WO2003078490A1 - Type de grain mere d'olefine fonctionnel, procede d'elaboration et procede d'utilisation - Google Patents

Type de grain mere d'olefine fonctionnel, procede d'elaboration et procede d'utilisation Download PDF

Info

Publication number
WO2003078490A1
WO2003078490A1 PCT/CN2003/000183 CN0300183W WO03078490A1 WO 2003078490 A1 WO2003078490 A1 WO 2003078490A1 CN 0300183 W CN0300183 W CN 0300183W WO 03078490 A1 WO03078490 A1 WO 03078490A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
peroxide
functionalized
masterbatch
polyamine
Prior art date
Application number
PCT/CN2003/000183
Other languages
English (en)
French (fr)
Inventor
Anna Zheng
Yong Guan
Dafu Wei
Hong Lu
Original Assignee
Shanghai Sujie Science-Technology Co. Ltd
East China University Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Sujie Science-Technology Co. Ltd, East China University Of Science And Technology filed Critical Shanghai Sujie Science-Technology Co. Ltd
Priority to AU2003221218A priority Critical patent/AU2003221218A1/en
Priority to EP03711794A priority patent/EP1486519B1/en
Priority to DK03711794T priority patent/DK1486519T3/da
Priority to JP2003576488A priority patent/JP4610904B2/ja
Priority to DE60322034T priority patent/DE60322034D1/de
Publication of WO2003078490A1 publication Critical patent/WO2003078490A1/zh
Priority to US10/941,626 priority patent/US7282538B2/en
Priority to US11/751,894 priority patent/US7531225B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/02Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine
    • C08F259/04Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing chlorine on to polymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the invention belongs to the technical field of polymer polymerization and processing, and relates to the preparation of a multifunctional macromolecular antibacterial agent containing an active double bond, an amine group and a guanidine group, and a functionalized masterbatch obtained after molecular assembly with a polyolefin
  • the masterbatch and ordinary polyolefin are mixed at a certain ratio to prepare a variety of fibers and plastic products, which have the functions of high-efficiency broad-spectrum antibacterial, improving the antistatic property of the product, and improving the dyeing and paintability properties.
  • Antibacterial materials are a new class of materials with bacteriostatic and bactericidal functions. They are made by adding one or more specific antibacterial agents. A wide range of synthetic materials and their products are widely used in daily life and large amounts of antibacterial materials have been developed. According to a 1997 CBS survey, European and American countries have gradually attached importance to the antibacterial properties of daily products. 52% of the American population will pay attention to whether the products have antibacterial, mildew, and deodorant functions when purchasing daily necessities. Antibacterial products were first developed in Japan and Europe and the United States. The country has been widely used; with the economic development and improvement of living standards, since the 1990s, China's antibacterial products have also entered a period of rapid development.
  • antibacterial fibers began to appear.
  • the application of foreign antibacterial plastics began in the early 1980s and entered a period of great development in the 1990s.
  • Chemicals, fiber, food, electrical machinery, Cement and other industries have developed antibacterial products, covering almost all major fiber and plastic varieties such as polyester, polypropylene, acrylic, PP, ABS, PE, and PVC.
  • the production of antibacterial products has formed a huge industry.
  • antibacterial agents There are many types of antibacterial agents, which can be roughly divided into three categories: inorganic, organic and natural according to their chemical composition. Natural antibacterial agents are restricted by raw materials and processing conditions, and large-scale marketization has not yet been achieved. Organic antibacterial agents have the advantages of fast sterilization speed and wide antibacterial range, but also have problems such as poor heat resistance, easy exudation, toxicity of leachables, short resistance to washing and short service life. Therefore, their use has great limitations. Inorganic antibacterial agents are mainly silver antibacterial agents, which are characterized by good safety, heat resistance, and durability. They are currently used in fibers, plastics, and building materials. The disadvantage is that they are expensive.
  • U.S. Patent No. 4,891,423 uses polyoxyethylene diamine biguanide salt as a water-soluble antibacterial agent for cleaning liquids of contact lenses, and it can be seen that such antibacterial agents have excellent safety performance to the human body.
  • polymers containing a guanidine structure are a class of effective antibacterial agents. Due to their good water solubility, they can be used as water treatment agents. However, its water solubility also limits its application as an antibacterial modifier in plastics, fibers, rubber, and coatings. Therefore, further modification of the structure of the polymer containing a guanidine structure to make it have a wider range of applications will have very important industrial value.
  • R represents a polyamine and a guanidine salt polymer grafted onto a polyolefin molecular chain, and S is one of hydrogen, chlorine, methyl, or phenyl;
  • the polyamine and guanidinium polymer have the following structure:
  • n 2 to 20
  • m 2 to 300
  • Y is one of Cl-, Br ⁇ , N ⁇ V, 11 ⁇ 3 -or H 2 P0 4 —
  • X is one to five active compounds.
  • ( ⁇ ( 2 () acyl or ester groups of saturated double bonds, Z is H or X.
  • the X is selected from the group consisting of acryl, methacryl, maleyl, fumaric, itaconic, undecyl, and hydroxypropyl methacrylate.
  • a method for preparing a polyolefin functionalized masterbatch which is characterized in that it is prepared by a solution, a melt or a solid-phase reaction.
  • the raw materials and the amount (weight percentage) used are as follows:
  • polyolefin resin whose grade is determined by the needs of the final product.
  • a polypropylene resin is used for molecular assembly.
  • the molecular weight range is 300-60000. If the amount of polyamine and guanidinium polymer is less than 2.0%, the amount of antibacterial groups in the obtained masterbatch is small, and the purpose cannot be achieved. If the amount of polyamine and guanidinium polymer is greater than 40%, on the one hand, it will cause cross-linking of the polyolefin resin and reduce the fluidity and spinnability of the functionalized masterbatch; on the other hand, it will cause a large number of ungrafts. Polyamine and guanidinium polymer remain in the resin matrix, and head breakage easily occurs during spinning. Furthermore, increasing the amount of polyamine and guanidinium polymer will also increase the cost of the masterbatch.
  • olefin monomers such as styrene, divinylbenzene, ⁇ -methylstyrene, etc.
  • the amount of the olefin monomer is 0.5 to 15.0%. If the amount is less than 0.5%, the effect of improving the grafting rate cannot be achieved. However, if the amount is more than 15.0%, olefin homopolymerization may occur, or cross-linking may occur.
  • initiator such as 2,5-dimethyl-2,5-bis (tert-butylperoxy) hexamidine, 2,5-dimethyl-2,5-bis (tert-butylperoxy) (Oxy) hexyne-3, dicumyl peroxide, benzoyl peroxide, dodecyl peroxide, di-tert-butylpercumene, t-butyl peroxyacetate, (2-peroxy Ethylhexanoic acid) tert-butyl ester, 2,5-dimethyl-2,5-bis (benzoyl peroxide) hexamidine, tert-butylisopropylbenzene peroxide, 2,4-dichlorobenzene peroxide Formyl, p-chlorobenzoyl peroxide, t-butyl peroxide laurate, succinic acid peroxide, cyclohexanone
  • the amount of initiator is less than 0.01%, the concentration of free radicals generated is too low, and the graft ratio of the polyamine to the guanidinium polymer will be greatly reduced. If the amount of the initiator is greater than 5.0% by weight, the termination reaction between the polyolefin macromolecular radical and the initiator radical is accelerated, so that the grafting rate is reduced; at the same time, the degradation of the matrix and the cross-linking reaction occur To reduce the processability, antibacterial and performance of the modified polyolefin at the same time.
  • One or more of these initiators can be used alone or in combination.
  • the polyamine is an organic amine of 2- ( 2. , Preferably ethylenediamine, propylenediamine, 1,6-hexanediamine, 1, 10-decanediamine, hexamethylenetetramine , Tetraethylenepentamine, triethylenetetramine, triethylenediamine, triethylenetriamine, N-hydroxyethylethylenediamine, 3-dimethylaminopropylamine;
  • the polypropylene functionalized masterbatch of the present invention can be generally obtained by the following three methods.
