WO2006011457A1 - 電磁波シールド装置 - Google Patents

電磁波シールド装置 Download PDF

Info

Publication number
WO2006011457A1
WO2006011457A1 PCT/JP2005/013596 JP2005013596W WO2006011457A1 WO 2006011457 A1 WO2006011457 A1 WO 2006011457A1 JP 2005013596 W JP2005013596 W JP 2005013596W WO 2006011457 A1 WO2006011457 A1 WO 2006011457A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent resin
resin layer
layer
mesh
electromagnetic wave
Prior art date
Application number
PCT/JP2005/013596
Other languages
English (en)
French (fr)
Inventor
Nobuo Naito
Fumihiro Arakawa
Kazuhito Fujii
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to KR1020067026770A priority Critical patent/KR101110992B1/ko
Priority to US11/632,853 priority patent/US20080245563A1/en
Priority to DE112005001688T priority patent/DE112005001688T5/de
Priority to JP2006529324A priority patent/JPWO2006011457A1/ja
Publication of WO2006011457A1 publication Critical patent/WO2006011457A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties

Definitions

  • the present invention relates to a sheet for shielding electromagnetic waves, and more specifically, disposed on the front surface of an image display device (display) such as a CRT or PDP, and detects electromagnetic waves generated by the image display device.
  • the present invention relates to an electromagnetic shielding material (electromagnetic shielding device) for shielding.
  • image display device is an abbreviation and function of “display”
  • CRT is “cathode ray tube (brown tube)”
  • PDP is “plasma display panel”. It is a formal expression, common name, or industry term.
  • EMI Electro Magnetic Interference
  • a PDP is a combination of a data electrode, a glass plate having a fluorescent layer, and a glass plate having a transparent electrode.
  • a large amount of electromagnetic waves is generated. Therefore, it is necessary to shield the electromagnetic waves.
  • the shielding ability of electromagnetic waves that also generate PDP front force is required to be 30 dB or more at 30 MHz to lGHz.
  • Electromagnetic noise is roughly classified into conduction noise and radiation noise. Generally, there is a method of removing conduction noise using a noise filter or the like. On the other hand, since radiation noise needs to insulate the space electromagnetically, there are methods to shield the case by using a metal housing, inserting a metal plate between circuit boards, or rolling a cable with a metal foil. is there. These methods are effective for shielding electromagnetic waves in circuits and power supply blocks. CRT, PDP and other electromagnetic waves generated from the screen of the image display device are not removed and the metal plate coating is opaque, so it is not suitable. .
  • electromagnetic shielding materials have been proposed for shielding electromagnetic waves in the frequency range from MHz to GHz and transparent to electromagnetic waves in the visible light band for shielding electromagnetic waves on the screen of the image marking device. It is also manufactured and sold. Its most representative A typical example is an electromagnetic wave shielding material (electromagnetic wave shielding device) having a structure in which a mesh (a net or a lattice) having a metal conductive force is laminated on a transparent substrate made of a resin sheet. In this type of electromagnetic shielding material, recently, a transparent resin is coated on the metal mesh to fill the openings, and the irregularities on the surface of the metal mesh are flattened as shown in FIG. The thing of composition is required.
  • Recent image display devices feature a large screen.
  • the size (outer dimensions) of the electromagnetic shielding material used for the front plate is, for example, 621 X 831mm for the 37-inch and 983 X 583mm for the 42-inch. There is also a large size.
  • the electromagnetic shielding sheet having a transparent resin layer provided on the metal mesh has a metal mesh and a transparent resin layer in the entire process, from the manufacturing process to the assembly to the image display device, and in the long period of actual use. It was found that there was a risk of floating and peeling between the layers. That is, the transparent resin layer 17 as shown in FIG. 4 needs to cover the mesh part 103 directly opposite the screen part 100 of the image display device without leakage.
  • the coating area of the transparent resin layer 17 is the same as that of the mesh part 103 so that there is no missing part of the transparent resin layer immediately above the mesh part even if the coating position varies (positional deviation). It needs to be wider than the area. Furthermore, the coated transparent resin flows until it solidifies and spreads further to the outer periphery. Therefore, in actuality, the transparent resin layer is covered by covering about 2-3 mm from the mesh portion 103 into the frame portion for grounding (metal layer without opening) on the outer periphery (B portion). In the mesh portion 103, the transparent resin layer 17 and the metal mesh 103 easily and sufficiently adhere to each other due to the anchor effect (throwing effect) and the chemical adhesion of the adhesive layer 13 to the transparent resin layer and the metal mesh.
  • the transparent resin layer 17 is in contact only with the flat metal layer, and neither an anchor effect nor chemical adhesion with the adhesive layer can be expected.
  • this portion is the end of the interface between the transparent resin layer 17 and the electromagnetic wave shielding layer (metal layer) 15, the stress is concentrated here. Therefore, it is considered that peeling easily occurs here.
  • the concave portion of the opening of the mesh is filled to flatten the mesh surface, so that when the laminate is laminated on the mesh surface with another layer such as an antireflection filter via an adhesive layer, It is intended to prevent bubbles from remaining on the surface and diffusely reflect light, and to fill the rough surface of the adhesive exposed in the opening to improve transparency.
  • the electromagnetic wave shielding material for the screen of the image display device has a metal frame region 101 having no opening at the peripheral edge of the mesh portion for normal grounding.
  • the transparent resin layer 17 applied to the entire surface of the mesh portion 103 is coated in a larger area than the mesh portion 103 in order to reliably cover the mesh portion 103 even if the coating position varies.
  • the transparent resin layer 17 end B extends to the frame region 101 as shown in FIG.
  • the transparent resin layer 17 is in contact with the flat and smooth metal surface on the frame region 101, the adhesion between the transparent resin layer and the frame region 101 is originally weaker than that of the mesh portion.
  • peeling stress concentrates on the edge B of the transparent resin layer due to external force. Therefore, the problem was found that the transparent resin layer 17 and the frame region 101 frequently peeled at the end B.
  • the electromagnetic shielding material itself is prevented from being lifted or peeled off.
  • the problem solving means is also described and suggested.
  • Patent Document 1 Japanese Patent No. 3570420
  • Patent Document 2 JP 2002-311843 A
  • Electromagnetic shielding moderate transparency (visible light transmittance), and floats between the electromagnetic shielding layer and the transparent resin layer, which are conductive, during the manufacturing process and the actual use period. It is to provide an electromagnetic shielding device that does not peel off or peel off.
  • the present invention relates to an electromagnetic wave shielding device that is disposed adjacent to the front surface of the screen portion of an image display device, and that is provided on one surface of the transparent base material and the transparent base material and is made of a conductor. And a transparent resin layer provided on the electromagnetic shielding layer.
  • the electromagnetic shielding layer has a shape corresponding to the screen portion of the image display device, and includes a mesh portion including a large number of openings, and a mesh.
  • a transparent resin layer anchor part including an opening part having a lower opening ratio than the opening part of the mesh part, and a flat shape that surrounds the transparent resin layer anchor part and has no opening part.
  • the electromagnetic shielding device is characterized in that it has a frame portion, and the transparent resin layer has a mesh portion surface force provided over the surface of the transparent resin layer anchor portion.
  • the present invention is characterized in that the transparent resin layer is provided so as to extend over the entire surface of the mesh part surface and cover the inner end of the frame part over the entire surface of the transparent resin layer anchor part. It is an electromagnetic sinored device.
  • the present invention is characterized in that the transparent resin layer has a force across the entire surface of the mesh part and extends over the entire surface of the transparent resin layer anchor part and ends at the outer end of the transparent resin layer anchor part.
  • Electromagnetic shielding device Yes Electromagnetic shielding device.
  • the present invention provides the electromagnetic shielding device, wherein the transparent resin layer is provided so as to cover the inner end of the transparent resin layer anchor in the entire area of the mesh part surface.
  • the present invention provides an electromagnetic wave characterized in that the transparent resin layer has a mesh region surface-wide force extending to an intermediate part of the transparent resin layer anchor part and covers the outside of the transparent resin layer anchor part. It is a Sino Red device.
  • the present invention is an electromagnetic wave shielding device characterized in that an adhesive layer is interposed between the transparent substrate and the electromagnetic wave shielding layer.
  • the present invention has excellent electromagnetic shielding properties and appropriate transparency (visible light transmittance).
  • an electromagnetic wave shielding material that does not float or peel off between the electromagnetic wave shielding layer and the transparent resin layer during the manufacturing process and the actual use period is provided.
  • a small amount of material for the transparent resin layer is sufficient, and even if the formation position of the transparent resin layer is slightly shifted, it is possible to cope with the gap between the constituent layers during the manufacturing process and the actual use period.
  • an electromagnetic wave shielding material that does not peel off or peel off and does not cause a loss of the transparent resin layer in the mesh part facing the screen part even if the transparent resin layer coating position varies.
  • the interlayer between the transparent base material and the electromagnetic wave shielding layer laminated with the adhesive layer is firmly adhered, and the adhesive layer is also exposed on the bottom surface of the mesh and the opening. Electromagnetic wave that firmly adheres to the transparent resin layer that fills the area, and more reliably prevents it from floating or peeling off during the manufacturing process and actual use period.
  • a shielding material is provided.
  • FIG. 1 is a plan view showing an electromagnetic wave shielding device according to the present invention.
  • FIGS. 2A and 2B are an enlarged plan view and an enlarged cross-sectional view of part A in FIG.
  • FIGS. 3 (A) to 3 (C) are cross-sectional views of main parts for explaining the positions of the layers of the present invention.
  • FIG. 4 is a cross-sectional view of a main part for explaining the position of a conventional transparent resin layer.
  • FIG. 1 is a plan view showing an embodiment of the present invention.
  • 2 (A) and 2 (B) are an enlarged plan view and an enlarged cross-sectional view of part A in FIG.
  • FIGS. 3A, 3B, and 3C are cross-sectional views of the main parts for explaining the positions of the layers of the present invention.
  • Electromagnetic wave shielding material An electromagnetic wave shielding device (electromagnetic wave shielding material) according to the present invention will be described with reference to FIGS. 1 to 3 (A), (B), and (C).
  • the electromagnetic wave shielding device (electromagnetic wave shielding material) 1 is the front of the screen 100 of an image display device such as a display panel (PDP, etc.), that is, an observer. It is arranged adjacent to the side.
  • an electromagnetic wave shielding device 1 includes a transparent base material 11, an electromagnetic wave shielding layer 15 that is provided on one surface of the transparent base material 11 via an adhesive layer 13 and has a conductive force, and a transparent material provided on the electromagnetic wave shielding layer 15. It has a rosin layer 17.
  • the electromagnetic wave shielding layer 15 is arranged to face the screen portion 100 of the image display device such as PDP, has substantially the same shape as the screen portion 100, and has a large number of openings 103a.
  • the frame region 101 is formed by the transparent resin layer anchor portion 105 and the frame portion 107.
  • the mesh portion 103 includes an opening portion 103a and a line portion 103b surrounding the periphery thereof, and the transparent resin layer anchor portion 105 includes an opening portion 105a and a line portion 105b surrounding the periphery thereof. Further, the line part 105b of the transparent resin layer anchor part 105 is wider than the line part 103b of the mesh part 103, and the opening part 105a of the transparent resin layer anchor part 105 is an opening part of the mesh part 103. The area is smaller than 103a. The cycle of the line portion 103b is equal to the cycle of the line portion 105b.
  • the opening ratio of the opening 105a of the transparent resin layer anchor part 105 is smaller than the opening ratio of the opening 103a of the mesh part 103.
  • the frame portion 107 is connected to the ground.
  • the transparent resin layer 17 has a mesh region 103 surface-wide force extending over the entire surface of the transparent resin layer anchor portion 105, and is filled and covered with the openings 103a and 105a. ing. In this case, the transparent resin layer 17 ends at the outer end of the transparent resin anchor part 105.
  • the transparent resin layer 17 extends to the middle part of the transparent resin layer anchor part 105 and does not have to cover the outer side of the transparent resin layer anchor part 105 (FIG. 3 (B)).
  • the transparent resin layer 17 extends over the entire surface of the transparent resin layer anchor portion 105 and covers the inner end of the region portion 107 without having an opening! C)).
  • the transparent resin layer 17 ends at the outer end of the transparent resin layer anchor portion 105 and does not protrude into the frame portion 107 (FIG. 3 (A)).
  • the opening 105a of the transparent resin layer anchor portion 105 may be constricted by penetrating the surface force of the electromagnetic wave shielding layer 15 to the back surface, and the surface force of the electromagnetic wave shielding layer 15 may not penetrate to the back surface.
  • the hole may stop in the middle of the electromagnetic wave shielding layer 15 to have a concave shape. No Even with a deviation, a sufficient anchoring effect can be achieved.
  • the opening 105a of the transparent resin anchor portion is located outside the screen portion 100 of the image display device, and it is not necessary to see through the image. There is no hindrance to the function.
  • the electromagnetic wave shielding material 1 of the present invention will be described with respect to materials and formation of each layer.
  • Transparent substrate As the material of the transparent substrate 11, various materials can be applied as long as they have transparency, insulation, heat resistance, mechanical strength, etc. that can withstand usage conditions and manufacturing, such as glass and transparent. It is greaves.
  • the (glass) glass quartz glass, borosilicate glass, soda lime glass, etc. can be applied, preferably having a small coefficient of thermal expansion, excellent dimensional stability and workability in high-temperature heat treatment, and containing an alkali component in the glass. It is a non-alkali glass and can also be used as an electrode substrate for an image display device.
  • transparent resin In transparent resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-cyclohexanedimethanol -Polyester resin such as ethylene glycol copolymer, polyamide resin such as nylon 6, polyolefin resin such as polypropylene and polymethylpentene, acrylic resin such as polymethylmethacrylate, polystyrene, styrene Sheets, films, plates, and the like composed of styrene-based resins such as monoacrylonitrile copolymer, cellulose-based resins such as triacetyl cellulose, imide-based resins, and poly-bonded resin can be applied.
  • the transparent substrate made of the transparent resin may be a copolymer resin mainly composed of these resins, a mixture (including a polymer alloy), or a laminate composed of a plurality of layers.
  • the transparent substrate may be a stretched film or an unstretched film, but a film stretched in a uniaxial direction or a biaxial direction is preferable for the purpose of improving the strength.
  • the thickness of the transparent substrate is usually about 12 to about LOOO / zm, but 50-700 ⁇ m is preferable, and 100 to 500 ⁇ m is preferable. Is optimal.
  • a force S of about 1000 to 5000 m is usually suitable.
  • polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, or glass are preferably used because they are transparent, heat resistant and inexpensive.
