抵抗体の作成およぴ抵抗値測定)
B a T i Oa を主成分とする誘電体基板上に、 A g— P t導体ペーストを所定 形状にスクリーン印刷して乾燥させた。 Ag— P t導体ペーストにおける A gは 95質量%、 P tは 5質量%であった。 この誘電体基板をベルト炉に入れ、 投入 から排出まで 1時間のパターンで焼付けした。 焼きつけ温度は 850°C、 その保 持時間は 10分とした。 このようにして導体が形成され誘電体基板上に、 前述の ごとく作成した抵抗体ペーストを所定形状にスクリーン印刷して乾燥させた。 そ して、 導体焼きつけと同じ条件で抵抗体ペーストを焼きつけ、 厚膜抵抗体を得た。
(抵抗体の特性評価)
表 2に示す抵抗体ペーストから得られた各抵抗体試料について、 シート抵抗値 (Ω/D) を測定した。 シート抵抗値は、 Ag i l e n t Te c n o l o g i e s社製の製品番号 34401 Aにより測定した。
TCR (温度特性) は、 室温 25°Cを基準として、 125°Cへ温度を変えたと きの抵抗値の変化率である。 たとえば、 25 °Cおよび 125 °Cそれぞれの抵抗値 を R 25、 R 125 (Ω/D) とおくと、 TCRは、 以下の式 (1) から求めた。
TCR (p p m/°C) = (R 25 -R 125) /R 25/100 X 10000 00 … (1)
TCRく ±250 p pm/°Cとなる基準を満足するものが温度特性に優れてい ると判断した。 結果を表 4に示す。 表 4において、 基準を満足しないものに、 * 印を付けた。
耐フラックス性 (信頼性特性) については、 抵抗体にフラックスを塗布した後 に 3 10°C、 1分で熱処理を行い、 その後フラックスを洗浄したときの処理前後 における抵抗値の変化率を求めた。 耐フラックス性く ±1. 0%となる基準を満 足するものが、 耐フラックス性に優れていると判断した。 結果を表 4に示す。 表 4において、 基準を満足しないものに、 *印を付けた。 表 4 試料番号 TCR 耐フラッ ppm/°C クス十生% \ 1
域ロム
氺 1 70 -170 *4.3 氺 2 10 氺 1400 氺 0.3 氺3 50 * 700 1.5 氺 4 140 - 60 ホ 5.5 氺 5 280 氺 300 * 1.3 氺 6 120 氺 500 氺 1.5
7 100 -60 0.3
8 200 -105 0.5
9 150 -200 0.4
10 250 -150 0.5
11 80 160 0.3
12 170 -150 0.4
13 240 -195 0.5
14 90 70 0.3
15 115 -70 0.2
16 60 130 0.2
17 130 150 0.5
18 15 195 0.1
19 250 -200 0.4
20 30 200 0.8
21 125 -150 0.9
22 245 -180 0.9
23 250 -195 0.4
24 10 175 0.9
25 160 220 0.7 氺 26 150 氺 420 氺 2.0 .
* 27 260 氺 360 氺 6.8
* 28 135 氺550 氺 1.8
29 85 -70 0.7
30 110 -85 0.8
31 95 -65 0.6 表 4に示すように、 本発明の範囲外である試料番号 1〜 6及び試料番号 26〜 28に比較して、 本発明の実施例である試料番号 7〜 25及び試料番号 29〜3 1によれば、 10〜300 Ω /口の比較的に低い抵抗値を持ちながらも、 TCR の絶対値が 250 p pm/°C以下と小さく、 また耐フラックス性においても 1. 0%未満に押さえられていることが確認できた。
なお、 第 1ガラス組成物と第 2ガラス組成物との体積比は、 第 1 :第 2 = 8 : 2〜2 : 8において特に良好な結果が得られており、 且つ CuOを添加すること で耐フラックス性を小さくすることができることが確認できた。 産業上の利用可能性
本発明によれば、 特に、 B a T i〇3 を主成分とする誘電体基板上において、 所定 (特に限定されないが、 たとえば 10〜300 Ω /口程度) の低い抵抗値を 有しながらも.抵抗値の温度特性 (TCR) の絶対値が小さく、 信頼性特性 (耐フ ラックス性) に優れた鉛フリ一の抵抗体を得ることができる。