  • Solution method According to the ingredients described above, all are added to the xylene solvent, and the temperature is gradually raised to 90-125 V, so that all solids are dissolved to form a 5-55% solution. Maintain the temperature for 3-4 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and solids were precipitated. After filtration and drying, functionalized master batches were obtained.
  • the polyolefin resin is first pulverized into a powder of 40 mesh or more, and then added to a high-speed mixer to mix uniformly, and then added to a reaction kettle equipped with a ribbon stirrer During the reaction, the temperature was increased while stirring. After reaching 90-145 ° C, the reaction was allowed to cool to room temperature after 3-5 hours. After extraction with water or acetone and drying, a functionalized masterbatch is obtained.
  • a method for applying a polyolefin functionalized master batch as a polypropylene automobile bumper pellet modifier which is characterized in that it can be added to a polypropylene automobile bumper pellet in a certain proportion to prepare a paintable polymer Acrylic car bumper.
  • a method for applying a polyolefin functionalized masterbatch as an antibacterial modifier which is characterized in that it can be added to polypropylene, polystyrene, polyethylene, and polyvinyl chloride resin in a certain proportion to prepare various antibacterial plastics product, Including BOPP film, PPR water pipe and PE, PS, PVC film and other plastic devices.
  • the structure of the polyamine and guanidinium polymer can be identified by infrared spectroscopy.
  • the characteristic absorption peak is at 1610—1655 cm—
  • the polyamine and guanidinium polymer can be added to other polymers as an antibacterial agent, an antistatic agent, or a modifier that provides a dyeing seat for synthetic fibers. It is used in functional chemicals in an amount of 2% to 40% by weight. If the amount of polyamine and guanidinium polymer is less than 2% by weight, the amount of polar groups in the obtained masterbatch is small, and the modification purpose cannot be achieved.
  • the amount of polyamine and guanidinium polymer is greater than 40% by weight, on the one hand, it will cause cross-linking of the resin, reducing the flowability and processability of the masterbatch; on the other hand, it will cause a large amount of unassembled multicomponent The amine and guanidinium polymer remain in the resin matrix, and in some cases, such as in spinning, head breakage easily occurs. Furthermore, increasing the amount of polyamine and guanidinium polymer will also increase the cost of the masterbatch.
  • the molecular weight of the polyamine and guanidinium polymer can be determined by vapor pressure osmosis method or mass spectrometry. Its molecular weight range is 300-60,000. If the molecular weight is less than 300, there may be two cases, one is that the amine content of the polymer is too small, and the other is that the graft ratio of the polymer to other polymers is reduced. These two cases will reduce the modification effect; however, if the molecular weight is more than 60,000, it will cause the polymer melt viscosity to increase, and cross-linking reactions will easily occur during grafting, resulting in poor processability. Therefore, a suitable molecular weight range of polyamine and guanidinium polymer is 300-60,000.
  • the heat resistance of the polyamine and guanidinium polymer can be measured by thermogravimetric analysis (TGA).
  • TGA thermogravimetric analysis
  • the polymer has excellent heat resistance, and its decomposition temperature is above 360 ° C, and it will not decompose in general polymer processing. In addition, it has high reactivity, for example, it can be melted, solution, and solid phase bonded. It is convenient to realize molecular assembly with polyolefin resin to prepare antibacterial masterbatch.
  • the present invention uses a molecular assembly technology to prepare a new type of polymer functionalized masterbatch.
  • the so-called molecular assembly technology is to assemble a preferred functional group on the molecular chain of a part of the matrix resin, so that this part of the resin itself has antibacterial and antistatic functions, instead of mixing other antibacterial agents from the outside.
  • the molecular assembly technology fundamentally overcomes the problems of small molecule organic antibacterial agents, such as poor migration durability, and the safety of leachables.
  • the antibacterial functional groups are all The chemical bond is firmly combined with the matrix resin molecules, so that it can withstand multiple washings by the detergent, and is safe and non-toxic.
  • the functionalized masterbatch prepared by this technology has excellent compatibility with the resin and is in the matrix. It is distributed on the nanometer scale, has excellent processing performance, can adapt to the spinning of fine denier filaments and biaxial stretching of films that are difficult to process; and its reliable safety performance guarantees its advantages in food packaging and drinking water pipe materials. Application, this is the purpose
  • the former ordinary organic and inorganic antibacterial agents are incomparable.
  • guanidinium salt and its derivatives as the main assembly functional group, because it is an important class of intermediates, is an important raw material for the manufacture of drugs such as sulfadiazine, sulfadiazine, and has a broad spectrum of high efficiency It has the advantages of antibacterial, safety, non-toxic, and good thermal stability. Because of its strong polarity and hygroscopicity, it can also be used as an antistatic agent for synthetic fibers. In addition to the antibacterial effect, the assembled functional groups have also improved the other properties of the material to a certain extent. Compared with the matrix resin, the antibacterial functional group has a stronger polarity and is easy to be enriched on the surface during processing.
  • the use efficiency of the antibacterial functional group is improved, which is beneficial to reducing costs; Resistivity, improve its antistatic performance, and its polar groups can also be combined with dye or paint molecules, providing a new way to solve the problem of dyeing synthetic fibers. Due to the difference in polarity, the antibacterial functional group can act as a nucleating agent in the system, which can speed up the crystallization rate and reduce the grain size, thereby improving the mechanical properties of the material to a certain extent.
  • polypropylene with good dyeing, antibacterial, and antistatic properties
  • paintable automotive bumpers antibacterial PPR water pipes, antibacterial PP, PE, or PVC films
  • Antibacterial appliances and toys for specific application effects, refer to the following specific embodiments.
  • test methods are used-detection of antibacterial properties, antibacterial plastics, refer to GB15979-1995
  • Preparation example 3 of polyamine and guanidinium polymer Take 150 g of hexamethylene diamine and 210 g of guanidine nitrate, and add them to a 500 ml three-necked flask. Under nitrogen protection, stir and raise the temperature to 100 ° C, react for 2 hours, then raise the temperature to 160 ° C for 1 hour, and then add 10 g of methyl Glycidyl acrylate, reaction ends after 20 minutes
  • the grafting rate was 73.2%.
  • the film-grade polypropylene (brand: F1001) of Yanshan Petrochemical Co., Ltd. is used as a reference, and the number is C. Take 350g of polypropylene F1001, 5kg, 1 # functionalized masterbatch, and after mixing, the number is C ', and each is biaxially stretched to obtain 25 ⁇ to obtain a film.
  • the properties of both are as follows: tensile strength elongation at break
  • Formula D polypropylene, rubber, auxiliaries
  • Formula D ' is the same as Formula D except that 5% 1 # functionalized polypropylene is added.
  • the two formulations are respectively extruded by twin-screw blending, pelletizing, drying, and injection molding machine to make sheets, surface cleaning, and surfactant treatment-drying, painting, and drying, and then performing mechanical properties and coating Testing of adhesion.
  • the results are as follows: sample tensile strength flexural strength flexural modulus impact strength paint film adhesion paint film adhesion (N ⁇ !!- 1 )
  • the molecular assembly functionalized masterbatch prepared by the present invention can improve the performance of polyolefin products in various aspects and has broad application value.
  • the active double bond is introduced into the molecular chain of the polyamine and guanidinium polymer, so that the double bond can be opened by the initiator and assembled to the molecular chain of the matrix resin, giving it antibacterial, hygroscopic, antistatic, and dyeable properties.
  • the key to the technology of the present invention is the synthesis of the antibacterial agent and its assembly with the matrix resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Graft Or Block Polymers (AREA)

