WO2004016058A1 - 電磁波遮蔽用シート - Google Patents

電磁波遮蔽用シート Download PDF

Info

Publication number
WO2004016058A1
WO2004016058A1 PCT/JP2003/010020 JP0310020W WO2004016058A1 WO 2004016058 A1 WO2004016058 A1 WO 2004016058A1 JP 0310020 W JP0310020 W JP 0310020W WO 2004016058 A1 WO2004016058 A1 WO 2004016058A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
electromagnetic wave
shielding sheet
wave shielding
layer
Prior art date
Application number
PCT/JP2003/010020
Other languages
English (en)
French (fr)
Inventor
Fumihiro Arakawa
Yasuhiko Ishii
Daisuke Hashimoto
Yukihiro Kyoden
Eiji Ohishi
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to JP2004527347A priority Critical patent/JP4445858B2/ja
Priority to DE10393019T priority patent/DE10393019B4/de
Priority to US10/521,997 priority patent/US7371450B2/en
Priority to AU2003254831A priority patent/AU2003254831A1/en
Publication of WO2004016058A1 publication Critical patent/WO2004016058A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • Y10T428/24331Composite web or sheet including nonapertured component

Definitions

  • the present invention relates to a sheet for shielding (also referred to as a shield) an electromagnetic wave, and more particularly, to a sheet disposed on the front of a display such as a CRT or PDP to shield an electromagnetic wave generated from the display.
  • a sheet for shielding also referred to as a shield
  • a sheet disposed on the front of a display such as a CRT or PDP to shield an electromagnetic wave generated from the display.
  • Electromagnetic noise can be broadly divided into conducted noise and radiated noise.
  • methods to remove radiated noise include using a metal housing to electromagnetically insulate the space, inserting a metal plate between circuit boards, winding a cable with metal foil, etc. There is a way. These methods are effective for shielding electromagnetic waves in circuits and power supply blocks. However, since these members are opaque, they are not suitable for shielding electromagnetic waves generated from the front of displays such as CRTs and plasma display panels (PDPs).
  • a plasma display panel is a combination of glass having a data electrode and a fluorescent layer and glass having a transparent electrode. When such a plasma display panel operates, a large amount of electromagnetic waves, near-infrared rays, and heat are generated.
  • a front panel is provided on the front of the plasma display panel to shield electromagnetic waves.
  • the shielding property of electromagnetic waves generated from the front of the display a function of 30 dB or more is required for electromagnetic waves of 3 OMHz to 1 GHz.
  • Near-infrared light with a wavelength of 800 to 1,100 nm generated from the front of the display Wires can also cause other VTRs and other equipment to malfunction. Therefore, it is necessary to shield near-infrared rays as well as electromagnetic waves.
  • the front panel (sheet) for shielding electromagnetic waves makes it difficult to see the lines of the metal mesh, and there is no disturbance of the mesh, that is, appropriate transparency. (Visible light transmittance, visible light transmittance).
  • the size (external dimensions) of the electromagnetic wave shielding sheet is, for example, 62 1 x 83 1 mm for the 37 type and 983 x 583 mm for the 42 type, and is even larger. There is also. For this reason, in each process from the manufacture of the electromagnetic wave shielding sheet to the assembling to the display, the boundary between the grounding frame portion and the mesh portion was broken / smooth, that is, the suitability for dring was extremely poor. .
  • Front plates (sheets) for shielding electromagnetic waves are required to have electromagnetic shielding properties, appropriate transparency (visible light transmittance), and excellent handling suitability.
  • the display image In order to improve the visibility of the display image, it consists of a substrate, a transparent anchor layer, and a mesh-patterned electroless plating layer.
  • the electroless plating changes the transparent anchor layer under the electroless plating layer to a black pattern.
  • An electromagnetic wave shielding material is disclosed in Japanese Patent Application Laid-Open No. 5-283898.
  • Japanese Patent Application Laid-Open No. 61-150480 discloses a method of forming a copper oxide film on the surface of a metal mesh of an electromagnetic wave shielding sheet to suppress reflection of external light.
  • a method is disclosed in which a black resist used when forming a metal mesh of an electromagnetic wave shielding sheet by a photoresist method is left as it is after opening the mesh, and a line portion of the mesh is blackened. This is disclosed in Japanese Patent Application Laid-Open No. 9-293939.
  • Japanese Patent Application Laid-Open No. 10-335885 discloses an electromagnetic wave shielding structure in which a plastic film with a copper foil in which a geometric figure is formed on a copper foil by a photolithography method is laminated on a plastic plate. ing.
  • the line width of the metal mesh is made to be constant.
  • disturbance of the mesh and the line at the boundary between the mesh portion and the frame portion for grounding is hardly unavoidable, especially during transportation.
  • the stiffness changes extremely discontinuously at the boundary between the mesh part and the grounding frame part.
  • the present invention has been made to solve such a problem. Its purpose is to be placed in front of a display such as a CRT or PDP to shield electromagnetic waves generated from the display, while maintaining good visibility of the display image without mesh distortion and being large.
  • a display such as a CRT or PDP
  • the present invention includes a transparent base material, and a metal layer laminated on one surface of the transparent base material, wherein the metal layer has a mesh-shaped mesh portion, and a mesh-shaped mesh portion surrounding the mesh portion.
  • An electromagnetic wave shielding sheet characterized by being widened.
  • the electromagnetic wave shielding sheet of the present invention when placed on the front of a display such as a CRT or PDP, shields the electromagnetic waves generated from the display, while maintaining good visibility of the display image without disturbing the mesh. It can be maintained, and even if it is large, defects such as broken mesh lines do not occur in all processes from manufacturing to assembly, that is, excellent handling suitability.
  • the line widths of the lines constituting the mesh of the mesh part are uniform.
  • the outer peripheral portion of the mesh includes 1 to 50, particularly 1 to 25 meshes in a direction from the grounding frame portion to the mesh portion.
  • the outer peripheral portion of the mesh has a width of 0.15 to 15 mm, particularly 0.3 to 7.5 mm in a direction from the grounding frame portion to the mesh portion. are doing.
  • a line width of a line constituting the mesh on the outer peripheral portion of the mesh is continuously increased from the mesh portion toward the grounding frame portion.
  • the line width of a line constituting the mesh on the outer peripheral portion of the mesh is gradually increased from the mesh portion toward the grounding frame portion.
  • At least one surface of the metal layer is blackened.
  • a protection layer is provided on at least the blackened surface of the metal layer.
  • the resin is a color-absorbing light-absorbing agent that absorbs light in the visible band at a wavelength of 570 to 600 nm, and Z or a near-infrared light at a wavelength of 800 to 110 nm. It is preferable to contain a near-infrared absorbing agent that absorbs light in the above range.
  • a light-absorbing layer for color tone correction that absorbs light in a visible band of a wavelength of 570 to 65 nm, and / or a wavelength of 800 to 110 nm a near-infrared absorber layer that absorbs light in the near-infrared band of nm.
  • FIG. 1 is a plan view of an electromagnetic wave shielding sheet according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a part of the electromagnetic wave shielding sheet according to one embodiment of the present invention.
  • FIG. 3 (A) is a cross-sectional view taken along line AA of FIG. 2
  • FIG. 3 (B) is a cross-sectional view taken along line BB of FIG.
  • FIG. 4 is a cross-sectional view illustrating the configuration of the conductive material layer.
  • FIG. 5 (A) is a plan view for explaining processing from a take-up roll
  • FIG. 5 (B) is a side view of the same.
  • FIG. 6 is an enlarged plan view of a part of the outer peripheral portion of the mesh according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of the electromagnetic wave shielding sheet of one embodiment of the present invention adhered to a display surface.
  • FIG. 1 is a plan view of an electromagnetic wave shielding sheet according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a part of the electromagnetic wave shielding sheet according to one embodiment of the present invention.
  • the electromagnetic wave shielding sheet 1 according to one embodiment of the present invention includes a mesh portion 103 existing in an inner central portion and a grounding frame portion 101 existing in an outermost peripheral portion. I have it.
  • the ground frame 101 is grounded when installed on a display.
  • a conductive material layer 109 is laminated on one surface of the base material 11 via an adhesive layer 13.
  • the conductive material layer 109 has a mesh shape in which a plurality of openings 105 are densely formed. Each mesh is constituted by a line portion 107 forming a frame of the opening 105. The width of the line portion 107 is called a line width W, and the interval between lines is called a pitch P.
  • a mesh outer peripheral portion 104 is arranged between the mesh portion 103 and the grounding frame portion 101.
  • Mesh outer periphery 104 is also similar to mesh 103 However, the line width of each mesh line in the outer peripheral portion 104 of the mesh is gradually increased from the mesh portion 103 toward the grounding frame portion 101.
  • FIG. 3 (A) is a cross-sectional view taken along line AA of FIG. 2
  • FIG. 3 (B) is a cross-sectional view taken along line BB of FIG.
  • FIG. 4 is a cross-sectional view illustrating the configuration of the conductive material layer.
  • FIG. 3A shows a cross section crossing the opening, and the opening 105 and the line 107 appear alternately.
  • FIG. 3 (B) shows a cross-section taken along the line 107, and the line 107 composed of the conductive material layer 109 appears continuously.
  • the conductive material layer 109 has a metal layer 21, and at least the observing surface, in this embodiment, both surfaces are blackened.
  • the protection layers 25A and 25B are provided so as to cover the surfaces 23A and 23B subjected to the blackening treatment. The protection layer only needs to be provided at least on the blackened surface.
  • the protection layers 25 A and 25 B have the protection function of the metal layer 21 and its blackened surface 23 A and 23 B, and the blackened surface 23 A and Also prevents 2 3 B from falling off.
  • the metal layer 21 is etched to form a mesh, the metal layer 21 is etched so that the protection layer 25 A adjacent to the base material 11 remains in the opening 105.
  • the protection layer 25A also protects the substrate 11 and the adhesive layer 13 from the corrosive liquid. It is optional to provide the blackened surface 23 B and the protection layer 25 B on the other surface of the metal layer 21. That is, it is optional to provide the surfaces 23 A, 23 B and the protection layers 25 A, 25 B blackened on both surfaces. In short, it is necessary to provide a blackened surface and a protection layer at least on the observation side, and to provide a protection layer 25 A on the entire surface of the substrate 11 (both the opening and the line portion). preferable.
  • a mesh outer peripheral portion 104 is provided between the mesh portion 103 and the grounding frame portion 101.
  • the line width W of the straight line portion of the mesh line 107 at the outer peripheral portion 104 of the mesh is gradually increased from the mesh portion 103 to the grounding frame portion 101.
  • the area where the outer peripheral portion 104 of the mesh is formed is preferably about 1 to 50 mesh or 0.15 to 15 mm from the inner periphery of the grounding frame portion 101 toward the mesh portion 103. It is preferably a portion of 1 to 25 mesh or 0.3 to 7.5 mm s, more preferably a portion of 3 to 20 mesh or 1.5 to 6.0 mm.
  • the line width increases continuously (see Fig. 6) or gradually (see Fig. 1).
  • the line width increases stepwise, it may be one step as shown in FIG. 1, but in order to effectively disperse the concentration of stress, it is preferable to have two or more steps.
  • Plasma display panels feature large screens. For this reason, the size (external dimensions) of the electromagnetic wave shielding sheet is, for example, about 62 ⁇ 80 mm for the 37 type and about 580 ⁇ 98 mm for the 42 type. There are also large sizes. For this reason, handling aptitude is extremely important in each process from the manufacturing process of the electromagnetic wave shielding sheet to the assembly and assembly process to the display. In conventional electromagnetic wave shielding sheets, expensive parts may be wasted due to disconnection or bending at the boundary between the grounding frame and the mesh.
  • the electromagnetic wave shielding sheet of the present invention is mainly used for displays such as CRTs and PDPs, but the electromagnetic wave shielding sheet of the present invention is used for devices other than displays. It can also be used for shielding electromagnetic waves.
  • a conductive material layer 109 provided with at least a black processing surface and an anti-reflection layer on the observation side is prepared.
  • the conductive material layer 1 0 9 force One side of transparent film-shaped substrate 11 Then, they are laminated via an adhesive layer 13. Thereafter, a resist layer is provided on the conductive material layer 109 in a mesh pattern, and the portion of the conductive material layer 109 which is not covered with the resist layer is removed by etching. Lithography method).
  • the electromagnetic wave shielding sheet 1 of the present embodiment can be manufactured using existing sheet-like member etching equipment such as a shadow mask. In addition, since many of the manufacturing processes can be performed continuously, quality and yield are high, and production efficiency is high.
  • the material and forming method of each layer of the electromagnetic wave shielding sheet 1 of the present embodiment will be described.
  • the conductive material portion 109 of the electromagnetic wave shielding sheet of the present embodiment at least one surface of the metal layer 21 is subjected to blackening treatment to become blackened surfaces 23A and Z or 23B.
  • a protective layer 25A and / or 25B is provided on the blackened surface 23A and Z or 23B.
  • the conductive material portion 109 is laminated with a base material 11 made of a transparent film via an adhesive. After the lamination, the conductive material portion 109 is processed into a mesh shape by a photolithography method. If necessary, the metal layer side is flattened, and if necessary, a light absorber layer that absorbs visible light and / or near infrared light of a specific wavelength is provided.
  • an electromagnetic wave shielding sheet having such a conductive material portion 109 is arranged on the front surface of the display, electromagnetic waves generated from the display are shielded, but there is no unevenness in the density of the mesh, and a black or white dot-like line is formed. It has extremely few disadvantages and has appropriate transparency, that is, it can maintain good visibility of an image displayed on a display.
  • a metal layer 21 having sufficient conductivity such as gold, silver, copper, iron, aluminum, nickel, and chromium, to sufficiently shield electromagnetic waves.
  • the metal layer 21 may be an alloy or a multilayer, not a simple substance.
  • a low-carbon steel such as a low-carbon rimmed steel / low-carbon aluminum-killed steel, a Ni—Fe alloy, and a member alloy are preferable.
  • copper or a copper alloy foil is preferable because of ease of electrodeposition.
  • Electrolytic copper foil As the copper alloy foil, rolled copper foil or electrolytic copper foil can be used, but the uniformity of the thickness, the adhesion with the blackening treatment and / or the chromate (treatment) layer, and the thinness of less than 10 // ⁇ 1 Electrolytic copper foil is preferred because it can be formed into a film.
  • the thickness of the metal layer 21 is about 1 to 100 ⁇ , preferably 5 to 20 ⁇ . If the thickness is smaller than this, the mesh processing by the photolithography method becomes easy, but the electric resistance value of the metal increases and the electromagnetic wave shielding effect is impaired. On the other hand, if the thickness is larger than this, the desired high-definition mesh shape cannot be obtained. As a result, the actual aperture ratio is reduced, the light transmittance is reduced, and the viewing angle is reduced, so that the image angle is reduced. Visibility decreases.
  • the surface roughness of the metal layer 21 is preferably 0.5 to 10 ⁇ m in binary.
  • the surface roughness Rz is an average value of 10 points measured according to JIS-B0601. Below this, even if the blackening process is performed, the external light is specularly reflected, thereby deteriorating the visibility of the image. Above this, when applying adhesives or resists, they do not spread over the entire surface or bubbles are generated.
  • Mesh-shaped conductive material 10 to absorb external light, such as outdoor sunlight and indoor lighting, incident on the mesh surface of the electromagnetic wave shielding sheet 1 and improve the visibility of the display image
  • the black stake processing is performed on the observation side 9. This increases the sense of contrast.
  • the blackening treatment is performed by roughening and Z- or blackening the metal layer surface. Specifically, various techniques such as formation of metal oxides and metal sulfides can be applied.
  • an oxide film blackening film
  • an oxide film blackened film
  • a chemical treatment such as concentrated nitric acid
  • the treatment of preventing light reflection due to light absorption on the surface of the conductive member together with the roughening treatment and the blackening treatment is referred to as blackening treatment.
