WO2004038715A1 - 光磁気記録媒体、情報記録/再生方法、および磁気記録装置 - Google Patents

光磁気記録媒体、情報記録/再生方法、および磁気記録装置 Download PDF

Info

Publication number
WO2004038715A1
WO2004038715A1 PCT/JP2003/013626 JP0313626W WO2004038715A1 WO 2004038715 A1 WO2004038715 A1 WO 2004038715A1 JP 0313626 W JP0313626 W JP 0313626W WO 2004038715 A1 WO2004038715 A1 WO 2004038715A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magneto
recording
heat radiation
recording medium
Prior art date
Application number
PCT/JP2003/013626
Other languages
English (en)
French (fr)
Inventor
Takuya Kamimura
Tsutomu Tanaka
Ken Tamanoi
Koji Matsumoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP03758878A priority Critical patent/EP1555669A4/en
Priority to JP2004546474A priority patent/JP4077451B2/ja
Priority to AU2003275651A priority patent/AU2003275651A1/en
Publication of WO2004038715A1 publication Critical patent/WO2004038715A1/ja
Priority to US11/010,152 priority patent/US20050146993A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • G11B11/10506Recording by modulating only the light beam of the transducer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7375Non-polymeric layer under the lowermost magnetic recording layer for heat-assisted or thermally-assisted magnetic recording [HAMR, TAMR]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Definitions

