WO2003091485A1 - Procede pour produire un fil multifilament extra-fin en polyester et un fil texture par fausse torsion extra-fin en polyester, fil multifilament extra-fin en polyester et fil texture par fausse torsion extra-fin en polyester - Google Patents

Procede pour produire un fil multifilament extra-fin en polyester et un fil texture par fausse torsion extra-fin en polyester, fil multifilament extra-fin en polyester et fil texture par fausse torsion extra-fin en polyester Download PDF

Info

Publication number
WO2003091485A1
WO2003091485A1 PCT/JP2003/005360 JP0305360W WO03091485A1 WO 2003091485 A1 WO2003091485 A1 WO 2003091485A1 JP 0305360 W JP0305360 W JP 0305360W WO 03091485 A1 WO03091485 A1 WO 03091485A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
polyester
false
dtex
fine
Prior art date
Application number
PCT/JP2003/005360
Other languages
English (en)
French (fr)
Inventor
Masahiro Konishi
Satoshi Nagamune
Hiroyuki Osaka
Original Assignee
Teijin Fibers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002123885A external-priority patent/JP4056288B2/ja
Priority claimed from JP2002181138A external-priority patent/JP4018939B2/ja
Priority claimed from JP2002320962A external-priority patent/JP4018968B2/ja
Priority to CA2478286A priority Critical patent/CA2478286C/en
Priority to EP03719207A priority patent/EP1498520B1/en
Priority to MXPA04007453A priority patent/MXPA04007453A/es
Application filed by Teijin Fibers Limited filed Critical Teijin Fibers Limited
Priority to CNB038091739A priority patent/CN1320179C/zh
Priority to AT03719207T priority patent/ATE529546T1/de
Priority to AU2003235816A priority patent/AU2003235816A1/en
Priority to ES03719207T priority patent/ES2374667T3/es
Priority to US10/505,525 priority patent/US7078096B2/en
Priority to KR1020047013522A priority patent/KR100984991B1/ko
Publication of WO2003091485A1 publication Critical patent/WO2003091485A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • D02G1/0266Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting false-twisting machines
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/14Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using grooved rollers or gear-wheel-type members
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/20Combinations of two or more of the above-mentioned operations or devices; After-treatments for fixing crimp or curl
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer

Definitions

  • the present invention relates to a method for stably producing a spin-oriented polyester ultrafine multifilament yarn capable of drawing false twisting, and a polyester ultrafine multifilament yarn. Further, the present invention relates to a method for stably producing a polyester ultrafine false twisted yarn and a polyester ultrafine false twist yarn. Furthermore, the present invention relates to a method for stably producing a polyester ultrafine false twisted yarn having excellent processability in a weaving process and a knitting process. Background art
  • Japanese Patent No. 3043414 discloses a polyester polymer having a relative viscosity LRV of about 13 to about 23, a zeal shearing melting point of about 240 to about 265 ° C, and a glass transition point of about 40 to 80. After melting, heat to a temperature about 25 to about 55 ° C higher than the melting point of the polymer, keep the residence time within 4 minutes, set the mass flow rate to 0.07 to 0.7 g / min, and 125X 1 O -6 ⁇ about 1250 X 10- 6 cm 2, Anachonoana diameter ratio (L / D) of at least 1.
  • a polyester ultrafine yarn having a birefringence of about 0.03 to about 0.1 can be obtained.
  • the ultrafine polyester yarn having such a birefringence can be subjected to friction drawing false twisting.
  • only preventing the melt from directly cooling the melt within a specific distance range when the molten polymer exits the spinneret reduces the amount of polymer discharged per unit. Accordingly, the molten polymer immediately after the discharge tends to be broken in the form of droplets, and the phenomenon of thread breakage is likely to occur, and stable spinning becomes difficult in many cases.
  • polyester fine-textured yarns with a single-fiber fineness of 1 dtex or less when made into a fabric, have a softer feel than ordinary polyester false-twisted yarns, and have properties such as heat retention, water absorption, and moisture absorption.
  • Japanese Patent Application Laid-Open No. 4-194036 discloses a false twisted karoy yarn made of polyester multifilament having a single yarn fineness of 0.7 denier (0.78 dtex) or less, and has a limited cross-sectional flatness factor and total crimp ratio. A water-absorbing ultrafine false twisted yarn and a method for producing the same are disclosed.
  • 2002-038341 discloses a single-filament fiber made of a polyester containing a metal-containing phosphorus compound and an alkaline earth metal compound. Disclosure of polyester calcined yarn with a degree of flatness of less than 0.6 dtex, a limited flatness coefficient of thermal stress, improved color depth and sharpness when dyed, and a method for producing the same Have been.
  • Such ultrafine polyester false twisted yarn produced by a special limited method certainly has improved limited performance.
  • ordinary unstretched polyester is subjected to simultaneous simultaneous false twisting under these conditions, the number of single yarns increases, and as the fineness becomes thinner, numerous yarn breaks occur during temporary processing, and the resulting false twisting occurs.
  • There are problems such as the occurrence of fluff or untwisted spots on the processed yarn, and the occurrence of quality unevenness such as spotting, which makes the yarn unusable as false twisted karoy yarn.
  • a first object of the present invention is to provide a method for stably producing a spin-oriented polyester ultrafine multifilament yarn capable of friction-drawing temporary winding, and a polyester ultrafine multifilament yarn. is there.
  • a second object of the present invention is to provide a polyester ultrafine false twisted yarn which is small in fineness and has a large number of vibrating filaments, yet has few fluff, untwisted spots and spots. And a method for producing by means of simultaneous drawing and twisting, and a polyester ultrafine twisted yarn.
  • a third object of the present invention is to reduce fluff, unburned spots and spots, and to reduce fluff even at high speed unwinding, despite the small fineness and the large number of filaments.
  • An object of the present invention is to provide a method for stably producing a polyester fine false twisted yarn which is hardly generated and has excellent processability in the weaving and knitting processes. Disclosure of the invention
  • the first object is ⁇ Melting and discharging from the spinneret surface when manufacturing ultra-fine polyester multifilament yarn with a single fiber fineness of 0.9 dte X or less, a total number of single yarns of 100 to 400, and a birefringence of 0.003 to 0.06.
  • the polymer flow of the polyester polymer passed through an atmosphere having a temperature of 100 to 300 ° C at a distance of 0 to 40 mm from the surface of the spinneret, and further cooled, and then a spinneret.
  • a multifilament yarn having a total number of single yarns of 100 to 400 and a birefringence of 0.03 to 0.06 (a) the evenness U% is 0.8% or less, and (b) the density is 1. 345 to 1.360 g / cm 3 , (c) (65 ° C) Shrinkage 25 to 55%, (d) Maximum point strength 2.0 to 3.
  • the second purpose is to use a polyester ultrafine multifilament yarn having a single yarn fineness of 0.9 dte X or less, a total number of single yarns of 100 to 400, and a birefringence of 0.03 to 0.06.
  • air entanglement is applied to the multifilament yarn so that the degree of entanglement measured with the false twisted yarn is 50 to 90 yarns / m, and (2) residence time in the drawn temporary heater 0.052 to 0.300 sec, so that the temperature of the running filament yarn at the heater outlet is 90 to 140 ° C higher than the glass transition temperature (Tg) of the polyester polymer.
  • draw ratio 1.
  • Polyester ultra-fine fired yarn characterized by winding up with a winding tension of 0.05 to 0.30 cN / dtex and a speed of 500 to 120 OmZ Manufacturing method "and"
  • a single yarn fineness is 0.6 dteX or less, and the total number of single yarns is 100 to 400 yarns. 2 to 5%
  • Hot water shrinkage ratio FS is 2.5 to 4. 5%
  • the third object is to provide a polyester ultrafine multifilament having a single yarn fineness of 0.9 dte X or less, a total number of single yarns of 100 to 400, and a birefringence of 0.03 to 0.06.
  • the filament yarn is simultaneously drawn and false-twisted to produce a false-twisted yarn, air entanglement is performed before and after the simultaneous drawing and false-twisting, and the number of entanglements before and after the air entanglement is determined.
  • FIG. 1 and FIG. 2 are schematic views showing one embodiment of a simultaneous simultaneous false twisting machine used in the present invention.
  • the polyester is a polyester in which ethylene terephthalate accounts for 85 mol% or more, preferably 95 mol% or more as a repeating unit.
  • a small amount of the component other than the terephthalic acid component and / or the ethylene dalichol component (usually 15 mol% or less based on the terephthalic acid component) may be copolymerized.
  • These polyesters may contain known additives, for example, pigments, dyes, anti-glazing agents, antifouling agents, fluorescent brighteners, flame retardants, stabilizers, ultraviolet absorbers, lubricants and the like.
  • the intrinsic viscosity of the polyester used in the present invention is 0.45, which is the same as that of polyester usually used as a fabric material for clothing. It is possible to use the fineness of 0.5 to 0.7 dtex, but the melt spinning of ultra-fine multifilament yarn with single fiber fineness of 0.2 to 0.5 dtex has an intrinsic viscosity in the range of 0.50 to 0.67. It is desirable to use
  • the single yarn fineness is 0.9 dtex or less, particularly 0.6 dtex or less
  • the following method is preferably employed for producing a polyester ultrafine multifilament yarn having a number of 100 to 400 and a refractive index of 0.03 to 0.06.
  • the polyester in the form of pellets is dried by a conventional method, melted in a usual melt spinning facility equipped with a screw extruder, and heated at a temperature 40 to 70 ° C. higher than the melting point (Tm) of the polyester. And the mixture is filtered in the spin pack and discharged from the spinneret with 50 to 300 discharge holes. (If the discharge holes are less than 50 to 100, 2 per spin pack The spinneret is placed, and the discharged yarn is combined and picked up).
  • the residence time in the filtration layer during the filtration is such that the intrinsic viscosity ([? 7] f) after cooling and solidification of the polyester melt is 0.50 to 0.60, more preferably 0.55 to 0.50. Preferably, it should be 58.
  • the discharged polymer stream passes through an atmosphere kept warm so as not to be cooled, and is cooled by cooling air (preferably at a temperature of about 25 ° C) from a set of spinnerets with a cross flap.
  • the oiling agent is applied by a guide such as a refueling concentrating device of a metering nozzle type, is converged as a filament bundle, is entangled through an interlace nose, and is picked up at a speed of 2500 to 350 OmZ.
  • a guide such as a refueling concentrating device of a metering nozzle type
  • the "vealus effect" becomes smaller, and the phenomenon that the discharged polymer causes droplet-shaped breakage is more likely to occur.
  • a hot zone the temperature of the atmosphere in the range of 0 to 4 O mm from the spinneret surface (hereinafter referred to as a hot zone) is less than 100 ° C
  • the cross-sectional area per discharge hole is 7 X 10 — 5 to 2 X 10— 4 cm 2 , LZD of 4 to 10 and discharge amount per discharge hole of 0.06 to 0.20 g
  • the particles break in the form of droplets, making it difficult to stably take up the spinning yarn.
  • the hot zone temperature exceeds 300 ° C, the polymer streams adhere to each other before cooling and solidifying, so the hot zone temperature must be set so as not to exceed 300 ° C. ,.
  • the hot zone temperature by actively heating the range of 0-4 mm below the spinneret and keeping the hot zone temperature at 100-300 ° C, preferably at 200-300 ° C.
  • the leveling property of the processed yarn obtained by drawing and false twisting the spun-oriented polyester ultrafine multifilament yarn becomes inferior and cannot withstand use. You. On the other hand, at a position of less than 35 Omm from the spinneret discharge surface, the discharged polymer is not yet sufficiently cooled, so that contact with a guide or the like may cause breakage of the thread or damage to the filament.
  • polyester fine multifilament yarn has the following physical properties.
  • T g indicates the glass transition temperature of the polyester polymer used in the spinning.
  • Polyester ultra-fine multifilament yarn that satisfies all of the above physical properties is a friction temporary repelling method, with less fluctuation in tension, and is capable of stable simultaneous stretching and temporary combustion processing.
  • the preferred range of the thermal stress peak temperature is Tg-6 to Tg + 3 ° C. By setting the temperature in such a range, the tension fluctuation is less likely to occur, the workability is stable, and the uniform temporary winding having no spots. A processed yarn is obtained. Next, a method for producing a polyester extra fine false twisted yarn and a polyester extra fine false twisted yarn that achieve the second object of the present invention will be described.
  • FIG. 1 is a schematic view showing one embodiment of a simultaneous stretching and calcining machine that can be used in the present invention.
  • 1 is a polyester multifilament yarn package
  • 2 is a yarn guide
  • 3 and 3 are feed rollers
  • 4 is an interlacing nozzle
  • 5 is a drawing flotation heater
  • 6 is a cooling plate
  • 7 is a friction false twist type disk unit
  • 8 is 1st delivery roller
  • Reference numeral 9 denotes a second delivery roller
  • 10 denotes an oil applicator
  • 11 denotes a yarn guide
  • 12 denotes a winding tension measuring position
  • 13 denotes a winding roller
  • 14 denotes a drawn and temporarily combusted yarn package.
  • the present invention provides a polyester ultrafine multifilament yarn having a single yarn fineness of 0.9 dtex or less, particularly 0.6 dtex or less, a total number of single yarns of 100 to 400, and a birefringence of 0.03 to 0.Q6. This is a method of false twisting.
  • the multifilament yarn is a polyester ultrafine multifilament yarn produced by the above-described method, which is excellent in false-twisting property and easy to achieve the second object. preferable.
  • the above polyester ultrafine multifilament yarn preferably, the polyester ultrafine multifilament yarn produced by the above-described method is subjected to, for example, the steps shown in FIG. It is necessary to perform simultaneous stretching and calcination under satisfactory conditions.
  • the breaking strength and elongation decrease.
  • the residence time in the draw false twist heater is 0.052 to 0.300 sec, and the temperature of the running filament yarn at the outlet of the heater is 90 to from the glass transition temperature (Tg) of the polyester polymer: I Set the temperature to 40 ° C higher and draw simultaneously at the draw ratio of 1.40 to 1.70 to perform false twisting to obtain a false twisted yarn.
  • simultaneous stretching and temporary repelling is performed using a friction false twisting tool (for example, 7 in FIG. 1).
  • the stretching ratio should be 1.40 to 1.70 times, preferably 1.5 to 1.6 times. If the stretching ratio is less than 1.40, the working tension before and after the fueling tool will be low, and untwisted spots will frequently occur, and unstretched portions will remain and stains will occur. If the draw ratio exceeds 1.70 times, fluff due to breakage of single yarn or drawn false twisted yarn occurs. '
  • the temperature of the running filament yarn at the outlet of the draw false twist heater (5 in FIG. 1) is 90 to: I 40 ° C., preferably 110 to 130 ° from the glass transition temperature (T g) of the polyester polymer. (It is necessary to perform heat treatment at a high temperature so that the residence time of the traveling filament yarn in the heater is 0.052 to 0.300 sec, preferably 0.060 to 0.150 sec.
  • the running filament yarn temperature at the outlet of the draw false twist heater was measured by using a commercially available non-contact type running object thermometer (for example, H-7508 of Teijin Engineering Co., Ltd.).
  • the difference between the running filament yarn temperature at the outlet of the pre-drawing heater and the glass transition temperature (Tg) of the polyester polymer is less than 90 ° C, or the running filament yarn. If the residence time in the heater is less than 0.052 sec Since the fiber structure cannot be heat-set, it is not possible to obtain a false-twisted yarn having crimping properties and physical properties that can withstand practical use
  • the yarn temperature must be 140 ° C below the glass transition temperature (Tg) of the polyester polymer. If it is too high, or if the residence time of the running filament yarn in the heater exceeds 0.300 sec, the filament single yarns will be fused together during the stretching pre-combustion process and cannot be used as a false twisted yarn.
  • the strength and elongation of the false-twisted Karoi yarn are significantly reduced, and the number of broken yarns and fluffs during the temporary drawing is increased.
  • a heater having a heater length of 1.0 to 2.5 m is preferable.
  • the yarn unwinding property in the post-process such as twisting, warping, knitting, and weaving, or the resistance to the guides will increase, and the wind due to single yarn breakage and fibril formation will occur.
  • the generation of cotton becomes extremely large.
  • Adhesion amount of oil is 3.0 wt 0/0 If it exceeds, the accumulation of oil scum in the guides in the later process will increase.
  • the finish oil can be applied by a roller type or metering nozzle type oil agent applicator as shown in Figure 1-10.
  • the obtained false twisted yarn was adjusted to (6) winding tension (measuring position: 12 in FIG. 1) from 0.05 to 0.30 cN / dte X, preferably from 0.12 to 0.23 cNZd tex, Speed up to 500-120 Om / min, preferably 600-: L 00 OmZ min.
  • a friction false twist type disk unit in which urethane disks having a hardness of 75 to 95 degrees and a thickness of 5 to 12 mm are arranged on three axes can be preferably used. It is preferable to perform the stretching pre-combustion such that the running angle of the yarn is 30 to 45 degrees with respect to the rotation axis of the disk. In addition, setting the pre-combustion condition so that the number of false twists (twice / m) is (25000-35000) / (the fineness of the temporary roving yarn (dtex)) 1/2 will further reduce the generation of fluff. It is preferable because it can be used. It is preferable that the thus obtained polyester extra fine temporary processing yarn has the following physical properties, and can be easily obtained by the production method of the present invention.
  • the polyester ultrafine false twisted yarn having such physical properties has a single yarn fineness of 0.6 dtex or less. Although it is an ultrafine multifilament having 100 to 400 filaments, it has less fluff and untwisted spots, and has excellent uniformity (spots). (M) A more preferable range of the elongation at break is 15 to 35%.
  • FIG. 2 is a schematic view showing one embodiment of a simultaneous stretching and false twisting machine that can be used in the present invention.
  • 1 is a polyester multifilament yarn package
  • 2 is a yarn guide
  • 4 is an interlace nozzle
  • 5 is a draw false twist heater
  • 6 is a cooling plate
  • 7 is a friction false twist type disk unit.
  • the present invention relates to a polyester having a single yarn fineness of 0.9 dtex or less, particularly 0.6 dtex or less, a total number of single yarns of 100 to 400, and a birefringence of 0.03 to 0.06.
  • This is a method of false twisting an ultrafine multifilament yarn.
  • the fact that the multifilament yarn is a polyester ultrafine multifilament yarn produced by the method described above is excellent in false twisting workability and easy to achieve the third object. Is preferred.
  • the air entanglement treatment is performed before and after the simultaneous simultaneous false twisting, and the degree of entanglement before and after the air entanglement treatment is 30 to 60 pieces, respectively. / m, 70 to 110 pieces / m.
  • the air entangling treatment is performed before and after the simultaneous simultaneous false twisting as described above, and at this time, each entangling is imparted in an appropriate balance, so that 120 O
  • the generation of fly wool can be suppressed even at a high speed unwinding of mZ or more, and the processability in the weaving or knitting process is significantly improved, and furthermore, false twisted yarn with extremely few fluff, untwisted spots and dyeing spots is produced.
  • a false twisted yarn having excellent high-speed unwinding property as described above cannot be obtained by a manufacturing method in which air entanglement is performed either before or after simultaneous simultaneous false twisting.
  • the air entangling process before and after the above-described simultaneous simultaneous false twisting can be performed using interlaced nozzles (4 and 9 in FIG. 2), for example, as shown in FIG.
  • the simultaneous drawing and twisting process is performed by setting the residence time in the drawing and false twisting heater to 0.05 to 0.30 sec, preferably 0.06 to 0.15 sec.
  • the temperature of the yarn (running yarn) at 90 ° C. to 140 ° C., preferably 110 ° C. to 130 ° C., preferably 110 ° C. to 130 ° C. higher than the glass transition temperature (T g) of the polyester polymer. It is desirable to do this.
  • the stretching ratio is preferably from 1.4 to 1.7 times, and more preferably from 1.5 to 1.6 times.
  • the stretched false twisted yarn used in the present invention may be either a contact type or a non-contact type, but preferably has a length of 1.0 to 2.5 m.
  • the false twisting device used for the simultaneous false-twisting process is preferably a friction false twist type distorting unit in which urethane disks having a hardness of 75 to 95 degrees and a thickness of 5 to 12 mm are arranged on three axes. so Wear. It is preferable to perform the draw false twist so that the running angle of the yarn is 30 to 45 degrees with respect to the rotation axis of the disk.
  • the false twist of the present invention is obtained by applying 1.5 to 2.3% by weight of an oil agent and winding at a speed of preferably 500 to 12 OmZ min, more preferably 600 to 100 Om / min (15 in FIG. 2).
  • a processed yarn can be obtained.
  • the winding tension (measurement position: 13 in FIG. 2) is preferably 0.05 to 0.30 cN / dtex, more preferably 0.12 to 0.23 cN / dtex.
  • the oil agent may be applied by a roller type or metering nozzle type oil agent application as shown in 11 in FIG.
  • a breaking strength of 3.OcN / dt ex or more and a breaking elongation of 15 to 45% are preferable from the viewpoint of high-speed unwinding, weaving and knitting.
  • the total crimp ratio of the false twisted yarn is 2 to 5%, and the hot water shrinkage ratio is 2.5 to 4.5%, so that the performance of the false twisted yarn according to the present invention is sufficiently exhibited. This is preferable in that a woven or knitted fabric having excellent bulkiness can be obtained.
  • the false twisted yarn having such physical properties can be easily obtained by the production method of the present invention.
  • the measurement was performed at 35 ° C. using orthochlorophenol as a solvent.
  • a specified amount of the polyester polymer was sealed in an aluminum sample pan, and the temperature was raised to 280 ° C at a rate of room temperature to 10 ° C / min in a nitrogen flow with a DSC measuring device, and the temperature was held for 2 minutes.
  • the sample was immediately taken out and quenched in a nitrogen atmosphere to prepare a sample pan in which the polymer was solidified in an amorphous state. It was heated again under the above conditions, and the glass transition temperature was measured from the heating curve.
  • the birefringence was determined using a Olympus 2-polarized light microscope, and measuring the single-thread ratio and yarn diameter by the compensator-one-time method.
  • the amount of shrinkage when the sample was heat-treated in hot water at 65 ° C for 30 minutes in a constrained state was measured, and the shrinkage rate of hot water (65 ° C) was calculated as a percentage of the sample length.
  • the maximum point strength, elongation at break, and primary yield stress of the microfilament multifilament yarn were measured using a tensile tester Tensilon manufactured by Shimadzu Corporation under the conditions of a sample length of 200 mm and an elongation of 20% Z. ⁇ Calculated from the extension curve.
  • thermal stress meter (type KE-11) manufactured by Kanebo Engineering Co., Ltd., apply an initial load of 0.029 cN / dtex to the formed sample and raise the temperature at a rate of 2.3 ° CZmin.
  • the generated stress was recorded on a chart, and a thermal stress peak temperature and a thermal stress peak value were determined.
  • the thermal stress value was expressed as (cN / dteX) by dividing the stress (cN) read from the chart by the fineness (dteX).
  • the single-spindle melt spinning machine was operated continuously for one week, and the number of yarn breaks that occurred during that period was recorded, excluding the yarn breakage caused by artificial or mechanical factors. The number of times of thread breakage was calculated, and the result was taken as spinning breakage.
  • Breaking strength and breaking elongation of the false twisted yarns of Examples 1 to 5 and Comparative Example 3 described later (Table 2) was measured by a tensile test using a tensile tester Tensilon manufactured by Shimadzu Corporation under the conditions of a sample length of 100 mm and an elongation speed of 200 mm.
  • the breaking strength and elongation at break of the other false twisted yarns were obtained from a load-elongation curve by performing a tensile test using the above tensile tester under the conditions of a sample length of 200 mm and an elongation of 20% Z.
  • the temperature of the running filament yarn at the outlet of the draw false twist heater was measured using a non-contact running object thermometer (H-7508) manufactured by Teijin Engineering Co., Ltd.
  • the number of confounds per meter was measured using a mouth-shell in-the-sun race meter. This measurement was performed 10 times, and the average value was shown.
  • the false twisted yarn sample was knitted into a 30-cm tube using a 12-gauge circular knitting machine, and dyed with dye (Terrasil Blue GFL) for 100 :, 40 minutes. Was rated.
  • dye Teerrasil Blue GFL
  • Level 1 Stained uniformly, with few spots.
  • Level 1 Few cotton is observed.
  • 0.044cNZd t ex (5 OmgZ denier) tension on extra fine false twisted yarn Hook it and wind it around a skewer frame to make a skewer of about 3300 dtex.
  • Hot water shrinkage FS (%) [(L.-I ⁇ ) / L. ] X 100 ⁇ (21) Number of times of false twist processing (number of times ZT 0 n)
  • the draw false twisting machine was continuously operated for one week (drawing false twisting of a 10 kg unstretched polyester yarn package and creating two 5 kg roll false twisted yarn packages). The number of yarn breaks that occurred during that time was recorded except for yarn breaks caused by mechanical or mechanical factors.
  • polyethylene terephthalate having a glass transition temperature (Tg) of 73 ° C, an intrinsic viscosity of 0.64, and containing 0.3% by weight of titanium oxide at 140 ° C for 5 hours, it is equipped with a screw type extruder
  • Tg glass transition temperature
  • the melted spinning equipment was melted and introduced into a spin block kept at 315 ° C, and the residence time was set so that the intrinsic viscosity ([] f) of the cooled and solidified polyethylene terephthalate became 0.57.
  • spinneret money discharge holes is 272 ⁇ set of 0, discharge hole 1 hole per discharge amount 0. l SGZ Dispensed in minutes.
  • the discharged polymer stream was passed through a hot zone in which the atmosphere between the spinneret surface and 30 mm was maintained at a temperature as shown in Table 1, and 25 ° from the cross-flow type spinning cylinder. It was cooled by the cooling air of C and bundled as a filament bundle while applying oil using a metaling nozzle type oiling guide installed at a position of 420 mm (focusing length) from the spinneret surface.
  • the polyester ultra-fine multifilament package was placed on a HTS-150 V drawing false twisting machine manufactured by Teijin Machinery Co., Ltd., and a urethane disk having a thickness of 9 mm and a diameter of 58 mm was used as a false twisting tool. At the same time, simultaneous stretching and false twisting was performed.
  • Table 2 shows the leveling properties and physical properties of the obtained processed yarns.
  • Comparative Examples 1 and 2 a polyester extra-fine multifilament package in an amount to be subjected to the draw false twisting process could not be obtained.
  • a polyester ultrafine multifilament package was obtained in the same manner and under the same conditions as in Example 2 except that the convergence length was changed as shown in Table 1.
  • Table 1 shows the physical properties of the spun yarn and the polyester ultrafine multifilament yarn at this time.
  • the polyester ultrafine multifilament package was subjected to simultaneous draw-twisting under the same method and conditions as in Examples 1 to 3, to obtain a processed yarn having the physical properties shown in Table 2.
  • the leveling property of the processed yarn in Comparative Example 3 was extremely poor, and did not reach the quality level that could be used.
  • T g Glass transition temperature
  • T g 73 ° C, intrinsic viscosity 0.64, polyethylene terephthalate pellet containing 0.3% by weight of titanium oxide, dried at 140 ° C for 5 hours, then melted with a screw extruder Melted in the spinning equipment, introduced into a spin block maintained at 315 ° C, filtered through a spin pack, and a circular discharge hole with a diameter of 0.15 mm
  • the discharged polymer stream was subjected to an atmosphere of 3 Omm from the spinneret surface.
  • the polyester extra-fine multifilament package is set on a HT S-15 V drawing temporary machine (manufactured by Teijin Machinery Co., Ltd.) (equipped with a 1.04 m non-contact slit heater).
  • a HT S-15 V drawing temporary machine manufactured by Teijin Machinery Co., Ltd.
  • air entanglement was performed through the air nozzle so that the degree of entanglement shown in Table 1 was obtained.
  • a friction false twisted disk unit in which urethane disks having a hardness of 90 degrees, a thickness of 9 mm, and a diameter of 58 mm are arranged in three axes, so that the running angle of the yarn with respect to the rotation axis of the disks is 40 degrees.
  • a polyester extra-fine false twisted yarn was obtained in the same manner and under the same conditions as in Example 7, except that the stretching ratio was changed as shown in Table 4.
  • Table 4 shows the quality of the obtained polyester ultrafine false twisted yarn and the number of times of false twisting yarn breakage.
  • the temperature of the running filament yarn at the outlet of the draw false twist heater T f
  • the length of the draw false twist heater the draw temporary burning speed (winding speed)
  • the retention of the running filament yarn in the heater T f
  • the polyester ultrafine false twisted yarn was obtained in the same manner and under the same conditions as in Example 7, except that the time was changed as shown in Table 5.
  • the quality of the obtained polyester extra fine false twisted yarn Table 5 shows the number of times of pre-winding and breakage.
  • Comparative Example 9 and Comparative Example 11 fusion between filament single yarns occurred frequently during the false twisting, and it was not possible to obtain a normal polyester ultrafine temporary yarn.
  • Example 6 Except that the winding tension was changed as shown in Table 6, the same method and conditions as in Example 7 were used to obtain an extra-fine polyester temporarily fed yarn.
  • the quality of the obtained polyester extra fine temporary repellent yarn Table 6 shows the number of times of pre-combustion thread breakage.
  • Comparative Example 13 in which the winding tension was less than 0.05 cNZd teX, normal winding could not be performed due to looseness of the yarn.
  • Comparative Example 14 In Comparative Example 14 in which the winding tension exceeded 0.30 cN / dteX, 25% (number) of the paper tubes were crushed due to winding. 6]
  • a polyester extra-fine fired yarn was obtained in the same manner and under the same conditions as in Example 7 except that the applied amount of the finishing oil in the false twisted yarn was changed as shown in Table 7, and the above-mentioned unwinding property test was performed.
  • Table 7 shows the number of unwound yarns, the accumulation of oil scum, and the generation of fly waste. [Table 7]
  • the unstretched polyester multifilament is air entangled using an interlace nozzle, and is manufactured by Teijin Seiki Co., Ltd. HTS-15V stretch false twisting machine (equipped with a 1.04 m non-contact slit heater. ), Hardness 90 degrees, thickness 9mm, diameter
  • the amount of compressed air blown by the interlace nozzle before the simultaneous false-twisting was adjusted so that the degree of entanglement would be the value shown in Table 8. Further, the yarn after the simultaneous drawing and false twisting is continuously air-entangled by an interlace nozzle as shown in Fig. 2, and the false twisting yarn finishing oil agent (main component: mineral oil 90%) is added to the yarn weight. Apply 1.8% by weight based on the standard, apply a winding tension of 0.18 cN / dtex, wind up at a speed of 700 mZ, and apply polyester extra fine false twisted yarn (83.5 dtex / 288 fil). aments, single yarn fineness 0.29 dtex) package was obtained.
  • main component mineral oil 90%
  • the degree of entanglement of the wound false twisted yarn is taken as the degree of entanglement after the subsequent air entanglement treatment, and the amount of pressurized air blown by the interlace nozzle is set so that the degree of entanglement becomes a value shown in Table 8. It was adjusted. In addition, the number of times of false twisting at this time was as shown in Table 8. Further, Table 8 shows the quality of the obtained polyester extra fine temporary repellent yarn. [Table 8]
  • the present invention it is possible to provide a method for stably producing a spin-oriented polyester ultrafine multifilament yarn capable of drawing false twisting, and a polyester ultrafine multifilament yarn.
  • the present invention it is possible to provide a method for producing a polyester ultrafine false-twisted yarn having less fluff, unburned spots, and spots, despite having a small fineness and a large number of filaments. it can. Moreover, the provisional machined yarn produced by this method is less likely to generate fly cotton even when unwound at a high speed of 120 OmZ or more, and has excellent weaving and knitting process passability. ing.