  • the preferred black density for the blackening treatment is 0.6 or more.
  • the black density was measured using the “GREOR S PM100-l lj” (product name, manufactured by Kimo Corporation) of “COLOR CONTROL SYSTEM” with an observation viewing angle of 10 degrees, an observation light source of D50, and an illumination type.
  • the test piece is measured after setting the “concentration standard ANS IT” and performing the white calibration.
  • the light reflectance of the blackening treatment is preferably 5% or less.
  • the light reflectance is measured using a haze meter HM150 (trade name, manufactured by Murakami Color Co., Ltd.) in accordance with JIS # 7105.
  • cationic particles copper particles, alloy particles of copper and another metal, and the like can be applied, but copper-cobalt alloy particles are preferable.
  • the use of copper-cobalt alloy particles significantly increases the degree of blackening and allows better absorption of visible light.
  • the color tone was represented by a color system “L *, a *, b *, and mu E *” based on JIS-Z8729.
  • the absolute values of “a *” and “b *” are small, the conductive material portion 109 becomes invisible and non-visible, and the sense of contrast of the image is enhanced. As a result, the visibility of the image is excellent.
  • “a * j” and “b *” can be reduced to almost zero as compared with copper particles.
  • the average particle size of the copper-coparte alloy particles is preferably 0.1 to 1 ⁇ m. If the particle diameter of the copper-cobalt alloy particles is further increased, the thickness of the metal foil 21 is reduced, and the workability is deteriorated by cutting the copper foil in the step of laminating the metal foil 21 on the base material. Unevenness is noticeable due to lack of dense appearance of dense particles. On the other hand, if the particle size is smaller than this, roughening is insufficient, and the effect of preventing external light reflection due to light absorption is insufficient, and the visibility of an image is deteriorated. (Insulation layer)
  • a protection layer 25A and / or 25B is provided.
  • Nickel, zinc, and / or copper oxide or a chromate-treated layer can be used as the protection layers 25A and 25B.
  • Nickel, zinc, and / or copper oxide may be formed by a known plating method.
  • the thickness is about 0.001 to: L ⁇ , preferably about 0.01 to 0.1 ⁇ um.
  • the chromate treatment is performed by applying a chromate treatment liquid to the material to be treated.
  • a chromate treatment liquid As the coating method, a lonore coat, a curtain coat, a squeeze coat, an electrostatic atomization method, an immersion method and the like can be applied. After application, it may be dried without washing with water.
  • a coating solution is applied to one surface by roll coating or the like, and when the chromate treatment is performed on both surfaces, an immersion method can be used.
  • the chromate treatment solution an aqueous solution of a normal C R_ ⁇ 2 containing 3 g Z l is used.
  • a chromate treatment solution in which a part of hexavalent chromium is reduced to trivalent chromium by adding a different oxycarboxylic acid compound to an aqueous solution of chromic anhydride can also be used.
  • carboxylic acid compound tartaric acid, malonic acid, citric acid, lactic acid, dalcholic acid, glyceric acid, tropic acid, benzylic acid, hydroxyvaleric acid and the like can be used alone or in combination. Since the reducibility differs depending on the compound, the amount added is determined based on the reducibility to trivalent chromium.
  • Alsurf 100 manufactured by Nippon Paint Co., Ltd., trade name of chromate treatment agent
  • PM-284 manufactured by Nippon Parkerizing Co., Ltd., trade name of chromate treatment liquid
  • a blackening treatment enhancement effect is exhibited in addition to the protection effect.
  • the blackened surface and the anti-reflection layer are provided on the observation side, they improve the contrast and improve the visibility of the image on the display.
  • stray light generated from the display is suppressed, so that the image visibility is also improved.
  • the base material 11 may be a copolymer resin containing these resins as a main component, a mixture (including alloy), or a laminate composed of a plurality of layers.
  • the substrate 11 may be a stretched film or an unstretched film, but is preferably a film stretched in a uniaxial or biaxial direction for the purpose of improving strength.
  • the thickness of the base material 11 is usually about 12 to 100 ⁇ , but is preferably 50 to 70 ⁇ and 100 to 500 ⁇ is optimal. is there. If the thickness is less than this, warpage or sagging occurs due to insufficient mechanical strength, and if the thickness is more than this, excessive performance results and waste is incurred.
  • Substrate 11 is a film, sheet, board composed of at least one layer of these resins These forms are collectively referred to as a film in this specification.
  • polyester films such as polyethylene terephthalate and polyethylene naphthalate are preferably used because of their high transparency and heat resistance and low cost.
  • Polyethylene terephthalate is optimal.
  • the higher the transparency, the better, and the visible light transmittance is preferably 80 ° / 0 or more.
  • the base film Prior to the application of the adhesive, the base film is treated with corona discharge treatment, plasma treatment, ozone treatment, flame treatment, primer (also called anchor coat, adhesion promoter, and easy-adhesive). Easy adhesion treatment such as heat treatment, dust removal treatment, vapor deposition treatment, alkali treatment, and the like can be performed. If necessary, additives such as a filler, a plasticizer, and an antistatic agent may be added to the resin film.
  • an adhesive or a pressure-sensitive adhesive is applied to one or both of the base material 11 and the conductive material layer 109, which is necessary. It is dried according to the conditions and is pressurized with or without heating. Thereafter, aging (curing) can be performed at a temperature of 30 to 80 ° C as necessary.
  • the lamination surface with the conductive material layer 109 is, for example, an ionomer resin, an ethylene-vinylinoleate copolymer, an ethylene- If it is a heat-adhesive resin such as an atalinoleic acid copolymer or an ethylene-acrylate copolymer, it is only necessary to apply pressure while heating.
  • the adhesive layer 13 can be omitted.
  • the conductive material layer 109 may be directly formed on the base material 11 by means such as electroless plating, a combination of electroless plating and electrolytic plating, and evaporation. Also in this case, the adhesive layer 13 can be omitted.
  • the adhesive examples include, but are not particularly limited to, acrylic resin, polyester resin, urethane resin, and vinyl chloride-vinyl acetate copolymer resin.
  • a method called a dry lamination method also referred to as dry lamination method
  • a thermosetting resin that is less likely to be stained or deteriorated by an etching solution and has good workability is preferable.
  • a UV-curable resin that is cured (reacted) by ionizing radiation such as ultraviolet (UV).
  • the dry lamination method is a method of applying a solvent in which an adhesive is dispersed or dissolved therein, and then drying and laminating the laminated substrates.Then, at 30 to 120 ° C for several hours to several hours. This is a method in which the adhesive is cured by aging for days, and two types of materials are laminated.
  • a non-solvent lamination method which is an improvement of the dry lamination method can also be used. This is done by laminating and laminating adhesive substrates that have been coated with the adhesive itself that is not dispersed or dissolved in the solvent and dried, and aged at 30 to 120 ° C for several hours to several days. This is a method of curing the adhesive and laminating two types of materials.
  • thermosetting adhesive an adhesive that is cured by heat or ionizing radiation such as ultraviolet rays or electron beams
  • thermosetting adhesive specifically, a two-component curing type adhesive, for example, a urethane-based adhesive made of an acrylic urethane-based resin, a polyester urethane-based resin, a polyether urethane-based resin, an acrylic adhesive, A polyester adhesive, a polyamide adhesive, a polybutyl acetate adhesive, an epoxy adhesive, a rubber adhesive, and the like can be used, but a two-component curable urethane adhesive is preferable.
  • polyfunctional isocyanates include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and polymethylene polyphenylene polyisocyanate; Polyfunctional isocyanates such as aliphatic (or alicyclic) polyisocyanates such as tylene diisocyanate, xylylene diisocyanate, and isophorone diisocyanate can be used.
  • polystyrene resin obtained by reacting these polyfunctional isocyanates with a hydroxyl group-containing compound can be used.
  • an adhesive containing a polyester polyurethane modified with a styrene-maleic acid copolymer polymer and an aliphatic polycyanate, which is not stained or deteriorated by an etching solution can be used.
  • an adhesive composition containing these components as a main component is dissolved or dispersed in an organic solvent, and is used for, for example, mouth coating, reverse roll coating, gravure coating, gravure reverse coating, gravure coating.
  • Lamination by applying to the substrate by a coating method such as offset coating, kiss coating, wire bar coating, comma coating, knife coating, dip coating, flow coating, spray coating, etc., and drying the solvent etc.
  • Adhesive layer can be formed.
  • a roll coating or reverse roll coating method is used.
  • the thickness of the adhesive layer in a dry state is about 0.1 to 20 ⁇ m, and preferably 1 to 10 ⁇ m.
  • the bonded substrates are laminated, and the adhesive is cured by aging at 30 to 120 ° C. for several hours to several days.
  • the base material is bonded.
  • the surface on which the adhesive is applied may be either the base material side or the conductive material part side.
  • the roughened copper foil side is preferred. In this case, the adhesive spreads over the entire rough surface to suppress the generation of bubbles.
  • the non-solvent lamination method is basically the same as the dry lamination method, but the adhesive composition is used without being dissolved or dispersed in an organic solvent. However, if necessary, the adhesive composition may be heated and heated to reduce the viscosity.
  • the pressure-sensitive adhesive a known pressure-sensitive adhesive that adheres with pressure can be used.
  • the pressure-sensitive adhesive is not particularly limited, and examples thereof include a natural rubber-based resin, a butyl rubber 'polyisoprene ⁇ polyisobutylene ⁇ polychloroprene styrene-butadiene copolymer resin.
  • Synthetic rubber resins silicone resins such as dimethylpolysiloxane, acryl resins, vinyl acetate polyvinyl acetate resins such as ethylene-vinyl acetate copolymer, urethane resins, acrylonitrile, and hydrocarbons Resin, alkylphenol resin, rosin, rosin-based triglyceride and hydrogenated rosin, etc.
  • the rubber-based adhesive includes chloroprene rubber, nitrile butadiene rubber, atarinore rubber, styrene butadiene rubber, styreneisoprene styrene, styrene butadiene styrene, styrene ethylene butadiene styrene, butinore rubber, polyisobutylene rubber, natural rubber, Adhesion to one or more adhesive rubbers, such as polyisoprene rubber, such as phenolic resin, modified phenolic resin, kedon resin, alkyd resin, rosin resin, cumarone resin, styrene resin, petroleum resin, and vinyl chloride resin A mixture of one or more materials is effective.
  • Rubber adhesives have better chemical resistance, swelling resistance, temperature resistance, adhesiveness, and peel strength than acrylic adhesives. Therefore, peeling does not occur even when the bonded portion is exposed to an acidic or alkaline substance. Rubber-based adhesives hardly hydrolyze in acidic or alkaline chemicals, and have a long adhesive life.
  • These resins or a mixture thereof are made into a latex, an aqueous dispersion or an organic solvent solution, and are printed or applied to one of the materials by a known printing method or a coating method such as screen printing or comma coating. The material is dried if necessary and then overlaid with the other material and pressed.
  • FIGS. 5 (A) and 5 (B) are a plan view and a side view for explaining processing from a winding roll.
  • Fig. 5 (A) is a plan view showing the state where the sheet is unwound from the take-up roll and extended, and the electromagnetic wave shielding sheet 1 is imposed at regular intervals. (Placed) has been.
  • FIG. 5 (B) is a side view showing a state where the conductive material layer 109 is unwound from a take-up roll and expanded, and a conductive material layer 109 is laminated on a base material 11.
  • the above-described blackened surface and the above-described anti-skin layer are formed on the conductive material layer 109 extended from the winding roll. Then, after the adhesive is applied to the protection layer and dried, the base material 11 is overlaid and pressed. Further, if necessary, aging (curing, hardening) is performed for several hours to several days in an atmosphere at 30 to 80 ° C., and the resultant is wound into a rewinding roll.
  • a resist layer is provided in a mesh pattern on the conductive material layer surface of the laminate, a portion of the conductive material layer that is not covered with the resist layer is removed by etching, and then the resist layer is removed (photolithography method). . Thereby, the conductive material layer becomes a mesh shape.
  • the conductive material layer 109 of the laminate of the base material 11 and the conductive material layer 109 is formed into a mesh shape by photolithography. This step is also performed on the band-shaped laminate wound in a roll. That is, the laminate is stretched without loosening, and is subjected to masking, etching, and resist stripping while being continuously or intermittently conveyed.
  • a photosensitive resist is applied on the conductive material layer 109. After drying, it is exposed in close contact with a plate (photomask) of a predetermined pattern (line portion of the mesh), developed with water, hardened, etc., and baked.
  • casein, PVA, gelatin, etc. are transferred to the conductive material layer 109 while the stretched strip-shaped laminate (substrate 11 and conductive material layer 109) is transported continuously or intermittently.
  • the resist is applied by a method such as diving (dipping), curtain coating, pouring, etc.
  • a dry film resist may be used instead of applying the resist, in which case workability can be improved.
  • this is carried out at 200 to 300 ° C.
  • this temperature is In order to prevent warpage of the laminate, the temperature is preferably as low as possible. (etching)
  • Etching is performed after the masking.
  • a solution of ferric chloride or cupric chloride that can be easily used in circulation is preferable.
  • This etching step is basically the same as the step of manufacturing a shadow mask for a color TV cathode-ray tube, which etches a strip having a continuous thickness of 20 to 80 ⁇ . Therefore, the existing equipment for manufacturing the shadow mask can be diverted and the operation can be continuously performed from masking to etching, which is extremely efficient.
  • the substrate is washed with water, stripped with an alkaline solution, and washed, and then dried.
  • the mesh portion 103 has a plurality of openings 105 surrounded by a line 107.
  • the shape of the opening 105 is not particularly limited. For example, triangles such as equilateral triangles and isosceles triangles, squares, rectangles, rhombuses, trapezoids, and other quadrangles, pentagons, hexagons (turtle shells), and octagons can be used. Square, round, oval, etc. can be applied. A plurality of these openings are combined to form a mesh.
  • the width W of the mesh portion 103 in the linear portion of the line 107 is within a predetermined value ⁇ 30%.
  • the radius of curvature of the side wall of the bank connecting the upper bottom and the lower bottom in the shape of the line cut surface orthogonal to the transparent substrate is set to 1.5 to 3.0 times the thickness of the conductive material layer.
  • the line width W of the mesh portion 103 is a constant value selected from the range of 5 to 25 im, and the pitch between the lines is from 150 to 500 ⁇ m. It is the chosen constant value.
  • the outer frame for grounding is used for the 1 to 50 mesh portion or the 0.15 to 15 mm portion that constitutes the mesh outer peripheral portion 104 around the outer periphery of the mesh portion 103, as described later.
  • the line width gradually increases in the 101 direction.
  • thousands or more straight lines are formed on an electromagnetic wave shielding sheet for a large plasma display panel, and they intersect each other.
  • the la In addition to providing electromagnetic wave shielding and moderate transparency, by suppressing variations in the line width of the inside and by regulating the radius of curvature of the bank side connecting the upper bottom and the lower bottom in the shape of the line cut surface, Electromagnetic wave shielding sheet with excellent image visibility, with less uneven shading of the mesh, less black and white dots and linear defects, less glare of display light, and less reflection of outside light. You can get one.
  • the variation in the line width can be suppressed to 14 ⁇ 4.2 ⁇ m, that is, 9.8 to 18.2 m. Within this range, there is almost no unevenness in the density of the mesh, and black and / or white dot and linear defects do not occur. If the line width is wider or narrower, uneven shading of the mesh will occur.
  • the variation in line width is large, when a human observes a display image, a portion having a large line width can be visually recognized as a black point defect, and a portion having a small line width can be visually recognized as a white point defect. If there are pons and white spots and Z or black spots in the entire image, humans feel extremely strong and uncomfortable.
  • the variation of the line width is set within a predetermined range by using the continuous photolithography method, so that the occurrence of uneven density of the mesh is extremely small, and There is no problem with electromagnetic wave shielding and transparency.