  • polyethylene terephthalate is most suitable because it is difficult to break, lightweight and easy to mold. The higher the transparency, the better, but the visible light transmittance is preferably 80% or more.
  • the transparent substrate Prior to coating, the transparent substrate is subjected to corona discharge treatment, plasma treatment, ozone treatment, flame treatment, primer (also called an anchor agent, adhesion promoter, or easy adhesive), coating treatment, pre-heat treatment. Further, easy adhesion treatment such as dust removal treatment, vapor deposition treatment, and alkali treatment may be performed.
  • the resin film may contain additives such as ultraviolet absorbers, fillers, plasticizers and antistatic agents, if necessary.
  • the electromagnetic wave shielding layer 15 for shielding electromagnetic waves is not particularly limited as long as it is a substance having a conductivity sufficient to shield electromagnetic waves, but typically, for example, gold, silver, Copper, iron, nickel, chromium, aluminum, etc., consists of a layer that also has metallic power with sufficient conductivity to shield electromagnetic waves.
  • the electromagnetic wave shielding layer is formed by laminating a metal foil formed in advance as an independent layer on a transparent substrate via an adhesive layer, or directly on the transparent substrate film by vapor deposition, sputtering, plating, etc. And depositing a metal layer.
  • the metal foil or metal layer may not be a simple substance, but may be an alloy or a multilayer.
  • the metal foil low carbon rimmed steel, low carbon steel such as low carbon aluminum killed steel, Ni-Fe alloy and Invar alloy are preferred for iron, and when cathodic electrodeposition is performed, Copper or a copper alloy is preferred because of the ease of electrodeposition.
  • the copper film formed in advance that is, the copper foil can be a rolled copper foil or an electrolytic copper foil, but the thickness uniformity, the blackness treatment, and the adhesion with the Z or chromate (treatment) layer, Electrolytic copper foil is preferred because it can produce a thin film of 10 m or less.
  • the thickness of the metal foil is about 1 to about LOO m, preferably 5 to 20 m. If the thickness is less than this, the mesh force by the photolithography method becomes easy.
  • the electric resistance value of the metal increases and the electromagnetic shielding effect is impaired. If the thickness is more than this, the desired high-definition mesh shape cannot be obtained. As a result, the substantial aperture ratio is lowered, the light transmittance is lowered, the viewing angle is further lowered, and the visibility of the image is lowered.
  • the surface roughness of the metal foil or metal layer is preferably 0.5 to 10 ⁇ m in terms of Rz value. No more Below, even if the blackening process is performed, external light is specularly reflected, and the visibility of the image is deteriorated. Above this, the entire surface may not be spread or bubbles may be generated when applying adhesive or resist.
  • the surface roughness Rz is an average value of 10 points measured according to JIS-B0601 (1994 edition).
  • the electromagnetic wave shielding layer 15 absorbs external light incident on the electromagnetic wave shielding material, and improves the visibility of the image on the display. At least on the observation side, a known blackening process is performed to give a sense of contrast. Also, the mesh-like conductor and Z or the blackening treatment surface are subject to the omission and deformation of the antifouling function and the blackening process. In order to prevent this, a known fender layer may be provided.
  • a predetermined surface of the metal foil or metal layer may be roughened and Z or blackened. Formation of a single metal, a metal oxide, a metal sulfide, a metal alloy, or various methods can be applied.
  • a metal oxide, a metal sulfide, a metal alloy, or various methods can be applied.
  • iron it is usually exposed to steam at a temperature of about 450 to 470 ° C for 10 to 20 minutes to form an oxide film (blackened film) composed of Fe 2 O of about 1 to 2; ⁇ ⁇ .
  • Drugs such as concentrated nitric acid
  • cathodic electrodeposition is preferred, in which the copper foil is subjected to cathodic electrolysis in an electrolytic solution such as sulfuric acid, copper sulfate and cobalt sulfate to deposit cationic particles. .
  • an electrolytic solution such as sulfuric acid, copper sulfate and cobalt sulfate to deposit cationic particles.
  • the surface becomes rougher and at the same time black is obtained.
  • the cationic particles copper particles and alloy particles of copper and other metals can be applied, but copper-cobalt alloy particles are preferred.
  • the cationic particles copper particles and alloy particles of copper and other metals can be applied, but copper-cobalt alloy particles are preferred. When copper-cobalt alloy particles are used, the degree of black spots is significantly improved and the visible light is absorbed well.
  • the color tone is represented by a color system “L *, a *, b *, ⁇ *” in accordance with JIS—Z8729. In addition to low L * (lightness), the smaller the absolute values of “a *” and “b *” (lower saturation), the electromagnetic shielding layer becomes invisible, and the contrast of the image is reduced. As a result, the visibility of the image is excellent. When using copper-coneoleto alloy particles, “a *” and “b *” can be reduced to nearly zero compared to copper particles.
  • the average particle diameter of the copper-cobalt alloy particles is preferably 0.1 to 1 ⁇ m. No more When the particle size of copper-cobalt alloy particles is increased, the thickness of the conductor layer decreases, and copper foil is cut in the process of laminating with the base material 11, resulting in poor workability. The appearance of the particles lacks the density, and the unevenness becomes noticeable. Below this, the coarseness is insufficient and the visibility of the image is poor.
  • (Anti-fouling layer) Conductor surface such as a metal or the like having at least a blackening treatment in order to prevent a fouling function and the blackening treatment from dropping or deforming to a conductive material such as a metal or Z or blackening treatment It is preferable to provide a protective layer.
  • a protective layer nickel, zinc, Z or copper oxide, or a chromate treatment layer can be applied. Usually, it is preferable to perform chromate treatment after zinc plating.
  • the nickel, zinc, and Z or copper oxides may be formed by a known plating method, and the thickness is about 0.001 to 1 ⁇ m, preferably 0.001 to 0.1 ⁇ m.
  • the coating method roll coating, curtain coating, squeeze coating, electrostatic atomization method, dipping method or the like can be applied. After coating, it may be dried without washing.
  • the chromate treatment is applied to one side, it is applied to one side by roll coating or the like, and when it is applied to both sides, the dipping method may be used.
  • the chromate treatment solution an aqueous solution containing 3 gZl of Cr02 is usually used.
  • a chromate treatment solution obtained by adding a different oxycarboxylic acid compound to an aqueous chromic anhydride solution and reducing a portion of hexavalent chromium to trivalent chromium can also be used.
  • trivalent chromium is colorless. If trivalent and hexavalent chromium are controlled, transparency without practical problems can be obtained. It is done.
  • oxycarboxylic acid compound tartaric acid, malonic acid, citrate, lactic acid, dalcholic acid, glyceric acid, tropic acid, benzylic acid, hydroxyvaleric acid and the like are used alone or in combination. Since the reducibility varies depending on the compound, the addition amount should be determined while knowing the reduction to trivalent chromium.
  • the blackening treatment and the fender layer are provided at least on the observation side, the contrast is improved and the visibility of the image on the display is improved. Also, install on the other side, that is, the display side. Since the stray light generated by the display camera can be suppressed, the visibility of the image is further improved.
  • (Lamination method) As a method of laminating the base material 11 and the electromagnetic wave shielding layer 15, a person skilled in the art may laminate the adhesive layer 13 via a dry lamination method, or may use a plating method without going through an adhesive layer. There is a method of directly laminating on the transparent substrate 11. As the plating method, a known plating method in which the substrate 11 is electrolyzed or electrolessly plated can be applied.
  • the dry lamination method is a method in which an adhesive dispersed or dissolved in a solvent has a film thickness after drying of about 0.1 to 20; ⁇ ⁇ (dry state), preferably 1 As soon as the adhesive layer is formed by applying a coating method such as roll coating, reverse roll coating, gravure coating, etc., and drying the solvent so that ⁇ 10; ⁇ ⁇ . After laminating the bonded substrates, the adhesive is cured by aging at 30 to 80 ° C. for several hours to several days to laminate two materials.
  • a thermosetting resin or an ionizing radiation curable resin that is cured by ionizing radiation such as ultraviolet rays or electron beams can be used.
  • thermosetting adhesives include two-component curable urethane adhesives, acrylic adhesives, and rubber adhesives. Two-component curable urethane adhesives are preferred. It is. A two-component curable urethane adhesive is cured by the reaction of a polyfunctional polyol and a polyfunctional isocyanate.
  • a polyfunctional polyol polyester polyol, acrylic polyol, polyether polyol, or the like is used.
  • polyfunctional isocyanate tolylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, or adducts and multimers thereof are used.
  • a mesh is formed on the electromagnetic wave shielding layer 15 without the opening formed as described above.
  • the mesh includes a mesh portion 103 facing the screen portion 100 of the image display device, and a transparent resin anchor portion 105 surrounding the periphery of the mesh portion.
  • a photolithography method can be applied as a mesh forming method.
  • a resist layer is provided in a mesh pattern on the surface of the electromagnetic wave shielding layer 15 of the above laminate, and the conductor layer is partially removed by etching without being covered with the resist layer. Later, the resist layer is removed, and the electromagnetic shielding of the mesh pattern Layer.
  • the electromagnetic wave shielding layer 15 is composed of a mesh portion 103, a transparent resin layer anchor portion 105, and a frame portion 107 without an opening portion sequentially from the inside to the outside.
  • the mesh portion 103 and the transparent resin anchor portion 105 are formed by the line portions 103b and 105b where the metal layer remains.
  • the frame portion 107 including a plurality of surrounding openings 103a and 105a and having no openings has no openings and the entire metal layer remains.
  • the photolithography method is also preferably processed in the form of a roll that is continuously wound in a strip shape like the laminating method. While continuously or intermittently transporting the laminate of the transparent substrate 11 and the electromagnetic wave shielding layer 15, masking, etching, and resist peeling are performed in a stretched state without looseness.
  • masking for example, a photosensitive resist is applied onto an electromagnetic wave shielding layer (conductor layer), dried, and then an original (photomask) having a predetermined pattern (mesh line portion and frame portion). Adhesion exposure with, develop with water, harden, etc., and bake.
  • the resist is applied by dipping, dipping, curtain coating, or pouring a resist such as casein, PVA, or gelatin onto the surface of the electromagnetic wave shielding layer while the strip-shaped roll-shaped laminate is continuously or intermittently conveyed. Etc.
  • a dry film resist which is not coated. Baking is usually performed at 200 to 300 ° C in the case of zein resist, but in order to prevent warping of the laminate, a temperature as low as 100 ° C or less is preferred!
  • Etching is performed after masking.
  • a salty ferric chloride or cupric chloride solution that can be easily circulated is preferable in the present invention in which etching is continuously performed.
  • the etching is basically the same process as the equipment for manufacturing a shadow mask for a color TV CRT that etches a strip-like continuous steel material, particularly a thin plate having a thickness of 20 to 80 ⁇ m.
  • the existing manufacturing equipment for the shadow mask can be diverted, and the masking power can be continuously produced through etching, which is extremely efficient.
  • the power may be dried by washing with water, removing the resist with an alkaline solution, and washing.
  • the mesh part 103 is an area surrounded by a frame area 101 including a transparent resin layer anchor part 105 and a frame part 107.
  • Mesh part 103 is connected to line part 103b. It consists of a plurality of openings 103a surrounded.
  • the shape of the opening (mesh pattern) is not particularly limited. For example, a triangle such as a regular triangle, a square such as a square, rectangle, rhombus, or trapezoid, a polygon such as a hexagon, a circle, an ellipse, etc. Is applicable. Only one type of these openings 103a or a combination of multiple types is used as a mesh.
  • the line width is 25 m or less, preferably 20 m or less
  • the line interval (line pitch) is 150 ⁇ m or more, preferably 200 ⁇ m or more from the light transmittance.
  • the aperture ratio is about 85-95%.
  • the bias angle angle formed between the mesh line portion and the side of the electromagnetic shielding material may be appropriately selected in consideration of display pixels and light emission characteristics in order to eliminate moire.
  • the mesh pattern of the transparent resin anchor part 105 may be an opening having an opening ratio lower than that of the mesh part 103.
  • the aperture ratio refers to the opening with respect to the entire surface area of the electromagnetic shielding layer 15 in a predetermined region (each of the mesh portion 103, the transparent resin anchor portion 105, or the frame portion 107 having no opening). It means the ratio of the total area of the parts.
  • an opening is formed in order to anchor the outer end portion of the transparent resin layer 17 to the electromagnetic wave shielding layer 15.
  • the opening ratio of the opening 105 a of the transparent resin anchor part 105 is lower (smaller) than the opening ratio of the opening 103 a of the mesh part 103.
  • the aperture ratio is successively reduced to the mesh portion 103, the transparent resin anchor opening portion 105, and the frame portion 107 having no opening portion, so that the display image quality is not adversely affected and the electromagnetic force is also reduced. Even when an external force or deformation is applied to the material, the outer edge of the mesh is less likely to break or break.
  • the shape (mesh pattern) of the openings 103a and 105a may be a plurality of the same rectangular patterns as shown in FIG. 2 (A), but is not particularly limited, for example, a triangle such as a regular triangle, Polygons such as squares, rectangles, rhombuses, trapezoids, etc., hexagons, etc., circles, ellipses, etc. are applicable.
  • the transparent resin layer anchor part 105 the area of the opening part 105a is reduced, the arrangement period is increased, or both of them are compared with the opening part 103a of the mesh part 103. What is necessary is just to make it a low aperture ratio combining.
  • the shape of the opening 105a may be the same as or different from the shape of the opening 103a of the mesh portion 103.
  • the transparent resin layer anchor portion 105 may be a non-penetrating recess that does not need to be formed by penetrating the conductor layer 15 through the front and back sides! /.
  • the shape of the recess is arbitrary as long as it has an anchor effect!
  • the aperture ratio of the mesh pattern of the transparent resin anchor portion 105 is a so-called gradation in which the surface force in contact with the mesh portion 103 is temporarily reduced toward the surface of the frame portion 107 having no opening in the outer peripheral portion.
  • the shape to call is preferred. In this way, conventionally, the stiffness changes discontinuously at the boundary between the mesh portion 103 and the frame region 101. Therefore, the manufacturing process power of the electromagnetic shielding material In the entire process from assembly to assembly to the display, This is a force that causes stress to bend and break or break, and has the disadvantage of wasting expensive parts that are extremely unsuitable for handling.
  • electromagnetic shielding for large PDPs Both the materials and the production capacity are excellent in handling suitability, with no breakage or other defects occurring in the entire process up to assembly.
  • a mesh pattern mask can be easily produced by a force image processing apparatus that combines a plurality of patterns, the process is easy, and the cost does not increase.
  • the function of the transparent resin layer 17 is flatness and transparency of the mesh portion. That is, when the mesh portion 103 and the transparent resin layer anchor portion 105 are formed, the line portions 103b and 105b have the thickness of the electromagnetic wave shielding layer 15, but the openings 103a and 105a are removed to become cavities or recesses, The electromagnetic wave shielding layer 15 is in an uneven state.
  • the adhesive or pressure-sensitive adhesive
  • the unevenness is filled with the adhesive.