Description

一种聚烯烃功能化母粒及其制备方法和应用
技术领域
本发明属于高分子聚合物聚合和加工技术领域, 涉及一种含活性双键、 胺基及胍 基的多功能大分子抗菌剂的制备及其与聚烯烃进行分子组装后得到的功能化母粒, 将 该种母粒和普通聚烯烃以一定比例混合, 可制备多种纤维和塑料制品, 具有高效广谱 抗菌、 改善制品抗静电性、 提高上染和可漆性能的作用。
背景技术
抗菌材料是一类具备抑菌和杀菌功能的新型材料, 通过添加一种或几种特定的抗 菌剂而制得。 各种各样的合成材料及其制品在日常生活中的应用面宽、 用量大, 因而 抗菌材料一面世, 便获得迅速的发展。 根据 1997年的 CBS调查显示, 欧美国家已逐渐 重视日用产品的抗菌性, 52 %的美国民众购买日用品时, 会注意产品是否具备抗菌、 防霉、 防臭功能, 抗菌制品首先在日本和欧美发达国家得到广泛应用; 随着经济的发 展和生活水平的提高, 九十年代起, 我国的抗菌制品也进入了一个飞速发展的时期。 抗菌材料的开发和应用为保护人类健康树起了一道绿色的屏障, 对改善人类生活环境、 减少疾病, 具有十分重要的意义。 因此, 各种原材料的抗菌改性已成为材料行业发展 的一个新趋势, 抗菌产品具有巨大的市场需求和美好的发展前景。
现代抗菌材料的实用化始于防微生物纤维制品, 60年代以后, 抗菌纤维开始出现; 国外抗菌塑料的应用起始于 80年代初, 90年代进入一个大发展时期, 化工、 纤维、 食 品、 电机、 水泥等行业均开发出抗菌产品, 几乎覆盖涤纶、 丙纶、 腈纶、 PP、 ABS、 PE、 PVC等所有主要纤维和塑料品种, 抗菌制品的生产已经形成一个庞大的产业。
抗菌剂种类繁多, 根据其化学组成大致可分为无机、 有机和天然三大类。 天然系 抗菌剂, 受到原料和加工条件的制约, 目前尚不能实现大规模市场化。 有机抗菌剂具 有杀菌速度快、 抗菌范围广等优点, 但也存在耐热性差、 易渗出、 溶出物毒性问题、 不耐洗涤使用寿命短等问题, 因此其使用有很大的局限性。 无机系抗菌剂以银系抗菌 剂为主, 其特点是安全性、 耐热性、 耐久性较好, 是目前纤维、 塑料、 建材等中使用 较多的抗菌剂, 不足之处在于价格较高和抗菌的迟效性, 不能象有机系抗菌剂那样能 迅速杀死细菌, 而且对真菌、 霉菌几乎没有抑制效果; 同时, 由于银的化学性质活泼, 易氧化而成为棕色的氧化银, 从而降低抗菌效力及影响制品外观; 另外, 无机抗菌粉 体与髙分子材料相容性差, 在基体树脂中易于团聚, 会给材料的纺丝、 拉膜等加工带 来很大困难; 无机抗菌剂是通过渗出的重金属离子起抗菌作用的, 因此不符合国家有 关食品包装材料的卫生标准, 不能用于食品包装、 厨房用具、 饮水管道等材料。
英国专利 GB 2, 182, 245公开了一种聚六亚甲基双胍盐, 并将其作为抗菌剂; 曰本 专利 JP 05, 209, 195、 JP 05, 209, 197、 JP 05, 209, 196 则用聚六亚甲基双胍盐作为水 处理用的净化剂, 这种净化剂的特点是良好的水溶性和高度的环保安全性。
美国专利 US 4, 891, 423 用聚氧乙烯双胺双胍盐作为水溶性的抗菌剂用于隐形眼 镜的清洗液, 可见此类抗菌剂对人体的安全性能优良。
俄国专利 RU 2, 052, 453、 SU 1, 750, 979 介绍了聚己二胺胍盐可作为抗菌剂用于 水处理, 加到油画颜料中以保护艺术作品等。
综上所述, 我们可以看到含有胍结构的聚合物是一类有效的抗菌剂, 由于其良好 的水溶性, 可用于水质净化的处理剂。 但是, 水溶性也限制了其作为抗菌改性剂在塑 料、 纤维、 橡胶、 涂料等方面的应用。 因此, 对含胍结构的聚合物在结构上作进一步 的修饰, 使其具有更广泛的用途, 将具有十分重要的工业价值。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可赋予聚烯烃材 料优异的抗菌性、 抗静电性以及可提高聚烯烃材料的上染率、 可漆性的聚烯烃功能化 母粒及其制备方法和应用。
本发明的目的可以通过以下技术方案来实现:
一种聚烯烃功能化母粒, 其特征在于, 该母粒具有如下结构:
R
νΛΛΛ CH2— C I— CH2— CH— CH2— CH— ϋΗ2>ΛΛΛ
I I I
S S S 其中, R代表接枝到聚烯烃分子链上的多元胺与胍盐聚合物, S为氢、 氯、 甲基、 或苯基中的一种;
所述的多元胺与胍盐聚合物具有如下结构:
NH2Y
X -f NH CH2 NH—!— NH - Z 其中, n = 2- 20 , m=2— 300, Y为 Cl-、 Br―、 N<V、 11∞3-或 H2P04—中的一种, X为 含 1一 5个活性不饱和双键的(^一( 2()酰类或酯类基团, Z为 H或 X。
所述的 X选自丙烯酰、 甲基丙烯酰、 马来酰、 富马酰、 衣康酰、 十一碳烯酰、 甲 基丙烯酸羟基丙酯中的一种。
一种聚烯烃功能化母粒的制备方法, 其特征在于, 是采用溶液、 熔融或固相反应 的方法进行制备的, 采用的原料和用量 (重量百分比)如下:
(1) 60%— 98%的聚烯烃树脂, 其牌号由最终制品的需要而决定。 例如, 要制备抗菌 丙纶纤维, 则要用聚丙烯树脂进行分子组装。
(2) 2%— 40%的多元胺与胍盐聚合物,其分子量范围为 300— 60000。 如果多元胺与 胍盐聚合物的用量小于 2. 0%, 则所得母粒的抗菌基团量少, 不能达到目的。 而多元胺与胍盐聚合物的用量若大于 40%, —方面, 会引起聚烯烃树脂的交联, 降低功能化母粒的流动性和可纺性; 另一方面, 会造成大量未接枝的多元胺与 胍盐聚合物残存于树脂基体中, 纺丝中易发生断头现象。 再者, 提高多元胺与 胍盐聚合物的用量还会增加母粒的成本。
(3) 0. 5%— 15. 0%的烯烃单体, 如苯乙烯、 二乙烯基苯、 α -甲基苯乙烯等。 所说 烯烃单体的用量为 0. 5%- 15. 0%。 用量若低于 0. 5%, 则起不到提高接枝率的作 用。 但若用量大于 15. 0%, 会产生烯烃均聚, 或导致交联。
(4) 0. 01°/。一5. 0%的引发剂, 如 2, 5-二甲基 -2, 5-双(叔丁过氧基)己垸、 2, 5-二甲 基- 2, 5-双(叔丁过氧基)己炔 -3、 过氧化二异丙苯、 过氧化苯甲酰、 过氧化十 二酰、 二叔丁基过氧异丙基苯、 过氧化醋酸叔丁酯、 过氧化(2-乙基己酸)叔 丁酯、 2, 5-二甲基 -2, 5-双(过氧化苯甲酰)己垸、 叔丁基异丙基苯过氧化物、 过氧化 2, 4-二氯苯甲酰、 过氧化对氯苯甲酰、 过氧化月桂酸叔丁酯、 过氧化 丁二酸、 过氧化环己酮、 1, 1-双(过氧化叔丁基) -3, 3, 5-三甲基环己烷、 4,4- 双(过氧化叔丁基)戊酸正丁酯、 叔丁基过氧化氢、 叔丁基过氧化苯甲酸酯等 等。 如果引发剂的用量低于 0. 01%, 产生的自由基浓度太低, 多元胺与胍盐 聚合物接枝率将大大降低。 若引发剂的用量大于 5. 0% (重量), 则聚烯烃大分 子自由基与引发剂自由基之间的终止反应加快, 使得接枝率下降; 同时引起 基体的降解和交联反应的发生, 使改性聚烯烃的可加工性及抗菌和性能同时 下降。 可单独使用其中的一种或几种引发剂联合使用。
其中, (3)、 (4)的重量百分比均以组分(1) + (2)的总量为基准。 所述的多元胺与胍盐聚合物是通过下面方法制备的: 将胺与胍盐以摩尔比 1: 0.1 一 3.0的比例混合, 最好是 1: 0.5— 1.5。 加入反应器中, 在氮气保护下加热至 90— 150 V, 反应 0.5— 8小时, 而后升温至 160— 250°C, 反应 1一 10小时, 而后再加入重量百 分比为 1%- 45%的含活性不饱和双键的(^一(2。化合物, 进行酰胺化或开环缩合反应, 10 一 120分钟后, 结束反应。 反应方程式如下所示:
Figure imgf000005_0001
H2N -[( CH2 ^- H— C— NH -]- H + m NH3
II m
N+ HY一
Figure imgf000005_0002
CH
Figure imgf000005_0003
其中, R代表 C^— ( 15的烷基。
所述的多元胺为(2—( 2。的有机胺,可优选的为乙二胺、丙二胺、 1, 6—己二胺、 1, 10 一癸二胺、 六次甲基四胺、 四乙烯五胺、 三乙烯四胺、 三亚乙基二胺、 三亚乙基三胺、 N—羟乙基乙二胺、 3—二甲氨基丙胺中的一种;
所述的胍盐为无机酸的胍盐, 该胍盐选自碳酸胍、 盐酸胍、 硝酸胍、 磷酸胍、 氨 基胍酸式碳酸盐中的一种;
所述的含 1一 5个活性不饱和双键的 (^_(;2。化合物,优选的是丙烯酸、 甲基丙烯酸、 甲基丙烯酸甲酯、 甲基丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸乙酯、 丙烯酸 -2-羟基乙酯、 丙烯酸 -2-羟基丙酯、 H ^—碳烯酸、 甲基丙烯酸环氧丙酯、 丙烯酸环氧丙酯、 甲基丙烯 酸 -2-羟基丙酯、 马来酸酐、 富马酸酯、 衣康酸、 山梨酸等中的一种。
通常可以通过下列三种方法获得本发明的聚丙烯功能化母粒。
(1) 溶液法: 按照上文说明的配料, 均加入到二甲苯溶剂中, 逐步升温至 90— 125 V , 使所有固体都溶解, 形成 5— 55%的溶液。 维持温度反应 3— 4小时。 反应 结束后, 将反应液降至室温, 固体析出, 经过滤、 干燥后即得到功能化母粒。
(2) 熔融法: 按照上文说明的配料, 经高速混合后逐步加入到单螺杆挤出机或双 螺杆挤出机或密炼机中, 于 170— 260Ό温度下熔融接枝反应。 反应时间为 1 一 25分钟。 反应结束后, 将产物粉碎, 用水或丙酮萃取除去游离的二元胺与 胍盐聚合物, 干燥后即得功能化母粒。
( 3) 固相法: 按照上文说明的配料, 首先将聚烯烃树脂粉碎成 40目以上的粉末, 然后加入到高速混合机中混合均匀, 再加入到装备有螺带式搅拌器的反应釜中, 边搅 拌边升高温度, 达 90— 145Ό后, 反应 3— 5小时后, 降至室温。 用水或丙酮萃取、 干 燥后即得到功能化母粒。
应用一种聚烯烃功能化母粒作为纤维改性剂的方法, 其特征在于, 将其以一定比例 与聚丙烯、 聚乙烯共混, 纺丝, 可制备染色性能优良、 抗菌、 抗静电的纤维和无纺布。
应用一种聚烯烃功能化母粒作为聚丙烯汽车保险杠粒料改性剂的方法, 其特征在 于, 将其以一定比例加入到聚丙烯汽车保险杠粒料中, 可制备可漆性的聚丙烯汽车保 险杠。
应用一种聚烯烃功能化母粒作为抗菌改性剂的方法, 其特征在于, 将其以一定比 例加入到聚丙烯、 聚苯乙烯、 聚乙烯、 聚氯乙烯树脂中, 可制备各种抗菌塑料制品, 包括 BOPP薄膜、 PPR水管和 PE、 PS、 PVC的薄膜及其它塑料器件。
所述的多元胺与胍盐聚合物的结构可通过红外光谱鉴定。胍基的特征吸收峰为 1633 - 1660cm-1, 胺基的特征吸收峰在 3180— 3360 cm-1, 双键的特征吸收峰在 1540— 1695 cnf1, 和 665— 770 cm—1, 酰胺的特征吸收峰在 1610—1655 cm—
所述的多元胺与胍盐聚合物可以作为抗菌剂、 抗静电剂或为合成纤维提供染座的 改性剂, 添加到其它聚合物中。 其在功能化料中的用量为 2%— 40% (重量)。 如果多元胺 与胍盐聚合物的用量小于 2% (重量), 则所得母粒的极性基团量少, 不能达到改性目的。 而多元胺与胍盐聚合物的用量若大于 40% (重量), 一方面, 会引起树脂的交联, 降低母 粒的流动性和加工性; 另一方面, 会造成大量未组装上去的多元胺与胍盐聚合物残存 于树脂基体中, 在一些场合下, 如纺丝中就易发生断头现象。 再者, 提高多元胺与胍 盐聚合物的用量还会增加母粒的成本。
所述的多元胺与胍盐聚合物的分子量可用蒸气压渗透法或质谱法测定。 其分子量 范围为 300— 60, 000。 若分子量小于 300, 那么可能有两种情况, 一是聚合物的胺基含 量过少, 二是聚合物与其它聚合物的接枝率下降。 而这两种情况都会使改性效果的下 降; 然而, 若分子量大于 60, 000, 则会导致聚合物熔体粘度增大, 接枝时易发生交联 反应, 导致加工性能变差。 因此, 多元胺与胍盐聚合物分子量的合适范围是 300— 60, 000。
所述的多元胺与胍盐聚合物的耐热性可用热重分析法 (TGA)测定。 该聚合物具有优 良的耐热性, 其分解温度在 360°C以上, 在一般聚合物加工中不会分解; 另外还具有较 高的反应活性, 例如, 它可以通过熔融、 溶液、 固相接枝, 方便地与聚烯烃树脂实现 分子组装, 制备抗菌母粒。
与现有技术相比, 本发明采用分子组装技术制备新型高分子功能化母料。 所谓分 子组装技术就是在部分基体树脂的分子链上组装上经过优选的功能团, 使这部分树脂 自身就具备抗菌、 抗静电等功能, 而不是从外部混进其它什么抗菌剂。 与传统的将有 机或无机抗菌剂通过共混技术制备的抗菌材料相比, 分子组装技术从根本上克服了小 分子有机抗菌剂易迁移耐久性差、 溶出物安全性问题, 抗菌功能团自身都是以化学键 与基体树脂分子牢固结合成一体, 因而能够经受洗涤剂的多次洗涤, 而且安全无毒; 同时, 通过该技术制备的功能化母粒, 与树脂有优异的相容性, 在基体中呈纳米尺度 分布, 具有优良的加工性能, 能适应加工难度较大的细旦长丝的纺制及薄膜的双向拉 伸; 而且可靠的安全性能保证了其在食品包装和饮水管道材料等方面的应用, 这是目 前普通有机和无机抗菌剂所无法比拟的。
在本发明中, 我们选择胍盐及其衍生物作为主要的组装功能团, 因为它是一类重 要的中间体, 是制造磺胺嘧啶、 磺胺二甲基嘧啶等药物的重要原料, 具有高效广谱抗 菌、 安全无毒、 热稳定性好的优点, 由于其具有强烈的极性和吸湿性, 还可用作合成 纤维的抗静电剂。 除抗菌方面的作用以外, 组装上去的功能团对材料的其它性能也有 一定程度的改善。 与基体树脂相比, 抗菌功能团具有较强的极性, 加工过程中易于在 表面富集, 一方面提高了抗菌功能团的使用效率, 有利于降低成本; 另一方面, 可以 降低材料的表面电阻率, 改善其抗静电性能, 其极性基团还可以与染料或油漆分子结 合, 为解决合成纤维的染色问题提供新途径。 由于极性的差异, 抗菌功能团可在体系 中起到成核剂的作用, 能够加快结晶速率、 减小晶粒尺寸, 从而在一定程度上可提高 材料的力学性能。
将上述的功能化母粒与相应的聚烯烃共混, 经加工, 得到良好染色、 抗菌、 抗静 电性能的丙纶; 可漆性的汽车保险杠; 抗菌 PPR水管、 抗菌 PP、 PE、 或 PVC薄膜、 抗 菌家电和玩具等。 具体应用效果参见以下的具体实施例。
具体实施方式
本发明将在下文中通过实施例进行具体说明, 在实施例中采用下列的测试方法- 抗菌性能检测 抗菌塑料, 参照 GB15979-1995
抗菌纤维, 参照 FZ/T01021- 1992
防霉性能检测 参照 GB/T2423. 16-1999
毒理性能检测(急性经口毒性试验、 皮肤刺激试验、 微核试验)
参照 GB15193-1994和 GB/T17409-1998 表面电阻率 参照 GB1410-89
接枝率的测定是利用红外图谱, 测定萃取前后特征峰之间的相对强度, 根据朗伯 比尔定律, 可求出接枝率。 计算公式为- 接枝率 = x ioo% 其中, Cp ^分别为萃取前后多元胺与胍盐聚合物的含量 (重量百分数)。
纤维上染率测定: 采用标准上染率测定法, 用 721型分光光度计测得染色前后染 液光密度的变化得到。 上染率% =原染液光密度 -残液光密度
•X
原染液光密度 实施例 1