  • non-uniform mesh shading and black and / or white dot and linear defects also occur when resist is sprayed onto unnecessary parts during resist coating. It is extremely rare that such a phenomenon occurs.
  • control mode of the line width is different between the mesh portion 103 and the outer peripheral portion 104 of the mesh.
  • the line width W of the linear portion of the line 107 in the mesh outer peripheral portion 104 is controlled so as to gradually increase toward the grounding frame portion 101.
  • the mesh outer peripheral portion 104 is located between the mesh portion 103 and the grounding frame portion 101 so as to surround the mesh portion 103. That is, about 1 to 50 mesh or 0.15 to 15 mm from the inner periphery of the grounding frame 101 to the center of the mesh 103, Mesh outer peripheral portion 104 corresponds to 25 to 25 mesh, or 0.3 to 7.5 mm, more preferably 3 to 20 mesh, or 1.5 to 6.0 mm. .
  • the outer peripheral portion 104 of the mesh has a larger area, a shaded frame is visually recognized around the display, and the image feels small, and the visibility of the image is reduced.
  • the width may be increased continuously over (cells) or may be increased stepwise for each opening 105 (cell).
  • FIG. 6 is an enlarged plan view of a part of the outer peripheral portion 104 of the mesh according to the present embodiment.
  • the line width of the predetermined line portion 107 of the mesh portion 103 is W, and the line width Wl, W2, W3, ... of the mesh outer peripheral portion 104 toward the grounding frame portion 101.
  • W i,..., W n are W ⁇ W 1 ⁇ W 2 ⁇ W 3 ⁇ ⁇ W i ⁇ ⁇ W n.
  • the line width Wn corresponding to one cell is the same width.
  • the number n of widening steps is 1 or more, but preferably 2 or more, and the stress concentrated on the periphery of the mesh portion 103 is dispersed in multiple stages.
  • the aspect of the line width is not required to be common to all the lines, and W1, W2, W3, to Wn may be changed for each line.
  • a dry resist is attached on the conductive material layer 109, or a photosensitive resist is applied and dried, and then a pattern on a pattern plate used for contact exposure is used. May be changed to such a desired pattern.
  • the pattern plate corresponds to what a person skilled in the art calls a plate making film.
  • the photosensitive resist is a negative type (the exposed portion is hardened and remains), the portion corresponding to the opening 105 is opaque. The part corresponding to line 107 becomes a transparent plate making film (negative line film).
  • the photosensitive resist is positive type (the unexposed portion remains), the plate making film is a positive film.
  • the width of the portion corresponding to the line is set to a predetermined line width W in the region corresponding to the mesh portion 103, and the width of the peripheral edge In the area corresponding to the outer peripheral portion 104 of the shoe, it is preferable that the width is gradually (W ′ ⁇ ) W1 ⁇ W2 ⁇ W3 ⁇ 3 ⁇ Wn toward the grounding frame portion 101.
  • the bias angle that the line makes with the side (lower surface) of the end of the electromagnetic wave shielding sheet is 45 degrees in the example of FIG. 1, but is not limited to this, and the display angle is used to eliminate moire. Can be appropriately selected in consideration of the pixel and the light emission characteristic of the pixel.
  • the line portion 107 of the mesh has the thickness of the conductive material layer, but the opening portion 105 is formed as a concave portion by removing the conductive material layer. That is, the conductive material portion 109 is in an uneven state.
  • an adhesive or a pressure-sensitive adhesive is applied in the next step, the unevenness is filled with the adhesive or the like.
  • the air in the concave portion is not completely replaced with an adhesive or the like and tends to remain as air bubbles. If air bubbles remain, light will be scattered at the interface between the air bubbles and the adhesive, and the haze will increase.
  • the concave portion is filled with a transparent resin and planarized before bonding.
  • the transparent resin As flattening, a transparent resin is applied to the rounded portion and embedded, but if the transparent resin does not penetrate into every corner of the concave portion, bubbles remain and the transparency deteriorates. For this reason, the transparent resin is diluted with a solvent or the like and applied with low viscosity and dried, or is applied while degassing the air. As described above, the flattening layer 29 (see FIG. 7 or FIG. 3) is formed.
  • the flattening layer 29 preferably has high transparency, good adhesion to the mesh conductive material, and good adhesion to the adhesive in the next step. However, it is preferable that the surface of the flattening layer 29 has protrusions, dents, and unevenness, because when the electromagnetic wave shielding sheet 1 is installed in front of the display, moire, interference unevenness, Newton's ring, and the like are generated. Absent.
  • a preferable method is to apply a thermosetting resin or an ultraviolet curing resin as a resin, then laminate a base material having excellent flatness and releasability, and cure the previously applied resin with heat or ultraviolet light to obtain a release property. The substrate is peeled and removed.
  • the surface of the flat base material is transferred to the surface of the flattening layer 29 to form a smooth surface.
  • the resin used for forming the planarization layer 29 is not particularly limited, and various natural or synthetic resins, thermosetting resins, ionizing radiation-curable resins, and the like can be used. Above all, acrylic UV curable resin is preferred because of its durability, applicability, flatness, flatness, etc.
  • a light absorber that absorbs a specific wavelength of visible and / or near-infrared light may be added to the resin used for forming the flattening layer 29. Absorbing specific wavelengths of the visible and Z or near infrared reduces discomfort and improves image visibility.
  • the near-infrared specific wavelength band is a band of about 780 to 1,200 nm, particularly about 800 to 1,100 nm. It is desirable to absorb at least 80% of the wavelength range of 780 to 1200 nm.
  • the near-infrared absorber (referred to as NIR absorber) is not particularly limited, but has a sharp absorption in a near-infrared band, has a high light transmittance in a visible light band of 380 to 780 nm, and has a high light transmittance in a visible light band.
  • a dye having no specific absorption at a specific wavelength can be used.
  • the visible light emitted from the PDP usually has a lot of orange, which is a light emission spectrum of a neon atom, so that the color tone of the image shifts to orange rather than natural color. In order to correct this, it is preferable to add a color-absorbing light-absorbing agent having a characteristic of absorbing a wavelength around 570 to 605 nm to some extent.
  • Examples of near-infrared absorbing agents include cyanine-based compounds, phthalocyanine-based compounds, naphthalocyanine-based compounds, naphthoquinone-based compounds, anthraquinone-based compounds, dithiol-based complexes, inmodium-based compounds, and diimmonium-based compounds.
  • Examples of light absorbers for color tone correction include phthalocyanine compounds.
  • another layer having an NIR absorber may be provided on at least one surface.
  • the NIR absorption layer can be provided on the planarization layer 29 side and the substrate 11 side on the Z or opposite side.
  • the case provided on the flattening layer 29 side is the NIR absorption layer 31B shown in FIG.
  • the case provided on the substrate 11 side is the NIR absorption layer 31A shown in FIG.
  • the NIR absorption layer 31B and the NIR absorption layer 31A can be formed by laminating a commercial film having NIR absorbent (for example, Toyobo Co., Ltd., trade name: No 2832) with an adhesive, An absorbent was applied to a pinda.
  • NIR absorbent for example, Toyobo Co., Ltd., trade name: No 2832
  • a polyester resin, a polyurethane resin, an acrylic resin, a curable resin utilizing a reaction of an epoxy, acrylate, meta-acrylate, isocyanate group or the like which is cured by heat or ultraviolet rays can be applied.
  • the color-absorbing light absorbing agent can be similarly laminated as a layer different from the flattening layer 29.
  • an antireflection layer (referred to as an AR layer) may be provided on the observation side of the electromagnetic wave shielding sheet.
  • the anti-reflection layer is for preventing the reflection of visible light, and various single-layer and multilayer products are commercially available.
  • high refractive index layers and low refractive index layers are alternately laminated.
  • the high refractive index layer include niobium oxide, titanium oxide, zirconium oxide, and ITO.
  • Examples of the low refractive index layer include silicon oxide and magnesium fluoride.
  • a hard coat layer, an antifouling layer, and an antiglare layer may be provided in addition to the antireflection (AR) layer.
  • the hard coat layer is a layer having a hardness of H or more in the pencil hardness test of JIS-K540, and is obtained by curing a polyfunctional acrylate such as polyester acrylate, urethane acrylate, epoxy acrylate with heat or ionizing radiation.
  • the antifouling layer is a water- and oil-repellent coat to which a siloxane-based or fluorinated alkylsilyl compound can be applied.
  • the anti-glare layer is a layer having a fine uneven surface that irregularly reflects external light.
  • the electromagnetic wave shielding sheet 1 is attached to a transparent substrate such as glass. If necessary, it is combined with the NIR absorption layer, AR layer, hard coat layer, antifouling layer, and antiglare layer to form a display front panel.
  • the substrate As the substrate, a substrate having a sufficient rigidity with a thickness of 1 to 1 Omm is used for a large-sized display. For small displays such as character display tubes, plastic films with a thickness of 0.01 to 0.5 mm are used. That is, the substrate can be appropriately selected according to the size and use of the display.
  • the electromagnetic wave shielding sheet 1 is combined with a display front plate and then installed on the front of the display. For this reason, the substrate 11 side is the observation side. However, the electromagnetic wave shielding sheet 1 may be directly adhered to the front of the display.
  • FIG. 7 is a cross-sectional view of the electromagnetic wave shielding sheet of the present invention adhered to a display surface.
  • the observation side is the mesh-shaped metal foil side, and a blackened surface and a protection layer are sequentially provided on both sides of the metal foil.
  • the electrodes can be easily pulled out and the ground can be easily taken.
  • the black surface on which the grounding frame portion 101 has been blackened is the observation side, the black printing that was performed on the front glass plate in the form of a frame becomes unnecessary, and the process can be shortened, and the cost can be reduced. It is advantageous.
  • the surface is blackened by copper-cobalt alloy particles with an average particle diameter of 0.3 / m, and a chromate (treatment) is added to prevent and blacken the layer.
  • m of electrolytic metal foil was used.
  • the conductive material of the chromate (treatment) layer thickness 1 0 0 mu 2 biaxially stretched polyethylene terephthalate m (PET) film A 4 3 0 0 (manufactured by Toyobo Co., Ltd., trade name) and is, two-component curable Laminated with a polyurethane adhesive, and then aged at 56 ° C for 4 days.
  • the adhesive used is Takeraq A—a base material made of polycarbonate and cured with polyisocyanate.
  • Agent A 10 (all manufactured by Takeda Pharmaceutical Co., Ltd., trade name) was used, and the applied amount was 7 ⁇ in thickness after drying.
  • the mesh formation by the photolithography method was carried out by diverting a production line for a color TV shadow mask that performs from masking to etching on a continuous band-shaped member. Specifically, first, a photosensitive resist made of casein was applied to the entire surface of the conductive material layer by a flowing method. Next, the conductive material layer was transported to the next station, and was tightly exposed using a pattern plate having the following shape and a high-pressure mercury lamp. Thereafter, the conductive material layer was developed with water, hardened, and baked at 100 ° C. while being conveyed to each station one after another.
  • the shape of the above-mentioned pattern plate is as follows.
  • the mesh part has a square opening, a line width of 22 m, a line interval (pitch) of 300 ⁇ ; ⁇ , a bias angle of 49 degrees, and a 5 mm wide mesh periphery.
  • the line width increases continuously from 22 ⁇ to the grounding frame, and is 40 ⁇ at the part in contact with the grounding frame, and the width of the grounding frame (earth part) is 5 ⁇ . mm.
  • the conductive material layer is further conveyed to the next station, and spraying is performed by spraying a ferric chloride solution at a temperature of 40 ° C. and a temperature of 40 ° Pome as an etchant, thereby forming an opening by spraying.
  • spraying is performed by spraying a ferric chloride solution at a temperature of 40 ° C. and a temperature of 40 ° Pome as an etchant, thereby forming an opening by spraying.
  • the conductive material layer was washed with water, the resist was peeled off, washed, and further dried at 100 ° C. while being sequentially conveyed to each station.
  • the sheet for shielding electromagnetic waves of Example 1 was obtained.
  • the opening is square
  • the line width is the same up to the grounding frame, 2 2 / xm
  • the line interval (pitch) is 300 / xm
  • the bias angle is 4 At 9 degrees, the other conditions were the same as in Example 1.
  • the electromagnetic wave shielding sheet of Comparative Example 1 was obtained.
  • a planarizing layer composition having the following composition was applied to the mesh portion and the outer peripheral portion of the mesh in Example 1. Cloth was used to fill the opening recess. Then, a 50 ⁇ SP-PET 20-BU (Tocelo, surface release treatment ⁇ ⁇ Film brand name) was laminated and exposed to 20 Om j Zcm 2 using a high-pressure mercury lamp (36 5 Then, the SP-PET 20-BU was peeled off to obtain the electromagnetic wave shielding sheet of Example 2 in which the mesh portion and the outer periphery of the mesh were flattened. The sheet had the same performance as in Example 1.
  • N-vinyl-2-pyrrolidone 20 parts by mass, dicyclopentiel atalylate 25 parts by mass, and oligoester atalylate As the composition of the planarizing layer, N-vinyl-2-pyrrolidone 20 parts by mass, dicyclopentiel atalylate 25 parts by mass, and oligoester atalylate (Toa Gosei).
  • the flattening layer composition of Example 2 contained 1 part by mass of a thiol-nickel complex as a near-infrared absorber. Otherwise, in the same manner as in Example 2, the electromagnetic wave shielding sheet of Example 3 was obtained. The sheet for shielding electromagnetic waves had the same performance as that of Example 1, and the visibility of the display image was further improved.
  • An NIR absorption film No. 2832 (manufactured by Toyobo Co., near-infrared absorption film) was laminated on the flattening layer of Example 2 with an adhesive. Otherwise, in the same manner as in Example 2, the electromagnetic wave shielding sheet of Example 4 was obtained.
  • the electromagnetic wave shielding sheet had the same performance as that of Example 1, and the visibility of the display image was even better.
  • Example 1 was the same as Example 1 except that the particle diameter was continuously increased from 20 ⁇ m toward the grounding frame, and was 26 ⁇ at the portion in contact with the grounding frame. As a result, an electromagnetic wave shielding sheet of Example 5 was obtained. (Example 6)
  • the shape of the pattern plate is as follows: the mesh portion has a square opening, a line width of 20 ⁇ , and a line interval (pitch). ⁇ !, the bias angle is 60 degrees,
  • Example 1 was the same as Example 1 except that the line width was continuously increased from 20 m to the grounding frame at the outer periphery of the 3 mm wide mesh, and was 26 / im at the part in contact with the grounding frame. Same as above. As a result, an electromagnetic wave shielding sheet of Example 6 was obtained.
  • the shape of the above pattern plate is as follows: mesh part, square opening, line width 20 ⁇ , line interval (pitch) 300 / im, bias angle 49 degrees, 25 mesh
  • the line width gradually increases by 1.0 m per cell from 20 / m to the grounding frame, and comes into contact with the grounding frame.
  • Example 7 Except that the length was 45 m, the procedure was the same as in Example 1. As a result, an electromagnetic wave shielding sheet of Example 7 was obtained.
  • the shape of the above pattern plate is as follows: the mesh part has a square opening, a line width of 20 ⁇ , a line interval (pitch) of 300 ⁇ ⁇ , a bias angle of 49 degrees, and a mesh periphery of 5 meshes. Except that the line width gradually increased by 3.0 ⁇ m per cell from 20 ⁇ m to the grounding frame, and was 35 ⁇ at the part in contact with the grounding frame. It was the same as in Example 1. As a result, an electromagnetic wave shielding sheet of Example 8 was obtained.
  • Example 1 a resist pattern plate having a mesh part line width of 2 2 / m was used, but the actual mesh part line width after etching was 7 to 17 / m. Furthermore, the actual line width of the outer periphery of the mesh after etching is 7 to 1 at the portion in contact with the mesh portion and 17 to 29 ⁇ m at the portion in contact with the grounding frame.
  • the line width of the actual mesh portion after etching was 10 to 16 ⁇ from the portion in contact with the mesh portion to the portion immediately before contact with the grounding frame portion. There was a large variation between 5 and 20 ⁇ at the contact area.
  • Example 2 a flattening layer similar to that of Example 2 was formed on each one sheet of the electromagnetic wave shielding sheets of Example 1 and Comparative Example 1. As a result, a flattening layer was formed without any abnormality on the 100 sheets of Example 1, but in Comparative Example 1, disconnection occurred in two sheets and the yield was low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