Description

明 細 書 ポリエステル極細マルチフイラメント糸及ぴポリエステル極細仮揚加工糸の製造 方法、 ポリエステル極細マルチフィラメント糸、 ポリエステル極細仮捲加工糸 技術分野
本発明は、 延伸仮撚加ェが可能な紡糸配向したポリエステル極細マルチフィラ メント糸を安定して製造する方法及ぴポリエステル極細マルチフィラメント糸に 関するものである。 また、 本発明は、 ポリエステル極細仮撚加工糸を安定して製 造する方法及ぴポリエステル極細仮撚カ卩ェ糸に関するものである。 さらに、 本発 明は、 製織工程および製編工程において優れた工程通過性を有するポリエステル 極細仮撚加工糸を安定して製造する方法に関するものである。 背景技術
近年、 高速紡糸を応用して、 単糸繊度が 1 d t e x以下の極細フィラメントか らなるポリエステルマルチフィラメント糸を製造する方法が提案されている。 例 えば特開昭 56— 123409号公報には、 「高速紡糸により得た複屈折率 1 X 10— 3〜120X 10—3で且つ沸水収縮率 20〜60 %を有する単糸デニール 1. O d e (1. 1 d t e X) 以下のポリエステノレ未延伸糸を一たん巻き取ることな く連続的に 1. 05〜1'. 6倍に延伸する」 ことを特徴とするポリエステル極細 マルチフィラメント糸の製造方法が開示されている。 この方法で得られたポリエ ステル極細マルチフイラメント糸は、 既に延伸されており、 摩擦仮撚加ェを施す ことができないので、 用途が限定されてしまう。
また、 特許第 3043414号公報には、 相対粘度 LRVが約 13〜約 23、 ゼ口剪断融点が約 240〜約 265 °C、 およびガラス転移点が約 40〜 80での 範囲にあるポリエステル重合体を溶融後、 重合体の融点よりも約 25〜約 55 °C 高い温度に加熱し、 滞留時間 4分以内とし、 質量流速を 0. 07〜0. 7 g//m i nで、断面積が約 125X 1 O-6〜約 1250 X 10— 6 c m2、孔長ノ孔直径比 (L/D) が少なくとも 1. 25で且つ 6以下である吐出孔から押出し、 溶融ポ リマーが紡糸口金を出る際、 2 c m以上且つ 12 d p f 1/2 c m以下の距離範囲に おいて溶融物が直接冷却されるのを防ぎ、 ガラス転移温度より低い温度に冷却し、 見かけの紡糸ラインの歪みが約 5. 7〜7. 6および見かけの紡糸ラインの内部 応力が 0. 045〜0. 195 gZdの範囲となるようにし、 紡糸表面から約 5 0〜約 140 cmの距離範囲内において集束してフィラメント束にし、 約 200 0〜約 6000 m/m i nの速度で卷き取る」 ことを特徴とするデニールが約 1 〜0. 2の範囲にある紡糸配向した極細ポリエステルマルチフィラメント糸の製 造方法が開示されている。
確かに、 このような極めて限定された条件の範囲でポリエステルの溶融紡糸を 行えば、 複屈折率が約 0. 03〜約0. 1程度に紡糸配向したポリエステル極細 ント糸が得られる。 このような複屈折率を有する極細ポリエステ ント糸は摩擦延伸仮撚加ェを施すことができる。 しかしながら、 上記のような極めて限定された紡糸条件下においても、 溶融ポリマーが紡糸口金 を出る際、 特定の距離範囲で溶融物が直接冷却されるのを防ぐのみでは、 ポリマ 一吐出量が少なくなるに従って、 吐出直後の溶融ポリマーが液滴状の破断を起こ し断糸にいたる現象が起こりやすく、 安定した紡糸が困難となる場合が多くなる。 さらに、 紡糸口金表面から約 50〜約 140 cmの範囲の距離においてポリマー 糸条を集束してフィラメント束にした場合、 フィラメント単糸総数が増加するに 伴い (特に 50本 紡糸ライン以上の場合) 、 吐出ポリマー糸条の走行状態が不 安定となり、得られた紡糸配向極細マルチフィラメント糸の均斉性が低下する(ィ ブネス11%が高くなる) という問題も残っている。
—方、 単糸繊度が 1 d t e x以下のポリエステル極細仮 加工糸は、 布帛にし た時、 通常のポリエステル仮撚加工糸に比べて柔らかな風合、 および保温性、 吸 水、 吸湿性などの性能が向上するので、 衣料用途で幅広く使われるようになって きた。 例えば、 特開平 4—194036号公報には、 単糸繊度が 0. 7デニール (0. 78 d t e x) 以下のポリエステルマルチフィラメントからなる仮撚カロェ 糸で、 断面扁平係数および全捲縮率を限定した吸水性極細仮撚加工糸とその製造 方法が開示されている。 また、 特開 2002— 038341号公報には、 '含金属 リン化合物おょぴアル力リ土類金属化合物を含むポリエステルからなり、 単糸繊 度が 0 . 6 d t e x以下の、 扁平係数おょぴ熱応力ピーク値が限定された、 染色 された時の色の深みと鮮明性が改善されたポリエステル仮燃加工糸とその製造方 法が開示されている。
このような、 特殊な限定された方法で製造された極細ポ エステル仮撚加工糸 においては、 確かに限定された性能は改善されている。 しかし、 このような条件 で、 通常の未延伸ポリエステルの延伸同時仮撚加工を行うと、 単糸数が増え、 繊 度が細くなるに従い、 仮 加工時に断糸が多発したり、 得られた仮撚加工糸に毛 羽あるいは未解撚スポット斑が多く発生したり、 染斑など品質斑が多く仮撚カロェ 糸として使用できないものとなるといった問題がある。
さらに、 かかる極細ポリエステル繊維の分野でも、 生産性を向上させるため製 織および製編の高速化が進み、 これに対応できる仮撚加工糸の市場要求が高くな つている。 しかしながら、 上記のような毛羽や未解揚スポット斑が少なく品質が 良好な仮撚加工糸においても、 これを 1 2 0 O m/分以上の高速で解舒した際に は、 風綿が発生しやすくなり、 織機の停台回数が増加する傾向にあり、 さらにェ 程通過性が改善された仮撚加ェ糸が望まれている。
従って、 本発明の第 1の目的は、 摩擦延伸仮捲加工が可能な、 紡糸配向したポ リエステル極細マルチフィラメント糸を安定して製造する方法、 及び、 ポリエス テル極細マルチフィラメント糸を提供することにある。
また、 本発明の第 2の目的は、 繊度が小さく力つフィラメント数が多い極細マ ルチフイラメントでありながら、 毛羽、 未解撚スポット斑、 染斑が少ないポリェ ステル極細仮撚加ェ糸を安定して延伸同時仮撚加工にて製造する方法、 及ぴ、 ポ リエステル極細仮撚加工糸を提供することにある。
さらに、 本発明の第 3の目的は、 繊度が小さく力、つフィラメント数が多いにも かかわらず、 毛羽、 未解燃スポット斑、 染斑が少なく、 しかも、 高速解舒しても 風綿が発生しにくく製織および製編工程での工程通過性に優れたポリエステル極 細仮撚加工糸を安定して製造する方法を提供することにある。 発明の開示
本発明者は、上記課題を解決するために鋭意検討を重ねた結果、第 1の目的は、 「単糸繊度が 0. 9 d t e X以下、単糸総数が 100〜 400本、複屈折率が 0 · 03〜 0. 06のポリエステル極細マルチフィラメント糸を製造するに際し、 紡 糸口金面から溶融吐出されたポリ ステル重合体のポリマー流を、 紡糸口金面か ら 0〜 40 mmの距離を、 温度 1 00〜 300 °Cの範囲とした雰囲気中を通過さ せ、 さらに冷却させた後、 紡糸口金吐出面から 350〜 500 mmの位置で集束 することを特徴とするポリエステル極細マルチフィラメント糸の製造方法」 、 及 び、 「ポリエステル重合体を溶融紡糸してなる、単糸繊度が 0. 9 d t e X以下、 単糸総数が 1 00〜400本、 複屈折率が 0. 03〜0. 06のマルチフィラメ ント糸において、 (a) イブネス U%が 0. 8%以下、 (b) 密度が 1. 345 〜1. 360 g/cm3、 ( c ) ( 65 °C) 収縮率が 25〜 55 %、 (d) 最 大点強度が 2. 0〜3. O cNZd t e x、 ( e ) 破断伸度が 90〜: 1 50 %、 (f ) 一次降伏応力が 0. 35〜0. 70 cN/d t e x、 (g) 熱応力ピーク 値が 0. 1〜0. 2 c NZd t e x、 (h) 熱応力ピーク温度が T g— 1 0°C〜 T g + 5°Cを満足していることを特徴とするポリエステル極細マルチフィラメン ト糸」 により達成されること見出した。 (ただし、 T gはポリエステル重合体の ガラス転移温度を示す。 )
さらに、 第 2の目的は、 「単糸繊度が 0. 9 d t e X以下、 単糸総数が 1 00 〜 400本、 複屈折率が 0. 03〜0. 06のポリエステル極細マルチフィラメ ント糸を仮撚加工するに際し、 (1) マルチフィラメント糸に、 仮撚加工糸で測 定した交絡度が 50〜 90個/ mとなるように空気交絡を施し、 ( 2 ) 延伸仮櫞 ヒーター内の滞留時間を 0. 052〜0. 300 s e c、 該ヒーター出口での走 行フイラメント糸条の温度が該ポリエステル重合体のガラス転移温度 (T g) よ り 90〜: 140°C高い温度となるようにして、 延伸倍率 1. 40〜1. 70倍で 延伸同時仮撚加工して仮橼加工糸とし、 ( 3 ) 該仮撚加工糸の重量を基準として 1. 3〜3. 0重量0 /0の油剤を付与し、 (4) 卷取張力を 0. 05〜0. 30 c N/d t e x、 速度を 500〜1 20 OmZ分として卷き取ることを特徴とする ポリエステル極細仮燃加工糸の製造方法」 、 及び、 「単糸繊度が 0. 6 d t e X 以下、 単糸総数が 1 00〜400本である、 ポリエステルからなる仮撚加工糸に おいて、 ( i ) 全捲縮率 Tじが 2〜 5 %、 ( j ) 熱水収縮率 F Sが 2. 5〜 4. 5 %、 (k ) 破断強度が 3 . 0 c N/ d t e x以上、 ( 1 ) 破断伸度が 1 5〜4 5 %を満足していることを特徴とするポリエステル極細仮撚加工糸」 により達成 されることを見出した。
さらに、 第 3の目的は、 「単糸繊度が 0 . 9 d t e X以下、 単糸総数が 1 0 0 〜4 0 0本、 複屈折率が 0 . 0 3〜0 . 0 6のポリエステル極細マルチフィラメ ント糸を、 延伸同時仮撚加工して、 仮撚加工糸を製造するに際し、 該延伸同時仮 撚加工の前と後で空気交絡処理を施し、 後の空気交絡処理前後の交絡数をそれぞ れ 3 0〜6 0個/ m、 7 0〜1 1 0個 Zmとすることを特徴とするポリエステル 、 極細仮撥加工糸の製造方法」 により達成されることを見出した。 図面の簡単な説明
第 1図及び第 2図は、 それぞれ本発明で用いる延伸同時仮撚加工機の一実施態 様を示した模式図である。 発明を実施するための最良の形態
最初に本発明の第 1の目的を達成するポリエステル極細マルチフィラメント 糸の製造方法及ぴポリエステル極細マルチフィラメント糸について説明する。 本発明でレ、うポリエステルとは、 繰り返し単位としてエチレンテレフタレート が 8 5モル%以上、 好ましくは 9 5モル%以上を占めるポリエステルである。 テ レフタル酸成分および/またはエチレンダリコール成分以外.の成分を少量 (通常 は、テレフタル酸成分に対して 1 5モル%以下)共重合したものであってもよレ、。 これらのポリエステルには、 公知の添加剤、 例えば、 顔料、 染料、 艷消し剤、 防 汚剤、 蛍光増白剤、 難燃剤、 安定剤、 紫外線吸収剤、 滑剤等を含んでもよい。
本発明に用いるポリエステルの固有粘度 ( 3 5 °Cのオルソ一クロ口フエノール 溶液を溶媒として使用し測定) は、 通常衣料用布帛素材として使用されるポリエ ステルと同じ程度の固有粘度 0 . 4 5〜0 . 7 0のもので良いが、 単糸繊度が 0. 2〜0 . 5 d t e xである極細マルチフィラメント糸の溶融紡糸には、 固有粘度 0 · 5 0〜0 . 6 7の範囲のものを用いるのが望ましい。
本発明は、 単糸繊度が 0 . 9 d t e x以下、 特に 0 . 6 d t e x以下、 単糸総 数が 100〜 400本、 屈折率が 0. 03〜 0. 06のポリエステル極細マルチ フィラメント糸を製造する方法である力 次の方法が好ましく採用される。 例え ば、 ペレット状となした前記のポリエステルを常法で乾燥し、 スクリュウ押出機 を備えた通常の溶融紡糸設備で溶融し、 該ポリエステルの融点 (Tm) よりも 4 0〜 70°C高い温度に加熱し、 紡糸パック内にて濾過して、 50〜300個の吐 出孔を穿設した紡糸口金から吐出する (吐出孔が 50〜 100個未満の場合は 1 個のスピンパックに 2個の紡糸口金を配置し、 吐出糸条を合糸して引き取る) 。 濾過する際の濾過層内の滞留時間は、 該ポリエステル溶融物が冷却固化された後 の固有粘度 ( [?7] f) が 0. 50〜0. 60、 より好ましくは 0. 55〜0. 58となるようにするのが望ましい。 また、 吐出孔 1孔当りの断面積は 7 X 10一 5〜2X 10- 4cm2、 該吐出孔の長さ (L) と直径 (D) との比 (以下 L/Dと 称する) は 4〜10の範囲および吐出孔 1孔当りの吐出量は 0. 06〜0. 20 gZ分の範囲が、 吐出ポリマー流を安定にする上で望ましい。
次いで、 吐出されたポリマー流は、 冷却されないように保温された雰囲気中を 通過後、 クロスフ口一式紡糸筒からの冷却風 (温度は約 25 °Cが好ましレ、) で冷 却され、 通常メタリングノズル式の給油集束装置などのガイドで油剤が付与され つつ、 フィラメント束として集束され、 ィンターレースノズノレを通して交絡が付 与され、 2500〜350 OmZ分の速度で引き取られることが好ましい。 上記 インターレースノズルでは、 仮撚加工性を考慮し、 10〜 30個/ mの交絡を付 与するのが好ましい。
本宪明においては、 上記紡糸方法において、