多元胺与胍盐聚合物的制备实例 1。 取 1, 10-癸二胺 172g, 碳酸胍 200g, 加入到 1000ml三颈瓶中, 在氮气保护下, 搅拌并升温至 110°C, 反应 1小时, 然后升温至 185 °C反应 8小时, 再加入 35g马来酸酐, 40分钟后结束反应。
其数均分子量为 8, 600, 热分解温度为 370°C, 其红外图谱上有胍基、 胺基、 酰胺、 双键等基团的特征吸收峰。 实施例 2 ·
多元胺与胍盐聚合物的制备实例 2。取六次甲基四胺 100g,盐酸胍 35g,加入到 250ml 三颈瓶中, 在氮气保护下, 搅拌并升温至 150°C, 反应 5小时, 然后升温至 230Ό反应 8小时, 再加入 20g丙烯酸丁酯, 100分钟后结束反应
其数均分子量为 16, 600, 热分解温度为 366°C, 其红外图谱上有胍基、 胺基、 酰胺、 双键等基团的特征吸收峰。 实施例 3
多元胺与胍盐聚合物的制备实例 3。 取已二胺 150g, 硝酸胍 210g, 加入到 500ml三 颈瓶中, 在氮气保护下, 搅拌并升温至 100°C, 反应 2小时, 然后升温至 160°C反应 1 小时, 再加入 10g甲基丙烯酸环氧丙酯, 20分钟后结束反应
其数均分子量为 800, 热分解温度为 365°C, 其红外图谱上有胍基、 胺基、 双键等 基团的特征吸收峰。 以下是功能化母粒制备实例:
实施例 4
取聚芮烯 Y2600 (上海石化股份有限公司生产) 80g, 聚癸二胺碳酸胍的马来酸酯 20g, 分子量为 50000, 苯乙烯 4g, 过氧化笨甲酰 1. 3g, 加入到 2000ml的烧瓶中, 然 后加入 1300g二甲苯, 逐步升温至 110°C。 待固体全部溶解后, 再维持 4小时。 反应结 束后, 将烧瓶冷却至室温, 加入 100g丙酮, 搅拌后待固体完全从溶液中析出, 经干燥 后即得到功能化聚丙烯母粒。 (编号: 1# ) 通过红外图谱测定, 其接枝率为 96.6%。 实施例 5
取聚氯乙烯粉末 (TH- 5, 天津化工厂) 100g, 然后加入高速混合器中。 再于混合器 中加入聚己二胺盐酸胍的甲基丙烯酸酯 25g, 分子量为 1500, 二乙烯基苯 7g, 充分 混合后加入 1000ml装备有螺带式搅拌器的反应釜中, 边搅拌边加热至 100°C, 然后将 过氧化醋酸叔丁酯 l. Og和叔丁基过氧化氢 0.3g各分为 5份后两两相配, 3小时内分 5次投入反应釜内引发接枝反应。 反应完毕后用丙酮, 在索式抽提器对粉末萃取 10小 时, 干燥后得到功能化母粒。 (编号: 2#)
通过红外图谱测定, 其接枝率为 92.6%。 实施例 6
取聚苯乙烯 (Tororex, 日本三井东压化学公司, 熔体指数为 8g/10min) 2.5公斤, 聚乙二胺盐酸胍的丙烯酸酯 630g, 分子量为 16000, ct -甲基苯乙烯 130g, 过氧化二异 丙苯 0.8g, 过氧化十二酰 4g, 全部放入高速混合机中混合 5min, 出料。 将混合料放入 Φ35双螺杆挤出机中, 以 50rpm的速度反应挤出, 反应温度为 190°C。 挤出产物粉碎 后经丙酮萃取 10小时后干燥得到功能化母粒。 (编号: 3#)
通过红外图谱测定, 其接枝率为 73.2%。 以下是所制得的聚烯烃功能化母粒应用效果实例:
实施例 7
以上海石化公司生产的聚丙烯 Y1600为对比物,试样编号为 A。聚丙烯 Y1600 4.8 公斤, 1#功能化母粒 200g, 混合后编号为 A', 分别在 260Ό下纺丝, 得到丙纶。 两者 的力学性能及染色性能如下所示: 试样 拉伸强度 断裂伸长 上染率% 皂洗牢度 上染率% 皂洗牢度 抑菌率%
N/dtex % 分散蓝 酸性蓝 (金色葡萄 球菌)
A 3.8 112 6.1 —一 0
A' 3.2 128 82 4 86 4-5 90 实施例 8
以北欧化工公司的无规聚丙烯 RA-130E为对比物, 编号为 B。 取 RA- 130E 19kg, 1# 功能化母粒 1. 5kg, 混合后, 编号为 Β' , 分别经挤出机挤出成型, 制成不同规格的 PPR 水管。 两者的力学和抗菌性能如下所示: 试样 拉伸强度 断裂伸长 缺口冲击强度 表面电阻率 抑菌率% 防霉等级
MPa % kj/m2 (相对湿度 (金色葡萄球
70%) 菌)
Β 26. 0 560 5. 2 1.5 X 1016 2
Β' 26. 5 550 5. 3 5.2 X 10'。 87 0 对 B ' 样品进行毒理试验, 其浸提液经昆明种小鼠口服、 微核试验和家兔皮肤剌激 试验, 结果为无毒、 阴性不产生突变、 无刺激性, 可用于食品包装和输水管道。 实施例 9
以燕山石化股份有限公司的薄膜级聚丙烯( 牌号: F1001 )为对比物, 编号为 C。 取聚丙烯 F1001 9. 5kg, 1#功能化母粒 350g, 混合后, 编号为 C', 分别经双向拉伸, 制得 25 μ得薄膜。 两者的性能如下所示: 拉伸强度 断裂伸长
试样 MPa %
(金色葡 级
萄球菌)
纵向 横向 纵向 横向
165 91 23 106 2
172 95 21 98 95 0
实施例 10
现有两种不同配方的聚丙烯保险杠母粒, 配方 D (聚丙烯, 橡胶, 助剂) , 配方 D ' 除了加入 5 % 1 #功能化聚丙烯以外, 其余组分与配方 D相同。 将这两种配方分别经 过双螺杆共混挤出一造粒一烘干一注塑成型机制成片材一表面清洗一表面活性剂处理 —干燥一涂漆一烘干, 然后进行力学性能和漆膜附着力的测试。 结果如下: 试样 拉伸强度 弯曲强度 弯曲模量 冲击强度 漆膜附着力 漆膜附着力(Ν · !!-1)浸
MPa MPa GPa J/m (N . m'1) τΚ 48小时 D 18. 00 19 0. 588 未断 168 102
D' 18. 33 19 0. 628 未 ®^ _ 619 432 实施例 11
以天津化工厂生产球形聚氯乙烯(牌号: TH- 5)为对比物, 编号为 E。 取聚氯乙烯 9. 5kg, 2#功能化母粒 500g, 混合后编号为 E ' 。 将这两种料经注塑成型机制成片材, 然后进行性能测试。 结果如下:
试样 拉伸强度 弯曲模量 缺口冲击强 表面电阻率 (相
防霉等级 抑菌率%
MPa MPa 度 kj/m2 对湿度 70%) (金色葡萄球菌)
E 53. 5 136 5. 6 2.9 X 1015 2
E' 53. 8 150 5. 7 6.7 X 1010 0 82 实施例 12
以聚苯乙烯 (Tororex, 日本三井东压化学公司) 为对比物, 编号为 F。 取聚苯乙烯 9. 5kg, 3#功能化母粒 500g, 混合后编号为 F ' 。 将这两种料经注塑成型机制成片材, 然 进行性能测试。 结果如下:
试样 弯曲强度 悬臂梁冲击强度 表面电阻率 (相对湿度 防霉等级 抑菌率%
MPa J/m 70%) (金色葡萄球菌)
F 95 26 5.9 X 10" 2
F, 98 26 3.7 X 1010 0 78 从实施例 6- 12的结果可以看出, 功能化母粒的加入, 材料的力学性能没有不良影 响, 在某些方面还略有提高; 最重要的是, 赋予材料优异的抗菌防霉性能, 而且效果 持久, 具有高度的安全性, 符合食品包装和输水管道材料有关卫生标准; 另外, 功能 化母粒的加入, 还显著增强了材料的表面极性, 使其表面电阻率下降了 5— 6个数量级, 改善其抗静电性能, 同时, 大大提高了丙纶对酸性染料、 分散染料的上染率, 提高了 聚烯烃材料的可漆性。
因此, 本发明制备的分子组装功能化母粒可多方面改进聚烯烃制品的性能, 有广 阔的应用价值。
在多元胺与胍盐聚合物的分子链中引入活性双键, 这样便可通过引发剂打开双键, 组装到基体树脂的分子链上, 赋予其抗菌、 吸湿、 抗静电和可染等性能。 本发明的技 术关键在于抗菌剂的合成及其与基体树脂的组装。