Claims

言青求の範囲
1. 実質的に鉛を含まない第 1ガラス組成物と、 前記第 1ガラス組 成物と異なる組成で実質的に鉛を含まない第 2ガラス組成物と、 鉛を実質的に含 まない導電性材料とを、 有機ビヒクルと混合してなる抵抗体ペーストであって、 前記第 1ガラス組成物および第 2ガラス組成物以外に、 添加物として CuOを さらに含み、
前記第 1ガラス組成物には、 Z ηθが 10モル%以上で C a 0、 S r O、 B a Oより選ばれる少なくとも一つが 10モル0 /0未満 (0含む) 含まれ、
前記第 2ガラス組成物には、 ΜηΟが 5モル%以上で C a〇、 S r O、 B a O より選ばれる少なくとも一つが 10モル%以上含まれ、
前記第 1ガラス組成物と第 2ガラス組成物との合計体積割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の体積を 100 とした場合に、 65〜 89体積%であり、 前記導電性材料の体積割合が 8 ~ 33 体積。 /0であることを特徴とする抵抗体ペースト。
2. 前記第 1ガラス組成物には、 Z n Oが 10モル%以上 40モル %以下、 Β 2 03 が 1モル%以上 40モル0/。以下、 S i〇2 が 15モル%以上 6 0モル0 /0以下、 CaO、 S r O、 B a Oより選ばれる少なくとも一つが 10モル %未満 (0含む) 、 その他の任意の第 1酸化物の合計が 30モル%以下 (0含 む) 含まれ、
前記第 2ガラス組成物には、 MriOが 5モル。/。以上 20モル。/。以下、 C aO、 S r 0、 B a Oより選ばれる少なくとも一つが 10モル0 /0以上 40モル%以下、 B23 が 5モル。/。以上 40モル%以下、 S i 02 が 15モル%以上 55モル0 /0 以下、 その他の任意の第 2酸化物の合計が 20モル%以下 (0含む) 含まれるこ とを特徴とする請求項 1に記載の抵抗体ペースト。
3. 前記抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス 組成物との体積比が、 8 : 2〜2 : 8であることを特徴とする請求項 1または 2 に記載の抵抗体ペースト。
4. 前記第 1ガラス組成物おょぴ第 2ガラス組成物以外に、 添加物 として CuOをさらに含み、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物 及ぴ添加物を合計した粉末の体積に対する C u Oの体積添加割合が、 0体積%超 5体積%以下であることを特徴とする請求項 1〜 3のいずれかに記載の抵抗体ぺ ースト。
5. 前記添加物として、 Mn02 および Zまたは T i〇2 をさらに 含み、 Μιι02 および/または T i 02 の合計の体積添加割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及び添加物を合計した粉末の体積に対して、 0体積%以上 5体積%以下であることを特徴とする請求項 1〜 4のいずれかに記 載の抵抗体ペースト。
6. 前記添加物として、 導電性材料、 第 1ガラス組成物、 第 2ガラ ス組成物及び添加物を合計した粉末の体積に対して、 C u Oが 1体積%以上 3体 積%以下、 Mn02 が 0体積%以上 5体積%以下含有することを特徴とする請求 項 5に記載の抵抗体ペースト。
7. 実質的に鉛を含まない第 1ガラス組成物と、 前記第 1ガラス組 成物と異なる組成で実質的に鉛を含まない第 2ガラス組成物と、 鉛を実質的に含 まない導電性材料とを、 有機ビヒクルと混合してなる抵抗体ペーストであって、 前記第 1ガラス組成物おょぴ第 2ガラス組成物以外に、 添加物として CuOを さらに含み、
前記第 1ガラス組成物には、 Z ηθが 10モル0 /。以上で C a〇、 S r 0、 B a Oより選ばれる少なくとも一^つが 10モル%未満 (0含む) 含まれ、
前記第 2ガラス組成物には、 Mn〇が 5モル%以上で C a 0、 S r 0、 B a O より選ばれる少なくとも一つが 10モル%以上含まれ、
前記第 1ガラス組成物と第 2ガラス組成物との合計重量割合が、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成物及ぴ添加物を合計した粉末の重量を 100 とした場合に、 41. 55〜77. 37重量%であり、 前記導電性材料の重量割 合が 18. 41〜55. 36重量。 /0であることを特徴とする抵抗体ペースト。