  • the present invention has a recording layer for recording data by receiving irradiation of recording light and supply of a magnetic field on a substrate, and receiving irradiation of recording light and supply of a magnetic field from the recording layer side
  • the present invention relates to a magneto-optical recording medium, an information recording / reproducing method for recording and reproducing information on and from the magneto-optical recording medium, and a magnetic recording apparatus for recording and reproducing information on and from the magneto-optical recording medium.
  • magneto-optical recording media that have been practically used in the past have a recording layer, a heat radiation layer with higher thermal conductivity than the recording layer, and a protective layer that protects these layers on a transparent substrate.
  • Information is recorded by irradiating a recording light beam and supplying a magnetic field through the substrate.
  • a light beam for reproduction is irradiated through the substrate.
  • the light beam applied to the recording layer is narrowed by an objective lens, so that the light beam is To reduce the spot size ⁇ of
  • a blue laser may be used instead of a red laser conventionally used as a light beam.
  • a drive that drives a magneto-optical recording medium and includes a blue laser light source and a photodetector has larger circuit noise than a drive that includes a red laser light and a blue laser light photodetector.
  • the conversion efficiency is lower than that of red laser light, and the signal intensity (carrier) decreases during reproduction.
  • CNR CarrièretoNoiSeRatio
  • the surface of a substrate of a magneto-optical recording medium is generally formed in a concavo-convex shape, and a recording layer laminated on the substrate has lands (convex portions) according to the concavo-convex shape. A recess is formed.
  • a heat radiation layer is laminated on the uneven substrate surface, and the recording layer is formed such that the rear surface of the recording layer is in contact with the surface of the heat radiation layer.
  • the heat dissipation layer is generally a metal layer, and as the thickness of the heat dissipation layer increases, the surface of the heat dissipation layer tends to be roughened into a granular shape and uneven.
  • a magneto-optical recording medium for recording information at a high density
  • both lands and groups are used as tracks, and marks magnetized in a direction corresponding to the supplied magnetic field are formed on the lands and grooves. If the shape of the land / groove is broken, the shape of the mark will also be broken, and the medium noise will worsen.
  • magneto-optical At the time of recording on a magnetic recording medium, the recording layer is heated by irradiating a recording laser beam, and a magnetic field is supplied while the coercive force of the recording layer is reduced. Increasing the thickness of the heat radiation layer improves the heat radiation and allows high-power laser light to be applied during reproduction, but reduces the coercive force on the recording layer even when irradiated with high-power laser light during recording. Cannot provide enough heat to
  • the present invention can irradiate high power laser light without deteriorating the medium noise when irradiating laser light at the time of reproduction.
  • a magneto-optical recording medium capable of applying sufficient heat to the recording layer to reduce the coercive force without irradiating a laser beam, and an information recording / reproducing method for recording and reproducing information on the magneto-optical recording medium
  • the magneto-optical recording medium of the present invention that achieves the above object includes a substrate,
  • a second heat radiation layer formed on the dividing layer and having a predetermined thermal conductivity higher than the low thermal conductivity and lower than the high thermal conductivity;
  • a recording layer formed on the heat dissipation layer and recording data by receiving irradiation of recording light and supply of a magnetic field.
  • the magneto-optical recording medium of the present invention has a layer structure corresponding to the front illumination method.
  • the heat radiation layer is divided into the first heat radiation layer and the second heat radiation layer. Even if the thickness of one heat radiation layer is not so thick as to roughen the surface, the entire magneto-optical recording medium can have sufficient heat radiation without deteriorating the medium noise.
  • a large power laser beam can be irradiated.
  • the recording layer is continuously heated by continuously irradiating a laser beam in a DC manner.
  • the laser beam when irradiating a recording light beam, the laser beam is intermittently irradiated in a pulsed manner, whereby a mark having a better shape is recorded.
  • the recording layer is instantaneously formed. Heated.
  • a dividing layer having a thermal conductivity lower than the thermal conductivity of either of the heat radiating layers is provided between the two heat radiating layers, and the second heat radiating layer on the recording layer side is further provided.
  • the thermal conductivity is smaller than that of the first heat dissipation layer on the substrate side.
  • the heat that continues to be generated in the recording layer is changed from the recording layer—the second heat radiation layer ⁇ the split layer ⁇ the first layer. It is released through the path of the heat radiation layer, but in the case of intermittent irradiation of laser light during recording, the conduction of heat instantaneously generated in the recording layer stops in the second heat radiation layer, and the recording light beam of so much power Even without irradiation, sufficient heat can be applied to lower the coercive force of the recording layer.
  • the magneto-optical recording medium of the present invention can be applied to a so-called hard disk type magneto-optical recording medium in which information is reproduced by detecting a magnetic flux in the recording layer without irradiating a light beam during reproduction. . If the present invention is applied to such a hard disk type magneto-optical recording medium, sufficient heat can be applied to the recording layer to reduce the coercive force without irradiating a laser beam having such a large power during recording. be able to.
  • each of the first heat radiation layer and the second heat radiation layer contains one element selected from Al, Ag, Au and Pt as a main component, Preferably, at least one selected from Cu, Pd, Si, Cr, Ti, and Co is added.
  • Cu, Pd, Si, Cr, Ti, and Co must be added to those mainly composed of one element selected from A1, Ag, Au, and Pt. Reduces the thermal conductivity.
  • both the first heat radiation layer and the second heat radiation layer are made of a non-magnetic material
  • the above-mentioned splitting fault is a material containing at least one of a simple substance of Si, a simple substance of A1, and a simple substance of C, or a nitride of Si, an oxide of Si, and a carbide of Si.
  • a nitride of A 1, an oxide of A 1, a carbide of Fe, a sulfide of Zn, and a compound selected from oxides of Zn are also preferable.
  • the surface of the second heat radiation layer is smoother than the surface of the first heat radiation layer.
  • the recording layer can be formed into a clean shape by keeping the surface of the second heat dissipation layer smooth.
  • the surface of the separation layer is smoother than the surface of the second heat radiation layer.
  • the second heat dissipation layer In forming the second heat dissipation layer on the separation fault, it is extremely difficult to form the second heat dissipation layer to a surface roughness equal to or less than the surface roughness of the separation fault. By keeping the surface smooth, the recording layer can be reliably formed into a clean shape.
  • An information recording / reproducing method comprises: a substrate; a first heat radiation layer having a predetermined high thermal conductivity formed on the substrate; and a first heat radiation layer formed on the first heat radiation layer.
  • a dividing layer having a low thermal conductivity lower than the high thermal conductivity; and a predetermined thermal conductivity formed on the dividing layer and higher than the low thermal conductivity and lower than the high thermal conductivity.
  • the recording light is applied to a magneto-optical recording medium having a second heat radiation layer and a recording layer formed on the heat radiation layer and recording data by receiving irradiation of recording light and supply of a magnetic field.
  • a first magnetic recording apparatus of the present invention that achieves the above object has a substrate, a first heat radiation layer having a predetermined high thermal conductivity formed on the substrate, and a first heat radiation layer formed on the first heat radiation layer.
  • a split fault having a low thermal conductivity lower than the high thermal conductivity; and a predetermined heat transfer formed on the split fault, higher than the low thermal conductivity and lower than the high thermal conductivity.
  • To a magneto-optical recording medium having a second heat dissipation layer having a conductivity and a recording layer formed on the heat dissipation layer and recording data by receiving irradiation of recording light and supply of a magnetic field.
  • a magneto-optical recording unit that irradiates recording light and supplies a magnetic field to record information, and detects magnetic flux of the recording layer from the recording layer side opposite to the substrate to perform magnetic reproduction of information.
  • a second magnetic recording apparatus of the present invention comprises: a substrate; a first heat radiation layer having a predetermined high thermal conductivity formed on the substrate; and a first heat radiation layer formed on the first heat radiation layer.
  • a divided fault having a low thermal conductivity lower than the high thermal conductivity, and a predetermined thermal conductivity formed on the split fault higher than the low thermal conductivity and lower than the high thermal conductivity.
  • Light is irradiated to a magneto-optical recording medium having a second heat radiating layer, and a recording layer formed on the heat radiating layer and recording data by receiving recording light irradiation and a magnetic field.
  • a magneto-optical recording medium capable of applying sufficient heat to the recording layer to lower the coercive force without irradiating a high-power laser beam, and information recording and reproducing information by recording and reproducing information on the magneto-optical recording medium It is possible to provide a method and a magnetic recording apparatus for recording and reproducing information on and from the magneto-optical recording medium.
  • FIG. 1 is a diagram schematically showing the layer structure of the magneto-optical recording medium according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an example of a layer structure in a conventional magneto-optical recording medium.
  • FIG. 3 is a diagram showing a CNR and a reproducing light beam of the magneto-optical recording medium of the first embodiment shown in FIG. 4 is a graph showing power dependence.
  • Figure 4 shows the CNR of each of several samples with different thicknesses of the heat radiation layer.
  • 5 is a graph showing the power dependence of the reproducing light beam.
  • FIG. 5 is a graph showing measurement results of erase noise.
  • FIG. 6 is a graph showing the power dependence of the recording light beam of CNR in the magneto-optical recording medium shown in FIG.
  • FIG. 7 is a graph showing the phase dependence of the recording light beam of CNR in each of several samples having different thicknesses of the heat radiation layer.
  • FIG. 8 is a graph showing a temperature distribution in a beam spot of the light beam of the recording layer irradiated with the reproducing light beam.
  • FIG. 9 is a diagram schematically illustrating the layer structure of the magneto-optical recording medium according to the second embodiment.
  • FIG. 10 is a diagram schematically showing an example of a layer structure in a conventional magneto-optical recording medium that is a RAD medium.
  • FIG. 11 is a graph showing the power dependence of the reproducing light beam of the CNR in each of the magneto-optical recording medium shown in FIG. 9 and the magneto-optical recording medium shown in FIG. 10.
  • FIG. 10 is a graph showing the power dependence of the recording light beam on the CNR of each of the magneto-optical recording medium shown in FIG. 9 and the magneto-optical recording medium shown in FIG.
  • FIG. 13 is a graph showing measurement results of the noise noise of each of the magneto-optical recording medium shown in FIG. 9 and the magneto-optical recording medium shown in FIG.
  • FIG. 14 is a diagram schematically illustrating the layer structure of the magneto-optical recording medium according to the third embodiment.
  • FIG. 15 is a diagram schematically illustrating an example of a layer structure in a magneto-optical recording medium that is a conventional DWDD medium.
  • FIG. 16 is a graph showing the phase dependence of the reproduction light beam of CNR in each of the magneto-optical recording medium shown in FIG. 14 and the magneto-optical recording medium shown in FIG.
  • FIG. 17 is a graph showing the power dependence of the recording light beam of CNR in each of the magneto-optical recording medium shown in FIG. 14 and the magneto-optical recording medium shown in FIG.
  • FIG. 18 is a graph showing measurement results of erase noise of each of the magneto-optical recording medium shown in FIG. 14 and the magneto-optical recording medium shown in FIG.
  • FIG. 19 is a diagram showing a schematic configuration of an embodiment of a magnetic recording device that records information on a hard disk type magneto-optical recording medium and reproduces the recorded information.
  • Figure 20 shows changes in coercivity and saturation of the magneto-optical recording medium shown in Figure 19 with temperature.
  • 6 is a graph illustrating an example of a change in magnetization.
  • FIG. 21 is a flowchart showing an embodiment of an information recording / reproducing method according to the present invention.
  • FIG. 22 is a graph showing an example of a change in CNR with respect to laser recording power of the magneto-optical recording medium shown in FIG.
  • FIG. 23 is a diagram showing a schematic configuration of an integrated slider of a magnetic recording apparatus provided with the integrated slider.
  • FIG. 24 is a graph showing an example of a change in CNR with respect to a recording current in the magneto-optical recording medium shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram schematically showing the layer structure of the magneto-optical recording medium according to the first embodiment of the present invention.
  • the magneto-optical recording medium 1 shown in FIG. 1 is a recording medium that records information by irradiation with a recording light beam R and a magnetic field, and reproduces information by irradiation with a reproduction light beam P. .
  • the magneto-optical recording medium 1 includes a substrate 10 and has a layer structure corresponding to the front illumination method on the substrate. That is, the magneto-optical recording medium 1 shown in FIG. 1 includes a first heat dissipation layer 11, a split layer 12, a second heat dissipation layer 13, a recording auxiliary layer 14, a recording layer 15, a protective layer 16, and a cover layer 17. The layers are stacked in this order from the 10th side.
  • the substrate 10 is a disc made of glass 2P having a diameter of 120 mm and a thickness of 1.2 mm. Although not shown, the surface 10 a of the substrate 10 is formed in an uneven shape. The width of the concave and convex portions is 0.25 m, respectively, and the depth is 30 nm.
  • Such a substrate 10 has been subjected to a DUV (Deep U1 traViolet) irradiation treatment, and its surface 10a is finished to an extremely smooth surface with a surface roughness Ra of about 0.25 nm. I have.
  • the surface roughness Ra is a center line average roughness specified in B0601, which was revised in 1994 of Japanese Industrial Standards (commonly known as JIS standards).
  • f (X) it is the surface roughness expressed in the following equation (1), and the unit is nm.
  • the surface roughness represented by the equation (1) will be simply referred to as the surface roughness Ra.
  • the first heat dissipation layer 11, the split layer 12, and the second heat dissipation layer 13 shown in FIG. 1 are all non-magnetic layers, and the first heat dissipation layer 11 of these is mainly composed of Ag. It is a 10-nm-thick alloy film containing Pd, Cu, and Si as components.
  • the first heat dissipation layer 11 is formed on the surface 10a of the substrate 10 by co-sputtering using an alloy target containing Ag as a main component, Pd and Cu added, and a Si target. is there.
  • the co-sputtering conditions are as follows: gas pressure is 0.5 Pa, discharge power to the alloy target is 50 OW, and discharge power to the Si target is 32 OW.
  • the specific composition of the first heat dissipation layer 11 is Ag 96 at ° Pd 1 at%, Cu 1 at%, and Si 2 at%.
  • the dividing layer 12 is a 5 nm thick SiN film.
  • the dividing layer 1 2, the first radiating layer 1 1 of the surface, and doped with S i and B to the target was formed by sputtering film formation in N 2 gas at a gas pressure of 0. 3 P a Things.
  • the second heat dissipation layer 13 is a 30 nm-thick alloy film containing Ag as a main component and adding Pd, Cu, and Si.
  • the second heat dissipation layer 11 is formed on the surface of the split layer 12 by an alloy target formed by co-sputtering using an alloy target containing Ag as a main component and adding Pd and Cu, and an Si target. It is. Also in the co-sputtering for forming the second heat radiation layer 13, the gas pressure is 0.5 Pa, the discharge power to the alloy target is 500 W, but the discharge power to the Si target is 320 W.
  • the specific composition of the second heat dissipation layer 11 is as follows: Ag 94 at%, Pd 1 at%, Cu 1 at% , S i 4 at%.
  • the Si content of the second heat radiation layer 13 is larger than the Si content of the first heat radiation layer 11, and the higher the content of Si, the lower the thermal conductivity of the heat radiation layer. Therefore, the second heat dissipation layer 13 has a lower thermal conductivity than the first heat dissipation layer 11.
  • the recording auxiliary layer 14 is a 5 nm-thick GdFeCo magnetic film that acts so that an applied magnetic field required for recording is small. This recording auxiliary layer 14 is formed on the surface of the second heat radiation layer 13 by sputtering with a discharge power of 500 W and a gas pressure of 0.5 Pa using a GdFeCo alloy as a target. is there.
  • the recording layer 15 is a TbF eCo magnetic film having a thickness of 25 nm.
  • the recording layer 15 is formed on the surface of the recording auxiliary layer 14 by sputtering using a TbFeCo alloy as a target at a discharge power of 500 W and a gas pressure of 1.0 Pa.
  • the recording layer 15 has lands (convex portions) and groups (concave portions) formed in response to the uneven shape of the substrate surface 10a.
  • both the land and the group are used as tracks, and a mark magnetized in a direction corresponding to the supplied magnetic field is formed on the land or the group. Note that the combination of the recording auxiliary layer 14 and the recording layer 15 corresponds to the recording layer according to the present invention.
  • the protective layer 16 is a 50-nm-thick SiN dielectric film having a function of protecting the recording layer and the like from moisture and the like.
  • the protective layer 16 is formed by sputtering on the surface of the recording layer 15 in a N 2 gas with a discharge power of 800 W and a gas pressure of 0.3 Pa, using Si doped with B as a target. It was formed.
  • the cover layer 17 serves as a substrate in a layer structure corresponding to the front illumination method, and is a 15 / m-thick layer made of a transparent ultraviolet curable resin.
  • the cover layer 17 is formed by applying an ultraviolet curable resin to a thickness of 15 m on the surface of the protective layer 16 by a spin coating method and then irradiating with ultraviolet light for about 30 seconds to harden the resin. .
  • FIG. 2 is a diagram schematically showing an example of a layer structure in a conventional magneto-optical recording medium.
  • the magneto-optical recording medium 7 shown in FIG. 2 also receives information from a recording light beam R and receives a magnetic field. Record the information and reproduce the information by irradiating the light beam P for reproduction.
  • This is a recording medium compatible with the front illumination system.
  • This conventional magneto-optical recording medium 7 does not have the dividing layer 12 shown in FIG. 1, and the magneto-optical recording medium 7 has a heat radiation layer 71, a recording auxiliary layer 72, a recording layer 73, a protective layer 74, and a cover layer.
  • Numeral 75 is laminated from the substrate 70 side in this order. That is, the heat radiation layer provided on the magneto-optical recording medium 7 is a single layer.
  • the specific composition of the single heat radiation layer 71 is 95 at% Ag, 1 at% Pd, 1 at% Cu, and 3 at% Si.
  • CNR Carrierto Noise Ratio
  • FIG. 3 is a graph showing the power dependence of the reproducing light beam of the CNR in the magneto-optical recording medium of the first embodiment shown in FIG. 1, and FIG. 4 shows the results obtained by changing the thickness of the heat radiation layer. 4 is a graph showing the power dependence of the reproduction light beam on the CNR for each point sample.
  • a mark representing information was recorded on the recording layer by irradiating a recording light beam and supplying a magnetic field from one side of the cover of the medium while rotating the magneto-optical recording medium.
  • a light beam for reproduction was irradiated from the cover layer side to reproduce information based on the recorded marks, thereby obtaining a CNR.
  • the power of the light beam was changed in several steps.
  • the mark length during recording was 0.25 / zm, and the peripheral speed of the magneto-optical recording medium during reproduction was 7.5 mZs.
  • the horizontal axis represents the power Pr of the reproducing light beam (unit: mW), and the vertical axis represents the CNR (unit: dB).
  • the solid line connecting the filled circle plots in Fig. 4 shows the results for the sample in which the thickness of the heat radiation layer 71 shown in Fig. 2 was 5 nm, and the solid line connecting the open triangle plots shows the thickness.
  • the solid line connecting the open circle plots represents the result for the sample with a thickness of 45 nm, and the solid line connecting the solid triangle plots the result with a thickness of 50 nm. The result in the sample which performed is shown.
  • the power of the reproducing light beam (hereinafter, referred to as an optimum Pr) capable of obtaining the highest CNR value is increased.
  • the value of CNR at the optimum Pr also increases.
  • a CNR value of 45 dB or more is desired.
  • the CNR value does not reach 45 dB even if the heat dissipation layer is thickened to 50 nm.
  • the CNR value at the optimum Pr in the magneto-optical recording medium shown in Fig. 1 was improved by more than 2 dB from that of the sample medium having a heat dissipation layer of 50 nm. 45 dB or more.
  • the thickness of the first heat radiation layer 11 is 10 nm
  • the thickness of the second heat radiation layer 13 is 30 nm
  • the thickness of the heat radiation layers 11 and 13 is a clean land on the recording layer. Since the thickness is less than 50 nm, which makes it difficult for groups to be formed, first, a clean uneven shape is formed on the surface of the first heat dissipation layer 11 according to the uneven shape formed on the substrate surface 10a.
  • the surface of the second heat radiation layer 13 is also formed with a fine uneven shape via the dividing layer 12, and finally, the recording layer 15 has a clean land according to the uneven shape of the substrate surface 10a.
  • one of the factors is the formation of the group. In other words, it is considered that the land-group was formed cleanly, so that the mark formed in the land-groove also had a clean shape, and noise was reduced.
  • the optimum Pr of the magneto-optical recording medium shown in Fig. 1 is larger than the optimum Pr of the sample medium having a heat dissipation layer of 50 nm, and the carrier (signal strength) can be increased. This is considered as one factor.
  • the level of noise (erase noise) at each frequency was measured after DC-erasing the magneto-optical recording medium shown in FIG. 1 in one direction, and the results will be described.
  • two samples were prepared in addition to the magneto-optical recording medium shown in Fig. 1 for comparison, and the respective noises were also measured.
  • One of the two samples does not have the split fault shown in Fig. 1, This is a magneto-optical recording medium having a layer structure.
  • the specific composition of only one heat dissipation layer provided in this sample is Ag 95 at%, Pd 1 at%, Cu 1 at%, Si 3 at%, and the thickness is 4 0 nm.
  • the other sample has a split layer, and the heat dissipation layer is divided into the first heat dissipation layer and the second heat dissipation layer by the corresponding fault, but unlike the magneto-optical recording medium shown in FIG.
  • This is a magneto-optical recording medium in which the heat conductivity of the second heat dissipation layer on the layer side is higher than the heat conductivity of the first heat dissipation layer on the substrate side.
  • the composition of the second heat radiation layer was reduced by reducing the amount of Ag to 97 at%, 1 at% to Pd, 1 at% to Cu, and 1 at% to Si. It is higher than the thermal conductivity.
  • FIG. 5 is a graph showing measurement results of the erase noise.
  • FIG. 5 shows a solid line 51 representing erase noise of the magneto-optical recording medium shown in FIG. 1, a solid line 52 representing erase noise of a sample having a heat dissipation layer of 40 nm, and a thermal conductivity of the second heat dissipation layer.
  • the solid line 53 Indicates the erase noise of the sample higher than the thermal conductivity of the first heat dissipation layer
  • the solid line 53 indicates that the area of the region enclosed by each solid line and the vertical and horizontal axes is the area of each magneto-optical recording medium. , which corresponds to the magnitude of erase noise at all measured frequencies. From the graph shown in FIG. 5, it is possible to reduce the noise by dividing the heat radiation layer by providing a dividing layer, and to further reduce the first heat radiation layer on the substrate side to the second heat radiation layer on the recording layer side. It can be seen that by setting the thermal conductivity higher than that of the heat dissipation layer, the release noise can be further reduced.
  • Table 1 shows the composition of the first heat dissipation layer and the composition of the second heat dissipation layer in the upper row, and the measured total frequency of the magneto-optical recording medium having the layer with the composition shown in the upper row below.
  • 2 shows the magnitude of the erase noise in FIG.
  • the magnitude of the noise noise here is the magnitude of the noise noise at all measured frequencies in the sample used in the experiment whose results are shown in Fig. 4 and which has only one heat dissipation layer of 50 nm. The size is normalized as 1 and the ratio is shown.
  • the erase noise of the sample having the heat dissipation layer of 50 nm is indicated as 1.
  • Ag95Pd1CulSi3 shown as the second heat dissipation layer in this sample in the upper row of Table 1 is Ag95 at%, Pdlat%, Cu1 at%, Si3 at%. In other similar descriptions in the upper part of Table 1, the numbers represent at% of the element immediately before the numbers. On the right side of this sample, the magnitude of the erase noise in the magneto-optical recording medium shown in FIG. 1 is shown.
  • the thickness of the first heat radiation layer on the substrate side is 10 nm
  • the thickness of the second heat radiation layer on the recording layer side is This is a recording medium having a thickness of 3 O nm and a thermal conductivity of the first heat radiation layer higher than that of the second heat radiation layer.
  • the erase noise of each of these six magneto-optical recording media is reduced to about half of the erase noise of the sample having the heat dissipation layer of 50 nm, and both the first heat dissipation layer and the second heat dissipation layer
  • the A1 alloy film provided with Si, Pd, and Cu provided on the magneto-optical recording medium described with reference to FIG. 1, but also Al, Ag, Au, and Pt
  • Cu, Pd, S i, C r, T i, or C o are often contained in a metal film mainly containing one element selected from Al, Ag, A u and P t. The higher the content, the lower the thermal conductivity of the metal film. Therefore, these additional elements are contained more in the second heat dissipation layer than in the first heat dissipation layer. Need to be. Further, Cu, Pd, Si, Cr, Ti, and Co all have a function of suppressing the expansion of the particle size of Al, Ag, Au, and Pt. Therefore, when these elements are added, it is possible to prevent the surface of the heat radiation layer from becoming rough and uneven in grain shape, thereby preventing the noise from increasing.
  • FIG. 6 is a graph showing the dependence of the CNR in the magneto-optical recording medium shown in FIG. 1 on the power of the recording light beam.
  • FIG. 7 shows several samples with different thicknesses of the heat radiation layer.
  • 3 is a graph showing the power dependence of the recording light beam of the CNR in FIG.
  • the power of the recording light beam was changed in several steps, and the CNR was determined in the same manner as in the experiment on the power dependence of the reproduction light beam. That is, the mark length during recording is 0.2, and the peripheral speed of the magneto-optical recording medium during reproduction is 7.5 m / s.
  • the horizontal axis represents the power Pw (unit: mW) of the recording light beam
  • the vertical axis represents the CNR (unit: dB).
  • the solid line connecting the filled circle plots in Fig. 7 represents the results for the sample with a 5-nm thick heat dissipation layer
  • the solid line connecting the open triangle plots is the thickness 20
  • the solid line connecting the open circle plots represents the results for the sample with the heat dissipation layer of nm
  • the solid triangle plot represents the results for the sample with the heat dissipation layer of 45 nm thickness.
  • the solid line connecting represents the results for the sample provided with a 50-nm-thick heat dissipation layer.
  • the thicker the heat radiation layer alone the higher the CNR value can be obtained.
  • the power of the recording light beam that can be obtained (hereinafter referred to as the optimum Pw) increases.
  • the value of CNR when recording at the optimum Pw is adjusted to the value of CNR when recording at the optimum Pr, and the magneto-optical In any of the recording media, the CNR value is less than 45 dB.
  • the CNR value at the optimum P w in the magneto-optical recording medium shown in FIG. 1 is also adjusted to the CNR value at the time of recording at the optimum Pr, which is practical. 45 5 dB or more. Furthermore, the value of the optimum P w is kept at least 2 mW lower than the value of the optimum P w of the sample provided with the heat dissipation layer of 50 nm.
  • the laser light is continuously irradiated in a DC manner, and the recording layer is continuously heated.
  • the recording layer is instantaneously heated by intermittently irradiating a laser beam in a pulsed manner.
  • the magneto-optical recording medium 1 shown in FIG. 1 has a heat conductivity between the first heat dissipation layer 11 and the second heat dissipation layer 13 that is lower than the heat conductivity of any of the heat dissipation layers 11 and 13.
  • the second heat radiation layer 13 on the recording layer side has a lower thermal conductivity than the first heat radiation layer 11 on the substrate side.
  • the heat that continues to be generated in the recording layer 15 is changed from the recording layer 15 to the recording auxiliary layer 14 to the second heat radiation layer.
  • both heat radiation layers contribute to the layer 11
  • the second heat radiation layer 13 contributes to heat radiation of the heat generated in the recording layer 15 by the irradiation of the recording light beam. Therefore, in the magneto-optical recording medium 1 shown in FIG. 1, it is possible to apply sufficient heat to lower the coercive force of the recording layer 15 without irradiating a recording light beam having such a large power. It is considered that the value of the optimum P w can be kept low as shown in FIG. 6 while increasing the value of the optimum P r. If a laser beam with a higher power than necessary is applied during recording, the mark shape will be lost and noise will increase.
  • the significance of the fact that the second heat dissipation layer 13 on the recording layer side has a lower thermal conductivity than the first heat dissipation layer 11 on the substrate side will be described. This will be described in more detail.
  • the magneto-optical recording medium shown in FIG. 1 which has a relationship of thermal conductivity ⁇ 1 of the first heat dissipation layer 11> ⁇ 2 of the second heat dissipation layer 13, for comparison.
  • a magneto-optical recording medium having a relationship of thermal conductivity ⁇ 1 of the first heat dissipation layer 11 ⁇ thermal conductivity ⁇ 2 of the second heat dissipation layer 13, which is opposite to this relationship, is prepared as a sample.
  • the recording layer of the recording medium was irradiated with a reproduction light beam from the cover layer side, and the temperature distribution in the beam spot of the light beam on the recording layer was examined.
  • FIG. 8 is a graph showing a temperature distribution in a beam spot of the light beam of the recording layer irradiated with the reproducing light beam.
  • the horizontal axis of the graph in FIG. 8 represents the distance from the beam spot center of the reproducing light beam.
  • the distance is shown assuming that the center of the beam spot is 0, one end of the beam spot on the side in the rotation direction of the magneto-optical recording medium is +1.0, and the other end is 11.0. Therefore, the beam spot moves toward one side.
  • one side is referred to as the front side, and the + side is referred to as the rear side, based on the moving direction of the beam spot.
  • the vertical axis of the graph in FIG. 8 represents the temperature in the beam spot of the reproducing light beam on the recording layer. The temperature here is normalized with the highest temperature in the beam spot as 1, and is shown as a ratio to this highest temperature. In FIG.
  • the solid line represents the temperature distribution of the magneto-optical recording medium shown in FIG. 1, which has a relationship of thermal conductivity ⁇ 1 of the first heat radiation layer 11> thermal conductivity ⁇ 2 of the second heat radiation layer 13.
  • the temperature distribution of the sample magneto-optical recording medium having a relationship of thermal conductivity ⁇ 1 of the first heat dissipation layer 11 ⁇ thermal conductivity ⁇ 2 of the second heat dissipation layer 13, which is opposite to the relationship, is represented by a dotted line. Is represented.
  • the position of the temperature peak in the beam spot of the reproducing light beam is located closer to the front than the center of the beam spot of the reproducing light beam.
  • the position of the temperature peak is located slightly behind the center of the beam spot. coming.
  • the second heat radiation layer 13 on the recording layer side has a heat radiation property that the recording layer 15 heated by the irradiation of the reproducing light beam does not lose coercivity beyond the Curie point.
  • the temperature peak position in the beam spot of the reproduction light beam will be closer to the front of the beam spot center of the reproduction light beam. I think it will come.
  • the relationship between the surface roughness Ra of the three layers of the first heat dissipation layer 11, the dividing layer 12, and the second heat dissipation layer 13 was examined and described.
  • the magneto-optical recording medium having the layer structure shown in FIG. 1 were prepared by changing the combination of the surface roughness Ra of these three layers.
  • the first heat dissipation layer 11 and the second heat dissipation layer 13 were both made of alloy films.
  • the thickness of the first heat radiation layer 11 was 1 Onm
  • the thickness of the second heat radiation layer 13 was 3 Onm.
  • the splitting fault 12 was unified to the SIN film and the thickness was unified to 5 nm.
  • each layer was formed by sputtering.
  • the surface roughness Ra of these three layers was adjusted by changing the film forming gas pressure and discharge power.
  • the CNR at the optimal Pw and the optimal Pr was determined. In determining the CNR, the mark length during recording was 0.3 ⁇ m, and the peripheral speed of the magneto-optical recording medium during reproduction was 7.5 mZs.