(A) 紡糸口金面から溶融吐出されたポリエステル重合体のポリマー流を、 紡 糸口金面から 0〜4 Ommの距離を、 温度 100〜300°Cの範囲とした雰囲 気中を通過させ、
(B) さらに冷却させた後、 紡糸口金吐出面から 350〜 50 Ommの位置で 集束することが肝要である。
以下に、本発明における上記必須条件の作用効果を (A) (B)順で説明する。 (A) 熱可塑性ポリマーを用いて通常の溶融紡糸を実施すると、 吐出孔から吐出 された直後のポリマー流が膨らむ、 いわゆる "ベーラス効果" といわれる現象を 起こし、吐出ポリマー流が安定して紡糸できることは良く知られている。 しかし、
0 . 5 d t e x以下という細い単糸 gigとなすために、 ポリマー吐出量を下げて行 くと、 "ベーラス効果" が小さくなり、 吐出ポリマーが液滴状の破断を起こす現 象が癸生し易くなる。 特に、 紡糸口金面から 0〜4 O mmの範囲の雰囲気 (以下 ホットゾーンと称する) 温度が 1 0 0 °C未満の場合は、 上記の、 吐出孔 1孔当り の断面積が 7 X 1 0— 5〜2 X 1 0— 4 c m2、 LZDが 4〜 1 0および吐出孔 1孔当 りの吐出量が 0 . 0 6〜0 . 2 0 g Z分の範囲であっても、 吐出ポリマーが液滴 状に破断する現象が頻発し、 安定した紡糸引き取りが困難となる。 一方、 ホット ゾーン温度が 3 0 0 °Cを超えると、 ポリマー流が冷却固化される以前に相互密着 するので、 ホットゾーン温度は 3 0 0 °Cを超えないように設定しなければならな レ、。 このように、 紡糸口金下 0〜4 O mmの範囲を積極的に加熱し、 ホットゾー ン温度を 1 0 0〜3 0 0 °C、 好ましくは 2 0 0〜 3 0 0 °Cに保つことによって、 吐出ポリマー流が液滴状に破断するのを防ぎ、 安定な紡糸引き取りが可能となる。 なお、 ホットゾーンを加熱するため、 ホットゾーン部分だけではなく紡糸パック の紡糸口金部分も同時に加熱することがより好ましい。
次に、 本発明の必須条件 (B) の作用について説明する。
通常の単糸繊度 (単糸繊度' 1 d t e x以上) およぴ単糸総数 (約 5 0本未満 Z 紡糸ライン) のポリエステルの溶融紡糸においては、 通常、 紡糸口金表面から 5 0 0〜 2 0 0 O mmの範囲の距離で冷却されたポリマー糸条を集束すれば、 安定 して紡糸巻き取りが可能である。 しかしながら、 発明者等は、 単糸繊度が I d t e x未満およぴ単糸総数が約 1 0 0本以上 (約 5 0本以上 Z紡糸ライン X 2を含 む) の極細マルチフィラメント糸の場合、 紡糸口金表面から 5 0 0〜2 0 0 O m mの範囲の距離で冷却したポリマー糸条を集束すると、 ポリマー糸条の摇らぎが 大きく、 均斉な冷却が阻害されることを認識した。 単糸繊度が 0 . 9 d t e X以 下、 特に単糸繊度が 0 . 6 d t e x以下およぴ単糸総数が 1 0 0本以上のポリエス テルマルチフィラメント糸の場合は、 ポリマー糸条の揺らぎが激しくなり、 得ら れたポリエステル極細マルチフイラメント糸の均斉' !4 (ィブネス11%) は極めて 劣悪となる。 また該紡糸配向したポリエステル極細マルチフィラメント糸を延伸 仮撚して得られた加工糸の均染性は劣悪なものとなり、 使用に耐えないものとな る。 一方、 紡糸口金吐出面からの 35 Omm未満の位置では、 吐出ポリマーは未 だ充分に冷却されていないので、 'ガイド等で接触すると、 断糸あるいはフィラメ ントの損傷が起こる。 このように、 冷却したポリエステルマルチフィラメント糸 を紡糸口金吐出面から 350〜500mm、 好ましくは 380〜480mmの範 囲内で集束することによって、 ポリマー糸条の揺らぎを軽減し、 均斉性 (ィブネ ス U%) に優れたポリエステル極細マルチフイラメント糸を得ることができる。 かくして得られるポリエステノレ極細マルチフィラメント糸は、 以下に示す物性 を有している。
(a) イブネス U%: 0. 8 %以下
(b) 密度: 1. 345〜1. 360 g/cm3
(c) 温水 (65°C) 収縮率: 25〜55%
(d) 最大点強度: 2. 0〜3. 0 cN/d t e X
( e ) 破断伸度: 90〜 150 %
( f ) 一次降伏応力: 0. 35〜0. 70 c N/ d t e X
(g) 熱応力ピーク値: 0. ;!〜 0. 2 cN/d t e x
(h) 熱応力ピーク温度: Tg— 10〜Tg + 5°C
但し、 ここで T gは製糸に用いたポリエステル重合体のガラス転移温度を示す。 上記物性を全て満足するポリエステル極細マルチフィラメント糸は、 摩擦仮撥 方式で、 張力変動がおきにくく、 安定した延伸同時仮燃加工が可能であり、 得ら れた加工糸は優れた均染性と加工糸物性を有している。 (h).熱応力ピーク温度 の好ましい範囲は Tg— 6〜Tg + 3°Cであり、 かかる範囲とすることで、 より 張力変動がおきにくく加工性が安定し、 斑のない均一な仮捲加工糸が得られる。 次に、 本発明の第 2の目的を達成するポリエステル極細仮撚加工糸の製造方法 及ぴポリエステル極細仮撚加ェ糸につレヽて述べる。
本発明をより詳述するために、 添付の図面に従って説明する。 図 1は、 本発明 に用いることができる延伸同時仮燃加工機の一実施態様を示した模式図である。 1はポリエステルマルチフィラメント糸パッケージ、 2は糸ガイド、 3及ぴ 3, はフィードローラー、 4はインターレースノズル、 5は延伸仮揚ヒーター、 6は 冷却プレート、 7は摩擦仮撚型ディスクユニット、 8は第 1デリべリーローラー、 9は第 2デリべリーローラー、 10は油剤アプリケーター、 11は糸導ガイド、 12は卷取張力測定位置、 13は卷取ローラー、 14は延伸仮燃加工糸パッケ一 ジである。
本発明は、 単糸繊度が 0. 9 d t e x以下、 特に 0. 6 d t e x以下、 単糸総 数が 100〜400本、 複屈折率が 0. 03〜0. Q 6のポリエステル極細マル チブイラメント糸を仮撚加工する方法である。 本発明においては、 上記マルチフ イラメント糸が、 前述した方法により製造されるポリエステル極細マルチフィラ メント糸であること力 仮撚加工性に優れている点、 上記第 2の目的を達成しや すい点から好ましい。
本発明においては、 上記ポリエステル極細マルチフィラメント糸を、 好ましく は、 前述した方法により製造されたポリエステル極細マルチフィラメント糸を、 例えば図 1に示すような工程にて、 下記 (1) 〜 (6) を満足する条件で、 延伸 同時仮燃加工を行うことが必要である。
先ず、 (1) ポリエステ マルチフィラメント糸に、 仮撚¾1ェ糸で測定した交 絡度が 50〜90個 Zm、 好ましくは 60〜80個/ m、 となるように空気交絡 を施すことが必要である。 この際、 かかる空気交絡は、 例えばインターレースノ ズル (図 1の 4) を通すことにより付与できる。 交絡度が 50個/ m未満の場合 は、 マルチフィラメント全体にわたる均一な撚りおよぴ延伸が阻害されるので、 仮撚加工糸に毛虫状の大きな毛羽の多発おょぴ染斑の発生が起こる。 また、 延伸 仮撚加工時の断糸も多くなる。 交絡度が 90個 Zmを越す場合は仮撚加工糸に未 解撚スポットおよび毛羽が多くなる。 また、 破断強度、 伸度の低下が起こる。 次に、 (2)延伸仮撚ヒーター内の滞留時間を 0. 052〜0. 300 s e c、 該ヒーター出口での走行フイラメント糸条の温度がポリエステル重合体のガラス 転移温度 (Tg) より 90〜: I 40°C高い温度となるようにして、 延伸倍率 1. 40〜1. 70倍で延伸同時仮撚加工して仮撚加工糸とする。
この際、 例えば、 摩擦仮撚具 (例えば、 図 1の 7) などを用いて延伸同時仮撥 加工を行う。 延伸倍率は 1. 40〜1. 70倍、 好ましくは 1. 5〜1. 6倍、 とすることが必要である。 延伸倍率が 1. 40倍未満では燃掛具の前後の加工張 力が低くなり、未解撚スポットが多発したり、未延伸部分が残り染斑が発生する。 延伸倍率が 1. 70倍を超える場合は、 単糸切れなどによる毛羽あるいは延伸仮 撚断糸が する。 '
また、延伸仮撚ヒーター(図 1の 5) 出口での走行フィラメント糸条の温度が、 ポリエステル重合体のガラス転移温度 (T g ) より 90〜: I 40 °C、 好ましくは 1 10〜130° (、 高い温度であり、 走行フィラメント糸条の該ヒーター内滞留 時間が 0. 052〜0. 300 s e c、 好ましくは 0. 060〜0. 150 s e c、 となるように熱処理を行うことが必要である。 延伸仮撚ヒーター出口での走 行フィラメント糸条温度は、 市販の非接触型走行物温度計 (例えば帝人工ンジ- ァリング (株) の H— 7508) を用いて、 延伸仮摄中の走行糸条で測定するこ とができる。 延伸仮捲ヒーター出口での走行フィラメント糸条温度とポリエステ ル重合体のガラス転移温度 (Tg) との差が 90 °C未満、 あるいは、 走行フイラ メント糸条の該ヒーター内滞留時間が 0. 052 s e c未満の場合は、 繊維構造 を熱固定することができないので、 実用に耐える物性およぴを捲縮特性有する仮 撚加工糸が得られない。 糸温度がポリエステル重合体のガラス転移温度 (Tg) より 140°Cを超えて高い、 あるいは、 走行フィラメント糸条の該ヒーター内滞 留時間が 0. 300 s e cを超える場合は、 延伸仮燃加工時、 フィラメント単糸 同士が融着し、 仮撚加工糸として使用できない品質のものとなる。 また、 仮撚カロ ェ糸の強伸度も著しく低下し、 延伸仮捲時の断糸、 毛羽も多くなる。 なお、 本発 明に用いる延伸仮撚ヒーターとしては、 接触式、 非接触式のいずれであっても良 いが、 ヒーター長が 1. 0〜2. 5mのものが好ましい。
延伸同時仮撚加工後のポリエステルマルチフイラメント糸に、 ( 3 ) 該仮撚加 ェ糸の重量を基準として 1. 3〜3. 0重量%の油剤を付与することが必要であ る。 通常の仮撚加工糸には重量基準で 0. 5〜:!重量%程度の油剤 (主成分鉱物 油) が付与される力 単糸繊度が 0. 6 d t e X以下フィラメント数が 100以 上となると、 油剤が各フィラメント表面を均等に覆うようにするためには、 1. 3〜 3. 0重量%、 好ましくは 1. 5〜 2. 3重量%、 の油剤を付与する必要が ある。 油剤の付着量が 1. 3重量%未満では、 撚糸、 整経、 製編、 製織工程など 後工程における糸解舒性不良あるいはガイド類との抵抗が大きくなり、 単糸切れ、 フィプリル化による風綿の発生が極めて多くなる。 油剤の付着量が 3. 0重量0 /0 を超えると、 後工程のガイド類への油剤スカム蓄積が多くなる。 仕上げ油剤の付 与は図 1の 10に示すような、 ローラー式あるいは計量ノズル式油剤アプリケー ターで付与すれば良い。
得られた仮撚加工糸を、 (6) 卷取張力 (測定位置:図 1の 12) を 0. 05 〜0. 30 c N/d t e X、 好ましくは 0. 12〜0. 23 cNZd t e x、 速 度を 500〜120 Om/分、 好ましくは 600〜: L 00 OmZ分、 で巻き取る
(図 1の 14 ) ことが必要である。卷取張力が 0. 05 cN/d t e x未満では、 フィラメント数が 100以上の極細マルチフィラメントでは、 通常用いられる糸 導ガイド (図 1の 11) などとの抵抗により糸弛みが発生し、 卷き取り不能とな る。 巻取張力が 0. 30 cNZd t e xを超える場合、 高い巻取張力によりパッ ケージの卷締めが発生し、 紙管の潰れが発生したり、 仮撚加工糸パッケージの内 外層における糸品質差が生ずるなどの問題が発生する。 また、 巻取速度が 500 mZ分未満では生産性が劣り実用的でない。 巻取速度が 120 OmZ分を超える 速度では、 延伸仮撚ヒーターと仮撚具との間での、 または、 仮撚具上での糸揺れ といった、 いわゆるサージング現象が発生し、 正常な巻き取りが困難となる。 ま た未角 然スポットが多発する。
なお、 延伸仮撥加工に用いる仮撚具は、 硬度 75〜95度、 厚さ 5〜12mm のウレタンディスクを 3軸に配列した摩擦仮撚型デイスクユニットを好ましく用 いることができる。 該ディスクの回転軸に対し、 糸条の走行角度が 30〜45度 となるようにして延伸仮燃を施すのが好ましい。 また、 仮撚数 (回/ m) を (2 5000〜35000) / (仮動ロェ糸の繊度 (d t e x) ) 1/2となるように仮 燃条件を設定すると、 毛羽の発生をより低減することができるので好ましい。 かくして得られたポリエステル極細仮 加工糸は、 以下の物性を有しているこ とが好ましく、 本発明の製造法により容易に得ることができる。
( j ) 全捲縮率 TC: 2〜5%
(k) 熱水収縮率 FS : 2. 5〜4. 5%
( 1 ) 破断強度: 3. 0 c NZd t e X以上
(m) 破断伸度: 15〜45%
かかる物性のポリエステル極細仮撚加ェ糸は、 単糸繊度が 0. 6 d t e x以下 で、 フィラメント数が 1 0 0〜4 0 0本である極細マルチフィラメントでありな がら、 毛羽、 未解撚スポットが少なく均斉性 (染斑) にすぐれている。 (m) 破 断伸度のより好ましい範囲は 1 5〜3 5 %である。
さらに、 本発明の第 3の目的を達成するポリエステル極細仮撚加工糸の製造方 法について述べる。
本発明をより詳述するために、 添付の図面に従って説明する。 図 2は、 本発明 に用いることができる延伸同時仮撚加工機の一実施態様を示した模式図である。 1はポリエステルマルチフィラメント糸パッケージ、 2は糸ガイド、 3及び 3 ' はフィード口一ラー、 4はインターレースノズル、 5は延伸仮撚ヒ一ター、 6は 冷却プレート、 7は摩擦仮撚型ディスクユニット、 8は第 1デリベリ一ローラー、 9はインターレースノズル、 1 0は第 2デリべリーローラー、 1 1は油剤アプリ ケ一夕一、 1 2は糸導ガイド、 1 3は巻取張力測定位置、 1 4は巻取口一ラー、 1 5は延伸仮撚加工糸パッケージである。