明 細 書 電磁波遮蔽用シート 技 術 分 野
本発明は、 電磁波を遮蔽 (シールドともいう) するためのシートに関し、 さら に詳しくは、 CRT、 PDPなどのディスプレイの前面に配置されて、 当該ディ スプレイから発生する電磁波を遮蔽するためのシートに関する。 背 景 技 術
(技術の概要)
近年、 電気電子機器の機能の高度化と利用の増加とに伴い、 電磁気的なノイズ 妨害 (E l e c t r o Ma g n e t i c I n t e r f e r e n c e ; EM I ) が増えている。 電磁波ノイズは、 大きく分けて、 伝導ノイズと放射ノイズと がある。
伝導ノイズを除去する方法には、 ノイズフィルタなどを用いる方法がある。 一 方、 放射ノイズを除去する方法には、 電磁気的に空間を絶縁するべく、 金属の筐 体を利用したり、 回路基板間に金属板を揷入したり、 ケーブルを金属箔で巻くな どの方法がある。 これらの方法は、 回路や電源ブロックの電磁波遮蔽に効果があ る。 しかしながら、 これらの部材は不透明であるので、 CRTやプラズマデイス プレイパネル (PDPという) などのディスプレイの前面より発生する電磁波の 遮蔽には適さない。
プラズマディスプレイパネルは、 データ電極と蛍光層を有するガラスと透明電 極を有するガラスとの組合体である。 このようなプラズマディスプレイパネルが 作動すると、 電磁波、 近赤外線及び熱が大量に発生する。
通常、 電磁波を遮蔽するために、 プラズマディスプレイパネルの前面には前面 板が設けられる。 ディスプレイ前面から発生される電磁波の遮蔽性としては、 3 OMH z〜 1 GH zの電磁波に関して、 30 d B以上の機能が必要である。 また、 ディスプレイ前面より発生される波長 800~ 1, l O O nmの近赤外 線も、 他の V T Rなどの機器を誤作動させ得る。 従って、 近赤外線も電磁波と同 様に遮蔽する必要がある。 '
さらに、 ディスプレイに表示された画像を視認しゃすくするため、 電磁波遮蔽 用の前面板 (シート) は、 金属メッシュのライン部が見えにくく、 また、 メッシ ュの乱れがなく、 すなわち、 適度な透明性 (可視光透過性、 可視光透過率) を有 することが必要である。
さらにまた、 プラズマディスプレイパネルは、 一般に大型画面を特徴としてい る。 従って、 電磁波遮蔽用シートの大きさ (外形寸法) も、 例えば、 3 7型では 6 2 1 X 8 3 1 mm, 4 2型では 9 8 3 X 5 8 3 mmもあり、 さらに大型のサイ ズもある。 このため、 電磁波遮蔽用シートの製造からディスプレイへの組立まで の各工程において、 接地用枠部とメッシュ部との境界が断/锒しゃすく、 すなわち、 ,ンドリング適性が極めて悪かった。 .
(先行技術)
電磁波遮蔽用の前面板 (シート) には、 電磁波遮蔽性と、 適度な透明性 (可視 光の透過率) と、 優れたハンドリング適性と、 が求められている。
ディスプレイ画像の視認性を向上させるために、 基板と透明アンカ層とメッシ ュパターン状の無電解メツキ層とからなり、 無電解メツキにより無電 #メツキ層 下の透明アンカー層が黒色パターン部に変えられている電磁波シールド材料を、 特開平 5— 2 8 3 8 8 9号公報が開示している。
また、 電磁波遮蔽シートの金属メッシュの表面に酸化銅被膜を形成して、 外光 の反射を押さえる方法を、 特開昭 6 1 - 1 5 4 8 0号公報が開示している。
また、 電磁波遮蔽シートの金属メッシュをフォトレジスト法で形成する際に用 いた黒色レジストを、 メッシュを開孔した後もそのまま残存させて、 メッシュの ライン部を黒くしておく方法を、 特開平 0 9— 2 9 3 9 8 9号公報が開示してい る。
さらには、 銅箔に幾何学図形をフォトリソグラフィ法で形成した銅箔付きブラ スチックフィルムをプラスチック板に積層した電磁波遮蔽構成体を、 特開平 1 0 - 3 3 5 8 8 5号公報が開示している。 メッシュ状の金属層を用いる上記のいずれの方法も、 金属メッシュのライン幅 は一定を目標として作成されている。 し力 し、 実際には、 メッシュ部と接地用枠 部との境界部分におけるメッシュ及ぴラインの乱れの発生は、 特に搬送時におい て免れ難い。 また、 メッシュ部と接地用枠部との境界部分では、 剛度が極端に不 連続的に変化する。 このため、 電磁波遮蔽用シートの製造工程からディスプレイ への組立、 組付までの各工程において、 当該境界部分に集中する応力によって、 折れ曲がりや断線が発生し得る、 すなわち、 ハンドリング適性が極めて悪い。 こ のため、 高価な部品を無駄にすることが多い、 という欠点がある。 発 明 の 要 旨
本発明はこのような問題点を解消するためになされたものである。 その目的は、 C R T、 P D Pなどのディスプレイの前面に配置されて、 ディスプレイから発生 される電磁波を遮蔽する一方、 メッシュの乱れがなくてディスプレイ画像の良好 な視認性を維持でき、 かつ、 大型であっても製造から組立までの全工程でメッシ ュのラインの折れなどの不良が発生せずハンドリング適性に優れた電磁波遮蔽用 シー小を提供することである。
本発明は、 透明基材と、 前記透明基材の一方の面に積層された金属層と、 を備 え、 前記金属層は、 メッシュ状のメッシュ部と、 前記メッシュ部を取り囲むメッ シュ状のメッシュ外周部と、 前記メッシュ外周部を取り囲む接地用枠部と、 を有 しており、 前記メッシュ外周部のメッシュを構成するラインのライン幅は、 メッ シュ部から接地用枠部に向かって漸次拡幅していることを特徴とする電磁波遮蔽 用シートである。
本発明の電磁波遮蔽用シートは、 C R T、 P D Pなどのディスプレイの前面に 配置された時、 当該ディスプレイから発生される電磁波を遮蔽する一方、 メッシ ュの乱れがなくてディスプレイ画像の良好な視認性を維持でき、 かつ、 大型であ つても製造から組立までの全工程でメッシュのラインの折れなどの不良が発生せ ず、 すなわち、 ハンドリング適性に優れる。
一般には、 前記メッシュ部のメッシュを構成するラインのライン幅は、 一様で あ 。 好ましくは、 前記メッシュ外周部は、 前記接地用枠部から前記メッシュ部に向 かう方向に、 1〜5 0個、 特には 1〜2 5個、 のメッシュを含んでいる。
あるいは、 好ましくは、 前記メッシュ外周部は、 前記接地用枠部から前記メッ シュ部に向かう方向に、 0 . 1 5〜1 5 mm、 特には 0 . 3〜7 . 5 mm、 の幅 を有している。
また、 好ましくは、 前記メッシュ外周部のメッシュを構成するラインのライン 幅は、 メッシュ部から接地用枠部に向かって、 連続的に拡幅している。 あるいは、 好ましくは、 前記メッシュ外周部のメッシュを構成するラインのライン幅は、 メ ッシュ部から接地用枠部に向かって、 段階的に拡幅している。 これらの場合、 ノヽ ンドリング適性が極めてよく、 折れ曲がりや折りくせの発生が防止され、 高価な 部品を無駄にすることがない。
また、 好ましくは、 前記金属層の少なくとも一方の面が、 黒化処理される。 こ の場合、 メッシュ自体が黒くなるため、 額縁状に黒色印刷する工程も不要で、 デ イスプレイ画像の良好な視認性を長期間にわたって維持できる (画面のギラツキ が防止される) 。 また、 この場合、 前記金属層の少なくとも黒化処理された面に、 防鑌層が設けられることが好ましい。
また、 好ましくは、 前記メッシュ部及び前記メッシュ外周部の少なくともメッ シュの開口部が樹脂で充填されて、 前記金属層が実質的に平坦化されている。 こ の場合、 メッシュの開口部の凹凸が埋められるため、 種々の作業性が向上する。 この場合、 前記樹脂は、 波長 5 7 0〜6 0 5 n mの可視の帯域の光を吸収する 色調補正用光線吸収剤、 及び Zまたは、 波長 8 0 0〜 1 1 0 0 n mの近赤外の帯 域の光を吸収する近赤外線吸収剤、 を含有していることが好ましい。
また、 好ましくは、 少なくとも一方の面に、 波長 5 7 0〜6 0 5 n mの可視の 帯域の光を吸収する色調補正用光線吸収剤層、 及び/または、 波長 8 0 0〜1 1 0 0 n mの近赤外の帯域の光を吸収する近赤外線吸収剤層、 が設けられる。
なお、 本発明の電磁波遮蔽シートは、 その基材面を P D Pディスプレイ側に設 置することができる。 この場合、 電極の引き出し工数を低減できる。 図面の簡単な説明 図 1は、 本発明の一実施の形態の電磁波遮蔽用シ^"トの平面図である。
図 2は、 本発明の一実施の形態の電磁波遮蔽用シートの一部を模式的に示す斜 視図である。
図 3 (A) は、 図 2の A— A線断面図であり、 図 3 (B ) は、 図 2の B— B線 断面図である。
図 4は、 導電材層の構成を説明する断面図である。
図 5 (A) は、 卷取りロールからの加工を説明する平面図であり、 図 5 (B) は、 同側面図で'ある。
図 6は、 本発明の一実施の形態のメッシュ外周部の一部の拡大平面図である。 図 7は、 ディスプレイ面へ貼着された本発明の一実施の形態の電磁波遮蔽用シ ートの断面図である。 発明を実施するための最良の形態
以下、 本発明の実施態様について、 図面を参照して詳細に説明する。
(全体の構成)
図 1は、 本発明の一実施の形態の電磁波遮蔽用シートの平面図である。 図 2は、 本発明の一実施の形態の電磁波遮蔽用シートの一部を模式的に示す斜視図である。 図 1に示すように、 本発明の一実施の形態の電磁波遮蔽用シート 1は、 内側中 心部に存在するメッシュ部 1 0 3と最外周部に存在する接地用枠部 1 0 1とを備 えている。 接地用枠部 1 0 1は、 ディスプレイに設置された場合に、 アースがと られる。
メッシュ部 1 0 3においては、 図 2に示すように、 基材 1 1の一方の面に接着 剤層 1 3を介して導電材層 1 0 9が積層されている。 該導電材層 1 0 9は、 複数 の開口部 1 0 5を密に形成するメッシュ状である。 各メッシュは、 開口部 1 0 5 の枠をなすライン部 1 0 7によって構成されている。 ライン部 1 0 7の幅は、 ラ イン幅 Wと称され、 ラインとラインとの間隔がピッチ Pと称される。
メッシュ部 1 0 3と接地用枠部 1 0 1との間に、 メッシュ外周部 1 0 4が配置 されている。 メッシュ外周部 1 0 4も、 メッシュ部 1 0 3と略同様のメッシュ状 であるが、 メッシュ外周部 1 0 4の各メッシュのラインのライン幅は、 メッシュ 部 1 0 3から接地用枠部 1 0 1に向かって漸次拡幅されている。
(層の構成)
図 3 (A) は、 図 2の A— A線断面図であり、 図 3 (B ) は、 図 2の B— B線 断面図である。 図 4は、 導電材層の構成を説明する断面図である。
図 3 (A) は、 開口部を横断する断面を示し、 開口部 1 0 5とライン 1 0 7と が交互に現れている。 図 3 ( B ) は、 ライン 1 0 7を縦断する断面を示し、 導電 材層 1 0 9からなるライン 1 0 7が連続して現れている。 導電材層 1 0 9は、 金 属層 2 1を有し、 少なくともその観察面、 本実施の形態では両面に、 黒化処理が なされている。 さらに、 黒化処理された面 2 3 A及び 2 3 Bを覆うように、 防鲭 層 2 5 A及ぴ 2 5 Bが設けられている。 防鲭層は、 少なくとも黒化処理された面 にのみ設けられればよい。
防鲭層 2 5 A、 2 5 Bは、 金属層 2 1及びその黒化処理された面 2 3 A、 2 3 Bの防鲭機能を持ち、 かつ、 黒化処理された面 2 3 A、 2 3 Bの脱落も防止する。 また、 金属層 2 1をエッチング加工してメッシュを形成する際に、 基材 1 1に隣 接する防鲭層 2 5 Aが開口部 1 0 5に於いても残るようにエッチングすることに より、 防鲭層 2 5 Aは腐蝕液から基材 1 1及び接着剤層 1 3をも保護する。 金属 層 2 1の他方の面に黒化処理された面 2 3 B及び防鲭層 2 5 Bを設けることは、 任意である。 すなわち、 両面に黒化処理された面 2 3 A、 2 3 B及び防鲭層 2 5 A、 2 5 Bを設けることは任意である。 要するに、 少なくとも観察側に黒化処理 された面及ぴ防鲭層を設けること、 及び、 基材 1 1側全面 (開口部、 ライン部共 に) に防鲭層 2 5 Aを設けること、 が好ましい。
(発明のポイント)
本発明の電磁波遮蔽用シート 1では、 メッシュ部 1 0 3と接地用枠部 1 0 1と の間に、 メッシュ外周部 1 0 4が設けられている。 メッシュ外周部 1 0 4におけ るメッシュのライン 1 0 7の直線部におけるライン幅 Wが、 メッシュ部 1 0 3力 ら接地用枠部 1 0 1に向かって、 漸次大きくなるようになっている。 メッシュ外周部 1 0 4を形成する領域は、 接地用枠部 1 0 1の内周からメッシ ュ部 1 0 3に向かって、 1〜5 0メッシュ又は 0 . 1 5〜1 5 mm程度、 好まし くは 1〜2 5メッシュ又は 0 . 3〜7 . 5 mms さらに好ましくは 3〜 2 0メッ シュ又は 1 . 5 ~ 6 . O mmの部分である。
ライン幅は、 連続的 (図 6参照) 又は段階的 (図 1参照) に大きくなつている。 ライン幅が段階的に大きくなる場合、 図 1のように 1段階でもよいが、 応力の集 中を効果的に分散させるためには、 2段階以上である方が好ましい。
メッシュ外周部 1 0 4のライン 1 0 7のライン幅 Wがメッシュ部 1 0 3力 ら接 地用枠部 1 0 1に向かって漸次大きくなることにより、 メッシュ部から接地用枠 部まで剛度が徐々に変化する。 すなわち、 従来において極端であった剛度の変化 が、 大幅に緩和される。 これにより、 肖該電磁波遮蔽用シートの製造工程からデ イスプレイへの組立、 組付工程までの各工程において、.ハンドリング適性が極め てよくなる。 すなわち、 折れ曲がりや折りくせの発生が防止され、 接地用枠部と メッシュ部の境界部分等でメッシュの断線が ¾生することも防止され、 高価な部 品を無駄にすることがない。
プラズマディスプレイパネルは、 大型画面を特徴としている。 このため、 電磁 波遮蔽用シートの大きさ (外形寸法) は、 例えば、 3 7型では 6 2 0 X 8 3 O m m程度、 4 2型では 5 8 0 X 9 8 O mm程度もあり、 さらに大型のサイズもある。 このため、 電磁波遮蔽用シートの製造工程からディスプレイへの組立、 組付工程 まで各工程において、 ハンドリング適性は極めて重要である。 従来の電磁波遮 用シートでは、 接地用枠部とメッシュ部の境界部分で断線したり、 折れ曲がった りして、 高価な部品を無駄にすることがあった。
なお、 本明細書では、 本発明の電磁波遮蔽用シートを主に C R T、 P D Pなど のディスプレイに利用することが説明されているが、 本発明の電磁波遮蔽用シー トは、 ディスプレイ以外の装置からの電磁波を遮蔽する用途にも使用できる。
(製造方法の概略)
まず、 少なくとも観察側に黒ィヒ処理面及ぴ防鲭層が設けられた導電材層 1 0 9 が用意される。 当該導電材層 1 0 9力 透明なフィルム状の基材 1 1の一方の面 に、 接着剤層 1 3を介して積層される。 その後、 導電材層 1 0 9にレジスト層が メッシュパターン状に設けられ、 レジスト層で覆われていない部分の導電材層 1 0 9がエッチングにより除去され、 その後レジスト層が除去される (所謂フォト リソグラフィ法) 。