  • Table 2 shows the CNR for each sample (medium A to medium E).
  • Table 2 shows that, for each sample, the surface roughness Ra (Ra 1) of the first heat dissipation layer, the surface roughness R a (Ra 0) of the split fault, and the surface roughness R a (R a 2) and the CNR during playback (unit: dB) are shown.
  • the values of noise (unit: dB) and carrier (unit: dB) measured to calculate the CNR are shown to the right of CNR.
  • Both the medium A and the medium B have the relationship of the surface roughness R a 1 of the first heat radiation layer> the surface roughness R a 2 of the second heat radiation layer, but the medium (:, medium D, and medium E Also, the surface roughness of the first heat dissipation layer has a relationship of Ra1 ⁇ the surface roughness of the second heat dissipation layer of Ra2.
  • the media A and B having the relationship of Ra1> Ra2 both have a CNR of Medium that has a relationship of Ra 1 ⁇ Ra 2 which is not less than 45 dB that is sufficient for practical use, but has a CNR of less than 45 dB for all of media E.
  • the recording auxiliary layer to be formed is formed on the surface of the second heat radiation layer, by suppressing the roughness of the surface of the second heat radiation layer, finally, the recording layer is provided with a clean land group according to the uneven shape of the substrate surface. This is considered to be due to the reduction in noise due to the formation of the heat radiation layer, which suggests that it is preferable to make the surface of the second heat radiation layer smoother than the surface of the first heat radiation layer. I can say.
  • the surface roughness R al of the second heat dissipation layer which is an alloy film
  • the surface roughness Ra 0 of the separation layer which is the SIN film
  • Dividing layer 12 of the magneto-optical recording medium shown in FIG. 1 is been made in S i N film, where, in the dividing 12, C film instead of the S i N film, S i film, S I_ ⁇ 2 film , S i C film, a 1 film, a 1 N film, a 1 2 0 3 film, Fe C film, ZnS film, and Zn_ ⁇ film using a sample of the magneto-optical recording medium of the layer structure shown in FIG. 1
  • the CNR at the optimum Pw and the optimum Pr was determined.
  • the mark length during recording was 0.30 im
  • the peripheral speed of the magneto-optical recording medium during reproduction was 7.5 m / s.
  • Table 3 shows the CNR determined for each sample and the optimal Pr and Pw when the CNR was determined.
  • the membranes of the separation layer 12 are listed at the top.
  • the thickness of the separation layer (unit: nm), optimal Pr (unit: mW), optimal Pw (unit; mW) and CNR (unit; dB) are shown.
  • the vertical line on the left side of Table 3 in which the dividing layer 12 is the SIN film indicates the optimum Pr, the optimum Pw, and the CNR of the magneto-optical recording medium shown in FIG.
  • the optimal Pr value of each sample magneto-optical recording medium is 2.8 mW, which is the same as the optimal Pr value of the magneto-optical recording medium shown in Fig. 1. It can be seen that the value of r is increased. In all samples, the CNR value is 45 dB or more, which is practical. Furthermore, the optimal Pw value of the magneto-optical recording medium of each sample is the same as the optimal Pw value of the magneto-optical recording medium shown in Fig. 1, which is 7.6 mW or lower, which is 7.4 mW. It can also be seen that the value of was kept low.
  • the split fault is not limited to the SiN film, but is a material containing at least one of the simple substance of Si, the simple substance of A1, and the simple substance of C, or the oxide of Si. , Si carbide, A1 nitride, A1 oxide, Fe carbide, Zn sulfide, and Zn oxide. It turns out to be good.
  • the first heat dissipation layer which is an alloy film containing one element selected from Al, Ag, Au and Pt as the main component
  • a separation layer whose back surface is in contact with the surface of the first heat dissipation layer
  • a film for example, an Si film or a SiN film
  • the small diameter between the particles on the surface of the first heat dissipation layer is reduced.
  • the surface of the first heat radiation layer can be improved in roughness.
  • FIG. 9 is a diagram schematically illustrating the layer structure of the magneto-optical recording medium according to the second embodiment.
  • the magneto-optical recording medium 2 shown in FIG. 9 receives the recording light beam R and supplies a magnetic field to record information, and receives the reproducing light beam P and supplies a magnetic field to reproduce information.
  • RAD media one of the super-resolution media.
  • the magneto-optical recording medium 2 includes a substrate 20 and has a layer structure corresponding to a front illumination method on the substrate, as in the magneto-optical recording medium 1 of the first embodiment, but is a RAD medium. Therefore, it has a unique layer structure. That is, the magneto-optical recording medium 2 shown in FIG.
  • the 9 is the same as the magneto-optical recording medium 1 of the first embodiment, in which the first heat radiation layer 21, the split layer 22, and the second heat radiation layer 23 are formed on the substrate 20 side.
  • the recording layer 24, the intermediate layer 25, the reproducing layer 26, the protective layer 27, and the cover layer 28 are disposed on the second heat radiation layer 23. They are stacked in the order described.
  • the material and shape of the substrate 20 provided in the magneto-optical recording medium 2 are the same as the material and shape of the substrate 10 provided in the magneto-optical recording medium 1 of the first embodiment.
  • the substrate surface is formed in an uneven shape.
  • the layers 21 to 28 provided in the magneto-optical recording medium 2 the layers 21 to 24, 28 except for the intermediate layer 25, the reproducing layer 26, and the protective layer 27,
  • the thickness, composition, and film forming conditions are the same as those of the layers 11 to 13, 15, and 17 of the same name provided in the magneto-optical recording medium 1 of the first embodiment. Therefore, also in this magneto-optical recording medium 2, the thermal conductivity of the first heat radiation layer 21 on the substrate 20 side> the heat conductivity of the second heat radiation layer 23 on the recording layer 24 side> the split layer 22 The relationship such as thermal conductivity holds.
  • first heat dissipation layer 21 and the second heat dissipation layer 23 shown in FIG. 9 are not limited to the A1 alloy film to which Si, Pd, and Cu are added.
  • the splitting fault 22 is not limited to the SiN film, but may be various films shown in Table 3.
  • the relationship between the surface roughness Ra of each of the first heat radiation layer 21, the split layer 22 and the second heat radiation layer 23 is as follows: the surface roughness Ra of the first heat radiation layer 21> the second heat radiation It is preferable that the surface roughness Ra of the layer 23 is greater than the surface roughness Ra of the separation layer 22.
  • the intermediate layer 25 is formed by sputtering on a surface of the recording layer 24 using a GdFeCo alloy as a target, mounting an Si chip on the target, and discharging at a power of 500 W and a gas pressure of 0.54 Pa.
  • the intermediate layer 25 is magnetized by the magnetic field of the mark formed on the recording layer 24 by being heated by receiving the light beam P for reproduction.
  • the reproducing layer 26 is a GdF e Co magnetic film formed on the surface of the intermediate layer 25 by sputtering with a discharge power of 800 W and a gas pressure of 0.86 Pa using the GdF e C 0 alloy as a target. is there.
  • the protective layer 27 shown in FIG. 2 is different from the protective layer 16 shown in FIG. 1 in the gas pressure in the film forming conditions.
  • sputtering is performed under the gas pressure of 0.3 Pa, but in the deposition of the protective layer 27 shown in FIG. The sputtering is performed under the conditions.
  • FIG. 10 is a diagram schematically illustrating an example of a layer structure in a magneto-optical recording medium that is a conventional RAD medium.
  • the magneto-optical recording medium 8 shown in FIG. 10 also records information by irradiating a recording light beam R and supplying a magnetic field, and reproduces information by irradiating a reproducing light beam P and supplying a magnetic field.
  • RAD media compatible with the front illumination method.
  • the magneto-optical recording medium 8, which is a conventional RAD medium, does not have the new layer 22 shown in FIG. 9, and the magneto-optical recording medium 8 has a heat radiation layer 81, a recording layer 82, an intermediate layer 83, and a reproducing layer 84.
  • the protective layer 85 and the cover layer 86 are laminated in this order from the substrate 80 side. That is, the heat radiation layer provided on the magneto-optical recording medium 8 is a single layer.
  • the specific composition of the single heat dissipation layer 81 is Ag 95 at%, Pd 1 at%, Cu 1 at%, Si 3 at%, and its thickness is 40 nm.
  • FIG. 11 is a graph showing the power dependence of the reproducing light beam of the CNR in each of the magneto-optical recording medium shown in FIG. 9 and the magneto-optical recording medium shown in FIG. 10, and FIG. 9 is a graph showing the power dependence of the recording light beam on the CNR of each of two magneto-optical recording media.
  • a mark representing information was recorded on the recording layer by irradiating a recording light beam and supplying a magnetic field from one side of the cover of the magneto-optical recording medium while rotating the medium.
  • the irradiation of the recording light beam was performed by changing the power in several steps to obtain the optimum Pw.
  • irradiation of a reproducing light beam and supply of a magnetic field were performed from the cover layer side, information based on the recorded marks was reproduced, and a CNR was obtained.
  • the irradiation of the reproducing light beam was performed by changing the power in several steps to obtain the optimum Pr.
  • the mark length during recording was 0.20 zm, and the peripheral speed of the magneto-optical recording medium during reproduction was 7.5 m / s.
  • the horizontal axis of the graph shown in FIG. 11 represents the power Pr (unit: mW) of the reproducing light beam
  • the horizontal axis of the graph shown in FIG. 12 represents the power Pw (unit: mW) of the recording light beam.
  • the vertical axis of the graph of FIG. 11 and the vertical axis of the graph of FIG. 12 both represent CNR (unit: dB).
  • the solid line connecting the circle plots shows the result in the magneto-optical recording medium 2 of the second embodiment shown in FIG. 9, and the solid line connecting the triangular plots is shown in FIG. 2 shows the results for a magneto-optical recording medium having only one heat dissipation layer.
  • the optimum Pr of the magneto-optical recording medium 2 of the second embodiment is higher by about 0.5 mW than the optimum Pr of the magneto-optical recording medium having only one heat dissipation layer.
  • the value of CNR at the optimum Pr of the magneto-optical recording medium 2 of the second embodiment is about 2 dB higher than that of the magneto-optical recording medium having only one heat radiation layer, and is at least 45 dB which is sufficient for practical use. It is.
  • the optimum Pw of the magneto-optical recording medium 2 of the second embodiment is suppressed to be lmW lower than the optimum Pw of the magneto-optical recording medium having only one heat dissipation layer. I have.
  • the magneto-optical recording medium 2 of the second embodiment and a magneto-optical medium having only one heat dissipation layer Since the level measurement of the noise of each of the recording media 8 has been performed, the results will be described.
  • FIG. 13 is a graph showing measurement results of the erase noise of each of the magneto-optical recording medium shown in FIG. 9 and the magneto-optical recording medium shown in FIG.
  • the horizontal axis represents the frequency (unit: MHz), and the vertical axis represents the magnitude of the noise.
  • the magnitude of the erase noise is expressed as a ratio to the maximum value of the erase noise in a magneto-optical recording medium having only one heat radiation layer as shown in FIG.
  • FIG. 13 shows a solid line 121 showing the erase noise of the magneto-optical recording medium of the second embodiment shown in FIG. 9, and a solid line showing the erase noise of the magneto-optical recording medium having only one heat radiation layer shown in FIG.
  • Reference numeral 122 denotes the area of a region surrounded by each solid line, the vertical axis, and the horizontal axis, which corresponds to the magnitude of erase noise at all measured frequencies of each magneto-optical recording medium. From the graph of FIG. 13, it can be seen that, even in the RAD medium, by providing a dividing layer and dividing the heat radiation layer into two, the noise noise can be reduced.
  • a high-power laser beam can be irradiated at the time of reproduction without deteriorating medium noise, and a laser beam of a very high power is irradiated at the time of recording. It can be seen that sufficient heat can be applied to lower the coercive force of the recording layer even without it.
  • the present invention is applied not only to the RAD medium but also to other super-resolution media, such as FAD (Front Aperture D etection) media and CAD (Centre Aperture Detection) media. be able to.
  • FIG. 14 is a diagram schematically illustrating the layer structure of the magneto-optical recording medium according to the third embodiment.
  • the magneto-optical recording medium 3 shown in FIG. 14 receives information from a recording light beam R and a magnetic field to record information, and receives information from a reproducing light beam P and a magnetic field to reproduce information.
  • DWDD media one of the expansion media.
  • This magneto-optical recording medium 3 is provided with a substrate 30 and has a layer structure corresponding to the front illumination method on the substrate, similarly to the magneto-optical recording media 1 and 2 of the previous embodiments. Since it is a medium, it has a unique layer structure. That is, Figure 1 In the magneto-optical recording medium 3 shown in FIG.
  • a first heat radiation layer 31, a split layer 32, and a second heat radiation layer 33 are stacked in this order from the substrate 30 side, similarly to the magneto-optical recording medium 1 of the first embodiment.
  • the recording layer 34, the switching layer 35, the control layer 36, the reproducing layer 37, the protective layer 38, and the cover layer 39 are laminated on the second heat radiation layer 33 in this order.
  • the material and shape of the substrate 30 provided in the magneto-optical recording medium 3 are the same as the material and shape of the substrate 10 provided in the magneto-optical recording medium 1 of the first embodiment. An uneven shape is formed on the surface.
  • the thicknesses, compositions, and film forming conditions of the layers 31 to 34 and 37 to 39 excluding the switching layer 35 and the control layer 36 are as follows: These are the same as those of the layers 21 to 24 and 26 to 28 of the same name provided in the magneto-optical recording medium 2 of the second embodiment. Therefore, in the magneto-optical recording medium 3 as well, the relationship of the thermal conductivity of the first heat radiation layer 31 on the substrate 30 side> the thermal conductivity of the second heat radiation layer 33 on the recording layer 34 side> the thermal conductivity of the split layer 32 Holds.
  • both the first heat dissipation layer 31 and the second heat dissipation layer 33 are not limited to the A1 alloy film to which Si, Pd, and Cu are added, but have the composition shown in Table 1.
  • the dividing layer 32 is not limited to the SIN film, but may be various films shown in Table 3.
  • the relationship between the surface roughness Ra of each of the first heat dissipation layer 31, the split layer 32, and the second heat dissipation layer 33 is as follows: the surface roughness Ra of the first heat dissipation layer 31> the surface of the second heat dissipation layer 33 It is preferable that the roughness R a> the surface roughness R a of the separation layer 32.
  • the switching layer 35 is formed by depositing an A1 chip on the target of a TbFe alloy on the surface of the recording layer 24, and forming a sputtering film with a discharge power of 500 W and a gas pressure of 0.5 Pa. This is a TbF e A1 magnetic film.
  • This switching layer 35 is magnetized by the magnetic field of the mark formed on the recording layer 34 by being heated by being irradiated with the light beam P for reproduction, similarly to the intermediate layer 25 shown in FIG. .
  • the control layer 36 is a TbFeCo magnetic film formed on the surface of the switching layer 35 by sputtering using a TbFeCo alloy at a discharge power of 800 W and a gas pressure of 0.8 Pa. is there.
  • This control layer 36 The function acts so that the switching layer 35 is easily magnetized by the magnetic field of the mark formed on the recording layer 34.
  • FIG. 15 is a diagram schematically illustrating an example of a layer structure in a magneto-optical recording medium that is a conventional DWDD medium.
  • the magneto-optical recording medium 9 shown in FIG. 15 also records information by irradiating a recording light beam R and supplying a magnetic field, and reproduces information by irradiating a reproducing light beam P and supplying a magnetic field.
  • This is a DWD D medium compatible with the front illumination method.
  • This conventional DWDD medium, the magneto-optical recording medium 9, does not have the dividing layer 32 shown in FIG. 14, and the magneto-optical recording medium 9 has a heat radiation layer 91, a recording layer 92, a switching layer 93, a control layer 94,
  • the reproduction layer 95, the protective layer 96, and the cover layer 97 are stacked in this order from the substrate 90 side.
  • the heat radiation layer 91 provided on the magneto-optical recording medium 9 is a single layer.
  • the specific composition of the single heat dissipation layer 91 is Ag 95 at%, Pd 1 at%, Cu 1 at 3 ⁇ 4, Si 3 at%, and its thickness is 40 nm.
  • FIG. 16 is a graph showing the power dependence of the reproducing light beam of the CNR in each of the magneto-optical recording medium shown in FIG. 14 and the magneto-optical recording medium shown in FIG. 15, and FIG. 4 is a graph showing the power dependence of the recording optical beam of the CNR in each of the magneto-optical recording media.
  • the horizontal axis of the graph shown in FIG. 16 represents the power Pr (unit: mW) of the reproducing light beam
  • the horizontal axis of the graph shown in FIG. 17 represents the power Pw (unit: mW) of the recording light beam.
  • the vertical axis of the graph of FIG. 16 and the vertical axis of the graph of FIG. 17 both represent CNR (unit: dB).
  • the solid line connecting the triangles represents the result for the magneto-optical recording medium 3 of the third embodiment shown in FIG. 16, and the solid line connecting the triangular plots shows the single heat radiation layer 91 shown in FIG. 2 shows the result of the magneto-optical recording medium 9 having the above.
  • the optimum Pr of the magneto-optical recording medium 3 of the third embodiment is 1.0 O mW compared to the optimum Pr of the magneto-optical recording medium 9 having only one heat dissipation layer.
  • the value of CNR at the optimum Pr of the magneto-optical recording medium 3 of the third embodiment is higher than that of the magneto-optical recording medium 9 having only one heat radiation layer by 2 dB or more, which is sufficient for practical use. 45 5 dB or more.
  • the optimum Pw of the magneto-optical recording medium 3 of the third embodiment is 1 mW smaller than the optimum Pw of the magneto-optical recording medium 9 having only one heat dissipation layer. It is kept low.
  • FIG. 18 is a graph showing measurement results of erase noise of each of the magneto-optical recording medium shown in FIG. 14 and the magneto-optical recording medium shown in FIG.
  • FIG. 18 shows a solid line 18 1 shown in FIG. 14 representing erase noise of the magneto-optical recording medium 3 of the third embodiment, and a magneto-optical recording having only one heat dissipation layer shown in FIG.
  • a solid line 182 representing erase noise of the medium 9 is shown, and the area of the region enclosed by each solid line and the vertical and horizontal axes is the magnitude of the erase noise at all measured frequencies of each magneto-optical recording medium. Equivalent to From the graph of FIG. 18, it can be seen that, even in the DWDD medium, by providing a dividing layer and dividing the heat radiation layer into two, the erase noise can be reduced.
  • the present invention relates to DWD D
  • the present invention can be applied not only to the medium but also to another enlarged medium such as a MAMMOS (Magnetica 11 y Amplitified MO system) medium.
  • the magneto-optical recording medium of the present invention can be applied to a recording medium that does not require irradiation with an optical beam during reproduction.
  • the present invention can be applied to a so-called hard disk type magneto-optical recording medium in which information is reproduced by detecting a magnetic flux of a recording layer without irradiating a light beam during reproduction.
  • an example in which the magneto-optical recording medium of the present invention is applied to this hard disk type magneto-optical recording medium will be described together with an embodiment of a magnetic recording apparatus.
  • FIG. 19 is a diagram showing a schematic configuration of an embodiment of a magnetic recording device that records information on a hard disk type magneto-optical recording medium and reproduces the recorded information.
  • the magneto-optical recording medium 100 shown in FIG. 19 has a disk diameter of 2.5 inches, has a flat glass substrate 110, and has a layer structure 120 corresponding to the front illumination method on the glass substrate 110. Things.
  • This layer structure 1
  • Reference numeral 20 denotes a structure in which a first heat radiation layer, a split layer, a second heat radiation layer, a recording layer, a protective layer, and a lubricating layer are laminated from the glass substrate 110 side.
  • the first heat dissipation layer is an alloy film having a thickness of l O nm, and its specific composition is Ag 96 at%, Pd 1 at%, Cu 1 at%, and Si 2 at%.
  • the separation layer is a 5 nm thick SiN film.
  • the second heat dissipation layer is a 30-nm-thick alloy film having a lower thermal conductivity than the first heat dissipation layer.
  • the recording layer is a TbFeCo magnetic film with a thickness of 25 nm, and its specific composition is Tb21at%, Fe40at, and Co39at%.
  • the protective layer has a thickness
  • the lubricating layer is a layer with a thickness of about 1 nm, formed by applying a fluorometer resin on the protective layer by spin coating.
  • the magnetic recording device 200 shown in FIG. 19 is an example of the first magnetic recording device of the present invention.
  • the magneto-optical recording medium 100 is rotated at a predetermined rotation speed by a spindle 25 1.
  • the recording layer of the magneto-optical recording medium 100 is irradiated with laser light from a laser diode 253.
  • the laser light is collimated by the collimating lens 255, passes through the beam splitter 255, is focused by the objective lens 256 mounted on the optical head slider 258, and is focused on the recording layer. It is controlled to connect
  • the laser diode 253 is pulse-modulated by the laser drive circuit 263, and is capable of high-level optical output and low-level optical output.
  • a laser is oscillated by a laser driving circuit 263 to irradiate the recording layer.
  • a recording magnetic coil 259 applies a DC magnetic field of a predetermined magnitude in the upward direction in the drawing to the vicinity of a laser spot formed on the surface of the recording layer by irradiation of laser light controlled for recording.
  • information of an upward magnetic field can be recorded as a magnetic domain
  • information of a downward magnetic field can be recorded as a magnetic domain by applying a downward magnetic field.
  • the recording coil 255 is controlled by a recording coil drive circuit 267.
  • the optical head slider 258 and the recording coil 259 constitute a magneto-optical recording section.
  • the light reflected by the recording layer is changed in the optical path to the right side in the figure by the beam splitter 255, converted into an electric signal by the photodetector 264, and is focused by the focus signal detection circuit 265 in the focus direction. Is detected.
  • the focus coil drive circuit 2666 is controlled by the focus direction detected by the focus signal detection circuit 2665, a focus current flows through the focus coil 2557, and the objective lens 256 moves up and down in the figure. When activated, the laser spot is controlled to focus on the recording layer.
  • a change in magnetic domain is detected (magnetic flux corresponding to the magnetization direction of the magnetic domain) by a magnetic reproducing element 260, which is an element for detecting magnetic flux, mounted on the magnetic head slider 261, and With the read element drive detection circuit 262, information recorded at high density can be reproduced with good CNR.
  • the magnetic reproducing element 260, the magnetic head slider 261, and the like constitute a magnetic reproducing unit.
  • FIG. 20 is a graph showing an example of a change in coercive force and a change in saturation magnetization with respect to temperature in the magneto-optical recording medium shown in FIG.
  • the horizontal axis of the graph shown in FIG. 20 represents temperature (° C).
  • the vertical axis of this graph represents the coercive force (k ⁇ e) and the saturation magnetization (emu / cc), the solid line shows the coercive force of the magneto-optical recording medium 100 shown in FIG. 19, and the dotted line shows The saturation magnetization of the magneto-optical recording medium 100 is shown.
  • the coercive force of the magneto-optical recording medium 100 shown in FIG. 19 is 10 k ⁇ e or more, but when the temperature is increased, the coercive force decreases as indicated by the solid line in the figure, and at about 350 ° C. It becomes 0. If the recording layer is heated to a temperature at which a coercive force can be recorded by the recording magnetic field generated by the recording coil 2559 mounted on the optical slider 2558 shown in FIG. 19, recording becomes possible. .
  • the value of the saturation magnetization of the magneto-optical recording medium 100 shown in FIG. 19 at room temperature is 100 emu / cc or more, it is necessary to reproduce the magnetic flux from the recorded mark with a normal magnetoresistive element. Is possible.
  • FIG. 21 is a flowchart showing an embodiment of the information recording / reproducing method of the present invention.
  • a magnetic field is applied in a state where the temperature of the magneto-optical recording medium 100 is increased by irradiating light to reduce the coercive force of the recording layer. (Recording step S1). In this way, magnetic domains are recorded on the recording layer.
  • the leakage magnetic flux from the magnetic domain recorded on the recording layer is detected (reproduction step S 2). In this way, a reproduced signal is obtained.
  • FIG. 22 is a graph showing an example of a change in CNR with respect to the laser recording power of the magneto-optical recording medium shown in FIG.
  • the horizontal axis of the graph shown in FIG. 22 represents laser recording power (mW), and the vertical axis represents CNR (dB).
  • the solid line in the figure represents the CNR characteristics of the magneto-optical recording medium shown in FIG. 19, and the dotted line in the figure will be described later.
  • the recording magnetic field was determined to be 400 Oersted.
  • the size of the recorded mark is about 0.2 m to 0.3 m in a recording medium for optical reproduction in which reproduction is performed by the above-described light beam irradiation.
  • the recording medium was 50 nm.
  • the reproducing core width of the used magnetic head slider was 0.2 nm, and the shield gap length was 0.09 m.
  • the wavelength of the recording laser is 405 ⁇ m, and the numerical aperture ⁇ of the objective lens is 0.85.
  • the magnetic recording device 200 shown in FIG. 19 has two sliders, an optical head slider 255 and a magnetic head slider 261, but the magnetic recording device described here integrates these sliders. It has one slider.
  • FIG. 23 is a diagram showing a schematic configuration of an integrated slider of a magnetic recording apparatus provided with the integrated slider.
  • This magneto-optical recording medium also has a first heat dissipation layer, a split layer, a second heat dissipation layer, a recording layer, a protective layer, and a lubrication layer on a glass substrate. Quality is different. That is, in the magneto-optical recording medium 100 shown in FIG. 19, a non-magnetic material is used for the first heat radiation layer and the second heat radiation layer, but in this magneto-optical recording medium, the first heat radiation layer and the second heat radiation layer A soft magnetic material that has a heat radiation effect is used for the heat radiation layer.
  • the thermal conductivity of AL and Ag-based materials is high, but even for ordinary magnetic materials such as Co and Fe-based alloys, the thermal conductivity is much higher than that of dielectric materials used for splitting layers. High.
  • a soft magnetic material the magnetic field of the recording coil is concentrated on the recording layer, so that a large magnetic field can be obtained.
  • As the first heat radiation layer of this magneto-optical recording medium an Fe A 1 C soft magnetic film was used, and the film thickness was 20 nm.
  • a FeSiC soft magnetic film was used as the second heat radiation layer, and the film thickness was 30 nm.
  • this magneto-optical recording medium is referred to as a magneto-optical recording medium having a soft magnetic film.
  • a 5 nm-thick SiN film is used as in the dividing layer of the magneto-optical recording medium shown in FIG.
  • the recording layer uses a TbFeCo magnetic film similarly to the recording layer of the magneto-optical recording medium shown in Fig. 19, but the FeSic soft magnetic film of the second heat dissipation layer and the TbFeCo magnetic film are used.
  • a 1-nm thick SIN layer and a l-nm-thick Pt layer are formed in this order on the second heat dissipation layer so that the exchange coupling force does not act directly on the magnetic film.
  • a second heat dissipation layer is formed.
  • the second heat radiation layer has a column structure reflecting the fine uneven structure, and the recording resolution is improved.
  • the dotted line in FIG. 22 shows the CNR characteristics of a magneto-optical recording medium having a soft magnetic film with respect to laser recording power. The CNR characteristics are based on the results measured under the same conditions as those for obtaining the CNR characteristics with respect to the laser recording power of the magneto-optical recording medium having the nonmagnetic film shown in FIG. Comparing the solid line and the dotted line in FIG.
  • the magneto-optical recording medium indicated by the dotted line having the soft magnetic film has lower power than the magneto-optical recording medium 100 indicated by the solid line having the non-magnetic film. You can see that you can do it. This is because the magneto-optical recording medium having a soft magnetic film has a lower thermal conductivity of each of the first and second heat radiation layers than the magneto-optical recording medium 100 having a non-magnetic film. It is. Further, a slight increase in the CNR is observed in the magneto-optical recording medium having the soft magnetic film as compared with the magneto-optical recording medium 100 having the non-magnetic film. Such an increase in CNR is due to the fact that the magneto-optical recording medium having a soft magnetic film has a larger magnetic field on the medium than the magneto-optical recording medium 100 having a non-magnetic film. Is big.
  • a magnetic recording device 400 includes a slider 470 on which an integrated head 471 is mounted.
  • FIG. 7A shows a state in which an integrated head 471 is mounted on an end of a slider substrate 475 constituting the slider 470.
  • the magneto-optical recording medium is on the left side of the figure. Are moving to the right.
  • FIG. 2B is a diagram viewed from the direction of the arrow B in FIG. In other words, this is a diagram viewed from the slider surface (the surface facing the recording medium).
  • the lower side of FIG. (B) corresponds to the left side of FIG. (A), and the upper side of FIG. ) To the right.
  • FIG. 3C is a view as seen from the arrow C direction in FIG. In other words, the figure shows the side of the integrated head 471, the lower side of FIG. (C) corresponds to the lower side of FIG. (A), and the upper side of FIG. ).
  • the integrated head 471 shown in Fig. 23 (A) is composed of a laser beam irradiation part 472, a recording coil 473, and a magnetic reproducing element (magnetic recording element) shown in Figs.
  • the resistance element 4 7 4) is integrated into one body.
  • a waveguide type optical system is used for the laser beam irradiating section 472, and the laser beam irradiating section 472 includes a laser diode 4721, a light introducing port 472, an It is composed of a wave path 472 3 and an optical aperture 4 724.
  • the recording coil 473 is provided behind the optical aperture 472 from which light for irradiating the magneto-optical recording medium is emitted.
  • the recording coil 473 is disposed on the right side of the optical aperture 472 4.
  • the reason that the recording coil 473 is provided at such a position is that when the magneto-optical recording medium is rotating at high speed, the point where the temperature actually rises is behind the spot position (see FIG. (Right side).
  • the magnetoresistive element 474 for detecting magnetic flux is provided between the optical aperture 472 and the recording coil 473.
  • A1TiC was used for the slider substrate 475.
  • a plurality of integrated heads can be formed at a time on an A 1 T iC substrate by a wafer process. This is similar to the method of making a magnetic disk head. Here, the formation process is briefly described with reference to FIG. 23 (B).
  • an underlayer (part of the flattening layer 4751) is formed to the level (1) in the figure to flatten the surface 475a of the slider substrate 475.
  • Au used for the light shield part 4 752 is deposited to the level shown in (3) in the figure.
  • the film thickness of this Au is 100 nm.
  • the deposited Au surface is patterned by photolithography (a process using a resist and etching) to the level (2) in the figure. On top of that, the part corresponding to the light aperture 4 7 2 4 and other Unnecessary parts are masked with a resist, and Au is deposited again to the level (3) in the figure.
  • the resist is removed by a lift-off method or the like to form a light opening 4724 and a light shield 4752.
  • the size of the light aperture 4724 thus formed is 100 nm in the width direction in the figure, 60 nm in the height direction, and the thickness of the light shield portion 4752 is 50 nm.
  • a plurality of integrated heads 471 are formed on one wafer, cut out from the wafer, and become members constituting the slider 470.
  • FIG. 11 (C) shows a recording coil 473 which was difficult to represent in FIG. 11 (B).
  • the second shield layer 4755 and the recording magnetic pole 480 are connected in the vertical direction (vertical direction in (B).
  • In (C) from the front side of the paper to the back side of the paper), they are connected by F e Co. There are no voids.
  • the laser light from the laser diode 4721 is guided from the light inlet 4722 to the waveguide 4723, and can be irradiated (applied) to the recording medium from the light opening 4724.
  • FIG. 25 shows the result of examining the recording / reproducing characteristics of such an integrated head 471.
  • FIG. 24 is a graph showing an example of the change in CNR with respect to the recording current of the magneto-optical recording medium shown in FIG. .
  • the horizontal axis of the graph in FIG. 24 represents the recording current (mA), and the vertical axis represents CNR (dB).
  • the measured mark length is 50 nm.
  • the solid line in the figure shows the CNR characteristics of the magneto-optical recording medium shown in FIG. 19 having a non-magnetic film, and the dotted line shows the magneto-optical Indicates the CNR characteristics of the recording medium.
  • the use of the soft magnetic film has a higher CNR characteristic with a smaller recording current.
  • the magnetic flux emitted from the recording magnetic pole 480 returns to the second shield layer 475 through the soft magnetic film. The magnetic field for the magnetic domain increases.
  • the magneto-optical recording medium having a soft magnetic film recording can be performed with a low laser recording power, and the recording current I w (current flowing through the recording coil) at the time of recording is sufficient at 2 O mA. Also, the sense current Is flowing through the magnetoresistive element 177 was set to 3 mA. These are about the values used for normal magnetic recording.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