本発明は、 単糸繊度が 0 . 9 d t e x以下、 特に 0 . 6 d t e x以下、 単糸総 数が 1 0 0〜 4 0 0本、 複屈折率が 0 . 0 3〜0 . 0 6のポリエステル極細マル チフィラメント糸を仮撚加工する方法である。 本発明においては、 上記マルチフ ィラメント糸が、 前述した方法により製造されるポリエステル極細マルチフィラ メント糸であることが、 仮撚加工性に優れている点、 上記第 3の目的を達成しや すい点から好ましい。
本発明においては、 例えば上記図 2に示すような工程にて、 延伸同時仮撚加工 の前と後で空気交絡処理を施し、 後の空気交絡処理前後の交絡度をそれぞれ 3 0 〜6 0個/ m、 7 0〜1 1 0個/ mとすることが必要である。
後の空気交絡処理前の交絡度が 3 0個 Zm未満となるような交絡を前の空気交 絡処理で付与した場合、 延伸同時仮撚加工で均一な撚りが付与されず、 また均一 な延伸を施すことも困難となり、 最終的に得られる仮撚加工糸に毛虫状の大きな 毛羽ゃ染斑が発生する。 また、 延伸同時仮撚加工時の断糸も多くなる。 上記交絡 度が 6 0個/ mを越す場合は、 延伸同時仮撚加工した糸に、 再度、 空気交絡を施 すことが困難となる。 つまり、 一度、 空気交絡を施した糸に、 延伸同時仮撚加工 した後、 再度空気交絡を施すと、 該空気交絡処理で、 最初の空気交絡で交絡が形 成されていなかった部分、 いわゆる非交絡部分に交絡が形成されるが、 その際、 上記交絡度が 6 0個/ mを越す場合は、 その糸に、 再度どれだけ強く空気交絡処 理を施したとしても、 巻き取られた仮撚加工糸に十分な交絡を付与することが囷 難となる。
また、 後の空気交絡処理後の交絡度が 7 0個 Zm未満の場合は、 製織および製 編工程の仮撚加工糸の高速解舒で、 風綿の発生が多くなり、 織機および編機の機 台停止回数が多くなるばかりか、 織物および編物の製品品位が著しぐ損なわれる。 一方、上記交絡度が 1 1 0個 Zmを超える場合は、仮撚加工糸に毛羽が多くなる。 また、 仮撚加工糸の破断強度、 破断伸度が低下する。
本発明においては、 上記のように延伸同時仮撚加工の前と後で空気交絡処理を 施し、 しかも、 その際、 適度なバランスでそれぞれの交絡を付与することによつ て、 1 2 0 O mZ分以上という高速解舒でも風綿の発生を抑制でき、 製織または 製編工程での工程通過性が著しく向上し、 しかも、 毛羽や未解撚スポット、 染色 斑が極めて少ない仮撚加工糸を得ることができる。 我々の研究によれば、 上記の ような優れた高速解舒性を有する仮撚加工糸は、 延伸同時仮撚加工の前または後 のどちらか一方で空気交絡処理を行う製造方法では得られなかった。
なお、 上記の延伸同時仮撚加工前後のそれぞれの空気交絡処理は、 例えば図 2 に示すようにインタ一レースノズル (図 2の 4及び 9 ) を用いて行うことができ る。
本発明において、 延伸同時仮撚加工は、 延伸仮撚ヒーター内の滞留時間を 0 . 0 5〜0 . 3 0 s e c、 好ましくは 0 . 0 6〜0 . 1 5 s e c、 該ヒ一夕一出口 での糸 (走行糸条) の温度を該ポリエステル重合体のガラス転移温度 (T g) よ り 9 0〜1 4 0 °C、 好ましくは 1 1 0〜1 3 0で高い温度となるようにして行う ことが望ましい。 また、 その際、 延伸倍率は 1 . 4〜1 . 7倍が好ましく、 より 好ましくは 1 . 5〜1 . 6倍である。
本発明に用いる延伸仮撚ヒ一夕一としては、 接触式、 非接触式のいずれであつ ても良いが、 ヒ一夕一長が 1 . 0〜2 . 5 mのものが好ましい。 また、 延伸同時 仮撚加工に用いる仮撚具は、 硬度 7 5〜9 5度、 厚さ 5〜1 2 mmのウレタンデ イスクを 3軸に配列した摩擦仮撚型ディスウユニットを好ましく用いることがで きる。 該ディスクの回転軸に対し、 糸の走行角度が 30〜45度となるようにし て延伸仮撚を施すのが好ましい。 また、 仮撚数 (回 Zm) を (25000〜 35 000) / (仮撚加工糸の繊度 (d t ex) ) 1/2となるように仮撚条件を設定す ると、 毛羽の発生をより低減することができ、 好ましい。
さらに、 本発明においては、 上記の延伸同時仮撚加工をした糸に前述の空気交 絡を施した後、 該糸の重量を基準として好ましくは 1. 3〜3. 0重量%、 より 好ましくは 1. 5〜2. 3重量%の油剤を付与し、 好ましくは速度 500〜12 O OmZ分、 より好ましくは 600〜100 Om/分で巻き取る (図 2の 15) ことによって本発明の仮撚加工糸が得ることができる。 また、 この際、 巻取張力 (測定位置:図 2の 13) は 0. 05〜0. 30 cN/d t e Xが好ましく、 よ り好ましくは 0. 12〜0. 23 cN/d t e Xである。 なお、 油剤は図 2の 1 1に示すような、 ローラー式あるいは計量ノズル式油剤アプリケ一夕一で付与す れば良い。
仮撚加工糸の物性としては、 破断強度が 3. O cN/d t ex以上、 破断伸度 が 15〜45%であることが、 高速解舒性や、 製織性および製編性の点から好ま しい。 また、 仮撚加工糸の全捲縮率が 2〜 5 %、 熱水収縮率が 2. 5〜4. 5% であることが、 本発明にかかる仮撚加工糸の性能を十分に発揮し嵩高性に優れた 織編物が得られる点で好ましい。 かかる物性の仮撚加工糸は、 本発明の製造方法 により容易に得ることができる。
以下、 実施例により、 本発明を更に具体的に説明する。 なお、 実施例における 各項目は次の方法で測定した。
,(1) 固有粘度
オルソクロロフエノ一ルを溶媒として使用し 35 °Cで測定した。
(2) ポリエステル重合体のガラス転移温度 (Tg) ,,
規定量のポリエステル重合体をアルミサンプルパンに封入し、 DSC測定装置 にて、 窒素気流下に室温〜 10°C/分の昇温速度で 280°Cまで昇温し、 2分間 保持した後、 直ちに取りだして、 窒素雰囲気中で急冷し、 ポリマーがァモルファ ス状態で固まったサンプルパンを作成した。 それを再度、 上記の条件で昇温し、 昇温曲線からガラス転移温度を測定した。 (3) 複屈折率 (Δη)
ォリンパス Β Η— 2偏光顕微鏡を使用し、 コンペンセ一夕一法により単糸のレ 夕一デ一シヨンと糸径を測定し、 複屈折率を求めた。
(4) イブネス (U%)
イブネス U%測定器を用いて、 糸速が 10 OmZ分、 チャートスピードが 10 Omm/2. 5分、 フルスケールが士 12. 5%に設定し、 連続 3分間 (糸長 3 00m) 糸長方向の繊度斑を測定し、 平均値を測定試料のイブネス U%とした。
(5) 密度
密度が 1. 276〜1. 416の範囲内になるように調整した n—ヘプタン/ 四塩化炭素混合液を使用し、 密度勾配管法により測定した。
(6) 温水 (65°C) 収縮率
試料を拘束状態で、 65 °C温水中で、 30分間熱処理した時の収縮量を測定し、 試料長に対するパーセントで温水 (65°C) 収縮率とした。
(7) 最大点強度、 破断伸度、 一次降伏応力
極細マルチフィラメント糸の最大点強度、 破断伸度、 一次降伏応力は、 (株) 島津製作所製引張試験機テンシロンを用いて、 試料長 200mm、 伸長率 20% Z分の条件で引張試験を行い荷重 ·伸張曲線から求めた。
(8) 熱応力ピーク値、 熱応力ピーク温度
カネボウエンジニアリング(株)製熱応力測定器(タイプ KE— 11) を用い、 総状にした試料に 0. 029 cN/d t e xの初荷重をかけた後、 2. 3 °CZm inの速度で昇温し、 発生する応力をチャート上に記録し、 熱応力ピーク温度及 び熱応力ピーク値を求めた。 なお、 熱応力値はチャートから読み取った応力 (c N) を繊度 (d t e X) で除して (c N/d t e X) で表した。
(9) 紡糸断糸
実施例の条件で、 1錘建ての溶融紡糸機を 1週間連続運転し、 人為的あるいは 機械的要因に起因する断糸を除き、 その間に発生した断糸回数を記録し、 1錘' 1日当たりの断糸回数を計算し、 紡糸断糸とした。
(10) 破断強度、 破断伸度
後述する実施例 1〜 5、 比較例 3の仮撚加工糸の破断強度、 破断伸度 (表 2) は、 (株) 島津製作所製引張試験機テンシロンを用いて試料長 100mm、 伸長 速度 200mmノ分の条件で引張試験を行い荷重 ·伸張曲線から求めた。 それ以 外の仮撚加工糸の破断強度、 破断伸度は、 上記引張試験機を用いて試料長 200 mm, 伸長率 20 %Z分の条件で引張試験を行い荷重 ·伸張曲線から求めた。
(1 1) 全捲縮率 TC (%)
極細仮撚加工糸に 0. 044cNZd t e x (5 Omg /デニール) の張力を 掛けてカセ枠に巻き取り、 約 3300 d t e xのカセを作る。 カセ作成後、 カセ の一端に 0. 00177 cN/d t e x+ 0. 177 c N/d t e x (2mg/ デニール +20 Omg/デニール) の荷重を負荷し、 1分間経過後の長さ S。 (c m) を測定する。 次いで、 0. 177 cN/d t e x (20 OmgZデニール) の荷重を除去した状態で、 100°Cの沸水中にて 20分間処理する。 沸水処理後 0. 00177 cN/d t e x (2mg/デニール) の荷重を除去し、 24時間 自由な状態で自然乾燥する。 自然乾燥した試料に、 再び 0. 00177 cN/d t e x+O. 177 cN/d t e x (2mg/デニール + 20 Omg /デニール) の荷重を負荷し、 1分間経過後の長さ S i (cm) を測定する。 次いで、 0. 17 7 cN/d t e x (20 Omg /デニール) の荷重を除去し、 1分間経過後の長 さ S2 (cm)を測定し、次の算式で捲縮率を算出した。 この測定を 10回実施し、 その平均値で表した。
全捲縮率 TC (%) = [ (S「 S2) /S0] X 100
(1 2) 走行フィラメ ト糸条の温度
帝人エンジニアリング (株) 製の非接触走行物温度計 (H— 7508) を用い て延伸仮撚ヒーター出口の走行フィラメント糸条の温度を測定した。
(13) 交絡度
口ッシェルド式ィン夕一レース測定器を使用して 1 m当りの交絡数を測定した。 この測定を 10回実施し、 その平均値で表した。
(14) 毛羽
東レ (株) 製 DT— 104型毛羽カウンタ一装置を用いて、 仮撚加工糸を 50 Om/分の速度で 20分間連続測定して発生毛羽数をカウントし、 106mあたり の個数で表記した。 また、 実施例 20〜 22、 比較例 17〜 21 (表 8 ) は小さ な毛羽までの厳密に調査するため、 さらに上記装置の感度レベル高い方で測定を 行い、 104mあたりの個数で表記した。
(15) 未解撚スポッ卜
延伸仮撚加工機付属の張力モニターで解撚張力変動を検出し、 .限界値以上を未 解撚スポット発生とし、 106m当たりの未解燃スポット個数で表記した。
(16) 均染性
仮撚加工糸試料を 12ゲージ丸編機で 30 cm長の筒編みとし、 染料 (テラシ —ルブルー GFL) を用い、 100 :、 40分染色し、 均染性を検査員が目視に て下記基準で格付けした。
レベル 1 :均一に染色されており、 染斑がほとんど認められない。
レベル 2 :縞状の染斑が少し認められる。
レベル 3 :縞状の斑が一面に認められる。
(17) 解舒断糸回数
5 k g巻きの仮撚加工糸パッケージ 18個を 1000 m/分で解舒し、 5kg 解舒終了までの総断糸回数を解舒断糸回数とした。
(18) 油剤スカム蓄積
上記解舒断糸回数試験において、 糸導ガイドに蓄積した油剤スカムの状態を目 視で 3段階に格付けした。
レベル 1 :ほとんど油剤スカムが認められない。
レベル 2 :油剤ス力ムの蓄積がやや認められる。
レベル 3 :糸導ガイド上に油剤スカムが塊状に蓄積している。
(19) 風綿発生
上記解舒断糸回数試験において、 糸導ガイドおよびその周辺に堆積したフイブ リル化した繊維屑 (風綿) の状態を目視で 3段階に格付けした。
レベル 1 :ほとんど風綿が認められない。
レベル 2 :散乱した風綿がやや認められる。
レベル 3 :糸導ガイド上およびその周辺が風綿で白くなつている。 - (20) 熱水収縮率 FS (%)
極細仮撚加工糸に 0. 044cNZd t ex (5 OmgZデニール) の張力を 掛けてカセ枠に巻き取り、 約 3300 d t e xのカセを作る。 カセ作成後、 カセ の一端に 0. 00177 cN/d t e x+ 0. 177 cNZd t e x (2mgZ デニール +20 Omg/デニール) の荷重を負荷し、 1分間経過後の長さ L。 (c m) を測定する。 次いで、 0. 177 cN/d t e x (20 Omg/デニール) の荷重を除去した状態で、 100°Cの沸水中にて 20分間処理する。 沸水処理後 0. 00177 cN/d t e x (2mgZデニール) の荷重を余去し、 24時間 自由な状態で自然乾燥する。 自然乾燥した試料に、 再び 0. 00177 cN/d t ex+O. 177 cN/d t e x ( 2mgZデニール + 200 mgZデニール) の荷重を負荷し、 1分間経過後の長さ (cm) を測定し、 次の算式で熱水収縮 率を算出した。 この測定を 10回実施し、 その平均値で表した。
熱水収縮率 FS (%) = [ (L。― I^) /L。] X 100 · (21) 仮撚加工断糸回数 (回数 ZT 0 n )