8. 前記第 1ガラス組成物には、 Z n Oが 10モル%以上 40モル %以下、 B23 が 1モル%以上 40モル。/。以下、 S i〇2 が 15モル%以上 6 0モル0 /0以下、 C a O、 S r O、 B a Oより選ばれる少なくとも一つが 10モル %未満 (0含む) 、 その他の任意の第 1酸化物の合計が 30モル%以下 (0含 む) 含まれ、
前記第 2ガラス組成物には、 Mn〇が 5モル0 /。以上 20モル%以下、 C a 0、 S r 0、 B a Oより選ばれる少なくとも一つが 10モル0 /0以上 40モル0 /0以下、 B23 が 5モル%以上 40モル%以下、 S i 02 が 15モル0/。以上 55モル0 /0 以下、 その他の任意の第 2酸化物の合計が 20モル%以下 (0含む) 含まれるこ とを特徴とする請求項 7に記載の抵抗体ペースト。
9. 前記抵抗体ペーストに含まれる第 1ガラス組成物と第 2ガラス 組成物との重量比が、 7. 8 : 2. 2〜1. 8 : 8. 2であることを特徴とする 請求項 7または 8に記載の抵抗体ペースト。
10. 前記第 1ガラス組成物およぴ第 2ガラス組成物以外に、 添加 物として CuOをさらに含み、 導電性材料、 第 1ガラス組成物、 第 2ガラス組成 物及び添加物を合計した粉末の重量に対する C u Oの重量添加割合が、 0〜4. 23重量% (0重量%を除く) であることを特徴とする請求項 7〜 9のいずれか に記載の抵抗体ペースト。
1 1. 前記添加物として、 Mn02 および/または T i〇2 をさら に含み、 Mn02 および/または T i〇2 の合計の重量添加割合が、 導電性材料 第 1ガラス組成物、 第 2ガラス糸且成物及び添加物を合計した粉末の重量に対して 0〜7. 25重量%であることを特徴とする請求項 7〜10のいずれかに記載の 抵抗体ペースト。
1 2. 前記添加物として、 導電性材料、 第 1ガラス組成物、 第 2ガ ラス組成物及び添加物を合計した粉末の重量に対して、 CuOが 1. 71~3. 59重量%、 Mn02 が 0〜7. 25重量%含有することを特徴とする請求項 1 1に記載の抵抗体ペースト。
1 3. 前記第 1ガラス組成物におけるその他の任意の第 1酸化物が、 A 1 〇 、 N a 0、 K2 0、 Ζ r 02 、 MgO、 Β i 2 Oa 、 Ρ 2 Οδ 、 Τ i 02 、 CuO, Co O、 V2 05 から選ばれる少なくとも 1つであり、 前記第 1酸化物の合計が、 第 1ガラス組成物の全体のモル。 /0に対して 29モル%以下 (0含む) であることを特徴とする請求項 2〜6, 8〜12のいずれかに記載の 抵抗体ペースト。
14. 前記第 2ガラス組成物におけるその他の任意の第 2酸化物が、 A 1 Oa 、 Z r02 、 ZnO、 MgO、 B i 2 O 3 、 T i 02 、 CuO, C o 0、 V2 05 から選ばれる少なくとも 1つであり、 前記第 2酸化物の合計が、 第 2ガラス組成物の全体のモル0 /0に対して 20モル0 /0以下 (0含む) であることを 特徴とする請求項 2〜 6, 8〜13のいずれかに記載の抵抗体ペースト。
15. 前記導電性材料が、 R u O 2 または R uの複合酸化物である ことを特徴とする請求項 1〜14のいずれかに記載の抵抗体ペースト。
1 6. 前記導電性材料、 第 1ガラス組成物、 第 2ガラス組成物およ ぴ添加物を合計した粉末の重量と、 有機ビヒクルとの重量比が、 1 : 0. 25〜 1 : 4の範囲内であることを特徴とする請求項 1〜1 5のいずれかに記載の抵抗 体ペースト。
1 7. 請求項 1〜16のいずれかに記載の抵抗体ペーストを用いて 形成された抵抗体。
1 8 . 請求項 1 7に記載の抵抗体を有する電子部
PCT/JP2003/014886 2002-11-21 2003-11-21 抵抗体ペースト、抵抗体および電子部品 WO2004047124A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03774128A EP1564757B1 (en) 2002-11-21 2003-11-21 Electrical resistor paste, electrical resistor and electronic device
US10/535,890 US7282163B2 (en) 2002-11-21 2003-11-21 Resistor paste, resistor, and electronic device
JP2004553226A JP4174051B2 (ja) 2002-11-21 2003-11-21 抵抗体ペースト、抵抗体および電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-337677 2002-11-21
JP2002337677 2002-11-21