  • the openings 103a and 105a are formed and immediately attached to the display, the unevenness is exposed. Since the workability is poor, the concave portion is filled with the transparent resin layer 17 and flattened.
  • the transparent resin layer 17 has the transparent base material 11 or the adhesive layer 13 exposed at the bottom of the opening, and the bottom surface of the transparent base material 11 or the adhesive layer 13, particularly the adhesive layer 13, is an electromagnetic wave shield.
  • the transparent resin layer 17 is formed by diluting with a solvent and applying at a low viscosity and drying, or by applying air while degassing.
  • “flattening” may be planarity that does not distort the display image or cause haze due to light scattering.
  • air bubbles remains between the layers of each electromagnetic wave shielding material when surface blocking or electromagnetic shielding material is scraped or stacked in a range where distortion and cloudiness do not occur in the image.
  • the transparent resin layer 17 may be any material as long as it has good adhesion to a highly transparent mesh conductor and good adhesion to the adhesive in the next step. However, if the surface of the transparent resin layer 17 has 1S protrusions, dents, or unevenness, it is not preferable because when it is installed on the front surface of the display, moire, interference unevenness, and Newton rings may occur.
  • a thermosetting resin or ionizing radiation curable resin is applied as a resin in a desired pattern by a known intermittent die coating method, etc., and then has excellent planarity and releasability.
  • Lamination is performed with a base material, and the coated resin is cured with heat or ultraviolet rays, and the peelable base material is peeled off and removed.
  • the surface of the transparent resin layer 17 the surface of the planar substrate is transferred to form a flat and smooth surface.
  • the resin used for the transparent resin layer 17 is not particularly limited, and various natural or synthetic resins can be used.
  • Acrylic ultraviolet curable resin is preferred.
  • An ionizing radiation curable resin is mainly composed of an oligomer having a functional group capable of causing a crosslinking or polymerization reaction without irradiation by the irradiation of ionizing radiation such as ultraviolet rays or electron beams, or without the action of the initiator.
  • Z or monomer polymerized, ionizing radiation curable resin or It is a cured product of the composition.
  • the oligomer or monomer that can be an ionizing radiation curable resin mainly includes radical polymerization having an ethylenic double bond such as an allyloyl group, methacryloyl group, acryloyloxy group, or methacryloyloxy group in the molecule.
  • radical polymerization having an ethylenic double bond such as an allyloyl group, methacryloyl group, acryloyloxy group, or methacryloyloxy group in the molecule.
  • photopower thione polymerizable oligomers such as epoxy group-containing compounds and Z or monomers can be used.
  • Ionizing radiation means an electromagnetic wave or charged particle beam having an energy quantum capable of polymerizing and bridging molecules, and usually ultraviolet rays, electron beams, and the like are used.
  • ultraviolet rays high-pressure mercury lamps, low-high pressure mercury lamps, metal lamps, ride lamps, carbon arcs, black light lamps, etc. are used as irradiation devices (radiation sources).
  • the energy (wavelength) of ultraviolet rays is preferably about 190 to 450 nm, and the irradiation dose is about 50 to about LOOOmiZcm2.
  • the energy (acceleration voltage) of the electron beam is 70 to: LOOOke V, preferably about 100 to 300 keV, and the irradiation dose is usually preferably about 0.5 to 30 Mrad.
  • the ionizing radiation curable resin composition may not contain a polymerization initiator.
  • the application position of the transparent resin layer 17 is important. Originally, as shown in FIG. 3 (A), the application position of the transparent resin layer 17 covers the surface from the mesh part 103 to the transparent resin layer anchor part 105, and the openings 103a, 105a. It is possible to fill and cover all of the openings 103a and 105a so that they do not protrude into the frame part 107 that does not have an opening. Necessary and difficult. Therefore, as shown in FIG. 3 (B), only the inner peripheral portion of the opening 105a of the transparent resin layer anchor portion 105 is filled and covered, and the outer peripheral portion of the transparent resin anchor portion 105 is open to the opening portion 105a. Is left uncoated and unfilled.
  • the coating position of the transparent resin layer varies from front to back and from side to side, but even at the end of the transparent resin layer 17 the position cache part 103 is retracted or has an opening. Intrusion can be prevented until there is no picture frame 107.
  • the opening from the mesh portion 103 to the transparent resin layer anchor portion 105 Even if the frame 107 that does not have an opening is slightly filled by filling and covering with 105a, the distance is about three cycles or less of the opening 10, more preferably one cycle or less.
  • the effect of preventing peeling between the transparent resin layer 17 and the electromagnetic wave shielding layer 15 can be expected, and the effect of the present invention is achieved.
  • Fig. 4 is a cross-sectional view of a main part for explaining the position of a conventional transparent resin layer.
  • the transparent resin layer and the electromagnetic shielding layer may float or peel off. there were. Furthermore, since the portion where the transparent resin layer 17 covers the frame portion 101 does not have an opening portion, the thickness is increased by a corresponding amount, so that it is easy to cause peeling.
  • the transparent resin layer 17 is embedded in the openings 103a and 105a of the mesh portion 103 and the transparent resin layer anchor 105, the physical properties are The anchoring effect is great!
  • a mesh is formed on the inner peripheral portion of the frame portion 107, and a transparent resin layer anchor opening 105 surrounding the periphery of the mesh portion 103 is provided.
  • the transparent resin layer 17 is formed so as to fill and cover at least one opening 105a of the transparent resin layer anchor part 105.
  • the electromagnetic wave shielding layer 15 has excellent electromagnetic shielding properties, and irregularities on the bottom surface of the opening are eliminated, so that appropriate transparency (visible light transmission) can be obtained.
  • the electromagnetic wave shielding material 1 of the present invention has functions such as a function of absorbing a specific wavelength of visible light and Z or near infrared light, an antireflection function, a hard coat function, an antifouling function, and an antiglare function.
  • a layer having such a function or having the function may be provided on any of the front and back surfaces and Z or between layers.
  • a light absorber that absorbs visible light and a specific wavelength unnecessary for Z or near infrared ray may be added to the resin used for the transparent resin layer 17.
  • a specific wavelength of visible light By absorbing a specific wavelength of visible light, the unnaturalness and discomfort of the natural color reproduction of the image can be suppressed, and the visibility of the image is improved.
  • the unnecessary specific wavelength in the visible light region emitted from the PDP there are usually many orange colors near the wavelength of 590 nm, which is the spectrum light of neon atoms, and those that absorb moderately around 590 ⁇ m are preferable.
  • the specific wavelength of near-infrared is about 780 to: LlOOn m.
  • the near-infrared absorber is not particularly limited, but has a steep absorption in the near-infrared region, a high light transmittance in the visible light region, and is specified in the visible light region. Dyes that do not absorb large wavelengths can be applied. Examples of the dye that absorbs an unnecessary specific wavelength in the visible light region include a polymer dye and a porphyrin dye.
  • NIR absorbent layer another layer containing the NIR agent (referred to as NIR absorbent layer) may be provided on at least one surface.
  • the NIR absorption layer may be provided on the transparent resin layer 17 side and the Z or reverse substrate 11 side.
  • the NIR absorption layer may be obtained by laminating a commercial film having a NIR absorbent (for example, product name No2832 manufactured by Toyobo Co., Ltd.) with an adhesive, or by applying the NIR absorbent in a binder.
  • a binder include polyester resin, polyurethane resin, acrylic resin, epoxy group such as thermosetting type or ultraviolet curable type, acrylate group, A curing type utilizing a reaction such as an acrylate or isocyanate group can be applied.
  • an antireflection layer (referred to as an AR layer) may be provided on the observation side of the electromagnetic shielding material.
  • the antireflection layer is for preventing reflection of visible light, and many single layers and multiple layers are commercially available.
  • a single layer is formed by laminating a low refractive index layer on the surface.
  • the multi-layered layer is one in which a high refractive index layer and a low refractive index layer are alternately laminated so that the outermost surface is a low refractive index layer.
  • the high refractive index layer include niobium oxide and titanium oxide. , Zirconium oxide, ITO, and the like, and examples of the low refractive index layer include magnesium fluoride and silicon oxide.
  • some have a layer having a fine uneven surface for irregularly reflecting external light.
  • the antireflection (AR) layer may be provided with a hard coat layer, an antifouling layer and an antiglare layer.
  • the hard coat layer is a layer having a hardness of H or higher in the pencil hardness test of JIS-K5400, and polyfunctional acrylates such as polyester acrylate, urethane acrylate and epoxy acrylate are cured by heat or ionizing radiation.
  • the antifouling layer is a water-repellent or oil-repellent coat, and a siloxane-based or fluorinated alkylsilyl compound can be applied.
  • the antiglare layer is a layer having a fine uneven surface that irregularly reflects external light.
  • the frame portion 101 is blackened and the black surface becomes the observation side, the black printing provided in the frame shape of the front glass plate is not required, the process can be shortened, and the cost is advantageous. .
  • an electromagnetic shielding layer 15 As an electromagnetic shielding layer 15, a black soot layer and a chromate (treated) layer of copper-concreto alloy particles having an average particle diameter of 0.3 m on one surface of an electrolytic copper foil having a thickness of 10 m. The conductors were sequentially stacked. Chromate (treatment) layer surface and thickness of this copper-cobalt alloy particle layer After laminating a transparent substrate 11 made of biaxially stretched PET film ⁇ 4300 (made by Toyobo Co., Ltd., trade name of polyethylene terephthalate) with a two-component curable urethane adhesive 13 Aged for 4 days at ° C.
  • a two-component curable urethane resin consisting mainly of polyester urethane diol as the main agent and xylylene diisocyanate as the curing agent was used, and the coating amount was 7 m in thickness after drying.
  • a production line for a color TV shadow mask which has a continuous belt-like shape and has a masking power up to etching, was used.
  • a casein resist was applied over the entire surface of the conductor layer by a pouring method. It was transported to the next station, and contact exposure was carried out by using ultraviolet rays from a mercury-depleted film, using an original having a pattern with the following shape. While carrying the station one after another, it was developed with water, hardened, baked, and baked.
  • the shape of the above pattern plate is such that the central area as shown in Fig. 1 faces the screen part 100 of the 42-inch image display device (equivalent to horizontal and diagonal length 42 inches), and the square opening 103a is the line width.
  • the mesh section 103 is arranged with 22 ⁇ m, line spacing (pitch) 300 ⁇ m, and bias angle 49 degrees.
  • the line intervals of the openings 105a are all 210 m, and the line width is continuous from 22 m of the part in contact with the mesh part 103 to the frame part 107 having no opening. Increase temporarily.
  • the line width of the opening 105a is 40 m at the part in contact with the frame part 107 having no opening, and the opening ratio is reduced in a gradation, so that the transparent resin layer anchor part 105 having a width of 5 mm is formed.
  • the A region surrounding the periphery of the transparent resin layer anchor portion 105 is a frame portion 107 that does not have an opening having a width of 10 mm.
  • openings 103a and 105a were formed by spraying using a salty ferric solution as an etching solution. While carrying the station one after another, it was washed with water, the resist was peeled off, washed, and further heated and dried. Note that the line width of the mesh part 103 and the transparent resin layer anchor part 105 used a 22 ⁇ m resist pattern, but the line width after etching was 12 ⁇ 5 m (7 to 17 ⁇ m). It was. The opening ratio of the mesh part 103 was 92%. On the other hand, the opening ratio of the transparent resin anchor portion 105 was 88% at the portion in contact with the mesh portion and 81% at the portion in contact with the frame portion.
  • a salty ferric solution as an etching solution
  • the transparent resin layer 17 composition having the following composition was added to the mesh part 103 and the transparent resin layer anchor part 105 in the same pattern (that is, the mesh).
  • SP-PET20-BU made by Tosero Co., Ltd., surface release treatment PET film product name
  • 200 mjZcm2 exposure was performed using a high-pressure mercury lamp.
  • the transparent resin layer composition 20 parts by mass of N-vinyl-2-pyrrolidone, 25 parts by mass of dicyclopente-rutalylate, 52 parts by mass of oligoester acrylate (M-8060 manufactured by Toa Gosei Co., Ltd.), 1 -3 parts by mass of hydroxycyclohexyl phenol ketone (manufactured by Ciba Gaigi Co., Ltd., Irgacure 184) was used.
  • the opening 103a of the mesh part 103 and the opening 105a of the transparent resin layer anchor part 105 are filled and covered with the transparent resin layer 17 as shown in FIG.
  • the electromagnetic wave shielding material of Example 1 was obtained.
  • the transparent resin layer 17 composition was applied to the mesh part 103 and applied to the transparent resin anchor part 105 on the outer periphery of the mesh part 103 in a width of 2.5 mm. Otherwise, in the same manner as in Example 1, as shown in FIG. 3 (B), the opening 103a of the mesh part 103 and the inner peripheral part of the opening 105a of the transparent resin layer anchor part 105 are transparent resin. The electromagnetic wave shielding material of Example 2 filled and coated with the layer 17 and planarized was obtained. In addition, the outer peripheral part of the transparent resin layer anchor part 105 is 2.5 mm wide, and the opening part 105a is exposed.
  • the transparent resin layer 17 composition was applied to the mesh portion 103, and the transparent resin layer anchor portion 105 on the outer periphery of the mesh portion 103 and the outer periphery thereof were applied in a total width of 5.5 mm. Otherwise, in the same manner as in Example 1, the opening 103a of the mesh portion 103 and the opening 105a of the transparent resin layer anchor portion 105 are filled and covered with the transparent resin layer 17, and the frame does not have an opening.
  • the electromagnetic shielding material of Example 3 was obtained in which the inner peripheral portion of the portion 107 was coated with a width of 0.5 mm (for an opening portion of 1.7 cycles).
  • Example 4 [0062] The opening 105a of the transparent resin layer anchor portion 105 is square, the line width is 40 m, the line interval (pitch) is 300 / ⁇ ⁇ , the bias angle is 49 degrees, and the transparent resin layer anchor portion 105 is 5 mm. It is wide. Otherwise, in the same manner as in Example 1, the electromagnetic shielding of Example 4 in which openings 103a and 105a of mesh part 103 and transparent resin layer anchor part 105 were filled and covered with transparent resin layer 17 and flattened. A material was obtained.
  • the opening 105a of the transparent resin layer anchor portion 105 has a circular shape with the same opening ratio as that of Example 4. Otherwise, in the same manner as in Example 1, the openings 103a and 105a of the mesh part 103 and the transparent resin layer anchor part 105 were filled and covered with the transparent resin layer 17 and flattened. A shielding material was obtained.
  • the thermal shock test was conducted under the conditions of 100 cycles of 1 hour at 40 ° C and 1 hour at 80 ° C, and after conducting the thermal shock test at 25 ° C at room temperature,
  • the cellophane adhesive tape manufactured by Cello Tape (registered trademark) is used to cover the area of the transparent resin layer without any transparent resin, covering the frame area sufficiently, and strong from the area without the transparent resin layer. It peeled.
  • the total light transmittance was measured at the mesh portion using a color machine HM 150 (trade name, manufactured by Murakami Color Co., Ltd.) according to IS-K7361-1.
  • the electromagnetic shielding (shielding) property was measured by the KEC method (electromagnetic wave measurement method developed by Kansai Electronics Industry Promotion Center).
  • the electromagnetic wave shielding property was sufficient for both Examples 1 to 5 and Comparative Example 1 in the frequency range of 30 MHz to 1000 MHz, and the electromagnetic field attenuation rate was 30 to 60 dB.