本実施の形態の電磁波遮蔽用シート 1は、 既存のシャドウマスク等のシート状 の部材のエッチング設備を使用して製造され得る。 また、 製造工程の多くを連続 的に行うことができるため、 品質及び歩留まりが高く、 また、 生産効率も高い。 以下、 本実施の形態の電磁波遮蔽用シート 1の、 各層の材料及び形成方法につ いて説明する。
本実施の形態の電磁波遮蔽用シートの導電材部 1 0 9においては、 金属層 2 1 の少なくとも一方の面が黒化処理されて黒化処理面 2 3 A及び Z又は 2 3 Bとな つており、 さらに、 当該黒化処理面 2 3 A及び Z又は 2 3 B上に防鲭層 2 5 A及 び/又は 2 5 Bが設けられている。
導電材部 1 0 9は、 接着剤を介して、 透明フィルムから成る基材 1 1と積層さ れる。 積層の後に、 フォトリソグラフィ法によって、 導電材部 1 0 9がメッシュ 状に加工される。 必要に応じて、 金属層側が平坦化され、 さらに必要に応じて、 特定波長の可視光線及び/又は近赤外線を吸収する光線吸収剤層が設けられる。 このような導電材部 1 0 9を有する電磁波遮蔽用シートをディスプレイの前面 に配置すると、 ディスプレイから発生する電磁波が遮蔽される一方、 メッシュの 濃淡ムラがなく、 黒又は白の点状線状の欠点が極めて少なく、 適度の透明性を有 し、 すなわち、 ディスプレイに表示された画像の良好な視認性を維持することが できる。
電磁波を遮蔽する導電材層 1 0 9としては、 例えば金、 銀、 銅、 鉄、 アルミ二 ゥム、 ニッケル、 クロムなど、 充分に電磁波をシールドできる程度の導電性を持 つ金属層 2 1が利用される。 金属層 2 1は、 単体でなく、 合金あるいは多層であ つてもよレ、。 金属層 2 1としては、 鉄の場合には、 低炭素リムド鋼ゃ低炭素アル ミキルド鋼などの低炭素鋼、 N i— F e合金、 ィンバー合金が好ましい。 また、 カソーディック電着を行う場合には、 電着のし易さから、 銅又は銅合金箔が好ま しい。 銅合金箔としては、 圧延銅箔や電解銅箔が使用できるが、 厚さの均一性、 黒化処理及び/又はクロメート (処理) 層との密着性、 及び、 1 0 // Π1以下の薄 膜化ができる点から、 電解銅箔が好ましい。
金属層 2 1の厚さは 1〜1 0 0 ιη程度、 好ましくは 5〜2 0 μ ΐηである。 こ れ以下の厚さでは、 フォトリソグラフィ法によるメッシュ加工は容易になるが、 金属の電気抵抗値が増え電磁波遮蔽効果が損なわれる。 一方、 これ以上の厚さで は、 所望する高精細なメッシュの形状が得られず、 その結果、 実質的な開口率が 低くなって光線透過率が低下し、 さらに視角も低下して画像の視認性が低下する。 金属層 2 1の表面粗さとしては、 2値で0 . 5〜 1 0 μ mが好ましい。 表面 粗さ R zとは、 J I S— B 0 6 0 1に準拠して測定された 1 0点の平均値である。 これ以下では、 黒化処理しても外光を鏡面反射して、 画像の視認性を劣化させる。 これ以上では、 接着剤やレジストなどを塗布する際に、 表面全体へ行き渡らなか つたり気泡が発生したりする。
(黒化処理)
電磁波遮蔽用シート 1のメッシュ部表面に入射する屋外の日光、 室内の電灯光 などの外光を吸収させて、 ディスプレイの画像の視認性を向上するために、 メッ シュ状の導電材部 1 0 9の観察側に黒ィ匕処理が行われる。 これにより、 コントラ スト感が増大される。
黒化処理は、 金属層面を粗ィヒ及び Z又は黒ィヒすることで行われる。 具体的には、 金属酸化物や金属硫化物の形成等の種々の手法が適用できる。
鉄の場合には、 通常、 スチーム中で 4 5 0〜4 7 0 °C程度の温度に 1 0〜2 0 分間さらされて、 l ~ 2 / m程度の酸化膜 (黒化膜) が形成される。 あるいは、 濃硝酸などの薬品処理によって酸化膜 (黒化膜) が形成されてもよい。
また、 銅箔の場合には、 硫酸、 硫酸銅及び硫酸コバルトなどからなる電解液中 で陰極電解処理を行って、 カチオン性粒子を付着させるカソーディック電着を行 うことが好ましい。 カチオン性粒子を付着させることにより、 粗化を実現すると 同時に黒色が得られる。 カチオン性粒子としては、 銅粒子、 銅と他の金属との合 金粒子、 等が適用できるが、 好ましくは、 銅-コバルト合金の粒子である。 本明細書では、 粗化処理及び黒色化処理を合わせて、 導電部材表面の光吸収に よる光反射の防止処理を、 黒化処理という。
黒化処理の好ましい黒濃度は、 0. 6以上である。 なお、 黒濃度の測定方法と しては、 「COLOR CONTROL SYSTEM」 の 「GRETAG S PM100— l lj (キモト社製、 商品名) を用いて、 観察視野角 10度、 観察 光源 D50、 照明タイプとして 「濃度標準 ANS I T」 に設定し、 白色キヤリ ブレイシヨン後に、 試験片が測定される。
また、 黒化処理の光線反射率としては、 5%以下が好ましい。 光線反射率は、 J I S— Κ7105に準拠して、 ヘイズメーター HM150 (村上色彩社製、 商 品名) を用いて測定される。
(合金粒子)
前記カチオン性粒子としては、 銅粒子、 銅と他の金属との合金粒子、 等が適用 できるが、 好ましくは、 銅 -.コバルト合金の粒子である。
銅-コバルト合金の粒子を用いると、 黒化の程度が著しく向上して可視光をよ く吸収できるようになる。 電磁波遮蔽用シートの視認性を評価するための光学特 性として、 色調が J I S— Z 8729に準拠した表色系 「L *、 a *、 b *、 厶 E*」 で表わされた。 該 「a *」 及び 「b *」 の各絶対値が小さい時、 導電材部 109が非視認、性となり、 画像のコントラスト感が高まって、 結果として画像の 視認性が優れる。 銅-コバルト合金の粒子を用いる時、 銅粒子と比較して、 「a *j 及び 「b *」 をほぼ 0に近く小さくできる。
また、 銅-コパルト合金粒子の平均粒子径は 0. 1〜 1 μ mが好ましい。 これ 以上に銅-コバルト合金粒子の粒子径を大きくすると、 金属箔 21の厚さが薄く なり、 基材 1 1と積層する工程で銅箔が切断する等して加工性が悪化し、 また、 密集粒子の外観の緻密さが欠けてムラが目立ってくる。 一方、 これ以下の粒子径 では、 粗化が不足するので、 光吸収による外光反射防止効果が不足して画像の視 認性が悪くなる。 (防鲭層)
金属層 2 1及び/又は黒化処理面 2 3 A、 2 3 Bへの、 防鲭機能及び黒化処理 面の脱落や変形の防止機能のために、 少なくとも黒化処理面を有する金属箔面に 防鲭層 2 5 A及び/又は 2 5 Bが設けられる。 防鲭層 2 5 A、 2 5 Bとしては、 ニッケル、 亜鉛、 及び/又は銅の酸化物、 又は、 クロメート処理層が適用できる。 ニッケル、 亜鉛、 及び/又は銅の酸化物の形成は、 公知のメツキ法でよい。 その 厚さとしては、 0 . 0 0 1〜: L μ ιη程度、 好ましくは 0 . 0 0 1〜0 . l ^u mで ある。
(クロメート)
クロメート処理は、 被処理材にクロメート処理液を塗布して行われる。 該塗布 方法としては、 ローノレコート、 カーテンコート、 スクイズコート、 静電霧化法、 浸漬法などが適用できる。 塗布後は、 水洗せずに乾燥すればよい。 例えば、 クロ メ一ト処理を被処理材の片面に施す場合は、 ロールコートなどで当該片面にク口 メート処理液が塗布され、 両面に施す場合-は、 浸漬法が利用され得る。 クロメー ト処理液としては、 通常 C r〇2 を 3 g Z l含む水溶液が使用される。 この他、 無水クロム酸水溶液に異なるォキシカルボン酸化合物を添加して、 6価クロムの 一部を 3価クロムに還元したクロメート処理液も使用できる。
6価ク口ムの付着量の多少により ¾ ^黄色から黄褐色に着色するが、 3価クロム 自体は無色である。 従って、 3価クロムと 6価クロムとを管理すれば、 実用上問 題がない透明性が得られる。
ォキシカルボン酸化合物としては、 酒石酸、 マロン酸、 クェン酸、 乳酸、 ダル コール酸、 グリセリン酸、 トロパ酸、 ベンジル酸、 ヒドロキシ吉草酸などが、 単 独又は併用して用いられ得る。 還元性は化合物により異なるので、 添加量は 3価 クロムへの還元性に基づいて決定される。
具体的には、 アルサーフ 1 0 0 0 (日本ペイント社製、 クロメート処理剤商品 名) 、 P M—2 8 4 (日本パーカライジング社製、 クロメート処理液商品名) な どが利用され得る。 なお、 クロメート処理を黒ィ匕処理面 (層) 上に施した場合に は、 防鲭効果に加えて、 黒化処理強調効果をも奏する。 黒化処理面及ぴ防鲭層は、 観察側に設けられる場合、 コントラストを向上させ てディスプレイの画像の視認性を良くする。 また、 他方の面、 即ちディスプレイ 面側に設けられる場合、 ディスプレイから発生する迷光を抑えるので、 やはり画 像の視認性を向上させる。
(基材)
基材 1 1の材料としては、 使用条件や製造上の条件を満たす透明性、 絶縁性、 耐熱性、 機械的強度などがあれば、 種々の材料が適用できる。 例えば、 ポリェチ レンテレフタレ一ト .ポリブチレンテレフタレート .ポリエチレンナフタレート •ポリエチレンテレフタレート -イソフタレート共重合体 ·テレフタル酸 -シク 口へキサンジメタノーノレ -エチレングリコーノレ共重合体■ポリエチレンテレフタ レート Zポリエチレンナフタレートの共押し出しフィルムなどのポリエステル系 樹脂、 ナイロン 6 ·ナイロン 6 6 'ナイロン 6 1 0などのポリアミド系樹脂、 ポ リプロピレン ·ポリメチルペンテンなどのポリオレフイン系樹脂、 ポリ塩化ビ- ルなどのビエル系樹脂、 ポリアタリレート ·ポリメタアタリレート ·ポリメチル メタァクリレートなどのアクリル系樹脂、 ポリイミド ·ポリアミドィミド ·ポリ エーテルィミドなどのィミド系樹脂、 ポリアリレート ·ポリスルホン ·ポリエー テノレスノレホン ·ポリフエ-レンエーテノレ ·ポリフエ二レンスルフィ ド (P P S )
'ポリアラミ ド 'ポリエーテルケトン 'ポリエーテル二トリル'ポリエーテルエ ーテルケトン,ポリエーテルサルフアイトなどのエンジニアリング樹脂、 ポリ力 —ボネート、 ポリスチレン樹脂などのスチレン系樹脂などが利甩され得る。
基材 1 1は、 これら樹脂を主成分とする共重合樹脂、 または、 混合体 (ァロイ を含む) 、 若しくは複数層からなる積層体であっても良い。 基材 1 1は、 延伸フ イルムでも、 未延伸フィルムでも良いが、 強度を向上させる目的で、 一軸方向ま たは二軸方向に延伸したフィルムが好ましい。 基材 1 1の厚さは、 通常、 1 2〜 1 0 0 0 μ πι程度が適用できるが、 5 0〜7 0ひ μ πιが好適で、 1 0 0〜5 0 0 μ ηιが最適である。 これ以下の厚さでは、 機械的強度が不足して反りやたるみな どが発生し、 これ以上の厚さでは、 過剰な性能となってコスト的にも無駄である。 基材 1 1は、 これら樹脂の少なくとも 1層からなるフィルム、 シート、 ボード 等により形成されるが、 これら形態を本明細書ではフィルムと総称する。 通常は、 ポリエチレンテレフタレート、 ポリエチレンナフタレート等のポリエステル系の フィルムが透明性、 耐熱性がよくコストも安いので好適に使用される。 ポリェチ レンテレフタレートが最適である。 また、 透明性は高いほどよく、 好ましくは可 視光線透過率で 8 0 °/0以上である。
基材フィルムは、 接着剤の塗布に先立って、 当該塗布面に、 コロナ放電処理、 プラズマ処理、 オゾン処理、 フレーム処理、 プライマー (アンカーコート、 接着 促進剤、 易接着剤とも呼ばれる) 塗布処理、 予熱処理、 除塵埃処理、 蒸着処理、 アルカリ処理、 などの易接着処理が行われ得る。 該樹脂フィルムには、 必要に応 じて、 充填剤、 可塑剤、 帯電防止剤などの添加剤が加えられ得る。
(積層法)
基材 1 1と導電材層 1 0 9との積層 (ラミネートともいう) 法としては、 基材 1 1又は導電材層 1 0 9の一方、 又は両方に接着剤又は粘着剤が塗布され、 必要 に応じて乾燥され、 加熱して又は加熱しないで加圧される。 その後、 必要に応じ て 3 0〜8 0 °Cの温度下でエージング (養生) がなされ得る。 また、 基材 1 1自 身が、 又は基材 1 1が複数層からなる場合に導電材層 1 0 9との積層面が、 例え ば、 アイオノマー樹脂、 エチレン -酢酸ビニノレ共重合体、 エチレン -アタリノレ酸 共重合体、 エチレン -アクリル酸エステル共重合体などの熱接着性の樹脂であれ ば、 加熱下で加圧するだけでよい。 この場合、 接着剤層 1 3は省略され得る。 また、 基材 1 1上に、 無電解メツキ、 無電解メツキと電解メツキとの併用、 蒸 着等の手段により、 直接導電材層 1 0 9が形成されてもよレ、。 この場合にも、 接 着剤層 1 3は省略され得る。
(接着剤)
接着剤としては、 特に限定されないが、 例えば、 アクリル樹脂、 ポリエステル 樹脂、 ウレタン樹脂、 塩化ビュル-酢酸ビニル共重合樹脂などが利用され得る。 なお、 ェツチング液による染色や劣化が少なく加工適性のよい熱硬化型樹脂を用 いた、 当業者がドライラミネーシヨン法 (ドライラミともいう) と呼ぶ方法が好 ましい。 さらに、 紫外線 (U V ) などの電離放射線で硬化 (反応) する U V硬化 型樹脂を用いることも好ましい。
ドライラミネーシヨン法とは、 内部に接着剤が分散または溶解された溶媒が塗 布されて乾燥された貼り合せ基材を、 重ねて積層し、 3 0〜1 2 0 °Cで数時間〜 数日間エージングすることで接着剤を硬化させて、 2種の材料を積層させる方法 である。
ドライラミネーシヨン法を改良したノンソルベントラミネーシヨン法も利用さ れ得る。 これは、 溶媒へ分散または溶解されない接着剤自身が塗布されて乾燥さ れた貼り合せ基材を、 重ねて積層し、 3 0〜 1 2 0 °Cで数時間〜数日間エージン グすることで接着剤を硬化させて、 2種の材料を積層させる方法である。
ドライラミネーション法またはノンソルベントラミネーション法で用いられる 接着剤としては、 熱または紫外線 ·電子線などの電離放射線で硬化する接着剤が 適用できる。 熱硬化接着剤としては、 具体的には、 2液硬化型の接着剤、 例えば、 アクリルウレタン系樹脂、 ポリエステルウレタン系樹脂、 ポリエーテルウレタン 系樹脂等からなるウレタン系接着剤、 アクリル系接着剤、 ポリエステル系接着剤、 ポリアミド系接着剤、 ポリ酢酸ビュル系接着剤、 エポキシ系接着剤、 ゴム系接着 剤などが適用できるが、 2液硬化型ウレタン系接着剤が好適である。
2液硬化型ウレタン系樹脂としては、 具体的には、 例えば、 多官能イソシァネ 一トとヒドロキシル基含有化合物 (ポリオール) との反応により得られるポリマ 一が用いられ得る。 具体的には、 例えば、 多官能イソシァネートとしては、 トリ レンジイソシアナ一ト、 ジフエ二ルメタンジイソシアナート、 ポリメチレンポリ フエ-レンポリイソシアナート等の芳香族ポリイソシアナ一ト、 あるいは、 へキ サメチレンジイソシアナート、 キシリレンジイソシアナート、 イソホロンジイソ シァネート等の脂肪族 (乃至は脂環族) ポリイソシアナ一ト等の多官能イソシァ ネートが用いられ得る。 これらポリイソシァネートとしては、 前記イソシァネー トの多量体 (3量体等) や附加体を用いることもできる。 また、 ヒ ドロキシル基 含有化合物としては、 ポリエーテル系ポリオ一ル、 ポリエステル系ポリオール、 ポリアクリレートポリオール等のヒドロキシル基含有化合物が用いられ得る。 こ れら多官能ィソシァネートとヒドロキシル基含有化合物との反応により得られる 2液型ウレタン系樹脂を使用することができる。