Publications (1)

Publication Number Publication Date
WO2004047124A1 true WO2004047124A1 (ja) 2004-06-03

Family

ID=32321850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014886 WO2004047124A1 (ja) 2002-11-21 2003-11-21 抵抗体ペースト、抵抗体および電子部品

Country Status (6)

Country Link
US (1) US7282163B2 (ja)
EP (1) EP1564757B1 (ja)
JP (1) JP4174051B2 (ja)
CN (1) CN100538921C (ja)
TW (1) TW200419593A (ja)
WO (1) WO2004047124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518104A (ja) * 2008-04-18 2011-06-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルテニウム酸化物を有する、鉛を含有しない抵抗組成物
JP2018058716A (ja) * 2016-10-04 2018-04-12 日本電気硝子株式会社 ホウケイ酸系ガラス、複合粉末材料及び複合粉末材料ペースト

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645594B2 (ja) * 2004-07-06 2011-03-09 株式会社村田製作所 導電性ペースト及びそれを用いたセラミック電子部品
TW200639880A (en) * 2005-02-21 2006-11-16 Tdk Corp Thick-film resistor and its production process
KR101258329B1 (ko) * 2008-04-18 2013-04-25 이 아이 듀폰 디 네모아 앤드 캄파니 Cu-함유 유리 프릿을 사용하는 저항 조성물
US8815125B2 (en) * 2012-06-20 2014-08-26 E. I. Du Pont De Nemours And Company Method of manufacturing a resistor paste
KR101738326B1 (ko) 2014-09-12 2017-05-19 소에이 가가쿠 고교 가부시키가이샤 저항 조성물
CN104464877A (zh) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 一种环保型电阻浆料
CN106571170A (zh) * 2016-10-25 2017-04-19 东莞珂洛赫慕电子材料科技有限公司 一种具有低电阻重烧变化率的高温无铅钌浆及其制备方法
CN106601331A (zh) * 2016-10-25 2017-04-26 东莞珂洛赫慕电子材料科技有限公司 一种具有低tcr值的高温无铅钌浆及其制备方法
US10115505B2 (en) * 2017-02-23 2018-10-30 E I Du Pont De Nemours And Company Chip resistor
CN110970151B (zh) * 2019-12-18 2021-03-30 广东顺德弘暻电子有限公司 不锈钢基材用高可焊防起翘厚膜导体浆料及其制备方法
CN112768110B (zh) * 2020-12-23 2022-07-01 广东风华高新科技股份有限公司 一种铜浆及片式多层陶瓷电容器
TWI742979B (zh) * 2020-12-31 2021-10-11 華新科技股份有限公司 緩衝層用助燒結劑、包含緩衝層之電阻及電阻製法
CN113045203A (zh) * 2021-01-11 2021-06-29 四川大学 一种避雷器电阻片侧面釉配方
CN114763292B (zh) * 2021-01-14 2023-09-08 东莞华科电子有限公司 缓冲层用助烧结剂、包含缓冲层的电阻及电阻制法
TWI798061B (zh) * 2022-04-19 2023-04-01 華新科技股份有限公司 無鉛厚膜電阻組成物及無鉛厚膜電阻