Abstract

 電磁波シールド装置1は透明基材11と、必要に応じて設けられた接着層13と、電磁波シールド層15と、透明樹脂層17とを備えている。電磁波シールド層15は画像表示装置の画面部100に対向するメッシュ部103と、該メッシュ部103の周縁を囲み、該メッシュ部103の開口部103よりも低開口率の開口部105aを含む透明樹脂層アンカー部105と、透明樹脂層アンカー部105の外周部を囲む開口部を有しない額縁部107とからなっている。前記メッシュ部103から前記透明樹脂層アンカー部105に亙って表面を被覆し、かつ該開口部103a、105aを充填し、被覆する透明樹脂層17が設けられている。

Description

明 細 書
電磁波シールド装置
技術分野
[0001] 本発明は、電磁波をシールド (遮蔽)するためのシートに関し、さらに詳しくは、 CRT 、 PDPなどの画像表示装置 (ディスプレイ)の前面に配置されて、当該画像表示装置 力 発生する電磁波をシールドするための電磁波シールド材 (電磁波シールド装置) に関するものである。
[0002] 本明細書にぉ 、て、「画像表示装置」は「ディスプレイ」、「CRT」は「陰極線管(ブラ ゥン管)」、及び「PDP」は「プラズマディスプレイパネル」の略語、機能的表現、通称、 又は業界用語である。
背景技術
[0003] (背景技術)近年、電気電子機器の機能高度化と増加利用に伴 ヽ、電磁気的なノィ ズ妨害(Electro Magnetic Interference ; EMI)が増えている。各種画像表示装 置も亦 EMIの発生源となる。例えば、 PDPは、データ電極と蛍光層を有するガラス板 と透明電極を有するガラス板との組合体であり、作動すると電磁波が大量に発生する 為、電磁波の遮蔽が必要である。 PDP前面力も発生する電磁波の遮蔽性は 30MH z〜lGHzに於いて 30dB以上が必要とされる。
電磁波ノイズは大きく分けて伝導ノイズと放射ノイズがある。一般的には、伝導ノィ ズはノイズフィルタなどを用いて除去する方法がある。一方、放射ノイズは電磁気的 に空間を絶縁する必要が有るため、筐体を金属にしたり、回路基板間に金属板を揷 入したり、ケーブルを金属箔で卷く等して遮蔽する方法がある。これらの方法は回路 や電源ブロックの電磁波遮蔽については有効ではある力 CRT, PDPなどの、画像 表示装置の画面部より発生する電磁波は除去出來ず、又金属板被覆は不透明であ るため適さない。
そこで、画像標示装置の画面部の電磁波遮蔽の為に、 MHz帯から GHz帯の周波 数の電磁波に対する遮蔽性と可視光線帯域の周波数の電磁波に対する透明性とが 両立する電磁波シールド材が各種提案され、又製造販売されている。その最も代表 的なものが、榭脂シートから成る透明基材上に、金属の導電体力もなるメッシュ (網状 体、乃至格子)を積層した構成の電磁波シールド材 (電磁波シールド装置)である。 此の種の電磁波シールド材に於いては、最近では、更に、金属メッシュ上に透明榭 脂を塗工して開口部を充填し、金属メッシュ表面の凹凸を平坦ィ匕した、図 4の如き構 成のものが求められて 、る。
最近の画像表示装置、中でも PDPは大型画面を特徴としており、前面板に用いる 電磁波シールド材の大きさ(外形寸法)は、例えば、 37型では 621 X 831mm, 42型 では 983 X 583mmもあり、さらに大型サイズもある。このため、金属メッシュ上に透明 榭脂層を設けた構成の電磁波遮蔽用シートは製造カゝら画像表示装置への組立まで 全工程、及び長期にわたる実使用期間において、金属メッシュと透明榭脂層との層 間で浮き上ったり、剥離したりする危険性があることが判明した。即ち、図 4の如ぐ透 明榭脂層 17は、画像表示装置の画面部 100に対向するメッシュ部 103の直上部は 漏れ無く被覆する必要が有る。但し、塗工位置にバラツキ (位置ズレ)を生じても、メッ シュ部直上部には透明榭脂層の欠落部が出來無いように、透明榭脂層 17の塗布面 積はメッシュ部 103の面積よりも広くする必要が有る。更に、塗工した透明榭脂は固 化する迄の間に流動して更に外周に広がる。その為、実際は、透明榭脂層はメッシュ 部 103から外周部の接地用の額縁部(開口部無しの金属層)内に 2〜3mm程度は 入り込んで被覆される(B部分)。メッシュ部 103では透明榭脂層と金属メッシュとがァ ンカー効果 (投錨効果)及び接着剤層 13との化学密着とにより、透明榭脂層 17と金 属メッシュ 103とは容易に十分な密着を得ることが出来る。しかし、額縁部 101では透 明榭脂層 17は平坦な金属層とのみ接し、アンカー効果も接着剤層との化学密着も 期待出来無い。尚且つ、此の部分は透明榭脂層 17と電磁波シールド層 (金属層) 1 5との界面の末端となる為、応力はここに集中する。故に、ここで剥離が生じ易くなる と考えられる。
従って、金属メッシュを用いた画像表示装置用の電磁波シールド材としては、優れ た電磁波シールド性、適度な透明性 (可視光透過率)に加えて新たな課題として、製 造工程及び実使用期間中に、電磁波シールド材を構成して!/ヽる層間で浮き上ったり 、剥離したりしないことが求められるに至った。 [0004] (先行技術)従来、透明プラスチック基材の表面に金属等の導電性材料でメッシュ 部を形成して成る電磁波シールド材にお 、て、該メッシュ部の一部または全面を透 明榭脂層で被覆して、メッシュ面の凹凸を平坦化させるものが知られている (例えば、 特許文献 1及び特許文献 2参照。 )0
これら発明はメッシュの開口部の凹部を埋めてメッシュ面を平坦ィ匕させることにより、 該メッシュ面上に反射防止フィルタ一等他の層と接着剤層を介して積層する際に、開 口部内に気泡が残留して光を乱反射させることを防止するとともに、開口部に露出し た接着剤の粗面を充填して透明性を向上させる効果を狙ったものである。但し、実際 にこれら発明に基づき電磁波シールド材の製造を試みたところ、更に解決すべき新 たな課題が判明した。即ち、画像表示装置の画面用の電磁波シールド材は、通常接 地する為に、メッシュ部の周縁部に開口部の無い金属の額縁領域 101を有する。そ して、メッシュ部 103上全面に塗工する透明榭脂層 17は、塗工位置がバラついても、 確実にメッシュ部 103を被覆する為、メッシュ部 103より大面積に塗工される、且つ塗 ェ後の流動による拡がりもある為、図 4の如く透明榭脂層 17端部 Bが額縁領域 101 上に迄に進出する。ところが、額縁領域 101上では透明榭脂層 17は平坦平滑な金 属面と接する為、メッシュ部に比べ、元来透明榭脂層と額縁領域 101との接着は弱 い。而も透明榭脂層端部 Bには外力を受け剥離応力が集中する。よって、該端部 B に於いて、透明榭脂層 17と額縁領域 101との剥離が頻発するという問題が判明した 。上記先行技術には、電磁波シールド材自身の層間の浮きや剥離を防止することに つ!ヽては課題は勿論、課題解決手段にっ 、ても記載も示唆もされて ヽな 、。
[0005] 特許文献 1:特許第 3570420号
特許文献 2:特開 2002— 311843号公報
発明の開示
[0006] そこで、本発明はこのような問題点を解消するためになされたものである。
その目的は、メッシュ部の周縁を囲む透明榭脂層アンカー部を設け、透明榭脂層 アンカー部の少なくとも 1部を充填し、被覆するように、透明榭脂層を形成することで 、優れた電磁波シールド性、適度な透明性 (可視光透過率)、かつ製造工程及び実 使用期間中に、導電体力 成る電磁波シールド層と透明榭脂層との層間で浮き上つ たり、剥離したりしない、電磁波シールド装置を提供することである。
[0007] 本発明は、画像表示装置の画面部の前面に隣接して配置される電磁波シールド装 置において、透明基材と、透明基材の一方の面に設けられ、導電体からなる電磁波 シールド層と、電磁波シールド層上に設けられた透明榭脂層とを備え、電磁波シー ルド層は画像表示装置の画面部に対応する形状をもち、多数配列された開口部を 含むメッシュ部と、メッシュ部を囲むとともに、多数配列されメッシュ部の開口部よりも 低い開口率をもつ開口部を含む透明榭脂層アンカー部と、透明榭脂層アンカー部を 囲むとともに開口部をもたない平坦状の額縁部とを有し、透明榭脂層はメッシュ部表 面力も透明榭脂層アンカー部表面へわたって設けられていることを特徴とする電磁 波シールド装置である。
[0008] 本発明は、透明榭脂層は、メッシュ部表面全域力 透明榭脂層アンカー部表面全 域に延び、かつ額縁部の内側端部を覆って設けられて 、ることを特徴とする電磁波 シーノレド装置である。
[0009] 本発明は、透明榭脂層は、メッシュ部表面全域力 透明榭脂層アンカー部表面全 域に延び、かつ透明榭脂層アンカー部の外側端部で終了していることを特徴とする 電磁波シールド装置である。
[0010] 本発明は、透明榭脂層は、メッシュ部表面全域力も透明榭脂層アンカー部の内側 端部を覆って設けられていることを特徴とする電磁波シールド装置である。
[0011] 本発明は、透明榭脂層は、メッシュ部表面全域力も透明榭脂層アンカー部の中間 部まで延び、透明榭脂層アンカー部の外側は覆って 、な 、ことを特徴とする電磁波 シーノレド装置である。
[0012] 本発明は、透明基材と電磁波シールド層との間に接着層が介在されていることを特 徴とする電磁波シールド装置である。
[0013] 本発明によれば、優れた電磁波シールド性、適度な透明性 (可視光透過率)を有し
、かつ製造工程及び実使用期間中に、電磁波シールド層と透明榭脂層との層間で 浮き上ったり、剥離したりしない、電磁波シールド材が提供される。
本発明によれば、透明榭脂層の材料が少量で済み、透明榭脂層の形成位置が多 少ズレても対応でき、製造工程及び実使用期間中に、構成している層間で浮き上つ たり、剥離したりしない、と共に透明榭脂層塗工位置にバラツキを生じても、画面部に 対畤するメッシュ部に透明榭脂層の欠落を生じ無い、電磁波シールド材が提供され る。
本発明によれば、接着層で積層された透明基材と電磁波シールド層との層間は、 強固に接着し、また、メッシュ及び開口部の底面にも接着層が露出しているので、開 口部を埋めた透明榭脂層との層間も強固に接着し、製造工程及び実使用期間中に 、構成している層間で浮き上ったり、剥離したりしない効果をより確実に奏する、電磁 波シールド材が提供される。
図面の簡単な説明
[0014] [図 1]図 1は本発明による電磁波シールド装置を示す平面図である。
[図 2]図 2 (A) (B)は図 1の A部の拡大平面図、及び拡大横断面図である。
[図 3]図 3 (A)— (C)は本発明の層の位置を説明する要部の断面図である。
[図 4]図 4は従来の透明榭脂層層の位置を説明する要部の断面図である。
発明を実施するための最良の形態
[0015] 以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
図 1は、本発明の 1実施例を示す平面図である。
図 2 (A) (B)は、図 1の A部の拡大平面図、及び拡大横断面図である。
図 3 (A) (B) (C)は、本発明の層の位置を説明する要部の断面図である。
[0016] (電磁波シールド材)本発明による電磁波シールド装置 (電磁波シールド材)につ ヽ て、図 1乃至図 3 (A) (B) (C)により説明する。
図 1および図 2 (A) (B)に示すように電磁波シールド装置 (電磁波シールド材) 1は、 例えばディスプレイパネル (PDP等)のような画像表示装置の画面部 100の前面、即 ち観察者側に隣接して配置されるものである。このような電磁波シールド装置 1は透 明基材 11と、透明基材 11の一方の面に接着層 13を介して設けられ導電体力 なる 電磁波シールド層 15と、電磁波シールド層 15上に設けられた透明榭脂層 17とを備 えている。
このうち電磁波シールド層 15は PDPのような画像表示装置の画面部 100に対向し て配置されるとともに画面部 100と略同一形状を有し、多数配列された開口部 103a を有するメッシュ部 103と、メッシュ部 103を囲むとともに開口部 105aを有する透明榭 脂層アンカー部 105と、透明榭脂層アンカー部 105を囲むとともに開口部をもたない 平坦状の額縁部 107とを備えている。
このうち透明榭脂層アンカー部 105と額縁部 107とにより額縁領域 101が形成され ている。
[0017] またメッシュ部 103は開口部 103aとその周囲を包囲するライン部 103bからなり、透 明榭脂層アンカー部 105は開口部 105aとその周囲を包囲するライン部 105bからな つている。また、透明榭脂層アンカー部 105のライン部 105bは、メッシュ部 103のライ ン部 103bより幅が太くなつており、また透明榭脂層アンカー部 105の開口部 105aは メッシュ部 103の開口部 103aより面積が小さい。そしてライン部 103bの周期とライン 部 105bの周期とは相等しい。
このため透明榭脂層アンカー部 105の開口部 105aの開口率は、メッシュ部 103の 開口部 103aの開口率より小さい。
[0018] さらに額縁部 107には、電磁波シールド材 1を画像表示装置の画面部 100に隣接 して設けた場合、アースが接続される。
さらに図 2 (B)に示すように、透明榭脂層 17はメッシュ部 103表面全域力も透明榭 脂層アンカー部 105の表面全域に渡って延び、かつ開口部 103a、 105aを充填し、 被覆している。この場合、透明榭脂層 17は透明榭脂アンカー部 105の外側端部で 終了している。
また透明榭脂層 17は透明榭脂層アンカー部 105の中間部まで延び、透明榭脂層 アンカー部 105の外側を覆って 、なくてもょ 、(図 3 (B) )。