 本発明は、基板上に、記録用の光の照射および磁場の供給を受けてデータを記録する記録層を有し、その記録層側から記録用の光の照射および磁場の供給を受ける光磁気記録媒体に関し、媒体ノイズを悪化させることなく再生時には大パワーのレーザ光を照射することができ、しかも記録時にはさほど大きなパワーのレーザ光を照射しなくても記録層に、保磁力を低下させるのに充分な熱を与えることができる光磁気記録媒体を提供することを目的とし、基板10と、基板10上に形成された、所定の高熱伝導率を有する第1放熱層22と、第1放熱層11上に形成された、その高熱伝導率より低い低熱伝導率を有する分断層12と、分断層12上に形成された、その低熱伝導率よりは高くかつその高熱伝導率よりは低い所定の熱伝導率を有する第2放熱層13と、放熱層13上に形成された、記録用の光の照射および磁場の供給を受けてデータを記録する記録層14,15とを有する。

Description

明細書 光磁気記録媒体、 情報記録 Z再生方法、 および磁気記録装置 技術分野
本発明は、 基板上に、 記録用の光の照射および磁場の供給を受けてデータを記 録する記録層を有し、 その記録層側から記録用の光の照射および磁場の供給を受 ける光磁気記録媒体、 その光磁気記録媒体に情報を記録し再生する情報記録/再 生方法、 およびその光磁気記録媒体に情報を記録し再生する磁気記録装置に関す る。 背景技術
従来実用化されている光磁気記録媒体の多くは、 透明な基板上に、 記録層、 そ の記録層よりも熱伝導率が高い放熱層、 およびこれらの層を保護する保護層など が積層されたものであり、 基板越しに記録用の光ビームの照射および磁場の供給 を行うことで、 情報の記録を行う。 また、 記録層に記録された情報を再生するに も、 基板越しに再生用の光ビームの照射を行う。
このような光と磁気の双方を用いて情報の記録を行う光磁気記録媒体では、 よ り高密度な記録を行うため、 記録層に照射する光ビームを対物レンズで絞ること によって、 その光ビームのスポットサイズ Φを小さくすることが検討されている
。 スポットサイズ Ψと、 対物レンズの開口数 NAと、 光ビームの波長 λの関係は 、 一般に、 φ = λ 2 Ν Αとして表される。 したがって、 スポットサイズ φを小 さくして高密度化を図るには、 光ビームの波長 λを短くするか、 対物レンズの開 口数 ΝΑを大きくすればよい。 しかし、 対物レンズの開口数 ΝΑを大きくすれば するほど焦点距離が短くなり、 従来のように光ビームを基板越しに照射すると、 基板の厚さむらや基板の反り等により収差が大きくなる問題がある。 このため、 光ビームを、 基板側からではなく記録層側から入射することで、 対物レンズの開 口数 ΝΑを大きくする技術が知られている (例えば、 特許文献 1参照。 ) 。 以下 、 光ビームを記録層側から入射する方式を、 フロントイルミネーション方式と称 することにする。 このフロントイルミネーション方式に対応した光磁気記録媒体 では、 記録層側から光ビームが入射されるため、 放熱層は、 記録層よりも基板側 に形成されている。
また、 波長 λを短くするには、 光ビームとして従来用いられている赤色レーザ に代えて青色レーザを用いればよい。 ところが、 光磁気記録媒体を駆動する、 青 色レーザ光の光源とフォトディテクタを備えたドライブでは、 赤色レーザ光のそ れらを備えたドライブよりも回路ノイズが大きく、 また、 青色レーザ光のフォト ディテクタの変換効率は赤色レーザ光のそれよりも悪く、 再生時に信号強度 (キ ャリア) が低下してしまう。 その結果、 従来の赤色レーザを用いた場合に比べて 青色レーザを用いた場合には、 C N R ( C a r r i e r t o N o i s e R a t i o ) が低下してしまうという問題がある。 回路ノイズを相対的に低減さ せるとともにキャリアを高めるには、 できる限り高い再生パワーの青色レーザ光 を照射すればよい。 ところが、 再生時に記録層がレーザ照射により加熱され、 記 録層の温度がキュリー点を超えてしまうと保磁性が失われ、 記録してあった情報 が消去されてしまう。 そのため、 記録媒体側では、 レーザ光が照射されることに よって記録層に生じた熱を逃がす放熱層の能力を高める必要が生じる。 従来では 、 この放熱層の厚さを厚くすることで、 放熱層の能力を高めている。
ところで、 光磁気記録媒体の基板表面は、 凹凸形状に形成されているのが一般 的であり、 基板上に積層された記録層には、 この凹凸形状に従ったランド (凸部 ) 'グループ (凹部) が形成される。 フロントイルミネーション方式に対応した 光磁気記録媒体では、 凹凸形状の基板表面に放熱層を積層させ、 その放熱層の表 面に記録層の裏面が接するように記録層を形成する。 放熱層は、 一般的に金属層 であり、 放熱層の厚さを厚くすればするほど、 放熱層の表面は、 ポコポコと粒形 状に荒れ不均一になりやすい。 放熱層の表面が荒れると、 フロントイルミネーシ ヨン方式に対応した光磁気記録媒体では、 その表面の荒れが記録層に現れ、 ラン ド ·グループの形状が崩れてしまう。 高密度に情報を記録する光磁気記録媒体で は、 ランドとグループの双方をトラックにして、 供給された磁場に応じた向きに 磁化されたマークがランドやグルーブに形成される。 ランド ·グルーブの形状が 崩れていると、 マークの形状も崩れ、 媒体ノイズが悪化してしまう。 また、 光磁 気記録媒体の記録時には、 記録用のレーザ光の照射によって記録層を加熱し、 記 録層の保磁力を低下させた状態にして磁場を供給する。 放熱層の厚さを厚くする と、 放熱性が向上し、 再生時には大パワーのレーザ光を照射できるものの、 記録 時には大パワーのレーザ光を照射しても記録層に、 保磁力を低下させるのに充分 な熱を与えることができなくなる。
(特許文献 1 )
特開 2 0 0 0— 3 0 6 2 7 1号公報 (第 1図) 発明の開示
本発明は、 上記事情に鑑み、 再生時にレーザ光を照射する場合にあっては、 媒 体ノイズを悪化させることなく大パワーのレーザ光を照射することができ、 しか も記録時にはさほど大きなパワーのレーザ光を照射しなくても記録層に、 保磁力 を低下させるのに充分な熱を与えることができる光磁気記録媒体、 その光磁気記 録媒体に情報を記録し再生する情報記録/再生方法、 およびその光磁気記録媒体 に情報を記録し再生する磁気記録装置を提供することを目的とする。
上記目的を達成する本発明の光磁気記録媒体は、 基板と、
上記基板上に形成された、 所定の高熱伝導率を有する第 1放熱層と、 上記第 1放熱層上に形成された、 上記高熱伝導率より低い低熱伝導率を有する 分断層と、
上記分断層上に形成された、 上記低熱伝導率よりは高くかつ上記高熱伝導率よ りは低い所定の熱伝導率を有する第 2放熱層と、
上記放熱層上に形成された、 記録用の光の照射および磁場の供給を受けてデー タを記録する記録層とを有することを特徴とする。
本発明の光磁気記録媒体は、 フロントイルミネーション方式に対応した層構造 を有するものであって、 この光磁気記録媒体によれば、 放熱層が第 1放熱層と第 2放熱層との 2つに分断されているため、 1つの放熱層の厚さを表面が荒れるほ ど厚くしなくても、 光磁気記録媒体全体としては充分な放熱性を持たせることが でき、 媒体ノイズを悪化させることなく再生時には大パヮ一のレーザ光を照射す ることができる。 ここで、 再生時に光ビームを照射する場合にあっては、 一般的には、 レーザ光 を DC的に連続照射し、 記録層は加熱され続ける。 一方、 記録用の光ビームの照 射においては、 レーザ光をパルス的に断続照射した方が良好な形状のマークが記 録される事が知られており、 この場合、 記録層は瞬間的に加熱される。 本発明の 光磁気記録媒体では、 2つの放熱層の間に、 これらいずれの放熱層の熱伝導率よ りも低い熱伝導率を有する分断層を設け、 さらに、 記録層側の第 2放熱層が、 基 板側の第 1放熱層よりも熱伝導率が小さいものである。 このため、 本発明の光磁 気記録媒体では、 再生時に光ビームを連続的に照射する場合にあっては、 記録層 に生じ続ける熱が、 記録層—第 2放熱層→分断層→第 1放熱層の経路で逃がされ るが、 記録時の、 レーザ光の断続照射においては、 記録層に瞬間的に生じた熱の 伝導が第 2放熱層でとまり、 さほど大きなパワーの記録用光ビームを照射しなく ても記録層の保磁力を低下させるのに充分な熱を与えることができる。
また、 再生時には光ビームを照射せず、 記録層の磁束を検出することで情報の 再生が行われる、 いわゆるハードディスクタイプの光磁気記録媒体にも本発明の 光磁気記録媒体を適用することができる。 このようなハードディスクタイプの光 磁気記録媒体に本発明を適用すれば、 記録時にはさほど大きなパワーのレ一ザ光 を照射しなくても記録層に、 保磁力を低下させるのに充分な熱を与えることがで きる。
また、 本発明の光磁気記録媒体において、 上記第 1放熱層および第 2放熱層の いずれもが、 A l , Ag, Auおよび P tの中から選択された一つの元素を主成 分とし、 Cu, Pd, S i, C r, T i , および C oの中から選択された少なく とも一つが添加されてなるものであることが好ましい。
A 1 , Ag, A uおよび P tはいずれも放熱性が良好であり、 Cu, Pd, S i , C r, T i, および Coはいずれも、 A l , Ag, 八11ぉょび?セの粒径拡 大を抑制する。 また、 Cu, Pd, S i, C r , T i, および Coはいずれも、 A 1 , Ag, Auおよび P tの中から選択された一つの元素を主成分とするもの に添加されることで、 熱伝導率を低下させる。
ここで、 本発明の光磁気記録媒体において、 上記第 1放熱層および第 2放熱層 のいずれもが、 非磁性の材料からなるものであることが好ましく、 上記分断層が、 S iの単体, A 1の単体, および Cの単体のうちの少なくとも いずれか一つの単体を含む材料、 または, S iの窒化物、 S iの酸化物, S iの 炭化物, A 1の窒化物, A 1の酸化物, F eの炭化物, Z nの硫化物, および Z nの酸化物の中から選択された一つの化合物からなるものであることも好ましい また、 本発明の光磁気記録媒体において、 上記第 2放熱層は、 その第 2放熱層 表面が上記第 1放熱層表面よりも平滑なものであることが好ましい。
上記第 2放熱層の表面粗さが記録層に最終的に影響するため、 上記第 2放熱層 表面を平滑なものにしておくことで、 記録層をきれいな形状に製膜することがで きる。
さらに、 本発明の光磁気記録媒体において、 上記分断層は、 その分断層表面が 上記第 2放熱層表面よりも平滑なものであることがより好ましい。
上記分断層上に上記第 2放熱層を製膜するにあたり、 上記第 2放熱層を、 上記 分断層の表面粗さ以下の表面粗さに製膜することは極めて困難であるため、 上記 分断層を平滑なものにしておくことで、 記録層をきれいな形状に確実に製膜する ことができる。
上記目的を達成する本発明の情報記録/再生方法は、 基板と、 上記基板上に形 成された、 所定の高熱伝導率を有する第 1放熱層と、 上記第 1放熱層上に形成さ れた、 上記高熱伝導率より低い低熱伝導率を有する分断層と、 上記分断層上に形 成された、 上記低熱伝導率よりは高くかつ上記高熱伝導率よりは低い所定の熱伝 導率を有する第 2放熱層と、 上記放熱層上に形成された、 記録用の光の照射およ び磁場の供給を受けてデータを記録する記録層とを有する光磁気記録媒体へ、 記 録用の光の照射および磁場の供給を行い情報の記録を行う記録ステップ、 および 上記基板とは反対側の上記記録層側から、 上記記録層の磁束を検出して情報の 磁気再生を行う再生ステップを有することを特徴とする。
上記目的を達成する本発明の第 1の磁気記録装置は、 基板と、 上記基板上に形 成された、 所定の高熱伝導率を有する第 1放熱層と、 上記第 1放熱層上に形成さ れた、 上記高熱伝導率より低い低熱伝導率を有する分断層と、 上記分断層上に形 成された、 上記低熱伝導率よりは高くかつ上記高熱伝導率よりは低い所定の熱伝 導率を有する第 2放熱層と、 上記放熱層上に形成された、 記録用の光の照射およ び磁場の供給を受けてデータを記録する記録層とを有する光磁気記録媒体へ、 記 録用の光の照射および磁場の供給を行い情報の記録を行う光磁気記録部、 および 上記基板とは反対側の上記記録層側から、 上記記録層の磁束を検出して情報の 磁気再生を行う磁気再生部を備えたことを特徴とする。
上記目的を達成する本発明の第 2の磁気記録装置は、 基板と、 上記基板上に形 成された、 所定の高熱伝導率を有する第 1放熱層と、 上記第 1放熱層上に形成さ れた、 上記高熱伝導率より低い低熱伝導率を有する分断層と、 上記分断層上に形 成された、 上記低熱伝導率よりは高くかつ上記高熱伝導率よりは低い所定の熱伝 導率を有する第 2放熱層と、 上記放熱層上に形成された、 記録用の光の照射およ び磁場の供給を受けてデータを記録する記録層とを有する光磁気記録媒体へ、 光 を照射してその記録層を加熱する光照射素子、 その記録層に磁場を供給する磁場 供給素子、 およびその記録層の磁束を検出する磁束検出素子とが搭載された一つ のスライダを有することを特徴とする。
以上、 説明したように、 本発明によれば、 再生時にレーザ光を照射する場合に あっては、 媒体ノイズを悪化させることなく大パワーのレーザ光を照射すること ができ、 しかも記録時にはさほど大きなパワーのレーザ光を照射しなくても記録 層に、 保磁力を低下させるのに充分な熱を与えることができる光磁気記録媒体、 その光磁気記録媒体に情報を記録し再生する情報記録 Z再生方法、 およびその光 磁気記録媒体に情報を記録し再生する磁気記録装置を提供することができる。 図面の簡単な説明
図 1は、 本発明の第 1実施形態の光磁気記録媒体の層構造を模式的に示す図で ある。
図 2は、 従来の光磁気記録媒体における層構造の一例を模式的に示す図である 図 3は、 図 1に示す第 1実施形態の光磁気記録媒体における、 C N Rの、 再生 用光ビームのパヮ一依存性を示すグラフである。
図 4は、 放熱層の厚さを異ならせた数点のサンプルそれぞれにおける、 C N R の、 再生用光ビームのパヮ一依存性を示すグラフである。
図 5は、 ィレーズノイズの計測結果を示すグラフである。
図 6は、 図 1に示す光磁気記録媒体における C N Rの、 記録用光ビームのパヮ 一依存性を示すグラフである。
図 7は、 放熱層の厚さを異ならせた数点のサンプルそれぞれにおける、 C N R の、 記録用光ビームのパヮ一依存性を示すグラフである。
図 8は、 再生用光ビームを照射した記録層の、 その光ビームのビームスポット 内の温度分布を示すグラフである。
図 9は、 第 2実施形態の光磁気記録媒体の層構造を模式的に示す図である。 図 1 0は、 従来の R AD媒体である光磁気記録媒体における層構造の一例を模 式的に示す図である。
図 1 1は、 図 9に示す光磁気記録媒体と、 図 1 0に示す光磁気記録媒体それぞ れにおける C N Rの、 再生用光ビームのパワー依存性を示すグラフであり、 図 1 2は、 図 9に示す光磁気記録媒体と、 図 1 0に示す光磁気記録媒体それぞ れにおける C N Rの、 記録用光ビームのパヮ一依存性を示すグラフである。 図 1 3は、 図 9に示す光磁気記録媒体と、 図 1 0に示す光磁気記録媒体それぞ れのィレ一ズノイズの計測結果を示すグラフである。
図 1 4は、 第 3実施形態の光磁気記録媒体の層構造を模式的に示す図である。 図 1 5は、 従来の DWD D媒体である光磁気記録媒体における層構造の一例を 模式的に示す図である。
図 1 6は、 図 1 4に示す光磁気記録媒体と、 図 1 5に示す光磁気記録媒体それ ぞれにおける C N Rの、 再生用光ビームのパヮ一依存性を示すグラフである。 図 1 7は、 図 1 4に示す光磁気記録媒体と、 図 1 5に示す光磁気記録媒体それ ぞれにおける C N Rの、 記録用光ビームのパヮー依存性を示すグラフである。 図 1 8は、 図 1 4に示す光磁気記録媒体と、 図 1 5に示す光磁気記録媒体それ ぞれのィレーズノイズの計測結果を示すグラフである。
図 1 9は、 ハードディスクタイプの光磁気記録媒体へ情報を記録し、 記録した 情報を再生する磁気記録装置の一実施形態の概略構成を示す図である。
図 2 0は、 図 1 9に示す光磁気記録媒体の、 温度に対する保磁力の変化と飽和 磁化の変化の一例を示すグラフである。
図 21は、 本発明の情報記録 Z再生方法の一実施形態を示すフローチヤ一卜で ある。
図 22は、 図 19に示す光磁気記録媒体の、 レーザ記録パワーに対する CNR の変化の一例を示すグラフである。
図 23は、 一体型スライダを備えた磁気記録装置の一体型スライダの概略構成 を示す図である。
図 24は、 図 23に示す光磁気記録媒体の、 記録電流に対する C N Rの変化の 一例を示すグラフである。 発明を実施するための最良の形態
以下、 本発明の実施形態について説明する。
まず、 本発明のうちの光磁気記録媒体の実施形態について説明する。
図 1は、 本発明の第 1実施形態の光磁気記録媒体の層構造を模式的に示す図で ある。
図 1に示す光磁気記録媒体 1は、 記録用の光ビーム Rの照射および磁場の供給 を受けて情報を記録し、 再生用の光ビーム Pの照射を受けて情報を再生する記録 媒体である。 この光磁気記録媒体 1は、 基板 10を備え、 その基板上にフロント イルミネーション方式に対応した層構造を有するものである。 すなわち、 図 1に 示す光磁気記録媒体 1は、 第 1放熱層 1 1、 分断層 12、 第 2放熱層 13、 記録 補助層 14、 記録層 15、 保護層 16、 およびカバ一層 17が、 基板 10側から この記載順に積層されたものである。 基板 10は、 直径 120mm、 厚さ 1. 2 mmのガラス 2 P製の円板状のものであって、 図示省略したが、 基板 10の表面 10 aは凹凸形状に形成されている。 凹部と凸部の広さはそれぞれ 0. 25 m であり、 深さは 30 nmである。 このような基板 10には、 DUV (De e p U 1 t r aV i o l e t) 照射処理がなされており、 その表面 10 aは、 表面粗 さ Raが 0. 25 nm程度の極めて平滑な表面に仕上げられている。 なお、 ここ にいう表面粗さ R aは、 日本工業規格 (通称 J I S規格) の 1994年に改正さ れた B 0601中に規定されている中心線平均粗さである。 すなわち、 粗さ曲線 ( 75 %) からその中心線の方向に測定長さ Lの部分を抜き取り、 この抜き取り 部分の中心線を X軸、 縦軸の方向を Y軸とし、 粗さ曲線 (75%) を y== f ( X ) で表したときに、 以下の式 (1) で表される、 単位を nmとする表面粗さであ る。
Figure imgf000011_0001
以下の説明では、 この (1) 式によって表される表面粗さのことを、 単に、 表 面粗さ R aと称することにする。
図 1に示す第 1放熱層 1 1、 分断層 1 2、 および第 2放熱層 1 3はいずれも非 磁性の層であって、 これらのうちの第 1放熱層 1 1は、 A gを主成分とし、 P d , Cu, および S iを含む、 厚さ 10 nmの合金膜である。 この第 1放熱層 1 1 は、 A gを主成分とし P dと C uが添加された合金ターゲットと、 S iターゲッ トを用いたコスパッタリングにより基板 10の表面 10 aに形成されたものであ る。 コスパッタリングの条件は、 ガス圧が 0. 5 P aであり、 合金ターゲットへ の放電電力が 50 OW, S iターゲットへの放電電力が 32 OWである。 このよ うな第 1放熱層 1 1の具体的組成は、 A g 96 a t °ん P d 1 a t %, C u 1 a t %, S i 2 a t %である。
分断層 1 2は、 厚さ 5 nmの S i N膜である。 この分断層 1 2は、 第 1放熱層 1 1の表面に、 Bをドープした S iをターゲッ トにして、 ガス圧 0. 3 P aの N 2ガス中でスパッタリング製膜することによって形成したものである。