Claims

权利要求
1. 一种聚烯烃功能化母粒, 其特征在于, 该母粒具有如下结构:
R
I
,ΛΛ^ CH2— C— CH2— CH— CH2— CH— CH2
s s s 其中, R代表接枝到聚烯烃分子链上的多元胺与胍盐聚合物, S为氢、 氯、 甲基、 或苯基中的一种;
所述的多元胺与胍盐聚合物具有如下结构:
X -[ NH-f CH2-^NH—!― NH^ Z 其中, n = 2- 20 , m-2 - 300 , Y 为 Cl—、 Br―、 NO HC03—或 H2P04-中的一种, X 为含 1一 5个活性不饱和双键的 (^一(:2。酰类或酯类基团, Z为 H或 X。
2. 根据权利要求 1所述的一种聚烯烃功能化母粒, 其特征在于, 所述的 X选自丙 烯酰、 甲基丙烯酰、 马来酰、 富马酰、 衣康酰、 十一碳烯酰、 甲基丙烯酸羟基丙酯中 的一种。
3. 一种聚烯烃功能化母粒的制备方法, 其特征在于, 是采用溶液、 熔融或固相反 应的方法进行制备的, 釆用的原料和用量 (重量百分比)如下:
60%— 98%的聚烯烃树脂;
2%— 40%的多元胺与胍盐聚合物;
0. 5%— 15%的烯烃单体;
0. 01%— 5. 0%的引发剂;
其中, (3)、 (4)的重量百分比均以组分(1) + (2)的总量为基准。
4. 根据权利要求 3所述的一种聚烯烃功能化母粒的制备方法, 其特征在于, 所述 的多元胺与胍盐聚合物是经过如下步骤制得的:
将多元胺与胍盐以摩尔比 1 : 0. 1— 3. 0的比例混合, 加入反应器中, 加热至 90—
150°C, 反应 0. 5— 8小时, 再升温至 160— 250°C, 反应 1— 10小时, 然后再加入一定 量的含 1一 5个活性不饱和双键的 一( 2。有机化合物, 反应 10— 120分钟后, 即制得多 元胺与胍盐聚合物。
5. 根据权利要求 4 所述的一种聚烯烃功能化母粒的制备方法, 其特征在于- 所述的多元胺为 C2—C2。的有机胺, 该有机胺选自乙二胺、 丙二胺、 1, 6—己二胺、 1, 10—癸二胺、 六次甲基四胺、 四乙烯五胺、 三乙烯四胺、 三亚乙基二胺、 三亚乙基 三胺、 N—羟乙基乙二胺、 3—二甲氨基丙胺中的一种;
所述的胍盐为无机酸的胍盐, 该胍盐选自碳酸胍、 盐酸胍、 硝酸胍、 磷酸胍、 氨 基胍酸式碳酸盐中的一种;
所述的含 1一 5 个活性不饱和双键的 C^— C^。化合物选自丙烯酸、 甲基丙烯酸、 甲 基丙烯酸甲酯、 甲基丙烯酸乙酯、 丙烯酸丁酯、 丙烯酸乙酯、 丙烯酸 -2-羟基乙酯、 丙 烯酸- 2-羟基丙酯、 十一碳烯酸、 甲基丙烯酸环氧丙酯、 丙烯酸环氧丙酯、 甲基丙烯酸 - 2 -羟基丙酯、 马来酸酐、 富马酸酯、 衣康酸、 山梨酸中的一种。
6. 根据权利要求 3所述的一种聚烯烃功能化母粒的制备方法, 其特征在于, 所述 的烯烃单体选自苯乙烯、 二乙烯基苯、 α -甲基苯乙烯中的一种。
7. 根据权利要求 3所述的一种聚烯烃功能化母粒的制备方法, 其特征在于: 所述 的引发剂选自 2, 5-二甲基 -2, 5-双(叔丁过氧基)己垸、 2, 5-二甲基 -2, 5-双(叔丁过氧基) 己炔 -3、 过氧化二异丙苯、 过氧化苯甲酰、 过氧化十二酰、 二叔丁基过氧异丙基苯、 过氧化醋酸叔丁酯、 过氧化(2-乙基己酸)叔丁酯、 2, 5-二甲基 -2, 5-双(过氧化苯甲酰) 己烷、 叔丁基异丙基苯过氧化物、 过氧化 2, 4-二氯苯甲酰、 过氧化对氯苯甲酰、 过氧 化月桂酸叔丁酯、 过氧化丁二酸、 过氧化环己酮、 1,1-双(过氧化叔丁基)- 3, 3, 5-三甲 基环己烷、 4, 4-双(过氧化叔丁基)戊酸正丁酯、 叔丁基过氧化氢、 叔丁基过氧化苯甲 酸酯中的一种或几种。
8. 根据权利要求 3所述的一种聚烯烃功能化母粒的制备方法, 其特征在于, 所述 的溶液法包括如下步骤: 将各种物料加入到二甲苯溶剂中, 升温至 90— 125 °C, 形成 5 一 55%的溶液, 反应 3— 4小时, 降温析出固体, 经过滤、 干燥后即得到功能化母粒。
9. 根据权利要求 3所述的一种聚烯烃功能化母粒的制备方法, 其特征在于, 所述 的熔融法包括如下步骤: 将各种物料混合后加入到单螺杆挤出机或双螺杆挤出机或密 炼机中, 于 170— 26CTC温度下进行熔融接枝反应, 反应时间为 1一 25分钟, 从反应产 物中收集功能化母粒。 '
10. 根据权利要求 3 所述的一种聚烯烃功能化母粒的制备方法, 其特征在于, 所 述的固相法包括如下步骤: 首先将聚烯烃粉末和其它物料混合均匀, 在搅拌反应釜中, 边搅拌边升温, 至 90— 145°C , 反应 1一 8 小时后, 结束反应, 从反应产物中收集功能 化母粒。
11. 应用一种聚烯烃功能化母粒作为纤维改性剂的方法, 其特征在于, 将其以一 定比例与聚丙烯、 聚乙烯共混, 纺丝, 可制备染色性能优良、 抗菌、 抗静电的纤维和 无纺布。
12. 应用一种聚烯烃功能化母粒作为聚丙烯汽车保险杠粒料改性剂的方法, 其特 征在于, 将其以一定比例加入到聚丙烯汽车保险杠粒料中, 可制备可漆性的聚丙烯汽 车保险杠。
13. 应用一种聚烯烃功能化母粒作为抗菌改性剂的方法, 其特征在于, 将其以一 定比例加入到聚丙烯、 聚苯乙烯、 聚乙烯、 聚氯乙烯树脂中, 可制备各种抗菌塑料制 品, 包括 B0PP薄膜、 PPR水管和 PE、 PS、 PVC的薄膜及其它塑料器件。
PCT/CN2003/000183 2002-03-15 2003-03-14 Type de grain mere d'olefine fonctionnel, procede d'elaboration et procede d'utilisation WO2003078490A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003221218A AU2003221218A1 (en) 2002-03-15 2003-03-14 A kind of functional olefin mother grain and the method of it and the use of it
EP03711794A EP1486519B1 (en) 2002-03-15 2003-03-14 Preparation method of functional masterbatch of polyolefin and its application
DK03711794T DK1486519T3 (da) 2002-03-15 2003-03-14 Fremstillingsmetode til funktionaliseret masterbatch af polyolefin og dens anvendelse
JP2003576488A JP4610904B2 (ja) 2002-03-15 2003-03-14 一種の機能化ポリオレフィンマスターバッチ及びその製造法と応用
DE60322034T DE60322034D1 (de) 2002-03-15 2003-03-14 Herstellung von funktionellem polyolefin masterbatch und deren verwendung
US10/941,626 US7282538B2 (en) 2002-03-15 2004-09-15 Preparation method of functional master batch of polyolefin and its application
US11/751,894 US7531225B2 (en) 2002-03-15 2007-05-22 Preparation method of functional master batch of polyolefin and its application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB021110484A CN1282698C (zh) 2002-03-15 2002-03-15 一种聚烯烃功能化母粒及其制备方法和应用
CN02111048.4 2002-03-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/941,626 Continuation US7282538B2 (en) 2002-03-15 2004-09-15 Preparation method of functional master batch of polyolefin and its application