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198203A (ja) * 2000-12-25 2002-07-12 Tdk Corp 抵抗体ペースト、該ペーストを用いて形成した厚膜抵抗体及び該厚膜抵抗体を有する回路基板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0132810A1 (en) * 1983-07-25 1985-02-13 E.I. Du Pont De Nemours And Company Borosilicate glass composition
JPS6092601A (ja) 1983-10-26 1985-05-24 松下電器産業株式会社 厚膜抵抗体組成物
JPS6167901A (ja) 1984-09-11 1986-04-08 昭栄化学工業株式会社 抵抗組成物及びそれよりなる厚膜抵抗体
JPH04196104A (ja) 1990-11-26 1992-07-15 Tanaka Kikinzoku Internatl Kk 厚膜抵抗ペースト
JPH04196105A (ja) 1990-11-26 1992-07-15 Tanaka Kikinzoku Internatl Kk 厚膜抵抗組成物
US5491118A (en) 1994-12-20 1996-02-13 E. I. Du Pont De Nemours And Company Cadmium-free and lead-free thick film paste composition
JP3019136B2 (ja) 1995-03-09 2000-03-13 株式会社住友金属エレクトロデバイス 厚膜ペースト及びそれを用いたセラミック回路基板
JP3209089B2 (ja) * 1996-05-09 2001-09-17 昭栄化学工業株式会社 導電性ペースト
JP3611160B2 (ja) * 1997-02-10 2005-01-19 株式会社村田製作所 厚膜抵抗体ペースト
JP4006814B2 (ja) 1998-03-04 2007-11-14 株式会社村田製作所 厚膜抵抗ペーストおよびその製造方法
JP3731803B2 (ja) 1999-10-28 2006-01-05 株式会社村田製作所 厚膜抵抗体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198203A (ja) * 2000-12-25 2002-07-12 Tdk Corp 抵抗体ペースト、該ペーストを用いて形成した厚膜抵抗体及び該厚膜抵抗体を有する回路基板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518104A (ja) * 2008-04-18 2011-06-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルテニウム酸化物を有する、鉛を含有しない抵抗組成物
JP2018058716A (ja) * 2016-10-04 2018-04-12 日本電気硝子株式会社 ホウケイ酸系ガラス、複合粉末材料及び複合粉末材料ペースト
WO2018066295A1 (ja) * 2016-10-04 2018-04-12 日本電気硝子株式会社 ホウケイ酸系ガラス、複合粉末材料及び複合粉末材料ペースト

Also Published As

Publication number Publication date
EP1564757B1 (en) 2012-03-28
JP4174051B2 (ja) 2008-10-29
EP1564757A1 (en) 2005-08-17
CN1742347A (zh) 2006-03-01
US20060052229A1 (en) 2006-03-09
US7282163B2 (en) 2007-10-16
EP1564757A4 (en) 2008-12-24
JPWO2004047124A1 (ja) 2006-03-23
TWI293466B (ja) 2008-02-11
TW200419593A (en) 2004-10-01
CN100538921C (zh) 2009-09-09

Similar Documents

Publication Publication Date Title
WO2004047124A1 (ja) 抵抗体ペースト、抵抗体および電子部品
KR100693896B1 (ko) 후막저항체 페이스트 및 후막저항체
JP2005235754A (ja) 導電性材料及びその製造方法、抵抗体ペースト、抵抗体、電子部品
JP2004356266A (ja) 抵抗体ペースト、抵抗体および電子部品
JP2006108610A (ja) 導電性材料、抵抗体ペースト、抵抗体及び電子部品
JP2005236274A (ja) 抵抗体ペースト、抵抗体及び電子部品
JP2005209744A (ja) 厚膜抵抗体ペースト及び厚膜抵抗体、電子部品
JP4221417B2 (ja) 厚膜抵抗体ペースト、厚膜抵抗体および電子部品
JP2006261350A (ja) 抵抗体ペースト及び抵抗体、
JP2006229164A (ja) 厚膜抵抗体ペースト及び厚膜抵抗体
JP2005244115A (ja) 抵抗体ペースト、抵抗体及び電子部品
JP3800614B1 (ja) 厚膜抵抗体ペーストおよび厚膜抵抗体
JP2005129806A (ja) 抵抗体ペースト及び厚膜抵抗体
JP2005072485A (ja) 抵抗体ペースト及び抵抗体、抵抗体の製造方法
JP2006261348A (ja) 抵抗体ペースト及び抵抗体、
JP2006261250A (ja) 抵抗体ペースト、抵抗体及び電子部品
JP2006165347A (ja) 抵抗体ペースト及び抵抗体、電子部品
JP2006073716A (ja) 厚膜抵抗体用ガラス組成物及びこれを用いた厚膜抵抗体ペースト、厚膜抵抗体、電子部品
JP2005209737A (ja) 導電性材料及びその製造方法、抵抗体ペースト、抵抗体、電子部品
JP2006225237A (ja) 厚膜抵抗体用ガラス組成物及びこれを用いた厚膜抵抗体ペースト
JP2006273706A (ja) 厚膜抵抗体ペースト用ガラス組成物、厚膜抵抗体ペースト、厚膜抵抗体および電子部品
JP2006165348A (ja) 抵抗体ペースト及び抵抗体、電子部品
JP2005209738A (ja) 厚膜抵抗体及びその製造方法
JP2006165350A (ja) 抵抗体ペースト及び抵抗体、電子部品
JP2006080159A (ja) 抵抗体ペースト、抵抗体及び電子部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553226

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006052229

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535890

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003774128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A90857

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003774128

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535890

Country of ref document: US