第 2放熱層 1 3は、 A gを主成分とし、 P d, Cu, および S iを添加した、 厚さ 30 nmの合金膜である。 この第 2放熱層 1 1は、 分断層 1 2の表面に、 A gを主成分とし P dと C uが添加された合金ターゲットと、 S iターゲットを用 いたコスパッタリングにより形成された合金膜である。 第 2放熱層 1 3を形成す るコスパッタリングでも、 ガス圧は 0. 5 P a、 合金ターゲットへの放電電力は 500Wであるが、 S iターゲッ トへの放電電力は 320Wである。 このような 第 2放熱層 1 1の具体的組成は、 A g 94 a t %, P d 1 a t %, C u 1 a t % , S i 4 a t %である。 第 2放熱層 13の S i含有量は、 第 1放熱層 11の S i 含有量よりも多く、 S iの含有量が多くなればなるほど放熱層の熱伝導率は低下 する。 したがって、 第 2放熱層 13は、 第 1放熱層 1 1よりも熱伝導率が低い。 記録補助層 14は、 記録時に必要な印加磁界が小さくてすむように作用する、 厚さ 5 nmの GdF e Co磁性膜である。 この記録補助層 14は、 第 2放熱層 1 3の表面に、 Gd F e C o合金をターゲットにして、 放電電力 500W、 ガス圧 0. 5 P aでスパッタリング製膜することによって形成したものである。 また、 記録層 15は、 厚さ 25 nmの TbF eCo磁性膜である。 この記録層 15は、 記録補助層 14の表面に、 TbF eCo合金をターゲットにして、 放電電力 50 0W、 ガス圧 1, 0 P aでスパッタリング製膜することによって形成したもので ある。 記録層 15には、 基板表面 10 aの凹凸形状を受けて、 ランド (凸部) · グループ (凹部) が形成されている。 この光磁気記録媒体 1では、 高密度に情報 を記録するため、 ランドとグループの双方をトラックにし、 供給された磁場に応 じた向きに磁化されたマークがランドやグループに形成される。 なお、 記録補助 層 14と記録層 1 5を併せたものが、 本発明にいう記録層に相当する。
保護層 16は、 湿気等から記録層等を保護する機能を有する、 厚さ 50 nmの S i N誘電体膜である。 この保護層 16は、 記録層 15の表面に、 Bをド一プし た S iをターゲットにして、 放電電力 800W、 ガス圧 0. 3 P aの N2ガス中 でスパッタリング製膜することによって形成したものである。
カバー層 17は、 フロントイルミネーション方式に対応した層構造における基 板の役目を成すものであって、 透明な紫外線硬化樹脂からなる厚さ 15 / mの層 である。 このカバー層 17は、 保護層の 16の表面に、 スピンコート法によって 紫外線硬化樹脂を 15 mの厚さに塗布した後、 紫外線を 30秒程度照射して硬 化させることにより形成したものである。
ここで参考までに、 図 2を用いて、 従来の光磁気記録媒体の一例を説明する。 図 2は、 従来の光磁気記録媒体における層構造の一例を模式的に示す図である 図 2に示す光磁気記録媒体 7も、 記録用の光ビーム Rの照射および磁場の供給 を受けて情報を記録し、 再生用の光ビーム Pの照射を受けて情報を再生する、 フ ロントイルミネーション方式に対応した記録媒体である。 この従来の光磁気記録 媒体 7には図 1に示す分断層 12が存在せず、 この光磁気記録媒体 7は、 放熱層 71、 記録補助層 72、 記録層 73、 保護層 74、 およびカバー層 75が、 基板 70側からこの記載順に積層されたものである。 すなわち、 この光磁気記録媒体 7に設けられた放熱層は 1層である。 この 1層のみの放熱層 71の具体的組成は 、 Ag 95 a t %, P d 1 a t %, C u 1 a t %, S i 3 a t %である。 ここで は、 比較のため、 この 1層のみの放熱層 71の厚さを異ならせた光磁気記録媒体 をサンプルとして数点用意し、 CNR (C a r r i e r t o No i s e Ra t i o) の、 再生用光ビームのパワー依存性についての実験を行ったので、 その結果について説明する。
図 3は、 図 1に示す第 1実施形態の光磁気記録媒体における、 CNRの、 再生 用光ビームのパワー依存性を示すグラフであり、 図 4は、 放熱層の厚さを異なら せた数点のサンプルそれぞれにおける、 CNRの、 再生用光ビームのパヮ一依存 性を示すグラフである。
ここでの実験では、 まず、 光磁気記録媒体を回転させながら、 その媒体のカバ 一層側より記録用光ビームの照射および磁場の供給を行うことで記録層に情報を 表すマークを記録し、 次いで、 光磁気記録媒体を回転させながら、 そのカバー層 側より再生用光ビームの照射を行うことで記録したマークに基づく情報を再生し 、 CNRを得た。 再生用光ビームの照射にあたっては、 光ビームのパワーを数段 階に変化させて行った。 記録時のマーク長は 0. 25 /zmであり、 再生時の光磁 気記録媒体の周速は 7. 5mZsであった。
図 3及び図 4に示すグラフの、 横軸は再生用光ビームのパワー P r (単位; m W) を表し、 縦軸は CNR (単位; dB) を表す。 また、 図 4の塗りつぶしの丸 のプロットを結ぶ実線は図 2に示す放熱層 71の厚さを 5 nmにしたサンプルに おける結果を表し、 白抜きの三角のプロットを結ぶ実線はその厚さを 20 nmに したサンプルにおける結果を表し、 白抜きの丸のプロットを結ぶ実線はその厚さ を 45 nmにしたサンプルにおける結果を表し、 塗りつぶしの三角のプロットを 結ぶ実線はその厚さを 50 nmにしたサンプルにおける結果を表す。
図 4に示すように、 1層のみの放熱層を有するサンプルの光磁気記録媒体では 、 その 1層のみの放熱層の厚さを厚くすればするほど、 最も高い CNRの値を得 ることができる再生用光ビームのパワー (以下、 最適 P rと称する) が大きくな り、 その最適 P rにおける CNRの値も大きくなる。 ここで、 実用に足る媒体特 性の目安の一つとして、 CNRの値は 45 dB以上であることが望まれる。 しか しながら、 1層のみの放熱層を有する光磁気記録媒体では、 放熱層を 50 nmま で厚くしても、 CNRの値は 45 dBに届いていない。 これは、 50 nmの放熱 層を有する光磁気記録媒体では、 放熱層を厚くしすぎたため放熱層の表面が荒れ 、 記録層に、 基板表面の凹凸形状に従ったきれいなランド ·グループが形成され ず、 マークの形状が崩れてノィズが大きくなったためと考える。
一方、 図 3に示すように、 図 1に示す光磁気記録媒体における、 最適 P rでの CNRの値は、 50 nmの放熱層を有するサンプルの媒体におけるそれよりも 2 dB以上向上し、 実用に足る 45 dB以上になっている。 これは、 第 1放熱層 1 1の厚さが 10 nmであるとともに第 2放熱層 13の厚さが 30 nmであり、 レ ずれの放熱層 11, 13の厚さも、 記録層にきれいなランド ·グループが形成さ れにくくなる 50 nm未満の厚さであることから、 まず、 第 1放熱層 1 1の表面 には、 基板表面 10 aに形成された凹凸形状に従ったきれいな凹凸形状が形成さ れ、 第 2放熱層 13の表面にも、 分断層 12を介してきれいな凹凸形状が形成さ れ、 最終的には、 記録層 15に、 基板表面 10 aの凹凸形状に従ったきれいなラ ンド ·グループが形成されたことが要因の一つと考える。 すなわち、 ランド -ク ループがきれいに形成されたことで、 ランドゃグルーブに形成されたマークの形 状もきれいな形状になり、 ノイズが低下したと考える。 また、 図 1に示す光磁気 記録媒体の最適 P rは、 50 nmの放熱層を有するサンプルの媒体の最適 P rよ りも大きく、 キャリア (信号強度) を増加することができたことがもう一つの要 因と考える。
また、 図 1に示す光磁気記録媒体を一方向に D Cィレ一ズした後の、 各周波数 におけるノイズ (ィレーズノイズ) のレベル計測を行ったので、 その結果につい て説明する。 この計測では、 比較のため、 図 1に示す光磁気記録媒体の他に 2つ のサンプルを用意し、 それぞれのィレ一ズノイズについても計測した。 2つのサ ンプルのうちの一方のサンプルは、 図 1に示す分断層が存在しない、 図 2に示す 層構造の光磁気記録媒体である。 このサンプルに設けられた、 1層のみの放熱層 の具体的組成は、 A g 9 5 a t %, P d 1 a t % , C u 1 a t % , S i 3 a t % であり、 厚さは 4 0 n mである。 また、 もう一方のサンプルは、 分断層を有し、 放熱層はその分断層によって第 1放熱層と第 2放熱層に分断されているものの、 図 1に示す光磁気記録媒体とは異なり、 記録層側の第 2放熱層の熱伝導率が基板 側の第 1放熱層の熱伝導率よりも高い光磁気記録媒体である。 このもう一方のサ ンプルでは、 第 2放熱層組成を A g 9 7 a t %, P d 1 a t %, C u 1 a t %, S i 1 a t %と i量を減らすことで、 第 1放熱層の熱伝導率よりも高くしてい る。
図 5は、 ィレ一ズノイズの計測結果を示すグラフである。
図 5に示すグラフの、 横軸は周波数 (単位; MH z ) を表し、 縦軸はィレーズ ノイズの大きさを表す。 ィレ一ズノイズの大きさは、 4 O n mの放熱層を有する サンプルにおけるィレ一ズノイズの最大値を 1として規格化し、 これに対する比 で表されている。 図 5には、 図 1に示す光磁気記録媒体のィレーズノイズを表す 実線 5 1と、 4 0 n mの放熱層を有するサンプルのィレーズノイズを表す実線 5 2と、 第 2放熱層の熱伝導率の方が第 1放熱層の熱伝導率よりも高いサンプルの ィレーズノイズを表す実線 5 3が示されており、 各実線と縦軸と横軸とで囲まれ た領域の面積が、 各光磁気記録媒体の、 計測した全周波数におけるィレーズノィ ズの大きさに相当する。 この図 5のグラフから、 分断層を設けて放熱層を 2つに 分割することで、 ィレ一ズノイズを低減させることができ、 さらに、 基板側の第 1放熱層を記録層側の第 2放熱層よりも熱伝導率が高いものにすることで、 ィレ ーズノイズをより低減させることができることがわかる。
ここで、 表 1に示すように、 第 1放熱層の組成や第 2放熱層の組成を変更して も、 ィレ一ズノイズを低減させることができる。 表 1
第 1放熱層 なし Ag96PdlCulSi2 Α195ΤΪ5 Au95Ti5 A160Cr40 Pt95 i5 Pt95Co5 Ag95Ni5 分断層 SiN 5nm SiN 5nm SiN 5nm SiN 5nm SiN 5nm SiN 5nm SiN 5nm SiN 5nm 第 2放熱層 Ag95PdlCulSi3 Ag94PdlCulSi4 Α190ΤΪ10 Au90TilO A150Cr50 Pt90TilO Pt90ColO Ag90NilO ィレーズノイズ 1 0.45 0.5 0.49 0.51 0.47 0.47 0.46
表 1には、 上段に第 1放熱層の組成や第 2放熱層の組成等が示され、 その下に 、 上段に示された組成からなる層を有する光磁気記録媒体の、 計測した全周波数 におけるィレーズノイズの大きさが示されている。 ここでのィレ一ズノイズの大 きさは、 図 4にその結果を示した実験で用いた、 50 nmの 1層のみの放熱層を 有するサンプルにおける、 計測した全周波数におけるィレ一ズノイズの大きさを 1として規格化し、 これに対する比で示されている。 表 1の左端には、 その 50 nmの放熱層を有するサンプルにおけるィレーズノイズが 1として示されている 。 なお、 表 1の上段にこのサンプルの第 2放熱層として示す 「Ag 95 Pd l C u l S i 3」 は、 Ag 95 a t %, Pd l a t %, Cu 1 a t %, S i 3 a t % であることを表しており、 この表 1の上段における他の同様な記載においても、 数字はその数字の直前の元素の a t %を表している。 また、 このサンプルの右隣 には、 図 1に示す光磁気記録媒体におけるィレ一ズノイズの大きさが示されてい る。
さらに、 図 1に示す光磁気記録媒体よりも右側に示された 6つの光磁気記録媒 体はいずれも、 基板側の第 1放熱層の厚さが 10 nm、 記録層側の第 2放熱層の 厚さが 3 O nmであって、 第 1放熱層の熱伝導率の方が第 2放熱層の熱伝導率よ りも高い記録媒体である。 これら 6つの光磁気記録媒体のィレ一ズノイズはいず れも、 50 nmの放熱層を有するサンプルのィレーズノイズのおよそ半分程度に まで低減されており、 第 1放熱層と第 2放熱層はいずれも、 図 1を用いて説明し た光磁気記録媒体に設けられた、 S i、 P d、 および C uが添加された A 1合金 膜に限らず、 A l, Ag, A uおよび P tの中から選択された一つの元素を主成 分とし、 S i, C r, T i , および C oの中から選択された元素が添加されてな る合金膜であってもよいことがわかる。 A l, Ag, Auおよび P tはいずれも 放熱性が良好であり、 これらに、 Cu, Pd, S i, C r , T i , および Coの 中から選択された少なくとも一つの元素を添加することで、 熱伝導率の大きさを 調整することができる。 すなわち、 A l, Ag, A uおよび P tの中から選択さ れた一つの元素を主成分とする金属膜に、 Cu, Pd, S i , C r, T i , また は C oが多く含まれているほど、 その金属膜の熱伝導率は低下したものとなる。 したがって、 これらの添加元素は、 第 1放熱層よりも第 2放熱層に多く含まれて いる必要がある。 また、 Cu, Pd, S i , C r, T i, および Coはいずれも 、 A l, Ag, Auおよび P tの粒径拡大を抑制する機能を有する。 そのため、 これらの元素を添加すると、 放熱層の表面がポコポコと粒形状に荒れて不均一に なることが抑えられ、 ノイズの増大を防止することができる。
また、 CNRの、 記録用光ビームのパワー依存性についても実験を行ったので 、 その結果について説明する。 ここでも、 図 1に示す光磁気記録媒体の他、 比較 のため、 CNRの、 再生用光ビームのパヮ一依存性についての実験で用いた、 放 熱層の厚さを異ならせた数点のサンプルと同じものを用意して実験を行った。 図 6は、 図 1に示す光磁気記録媒体における CNRの、 記録用光ビームのパヮ —依存性を示すグラフであり、 図 7は、 放熱層の厚さを異ならせた数点のサンプ ルそれぞれにおける、 CNRの、 記録用光ビームのパワー依存性を示すグラフで ある。
ここでの実験では、 記録用光ビームのパワーを数段階に変化させ、 CNRの、 再生用光ビームのパワー依存性についての実験と同様にして CNRを求めた。 す なわち、 記録時のマーク長は 0. 2 であり、 再生時の光磁気記録媒体の周 速は 7. 5m/sである。
図 6及び図 7に示すグラフの、 横軸は記録用光ビームのパワー Pw (単位; m W) を表し、 縦軸は CNR (単位; dB) を表す。 また、 図 3と同じく、 図 7の 塗りつぶしの丸のプロットを結ぶ実線は厚さ 5 nmの放熱層が設けられたサンプ ルにおける結果を表し、 白抜きの三角のプロットを結ぶ実線は厚さ 20 nmの放 熱層が設けられたサンプルにおける結果を表し、 白抜きの丸のプロットを結ぶ実 線は厚さ 45 nmの放熱層が設けられたサンプルにおける結果を表し、 塗りつぶ しの三角のプロットを結ぶ実線は厚さ 50 nmの放熱層が設けられたサンプルに おける結果を表す。
図 7に示すように、 1層のみの放熱層を有するサンプルの光磁気記録媒体では 、 その 1層のみの放熱層の厚さを厚くすればするほど、 最も高い CNRの値を得 ることができる記録用光ビームのパワー (以下、 最適 Pwと称する) が大きくな る。 なお、 その最適 Pwで記録した際の CNRの値は、 最適 P rで記録した際の CNRの値に合わせ込まれており、 1層のみの放熱層を有するサンプルの光磁気 記録媒体ではいずれも、 C N Rの値が 4 5 d B未満である。
一方、 図 6に示すように、 図 1に示す光磁気記録媒体における、 最適 P wでの C N Rの値も、 最適 P rで記録した際の C N Rの値に合わせ込まれており、 実用 に足る 4 5 d B以上になっている。 さらに、 最適 P wの値は、 5 0 n mの放熱層 が設けられたサンプルの最適 P wの値よりも 2 mW以上も低く抑えられている。 ここで、 一般的には、 再生用光ビームの照射においては、 レーザ光を D C的に連 続照射し、 記録層は加熱され続ける。 一方、 記録用光ビームの照射においては、 レーザ光をパルス的に断続照射し、 記録層は瞬間的に加熱される。 図 1に示す光 磁気記録媒体 1は、 第 1放熱層 1 1と第 2放熱層 1 3の間に、 これらいずれの放 熱層 1 1 , 1 3の熱伝導率よりも低い熱伝導率を有する分断層 1 2が設けられて おり、 さらに、 記録層側の第 2放熱層 1 3が、 基板側の第 1放熱層 1 1よりも熱 伝導率が小さいものである。 このため、 この光磁気記録媒体 1では、 再生時の、 レーザ光の連続的な照射においては、 記録層 1 5に生じ続ける熱が、 記録層 1 5 →記録補助層 1 4→第 2放熱層 1 3—分断層 1 2→第 1放熱層 1 1の経路で逃が されるが、 記録時の、 レーザ光の断続照射においては、 記録層 1 5に瞬間的に生 じた熱の伝導が第 2放熱層 1 3でとまると考える。 すなわち、 図 1に示す光磁気 記録媒体 1では、 再生用光ビームの照射により記録層 1 5に生じた熱の放熱には 、 記録層側の第 2放熱層 1 3と基板側の第 1放熱層 1 1との双方の放熱層が寄与 するが、 記録用光ビームの照射により記録層 1 5に生じた熱の放熱には、 第 2放 熱層 1 3のみが寄与すると考える。 そのため、 図 1に示す光磁気記録媒体 1にお いては、 さほど大きなパワーの記録用光ビームを照射しなくても記録層 1 5の保 磁力を低下させるのに充分な熱を与えることができ、 最適 P rの値を高めつつ、 図 6に示すように最適 P wの値を低く抑えることができると考える。 なお、 記録 時に、 必要以上に大パワーのレーザ光を照射すると、 マーク形状が崩れノイズが 増大する。
次に、 図 1に示す光磁気記録媒体において、 記録層側の第 2放熱層 1 3が、 基 板側の第 1放熱層 1 1よりも熱伝導率が小さいものであることの意義についてさ らに詳しく説明する。 ここでは、 第 1放熱層 1 1の熱伝導率 σ 1 >第 2放熱層 1 3の熱伝導率 σ 2の関係を有する、 図 1に示す光磁気記録媒体の他、 比較のため 、 この関係とは反対の、 第 1放熱層 1 1の熱伝導率 σ 1<第 2放熱層 13の熱伝 導率 σ 2の関係を有する光磁気記録媒体をサンプルとして用意し、 各光磁気記録 媒体の記録層に、 カーバ層側から再生用光ビームを照射し、 記録層の、 その光ビ ームのビームスポット内の温度分布について調べた。
図 8は、 再生用光ビームを照射した記録層の、 その光ビームのビームスポット 内の温度分布を示すグラフである。
図 8のグラフの横軸は、 再生用光ビームのビームスポット中心からの距離を表 す。 ここでの距離は、 ビームスポットの中心を 0にして、 ビームスポットの、 光 磁気記録媒体の回転方向進行側の一端を + 1. 0、 他端を一 1. 0として示す。 したがって、 ビームスポットは一側に向かって移動することになる。 ここでは、 ビームスポットの移動方向を基準にして、 一側を前方と称し、 +側を後方と称す ることにする。 また、 図 8のグラフの縦軸は、 記録層の、 再生用光ビームのビ一 ムスポット内の温度を表す。 ここでの温度は、 ビームスポット内の最高温度を 1 として規格化し、 この最高温度に対する比で示されている。 図 8には、 第 1放熱 層 11の熱伝導率 σ 1>第2放熱層13の熱伝導率 σ 2の関係を有する、 図 1に 示す光磁気記録媒体の温度分布が実線で表されており、 その関係とは反対の、 第 1放熱層 1 1の熱伝導率 σ 1<第2放熱層13の熱伝導率 σ 2の関係を有する、 サンプルの光磁気記録媒体の温度分布が点線で表されている。
光磁気記録媒体においては、 再生時に、 再生用光ビームのビームスポット中心 からほんの少し後方に寄ったところに、 ビームスポット内の温度ピークの位置が くると、 理想的な信号を得ることができることが知られている。 このことは、 低 温マスク、 中温温度再生領域、 および高温マスクといった温度分布の領域を作る 必要がある、 後述する超解像媒体 (例えば、 RAD; Re a r Ap e r t u r e De t e c t i on) や拡大系媒体 (例えば、 DWDD; D oma i n W a l l D i s p l a c eme n t D e t e c t i o n) では特に重要である 。 図 8のグラフに示すように、 サンプルの光磁気記録媒体では、 再生用光ビーム のビームスポット内の温度ピークの位置が、 再生用光ビームのビームスポット中 心から前方に寄ったところにきているが、 図 1に示す光磁気記録媒体では、 その 温度ピークの位置が、 ビ一ムスポット中心からほんの少し後方に寄ったところに きている。 高いキャリアを得るためには、 記録層側の第 2放熱層 13が、 再生用 光ビームの照射によって加熱された記録層 15がキュリー点を超えて保磁性を失 うことがない程度の放熱性を有することが必要であるものの、 放熱性が良すぎる と今度は、 再生用光ビームのビームスポット内の温度ピークの位置が、 再生用光 ビームのビ一ムスポット中心から前方に寄ったところにきてしまうと考える。 また、 第 1放熱層 1 1と分断層 12と第 2放熱層 13との 3層の表面粗さ Ra の関係について検討を行つたので説明する。