好ましくは、 エッチング液による染色、 劣化がないスチレン -マレイン酸共重 合ポリマーで変性したポリエステルポリウレタンと脂肪族ポリィシシァネートを 配合した接着剤が用いられ得る。
ドライラミネーシヨン法では、 これらを主成分とする接着剤組成物を有機溶媒 へ溶解または分散し、 これを、 例えば、 口一ルコーティング、 リバースロールコ 一ティング、 グラビアコーティング、 グラビアリバースコーティング、 グラビア 才フセッ トコーティング、 キスコーティング、 ワイヤーバーコーティング、 コン マコ ティング、 ナイフコーティング、 デップコーティング、 フローコーティン グ、 スプレイコーティングなどのコーティング法で基材に塗布し、 溶剤などを乾 燥することによって、 ラミネ一シヨン用接着層を形成することができる。 好まし くは、 ロールコーティングまたはリバースロールコーティング法が用いられる。 接着層の膜厚は、 乾燥状態で、 0 . 1〜 2 0 μ m程度、 好ましくは 1 〜 1 0 μ mである。 接着層が形成されたら、 直ちに貼り合せ基材を積層し、 3 0〜 1 2 0 °Cで数時間〜数日間エージングすることで接着剤を硬化させる。 これにより基材 は接着される。 接着剤の塗布面は、 基材側、 導電材部側のいずれでもよい。 好ま しくは、 粗化してある銅箔側がよい。 この場合、 接着剤は、 粗面の全体に行き渡 つて、 気泡の発生が抑えられる。
ノンソルべントラミネーション法は、 基本的にはドライラミネーシヨン法と同 様であるが、 接着剤組成物が有機溶媒へ溶解または分散されないで、 そのまま用 いられる。 もっとも、 必要に応じて、 粘度を低下させるために、 接着剤組成物が 加熱加温される場合もある。
(粘着剤)
粘着剤としては、 感圧で接着する公知の粘着剤が適用できる。 粘着剤としては、 特に限定されるものではなく、 例えば、 天然ゴム系、 プチルゴム 'ポリイソプレ ン■ポリイソプチレン■ポリクロロプレン · スチレン一ブタジエン共重合樹脂な どの合成ゴム系樹脂、 ジメチルポリシロキサンなどのシリコーン系樹脂、 アタリ ル系樹脂、 ポリ酢酸ビニ ル 'エチレン-酢酸ビニール共重合体などの酢酸ビ- ール系樹脂、 ウレタン系樹脂、 アクリロニトリル、 炭化水素樹脂、 アルキルフエ ノール樹脂、 ロジン '口ジントリグリセリ ド ·水素化ロジンなどの口ジン系樹脂 が適用できる。
(ゴム系粘着剤)
ここでゴム系粘着剤としては、 クロロプレンゴム, 二トリルブタジエンゴム, アタリノレゴム, スチレンブタジェンゴム, スチレンィソプレンスチレン, スチレ ンブタジエンスチレン, スチレンエチレンブタジエンスチレン, ブチノレゴム, ポ リイソブチレンゴム, 天然ゴム, ポリイソプレンゴムなどの粘着ゴムの一又は複 数に、 フエノール系樹脂, 変性フエノール樹脂, ケドン樹脂, アルキッド樹脂, ロジン系樹脂, クマロン樹脂, スチレン系樹脂, 石油樹脂, 塩化ビュル系樹脂な どの粘着付与材の一又は複数を配合したものが有効である。
ゴム系粘着剤は、 アク リル系接着材と比較して、 耐薬品性、 耐膨潤性、 耐温度 性、 粘着性、 および剥離強 に優れている。 従って、 接着部分が酸性又はアル力 リ性の物質に曝されても、 剥離が生じない。 また、 ゴム系粘着材は、 酸性又はァ ルカリ性の薬液中で加水分解をほとんど発生せず、 粘着寿命が長い。
(粘着剤層の形成).
これらの樹脂またはこれらの混合物が、 ラテックス、 水分散液または有機溶媒 液とされて、 スクリーン印刷またはコンマコートなどの公知の印刷法またはコー ティング法で、 一方の材料に印刷または塗布される。 当該材料は、 必要に応じて 乾燥された後に、 他方の材料と重ねられて加圧される。
(巻取りロールからの加工)
図 5 (A) 及び図 5 ( B ) は、 卷取りロールからの加工を説明する平面図及ぴ 側面図である。 詳細には、 図 5 (A) は平面図で、 卷取りロールから巻きほぐさ れて伸張された状態を示しており、 電磁波遮蔽甩シート 1が一定間隔で面付け (配置) されている。 図 5 ( B ) は側面図で、 巻取りロールから卷きほぐされて 伸張された状態を示しており、 導電材層 1 0 9が基材 1 1に積層されている。 具体的な積層方法としては、 まず、 卷取りローノレから伸張された導電材層 1 0 9に、 上記のような黒化処理面及び防鲭層が形成される。 そして、 防鲭層に接着 剤が塗布され乾燥された後に、 基材 1 1が重ね合わされて加圧される。 さらに、 必要に応じて、 3 0〜8 0 °Cの雰囲気で数時間〜数日のエージング (養生、 硬 化) が行われ、 再ぴ卷取りロール状に巻き取られる。
(フォトリソ法)
前記積層体の導電材層面に、 レジスト層がメッシュパターン状に設けられ、 レ ジスト層で覆われていない部分の導電材層がエッチングにより除去され、 その後 レジスト層が除去される (フォトリソグラフィ法) 。 これにより、 導電材層は、 メッシュ状となる。
前記のように、 基材 1 1と導電材層 1 0 9の積層体の導電材層 1 0 9が、 フォ トリソグラフィ法でメッシュ状とされる。 この工程も、 ロール状に巻き取られた 帯状の積層体に対して行われる。 .すなわち、 積層体が緩みなく伸張されて、 連続 的又は間歇的に搬送されながら、 マスキング、 エッチング、 レジスト剥離の各処 理を施される。
例えば、 感光性レジストが、 導電材層 1 0 9上に塗布される。 乾燥後に、 所定 のパターン (メッシュのライン部) の版 (フォトマスク) にて密着露光され、 水 現像され、 硬膜処理などが施されて、 ベーキングされる。
レジストの塗布については、 伸張された帯状の積層体 (基材 1 1と導電材層 1 0 9〉 を連続又は間歇で搬送させながら、 導電材層 1 0 9面へ、 カゼイン、 P V A、 ゼラチンなどのレジストがディッビング (浸漬) 、 カーテンコート、 掛け流 しなどの方法で塗布される。 また、 レジストを塗布する替わりに、 ドライフィル ムレジストを用いてもよい。 この場合、 作業性が向上できる。 ベーキングは、 力 ゼインレジストの場合、 2 0 0 ~ 3 0 0 °Cで行われる。 もっとも、 この温度は、 積層体の反りを防止するためには、 できるだけ低温度が好ましい。 (エッチング)
マスキング後にエッチングが行われる。 エッチングに用いるエッチング液とし ては、 エッチングを連続して行う本発明においては、 循環使用が容易にできる塩 化第二鉄または塩化第二銅の溶液が好ましい。 また、 このエッチング工程は、 帯 状で連続する厚さ 2 0〜8 0 μ παの薄板をエッチングするカラー T Vのブラウン 管用のシャドウマスクを製造する工程と、 基本的に同様の工程である。 従って、 当該シャドウマスクの製造のための既存の設備を流用でき、 マスキングからエツ チングまでを 貫して連続実施できて、 極めて効率が良い。 エッチング後は、 .水 洗、 アルカリ液によるレジスト剥離、 洗浄が行われ、 その後乾燥される。
(メッシュ)
メッシュ部 1 0 3は、 ライン 1 0 7で囲まれた複数の開口部 1 0 5を有してい る。 開口部 1 0 5の形状は特に限定されず、 例えば、 正三角形、 二等辺三角形等 の三角形、 正方形、 長方形、 菱形、 台形などの四角形、 五角形、 六角形 (亀甲 形) 、 八角形等の多角形、 円形、 楕円形などが適用できる。 これらの開口部が複 数組み合わさって、 メ シュ状になっている。
開口率、 メッシュの非視認性、 及び画像の視認性から、 メッシュ部 1 0 3のラ イン 1 0 7の直線部における幅 Wは、 所定値 ± 3 0 %の範囲内とされる。 また、 透明基板と直交したライン切断面の形状における上底と下底とを結ぶ土手側面部 の曲率半径が、 前記導電材層の厚さの 1 . 5〜3 . 0倍とされる。 好ましくは、 メッシュ部 1 0 3のライン幅 Wは、 5〜2 5 i mの範囲内から選ばれた一定値と され、 ライン間のピッチは、 1 5 0〜 5 0 0 μ mの範囲内から選ばれた一定値と される。 また、 メッシュ部 1 0 3の外周でメッシュ外周部 1 0 4を構成する 1〜 5 0メッシュめ部分、 又は、 0 . 1 5〜 1 5 mmの部分については、 後述の如く、 接地用外枠 1 0 1方向に向かってライン幅が漸次拡大するようになっている。 通常、 大型のプラズマディスプレイパネル用の電磁波遮蔽用シートには、 数千 本以上の直線ラインが形成されており、 そして、 それぞれが交わっている。 該ラ インのライン幅のバラツキを抑え、 かつ、 ライン切断面の形状における上底と下 底とを結ぶ土手側面の曲率半径を規制することで、 電磁波遮蔽性と適度の透明性 とを有することに加え、 メッシュの濃淡ムラが少なく、 黒と白の点状及び線状欠 点が少なく、 表示光のギラツキが少なく、 外光の反射も抑えられるという、 優れ た画像の視認性を有する電磁波遮蔽用シート 1を得ることができる。
ライン幅のバラツキは、 例えばライン幅が 1 4 μ mである場合、 1 4 ± 4 . 2 μ すなわち、 9 . 8 - 1 8 . 2 mに抑えられる。 この範囲内であれば、 メ ッシュの濃淡ムラや、 黒及び/又は白の点状及び線状の欠点がほとんど発生しな い。 もし、 ライン幅にこれ以上の広狭があると、 メッシュの濃淡ムラが生じる。 また、 ライン幅のバラツキが大きい場合には、 人間がディスプレイ画像を観察し た際に、 ライン幅が広い部分は黒点欠点として、 ライン幅が狭い部分は白点欠点 として視認され得る。 全体の画像に対してポッンと白点及び Z又は黒点があると、 人間は極めて強 、違和感を感ずる。
しかし、 本実施の形態の電磁波遮蔽用シートによれば、 連続フォトリソグラフ ィ法を利用することで、 ライン幅のバラツキを所定の範囲としているので、 メッ シュの濃淡ムラの発生は極めて少なく、 しかも、 電磁波遮蔽性及び透明性には問 題はない。 また、 メッシュの濃淡ムラや黒及び/又は白の点状及び線状の欠点は、 レジスト塗布時にレジスト液の飛沫が不要な部分へ付着しても発生するが、 連続 フォトリソグラフィ法においては、 そのような現象が生じることは極めてまれで ある。
また、 ライン幅の制御態様は、 メッシュ部 1 0 3とメッシュ外周部 1 0 4とで は異なる。 メッシュ外周部 1 0 4におけるライン 1 0 7の直線部におけるライン 幅 Wは、 接地用枠部 1 0 1に向かって漸次大きくなるように制御される。
メッシュ外周部 1 0 4は、 メッシュ部 1 0 3を取り囲むように、 メッシュ部 1 0 3と接地用枠部 1 0 1との間に位置する。 すなわち、 接地用枠部 1 0 1の内周 からメッシュ部 1 0 3の中心部に向かっての、 1〜 5 0メッシュ分、 又は 0 . 1 5〜1 5 mm分程度、 好ましぐは 1〜2 5メッシュ分、 又は 0 . 3〜7 . 5 mm 分、 さらに好ましくは 3〜2 0メッシュ分、 又は 1 . 5〜6 . O mm分が、 メッ シュ外周部 1 0 4となっている。 メッシュ外周部 1 0 4がこれ以上の領域を有する場合、 ディスプレイの周辺に くま取り状の枠が視認されて、 画像が小さく感じられ、 また、 画像の視認性が低 下する。 一方、 メッシュ外周部 1 0 4がこれ未満の領域のみを有する場合、 メッ シュのラインの剛度の変化が依然として急激過ぎて、 ラインの折れ曲がり等が発 生し得る。 なお、 ライン幅の漸次の拡幅の態様としては、 複数の開口部 1 0 5
(セル) に亘つて連続的に拡幅してもよいし、 又は、 開口部 1 0 5 (セル) 毎に 段階的に拡幅してもよい。
'図 6は、 本実施の形態のメッシュ外周部 1 0 4の一部の拡大平面図である。 メッシュ部 1 0 3の所定のライン部 1 0 7のライン幅が Wであり、 接地用枠部 1 0 1に向かってメッシュ外周部 1 0 4のライン幅 W l、 W 2、 W 3、 〜、 W i、 〜、 W nが、 W<W 1 <W 2 <W 3 <〜<W i <〜<W nとなっている。
ライン幅が連続的に漸次拡幅する態様では、 各ライン幅 W、 W l、 W 2、 W 3、 〜W nが連続に拡幅する。 すなわち、 例えば 1セルに対応するライン幅 W i ( i = 1、 ··'、 n ) 自体が漸次拡幅する。
一方、 ライン幅が段階的に拡幅する態様では、 例えば 1セルに対応するライン 幅 W n自体は同一幅である。 この場合、 拡幅の段数 nは、 1以上であるが、 好ま しくは 2以上であり、 メッシュ部 1 0 3周縁に集中する応力を多段階に分散する。 例えば、 図 6の例は、 n = 5で 1セル単位で段階的拡幅の場合である。 また、 ライン幅の拡幅の態様は、 全部のラインで共通である必要はなく、 ライン毎に W 1、 W 2、 W 3、 〜W nを変えてもよい。
このような漸次拡幅するライン幅を実現する方法としては、 導電材層 1 0 9上 にドライレジストを貼着、 又は感光性レジストを塗布して乾燥した後の密着露光 に用いるパターン版上のパターンを、 その様な所望のパターンに変更すればよい。 パターン版とは、 当業者が製版フィルムと呼ぶものに相当し、 感光性レジストが ネガ型 (露光部が硬化して残留) の場合は、 開口部 1 0 5に相当する部分が不透 明で、 ライン 1 0 7に相当する部分が透明な製版フィルム (ラインのネガフィル ム) となる。 感光性レジストがポジ型 (未露部が残留) の場合は、 製版フィルム はポジフィルムとなる。 当該パターン版において、 ラインに相当する部分の幅を、 メッシュ部 1 0 3に対応する領域では、 所定のライン幅 Wとし、 その周縁のメッ シュ外周部 1 0 4に対応する領域では、 接地用枠部 1 0 1に向かって漸次 (W ' < ) W 1く W 2く W 3 <〜< W nとすればよい。
また、 ラインが電磁波遮蔽用シートの端部の辺 (下部面) となすバイアス角は、 図 1の例では 4 5度であるが、 これに限られず、 モアレの解消などのために、 デ イスプレイの画素や発光特性を加味して適宜、 選択され得る。
(平坦化)
メッシュが形成されると、 メッシュのライン部 1 0 7は導電材層の厚みを有す るが、 開口部 1 0 5は導電材層が除去されて凹部となっている。 すなわち、 導電 材部 1 0 9は凹凸状態である。 次工程で接着剤又は粘着剤が塗布される場合には、 前記凹凸は当該接着剤などで埋まることになる。 し力 し、 その際、 当該凹部の空 気が完全に接着剤等で置換されずに気泡として残存し易い。 気泡が残留すると、 気泡と接着剤との界面で光が散乱されて、 ヘイズ (曇価) が高くなる。 .この問題 を防止するため、 接着に先立って予め、 前記凹部を透明樹脂で充填して平坦化す ることが好ましい。