実施例の条件で、 延伸仮撚加工機を 1週間連続運転し (10 kg巻未延伸ポリ エステル糸パッケージを延伸仮撚加工し、 5 k g巻仮撚加工糸パッケージを 2個 作成する) 、 人為的あるいは機械的要因に起因する断糸を除き、 その間に発生し た断糸回数を記録し、 (断糸) 回数 ZT onで仮撚加工断糸とした。
(22) 織機停台回数
(株) トヨタ製 LW550織機を用いて、 5 kg巻き仮撚加工糸パッケージを 解舒速度 1, 224mZ分の速度で解舒しつつ緯糸へ使用することで、 1週間連 続して製織した。 この時、 糸導ガイドおよびその周辺に堆積したフィブリル化し た繊維屑(風綿)により織機が停台した回数を回数 Zkgで織機停台回数とした。
[実施例 1〜3、 比較例ト 2]
ガラス転移温度 (Tg) が 73°C、 固有粘度が 0. 64で酸化チタンを 0. 3 重量%含有したポリエチレンテレフ夕レートを 140°Cで 5時間乾燥した後、 ス クリュ一式押出機を装備した溶融紡糸設備にて溶融し、 315 °Cに保たれたスピ ンブロックに導入し、 冷却固化されたポリエチレンテレフタレートの固有粘度 ( [ ] f) が 0. 57となるような滞留時間とし、 紡糸パックで濾過し、 断面 積が 1. 8 X 10— 4cm2、 LZDが 6. 0の吐出孔が 272偭穿設された紡糸口 金から、 吐出孔 1孔当りの吐出量 0. l SgZ分で吐出した。 次いで、吐出されたポリマー流を、紡糸口金面から 3 0 mmの間の雰囲気が各々 表 1に示すような温度に保たれたホットゾーンを通過せしめ、 クロスフロー式紡 糸筒からの 2 5 °Cの冷却風で冷却し、 紡糸口金面から 4 2 0 mmの位置 (集束長) に設置されたメタリングノズル式給油ガイドで油剤を付与しつつ、 フィラメント 束として集束した。
引き続きインターレースノズルを通して交絡を付与し、 表面速度 3 0 0 0 m/ 分で回転している 1対 (2個) のゴデットローラーで引き取り、 ワインダ一にて 巻き取りポリエステル極細マルチフィラメントパッケージ (単糸繊度 0 . 4 3 d t e x) を得た。 この時の紡糸断糸およびポリエステル極細マルチフィラメント 糸の物性を表 1に示す。 表 1から明らかなように、 実施例 1〜3においては、 安 定してポリエステル極細マルチフィラメント糸を紡糸することが出来た。 ホット ゾーン温度が本発明の範囲より低い比較例 1では、 吐出ポリマーの液滴状破断が 頻発し、 連続して紡糸運転を行うことができなかった。'ホットゾーン温度が本発 明の範囲より高い比較例 2では、 吐出ポリマー単糸同士が密着し、 連続して紡糸 運転を行うことができなかった。
該ポリエステル極細マルチフィラメントパッケージを、 帝人製機 (株) 製 HT S— 1 5 0 0 V延伸仮撚加工機に掛け、 厚み 9 mm、 直径 5 8 mmのウレタンデ イスクを仮撚具として、 下記条件にて、 延伸同時仮撚加工を実施した。
延伸倍率 1 . 6 0 ; D (ディスク回転速度) ノ Y (糸速度) 1 . 7 0 ; ヒーター 温度前半部 4 0 O , 後半部 2 5 0 ;加工速度 7 0 0 mZ分
得られた加工糸の均染性および加工糸物性をおのおの表 2に示す。 なお、 比較 例 1〜2においては、 延伸仮撚加工に供する量のポリエステル極細マルチフィラ メントパッケージが得られなかつた。
[実施例 4〜5、 比較例 3 ]
集束長をおのおの表 1に示すように変更する以外は、 実施例 2と同じ方法、 条 件でポリエステル極細マルチフィラメントパッケージを得た。 この時の紡糸断糸 およびポリエステル極細マルチフィラメント糸の物性を表 1に示す。 集束長が本 発明の範囲外である比較例 3で得られたポリエステル極細マルチフィラメント糸 のィブネス U %は極めて不良であつた。 該ポリエステル極細マルチフィラメントパッケージを実施例 1〜 3と同じ方法、 条件で延伸同時仮撚を施し、 表 2に示す物性の加工糸を得た。 比較例 3における 加工糸の均染性は極めて不良であり、 使用に耐える品質レベルに達し無かった。
[表 1]
Figure imgf000022_0001
[表 2]
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 比較例 3 染色性
1 1 1 1 2 3 (レベル)
破断強度
3.3 3.3 3.4 2.9 2.5 2.4
(cN/dtex)
破断伸度
21 22 22 24 18 15 (%)
全捲縮率 TC
3.2 3.1 3.1 2.9 2.5 2.4 (%) [実施例 6〜8、 比較例 4〜 5]
ガラス転移温度 (T g ) 73 °C、 固有粘度 0. 64で酸化チタンを 0. 3重 % 含有したポリエチレンテレフタレートペレツトを 140°Cで 5時間乾燥した後、 スクリユー式押出機を装備した溶融紡糸設備にて溶融し、 315°Cに保たれたス ピンブロックに導入し、 紡糸パックで濾過し、 直径 0. 15mmの円形吐出孔が
288個穿設された紡糸口金から、 吐出量 39 分で吐出した。
次いで、 吐出されたポリマー流を、 紡糸口金面から 3 Ommの間の雰囲気が 2
30°Cに保たれたホットゾーンを通過せしめ、 クロスフロー式紡糸筒からの 2 5 °Cの冷却風で冷却し、 紡糸口金面から 420 mmの位置 (集束長) -に設置され たメタリングノズル式給油ガイドで油剤を付与しつつ、 フィ'ラメント束として集 束し、 表面速度 300 Om/分で回転している 1対 (2個) のゴデットローラー で引き取り、 ワインダ一にて巻き取り、 複屈折率 0. 045の未延伸ポリエステ ノレマルチフィラメント (130 d t e x/288 f i l ame n t s) を得た。 該ポリエステル極細マルチフィラメントパッケージを、 帝人製機 (株) 製 HT S-15 V延伸仮機加工機(1. 04 mの非接触スリットヒ一ター装備) に掛け、 先ず未延伸ポリエステル糸を解舒しつつ、 各々表 1に示す交絡度となるようにェ アーノズルを通して空気交絡を施した。 引き続き、 硬度 90度、 厚み 9mm、 直 径 58 mmのウレタンディスクを 3軸に配列した摩擦仮撚ディスクユニットに、 該ディスクの回転軸に対し、 糸条の走行角度が 40度とな ように糸条を走行さ せ、 撚数 X (仮撚加工糸繊度 (d t e x) ) 1/2= 30000、 走行フイラメント 糸条温度 206°C (Tgより 133°C高い) 、 ヒーター内滞留時間 0. 089 s e cおよび延伸倍率 1. 58の条件で延伸同時仮撚加工を施し、 仮撚加工糸仕上 げ油剤 (主成分:鉱物油 90%) を繊維重量基準で 1. 8重量%付着させ、 0. 18 cN/d t e xの卷取張力をかけ、 700 分の速度でポリエステル極細 仮 加工糸 (83. 5 d t e x/288 f i l ame n t s、 単糸繊度 0. 29 d t e x) パッケージとして巻き取った。 得られたポリエステル極細仮撚加工糸 の品質を各々表 3に示す。 また、 このときの仮撚加ェ断糸回数は各々表 3の如く であった [表 3 ]
Figure imgf000024_0001
[実施例 9〜 1 0、 比較例 6〜 7 ]
延伸倍率を各々表 4の如く変更した以外は、 実施例 7と同じ方法、 条件でポリ エステル極細仮撚加工糸を得た。 得られたポリエステル極細仮撚加工糸の品質お よぴ仮撚加工断糸回数を各々表 4に示す。
[表 4]
Figure imgf000024_0002
[実施例 1 1〜: 1 3、 比較例 8 ~ 1 1 ]
延伸仮撚ヒーター出口での走行フィラメント糸条温度(T f )、 延伸仮撚ヒータ 一長おょぴ延伸仮燃速度 (卷取速度) 、 走行フィラメント糸条のヒーター内滞留
, 時間を各々表 5となるように変更した以外は、 実施例 7と同じ方法、 条件でポリ エステル極細仮撚加工糸を得た。 得られたポリエステル極細仮撚加工糸の品質お よび仮捲加工断糸回数を各々表 5に示す。なお、比較例 9および比較例 1 1では、 延伸仮撚時にフィラメント単糸同士の融着が頻発し、 正常なポリエステル極細仮 摞加工糸を得ることができなかった。
Figure imgf000025_0001
*1: 使用したポリエステルのガラス転移温度 73°C
*2 : 単糸融着発生し測定不可
[比較例 1 2 ]
長さ 1 . 9 O mの延伸仮撚ヒーターを使用し、 卷取速度を 1 2 7 O m/分 (走 行フィラメント糸条のヒーター内滞留時間は 0 . 0 9 0 s e c ) とした以外は実 施例 2と同じ方法、 条件で延伸同時仮撚を実施したが、 運転開始直後に激しいサ 一ジングが発生し、 連続運転ができなかった。
[実施例 1 4〜 1 6、 比較例 1 3〜 1 4 ]
卷取張力を各々表 6の如く変更した以外は、 実施例 7と同じ方法、 条件で極細 ポリエステル仮攝加工糸を得た。 得られたポリエステル極細仮撥加工糸の品質お よび仮燃加工断糸回数を各々表 6に示す。 なお、 卷取張力が 0. 05 cNZd t e X未満の比較例 13では、 糸緩みで正常な卷取りができなかった。 また、 卷取 張力が 0. 30 cN/d t e Xを超える比較例 14では、 巻き締めによる紙管潰 れが 25 (本数) %発生した。 6]
Figure imgf000026_0001
*3: 巻き取り不能
*4: 巻き閉めによる紙管潰れが 25%発生 [実施例 17〜 19、 比較例 15-16]
仮撚加工糸仕上げ油剤付着量を各々表 7の如く変吏した以外は実施例 7と同じ 方法、 条件でポリエステル極細仮燃加工糸を得て、 前述の解舒性試験を行った。 このときの解舒断糸回数おょぴ油剤スカム蓄積、 風綿発生状態を各々表 7に示す。 [表 7]
Figure imgf000026_0002
[実施例 20〜22、 比較例 17〜21]
ガラス転移温度(Tg) 73°C、 固有粘度 0· 64で酸化チタンを 0. 3重量% 含有したポリエチレンテレフタレートペレツトを 140°Cで 5時間乾燥した後、 スクリュー式押出機を装備した溶融紡糸設備にて 315°Cに溶融し、 紡糸パック で濾過し、 直径 0. 15mmの円形吐出孔が 288個穿設された紡糸口金から、 吐出量 39 gZ分で吐出した。 次いで、 吐出されたポリマー流を、 紡糸口金面か ら 3 Ommの間の雰囲気が 230°Cに保たれたホットゾーンを通過せしめ、 ク口 スフロー式紡糸筒からの 25 °Cの冷却風で冷却し、 紡糸口金面から 42 Ommの 位置(集束長)に設置されたメタリングノズル式給油ガイドで油剤を付与しつつ、 フィラメント束として集束し、 表面速度 300 OmZ分で回転している 1対 (2 個) のゴデットローラーで引き取り、 ワインダ一にて卷き取り、 複屈折率 0. 0
45の未延伸ポリエステルマノレチフイラメント (130 d t e x/288 f i 1 a m e n t s ) を得た。
この未延伸ポリエステルマルチフィラメントに、 ィンターレースノズルを用レ、 て空気交絡処理を施し、 帝人製機 (株) 製 HTS— 15 V延伸仮撚加工機 (1. 04 mの非接触スリットヒーター装備) により、 硬度 90度、 厚み 9mm、 直径
58 mmのウレタンディスクを 3軸に配列した摩擦仮撥ディスクュニットで、 該 ディスクの回転軸に対し、 糸条の走行角度が 40度となるように糸を走行させ、 撥数 X (仮撚加工糸繊度 (d t e x) ) 1/2=30000、 走行フィラメント糸条 温度 206°C (Tgより 133°C高い) 、 ヒーター内滞留時間 0. 089 s e c および延伸倍率 1. 58の条件で延伸同時仮燃加工を施し、 後の空気交絡処理を 行わないで巻き取り、 この巻き取った糸の交絡数を後の空気交絡処理前の交絡度 とした。 この交絡度がそれぞれ表 8に示した値となるように、 延伸同時仮撚加工 前のインターレースノズルで吹き付ける圧空量を調整した。 さらに、 延伸同時仮 撚加ェ後の糸を、 図 2に示すように連続して、 インターレースノズルにより空気 交絡処理し、 仮撚加工糸仕上げ油剤 (主成分:鉱物油 90%) を該糸重量基準で 1. 8重量%付与し、 0. 18 c N/d t e xの巻取張力をかけ、 700 mZ分 の速度で卷き取って、 ポリエステル極細仮撚加ェ糸 (83. 5 d t e x/288 f i l ame n t s, 単糸繊度 0. 29 d t e x) パッケージを得た。 この際、 巻き取られた仮撚加工糸の交絡度を、 後の空気交絡処理後の交絡度とし、 該交絡 度がそれぞれ表 8に示す値となるようにィンターレースノズルで吹き付ける圧空 量を調整した。 また、 このときの仮撚加工断糸回数は各々表 8の如くであった。 さらに、 得られたポリエステル極細仮撥加工糸の品質を表 8にあわせて示す。 [表 8 ]
Figure imgf000028_0001
産業.上の利用可能性
本発明によれば、 延伸仮撚加工が可能な紡糸配向したポリエステル極細マルチ フィラメント糸を安定して製造する方法、 及び、 ポ エステル極細マルチフイラ メント糸を提供することができる。
また、 本発明によれば、 繊度が小さくかつフィラメント数が多いにもかかわら ず品質欠点の少ないポリエステル極細仮撚加工糸を安定して製造する方法、 及び、 ポリエステル極細仮揚加ェ糸を提供することができる。
さらに、 本発明によれば、 繊度が小さくかつフィラメント数が多いにもかかわ らず、 毛羽、 未解燃スポット斑、 染斑が少ないポリエステル極細仮撚加工糸を製 造する方法を提供することができる。 しかも、 この方法で製造された仮機加工糸 は、 1 2 0 O mZ分以上の高速で解舒しても風綿が発生しにくく、 優れた製織お よぴ製編工程通過性を有している。