ここでの検討では、 これら 3層の表面粗さ R aの組合せを変えた、 図 1に示す 層構造の光磁気記録媒体のサンプルを 5つ用意した。 いずれのサンプルにおいて も、 第 1放熱層 11および第 2放熱層 13はともに合金膜にした。 また、 第 1放 熱層 1 1の厚さは 1 Onmにし、 第 2放熱層 13の厚さは 3 Onmにした。 さら に、 分断層 12は S i N膜に統一し、 その厚さも 5 nmに統一した。 これらのサ ンプルの作製にあたっては、 スパッタリングによって各層を製膜したが、 製膜ガ ス圧と放電電力を変えることで、 これら 3層の表面粗さ R aを調整した。 また、 評価のために、 最適 Pwかつ最適 P rにおける CNRを求めた。 CNRを求める にあたっての、 記録時のマーク長は 0. 3 ^mであり、 再生時の光磁気記録媒体 の周速は 7. 5mZsであった。
表 2に、 各サンプル (媒体 A〜媒体 E) ごとの CNRを示す。 表 2
Figure imgf000021_0001
この表 2は、 横一行ごとに、 各サンプルの、 第 1放熱層の表面粗さ Ra (Ra 1) , 分断層の表面粗さ R a (Ra 0) , 第 2放熱層の表面粗さ R a (R a 2) , 再生時の CNR (単位; dB) が示されている。 また、 CNRの右隣には、 そ の CNRを算出するために測定した、 ノイズ (単位; dB) とキャリア (単位; dB) の数値が示されている。
媒体 Aと媒体 Bはいずれも、 第 1放熱層の表面粗さ R a 1>第 2放熱層の表面 粗さ R a 2の関係を有するが、 媒体 (:、 媒体 D、 および媒体 Eはいずれも、 第 1 放熱層の表面粗さ R a 1<第 2放熱層の表面粗さ R a 2の関係を有する。 Ra 1 >R a 2の関係を有する媒体 Aと媒体 Bはともに、 CNRが実用に足る 45 dB 以上であるが、 その関係とは反対の R a 1<R a 2の関係を有する媒体。〜媒体 Eはいずれも CNRが 45 dB未満である。 これは、 記録層が積層される記録補 助層が第 2放熱層表面に形成されるため、 第 2放熱層表面の荒れを抑えることで 、 最終的に、 記録層に、 基板表面の凹凸形状に従ったきれいなランド ·グループ が形成され、 ノイズが低下したことが要因と考える。 このことから、 第 2放熱層 表面を第 1放熱層表面よりも平滑にすることが好ましいといえる。
また、 スパッタリングによる製膜では、 合金膜である第 2放熱層の表面粗さ R a lを、 第 2放熱層の裏面が接する、 S i N膜である分断層の表面粗さ Ra 0以 下にすることは極めて困難であるため、 これら 5つの媒体いずれにおいても、 分 断層の表面粗さ R aは第 2放熱層の表面粗さ Raよりも小さくしている。
さらに、 分断層の材質の検討も行ったので説明する。
図 1に示す光磁気記録媒体の分断層 12は S i N膜であつたが、 ここでは、 分 断層 12に、 その S i N膜に代えて C膜、 S i膜、 S i〇2膜、 S i C膜、 A 1 膜、 A 1 N膜、 A 1203膜、 Fe C膜、 ZnS膜、 および Zn〇膜を用いた、 図 1に示す層構造の光磁気記録媒体のサンプルをそれぞれ用意し、 最適 Pwかつ 最適 P rにおける CNRを求めた。 CNRを求めるにあたっての、 記録時のマ一 ク長は 0. 30 imであり、 再生時の光磁気記録媒体の周速は 7. 5m/sであ つ 7こ。
表 3に、 各サンプルごとに求めた CNRと、 その CNRを求めたときの最適 P rおよび最適 Pwを示す。 表 3
Figure imgf000023_0001
この表 3には、 一番上に分断層 12の膜が記載され、 縦一列ごとに、 各サンプ ルの、 分断層の厚さ (単位; nm) 、 最適 P r (単位; mW) 、 最適 Pw (単位 ; mW) 、 および CNR (単位; dB) が示されている。 なお、 表 3の左側に示 された、 分断層 12が S i N膜である縦一列は、 図 1に示す光磁気記録媒体の、 最適 P r、 最適 Pw、 および CNRを示すものである。
表 3に示すように、 いずれのサンプルの光磁気記録媒体においても、 最適 P r の値は、 図 1に示す光磁気記録媒体における最適 P rの値と同じ 2. 8mWであ り、 最適 P rの値が高められていることがわかる。 また、 いずれのサンプルにお いても、 CNRの値は実用に足る 45 dB以上である。 さらに、 各サンプルの光 磁気記録媒体における最適 Pwの値は、 図 1に示す光磁気記録媒体における最適 Pwの値と同じ 7. 6mWか、 あるいはそれより低い 7. 4mWであるため、 最 適 Pwの値が低く抑えられていることもわかる。 したがって、 分断層は、 S i N 膜に限らず、 S iの単体, A 1の単体, および Cの単体のうちの少なくともいず れか一つの単体を含む材料、 または, S iの酸化物, S iの炭化物, A 1の窒化 物, A 1の酸化物, F eの炭化物, Znの硫化物, および Z nの酸化物の中から 選択された一つの化合物からなるものであってもよいことがわかる。
なお、 A l, Ag, Auおよび P tの中から選択された一つの元素を主成分と する合金膜である第 1放熱層に対し、 その第 1放熱層表面に裏面が接する分断層 を、 第 1放熱層を構成する粒子よりも小さい径の粒子で構成された膜 (例えば、 S i膜や S i N膜等) にすることで、 第 1放熱層表面の粒子間を、 その小さな径 の粒子で埋めることができ、 第 1放熱層表面の荒れを改善することができる。 続いて、 本発明の第 2実施形態の光磁気記録媒体について説明する。
図 9は、 第 2実施形態の光磁気記録媒体の層構造を模式的に示す図である。 図 9に示す光磁気記録媒体 2は、 記録用の光ビーム Rの照射および磁場の供給 を受けて情報を記録し、 再生用の光ビーム Pの照射および磁場の供給を受けて情 報を再生する、 超解像媒体の一つである R AD媒体である。 この光磁気記録媒体 2は、 第 1実施形態の光磁気記録媒体 1と同じく、 基板 2 0を備え、 その基板上 にフロントイルミネーション方式に対応した層構造を有するものであるが、 R A D媒体であることから特有の層構造を有する。 すなわち、 図 9に示す光磁気記録 媒体 2は、 第 1実施形態の光磁気記録媒体 1と同じく、 第 1放熱層 2 1、 分断層 2 2、 第 2放熱層 2 3が、 基板 2 0側からこの記載順に積層されたものであるが 、 第 2放熱層 2 3の上には、 記録層 2 4、 中間層 2 5、 再生層 2 6、 保護層 2 7 、 カバー層 2 8が、 この記載順に積層されている。 この光磁気記録媒体 2に備え られた基板 2 0の材質および形状は、 第 1実施形態の光磁気記録媒体 1に備えら れた基板 1 0の材質および形状と同じであり、 図示省略したが、 基板表面は凹凸 形状に形成されている。 また、 この光磁気記録媒体 2に設けられた層 2 1〜2 8 のうち、 中間層 2 5、 再生層 2 6、 および保護層 2 7を除いた層 2 1〜2 4, 2 8の、 厚さ、 組成、 および製膜条件は、 第 1実施形態の光磁気記録媒体 1に備え られた、 同じ名称の各層 1 1〜1 3 , 1 5, 1 7のそれらと同じである。 したが つて、 この光磁気記録媒体 2でも、 基板 2 0側の第 1放熱層 2 1の熱伝導率 >記 録層 2 4側の第 2放熱層 2 3の熱伝導率 >分断層 2 2の熱伝導率といった関係が 成立している。
なお、 図 9に示す、 第 1放熱層 2 1および第 2放熱層 2 3はいずれも、 S i、 P d、 および C uが添加された A 1合金膜に限らず、 表 1に示す組成のものであ つてもよく、 分断層 2 2も、 S i N膜に限らず、 表 3に示す各種の膜であっても よい。 また、 第 1放熱層 2 1、 分断層 2 2、 第 2放熱層 2 3ぞれぞれの表面粗さ R aの関係は、 第 1放熱層 2 1の表面粗さ R a >第 2放熱層 2 3の表面粗さ R a 〉分断層 2 2の表面粗さ R aであることが好ましい。
以下、 図 2に示す、 中間層 2 5、 再生層 2 6、 および保護層 2 7のみについて 説明し、 他の層の説明は省略する。 中間層 25は、 記録層 24の表面に、 GdF e C o合金をターゲットにして、 そのターゲットの上に S iチップをのせ、 放電 電力 500W、 ガス圧 0. 54P aでスパッタリング製膜することによって形成 した、 GdF e C 0 S i磁性膜である。 この中間層 25は、 再生用の光ビーム P の照射を受けて加熱されることで、 記録層 24に形成されたマークの磁場によつ て磁化される。
再生層 26は、 中間層 25の表面に、 GdF e C 0合金をターゲットにして、 放電電力 800W、 ガス圧 0. 86 P aでスパッタリング製膜することによって 形成した、 GdF e C o磁性膜である。 この再生層 26には、 再生時に、 記録層 に形成されたマークの磁化方向と同一方向に磁化された、 そのマークの大きさよ りも大きな領域が形成される。
図 2に示す保護層 27は、 図 1に示す保護層 16とは、 製膜条件の内のガス圧 が異なる。 図 1に示す保護層 16の製膜では、 ガス圧 0. 3 P aの条件下でスパ ッタリングを実施するが、 図 2に示す保護層 27の製膜では、 ガス圧 0. 5 P a の条件下でスパッタリングを実施する。
ここで参考までに、 図 10を用いて、 従来の RAD媒体の一例を説明する。 図 10は、 従来の RAD媒体である光磁気記録媒体における層構造の一例を模 式的に示す図である。
図 10に示す光磁気記録媒体 8も、 記録用の光ビーム Rの照射および磁場の供 給を受けて情報を記録し、 再生用の光ビーム Pの照射および磁場の供給を受けて 情報を再生する、 フロントイルミネーション方式に対応した RAD媒体である。 この従来の RAD媒体である光磁気記録媒体 8には図 9に示す分新層 22が存在 せず、 この光磁気記録媒体 8は、 放熱層 81、 記録層 82、 中間層 83、 再生層 84、 保護層 85、 およびカバー層 86が、 基板 80側からこの記載順に積層さ れたものである。 すなわち、 この光磁気記録媒体 8に設けられた放熱層は 1層で ある。 この 1層のみの放熱層 81の具体的組成は、 Ag 95 a t %, Pd l a t %, Cu 1 a t %, S i 3 a t %であり、 その厚さは 40 nmである。
以下、 図 9に示す光磁気記録媒体と、 図 10に示す光磁気記録媒体それぞれに おける C N Rの、 再生用光ビームのパヮ一依存性および記録用光ビームのパワー 依存性の双方についての実験を行ったので、 その結果について説明する。
図 1 1は、 図 9に示す光磁気記録媒体と、 図 10に示す光磁気記録媒体それぞ れにおける CNRの、 再生用光ビームのパワー依存性を示すグラフであり、 図 1 2は、 それら 2つの光磁気記録媒体それぞれにおける CNRの、 記録用光ビーム のパヮ一依存性を示すグラフである。
ここでの実験では、 まず、 光磁気記録媒体を回転させながら、 その媒体のカバ 一層側より記録用光ビームの照射および磁場の供給を行うことで記録層に情報を 表すマークを記録した。 記録用光ビームの照射では、 最適 Pwを得るために、 そ のパワーを数段階に変化させて行った。 次いで、 光磁気記録媒体を回転させなが ら、 そのカバー層側より再生用光ビームの照射および磁場の供給を行うことで記 録したマークに基づく情報を再生し、 CNRを得た。 再生用光ビームの照射では 、 最適 P rを得るために、 そのパワーを数段階に変化させて行った。 記録時のマ 一ク長は 0. 20 zmであり、 再生時の光磁気記録媒体の周速は 7. 5m/sで あった。
図 1 1に示すグラフの横軸は再生用光ビームのパワー P r (単位; mW) を表 し、 図 12に示すグラフの横軸は記録用光ビームのパワー Pw (単位; mW) を 表す。 また、 図 1 1のグラフの縦軸および図 12のグラフの縦軸は、 いずれも C NR (単位; dB) を表す。 さらに、 図 11および図 12において、 丸のプロッ トを結ぶ実線は、 図 9に示す、 第 2実施形態の光磁気記録媒体 2における結果を 表し、 三角のプロットを結ぶ実線は、 図 10に示す、 1層のみの放熱層を有する 光磁気記録媒体における結果を表す。
図 1 1に示すように、 第 2実施形態の光磁気記録媒体 2の最適 P rは、 1層の みの放熱層を有する光磁気記録媒体の最適 P rに比べて、 0. 5mWほど高い。 また、 第 2実施形態の光磁気記録媒体 2の、 最適 P rにおける CNRの値は、 1 層のみの放熱層を有する光磁気記録媒体のそれに比べて 2 dBほど高く、 実用に 足る 45 dB以上である。 また、 図 12に示すように、 第 2実施形態の光磁気記 録媒体 2の最適 Pwは、 1層のみの放熱層を有する光磁気記録媒体の最適 Pwに 比べて、 lmWほど低く抑えられている。
また、 第 2実施形態の光磁気記録媒体 2と、 1層のみの放熱層を有する光磁気 記録媒体 8それぞれのィレ一ズノィズのレベル計測を行つたので、 その結果につ いても説明する。
図 13は、 図 9に示す光磁気記録媒体と、 図 10に示す光磁気記録媒体それぞ れのィレ一ズノイズの計測結果を示すグラフである。
図 13に示すグラフの、 横軸は周波数 (単位; MHz) を表し、 縦軸はィレ一 ズノイズの大きさを表す。 ィレ一ズノイズの大きさは、 図 10に示す、 1層のみ の放熱層を有する光磁気記録媒体におけるィレーズノイズの最大値を 1として規 格化し、 これに対する比で表されている。 図 13には、 図 9に示す、 第 2実施形 態の光磁気記録媒体のィレーズノイズを表す実線 121と、 図 10に示す、 1層 のみの放熱層を有する光磁気記録媒体のィレーズノイズを表す実線 122が示さ れており、 各実線と縦軸と横軸とで囲まれた領域の面積が、 各光磁気記録媒体の 、 計測した全周波数におけるィレーズノイズの大きさに相当する。 この図 13の グラフから、 RAD媒体においても、 分断層を設けて放熱層を 2つに分割するこ とで、 ィレ一ズノイズを低減させることができることがわかる。
以上のことから、 本発明を RAD媒体に適用しても、 媒体ノイズを悪化させる ことなく再生時には大パワーのレーザ光を照射することができ、 しかも記録時に はさほど大きなパワーのレーザ光を照射しなくても記録層の保磁力を低下させる のに充分な熱を与えることができることがわかる。 なお、 本発明は、 RAD媒体 に限らず、 他の超解像媒体である、 FAD (F r on t Ap e r t u r e D e t e c t i on) 媒体や CAD (Ce n t e r Ap e r t u r e De t e c t i on) 媒体にも適用することができる。
続いて、 本発明の第 3実施形態の光磁気記録媒体について説明する。
図 14は、 第 3実施形態の光磁気記録媒体の層構造を模式的に示す図である。 図 14に示す光磁気記録媒体 3は、 記録用の光ビーム Rの照射および磁場の供 給を受けて情報を記録し、 再生用の光ビーム Pの照射および磁場の供給を受けて 情報を再生する、 拡大系媒体の一つである DWDD媒体である。 この光磁気記録 媒体 3は、 これまでの実施形態の光磁気記録媒体 1, 2と同じく、 基板 30を備 え、 その基板上にフロントイルミネーション方式に対応した層構造を有するもの であるが、 DWDD媒体であることから特有の層構造を有する。 すなわち、 図 1 4に示す光磁気記録媒体 3は、 第 1実施形態の光磁気記録媒体 1と同じく、 第 1 放熱層 31、 分断層 32、 第 2放熱層 33が、 基板 30側からこの記載順に積層 されたものであるが、 第 2放熱層 33の上には、 記録層 34、 スイッチング層 3 5、 コントロール層 36、 再生層 37、 保護層 38、 カバ一層 39が、 この記載 順に積層されている。 この光磁気記録媒体 3に備えられた基板 30の材質および 形状は、 第 1実施形態の光磁気記録媒体 1に備えられた基板 10の材質および形 状と同じであり、 図示省略したが、 基板表面に凹凸形状が形成されている。 また 、 この光磁気記録媒体 3に設けられた層 31〜38のうち、 スイッチング層 35 およびコントロール層 36を除いた層 31〜34, 37〜39の、 厚さ、 組成、 および製膜条件は、 第 2実施形態の光磁気記録媒体 2に備えられた、 同じ名称の 各層 21〜24, 26〜28のそれらと同じである。 したがって、 この光磁気記 録媒体 3でも、 基板 30側の第 1放熱層 31の熱伝導率 >記録層 34側の第 2放 熱層 33の熱伝導率 >分断層 32の熱伝導率といった関係が成立している。 なお、 DWDD媒体においても、 第 1放熱層 31および第 2放熱層 33はいず れも、 S i、 Pd、 および Cuが添加された A 1合金膜に限らず、 表 1に示す組 成のものであってもよく、 分断層 32も、 S i N膜に限らず、 表 3に示す各種の 膜であってもよい。 また、 第 1放熱層 31、 分断層 32、 第 2放熱層 33ぞれぞ れの表面粗さ R aの関係は、 第 1放熱層 31の表面粗さ R a >第 2放熱層 33の 表面粗さ R a >分断層 32の表面粗さ R aであることが好ましい。
以下、 図 14に示す、 スイッチング層 35、 およびコント口一ル層 36のみに ついて説明し、 他の層の説明は省略する。 スイッチング層 35は、 記録層 24の 表面に、 TbF e合金をターゲットにして、 そのターゲットの上に A 1チップを のせ、 放電電力 500W、 ガス圧 0. 5 P aでスパッタリング製膜することによ つて形成した、 TbF e A 1磁性膜である。 このスイッチング層 35は、 図 9に 示す中間層 25と同じように、 再生用の光ビーム Pの照射を受けて加熱されるこ とで、 記録層 34に形成されたマークの磁場によって磁化される。
コントロール層 36は、 スイッチング層 35の表面に、 TbF e Co合金を夕 一ゲットにして、 放電電力 800W、 ガス圧 0. 8 P aでスパッタリング製膜す ることによって形成した、 TbFe Co磁性膜である。 このコントロール層 36 は、 スイッチング層 35が記録層 34に形成されたマークの磁場によって磁化さ れやすいように作用するものである。
ここで参考までに、 図 15を用いて、 従来の DWDD媒体の一例を説明する。 図 15は、 従来の DWDD媒体である光磁気記録媒体における層構造の一例を 模式的に示す図である。
図 15に示す光磁気記録媒体 9も、 記録用の光ビーム Rの照射および磁場の供 給を受けて情報を記録し、 再生用の光ビーム Pの照射および磁場の供給を受けて 情報を再生する、 フロントイルミネーション方式に対応した D WD D媒体である 。 この従来の DWDD媒体である光磁気記録媒体 9には図 14に示す分断層 32 が存在せず、 この光磁気記録媒体 9は、 放熱層 91、 記録層 92、 スイッチング 層 93、 コントロール層 94、 再生層 95、 保護層 96、 およびカバ一層 97が 、 基板 90側からこの記載順に積層されたものである。 すなわち、 この光磁気記 録媒体 9に設けられた放熱層 91は 1層である。 この 1層のみの放熱層 91の具 体的組成は、 Ag 95 a t %, P d 1 a t %, C u 1 a t ¾, S i 3 a t %であ り、 その厚さは 40 nmである。
以下、 図 14に示す光磁気記録媒体と、 図 15に示す光磁気記録媒体それぞれ における C N Rの、 再生用光ビームのパヮ一依存性および記録用光ビームのパヮ 一依存性の双方についての実験を行ったので、 その結果について説明する。 図 16は、 図 14に示す光磁気記録媒体と、 図 15に示す光磁気記録媒体それ ぞれにおける CNRの、 再生用光ビームのパワー依存性を示すグラフであり、 図 17は、 それら 2つの光磁気記録媒体それぞれにおける CNRの、 記録用光ビー ムのパヮー依存性を示すグラフである。
ここでは、 上述の、 RAD媒体における CNRの各パワー依存性の実験と同様 な実験を行い CNRを得た。 記録時のマーク長は 0. 20 mであり、 再生時の 光磁気記録媒体の周速は 7. 5mZsであった。