平坦化として、 透明樹脂が回部に塗布されて埋め込まれるが、 透明樹脂が凹部 の隅々まで侵入しないと、 気泡が残って透明性が劣化する。 このため、 透明樹脂 は溶剤などで稀釈されて低粘度で塗布されて乾燥されたり、 空気を脱気しながら 塗布されたりする。 以上のようにして、 平坦化層 2 9 (図 7、 或いは図 3参照) が形成される。
平坦化層 2 9は、 透明性が高く、 メッシュの導電材との接着性が良く、 且つ、 次工程の接着剤との接着性がよいものであることが好ましい。 但し、 平坦化層 2 9の表面に、 突起、 凹み、 ムラがあると、 電磁波遮蔽シート 1がディスプレイ前 面へ設置された際に、 モヮレ、 干渉ムラ、 ニュートンリング等が発生したりする ので好ましくない。 好ましい方法としては、 樹脂として熱硬化樹脂又は紫外線硬 化樹脂を塗布した後に、 平面性に優れ剥離性のある基材を積層し、 先に塗布した 樹脂を熱又は紫外線で硬化させて、 剥離性基材を剥離して除去する。 この場合、 平坦化層 2 9の表面には、 平面性基材の表面が転写されて、 平滑な面が形成され る。 平坦化層 29の形成のために用いる樹脂としては、 特に限定されず、 各種の天 然又は合成樹脂、 熱硬化樹脂又は電離放射線硬化樹脂などが適用できる。 もっと も、 樹脂の耐久性、 塗布性、 平坦化のしゃすさ、 平面性などから、 アクリル系の 紫外線硬化樹脂が好適である。
(N I R吸収剤)
さらに、 平坦化層 29の形成のために用いる樹脂に、 可視及び/又は近赤外の 特定波長を吸収する光線吸収剤を添加してもよい。 可視及び Z又は近赤外線の特 定波長を吸収することで、 不快感が抑えられ、 画像の視認性が向上する。 ここで 近赤外の特定波長帯域とは、 780〜 1 200 n m程度、 特に 800〜 1 1 00 nm程度の帯域である。 780〜 1 200 nmの波長領域の 80 %以上を吸収す ることが望ましい。
近赤外線吸収剤 (N I R吸収剤という) としては、 特に限定されないが、 近赤 外線帯域に急峻な吸収があり、 可視光帯域 380〜780 nmの光透過性が高ぐ、 かつ、 可視光帯域には特定の波長の大きな吸収がない色素などが適用できる。 また、 PDPから発光される可視光としては、 通常、 ネオン原子の発光スぺク トルであるオレンジ色が多いため、 画像の色調が天然色よりもオレンジ色に変移 する。 これを補正するため、 波長 570〜605 nm付近をある程度吸収する特 性を持った色調捕正用光線吸収剤を添加することが好ましい。
近赤外線吸収剤としては、 シァニン系化合物、 フタロシアニン系化合物、 ナフ タロシアニン系化合物、 ナフトキノン系化合物、 アントラキノン系化合物、 ジチ オール系錯体、 インモユウム系化合物、 ジインモニゥム系化合物などがある。 色調捕正用光線吸収剤としては、 フタロシアニン系化合物等がある。
(N I R吸収層) 、
平坦化層 29へ N I R吸収剤を添加する替わりに、 N I R吸収剤を有する別の 層 (N I R吸収層という) を、 少なくとも一方の面へ設けてもよい。
N I R吸収層は、 平坦化層 29側及び Z又は逆側の基材 1 1側へ設けられ得る。 平坦化層 29側に設けられた場合が、 図 3に図示する N I R吸収層 3 1 Bであり、 基材 1 1側に設けられた場合が、 図 3に図示する N I R吸収層 3 1 Aである。 N I R吸収層 3 1 B及び N I R吸収層 3 1 Aは、 N I R吸収剤を有する巿販フィル ム (例えば、 東洋紡績社製、 商品名 N o 2 8 3 2 ) を接着剤で積層したり、 N I R吸収剤をパインダへ含有させて塗布したものである。 バインダとしては、 ポリ エステル樹脂、 ポリウレタン樹脂、 アクリル樹脂や、 熱又は紫外線などで硬化す るエポキシ、 アタリレート、 メタアタリレート、 イソシァネート基などの反応を 利用した硬化タイプの樹脂などが適用できる。 また、 色調補正用光線吸収剤につ いても同様に平坦化層 2 9とは別層として積層することも出来る。
(A R層)
さらに、 図示していないが、 電磁波遮蔽用シートの観察側へ、 反射防止層 (A R層という) が設けられ得る。 反射防止層は、 可視光線の反射を防止するための. ものであり、 単層や多層の種々のものが市販されている。 多層のものは、 高屈折 率層と低屈折率層とが交互に積層されている。 高屈折率層としては、 酸^^ニオブ、 酸化チタン、 酸化ジルコニウム、 I T Oなどがある。 低屈折率層としては、 酸化 珪素、 フッ化マグネシウム等がある。 また、 外光を乱反射する微細な凹凸表面を 有する層を有する反射防止層もある。
(ハードコート層、 防汚層、 防眩層)
さらに、 反射防止 (A R ) 層に加えて、 ハードコート層、 防汚層、 防眩層が設 けられ得る。 ハードコート層は、 J I S— K 5 4 0 0の鉛筆硬度試験で H以上の 硬度を有する層で、 ポリエステルアタリレート、 ウレタンアタリレート、 ェポキ シァクリレートなどの多官能ァクリレートを、 熱又は電離放射線で硬化させた層 であり得る。 防汚層は、 撥水性、 撥油性のコートで、 シロキサン系、 フッ素化ァ ルキルシリル化合物などが適用できる。 防眩層は、 外光を乱反射する微細な凹凸 表面を有する層である。
(シート化)
以上のように連続した帯状の状態で製造されてきた積層部材を切断して、 1枚 毎の電磁波遮蔽用シート 1が得られる。 電磁波遮蔽用シート 1は、 ガラスなどの 透明な基板へ貼り付けられる。 必要に応じて、 N I R吸収層、 A R層、 ハードコ ート層、 防汚層、 防眩層と組み合されて、 ディスプレイ前面板となる。
前記基板としては、 大型のディスプレイ用には、 厚さが 1 〜 1 O mmの十分な 剛性を持つものが用いられる。 また、 キャラクタ表示管などの小型のディスプレ ィ用には、 厚さが 0 . 0 1 〜 0 . 5 mmのプラスチックフィルムが用いられる。 すなわち、 ディスプレイの大きさや用途に応じて、 前記基板は適宜に選択され得 る。 ここでは、 電磁波遮蔽用シート 1は、 一且ディスプレイ前面板として組み合 わされてから、 ディスプレイの前面へ設置される。 このため、 基材 1 1側が観察 側となっている。 しかしながら、 電磁波遮蔽用シート 1は、 ディスプレイの前面 へ直接貼着されてもよい。
(直接貼着)
図 7は、 ディスプレイ面へ貼着される本発明の電磁波遮蔽用シートの断面図で ある。 この場合には、 メッシュ状となった金属箔側が観察側となっており、 金属 箔の両面に黒化処理面と防鲭層とが順に設けられている。 この場合、 接地用枠部 1 0 1が外側へ露出されるので、 電極を引き出し易く、 アースがとりやすい。 ま た、 接地用枠部 1 0 1が黒化処理された黒い面が観察側となるので、 前面ガラス 板に額縁状に実施されていた黒色印刷が不要となり、 工程が短縮でき、 コスト面 でも有利である。
(実施例 1 )
導電材として、 表面に平均粒子径 0 . 3 / mの銅 -コバルト合金粒子による黒 化処理が施され、 更にクロメート (処理) による防鲭兼黒化処理層が付加された 厚さ 1 0 μ mの電解金属箔が用いられた。 この導電材のクロメート (処理) 層と、 厚さが 1 0 0 μ mの 2軸延伸ポリエチレンテレフタレート (P E T ) フィルム A 4 3 0 0 (東洋紡績社製、 商品名) とが、 2液硬化型ポリウレタン系接着剤でラ ミネートされ、 その後、 5 6 °Cで 4日-間エージングされた。 接着剤としては、 ポ リオールから成る主剤タケラック A— 3 1 0とポリイソシァネートから成る硬化 剤 A— 1 0 (いずれも武田薬品工業社製、 商品名) を用い、 塗布量は乾燥後の厚 さで 7 μ πιとした。
フォトリソグラフィ法によるメッシュの形成は、 連続した帯状の部材に対して マスキングからエッチングまでを行う、 カラー T Vシャドウマスク用の製造ライ ンを流用して行われた。 具体的には、 まず、 導電材層面の全体へ、 カゼインから 成る感光性レジス トが掛け流し法で塗布された。. 次に、 当該導電材層が次のステ ーションへ搬送され、 下記の形状を有するパターン版及び高圧水銀灯を用いて密 着露光された。 その後、 導電材層は、 次々と各ステーションへ搬送されながら、 水現像され、 硬膜処理され、 さらに、 1 0 0 °Cでべ一キングされた。
上記パターン版の形状は、 メッシュ部において、 開口部が正方形、 ライン幅が 2 2 m、 ライン間隔 (ピッチ) が 3 0 0 ^ ;∞、 バイアス角度が 4 9度で、 5 m m幅のメッシュ外周部において、 ライン幅が 2 2 μ πιから接地用枠部へ向かって 連続的に増加し接地用枠部と接する部分で 4 0 μ πιであり、 接地用枠部 (アース 部) の幅が 5 mmである、 ような形状であった。
導電材層は、 さらに次のステーションへ搬送され、 エッチング液として液温 4 0 °C、 4 0 ° ポーメの塩化第二鉄溶液をスプレイ法で吹きかけることによってェ ツチングが行われ、 開口部が形成された。 その後、 導電材層は、 次々と各ステー シヨンへ搬送されながら、 水洗され、 レジス トが剥離され、 洗浄され、 さらに、 1 0 0 °Cで乾燥された。 これによつて、 実施例 1の電磁波遮蔽用シートが得られ た。
(比較例 1 )
パターン版の形状として、 メッシュ部及ぴメッシュ外周部において、 開口部が 正方形、 ライン幅が接地用枠部まで同じ 2 2 /x m、 ライン間隔 (ピッチ) が 3 0 0 /x m、 バイアス角度が 4 9度で、 それ以外は実施例 1と同様とした。 これによ り、 比較例 1の電磁波遮蔽用シートが得られた。
(実施例 2 )
実施例 1のメ ッシュ部及びメッシュ外周部へ、 下記組成の平 ¾化層組成物を塗 布して、 開口部凹部を充填した。 その後、 厚さが 50 μπιの S P— PET 20— BU (トーセロ社製、 表面離型処理 Ρ ΕΤフィルム商品名》 をラミネートし、 高 圧水銀灯を用いて 20 Om j Zc m2 の露光 (36 5 nm換算) を行った。 そし て、 S P— PET 20— BUを剥離すると、 メッシュ部及ぴメッシュ外周部が平 坦化された実施例 2の電磁波遮蔽用シートが得られた。 当該電磁波遮蔽用シート は、 実施例 1と同様の性能を有していた。
平坦化層組成物としては、 N—ビニルー 2_ピロリ ドン 20質量部、 ジシクロ ペンテエルアタリ レート 25質量部、 オリ ゴエステルアタリ レート (東亜合成
(株) 製、 M— 8060) 52質量部、 1—ヒドロキシシクロへキシルフェエル ケトン (チバガイギ一社製、 ィルガキュア 1 84) 3質量部が用いられた。
(実施例 3 )
実施例 2の平坦化層組成物に、 近赤外線吸収剤として、 チオール—ニッケル錯 体 1質量部が含有された。. それ以外は、 実施例 2と同様にして、 実施例 3の電磁 波遮蔽用シートが得られた。 当該電磁波遮蔽用シートは、 実施例 1と同様の性能 を有し、 ディスプレイ画像の視認性はさらに良かった。
(実施例 4)
実施例 2の平坦化層に、 N I R吸収フィルム N o 2832 (東洋紡績社製、 近 赤外線吸収フィルム商品名)' が粘着剤で積層された。 それ以外は、 実施例 2と同 様にして、 実施例 4の電磁波遮蔽用シートが得られた。 当該電磁波遮蔽用シート は、 実施例 1と同様の性能を有し、 ディスプレイ画像の視認性はさらに良かった。
(実施例 5 )
上記パターン版の形状として、 メッシュ部において、 開口部が正方形、 ライン. 幅が 20 m、 ライン間隔 (ピッチ) が 250 m、 バイアス角度が 60度で、 5 mm幅のメッシュ外周部において、 ライン幅が 20 μ mから接地用枠部へ向か つて連続的に増加し接地用枠部と接する部分で 26 μκιである以外は、 実施例 1 と同様とした。 これにより、 実施例 5の電磁波遮蔽用シートが得られた。 (実施例 6 )
上記パターン版の形状として、 メッシュ部において、 開口部が正方形、 ライン 幅が 2 0 μ ιη、 ライン間隔 (ピッチ) が 。 ^!、 バイアス角度が 6 0度で、
3 mm幅のメッシュ外周部において、 ライン幅が 2 0 mから接地用枠部へ向か つて連続的に増加し接地用枠部と接する部分で 2 6 /i mである以外は、 実施例 1 と同様とした。 これにより、 実施例 6の電磁波遮蔽用シートが得られた。
(実施例 7 )
上記パターン版の形状として、 メッシュ部において、 開口部が正方形、 ライン 幅が 2 0 μ πι、 ライン間隔 (ピッチ) が 3 0 0 /i m、 バイアス角度が 4 9度で、 2 5メッシュ分のメッシュ外周部において、 ライン幅が 2 0 / mから接地用枠部 へ向かって 1セル毎に 1 . 0 mずつ段階的に増加し接地用枠部と接する部分で
4 5 mである以外は、 実施例 1と同様とした。 これにより、 実施例 7の電磁波 遮蔽用シートが得られた。
(実施例 8 )
上記パターン版の形状として、 メッシュ部において、 開口部が正方形、 ライン 幅が 2 0 μ πι、 ライン間隔 (ピッチ) が 3 0 0 μ ΐη、 バイアス角度が 4 9度で、 5メッシュ分のメッシュ外周部において、 ライン幅が 2 0 μ mから接地用枠部へ 向かって 1セル毎に 3 . 0 μ mずつ段階的に増加し接地用枠部と接する部分で 3 5 μ ιηである以外は、 実施例 1と同様とした。 これにより、 実施例 8の電磁波遮 蔽用シートが得られた。
(実施例 9 )
銅-コバルト合金粒子による黒化処理面及びクロメート (処理) 層とは逆の面 に、 Ρ Ε Τフィルムがラミネートされた。 それ以外は、 実施例 2と同様にした。 これにより、 実施例 9の電磁波遮蔽用シートが得られた。 (結果)
実施例 1では、 メッシュ部のライン幅が 2 2 / mであるようなレジストパター ン版を用いたが、 エッチング後の実際のメッシュ部のライン幅は、 7〜1 7 / m であった。 更に、 エッチング後の実際のメッシュ外周部のライン幅は、 メッシュ 部と接する部分が 7〜1 で、 接地用枠部に接する部分が 1 7〜2 9 μ mで めつに。
比較例 1では、 エッチング後の実際のメッシュ部のライン幅は、 メッシュ部と 接する部分から接地用枠部に接する直前の部分まででは 1 0 ~ 1 6 μ πιであった 力 接地用枠部に接する部分では 5〜 2 0 μ πιとバラツキが大きかった。
また、 実施例 1及び比較例 1の電磁波遮蔽用シート各 1 ひ 0枚に対して、 実施 例 2に順じた平坦化層が形成された。 その結果、 実施例 1の 1 0 0枚には異常な く平坦化層が形《成されたが、 比較例 1では 2枚に断線が発生して、 歩留まりが低 かった。
さらに、 実施例 1及ぴ比較例 1の電磁波遮蔽用シート各 1 0 0枚が、 P D Ρパ ネルへ組立てられだ。 その結果、 実施例 1の 1 0 0枚は異常なく組立てられたが、 比較例 1では 1枚に折れが発生し、 1枚に断線が発生して、 歩留まりが低かった なお、 実施例 1〜実施例 8及び比較例 1の電磁波遮蔽用シートを前面板に加工 して、 P D Pディスプレイの前面へ設置し、 画像を表示させて視認性を評価した ころ、 いずれも視認性は良好であった。
また、 実施例 9の電磁波遮蔽用シートの基材面を粘着剤で P D Pディスプレイ へ設置したところ、 ギラツキもなく、 画像の視認性は良好で、 さらに電極の引き 出し工数も減り、 額縁状の黒印刷も要らなかった。