さらに透明榭脂層 17は透明榭脂層アンカー部 105の表面全域に延びるとともに、 開口部を有してな 、領域部 107の内側端部を覆って!/、てもよ 、(図 3 (C) )。
好ましくは透明榭脂層 17は透明榭脂層アンカー部 105の外側端で終了し、額縁部 107へは食み出していない(図 3 (A) )。
さらに、透明榭脂層アンカー部 105の開口部 105aは、電磁波シールド層 15の表 面力も裏面まで貫通して窄設されて 、てもよく、電磁波シールド層 15の表面力も裏 面まで貫通せず、孔が電磁波シールド層 15の途中で止まって凹部形状でもよい。い ずれでも、充分な投錨 (アンカー)効果を発現できる。又、透明榭脂アンカー部の開 口部 105aは、画像表示装置の画面部 100の外側に位置し、画像を透視することは 不要である為、貫通して!/、無くても画像表示装置の機能には支障は無 、。
[0019] 本発明の電磁波シールド材 1につ 、て、各層の材料及び形成にっ 、て説明する。
(透明基材)透明基材 11の材料としては、使用条件や製造に耐える透明性、絶縁 性、耐熱性、機械的強度などがあれば、種々の材料が適用でき、例えば、ガラスや透 明榭脂である。
(ガラス)ガラスでは、石英ガラス、ほう珪酸ガラス、ソーダライムガラスなどが適用で き、好ましくは熱膨脹率が小さく寸法安定性および高温加熱処理における作業性に 優れ、また、ガラス中にアルカリ成分を含まない無アルカリガラスであり、画像表示装 置の電極基板と兼用するもできる。
[0020] (透明榭脂)透明榭脂では、ポリエチレンテレフタレ一ト、ポリブチレンテレフタレ一ト 、ポリエチレンナフタレート、テレフタル酸一イソフタル酸一エチレングリコール共重合 体、テレフタル酸-シクロへキサンジメタノール-エチレングリコール共重合体などのポ リエステル系榭脂、ナイロン 6などのポリアミド系榭脂、ポリプロピレン、ポリメチルペン テンなどのポリオレフイン系榭脂、ポリメチルメタアタリレートなどのアクリル系榭脂、ポ リスチレン、スチレン一アクリロニトリル共重合体などのスチレン系榭脂、トリァセチル セルロースなどのセルロース系榭脂、イミド系榭脂、ポリ力一ボネ一トなどの榭脂から なるシート、フィルム、板などが適用できる。
[0021] 該透明樹脂から成る透明基材は、これら榭脂を主成分とする共重合榭脂、または、 混合体 (ポリマーァロイを含む)、若しくは複数層からなる積層体であっても良い。該 透明基材は、延伸フィルムでも、未延伸フィルムでも良いが、強度を向上させる目的 で、一軸方向または二軸方向に延伸したフィルムが好ましい。該透明基材の厚さは、 該透明樹脂から成る透明基材の場合は、通常、 12〜: LOOO /z m程度が適用できるが 、 50-700 μ mが好適で、 100〜500 μ mが最適である。該ガラス力 成る透明基 材の場合は、通常、 1000〜5000 m程度力 S好適である。いずれも、これ以下の厚 さでは、機械的強度が不足して反りやたるみ、破断などが発生し、これ以上では、過 剰な性能となってコスト的にも無駄である。 [0022] 通常、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系榭 脂フィルム、或いはガラスが透明性、耐熱性がよくコストも安いので好適に使用される 。中でも特に割れ難いこと、軽量で成形が容易なこと等の点で、ポリエチレンテレフタ レートが最適である。また、透明性は高いほどよいが、好ましくは可視光線透過率で 8 0%以上である。
[0023] 該透明基材は、塗布に先立って塗布面へ、コロナ放電処理、プラズマ処理、オゾン 処理、フレーム処理、プライマー(アンカー剤、接着促進剤、易接着剤とも呼ばれる) 塗布処理、予熱処理、除塵埃処理、蒸着処理、アルカリ処理、などの易接着処理を 行ってもよい。該榭脂フィルムは、必要に応じて、紫外線吸収剤、充填剤、可塑剤、 帯電防止剤などの添加剤を加えても良い。
[0024] (電磁波シールド層)電磁波を遮蔽する電磁波シールド層 15としては、電磁波を遮 蔽するに足る導電率を有する物質であれば特に制限は無いが、代表的には、例えば 金、銀、銅、鉄、ニッケル、クロム、アルミニウムなど充分に電磁波をシールドできる程 度の導電性を持つ金属力も成る層からなる。該電磁波シールド層は、予め独立した 層として製膜された金属箔を透明基材上に接着剤層を介して積層してなるか、又は 透明基材フィルム上に直接、蒸着、スパッタ、メツキ等により金属層を析出させて成る 。金属箔又は金属層は単体でなくても、合金あるいは多層であってもよい。金属箔と しては、鉄の場合には低炭素リムド鋼ゃ低炭素アルミキルド鋼などの低炭素鋼、 Ni— Fe合金、インバー合金が好ましぐまた、カソーディック電着を行う場合には、電着の し易さから銅又は銅合金が好ましい。特に予め製膜して成る銅、即ち銅箔としては、 圧延銅箔、電解銅箔が使用できるが、厚さの均一性、黒ィ匕処理及び Z又はクロメート (処理)層との密着性、及び 10 m以下の薄膜ィ匕ができる点から、電解銅箔が好まし い。該金属箔の厚さは 1〜: LOO m程度、好ましくは 5〜20 mである。これ以下の 厚さでは、フォトリソグラフィ法によるメッシュ力卩ェは容易になる力 金属の電気抵抗 値が増え電磁波遮蔽効果が損なわれ、これ以上では、所望する高精細なメッシュの 形状が得られず、その結果、実質的な開口率が低くなり、光線透過率が低下し、さら に視角も低下して、画像の視認性が低下する。
[0025] 金属箔又は金属層の表面粗さとしては、 Rz値で 0. 5〜10 μ mが好ましい。これ以 下では、黒化処理しても外光が鏡面反射して、画像の視認性が劣化する。これ以上 では、接着剤やレジストなどを塗布する際に、表面全体へ行き渡らなかったり、気泡 が発生したりする。表面粗さ Rzは、 JIS— B0601 ( 1994年版)に準拠して測定した 1 0点の平均値である。
[0026] (黒化及び Z又は防鲭処理)電磁波シールド層 15には、電磁波シールド材へ入射 する外光を吸収させて、ディスプレイの画像の視認性を向上するために、メッシュ状 の導電体の少なくとも観察側に、公知の黒ィ匕処理を行って、コントラスト感を出したり 、また、メッシュ状の導電体及び Z又は黒化処理面へ、防鲭機能と黒化処理の脱落 や変形を防止するために、公知の防鲭層を設けてもよい。
[0027] (黒化処理)
該黒化処理は金属箔又は金属層の所定の面を粗化及び Z又は黒化すればよぐ 金属単体、金属酸化物、金属硫化物、金属合金の形成や種々の手法が適用できる 。鉄の場合には、通常スチーム中、 450〜470°C程度の温度で、 10〜20分間さらし て、 1〜2 ;ζ ΐη程度の Fe Oから成る酸化膜 (黒化膜)を形成するが、濃硝酸などの薬
3 4
品処理による酸ィ匕膜 (黒ィ匕膜)でもよい。また、銅箔の場合には、銅箔を硫酸、硫酸 銅及び硫酸コバルトなどカゝらなる電解液中で、陰極電解処理を行って、カチオン性 粒子を付着させるカソーディック電着が好まし ヽ。該カチオン性粒子を設けることでよ り粗ィ匕し、同時に黒色が得られる。記カチオン性粒子としては、銅粒子、銅と他の金 属との合金粒子が適用できるが、好ましくは銅 -コバルト合金の粒子である。
[0028] (合金粒子)上記カチオン性粒子としては、銅粒子、銅と他の金属との合金粒子が 適用できるが、好ましくは銅-コバルト合金の粒子である。銅-コバルト合金の粒子を 用いると、黒ィ匕の程度が著しく向上して可視光をよく吸収する。電磁波遮蔽用シート の視認性を評価する光学特性として、色調を JIS— Z8729に準拠した表色系「L*、 a *、 b*、 Δ Ε*」で表わした。 L* (明度)が小さいことに加えて、該「a*」及び「b*」の絶対 値が小さい (彩度が低い)方が電磁波シールド層が非視認性となり、画像のコントラス ト感が高まり、結果として画像の視認性が優れる。銅-コノ レト合金の粒子を用いると 、銅粒子と比較して「a*」及び「b*」をほぼ 0に近く小さくできる。
[0029] また、銅-コバルト合金粒子の平均粒子径は 0. 1〜1 μ mが好ましい。これ以上で は、銅-コバルト合金粒子の粒子径を大きくすると導電体層の厚さが薄くなり、基材 11 と積層する工程で銅箔が切断したりして加工性が悪ィ匕し、また、密集粒子の外観の 緻密さが欠けて、ムラ状が目立ってくる。これ以下では、粗ィ匕が不足するので、画像 の視認性が悪くなる。
[0030] (防鲭層)金属等の導電体及び Z又は黒化処理への、防鲭機能と黒化処理の脱落 や変形を防止するために、少なくとも黒化処理を有する金属等の導電体面へ、防鲭 層を設けることが好ましい。該防鲭層としては、ニッケル、亜鉛、及び Z又は銅の酸化 物、又はクロメート処理層が適用できる。通常は亜鉛メツキをした上にクロメート処理 を行うことが好ましい。ニッケル、亜鉛、及び Z又は銅の酸化物の形成は、公知のメッ キ法でよく、厚さとしては、 0. 001〜1 μ m程度、好ましくは 0. 001〜0. 1 μ mである
[0031] (クロメート)該クロメート処理は、被処理材へクロメート処理液を塗布し処理する。
該塗布方法としては、ロールコート、カーテンコート、スクイズコート、静電霧化法、浸 漬法などが適用でき、塗布後は水洗せずに乾燥すればよい。クロメート処理を片面 に施す場合は、ロールコートなどで片面に塗布し、両面に施す場合は、浸漬法で行 えばよい。クロメート処理液としては、通常 Cr02を 3gZlを含む水溶液を使用する。こ の他、無水クロム酸水溶液に異なるォキシカルボン酸ィ匕合物を添カ卩して、 6価クロム の一部を 3価クロムに還元したクロメート処理液も使用できる。また、 6価クロムの付着 量の多少により淡黄色から黄褐色に着色するが、 3価クロムは無色であり、 3価と 6価 クロムを管理すれば、実用上の問題がない透明性が得られる。ォキシカルボン酸ィ匕 合物としては、酒石酸、マロン酸、クェン酸、乳酸、ダルコール酸、グリセリン酸、トロ パ酸、ベンジル酸、ヒドロキシ吉草酸などを、単独又は併用して用いる。還元性は化 合物により異なるので、添加量は 3価クロムへの還元を把握しながら行う。具体的に は、アルサーフ 1000 (日本ペイント社製、クロメート処理剤商品名)、 PM— 284 (日 本パーカライジング社製、クロメート処理液商品名)などが例示できる。また、クロメー ト処理は黒ィヒ処理の効果をより高める。
[0032] 黒化処理及び防鲭層は、少なくとも観察側に設ければよぐコントラストが向上して ディスプレイの画像の視認性が良くなる。また、他方の面、即ちディスプレイ面側に設 けてもよぐディスプレイカゝら発生する迷光を抑えられるので、さらに、画像の視認性 が向上する。
[0033] (積層法)基材 11と電磁波シールド層 15の積層法としては、当業者がドライラミネ一 シヨン法という接着層 13を介して積層する方法や、メツキ法により接着剤層を介さず に透明基材 11上に直接積層する方法がある。該メツキ法は、基材 11へ電解又は無 電解メツキする公知のメツキ法が適用できる。
[0034] (ドライラミネーシヨン法)ドライラミネーシヨン法とは、溶媒へ分散または溶解した接 着剤を、乾燥後の膜厚が 0. 1〜20 ;ζ ΐη (乾燥状態)程度、好ましくは 1〜10 ;ζ ΐηとな るように、例えば、ロールコーティング、リバースロールコーティング、グラビアコ一ティ ングなどのコーティング法で塗布し、溶剤などを乾燥して、該接着層を形成したら直 ちに、貼り合せ基材を積層した後に、 30〜80°Cで数時間〜数日間のエージングで 接着剤を硬化させることで、 2種の材料を積層させる方法である。該ドライラミネーショ ン法で用いる接着層は、熱硬化型榭脂、または紫外線や電子線などの電離放射線 で硬化する電離放射線硬化型榭脂の接着剤が適用できる。熱硬化型榭脂の接着剤 としては、具体的には、 2液硬化型ウレタン系接着剤、アクリル系接着剤、ゴム系接着 剤などが適用できるが、 2液硬化型ウレタン系接着剤が好適である。 2液硬化型ウレ タン系接着剤は多官能ポリオールと多官能イソシァネートとの反応により硬化する。 多官能ポリオールとしては、ポリエステルポリオール、アクリルポリオール、ポリエーテ ルポリオール等が用いられる。又多官能イソシァネートとしては、トリレンジイソシァネ ート、キシレンジイソシァネート、へキサメチレンジイソシァネート、イソホロンジイソシ ァネート、或 、はこれらの付加体や多量体が用いられる。
[0035] (メッシュ)上記でできた開口部の全くな 、電磁波シールド層 15に、メッシュを形成 する。該メッシュとしては画像表示装置の画面部 100に対向したメッシュ部 103、及 び該メッシュ部の周縁を囲む透明榭脂アンカー部 105とからなる。メッシュの形成方 法としては、フォトリソグラフィ一法が適用できる。
[0036] (フォトリソグラフィ一法)上記積層体の電磁波シールド層 15表面上へ、レジスト層を メッシュ状パターンに設け、レジスト層で覆われて 、な 、部分の導電体層をエツチン グにより除去した後に、レジスト層を除去して、メッシュ状パターンの電磁波シールド 層とする。図 1の平面図に図示するように、電磁波シールド層 15は、内側から外側に 向かって、順次、メッシュ部 103と、透明榭脂層アンカー部 105と、開口部のない額 縁部 107とからなり、図 2 (A)の拡大平面図及び図 2 (B)の拡大横断面図に示すよう に、メッシュ部 103及び透明榭脂アンカー部 105は金属層が残ったライン部 103b、 1 05bにより包囲された複数の開口部 103a、 105aを含み、開口部を有しない額縁部 1 07は開口部がなく全面金属層が残されている。