Claims

請 求 の 範 囲
1. 単糸繊度が 0. 9 d t e x以下、 単糸総数が 1 00〜400本、 複屈折率 が 0. 03〜0. 06のポリエステノレ極細マルチフィラメント糸を製造するに際 し、 紡糸口金面から溶融吐出されたポリエステル重合体のポリマー流を、 紡糸口 金面から 0〜40 mmの距離を、 温度 100〜300°Cの範囲とした雰囲気中を 通過させ、 さらに冷却させた後、 紡糸口金吐出面から 350〜50 Ommの位置 で集束することを特徴とするポリエステル極細マルチフィラメント糸の製造方法。
2. ポリエステル重合体を溶融紡糸してなる、単糸繊度が 0. 9 d t e x以下、 単糸総数が 100〜400本、 複屈折率が 0. 03〜0. 06のマルチフィラメ ント糸において、 下記 (a) 〜 (h) を満足していることを特徴とするポリエス テル極細マルチフィラメント糸。
( a ) ィブネス U% : 0. 8 %以下
(b) 密度: 1. 345〜1. 360 g/cm3
(c) 温水 (65°C) 収縮率: 25〜55%
(d) 最大点強度: 2. 0〜3. 0 cN/d t e X
( e ) 破断伸度: 90 ~ 1 50 %
( f ) 一次降伏応力: 0. 35〜0. 70 c N/ d t e X
(g) 熱応力ピーク値: 0. 1〜0. 2 cN/d t e x
(h) 熱応力ピーク温度: Tg— 1 0°C〜Tg + 5。C
ここで、 T gはポリエステル重合体のガラス転移温度を示す。
3. マルチフィラメント糸が、 交絡度 1 0〜30個 Zmの交絡を有している請 求項 2記載のポリエステル極細マルチフイラメント糸。
4. 単糸繊度が 0. 9 d t e x以下、 単糸総数が 1 00〜400本、 複屈折率 が 0. 03〜0. 06のポリエステル極細マルチフィラメント糸を仮撚加工する に際し、
(1) マルチフィラメント糸に、 仮撚加工糸で測定した交絡度が 50〜90個/ mとなるように空気交絡を施し、
(2) 延伸仮撚ヒーター内の滞留時間を 0. 052〜0. 300 s e c、 該ヒー ター出口での走行フィラメント糸条の温度がポリエステル重合体のガラス転移温 度 (Tg) より 90〜: 140°C高い温度となるようにして、 延伸倍率 1. 40〜 1. 70倍で延伸同時仮撚加工して仮撚加工糸とし、
(3) 該仮撥力!]ェ糸の重量を基準として 1. 3〜3. 0重量%の油剤を付与し、 (4) 巻取張力を 0. 05〜0. 30 cN/d t e X、 速度を 500〜1200 mノ分として巻き取ることを特徴とするポリエステル極細仮撚加ェ糸の製造方法。
5. ポリエステル極細マルチフィラメント糸力 請求項 1記載の方法により製 造されるポリエステル極細マルチフィラメント糸である請求項 4記載のポリエス テル極細仮撚加工糸の製造方法。
6. 単糸繊度が 0. 9 d t e X以下、 単糸総数が 100〜 400本、 複屈折率 が 0. 03〜0. 06のポリエステル極細マルチフィラメント糸を、 延伸同時仮 撚加工して、 仮撚加工糸を製造するに際し、 該延伸同時仮撚加工の前と後で空気 交絡処理を施し、 後の空気交絡処理前後の交絡度をそれぞれ 30〜60個 Zm、 70〜110個/ mとすることを特徴とするポリエステル極細仮撚加工糸の製造 方法。
7. 延伸同時仮撚加工を、 延伸仮撚ヒーターを用いて行い、 最初の空気交絡処 理を行った糸の該ヒーター内の滞留時間を 0. 05〜0. 30 s e c、 該ヒータ 一出口での糸の温度をポリエステル重合体のガラス転移温度 (Tg) より 90〜 140°C高い温度となるようにし、 延伸倍率 1. 4〜1. 7倍で行う請求項 6記 載のポリエステル極細仮撚加工糸の製造方法。
8. ポリエステル極細マルチフィラメント糸が、 請求項 1記載の方法により製 造されるポリエステル極細マルチフィラメント糸である請求項 6または 7記載の ポリエステル極細仮撚加工糸の製造方法。
9. 単糸繊度が 0. 6 d t e x以下、 単糸総数が 100〜400本である、 ポ リエステルからなる仮撥 ¾1ェ糸において、 下記 (i) 〜 (1) を満足しているこ とを特徴とするポリエステル極細仮燃加工糸。
(i) 全捲縮率 TC: 2〜5%
( j ) 熱永収縮率 FS : 2. 5〜4. 5%
(k) 破断強度: 3. O cNZd t e x以上 (1) 破断伸度: 15〜45%
10. 仮撚加工糸が、 交絡度 70〜110個 "mの交絡を有している請求項 9 記載のポリエステル極細仮爆加工糸。
PCT/JP2003/005360 2002-04-25 2003-04-25 Procede pour produire un fil multifilament extra-fin en polyester et un fil texture par fausse torsion extra-fin en polyester, fil multifilament extra-fin en polyester et fil texture par fausse torsion extra-fin en polyester WO2003091485A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020047013522A KR100984991B1 (ko) 2002-04-25 2003-04-25 폴리에스테르 극세 멀티필라멘트사 및 폴리에스테르 극세가연 가공사의 제조 방법, 폴리에스테르 극세멀티필라멘트사, 폴리에스테르 극세 가연 가공사
US10/505,525 US7078096B2 (en) 2002-04-25 2003-04-25 Method for producing polyester extra fine multi-filament yarn and polyester extra fine false twist textured yarn, polyester extra fine multi-filament yarn, and polyester extra-fine false twist textured yarn
ES03719207T ES2374667T3 (es) 2002-04-25 2003-04-25 Procedimiento para la producción de hilado texturado por falsa torsión extra fino de poliester e hilado texturado por falsa torsión extra fino de poliester.
EP03719207A EP1498520B1 (en) 2002-04-25 2003-04-25 Method for producing polyester extra fine false twist textured yarn and polyester extra-fine false twist textured yarn
MXPA04007453A MXPA04007453A (es) 2002-04-25 2003-04-25 Proceso para producir hilo de filamentos multiples fino de poliester, e hilo texturizado de falsa torsion fino de poliester, hilo de filamentos multiples fino de poliester e hilo texturizado de falsa torsion fino de poliester.
CA2478286A CA2478286C (en) 2002-04-25 2003-04-25 Process for producing polyester fine multifilament yarn and polyester fine false-twist textured yarn, polyester fine multifilament yarn and polyester fine false-twist textured yarn
CNB038091739A CN1320179C (zh) 2002-04-25 2003-04-25 聚酯特细复丝和聚酯特细假捻丝的制造方法、以及聚酯特细复丝、聚酯特细假捻丝
AT03719207T ATE529546T1 (de) 2002-04-25 2003-04-25 Verfahren zur herstellung von extrafeinem falschdrahttexturiertem polyestergarn, sowie extrafeines falschdrahttexturiertes polyestergarn
AU2003235816A AU2003235816A1 (en) 2002-04-25 2003-04-25 Method for producing polyester extra fine multi-filament yarn and polyester extra fine false twist textured yarn, polyester extra fine multi-filament yarn, and polyester extra-fine false twist textured yarn