図 16に示すグラフの横軸は再生用光ビームのパワー P r (単位; mW) を表 し、 図 17に示すグラフの横軸は記録用光ビームのパヮ一 Pw (単位; mW) を 表す。 また、 図 16のグラフの縦軸および図 17のグラフの縦軸は、 いずれも C NR (単位; dB) を表す。 さらに、 図 16および図 17において、 丸のプロッ トを結ぶ実線は、 図 1 6に示す、 第 3実施形態の光磁気記録媒体 3における結果 を表し、 三角のプロットを結ぶ実線は、 図 1 5に示す、 1層のみの放熱層 9 1を 有する光磁気記録媒体 9における結果を表す。
図 1 6に示すように、 第 3実施形態の光磁気記録媒体 3の最適 P rは、 1層の みの放熱層を有する光磁気記録媒体 9の最適 P rに比べて、 1 . O mWほど高い 。 また、 第 3実施形態の光磁気記録媒体 3の、 最適 P rにおける C N Rの値は、 1層のみの放熱層を有する光磁気記録媒体 9のそれに比べて 2 d B以上高く、 実 用に足る 4 5 d B以上である。 また、 図 1 7に示すように、 第 3実施形態の光磁 気記録媒体 3の最適 P wは、 1層のみの放熱層を有する光磁気記録媒体 9の最適 P wに比べて、 l mWほど低く抑えられている。
また、 第 3実施形態の光磁気記録媒体 3と、 1層のみの放熱層を有する光磁気 記録媒体 9それぞれのィレ一ズノイズのレベル計測を行ったので、 その結果につ いても説明する。
図 1 8は、 図 1 4に示す光磁気記録媒体と、 図 1 5に示す光磁気記録媒体それ ぞれのィレーズノィズの計測結果を示すグラフである。
図 1 8に示すグラフの、 横軸は周波数 (単位; MH z ) を表し、 縦軸はィレー ズノイズの大きさを表す。 ィレーズノイズの大きさは、 1層のみの放熱層を有す る光磁気記録媒体 9におけるィレーズノイズの最大値を 1として規格化し、 これ に対する比で表されている。 図 1 8には、 図 1 4に示す、 第 3実施形態の光磁気 記録媒体 3のィレーズノイズを表す実線 1 8 1と、 図 1 5に示す、 1層のみの放 熱層を有する光磁気記録媒体 9のィレーズノイズを表す実線 1 8 2が示されてお り、 各実線と縦軸と横軸とで囲まれた領域の面積が、 各光磁気記録媒体の、 計測 した全周波数におけるィレーズノイズの大きさに相当する。 この図 1 8のグラフ から、 DWD D媒体においても、 分断層を設けて放熱層を 2つに分割することで 、 ィレーズノィズを低減させることができることがわかる。
以上のことから、 本発明を DWD D媒体に適用しても、 媒体ノイズを悪化させ ることなく再生時には大パヮ一のレーザ光を照射することができ、 しかも記録時 にはさほど大きなパワーのレーザ光を照射しなくても記録層の保磁力を低下させ るのに充分な熱を与えることができることがわかる。 なお、 本発明は、 DWD D 媒体に限らず、 他の拡大系媒体である、 MAMMOS (Magn e t i c a 1 1 y Amp l i f i e d MO s y s y t e m) 媒体にも適用することができ る。
以上、本発明の光磁気記録媒体の実施形態として 3つの実施形態を説明したが、 ここで説明した光磁気記録媒体はいずれも、 再生時に光ビームの照射を行う必要 がある記録媒体であった。 しかし、 本発明の光磁気記録媒体は、 再生時に光ビー ムの照射を行うことが不要な記録媒体にも適用することができる。 例えば、 再生 時には光ビームを照射せず、 記録層の磁束を検出することで情報の再生が行われ る、 いわゆるハードディスクタイプの光磁気記録媒体に適用することができる。 以下、 本発明の光磁気記録媒体を、 このハードディスクタイプの光磁気記録媒体 に適用した例を、 磁気記録装置の一実施形態と併せて説明する。
図 19は、 ハードディスクタイプの光磁気記録媒体へ情報を記録し、 記録した 情報を再生する磁気記録装置の一実施形態の概略構成を示す図である。
図 19に示す光磁気記録媒体 100は、 ディスク径 2. 5インチのものであつ て、 フラットなガラス基板 110を備え、 そのガラス基板 1 10上にフロントイ ルミネーシヨン方式に対応した層構造 120を有するものである。 この層構造 1
20は、 ガラス基板 110側から、 第 1放熱層、 分断層、 第 2放熱層、 記録層、 保護層、 および潤滑層が積層されたものである。 第 1放熱層は、 厚さ l O nmの 合金膜であって、 その具体的組成は、 Ag 96 a t %, P d 1 a t %, Cu 1 a t %, S i 2 a t %である。 分断層は、 厚さ 5 nmの S i N膜である。 第 2放熱 層は、 第 1放熱層よりも熱伝導率が低い、 厚さ 30 nmの合金膜であって、 その 具体的組成は、 Ag 94 a t%, P d 1 a t %, C u 1 a t %, 3 14 & 1: %で ある。 記録層は、 厚さ 25 nmの Tb F e C o磁性膜であって、 その具体的組成 は、 Tb 21 a t %, F e 40 a t , C o 39 a t %である。 保護層は、 厚さ
3 nmの S i N膜と、 その S i N膜の上に形成された厚さ 1 nmの C r膜と、 そ の C r膜の上に形成された厚さ 1 nmの C膜からなるものである。 潤滑層は、 保 護層の上にフッ素計樹脂をスピンコート法によって塗布することで形成された、 厚さ約 l nmの層である。
図 19に示す磁気記録装置 200は、 本発明の第 1の磁気記録装置の一例に相 当するものであって、 スピンドル 2 5 1により光磁気記録媒体 1 0 0を所定の回 転速度で回転させる。 光磁気記録媒体 1 0 0が有する記録層に対し、 レーザダイ オード 2 5 3からレーザ光を照射する。 レーザ光はコリメ一トレンズ 2 5 4によ り平行光とされ、 ビームスプリッタ 2 5 5を通過し、 光学ヘッドスライダ 2 5 8 に搭載された対物レンズ 2 5 6により集光され、 記録層に焦点を結ぶように制御 される。 レーザダイォード 2 5 3は、 レーザ駆動回路 2 6 3によりパルス変調さ れ高レベルの光出力と低レベルの光出力が可能となっている。
情報の記録時においては、 レ一ザ駆動回路 2 6 3によりレーザを発振させて、 記録層に照射される。 そして、 記録用に制御されたレーザ光の照射により記録層 の表面に形成したレーザスポットの近辺には記録用コイル 2 5 9により、 図面上 、 上向き方向で、 所定の大きさの直流磁界を印加することにより上向きの磁界の 情報を、 また、 下向き方向の磁界を印加することにより下向きの磁界の情報を磁 区として記録できる。 記録用コイル 2 5 9を記録層に近接させることで記録用コ ィル 2 5 9を極めて小さく構成することが可能となる。 記録用コイル 2 5 9を十 分に小さくすることで磁界変調記録が可能となる。 なお、 記録用コイル 2 5 9は 、 記録用コイル駆動回路 2 6 7により制御される。 光学へッドスライダ 2 5 8、 記録用コイル 2 5 9などが光磁気記録部を構成する。
また、 記録層で反射した光はビ一ムスプリッタ 2 5 5により、 図中右側へ光路 を変更され光検出器 2 6 4により電気信号に変換されフォーカス信号検出回路 2 6 5にて、 フォーカス方向が検出される。 フォーカス信号検出回路 2 6 5にて検 出されたフォーカス方向によってフォーカス用コイル駆動回路 2 6 6が制御され 、 フォーカス用コイル 2 5 7にフォーカス電流が流れ、 対物レンズ 2 5 6を図中 上下に動作させて、 レーザスポットが記録層に集光するよう制御される。
一方、 再生時においては、 磁気ヘッドスライダ 2 6 1に搭載された磁束を検出 する素子である磁気再生素子 2 6 0により磁区の変化を検出 (磁区の磁化方向に 対応した磁束を検出) し、 再生素子駆動検出回路 2 6 2により、 高密度に記録さ れた情報を良好な C N Rをもって再生できる。 磁気再生素子 2 6 0、 磁気ヘッド スライダ 2 6 1などが磁気再生部を構成する。
次に、 図 1 9に示す光磁気記録媒体 1 0 0における保磁力と飽和磁化それぞれ の温度依存性について説明する。
図 2 0は、 図 1 9に示す光磁気記録媒体の、 温度に対する保磁力の変化と飽和 磁化の変化の一例を示すグラフである。
図 2 0に示すグラフの横軸は温度 (°C) を表す。 また、 このグラフの縦軸は、 保磁力 (k〇e ) と飽和磁化 (e m u / c c ) を表し、 実線は図 1 9に示す光磁 気記録媒体 1 0 0の保磁力を示し、 点線はその光磁気記録媒体 1 0 0の飽和磁化 を示す。
室温における図 1 9に示す光磁気記録媒体 1 0 0の保磁力は 1 0 k〇e以上あ るが、 昇温すると図中実線で示すとおり保磁力は小さくなり、 およそ 3 5 0 °Cで 0となる。 図 1 9に示す光学用スライダ 2 5 8に搭載された記録用コイル 2 5 9 で発生した記録磁界により記録可能な保磁力となる温度まで記録層を加熱すれば 、 記録することが可能となる。
また、 室温における図 1 9に示す光磁気記録媒体 1 0 0の飽和磁化の値は 1 0 0 e m u / c c以上あるので、 記録されたマークからの磁束を通常の磁気抵抗素 子によって再生することが可能である。
続いて、 図 2 1を用いて、 図 1 9に示す光磁気記録媒体 1 0 0の情報記録/再 生方法について説明する。
図 2 1は、 本発明の情報記録/再生方法の一実施形態を示すフローチャートで ある。
図 1 9に示す光磁気記録媒体 1 0 0に情報を記録するには、 光の照射により光 磁気記録媒体 1 0 0を昇温して記録層の保磁力を下げた状態で磁界を印加する ( 記録ステップ S 1 ) 。 こうすることにより、 記録層に磁区が記録される。
また、 図 1 9に示す光磁気記録媒体 1 0 0に記録された情報を再生するには、 記録層に記録された磁区からの漏洩磁束を検出する (再生ステップ S 2 ) 。 こう することで、 再生信号が得られる。
次に、 図 1 9に示す光磁気記録媒体 1 0 0における C N Rのレーザ記録パワー 依存性について説明する。
図 2 2は、 図 1 9に示す光磁気記録媒体の、 レーザ記録パワーに対する C N R の変化の一例を示すグラフである。 図 2 2に示すグラフの横軸はレーザ記録パワー (mW) を表し、 縦軸は C N R ( d B ) を表す。 また、 図中の実線が図 1 9に示す光磁気記録媒体の C N R特性 を表すものであって、 図中の点線については後述する。
ここで、 記録磁界は 4 0 0エルステッドとじた。 また、 記録したマークのサイ ズは、 上述の光ビームの照射によって再生を行う光再生の記録媒体では 0 . 2 m〜0 . 3 m程度としたが、 この磁束検出によって再生を行う磁気再生の記録 媒体では 5 0 nmとした。 使用した磁気ヘッドスライダの再生コア幅は 0 . 2 n m、 シ一ルドギャップ長は 0 . 0 9 mである。 記録用レーザの波長は 4 0 5 η m、 対物レンズの開口数 ΝΑは 0 . 8 5である。
図 2 2に示すように、 レーザ記録パワーを 1 5 mWにすることで、 再生特性は ほぼ飽和している。 磁気再生することで、 5 0 n mという微小なマークでも再生 可能となり、 光再生するより再生特性が非常に改善されている。
続いて、 磁気再生記録媒体へ情報を記録し、 記録した情報を再生する磁気記録 装置の他の実施形態を説明する。 図 1 9に示す磁気記録装置 2 0 0は光学へッド スライダ 2 5 8と磁気へッドスライダ 2 6 1という 2つのスライダを備えている が、 ここで説明する磁気記録装置はこれらのスライダを一体にした 1つのスライ ダを備えている。
図 2 3は、 一体型スライダを備えた磁気記録装置の一体型スライダの概略構成 を示す図である。
まず、 この磁気記録装置によって記録ノ再生される光磁気記録媒体について説 明する。 この光磁気記録媒体も、 ガラス基板上に、 第 1放熱層、 分断層、 第 2放 熱層、 記録層、 保護層、 および潤滑層を有するが、 第 1放熱層と第 2放熱層の材 質が異なっている。 すなわち、 図 1 9に示す光磁気記録媒体 1 0 0では、 第 1放 熱層と第 2放熱層に非磁性材料を用いているが、 この光磁気記録媒体では、 第 1 放熱層と第 2放熱層に、 放熱効果を持つ軟磁性材料を用いている。 金属の場合、 A L、 A g系の熱伝導率が高いが、 通常の磁性材料である C o , F e系合金であ つても、 分断層に用いる誘電体材料に比べて熱伝導率ははるかに高い。 また、 軟 磁性材料を用いることで記録用コイルの磁界が記録層に集中するので、 大きな磁 界を得ることができる。 この光磁気記録媒体の第 1放熱層としては、 Fe A 1 C軟磁性膜を用い、 膜厚 を 20 nmとした。 また、 第 2放熱層としては、 F e S i C軟磁性膜を用い、 膜 厚を 30 nmとした。 以下、 この光磁気記録媒体を、 軟磁性膜を有する光磁気記 録媒体と称することにする。
また、 この軟磁性膜を有する光磁気記録媒体の分断層には、 図 19に示す光磁 気記録媒体の分断層と同じく、 厚さ 5 nmの S i N膜を用いている。 さらに、 記 録層も図 19に示す光磁気記録媒体の記録層と同様に Tb F e C o磁性膜を用い ているが、 第 2放熱層の Fe S i C軟磁性膜とこの TbF e Co磁性膜との間に 交換結合力が直接働かないよう、 第 2放熱層の上に厚さ 1 nmの S i N層と厚さ l nmの P t層をこの記載順に形成し、 その上に第 2放熱層が形成されている。 この S i N/P t層の表面には、 高低差が 10 nm未満の微細な凹凸構造が形成 されている。 第 2放熱層は、 この微細な凹凸構が反映されコラム構造となり、 記 録分解能が向上する。 図 22中の点線は、 軟磁性膜を有する光磁気記録媒体の、 レーザ記録パヮ一に対する CNR特性を示すものである。 この CNR特性は、 図 19に示す非磁性膜を有する光磁気記録媒体の、 レーザ記録パワーに対する CN R特性を得るにあたっての条件と同条件で測定された結果に基づくものである。 図 22中の実線と点線を比較すると、 軟磁性膜を有する点線で示す光磁気記録媒 体の方が、 非磁性膜を有する実線で示す光磁気記録媒体 100に比べて低パワー で記録することができることが分かる。 これは、 軟磁性膜を有する光磁気記録媒 体の方が、 非磁性膜を有する光磁気記録媒体 100に比べて、 第 1放熱層と第 2 放熱層それぞれの熱伝導率が低いことによるものである。 更に、 軟磁性膜を有す る光磁気記録媒体の方が、 非磁性膜を有する光磁気記録媒体 100に比べて CN Rに若干の増大が見られる。 このような CNRの増大は、 軟磁性膜を有する光磁 気記録媒体の方が、 非磁性膜を有する光磁気記録媒体 100に比べて媒体上の磁 界を大きくすることができたことによる効果が大きい。
図 23にその一部を示す磁気記録装置 400は、 一体型へッド 471が搭載さ れたスライダ 470を備えている。
同図 (A) は、 スライダ 470を構成するスライダ基板 475の端部に一体型 ヘッド 471を搭載した状態を示す。 この図では、 光磁気記録媒体は図の左側か ら右側に向かって移動している。
同図 (B ) は、 同図 (A) の矢符 B方向から見た図である。 つまり、 スライダ 面 (記録媒体に対向する面) から見た図であり、 同図 (B ) の下側が同図 (A) の左側に対応し、 同図 (B ) の上側が同図 (A) の右側に対応する。
同図 (C ) は同図 (A) の矢符 C方向から見た図である。 つまり、 一体型へッ ド 4 7 1の側面を示す図であり、 同図 (C ) の下側が同図 (A) の下側に対応し 、 同図 (C ) の上側が同図 (A) の上側に対応する。
図 2 3 (A) に示す一体型ヘッド 4 7 1は、 同図 (B ) 及び (C ) に示す、 レ 一ザ光照射部 4 7 2と記録用コイル 4 7 3と磁気再生素子 (磁気抵抗素子 4 7 4 ) を 1体にしたものである。 レーザ光照射部 4 7 2には、 導波路タイプの光学系 が用いられており、 このレーザ光照射部 4 7 2は、 レ一ザダイオード 4 7 2 1、 光導入口 4 7 2 2、 導波路 4 7 2 3、 および光開口部 4 7 2 4等から構成されて いる。 記録用コイル 4 7 3は、 光磁気記録媒体に照射する光が出射される光開口 部 4 7 2 4より後ろ側に配備されている。 同図 (A) においては、 図示省略され ているが、 記録用コイル 4 7 3は光開口部 4 7 2 4より右側に配備されている。 このような位置に記録用コイル 4 7 3を配備した理由は、 光磁気記録媒体が高速 に回転していると、 実際に温度が上昇する箇所はスポット位置より後ろ側 (同図 (A) では右側) にずれるからである。 磁束を検出する磁気抵抗素子 4 7 4は、 光開口部 4 7 2 と記録用コイル 4 7 3の間に配備されている。
スライダ基板 4 7 5には A 1 T i Cを用いた。 A 1 T i C基板上には、 ゥエー ハプロセスによって、 一度に複数の一体型ヘッドを形成することができる。 これ は、 磁気ディスクのヘッドを作る手法と同様である。 ここでは、 図 2 3 ( B ) を 参照しながら、 その形成プロセスについて簡単に説明する。
まず、 スライダ基板 4 7 5の表面 4 7 5 aを平坦化するため、 下地層 (平坦化 層 4 7 5 1の一部) を図中 (1 ) のレベルまで形成する。 その後、 光シールド部 4 7 5 2に使用する A uを、 図中 (3 ) のレベルまで蒸着する。 この A uの膜厚 は 1 0 0 n mである。 次いで、 蒸着した A uの表面を、 ホトリソグラフィ技術 ( レジス卜とエッチングとを用いるプロセス) によって、 図中 ( 2 ) のレベルまで パターエング形成する。 その上に、 光開口部 4 7 2 4に対応する部分とその他の 不要な部分とをレジストでマスクして、 Auをもう一度、 図中 (3) のレベルま で蒸着する。 その後、 リフトオフ法などによりレジストを除去して光開口部 47 24と光シールド部 4752を形成する。 このようにして形成した光開口部 47 24の大きさは図中の幅方向が 100 nm、 高さ方向が 60 nmで、 光シールド 部 4752の厚みは 50 nmである。
続いて、 光シールド部 4752の上にアルミナをスパッ夕法で形成し、 平坦に なるように研磨して平坦化層 4751を形成する。 さらに、 平坦化層 475 1の 上に厚み 200 nmのパーマロイ (第 1のシールド層 4754) を形成した後、 ホトリソグラフィ技術でパ夕一ニングしながら磁束を検出する素子としての磁気 抵抗素子 474を形成する。 その上に 200 nmの F e C o (第 2のシールド層 4755) を形成する。 次に、 1 mのレジストを形成し、 更にその上に記録用 コイル 473および記録用磁極 480を形成する。 記録用磁極 480のサイズは 、 幅 =100 nm、 高さ =50 nmとした。 記録用コイル 473および記録用磁 極 480は記録媒体に磁界を印加する素子となる。
このようにして一体型へッド 471は、 1枚のゥエーハ上に複数個形成され、 ゥェ一ハから切り出され、 スライダ 470を構成する部材となる。
同図 (C) には、 同図 (B) では表し難かった記録用コイル 473が示されて いる。 ここで、 第 2のシールド層 4755と記録用磁極 480は上下方向 ( (B ) での上下方向。 (C) では紙面手前から紙面背面側方向) に F e Coでつなが つており、 磁路に空隙はない。 レ一ザダイオード 4721からのレ一ザ光は、 光 導入口 4722から導波路 4723に導かれ、 光開口部 4724から記録媒体へ 光を照射 (印加) することができる。
このような一体型へッド 471で記録 Z再生特性を調べた結果を図 25に示す 図 24は、 図 23に示す光磁気記録媒体の、 記録電流に対する C N Rの変化の 一例を示すグラフである。
この図 24のグラフの横軸は記録電流 (mA) を表し、 縦軸は CNR (d B) を表す。 測定したマーク長は 50 nmである。 図中の実線は非磁性膜を有する図 19に示す光磁気記録媒体の CNR特性を表し、 点線は軟磁性膜を有する光磁気 記録媒体の C N R特性を表す。 図 2 4に示すグラフから明らかなように、 軟磁性 膜を用いた方が少ない記録電流により高い C N R特性を有する。 軟磁性膜を有す る光磁気記録媒体では、 記録用磁極 4 8 0から出た磁束が軟磁性膜を通って第 2 のシールド層 4 7 5 5に帰っていくことから、 記録しょうとする磁区に対する磁 界が大きくなる。
軟磁性膜を有する光磁気記録媒体によれば、 低いレーザ記録パワーでも記録可 能となり、 記録の際の記録電流 I w (記録用コイルに流す電流) は 2 O mAで十 分である。 また、 磁気抵抗素子 1 7 7に流すセンス電流 I sは 3 mAとした。 こ れらは、 通常の磁気記録に用いられる値程度である。