[0037] フォトリソグラフィ一法も、積層法と同様に帯状で連続して巻き取られたロール状で の加工が好ま U、。透明基材 11と電磁波シールド層 15の積層体を連続的又は間歇 的に搬送しながら、緩みなく伸張した状態で、マスキング、エッチング、レジスト剥離 する。まず、マスキングは、例えば、感光性レジストを電磁波シールド層(導電体層) 層上へ塗布し、乾燥した後に、所定のパターン (メッシュのライン部と額縁部)を有す る原版 (フォトマスク)にて密着露光し、水現像し、硬膜処理などを施し、ベーキングす る。レジストの塗布は、卷取りロール状の帯状の積層体を連続又は間歇で搬送させな がら、その電磁波シールド層面へ、カゼイン、 PVA、ゼラチンなどのレジストをデイツ ビング (浸漬)、カーテンコート、掛け流しなどの方法で行う。また、レジストは塗布で はなぐドライフィルムレジストを用いてもよぐ作業性が向上できる。ベーキングは力 ゼインレジストの場合、通常 200〜300°Cで行うが、積層体の反りを防止するために、 100°C以下のできるだけ低温度が好まし!/、。
[0038] (エッチング)マスキング後にエッチングを行う。該エッチングに用いるエッチング液 としては、エッチングを連続して行う本発明には循環使用が容易にできる塩ィ匕第二鉄 、塩化第二銅の溶液が好ましい。また、該エッチングは、帯状で連続する鋼材、特に 厚さ 20〜80 μ mの薄板をエッチングするカラー TVのブラウン管用のシャドウマスク を製造する設備と、基本的に同様の工程である。即ち、該シャドウマスクの既存の製 造設備を流用でき、マスキング力もエッチングまでがー貫して連続生産できて、極め て効率が良い。エッチング後は、水洗、アルカリ液によるレジスト剥離、洗浄を行って 力も乾燥すればよい。
[0039] (メッシュ部)メッシュ部 103は、透明榭脂層アンカー部 105と額縁部 107とからなる 額縁領域 101により囲まれてなる領域である。メッシュ部 103はライン部 103bにより 囲まれた複数の開口部 103aからなつて 、る。開口部の形状 (メッシュパターン)は特 に限定されず、例えば、正 3角形等の 3角形、正方形、長方形、菱形、台形などの 4 角形、 6角形、等の多角形、円形、楕円形などが適用できる。これらの開口部 103aの 1種のみで、或いは複数種を組み合わせてメッシュとする。開口率及びメッシュの非 視認性から、ライン幅は 25 m以下、好ましくは 20 m以下が、ライン間隔 (ラインピ ツチ)は光線透過率から 150 μ m以上、好ましくは 200 μ m以上が好ましい。そして 開口率は 85〜95%程度とする。また、バイアス角度 (メッシュのライン部と電磁波シ 一ルド材の辺とのなす角度)は、モアレの解消などのために、ディスプレイの画素や 発光特性を加味して適宜、選択すればよい。
(透明榭脂アンカー部)透明榭脂アンカー部 105のメッシュパターンは、メッシュ部 1 03の開口部よりも低開口率の開口部とすればよい。尚、ここで開口率とは、所定の領 域 (メッシュ部 103、透明榭脂アンカー部 105、或いは開口部を有しない額縁部 107 の各々)に於いて、電磁波シールド層 15の全表面積に対する開口部の合計面積の 比率を意味する。透明榭脂アンカー部 105に於いては、透明榭脂層 17の外端部を 電磁波シールド層 15にアンカーさせる為に、開口部を穿設する。しかし、メッシュ部 1 03と同程度に開口率を大きくして画像光を透過させる必要は無ぐ又開口率が額縁 部との境界に於いて大開口率力 不連続的に 0になると、該境界近傍に応力が集中 して破断、折れ等が発生し易くなる。その為、透明榭脂アンカー部 105の開口部 105 aの開口率はメッシュ部 103の開口部 103aの開口率よりも低く(小さく)する。斯くの 如く開口率をメッシュ部 103、透明榭脂アンカー用開口部 105、開口部を有しない額 縁部 107と順次低下せしめることにより、表示画像の質には悪影響を与えず、し力も 電磁波シールド材に外力や変形が加わった場合にもメッシュの外縁部に破断、折れ が発生し難くなる。
開口部 103a、 105aの形状 (メッシュパターン)は、図 2 (A)のような、複数の同一矩 形パターンでもよいが、特に限定されることはなぐ例えば、正 3角形等の 3角形、正 方形、長方形、菱形、台形などの 4角形、 6角形、等の多角形、円形、楕円形などが 適用できる。透明榭脂層アンカー部 105に於いてはメッシュ部 103の開口部 103aに 比べて、開口部 105aの面積を小としたり、配列周期を大としたり、或いは此の両者を 組合わせて低開口率とすればよい。又、透明榭脂層アンカー部 105に於いて開口部 105aの形状は、メッシュ部 103の開口部 103aの形状と同一であっても良いし、或い は異なっていても良い。
また、透明榭脂層アンカー部 105は、画像表示装置の画像光を透過させる必要は ないので、導電体層 15を表裏貫通して穿設したものである必要はなぐ非貫通凹部 でもよ!/、。凹部の形状はアンカー効果があればよ!、ので任意である。
[0041] さらに、透明榭脂アンカー部 105のメッシュパターンの開口率は、メッシュ部 103に 接する面力も外周部の開口部のない額縁部 107の面に向かって暫次縮小する、所 謂グラデーションと呼ぶ形状が好ましい。このようにすると、従来、メッシュ部 103と額 縁領域 101との境界に於いて剛度が不連続的に変化するので、電磁波シールド材 の製造工程力 ディスプレイへの組立、組付まで全工程において、ここに応力が集中 して折れ曲がったり、断線したりして、ハンドリング適性が極めて悪ぐ高価な部品を 無駄にするという欠点があった力 グラデーションのメッシュパターンによれば、大型 の PDP用の電磁波シールド材でも製造力も組立までの全工程で折れなどの不良が 発生せずハンドリング適性に優れる。
メッシュパターンのマスクは複数パターンを組合わせたものになる力 画像処理装 置で容易に作製することができ、工程も容易であり、コストが増加することはない。
[0042] (平坦化と透明ィ匕)透明榭脂層 17の持つ機能は、メッシュ部の平坦ィ匕及び透明化 である。即ち、メッシュ部 103と透明榭脂層アンカー部 105とが形成されると、ライン 部 103b、 105bは電磁波シールド層 15の厚みがあるが、開口部 103a、 105aは除去 されて空洞又は凹部となり、電磁波シールド層 15は凹凸状態となる。該凹凸は、次 工程で接着剤 (又は粘着剤)が塗布される場合には、該接着剤で埋まるが、開口部 1 03a、 105a形成後、直ちにディスプレイへ貼り込む場合には、凹凸が露出したままで 、作業性が悪いので、透明榭脂層 17で凹部を埋めて平坦ィ匕する。また、該透明樹脂 層 17は、開口部の底面には透明基材 11又は接着層 13が露出しており、該透明基 材 11又は接着層 13、特に接着層 13の底表面は、電磁波シールド層 15の凹凸が転 写された凹凸形状があって、該凹凸による乱反射によって、著しく透明性が低くなつ ている。この凹凸を透明榭脂層 17で埋めて平坦ィ匕すると、透明性を向上させることが できる。
[0043] 平坦ィ匕のために、透明榭脂を凹部に塗布して埋め込むが、凹部の隅々まで侵入し ないと、気泡が残り透明性が劣化する。このため、溶剤などで稀釈して低粘度で塗布 し乾燥したり、空気を脱気しながら塗布したりして、透明榭脂層 17を形成する。尚、こ こで「平坦化」とは、ディスプレイ画像を歪曲させたり、光散乱により曇り(ヘイズ)を生 じ無い程度の平面性であれば良い。但し、画像に歪曲、曇りを生じ無い範囲に於い て、表面ブロッキングや電磁波シールド材を卷き取ったり、積重ねたりした際に、各電 磁波シールド材の層間に空気 (気泡)が残留することを防止する為に平坦面の中に 微小凹凸 (マット状)の存在を容認するものである、即ち、メッシュ部の周期と同程度 の大局的スケールでは平坦面として平坦化と透明化の機能を付与せしめ、且つ該平 坦面上にメッシュ部の周期に比べて微視的なスケールで局部的には微小凹凸が畳 重して形成し、卷取時の気泡混入を防止してもよい。
[0044] (透明榭脂層)透明榭脂層 17は透明性が高ぐメッシュの導電体との接着性が良く 、次工程の接着剤との接着性がよいものであればよい。但し、透明榭脂層 17の表面 1S 突起、凹み、ムラがあると、ディスプレイ前面へ設置した際に、モヮレ、干渉ムラ、 ニュートンリングが発生したりするので好ましくない。好ましい方法としては、榭脂とし て熱硬化型榭脂又は電離放射線硬化型榭脂を、公知の間歇式ダイコート法などで 所望のパターン状に塗布した後に、平面性に優れ剥離性のある剥離性基材で積層 し、塗布榭脂を熱又は紫外線で硬化させて、剥離性基材を剥離し除去する。透明榭 脂層 17の表面は、平面性基材の表面が転写されて、平坦且つ平滑な面が形成され る。
[0045] (電離放射線硬化型榭脂)該透明榭脂層 17に用いる榭脂としては、特に限定され ず各種の天然又は合成樹脂が用いられる。塗工した榭脂の硬化形態としては、熱硬 化型榭脂、電離放射線硬化型榭脂などが適用できるが、榭脂の耐久性、塗布性、平 坦化しゃすさ、平面性などから、アクリル系の紫外線硬化型榭脂が好適である。電離 放射線硬化型榭脂は、主として紫外線、電子線のような電離放射線の照射により、開 始剤なしで、もしくは開始剤の作用を受けて架橋、重合反応を起こし得る官能基を有 するオリゴマーおよび Zまたはモノマーが重合した、電離放射線硬化型榭脂若しくは その組成物の硬化物である。
[0046] 電離放射線硬化型榭脂となり得るオリゴマーもしくはモノマーとしては、主に、分子 中にアタリロイル基、メタクリロイル基、アタリロイルォキシ基、メタクリロイルォキシ基等 のエチレン性二重結合を有するラジカル重合性のものが用いられる力 これ以外にも
、エポキシ基含有ィ匕合物のような光力チオン重合性のオリゴマーおよび Zまたはモノ マーを用いることができる。
[0047] (電離放射線)電離放射線とは、電磁波または荷電粒子線のうち、分子を重合、架 橋し得るエネルギー量子を有するものを意味し、通常、紫外線、電子線等が用いられ る。紫外線の場合には、照射装置 (線源)として高圧水銀燈、低高圧水銀燈、メタル ノ、ライドランプ、カーボンアーク、ブラックライトランプ等を用いる。紫外線のエネルギ 一(波長)は 190〜450nm程度、照射線量は 50〜: LOOOmiZcm2程度が好ましい。 電子線の場合には、照射装置 (線源)としてコックロフトワルトン型、バンデグラフ型、 共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型等 の各種電子線加速器等を用いる。電子線のエネルギー (加速電圧)は 70〜: LOOOke V、好ましくは 100〜300keV程度、照射線量は、通常 0. 5〜30Mrad程度が好まし い。なお、電子線硬化の場合、電離放射線硬化性榭脂組成物には重合開始剤は含 有させなくてもよい。
[0048] (透明榭脂層の塗布位置)透明榭脂層 17の塗布位置が重要である。本来、透明榭 脂層 17の塗布位置は、図 3 (A)に示すように、メッシュ部 103から透明榭脂層アンカ 一部 105に亙って表面を被覆し、かつ該開口部 103a、 105aを充填するように形成 して、開口部を有しない額縁部 107へ食み出さないように開口部 103a、 105aの全 部を充填被覆しても良いが、塗工の位置制御に高精度を必要とし難度が高くなる。 そこで、図 3 (B)に示すように、透明榭脂層アンカー部 105の開口部 105aの内周部 迄を充填被覆するに留め、透明榭脂アンカー部 105の外周部については開口部 10 5aが未被覆、未充填のまま残るようにする。此の様にすると、透明榭脂層の塗工位 置が前後左右にバラつ 、ても、透明榭脂層 17の末端の位置カ ッシュ部 103内部に 後退したり、或いは開口部を有さない額縁部 107迄浸入したりすることが防止出來る 。尚、図 3 (C)に示すように、メッシュ部 103から透明榭脂層アンカー部 105の開口部 105aを充填被覆して開口部を埋め、さらに開口部を有しない額縁部 107へも多少 浸入ていても、開口部 10の 3周期分程度以下、より好ましくは、 1周期分以下の距離 であれば、透明榭脂層 17と電磁波シールド層 15との剥離防止効果は期待出来、本 発明の効果を奏する。
[0049] 図 4は、従来の透明榭脂層の位置を説明する要部の断面図である。
従来の透明榭脂層 17の塗布位置は、図 4に示す如くである。即ち、先ず画面部と 対向するメッシュ部 103の開口部 103aを埋める。そして透明榭脂層アンカー部がな いので、塗工位置が通常 2〜3mm程度バラついても確実にメッシュ部 103を被覆す る様に、透明榭脂層 17は、塗工位置のバラツキ分を吸収する 2〜3mm程度以上 (メ ッシュ開口部 10周期分以上)は、開口部を有しない額縁領域(=額縁部) 101内に 浸入させる。透明榭脂層 17と額縁部 101との密着性は、透明榭脂層 17と接着層 13 又は透明基材 11との密着性より小さい。故に透明榭脂層 17が額縁領域 101へ大き く覆って!/ヽると、電磁波シールド材 1の製造カゝらディスプレイへの組立まで全工程中 で加わる外力、及び長期にわたる実使用期間において寒熱繰返し、吸放湿繰返し 等による周期的な基材の伸縮時に各層の伸縮率差で生じる応力等により、透明榭脂 層と電磁波シールド層との層間から浮き上ったり、剥離したりすることがあった。さらに 、透明榭脂層 17が額縁部 101を覆った部分は、開口部がないので、その分厚さが厚 く段差がっ ヽて 、るので、剥離するキッカケとなりやす 、。
[0050] これに対し、本発明の電磁波シールド材 1では、メッシュ部 103および透明榭脂層 アンカー部 105の開口部 103a、 105aへ透明榭脂層 17が埋まり込んでいるので、物 理的な投錨 (アンカー)効果が大き!、。これに加えて前述の透明榭脂層 17と接着層 1 3又は透明基材 11との密着性向上効果との相乗効果も有り、透明榭脂層 17と電磁 波シールド層 15との剥離は防止される。