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002123885A JP4056288B2 (ja) 2002-04-25 2002-04-25 ポリエステル極細マルチフィラメント糸の製造方法
JP2002-123885 2002-04-25
JP2002-181138 2002-06-21
JP2002181138A JP4018939B2 (ja) 2002-06-21 2002-06-21 極細ポリエステル仮撚加工糸の製造方法
JP2002-320962 2002-11-05
JP2002320962A JP4018968B2 (ja) 2002-11-05 2002-11-05 極細ポリエステル仮撚加工糸の製造方法

Publications (1)

Publication Number Publication Date
WO2003091485A1 true WO2003091485A1 (fr) 2003-11-06

Family

ID=29273428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005360 WO2003091485A1 (fr) 2002-04-25 2003-04-25 Procede pour produire un fil multifilament extra-fin en polyester et un fil texture par fausse torsion extra-fin en polyester, fil multifilament extra-fin en polyester et fil texture par fausse torsion extra-fin en polyester

Country Status (11)

Country Link
US (1) US7078096B2 (ja)
EP (1) EP1498520B1 (ja)
KR (1) KR100984991B1 (ja)
CN (1) CN1320179C (ja)
AT (1) ATE529546T1 (ja)
AU (1) AU2003235816A1 (ja)
CA (1) CA2478286C (ja)
ES (1) ES2374667T3 (ja)
MX (1) MXPA04007453A (ja)
TW (1) TWI294926B (ja)
WO (1) WO2003091485A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406818B2 (en) 2004-11-10 2008-08-05 Columbia Insurance Company Yarn manufacturing apparatus and method
CN114179242A (zh) * 2021-12-01 2022-03-15 福建省金纶高纤股份有限公司 一种利用ptt与pet生产索弹丝的生产装置
CN114318616A (zh) * 2021-12-14 2022-04-12 苏州盛虹纤维有限公司 一种fdy超细旦少孔纤维的连续性生产方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649400B1 (ko) * 2004-11-25 2006-11-28 주식회사 새 한 인터레이스를 부여한 저수축 가연사의 제조방법
US20070044201A1 (en) * 2005-08-30 2007-03-01 Showa Glove Co. Glove having flocked inner surface and manufacturing method thereof
CN101535539B (zh) * 2006-10-30 2011-06-15 帝人纤维株式会社 抗静电性芯鞘型聚酯超细假捻加工纱及其制备方法以及含有该抗静电性芯鞘型聚酯超细假捻加工纱的抗静电疏水性织物
CN102418165B (zh) * 2008-01-08 2014-04-09 帝人纤维株式会社 常压阳离子可染性聚酯及纤维
EP2444533A4 (en) * 2009-06-15 2012-11-21 Kolon Inc POLYESTER YARN FOR AN AIR BAG AND METHOD FOR MANUFACTURING THE SAME
KR101253085B1 (ko) * 2011-04-08 2013-04-10 주식회사 덕우실업 초박형직물제조용 폴리에스테르 저수축필라멘트사의 제조방법
FR2974978B1 (fr) * 2011-05-12 2013-05-31 Decathlon Sa Element textile limitant les irritations, et vetement comprenant un tel element textile
CN102851805B (zh) * 2011-06-30 2016-03-30 东丽纤维研究所(中国)有限公司 一种假捻加工纤维
JP6005294B2 (ja) * 2013-09-12 2016-10-12 旭化成株式会社 極細ポリエステル繊維
CN105734805A (zh) * 2014-12-12 2016-07-06 东丽纤维研究所(中国)有限公司 一种仿棉针织面料
WO2018118682A1 (en) 2016-12-19 2018-06-28 Lintec Of America, Inc. Nanofiber yarn spinning system
US11225733B2 (en) 2018-08-31 2022-01-18 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
CN111647993A (zh) * 2020-04-28 2020-09-11 苏州扬越高新材料有限公司 一种无捻度低弹丝的生产工艺
KR102430662B1 (ko) * 2020-11-20 2022-08-09 주식회사 여주티앤씨 재활용이 가능한 마스크끈용 폴리에스테르 잠재권축가연사의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000620A1 (en) * 1987-07-17 1989-01-26 Viscosuisse Sa Process for pre-twisting a synthetic multifilament feed yarn and yarn so produced
JPH04194036A (ja) * 1990-11-27 1992-07-14 Teijin Ltd 非毛羽状吸水性極細仮撚加工糸
WO1992013119A1 (en) * 1991-01-29 1992-08-06 E.I. Du Pont De Nemours And Company Preparing polyester fine filaments
JPH07305224A (ja) * 1994-05-09 1995-11-21 Toray Ind Inc 極細ポリエステル繊維の紡糸延伸方法
JPH08246276A (ja) * 1995-03-09 1996-09-24 Teijin Ltd ポリエステル高強力仮撚加工糸の製造方法
JPH10226920A (ja) * 1997-02-12 1998-08-25 Nippon Ester Co Ltd ポリエステル極細マルチフィラメントの溶融紡糸方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123409A (en) 1980-03-04 1981-09-28 Teijin Ltd Preparation of ultrathin polyester filament
JPH0343414A (ja) 1989-07-12 1991-02-25 Kanegafuchi Chem Ind Co Ltd 芳香族ポリエステルおよびその製法
JP2002038341A (ja) 2000-07-24 2002-02-06 Teijin Ltd 極細仮撚加工糸及びその製造方法
CN1273659C (zh) * 2001-09-18 2006-09-06 旭化成纤维株式会社 聚酯系复合纤维纬纱管及其制造方法
US7000375B2 (en) * 2002-12-19 2006-02-21 Teijin Limited Polyester false-twist yarn and method of manufacturing the yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000620A1 (en) * 1987-07-17 1989-01-26 Viscosuisse Sa Process for pre-twisting a synthetic multifilament feed yarn and yarn so produced
JPH04194036A (ja) * 1990-11-27 1992-07-14 Teijin Ltd 非毛羽状吸水性極細仮撚加工糸
WO1992013119A1 (en) * 1991-01-29 1992-08-06 E.I. Du Pont De Nemours And Company Preparing polyester fine filaments
JPH07305224A (ja) * 1994-05-09 1995-11-21 Toray Ind Inc 極細ポリエステル繊維の紡糸延伸方法
JPH08246276A (ja) * 1995-03-09 1996-09-24 Teijin Ltd ポリエステル高強力仮撚加工糸の製造方法
JPH10226920A (ja) * 1997-02-12 1998-08-25 Nippon Ester Co Ltd ポリエステル極細マルチフィラメントの溶融紡糸方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406818B2 (en) 2004-11-10 2008-08-05 Columbia Insurance Company Yarn manufacturing apparatus and method
CN114179242A (zh) * 2021-12-01 2022-03-15 福建省金纶高纤股份有限公司 一种利用ptt与pet生产索弹丝的生产装置
CN114179242B (zh) * 2021-12-01 2024-04-09 福建省金纶高纤股份有限公司 一种利用ptt与pet生产索弹丝的生产装置
CN114318616A (zh) * 2021-12-14 2022-04-12 苏州盛虹纤维有限公司 一种fdy超细旦少孔纤维的连续性生产方法

Also Published As

Publication number Publication date
AU2003235816A1 (en) 2003-11-10
US7078096B2 (en) 2006-07-18
ATE529546T1 (de) 2011-11-15
TW200307068A (en) 2003-12-01
EP1498520B1 (en) 2011-10-19
CA2478286C (en) 2010-09-07
CA2478286A1 (en) 2003-11-06
KR100984991B1 (ko) 2010-10-04
ES2374667T3 (es) 2012-02-20
MXPA04007453A (es) 2004-11-10
KR20050002835A (ko) 2005-01-10
CN1650053A (zh) 2005-08-03
CN1320179C (zh) 2007-06-06
EP1498520A4 (en) 2007-03-28
TWI294926B (en) 2008-03-21
EP1498520A1 (en) 2005-01-19
US20050227066A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
TW571008B (en) Composite fiber with excellent post-treatment processibility and its production method
WO2003091485A1 (fr) Procede pour produire un fil multifilament extra-fin en polyester et un fil texture par fausse torsion extra-fin en polyester, fil multifilament extra-fin en polyester et fil texture par fausse torsion extra-fin en polyester
JP3862996B2 (ja) ポリトリメチレンテレフタレートフィラメント糸およびその製造方法
WO2001023651A1 (fr) Fil retors en terephtalate de polypropylene et son procede de production
JP4018968B2 (ja) 極細ポリエステル仮撚加工糸の製造方法
JPH11131322A (ja) ポリエステル極細マルチフィラメントの溶融紡糸方法
WO2008108581A1 (en) Polyester fiber, and fabric comprising the same
JP3837227B2 (ja) ポリエステル極細マルチフィラメントの直接紡糸延伸方法
JPH0617312A (ja) ポリエステル繊維の直接紡糸延伸法
JP4056288B2 (ja) ポリエステル極細マルチフィラメント糸の製造方法
JP4018939B2 (ja) 極細ポリエステル仮撚加工糸の製造方法
JP2005154962A (ja) ポリエステル仮撚加工糸及びその製造方法
JP3874529B2 (ja) 前配向ポリエステル繊維及びそれからの加工糸
JP4059800B2 (ja) ポリトリメチレンテレフタレート系複合繊維の製造方法
JPS63182430A (ja) 複合加工糸の製造方法
JP3472942B2 (ja) ポリエステル高強力仮撚加工糸の製造方法
JP3910038B2 (ja) 前配向糸パッケージとその製造方法
JPH04333615A (ja) ポリエステル極細繊維の製造方法
JPH1136138A (ja) ポリエステル異収縮混繊糸の製造方法
JP4059681B2 (ja) ポリトリメチレンテレフタレート前配向糸の製造方法
JP2002220738A (ja) 高速仮撚用延伸糸及びその製造方法
JPH02289113A (ja) 無撚無糊織物の経糸用ポリエステル繊維
JP2005264345A (ja) ポリエステル仮撚加工糸およびその製造方法
JP2007009366A (ja) ポリエステル極細繊維の製造方法
JPH0261108A (ja) ポリエステル繊維の直接紡糸延伸方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003719207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/007453

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020047013522

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2478286

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038091739

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047013522

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003719207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10505525

Country of ref document: US