Publications (1)

Publication Number Publication Date
WO2003078490A1 true WO2003078490A1 (fr) 2003-09-25

Family

ID=27811200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000183 WO2003078490A1 (fr) 2002-03-15 2003-03-14 Type de grain mere d'olefine fonctionnel, procede d'elaboration et procede d'utilisation

Country Status (10)

Country Link
US (2) US7282538B2 (zh)
EP (1) EP1486519B1 (zh)
JP (1) JP4610904B2 (zh)
CN (1) CN1282698C (zh)
AT (1) ATE400596T1 (zh)
AU (1) AU2003221218A1 (zh)
DE (1) DE60322034D1 (zh)
DK (1) DK1486519T3 (zh)
ES (1) ES2311091T3 (zh)
WO (1) WO2003078490A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847195A (zh) * 2011-06-29 2013-01-02 李春洁 医用抗病毒纱布或绷带的制造方法
CN110387640A (zh) * 2019-06-21 2019-10-29 爹地宝贝股份有限公司 一种用于卫生产品的荧光无纺布及其制作方法
CN113896838A (zh) * 2021-11-12 2022-01-07 南京越升挤出机械有限公司 一种长效抗菌聚苯乙烯树脂及其制备方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309780C (zh) * 2004-05-17 2007-04-11 山东天野塑化有限公司 高分子抗静电母料
CN101210062B (zh) * 2006-12-27 2010-05-19 华东理工大学 一种抗菌聚合物材料
CN101245141B (zh) * 2007-02-16 2011-04-06 铜陵高聚生物科技有限公司 盐酸聚六亚甲基胍及其制备方法
EP1983026A1 (en) * 2007-04-18 2008-10-22 The Procter and Gamble Company Modified Polyolefin Surfaces
CN101724284B (zh) * 2008-10-31 2012-06-27 中国石油化工股份有限公司 一种抗菌热塑性塑料组合物及其制备方法
WO2010059917A1 (en) 2008-11-20 2010-05-27 Water Visions International, Inc. Antimicrobial device and materials for fluid treatment
CN101812160B (zh) * 2009-02-23 2012-05-30 上海富元塑胶科技有限公司 一种聚烯烃功能化母粒及其制备方法和应用
EP2230258A1 (de) * 2009-03-18 2010-09-22 Mindinvest Holdings Ltd. Mikrobiozid wirkendes Arzneimittel
US20110086078A1 (en) * 2009-10-14 2011-04-14 Water Visions International, Inc. Fibrous antimicrobial materials, structures, and barrier applications
DE102009052725A1 (de) * 2009-11-12 2011-05-19 B. Braun Melsungen Ag Verwendung von Polyoxyalkylendiamin-basierten Polyguanidinderivaten für medizinische Artikel
DE102009052721A1 (de) 2009-11-12 2011-05-26 B. Braun Melsungen Ag Verwendung polymerer oder oligomerer Wirkstoffe für medizinische Artikel
CN102234392B (zh) * 2010-04-22 2013-02-27 中国石油化工股份有限公司 一种抗菌聚丙烯双向拉伸薄膜及其制备方法
CN102851778A (zh) * 2011-06-29 2013-01-02 马志银 物理抗病毒无纺布的制造方法
CN102321351A (zh) * 2011-08-24 2012-01-18 昆山埃登新材料有限公司 Pet趋螨高分子材料
CN103627126A (zh) * 2012-08-20 2014-03-12 叶向明 抗菌母粒及其在混纺纱线、混纺面料和梭织面料中的应用
AT513858B1 (de) * 2013-01-25 2014-08-15 Sealife Pharma Gmbh Neue bioaktive Polymere
CN103146105B (zh) * 2013-03-06 2015-04-29 华东理工大学 一种功能化丙烯酸酯类树脂的反应挤出聚合方法
CN104004139A (zh) * 2014-06-05 2014-08-27 上海富元塑胶科技有限公司 多功能聚烯烃蜡及其制备方法和应用
CN104448476B (zh) * 2014-11-19 2017-05-10 杭州联通管业有限公司 一种高分子季铵盐抗菌管及其制备方法
CN104855416B (zh) * 2015-05-27 2018-02-16 武汉桀升生物科技有限公司 一种耐高温复合抗菌剂及其制备方法
WO2017182536A1 (de) * 2016-04-20 2017-10-26 Ineos Styrolution Group Gmbh Antimikrobiell wirkende, nicht ausblutende thermoplastische formmassen
CN108440761B (zh) * 2017-02-16 2020-11-24 中国科学院理化技术研究所 一种含有胍基侧链的非释放型高分子抗菌母粒及其制备方法和应用
CN108948503A (zh) * 2017-05-23 2018-12-07 武汉金牛经济发展有限公司 一种ppr管材抗菌着色母粒及制备方法
CN107254045B (zh) * 2017-05-26 2021-05-18 天津大学 一种胍类聚合物杀菌剂的制备方法
CN107326463B (zh) * 2017-06-30 2019-06-21 吉林师范大学 一种聚亚甲基胍修饰pvc抗菌纤维的制备方法
CN109693404A (zh) * 2017-10-20 2019-04-30 维龙(上海)包装工业有限公司 一种抗有害微生物聚丙烯薄膜及其制造方法
CN108691030A (zh) * 2018-05-24 2018-10-23 王德文 杀菌抗病毒防污水产养殖网箱
CN109293838B (zh) * 2018-08-31 2021-06-08 汕头市远生实业有限公司 一种接枝抗菌聚丙烯及其制备工艺
CN109535571B (zh) * 2018-10-10 2021-02-19 桂林新先立抗菌材料有限公司 一种注塑材料及其制备方法
CN109440211B (zh) * 2018-10-30 2021-01-19 浙江千禧龙纤特种纤维股份有限公司 用于生产抑菌型超高分子量聚乙烯纤维的抗菌母液
CN109569331B (zh) * 2018-12-18 2021-10-22 万华化学集团股份有限公司 一种亲水性抗菌滤膜的制备方法
CN110777442A (zh) * 2019-11-06 2020-02-11 吉林师范大学 衣康酸胍基苯乙烯共聚消毒纤维制备方法
CN110964277B (zh) * 2019-11-30 2021-03-23 华东理工大学 一种胍盐抗菌剂接枝改性聚偏氟乙烯及其制备方法
CN112142929A (zh) * 2020-09-16 2020-12-29 邓天生 一种抗菌聚乙烯材料及其制备方法
CN114427124B (zh) * 2020-10-29 2024-02-13 中国石油化工股份有限公司 一种抗菌阻燃聚丙烯纤维组合物及其制备方法和纤维、无纺布
CN112778739A (zh) * 2021-01-07 2021-05-11 华东理工大学 一种浓缩长效抗菌抗污pc母粒及其制备方法
CN112852043A (zh) * 2021-01-11 2021-05-28 华东理工大学 一种浓缩长效抗菌抗污聚烯烃母粒及其制备方法
CN113150439A (zh) * 2021-04-09 2021-07-23 佛山市顺德区美的饮水机制造有限公司 一种塑胶组合物及其应用、塑胶零部件及其制备方法和应用
CN113150302B (zh) * 2021-04-21 2022-05-20 上海玉城高分子材料股份有限公司 一种无机复合胍盐聚合物抗有害微生物材料及其制备方法
CN114369188A (zh) * 2021-11-18 2022-04-19 山东志存科技有限公司 一种大分子杀菌剂-聚烯烃卡巴嘧啶的合成工艺
CN114656714A (zh) * 2022-03-01 2022-06-24 山东清田塑工有限公司 高强易回收地膜及其制备方法
CN116948281A (zh) * 2022-07-15 2023-10-27 湖北美的洗衣机有限公司 制备缓释功能单元的方法、缓释功能单元和家用电器
CN118005982A (zh) * 2023-04-07 2024-05-10 扬州鑫宸建材有限公司 一种耐火高强塑料管的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB231805A (en) * 1924-04-04 1925-11-30 Leon Lilienfeld Manufacture of artificial materials
GB818844A (en) * 1954-08-24 1959-08-26 Ciba Ltd New hardenable derivatives of formaldehyde condensation products of the aminotriazine or urea group, and their manufacture and use
GB1581205A (en) * 1977-05-10 1980-12-10 Kemanobel Ab Fungicidal composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB952194A (en) * 1960-12-23 1964-03-11 Smith Kline French Lab New guanidine derivatives and processes for preparing the same
JPS5573706A (en) * 1978-11-28 1980-06-03 Nitto Electric Ind Co Ltd Antifungal material
JPS62201935A (ja) * 1986-02-20 1987-09-05 Chisso Corp ポリオレフィンマスタ−バッチペレット混合物の分級防止方法
JPH06234726A (ja) * 1992-11-24 1994-08-23 Takeda Chem Ind Ltd 防菌・防かび性化合物、その製造法および剤
US5659011A (en) * 1994-09-23 1997-08-19 Waldmann; John J. Agents having high nitrogen content and high cationic charge based on dicyanimide dicyandiamide or guanidine and inorganic ammonium salts
ES2234837T3 (es) * 2000-05-11 2005-07-01 Poc Polymer Produktions Gmbh Polimeros biocidas basados en sales de guandina.
JP2002038032A (ja) * 2000-07-26 2002-02-06 Daiwa Kagaku Kogyo Kk 熱可塑性プラスチックの抗菌防カビ組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB231805A (en) * 1924-04-04 1925-11-30 Leon Lilienfeld Manufacture of artificial materials
GB818844A (en) * 1954-08-24 1959-08-26 Ciba Ltd New hardenable derivatives of formaldehyde condensation products of the aminotriazine or urea group, and their manufacture and use
GB1581205A (en) * 1977-05-10 1980-12-10 Kemanobel Ab Fungicidal composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847195A (zh) * 2011-06-29 2013-01-02 李春洁 医用抗病毒纱布或绷带的制造方法
CN102847195B (zh) * 2011-06-29 2016-02-24 李春洁 医用抗病毒纱布或绷带的制造方法
CN110387640A (zh) * 2019-06-21 2019-10-29 爹地宝贝股份有限公司 一种用于卫生产品的荧光无纺布及其制作方法
CN113896838A (zh) * 2021-11-12 2022-01-07 南京越升挤出机械有限公司 一种长效抗菌聚苯乙烯树脂及其制备方法
CN113896838B (zh) * 2021-11-12 2023-06-16 江苏越升科技股份有限公司 一种长效抗菌聚苯乙烯树脂及其制备方法