[0051] 即ち、本発明に於いては、図 3の如く額縁部 107の内周部にメッシュを形成して、メ ッシュ部 103の周縁を囲む透明榭脂層アンカー用開口部 105を設け、透明榭脂層ァ ンカ一部 105の少なくとも 1部の開口部 105aを充填し、被覆するように、透明榭脂層 17を形成する。このようにすることで、層間密着力と投錨効果が発現され、製造工程 及び実使用期間中に、構成している層間で浮き上ったり、剥離したりせず、かつ、電 磁波シールド層 15による優れた電磁波シールド性、開口部の底面の凹凸が解消さ れて適度な透明性 (可視光透過性)とすることができる。
[0052] また、本発明の電磁波シールド材 1には、可視光線及び Z又は近赤外線の特定波 長を吸収する機能、反射防止機能、ハードコート機能、防汚機能、防眩機能などの 機能を付与したり、該機能を有する層を任意の表裏面及び Z又は層間のいずれに 設けてもよい。
[0053] (NIR吸収層)さらに、透明榭脂層 17に用いる榭脂へ、可視光線及び Z又は近赤 外線の不要な特定波長を吸収する光線吸収剤を添加してもよ ヽ。可視光線の特定 波長を吸収することで、画像の天然色再生の不自然さ、不快感が抑えられ、画像の 視認性が向上する。 PDPから発光する可視光領域の不要な特定波長としては、通常 、ネオン原子のスペクトル光である波長 590nm付近のオレンジ色が多いので、 590η m付近を適度に吸収するものが好ましい。近赤外線の特定波長とは、 780〜: L lOOn m程度である。該 780〜: L lOOnmの波長領域の 80%以上を吸収することが望ましい 。特定の近赤外線を吸収することで、画像表示装置周辺に有る近赤外線で作動させ る遠隔操作機器の誤動作を防止する。該近赤外線吸収剤 (NIR吸収剤と 、う)として は、特に限定されないが、近赤外線領域に急峻な吸収があり、可視光線領域の光透 過性が高ぐかつ、可視光線領域には特定の波長の大きな吸収がない色素などが適 用できる。該可視光領域の不要な特定波長を吸収する色素としては、例えば、ポリメ チン系色素、ポルフィリン系色素等がある。
該近赤外線吸収色素としては、ジインモ-ゥム系化合物、シァニン系化合物、フタ口 シァニン系化合物、ジチオール系錯体などがある。透明榭脂層 17へ NIR吸収剤を 添加しない場合には、 NIR剤を有する別の層(NIR吸収層という)を、少なくとも一方 の面へ設ければよい。
[0054] (NIR吸収別層) NIR吸収層は、透明榭脂層 17側及び Z又は逆側の基材 11側へ 設けてもよい。該 NIR吸収層は、 NIR吸収剤を有する巿販フィルム (例えば、東洋紡 績社製、商品名 No2832)を接着剤で積層したり、先の NIR吸収剤をバインダへ含 有させて塗布してもよい。該バインダとしては、ポリエステル榭脂、ポリウレタン榭脂、 アクリル榭脂や、熱硬化型又は紫外線硬化型などのエポキシ基、アタリレート基、メタ アタリレート基、イソシァネート基などの反応を利用した硬化タイプなどが適用できる。
[0055] (AR層)さらに、図示して 、な 、が、電磁波シールド材の観察側へ、反射防止層(A R層という)を設けてもよい。反射防止層は、可視光線の反射を防止するためのもの で、その構成としては、単層、多層の多くが市販されている。単層のものは表面に低 屈折率層を積層してなる。又多層のものは、最表面が低屈折率層となるように、高屈 折率層と低屈折率層を交互に積層したもので、高屈折率層としては、酸化ニオブ、チ タン酸化物、酸ィ匕ジルコニウム、 ITOなどがあり、低屈折率層としては、弗化マグネシ ゥム、珪素酸化物がある。また、外光を乱反射する微細な凹凸表面を有する層を有 するものもある。
[0056] (ハードコート層、防汚層、防眩層)さらに、反射防止 (AR)層には、ハードコート層 、防汚層、防眩層を設けてもよい。ハードコート層は、 JIS— K5400の鉛筆硬度試験 で H以上の硬度を有する層で、ポリエステルアタリレート、ウレタンアタリレート、ェポキ シアタリレートなどの多官能アタリレートを、熱又は電離放射線で硬化させる。防汚層 は、撥水性、撥油性のコートで、シロキサン系、フッ素化アルキルシリルイ匕合物などが 適用できる。防眩層は外光を乱反射する微細な凹凸表面を有する層である。
[0057] (直接貼着)メッシュ状となった電磁波シールド層側が観察側とし、該電磁波シール ド層へ少なくとも黒ィ匕処理、防鲭層を必須に設ければ、例えば PDPへ直接貼着する ことができる。額縁部 107が表面へ露出するので、電極を引き出し易くアースがとりや すい。
また、該額縁部 101が黒ィ匕処理されていて黒い面が観察側となるので、前面ガラス 板の額縁状に設けていた黒色印刷が不要となり、工程が短縮でき、コスト面でも有利 である。
[0058] 以下、実施例及び比較例により、本発明を更に詳細に説明するが、これに限定され るものではない。
実施例 1
[0059] 電磁波シールド層 15として、厚さ 10 mの電解銅箔の片方の面上に、平均粒子径 0. 3 mの銅-コノ レト合金粒子の黒ィ匕層、及びクロメート (処理)層が順次積層され て成る導電体を用いた。この銅-コバルト合金粒子層のクロメート(処理)層面と、厚さ が 100 μ mの 2軸延伸 PETフィルム Α4300 (東洋紡績社製、ポリエチレンテレフタレ ート商品名)から成る透明基材 11とを、 2液硬化型ウレタン系接着剤 13でラミネートし た後に、 56°Cで 4日間エージングした。接着剤としては主剤がポリエステルウレタンボ リオール、又硬化剤がキシリレンジイソシァネートから成る 2液硬化型ウレタン榭脂を 用い、塗布量は乾燥後の厚さで 7 mとした。
フォトリソグラフィ法によるメッシュの形成は、連続した帯状でマスキング力もエツチン グまでを行う、カラー TVシャドウマスク用の製造ラインを流用した。まず、導電体層面 の全体へ、カゼインレジストを掛け流し法で塗布した。次のステーションへ搬送し、下 記の形状のパターンを有する原版を用いて、水銀燈カ の紫外線により密着露光し た。次々とステーションを搬送しながら、水現像し、硬膜処理し、さら〖こ、加熱してベ 一キングした。
上記パターン版の形状は、図 1の如ぐ中心部の領域は、画像表示装置の 42型( 横長、対角線長 42インチ相当)の画面部 100に対向し、正方形の開口部 103aがラ イン幅 22 μ m、ライン間隔(ピッチ) 300 μ m、バイアス角度 49度で配置されたメッシ ュ部 103となっている。該メッシュ部 103の周縁を囲む領域は、開口部 105aのライン 間隔は全て 210 mで、ライン幅はメッシュ部 103に接する部分の 22 mから開口 部を有しない額縁部 107へ向力つて、連続的に暫次増加する。開口部 105aのライン 幅は開口部を有しない額縁部 107と接する部分で 40 mとなり、グラデーション的に 開口率が減少して、領域の幅が 5mmの透明榭脂層アンカー部 105が形成されてい る。透明榭脂層アンカー部 105の周縁を囲む領域は、 10mm幅の開口部を有しない 額縁部 107となっている。
さらに次のステーションへ搬送し、エッチング液として塩ィ匕第二鉄溶液を用いて、ス プレイ法で吹きかけてエッチングし、開口部 103a、 105aを形成した。次々とステーシ ヨンを搬送しながら、水洗し、レジストを剥離し、洗浄し、さらに、加熱して乾燥した。な お、メッシュ部 103と透明榭脂層アンカー部 105のライン幅は 22 μ mのレジストパタ 一ン版を用いたが、エッチング後のライン幅は 12± 5 m(7〜17 μ m)となっていた 。メッシュ部 103の開口率は 92%であった。一方透明榭脂アンカー部 105の開口率 は、メッシュ部に接する部分が 88%、額縁部に接する部分で 81%であった。 このようにして得たメッシュ部 103及び透明榭脂層アンカー部 105へ、下記組成の 透明榭脂層 17組成物を、メッシュ部 103及び透明榭脂層アンカー部 105と同パター ン(即ち、メッシュ部と該メッシュ部の周縁を 5mm幅で囲むパターン)により、間歇ダイ コート法で塗布し、厚さが 50 mの SP— PET20— BU (トーセロ社製、表面離型処 理 PETフィルム商品名)をラミネートした後に、高圧水銀灯を用いて 200mjZcm2の 露光(365nm換算)した。
透明榭脂層組成物としては、 N—ビニル—2—ピロリドン 20質量部、ジシクロペンテ -ルアタリレート 25質量部、オリゴエステルアタリレート (東亜合成 (株)製、 M— 8060 ) 52質量部、 1ーヒドロキシシクロへキシルフエ-ルケトン(チバガイギ一社製、ィルガ キュア 184) 3質量部を用いた。
そして、 SP— PET20— BUを剥離すると、図 3 (A)の如くメッシュ部 103の開口部 1 03a及び透明榭脂層アンカー部 105の開口部 105aが透明榭脂層 17で充填被覆さ れ平坦化された実施例 1の電磁波シールド材が得られた。
実施例 2
[0060] 透明榭脂層 17組成物を、メッシュ部 103に塗布し、かつ該メッシュ部 103の外周の 透明榭脂アンカー部 105に 2. 5mm幅で塗布した。それ以外は、実施例 1と同様に して、図 3 (B)の如くメッシュ部 103の開口部 103a及び透明榭脂層アンカー部 105 の開口部 105aの内周側の 1部が透明榭脂層 17で充填被覆され平坦化された実施 例 2の電磁波シールド材を得た。なお、透明榭脂層アンカー部 105の外周部は 2. 5 mm幅で開口部 105aが露出している。
実施例 3
[0061] 透明榭脂層 17組成物を、メッシュ部 103に塗布し、かつメッシュ部 103の外周の透 明榭脂層アンカー部 105およびその外周に計 5. 5mm幅で塗布した。それ以外は、 実施例 1と同様にして、メッシュ部 103の開口部 103a及び透明榭脂層アンカー部 10 5の開口部 105aが透明榭脂層 17で充填被覆され、さらに開口部を有しない額縁部 107の内周部は 0. 5mm幅(開口部 1. 7周期分)で被覆された実施例 3の電磁波シ 一ルド材を得た。
実施例 4 [0062] 透明榭脂層アンカー部 105の開口部 105aが、正方形でライン幅 40 m、ライン間 隔(ピッチ) 300 /ζ πι、バイアス角度 49度であり、透明榭脂層アンカー部 105が 5mm 幅となっている。それ以外は、実施例 1と同様にして、メッシュ部 103及び透明榭脂層 アンカー部 105の開口部 103a、 105aが透明榭脂層 17で充填被覆され平坦ィ匕され た実施例 4の電磁波シールド材が得られた。
実施例 5
[0063] 透明榭脂層アンカー部 105の開口部 105aが、実施例 4と同じ開口率の円形となつ ている。それ以外は、実施例 1と同様にして、メッシュ部 103及び透明榭脂層アンカ 一部 105の開口部 103a、 105aが透明榭脂層 17で充填被覆され平坦ィ匕された実施 例 5の電磁波シールド材が得られた。
[0064] (比較例 1)パターン版の形状は、画像表示装置の 42型 (横長。対角線長 42インチ 相当)の画面部に対向し、開口部が正方形でライン幅 22 m、ライン間隔 (ピッチ) 3 00 m、ノィァス角度 49度のメッシュ部 103と、透明榭脂層アンカー部 105を設け ず、直接メッシュ部 103の周縁を囲み 15mm幅の開口部を有しない額縁領域 (額縁 部) 101とを有している。さらに、透明榭脂層 17組成物の塗布パターンは、図 4の如く メッシュ部 103と、該メッシュ部の外周部に有る開口部を有しない額縁部 107の内周 部 3. 5mm幅(開口部 11. 7周期分)とを含んでいる。それ以外は、実施例 1と同様に して、比較例 1の電磁波シールド材を得た。
[0065] (評価方法)評価は、熱衝撃試験後の層間密着性で行った。熱衝撃試験は、 40 °Cで 1時間と 80°Cで 1時間の繰り返しを 100回とする条件で、該熱衝撃試験を行った 後に、室温 25°Cに於いて、 25mm幅の-チバン社製のセロファン粘着テープである セロテープ (登録商標)で、透明榭脂層面力 透明樹脂の無 、額縁部上に亙る領域 を充分に覆うように貼着し、透明榭脂層の無い部分から強剥離した。
該剥離で、透明榭脂層が透明基材及び Z又は電磁波シールド層との間で、浮きや 剥離が発生したものを不合格とし、浮きや剥離が発生し無力つたものを合格とした。 なお、全光線透過率、視認性、電磁波シールド性も測定した。
視認性は PDP ;WOOO (日立製作所社製、商品名)の前面に載置して、テストバタ ーン、白、及び黒を順次表示させて、画面から 50cm離れた距離で、視認角度 0〜8 0度の範囲で、目視で観察した。
全光線透過率〖お IS— K7361— 1に準拠して、色彩機 HM 150 (村上色彩社製、 商品名)を用いてメッシュ部に於 、て測定した。
電磁波シールド (遮蔽)性は、 KEC法 (財団法人関西電子工業振興センターが開 發した電磁波測定法)により測定した。
(評価結果)実施例 1〜5、比較例 1のいずれも、メッシュ部の全光線透過率が 83.
0%と良好であった。また、電磁波シールド性も、実施例 1〜5、比較例 1のいずれも、 周波数 30MHz〜1000MHzの範囲に於いて、電磁場の減衰率は 30〜60dBと電 磁波シールド性も十分であった。
また、熱衝撃試験後の層間密着性は、実施例 1〜5の電磁波シールド材では浮き や剥離が発生せず、いずれも合格であった力 比較例 1では額縁部に於いて浮きや 剥離が発生して不合格であった。
さらに、熱衝撃試験後の層間密着性が良力つた実施例 1〜5の電磁波シールド材 を PDPディスプレイの前面板に設け、画像を表示させて視認性を評価したところ、い ずれも視認性は良好であった。