Claims

請 求 の 範 囲
1 . 透明基材と、
前記透明基材の一方の面に積層された金属層と、
を備え、
前記金属層は、 メッシュ状のメッシュ部と、 前記メッシュ部を取り囲むメッシ ュ状のメッシュ外周部と、 前記メッシュ外周部を取り囲む接地用枠部と、 を有し ており、
前記メッシュ外周部のメッシュを構成するラインのライン幅は、 メッシュ部か ら接地用枠部に向かって漸次拡幅している
ことを特徴とする電磁波遮蔽用シート。
2 . 前記メッシュ部のメッシュを構成するラインのライン幅は、 一様である ことを特徴とする請求項 1に記載の電磁波遮蔽用シート。
3 . 前記メッシュ外周部は、 前記接地用枠部から前記メッシュ部に向かう方 向に、 1〜 5 0個のメッシュを含んでいる
ことを特徴とする請求項 1または 2に記載の電磁波遮蔽用シート。
4 . 前記メッシュ外周部は、 前記接地用枠部から前記メッシュ部に向かう方 向に、 0 . 1 5〜: L 5 mmの幅を有している
ことを特徴とする請求項 1または 2に記載の電磁波遮蔽用シート。
5 . 前記メッシュ外周部は、 前記接地用枠部から前記メッシュ部に向かう方 向に、 1〜 2 5個のメッシュを含んでいる
ことを特徴とする請求項 3に記載の電磁波遮蔽用シート。
6 . 前記メッシュ外周部は、 前記接地用枠部から前記メッシュ部に向かう方 向に、 0 . 3〜7 . 5 mmの幅を有している ことを特徴とする請求項 4に記載の電磁波遮蔽用シ ト。
7 . 前記メッシュ外周部のメッシュを構成するラインのライン幅は、 メッシ ュ部から接地用枠部に向かって、 連続的に拡幅している
ことを特徴とする請求項 1乃至 6のいずれかに記載の記載の電磁波遮蔽用シート。
8 . 前記メッシュ外周部のメッシュを構成するラインのライン幅は、 メッシ ュ部から接地用枠部に向かって、 段階的に拡幅している
ことを特徴とする請求項 1乃至 6のいずれかに記載の記載の電磁波遮蔽用シート。
9 . 前記金属層の少なくとも一方の面が、 黒化処理されている
ことを特徴とする請求項 1乃至 8のいずれかに記載の電磁波遮蔽用シート。
1 0 . 前記金属層の少なくとも黒化処理された面に、 防鲭層が設けられてい ることを特徴とする請求項 9に記載の電磁波遮蔽用シート。
1 1 . 前記メッシュ部及び前記メッシュ外周部の少なくともメッシュの開口 部が樹脂で充填されて、 前記金属層が実質的に平坦化されている
ことを特徴とする請求項 1乃至 1 0のいずれかに記載の電磁波遮蔽用シート。
1 2 . 前記樹脂は、 波長 5 7 0〜6 0 5 n mの可視の帯域の光を吸収する色 調補正用光線吸収剤、 及ぴ Zまたは、 波長 8 0 0〜 1 1 0 0 n mの近赤外の帯域 の光を吸収する近赤外線吸収剤、 を含有している
ことを特徴とする請求項 1 1に記載の電磁波遮蔽用シート。
1 3 . 少なくとも一方の面に、 波長 5 7 0〜6 0 5 n mの可視の帯域の光を 吸収する色調捕正用光線吸収剤層、 及び/または、 波長 8 0 0〜 1 1 0 0 n mの 近赤外の帯域の光を吸収する近赤外線吸収剤層、 が設けられている
ことを特徴とする請求項 1 1に記載の電磁波遮蔽用シート。
PCT/JP2003/010020 2002-08-08 2003-08-06 電磁波遮蔽用シート WO2004016058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004527347A JP4445858B2 (ja) 2002-08-08 2003-08-06 電磁波遮蔽用シート
DE10393019T DE10393019B4 (de) 2002-08-08 2003-08-06 Blatt zur elektromagnetischen Abschirmung
US10/521,997 US7371450B2 (en) 2002-08-08 2003-08-06 Electromagnetic shielding sheet
AU2003254831A AU2003254831A1 (en) 2002-08-08 2003-08-06 Electromagnetic wave-shielding sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-230844 2002-08-08
JP2002230844 2002-08-08

Publications (1)

Publication Number Publication Date
WO2004016058A1 true WO2004016058A1 (ja) 2004-02-19

Family

ID=31711725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010020 WO2004016058A1 (ja) 2002-08-08 2003-08-06 電磁波遮蔽用シート

Country Status (8)

Country Link
US (1) US7371450B2 (ja)
JP (1) JP4445858B2 (ja)
KR (2) KR20080023269A (ja)
CN (1) CN100397968C (ja)
AU (1) AU2003254831A1 (ja)
DE (1) DE10393019B4 (ja)
TW (1) TWI253322B (ja)
WO (1) WO2004016058A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011456A1 (ja) * 2004-07-27 2006-02-02 Dai Nippon Printing Co., Ltd. 電磁波シールド装置
WO2006011457A1 (ja) * 2004-07-27 2006-02-02 Dai Nippon Printing Co., Ltd. 電磁波シールド装置
WO2006025314A1 (ja) * 2004-08-31 2006-03-09 Dai Nippon Printing Co., Ltd. 電磁波遮蔽材及びそれを用いた画像表示装置
JP2006191010A (ja) * 2004-12-09 2006-07-20 Bridgestone Corp 光透過性電磁波シールド性フィルムの製造方法、光透過性電磁波シールド性フィルム、及びディスプレイ用フィルタ
EP1727239A1 (en) * 2005-05-25 2006-11-29 Northrop Grumman Corporation Reflective surface for deployabe reflector
KR20070015040A (ko) * 2005-07-29 2007-02-01 다이니폰 인사츠 가부시키가이샤 복합 필터의 제조 방법
JP2007042887A (ja) * 2005-08-03 2007-02-15 Bridgestone Corp 光透過性電磁波シールド性窓材及びその製造方法
JP2007095915A (ja) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd ディスプレイ用複合フィルタの製造方法
JP2014131071A (ja) * 2008-02-28 2014-07-10 3M Innovative Properties Co 基材上に導電体をパターン化する方法
US20220131018A1 (en) * 2020-10-26 2022-04-28 Samsung Display Co., Ltd. Fingerprint sensor and display device including the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780283B1 (ko) * 2004-09-01 2007-11-28 삼성코닝 주식회사 전자파 차폐 필름 및 이의 제조방법
US20090246486A1 (en) * 2005-09-22 2009-10-01 Fujifilm Corporation Light-transmittable electromagnetic wave shielding film, process for producing light-transmittable electromagnetic wave shielding film, film for display panel, optical filter for display panel and plasma display panel
DE102005049509B4 (de) * 2005-10-12 2008-11-06 Diehl Bgt Defence Gmbh & Co. Kg Strahlungsfilter für Radarstrahlung
KR100838958B1 (ko) * 2006-01-18 2008-06-16 주식회사 엘지화학 웨이브 컬을 개선한 전자파 차폐 필름 및 pdp 필터
KR100852858B1 (ko) * 2006-02-07 2008-08-18 주식회사 엘지화학 전자파차폐필름 및 이를 포함하는 광학필터
KR20070106328A (ko) * 2006-04-28 2007-11-01 엘지전자 주식회사 디스플레이 장치용 필터 및 이를 포함하는 플라즈마디스플레이 장치
KR100775837B1 (ko) * 2006-11-06 2007-11-13 엘지전자 주식회사 필터 및 그를 이용한 플라즈마 디스플레이 장치
JP2008305829A (ja) * 2007-06-05 2008-12-18 Mitsubishi Gas Chem Co Inc 光干渉縞防止光透過型電磁波シールド材料
JP2011066329A (ja) * 2009-09-18 2011-03-31 Tatsuta Electric Wire & Cable Co Ltd シールドフィルム、そのシールドフィルムを有するシールド配線板、シールドフィルムにおけるグランド接続方法
CN102714932B (zh) * 2009-12-02 2015-07-08 莱尔德技术股份有限公司 适合用作emi吸收体的经拉伸的物品
US8927879B2 (en) 2010-11-22 2015-01-06 International Business Machines Corporation Crosstalk reduction between signal layers in a multilayered package by variable-width mesh plane structures
TWI462662B (zh) * 2013-02-06 2014-11-21 Nanya Plastics Corp 複合式雙面黑色銅箔及其製造方法
DE102013206377B4 (de) 2013-04-11 2021-07-29 Robert Bosch Gmbh Mikromechanische Struktur und entsprechendes Herstellungsverfahren
KR102210986B1 (ko) * 2014-08-01 2021-02-03 삼성디스플레이 주식회사 광대역 광 흡수체 및 이를 포함한 표시 장치
JP6278922B2 (ja) * 2015-03-30 2018-02-14 Jx金属株式会社 電磁波シールド材
JP2017220015A (ja) 2016-06-07 2017-12-14 株式会社ジャパンディスプレイ 入力検出装置及びタッチ検出機能付き表示装置
US20190057796A1 (en) * 2017-08-15 2019-02-21 The Charles Stark Draper Laboratory, Inc. Wire with composite shield
US11513267B2 (en) * 2018-06-10 2022-11-29 Apple Inc. Patterned mirror edge for stray beam and interference mitigation
TWI796476B (zh) * 2018-10-22 2023-03-21 日商拓自達電線股份有限公司 導電性接著片
CN109859897B (zh) * 2019-01-04 2020-07-24 江苏科麦特科技发展有限公司 一种非连续屏蔽带的制备方法
CN113722672B (zh) * 2021-07-20 2022-04-05 厦门微亚智能科技有限公司 一种VR Lens杂散光噪声的检测计算方法
CN113825376B (zh) * 2021-08-13 2024-04-05 深圳市志凌伟业光电有限公司 电磁屏蔽构件的制备方法和电磁屏蔽构件
CN113795132B (zh) * 2021-08-13 2024-04-05 深圳市志凌伟业光电有限公司 电磁屏蔽构件和显示器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266096A (ja) * 1998-03-17 1999-09-28 Nissha Printing Co Ltd Emiシールド材料とその製造方法
JP2000183585A (ja) * 1998-12-17 2000-06-30 Nec Corp 電磁波遮蔽フィルタ
WO2002071824A1 (fr) * 2001-03-02 2002-09-12 Hitachi Chemical Co., Ltd. Film de protection electromagnetique, unite de protection electromagnetique et affichage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115480A (ja) 1984-06-29 1986-01-23 Riken Ii M C Kk デイスプレイ装置用透光面板
JP2795771B2 (ja) * 1992-03-30 1998-09-10 日本写真印刷株式会社 透光性電磁波シールド材料
JP3315161B2 (ja) * 1992-10-05 2002-08-19 株式会社シマノ 自転車用ギヤ装置
JPH09293989A (ja) * 1996-02-29 1997-11-11 Nissha Printing Co Ltd 透光性電磁波シールド材料とその製造方法
JPH10335885A (ja) 1997-06-03 1998-12-18 Hitachi Chem Co Ltd 透明性を有する電磁波シールド材料及び該電磁波シールド材料を用いたディスプレイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266096A (ja) * 1998-03-17 1999-09-28 Nissha Printing Co Ltd Emiシールド材料とその製造方法
JP2000183585A (ja) * 1998-12-17 2000-06-30 Nec Corp 電磁波遮蔽フィルタ
WO2002071824A1 (fr) * 2001-03-02 2002-09-12 Hitachi Chemical Co., Ltd. Film de protection electromagnetique, unite de protection electromagnetique et affichage

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697304B2 (en) 2004-07-27 2010-04-13 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding device
WO2006011457A1 (ja) * 2004-07-27 2006-02-02 Dai Nippon Printing Co., Ltd. 電磁波シールド装置
WO2006011456A1 (ja) * 2004-07-27 2006-02-02 Dai Nippon Printing Co., Ltd. 電磁波シールド装置
WO2006025314A1 (ja) * 2004-08-31 2006-03-09 Dai Nippon Printing Co., Ltd. 電磁波遮蔽材及びそれを用いた画像表示装置
US7859179B2 (en) 2004-08-31 2010-12-28 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding material and display using the same
JP2006191010A (ja) * 2004-12-09 2006-07-20 Bridgestone Corp 光透過性電磁波シールド性フィルムの製造方法、光透過性電磁波シールド性フィルム、及びディスプレイ用フィルタ
EP1727239A1 (en) * 2005-05-25 2006-11-29 Northrop Grumman Corporation Reflective surface for deployabe reflector
KR20070015040A (ko) * 2005-07-29 2007-02-01 다이니폰 인사츠 가부시키가이샤 복합 필터의 제조 방법
JP2007042887A (ja) * 2005-08-03 2007-02-15 Bridgestone Corp 光透過性電磁波シールド性窓材及びその製造方法
JP2007095915A (ja) * 2005-09-28 2007-04-12 Dainippon Printing Co Ltd ディスプレイ用複合フィルタの製造方法
JP2014131071A (ja) * 2008-02-28 2014-07-10 3M Innovative Properties Co 基材上に導電体をパターン化する方法
JP2016154256A (ja) * 2008-02-28 2016-08-25 スリーエム イノベイティブ プロパティズ カンパニー 基材上に導電体をパターン化する方法
US20220131018A1 (en) * 2020-10-26 2022-04-28 Samsung Display Co., Ltd. Fingerprint sensor and display device including the same

Also Published As

Publication number Publication date
TW200404493A (en) 2004-03-16
TWI253322B (en) 2006-04-11
KR20080023269A (ko) 2008-03-12
KR20050029312A (ko) 2005-03-25
US7371450B2 (en) 2008-05-13
US20050244609A1 (en) 2005-11-03
DE10393019B4 (de) 2008-01-24
JPWO2004016058A1 (ja) 2005-12-02
AU2003254831A1 (en) 2004-02-25
CN1689386A (zh) 2005-10-26
CN100397968C (zh) 2008-06-25
JP4445858B2 (ja) 2010-04-07
DE10393019T5 (de) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4445858B2 (ja) 電磁波遮蔽用シート
JP4288235B2 (ja) 電磁波遮蔽用シート
JP4334477B2 (ja) 電磁波遮蔽用シート
JP4346607B2 (ja) 電磁波遮蔽用シート、ディスプレイ用前面板及び電磁波遮蔽用シートの製造方法
JP4339789B2 (ja) 電磁波遮蔽用シートおよびその製造方法
WO2005074347A1 (ja) 電磁波シールドフィルム、及びその製造方法
JPWO2005072039A1 (ja) ディスプレイ用前面板及びその製造方法
JPWO2006011456A1 (ja) 電磁波シールド装置
JPWO2006011457A1 (ja) 電磁波シールド装置
WO2005072040A1 (ja) 電磁波シールドフィルム、及びその製造方法
JPWO2005060326A1 (ja) 電磁波シールド材、及びその製造方法
JP2006128421A (ja) 粘着剤層付き電磁波シールドフィルタ
JP2007258557A (ja) 複合フィルタの製造方法及びその方法で得られた複合フィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10521997

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057001522

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004527347

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057001522

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038239582

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10393019

Country of ref document: DE

Date of ref document: 20050908

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393019

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607