Also Published As

Publication number Publication date
JP4610904B2 (ja) 2011-01-12
US20050133952A1 (en) 2005-06-23
DK1486519T3 (da) 2008-11-17
US20070270552A1 (en) 2007-11-22
DE60322034D1 (de) 2008-08-21
EP1486519A4 (en) 2006-08-16
US7282538B2 (en) 2007-10-16
EP1486519A1 (en) 2004-12-15
ES2311091T3 (es) 2009-02-01
US7531225B2 (en) 2009-05-12
EP1486519B1 (en) 2008-07-09
ATE400596T1 (de) 2008-07-15
JP2005520877A (ja) 2005-07-14
CN1445270A (zh) 2003-10-01
AU2003221218A1 (en) 2003-09-29
CN1282698C (zh) 2006-11-01

Similar Documents

Publication Publication Date Title
WO2003078490A1 (fr) Type de grain mere d&#39;olefine fonctionnel, procede d&#39;elaboration et procede d&#39;utilisation
CN101812160B (zh) 一种聚烯烃功能化母粒及其制备方法和应用
CN108440761B (zh) 一种含有胍基侧链的非释放型高分子抗菌母粒及其制备方法和应用
CN101210061A (zh) 一种功能化烯烃共聚物及其制备方法和应用
CN110194889B (zh) 一种制备抗微生物附着的改性热塑性塑料及产品的方法及用于制备改性热塑性塑料的组合物
WO2011126038A1 (ja) ポリアミド樹脂組成物及びポリアミド樹脂組成物の製造法
CN106715568A (zh) 内置抗菌塑料树脂及其制备方法
JPS6164741A (ja) 熱可塑性樹脂組成物
JP2605832B2 (ja) 熱可塑性樹脂組成物およびその製造方法
CN111944233B (zh) 一种抗菌热塑性树脂组合物及其制备方法和应用
CN111944232B (zh) 一种抗菌塑料组合物及其制备方法和应用
JPH06505521A (ja) ナイロンを含んで成る可撓性の熱可塑性組成物
CN115260724B (zh) 一种环保的pla免喷涂复合材料及其制备方法
CN114957874A (zh) 一种高硬度耐划伤聚苯乙烯复合材料及其制备方法与应用
JPS62209165A (ja) 熱可塑性樹脂組成物
JPS6259647A (ja) 熱可塑性樹脂組成物
CN111621114A (zh) 一种改性聚丙烯家具复合材料及其制备方法和用途
Siregar et al. grafting of maleic anhydride onto cyclized natural rubber in the melt phase: The effect of maleic anhydride consentrations on the spesific weight and total acid
JPH01315461A (ja) 樹脂組成物
CN112358715B (zh) 兼具持久抗菌和柔性触感的强耐候性聚碳酸酯材料及其制备方法
JPS6134045A (ja) 熱可塑性樹脂組成物
CN105131510A (zh) 一种表面可涂饰的聚甲醛复合材料及其制备方法
CN111808396A (zh) 一种抗菌塑料及其制备方法
JP2695491B2 (ja) ポリアミド・ポリオレフィン樹脂組成物
CN118006074A (zh) 一种耐候性高的改性母粒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003711794

Country of ref document: EP

Ref document number: 10941626

Country of ref document: US

Ref document number: 2003576488

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003711794

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003711794

Country of ref document: EP