Claims

請求の範囲
[1] 画像表示装置の画面部の前面に隣接して配置される電磁波シールド装置におい て、
透明基材と、
透明基材の一方の面に設けられ、導電体からなる電磁波シールド層と、 電磁波シールド層上に設けられた透明榭脂層とを備え、
電磁波シールド層は画像表示装置の画面部に対応する形状をもち、多数配列され た開口部を含むメッシュ部と、メッシュ部を囲むとともに、多数配列されメッシュ部の開 口部よりも低い開口率をもつ開口部を含む透明榭脂層アンカー部と、透明榭脂層ァ ンカ一部を囲むとともに開口部をもたな ヽ平坦状の額縁部とを有し、
透明榭脂層はメッシュ部表面力 透明榭脂層アンカー部表面へわたって設けられ て 、ることを特徴とする電磁波シールド装置。
[2] 透明榭脂層は、メッシュ部表面全域力も透明榭脂層アンカー部表面全域に延び、 かつ額縁部の内側端部を覆って設けられていることを特徴とする請求項 1記載の電 磁波シールド装置。
[3] 透明榭脂層は、メッシュ部表面全域力も透明榭脂層アンカー部表面全域に延び、 かつ透明榭脂層アンカー部の外側端部で終了していることを特徴とする請求項 1記 載の電磁波シールド装置。
[4] 透明榭脂層は、メッシュ部表面全域力 透明榭脂層アンカー部の内側端部を覆つ て設けられていることを特徴とする請求項 1記載の電磁波シールド装置。
[5] 透明榭脂層は、メッシュ部表面全域力も透明榭脂層アンカー部の中間部まで延び
、透明榭脂層アンカー部の外側は覆って 、な 、ことを特徴とする請求項 4記載の電 磁波シールド装置。
[6] 透明基材と電磁波シールド層との間に接着層が介在されていることを特徴とする請 求項 1記載の電磁波シールド装置。
PCT/JP2005/013596 2004-07-27 2005-07-25 電磁波シールド装置 WO2006011457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067026770A KR101110992B1 (ko) 2004-07-27 2005-07-25 전자파 차폐장치
US11/632,853 US20080245563A1 (en) 2004-07-27 2005-07-25 Electromagnetic Wave Shielding Device
DE112005001688T DE112005001688T5 (de) 2004-07-27 2005-07-25 Abschirmvorrichtung für elektromagnetische Wellen
JP2006529324A JPWO2006011457A1 (ja) 2004-07-27 2005-07-25 電磁波シールド装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004218047 2004-07-27
JP2004-218047 2004-07-27

Publications (1)

Publication Number Publication Date
WO2006011457A1 true WO2006011457A1 (ja) 2006-02-02

Family

ID=35786206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013596 WO2006011457A1 (ja) 2004-07-27 2005-07-25 電磁波シールド装置

Country Status (6)

Country Link
US (1) US20080245563A1 (ja)
JP (1) JPWO2006011457A1 (ja)
KR (1) KR101110992B1 (ja)
DE (1) DE112005001688T5 (ja)
TW (1) TW200616531A (ja)
WO (1) WO2006011457A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042887A (ja) * 2005-08-03 2007-02-15 Bridgestone Corp 光透過性電磁波シールド性窓材及びその製造方法
JP2008004886A (ja) * 2006-06-26 2008-01-10 Hitachi Chem Co Ltd 導体層パターン付き基材
JP2008290312A (ja) * 2007-05-23 2008-12-04 Kyodo Printing Co Ltd 凹版印刷装置及びシールド材の製造方法
WO2019044847A1 (ja) * 2017-08-31 2019-03-07 大日本印刷株式会社 パネル付き表示装置、内外装部材、移動体及びパネル、加飾シート、加飾シート付き表示装置、パネル付き表示装置
JP2020034773A (ja) * 2018-08-30 2020-03-05 大日本印刷株式会社 透過率調整シート付き表示装置及び積層体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164911B2 (en) 2006-08-18 2012-04-24 Delphi Technologies, Inc. Lightweight electronic device for automotive applications and method
JP2008218714A (ja) * 2007-03-05 2008-09-18 Bridgestone Corp 光透過性電磁波シールド材及びその製造方法、並びに貴金属の極薄膜を有する微粒子及びその製造方法
EP2009977A3 (en) 2007-05-09 2011-04-27 FUJIFILM Corporation Electromagnetic shielding film and optical filter
KR101094253B1 (ko) * 2008-04-28 2011-12-19 정춘길 무선 전력 수신 장치, 이와 관련된 무선 전력 송신 장치, 그리고, 무선 전력 송수신 시스템
TW201251558A (en) * 2011-06-14 2012-12-16 Compal Electronics Inc Method for manufacturing three-dimentional workpiece
CN103857172A (zh) * 2012-12-06 2014-06-11 富葵精密组件(深圳)有限公司 透明印刷电路板
FR3000228B1 (fr) * 2012-12-20 2015-12-18 Freebox Film filtre pour ecran, dispositif et procede de fabrication associes
US20150245548A1 (en) * 2014-02-26 2015-08-27 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
US10070547B2 (en) * 2014-02-26 2018-09-04 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials
FR3051975B1 (fr) * 2016-05-31 2018-07-06 Sagem Defense Securite Element de blindage electromagnetique optiquement transparent et a plusieurs zones.
CN112105247A (zh) * 2019-06-18 2020-12-18 昇印光电(昆山)股份有限公司 电磁屏蔽膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183585A (ja) * 1998-12-17 2000-06-30 Nec Corp 電磁波遮蔽フィルタ
WO2002071824A1 (fr) * 2001-03-02 2002-09-12 Hitachi Chemical Co., Ltd. Film de protection electromagnetique, unite de protection electromagnetique et affichage
WO2004016058A1 (ja) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. 電磁波遮蔽用シート
JP2005064003A (ja) * 2003-08-08 2005-03-10 Mitsui Chemicals Inc 透明電磁波シールドおよびディスプレイ用フィルタ
JP2005166811A (ja) * 2003-12-01 2005-06-23 Bridgestone Corp 電磁波シールド性フィルム及び電磁波シールド性窓材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570420B2 (ja) 1996-05-23 2004-09-29 日立化成工業株式会社 電磁波シールド性と透明性を有するディスプレイ用フィルム及び該フィルムを用いたディスプレイ、電磁波遮蔽構成体
JP2002116700A (ja) * 2000-10-05 2002-04-19 Nisshinbo Ind Inc 透光性電磁波シールド板の内周に電極部を形成する方法、及び該方法により得られた透光性電磁波シールド板
JP2002326305A (ja) * 2001-04-27 2002-11-12 Nisshinbo Ind Inc 透視性電磁波シールド板、その製造方法及びディスプレイ装置
KR100521911B1 (ko) * 2001-07-09 2005-10-13 다이니폰 인사츠 가부시키가이샤 전자파 차폐용 부재 및 그 제조방법
TW526706B (en) * 2002-06-28 2003-04-01 Ponwei Hou Materials for electromagnetic wave shielding film
WO2005060326A1 (ja) * 2003-12-16 2005-06-30 Dai Nippon Printing Co., Ltd. 電磁波シールド材、及びその製造方法
KR20060046935A (ko) * 2004-11-12 2006-05-18 삼성코닝 주식회사 신규 블랙 매트릭스, 그 제조방법 및 그를 이용한평판표시소자 및 전자파차폐 필터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183585A (ja) * 1998-12-17 2000-06-30 Nec Corp 電磁波遮蔽フィルタ
WO2002071824A1 (fr) * 2001-03-02 2002-09-12 Hitachi Chemical Co., Ltd. Film de protection electromagnetique, unite de protection electromagnetique et affichage
WO2004016058A1 (ja) * 2002-08-08 2004-02-19 Dai Nippon Printing Co., Ltd. 電磁波遮蔽用シート
JP2005064003A (ja) * 2003-08-08 2005-03-10 Mitsui Chemicals Inc 透明電磁波シールドおよびディスプレイ用フィルタ
JP2005166811A (ja) * 2003-12-01 2005-06-23 Bridgestone Corp 電磁波シールド性フィルム及び電磁波シールド性窓材

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042887A (ja) * 2005-08-03 2007-02-15 Bridgestone Corp 光透過性電磁波シールド性窓材及びその製造方法
JP2008004886A (ja) * 2006-06-26 2008-01-10 Hitachi Chem Co Ltd 導体層パターン付き基材
JP2008290312A (ja) * 2007-05-23 2008-12-04 Kyodo Printing Co Ltd 凹版印刷装置及びシールド材の製造方法
WO2019044847A1 (ja) * 2017-08-31 2019-03-07 大日本印刷株式会社 パネル付き表示装置、内外装部材、移動体及びパネル、加飾シート、加飾シート付き表示装置、パネル付き表示装置
JP2020034773A (ja) * 2018-08-30 2020-03-05 大日本印刷株式会社 透過率調整シート付き表示装置及び積層体

Also Published As

Publication number Publication date
TW200616531A (en) 2006-05-16
TWI357805B (ja) 2012-02-01
KR20070043715A (ko) 2007-04-25
DE112005001688T5 (de) 2007-06-06
KR101110992B1 (ko) 2012-06-08
US20080245563A1 (en) 2008-10-09
JPWO2006011457A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2006011456A1 (ja) 電磁波シールド装置
WO2006011457A1 (ja) 電磁波シールド装置
JP4288235B2 (ja) 電磁波遮蔽用シート
JP4445858B2 (ja) 電磁波遮蔽用シート
JP4334477B2 (ja) 電磁波遮蔽用シート
JP4346607B2 (ja) 電磁波遮蔽用シート、ディスプレイ用前面板及び電磁波遮蔽用シートの製造方法
US20070152560A1 (en) Display front panel, and method for producing the same
JP4339789B2 (ja) 電磁波遮蔽用シートおよびその製造方法
WO2005074347A1 (ja) 電磁波シールドフィルム、及びその製造方法
JPWO2006006527A1 (ja) 電磁波シールドフィルタ
JPWO2005060326A1 (ja) 電磁波シールド材、及びその製造方法
WO2005072040A1 (ja) 電磁波シールドフィルム、及びその製造方法
JPWO2005069713A1 (ja) 電磁波シールドシート及びその製造方法
JP2004241761A (ja) 電磁波遮蔽用シート、及びその製造方法
JP2006128421A (ja) 粘着剤層付き電磁波シールドフィルタ
JP2006119345A (ja) Nir吸収転写シート、及びそれを用いた複合電磁波シールドフィルタの製造方法
JP2006100458A (ja) 複合電磁波シールドフィルタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067026770

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050016889

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11632853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006529324

Country of ref document: JP

RET De translation (de og part 6b)

Ref document number: 112005001688

Country of ref document: DE

Date of ref document: 20070606

Kind code of ref document: P

122 Ep: pct application non-entry in european phase