Claims

請求の範囲
1 . 基板と、
前記基板上に形成された、 所定の高熱伝導率を有する第 1放熱層と、 前記第 1放熱層上に形成された、 前記高熱伝導率より低い低熱伝導率を有する 分断層と、
前記分断層上に形成された、 前記低熱伝導率よりは高くかつ前記高熱伝導率よ りは低い所定の熱伝導率を有する第 2放熱層と、
前記放熱層上に形成された、 記録用の光の照射および磁場の供給を受けてデ一 夕を記録する記録層とを有することを特徴とする光磁気記録媒体。
2 . 前記第 1放熱層および第 2放熱層のいずれもが、 A l , A g , A uおよび P tの中から選択された一つの元素を主成分とし、 C u, P d, S i, C r, T i, および C oの中から選択された少なくとも一つが添加されてなるものである ことを特徴とする請求項 1記載の光磁気記録媒体。
3 . 前記第 1放熱層および第 2放熱層のいずれもが、 非磁性の材料からなるも のであることを特徴とする請求項 1記載の光磁気記録媒体。
4 . 前記分断層が、 S iの単体, A 1の単体, および Cの単体のうちの少なく ともいずれか一つの単体を含む材料、 または, S iの窒化物、 S iの酸化物, S iの炭化物, A 1の窒化物, A 1の酸化物, F eの炭化物, Z nの硫化物, およ び Z nの酸化物の中から選択された一つの化合物からなるものであることを特徴 とする請求項 1記載の光磁気記録媒体。
5 . 前記第 2放熱層は、 該第 2放熱層表面が前記第 1放熱層表面よりも平滑な ものであることを特徴とする請求項 1記載の光磁気記録媒体。
6 . 前記分断層は、 該分断層表面が前記第 2放熱層表面よりも平滑なものであ ることを特徴とする請求項 5記載の光磁気記録媒体。
7 . 基板と、 前記基板上に形成された、 所定の高熱伝導率を有する第 1放熱層 と、 前記第 1放熱層上に形成された、 前記高熱伝導率より低い低熱伝導率を有す る分断層と、 前記分断層上に形成された、 前記低熱伝導率よりは高くかつ前記高 熱伝導率よりは低い所定の熱伝導率を有する第 2放熱層と、 前記放熱層上に形成 された、 記録用の光の照射および磁場の供給を受けてデータを記録する記録層と を有する光磁気記録媒体へ、 記録用の光の照射および磁場の供給を行い情報の記 録を行う記録ステップ、 および
前記基板とは反対側の前記記録層側から、 前記記録層の磁束を検出して情報の 磁気再生を行う再生ステップを有することを特徴とする情報記録 Z再生方法。
8 . 基板と、 前記基板上に形成された、 所定の高熱伝導率を有する第 1放熱層 と、 前記第 1放熱層上に形成された、 前記高熱伝導率より低い低熱伝導率を有す る分断層と、 前記分断層上に形成された、 前記低熱伝導率よりは高くかつ前記高 熱伝導率よりは低い所定の熱伝導率を有する第 2放熱層と、 前記放熱層上に形成 された、 記録用の光の照射および磁場の供給を受けてデータを記録する記録層と を有する光磁気記録媒体へ、 記録用の光の照射および磁場の供給を行い情報の記 録を行う光磁気記録部、 および
前記基板とは反対側の前記記録層側から、 前記記録層の磁束を検出して情報の 磁気再生を行う磁気再生部を備えたことを特徴とする磁気記録装置。
9 . 基板と、 前記基板上に形成された、 所定の高熱伝導率を有する第 1放熱層 と、 前記第 1放熱層上に形成された、 前記高熱伝導率より低い低熱伝導率を有す る分断層と、 前記分断層上に形成された、 前記低熱伝導率よりは高くかつ前記高 熱伝導率よりは低い所定の熱伝導率を有する第 2放熱層と、 前記放熱層上に形成 された、 記録用の光の照射および磁場の供給を受けてデータを記録する記録層と を有する光磁気記録媒体へ、 光を照射して該記録層を加熱する光照射素子、 該記 録層に磁場を供給する磁場供給素子、 および該記録層の磁束を検出する磁束検出 素子とが搭載された一つのスライダを有することを特徴とする磁気記録装置。
PCT/JP2003/013626 2002-10-25 2003-10-24 光磁気記録媒体、情報記録/再生方法、および磁気記録装置 WO2004038715A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03758878A EP1555669A4 (en) 2002-10-25 2003-10-24 MAGNETO-OPTICAL RECORDING MEDIUM, INFORMATION RECORDING AND REPRODUCING METHOD, AND MAGNETIC RECORDING DEVICE
JP2004546474A JP4077451B2 (ja) 2002-10-25 2003-10-24 光磁気記録媒体、情報記録/再生方法、および磁気記録装置
AU2003275651A AU2003275651A1 (en) 2002-10-25 2003-10-24 Magnetooptic recording medium, information recording/ reproducing method, and magnetic recording device
US11/010,152 US20050146993A1 (en) 2002-10-25 2004-12-10 Magneto-optical recording medium, information recording/reproducing method, and magnetic recording apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP02/11114 2002-10-25
PCT/JP2002/011114 WO2004038716A1 (ja) 2002-10-25 2002-10-25 光磁気記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/010,152 Continuation US20050146993A1 (en) 2002-10-25 2004-12-10 Magneto-optical recording medium, information recording/reproducing method, and magnetic recording apparatus

Publications (1)

Publication Number Publication Date
WO2004038715A1 true WO2004038715A1 (ja) 2004-05-06

Family

ID=32170788

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2002/011114 WO2004038716A1 (ja) 2002-10-25 2002-10-25 光磁気記録媒体
PCT/JP2003/013626 WO2004038715A1 (ja) 2002-10-25 2003-10-24 光磁気記録媒体、情報記録/再生方法、および磁気記録装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011114 WO2004038716A1 (ja) 2002-10-25 2002-10-25 光磁気記録媒体

Country Status (6)

Country Link
EP (1) EP1555669A4 (ja)
JP (1) JP4077451B2 (ja)
KR (1) KR100712575B1 (ja)
CN (1) CN1692419A (ja)
AU (2) AU2002344583A1 (ja)
WO (2) WO2004038716A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097677A (ja) * 2008-10-20 2010-04-30 Hitachi Ltd ヘッドスライダ、ヘッドアッセンブリ及び磁気ディスク装置
JP2010182386A (ja) * 2009-02-09 2010-08-19 Fuji Electric Device Technology Co Ltd 磁気記録媒体
WO2011062192A1 (ja) * 2009-11-18 2011-05-26 株式会社神戸製鋼所 熱アシスト記録用磁気記録媒体に用いられるAg合金熱拡散制御膜、及び熱アシスト記録用磁気記録媒体、スパッタリングターゲット
JP2013168198A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 熱アシスト記録用磁気記録媒体に用いられる熱拡散制御膜、磁気記録媒体、およびスパッタリングターゲット
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675758B2 (ja) 2005-11-16 2011-04-27 昭和電工株式会社 磁気記録媒体
JP6832189B2 (ja) * 2017-02-21 2021-02-24 昭和電工株式会社 磁気記録媒体及び磁気記録再生装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219644A (ja) * 1990-07-12 1992-08-10 Ricoh Co Ltd 光磁気記録媒体
JP2001056975A (ja) 1999-06-11 2001-02-27 Tosoh Corp 光磁気記録媒体
JP2001216686A (ja) 2000-01-31 2001-08-10 Sony Corp 光学記録媒体
JP2001266411A (ja) * 2000-03-22 2001-09-28 Tosoh Corp 表面再生型光記録媒体
WO2001073763A1 (en) 2000-03-28 2001-10-04 Koninklijke Philips Electronics N.V. Storage medium for thermally-assisted magnetic recording
JP2002237098A (ja) * 2001-02-06 2002-08-23 Sony Corp 光記録媒体
JP2002298312A (ja) * 2001-03-28 2002-10-11 Hitachi Ltd 磁気ヘッドおよびその製造方法
JP2002298301A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 熱アシスト磁気記録再生装置及び熱アシスト磁気記録再生装置の制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2804165B2 (ja) * 1990-09-28 1998-09-24 帝人株式会社 光磁気記録媒体
KR100271567B1 (ko) * 1997-08-14 2000-11-15 구자홍 상변화 광디스크
JPH11126387A (ja) * 1997-10-20 1999-05-11 Sanyo Electric Co Ltd 光磁気記録媒体
JP2000173119A (ja) * 1998-12-09 2000-06-23 Sony Corp 光学記録媒体及びその製造方法
JP2001023259A (ja) * 1999-07-09 2001-01-26 Sony Corp 光磁気記録媒体およびその製造方法
JP2001297484A (ja) * 2000-04-13 2001-10-26 Nihon University 記録媒体
JP2002008271A (ja) * 2000-06-19 2002-01-11 Nec Corp 光ディスク

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219644A (ja) * 1990-07-12 1992-08-10 Ricoh Co Ltd 光磁気記録媒体
JP2001056975A (ja) 1999-06-11 2001-02-27 Tosoh Corp 光磁気記録媒体
JP2001216686A (ja) 2000-01-31 2001-08-10 Sony Corp 光学記録媒体
JP2001266411A (ja) * 2000-03-22 2001-09-28 Tosoh Corp 表面再生型光記録媒体
WO2001073763A1 (en) 2000-03-28 2001-10-04 Koninklijke Philips Electronics N.V. Storage medium for thermally-assisted magnetic recording
JP2002237098A (ja) * 2001-02-06 2002-08-23 Sony Corp 光記録媒体
JP2002298312A (ja) * 2001-03-28 2002-10-11 Hitachi Ltd 磁気ヘッドおよびその製造方法
JP2002298301A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 熱アシスト磁気記録再生装置及び熱アシスト磁気記録再生装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1555669A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097677A (ja) * 2008-10-20 2010-04-30 Hitachi Ltd ヘッドスライダ、ヘッドアッセンブリ及び磁気ディスク装置
US8315016B2 (en) 2008-10-20 2012-11-20 Hitachi, Ltd. Head slider, head assembly, and magnetic disk device
JP2010182386A (ja) * 2009-02-09 2010-08-19 Fuji Electric Device Technology Co Ltd 磁気記録媒体
WO2011062192A1 (ja) * 2009-11-18 2011-05-26 株式会社神戸製鋼所 熱アシスト記録用磁気記録媒体に用いられるAg合金熱拡散制御膜、及び熱アシスト記録用磁気記録媒体、スパッタリングターゲット
JP2011108328A (ja) * 2009-11-18 2011-06-02 Kobe Steel Ltd 熱アシスト記録用磁気記録媒体に用いられるAg合金熱拡散制御膜、及び磁気記録媒体
JP2013168198A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 熱アシスト記録用磁気記録媒体に用いられる熱拡散制御膜、磁気記録媒体、およびスパッタリングターゲット
JP2014154177A (ja) * 2013-02-05 2014-08-25 Fujifilm Corp 塗布型磁気記録媒体、磁気記録装置、および磁気記録方法

Also Published As

Publication number Publication date
AU2003275651A1 (en) 2004-05-13
KR20050065456A (ko) 2005-06-29
JP4077451B2 (ja) 2008-04-16
EP1555669A4 (en) 2008-06-25
EP1555669A1 (en) 2005-07-20
CN1692419A (zh) 2005-11-02
JPWO2004038715A1 (ja) 2006-02-23
AU2002344583A1 (en) 2004-05-13
KR100712575B1 (ko) 2007-05-02
WO2004038716A1 (ja) 2004-05-06

Similar Documents

Publication Publication Date Title
US6020079A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
JP3474401B2 (ja) 光磁気記録媒体
WO2004038715A1 (ja) 光磁気記録媒体、情報記録/再生方法、および磁気記録装置
US5774429A (en) Magneto-optical recording medium, and information recording/reproduction method using the medium
JP4173109B2 (ja) 光記録媒体、光磁気記録媒体、情報記録/再生装置、情報記録/再生方法及び磁気記録装置
JP2008269789A (ja) 熱磁気記録媒体
TW567467B (en) Magneto-optical recording medium and method of reproducing the same
US20050146993A1 (en) Magneto-optical recording medium, information recording/reproducing method, and magnetic recording apparatus
JP2000315310A (ja) 情報記録媒体及び情報記録再生用スライダ
JP3995833B2 (ja) 光磁気記録媒体
JP3424806B2 (ja) 光磁気記録媒体に記録された情報の再生方法
JPWO2003003352A1 (ja) 磁気記録方法及び装置並びにこれに用いる磁気記録媒体
JP3390713B2 (ja) 光磁気記録媒体
JP3516865B2 (ja) 光磁気記録媒体及び再生装置
JP2000207793A (ja) 熱磁気記録装置及び記録再生方法
JP2001056975A (ja) 光磁気記録媒体
JPH0855372A (ja) 光磁気記録媒体
JP2000113444A (ja) 垂直磁気記録媒体及びその記録方法
JPH07254176A (ja) 光磁気記録媒体および該媒体を用いた情報再生方法
JP2001256686A (ja) 表面再生型光磁気記録媒体
JP2000182289A (ja) 熱磁気記録媒体、熱磁気記録装置及び磁気記録・再生装置
JP2003242697A (ja) 光磁気記録媒体に記録された情報の再生方法及び光磁気記録再生装置
JP2002092993A (ja) 光磁気記録媒体
JP2003141789A (ja) 光磁気記録媒体
JP2003051143A (ja) 光磁気記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11010152

Country of ref document: US

Ref document number: 2004546474

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003758878

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047020863

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A05572

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047020863

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003758878

Country of ref document: EP